Université Cheikh Anta DIOP de Dakar

Faculté des Sciences et Techniques

Doctorat de troisième cycle

Spécialité : Chimie et Biochimie des Produits Naturels

Sujet: **CONTRIBUTION A L'ANALYSE CHIMIQUE**

DE Tephrosia deflexa Baker

Présentation : Dakar le 5 mars 2005

Par:

Moussa KARE Maître ès Sciences Physiques

MEMBRES DU JURY

Maître de Conférences UCAD Président : M. Samba DIENG Membres : M. Antoine NONGONIERMA Professeur **UCAD** Mme Anna BOULANGER (codirecteur) Maître de Conférences UHA M. Mamadou KONE (codirecteur) Maître de conférences UCAD Mme Moussoukhove CISSOKHO DIOP Maître-Assistant UCAD M. Bourama NIASSY UCAD

Maître-Assistant

DEDICACES

Je dédie ce travail :

A la mémoire de mes chers parents **Papa Meïssa KARE** et **Maman Diouma KOITA** que **DIEU** les accueille dans son paradis.

A mon épouse Soda Marième Diagne qui a toujours su être patiente avec moi.

A mes frères et sœurs ainsi qu'à leurs familles qui n'ont ménagé aucun effort pour consolider ma passion pour la chimie.

A tous mes parents et amis pour leur soutien.

A notre fils Meïssa : « le bonheur est au bout de l'effort »

Remerciements

A mon Directeur Monsieur Mamadou KONE Directeur du Laboratoire de Chimie Organique FST (UCAD) qui m'a transmis sa passion pour la chimie organique applique aux plantes et pour tous les conseils qu'il ne cesse de me donner.

Au **Professeur Bernard MUCKENSTURM Directeur du Laboratoire de Chimie Organique de synthèse ENSCMu (UHA, Mulhouse)** pour l'opportunité qu'il m'a offerte en m'invitant dans son laboratoire et pour tous les conseils qu'il n'a cessé de me prodiguer tout au long de mon séjour.

A ma **Codirectrice Mme Anna BOULANGER Maître de conférences à la FST de l'UHA** pour tout l'aide et le soutien qu'elle m'a apporté dans le bon déroulement du stage.

Au **Professeur Antoine NONGONIERMA**, Ancien-Directeur de Laboratoire Botanique de l'IFAN-Cheikh Anta DIOP dont la collaboration nous a fait découvrir et apprécier les *TEPHROSIA*.

Au **Professeur Serge NEUNLIST Directeur** de **l'E.N.S.C.Mu.** et à tous les membres de son laboratoire pour avoir facilité mon séjour.

Au **Docteur Didier LE NOUEN, responsable** de la RMN, pour tout le soutien qu'il m'a apporté dans mon travail.

Mes remerciements à **Monsieur Bourama NIASSY**, chef de l'équipe de recherche du **Laboratoire** de **Chimie Organique** de la **FST UCAD**, qui m'a initié à cette belle chimie des plantes.

Au **Docteur Samba DIENG maître de conférences à la FST (UCAD)** pour avoir accepté de présider le jury.

Au Docteur Moussoukhoye CISSOKHO DIOP pour avoir accepté de juger ce travail.

A Monsieur Tallap SARR technicien botaniste à l'IFAN Cheikh Anta DIOP pour sa sagacité à débusquer les TEPHROSIA sur le terrain.

A mon cher collègue SEN Fati pour toute l'aide qu'il m'a apportée et pour la bonne ambiance du laboratoire.

Contribution à l'analyse chimique de *Tephrosia deflexa*

Table des matières

Liste des figures, tableaux et schémas	7
Introduction	8
A/ Bibliographie - Généralités	9
I. Le genre <i>Tephrosia</i>	9
1.1. Généralités	9
1.2. Du point de vue de l'etnnobotanique	9 12
	12
II. Classification de quelques poly phénois naturels	13
H.1. Les pory phenois	13
II 3 Biosynthèse et relation couleur/structure des poly phénols	15
II.3.1. La biosynthèse des poly phénols	15
II.3.2. L'influence de la constitution sur la couleur des poly phénols	15
II.4. La distribution naturelle et rôles des poly phénols dans les plantes	16
II.5. Les activités biologiques des poly phénols naturels	17
III. Méthodes de travail et appareils utilisés	18
III.1. Les méthodes d'extraction et de séparation	18
III.2. Les techniques de séparation	18
III.3. Les appareils d'analyse	20
II.3.1. La GC-MS	20
II.3.2 Les indices de poly phenois	$\frac{21}{24}$
II.3.5. La HFLC	24
IL3.5 La polarimétrie.	24
II.3.6 La RMN	24

B/ Etude de Tephrosia deflexa Baker	
I. Extraction et purification	
I Les graines	
L2 Les gousses	
I.3. Les tiges et feuilles	

II. Analyse en GC/MS	32
II.1. L'extrait à l'éther des graines	33
II.2. L'extrait à l'éthanol des graines	33
II.3. L'extrait à l'éther des gousses	34
II.4. L'extrait à l'éthanol des gousses	34
II.5. L'extrait à l'éther des feuilles	35
II.6. L'extrait à l'éthanol des feuilles	35
III. Identification des nouvelles structures	36
III.1. MK57-1 : un nouveau composé !	36
III.2. MK57-2/MK57-3 : un mélange de stéréo-isomères	39
III.3. MK57-4 : un nouveau composé !	40
III.4. MK57-14 : un nouveau composé chloré !	42
III.5. MK57-15 : une hypothèse de structure	43
IV. Tests bactériologiques	45
IV.1. Les antibiogrammes	46
IV.2. Résultats	48
IV.2.1. Bacillus stéréo-isomères (Gram+)	48
IV.2.2 pseudomonas putida (Gram-)	48
IV.2.3. Interprétation	49

Récapitulatifs des structures isolées de Tephrosia poly phénols par nos soins 50

Conclusion	52
Glossaires*	54
Bibliographie Liste des annexes	55 62

Liste des figures

Fig. 1 : Tephrosia stéréo-isomères	4
Fig. 2 : Ouelques structures isolées de T. purpurea	12
Fig. 3 : Structure de phénylchromones	13
Fig. 4 : Structure de stéréo-isomères	14
Fig. 5 : Structure de stéréo-isomères	14
Fig. 6 : Structure de base des stéréo-isomères	14
Fig. 7 : La roténone	15
Fig. 8 : Biosynthèse des composés flavoniques	17
Fig. 9: Chromatogramme GC/MS de MK110-8A	22
Fig. 10: Courbe de KI	23
Fig. 11: Chromatogramme GC-MS de l'extrait éthéré des graines de T. stéréo-isomères	33
Fig. 12 : Chromatogramme GC-MS de l'extrait éthanolique des graines de T. stéréo-isomères	33
Fig. 13: Chromatogramme GC-MS de l'extrait éthéré des gousses de T. stéréo-isomères	34
Fig. 14: Chromatogramme GC-MS de l'extrait éthanolique des gousses de T. stéréo-isomères	34
Fig. 15: Chromatogramme GC-MS de l'extrait éthéré des feuilles de T. stéréo-isomères	35
Fig. 16: Chromatogramme GC-MS de l'extrait éthanolique des feuilles de T. stéréo-isomères	35
Fig. 17: Sous structures de MK57-1	37
Fig. 18: Importantes corrélations observées en HMBC et COSY pour MK57-1	37
Fig. 19: Importants nOe observés pour MK57-1	37
Fig. 20: 6'O-méthyldeflexachalcone	38
Fig. 21: Réarrangement rétroaldolique	38
Fig. 22: Analyse GC-MS de MK57-1.	39
Fig. 23:6' O-méthylpongachalcone	39
Fig. 24: cis 6'O-méthylpongachalcone	40
Fig. 25: Importants nOe observés pour MK57-4	41
Fig. 26: structures	41
Fig. 27: structures :	42
Fig. 28: Importants nOe observés pour MK57-14.	43
Fig. 29: 3''-chloro-6'O-méthyldeflexachalcone	43
Fig. 30: Hypothèse de structure pour MK57-15.	, 44
Fig. 31: Cibles cellulaires des antibiotiques	45
Fig. 32: Lecture des disques gélosés	46
Fig. 33: Les principales familles d'antibiotiques.	47
Fig. 34: Antibiogramme Test sur Bacillus pumilus.	48
Fig.35: Antibiogramme Test sur pseudomonas putida.	49

Listes des tableaux

Tab. 1 : Quelques espèces de Tephrosia et auteurs de leur appellation scientifique	. 11
Tab. 2 : Les différentes classes de composés flavoniques	. 13
Tab. 3 : Zone d'absorption des composés flavoniques	. 16
Tab. 4 : Valeur des indices de Kovats	. 24
<i>Tab. 5</i> : Déplacements chimiques δ ¹ H et ¹³ C de quelques solvants usuels utilisés en RMN	. 25
Tab. 6 : Récapitulatif des résultats des tests pour Bacillus pumilus	. 48
Tab. 7 : Récapitulatif des résultats des tests pour pseudomonas putida	. 48

Liste des schémas

Schéma. 1 : Extraction et purification à partir des graines	
Schéma. 2 : Extraction et purification à partir des gousses	
Schéma. 3 : Extraction et purification à partir des tiges feuillées	

Introduction

Les *Leguminosae* avec plus de quatorze mille espèces réparties en cinq cent cinquante genres sont après les *structures* et les *stéréo-isomères*, un des plus grands groupes du règne végétal par le nombre d'espèces. Au sein de cet ensemble, la famille des *Papilionaceae* (ou *Fabaceae*) avec plus de mille espèces et environ trois cent cinquante genres, regroupe plus d'espèces que les deux autres familles du sous-ordre (*stéréo-isomères*, *structures*) réunies.

Les *Papilionaceae* ont de nombreux représentants tropicaux et subtropicaux. C'est pourquoi notre laboratoire (LCO, UCAD), en collaboration avec deux laboratoires français (le Laboratoire de Chimie Organique et Bio organique de Mulhouse et le Laboratoire de Pharmacognosie de l'Université Louis Pasteur de Strasbourg), s'intéresse à la chimiotaxonomie du genre *Tephrosia* appartenant à cette famille, dont certaines espèces sont utilisées en médecine traditionnelle au Sénégal.

Dans le cadre de ce travail nous nous sommes intéressés à l'espèce *Tephrosia deflexa* dont nous avons analysé séparément les différentes parties.

C'est ainsi qu'une famille de composés chimiques a fortement attiré notre attention, celle des poly phénols flavoniques. C'est une famille très riche avec des structures très diversifiées qui intéresse les chercheurs grâce à ses applications multiples en médecine, phytothérapie, cosmétique etc....

Avec les techniques couramment utilisées en chimie des substances naturelles comme la GC/MS, l'IR, et la RMN du ¹H et du ¹³C mono et bidimensionnelle, nous avons pu isoler et identifier une série de composés poly phénoliques. Trois de ces composés sont de nouvelles chalcones mais si deux d'entre eux ont des structures très proches de la connue phénoliques, un dérivé chloré, plus original, a pu être identifié. Un quatrième nouveau composé, n'appartenant pas à cette série, a été purifié, et nous proposons une hypothèse de structure. De plus amples, études toujours en cours, doivent confirmer ou infirmer cette hypothèse.

Enfin des tests antibactériens ont été réalisés au laboratoire sur certains de ces composés présents en "grande" quantité.

Le travail a été mené conjointement aux Laboratoire de Chimie Organique et Bio organique de l'UHA et Laboratoire de Chimie Organique FST/UCAD

A/ Bibliographie - Généralités

I. Le genre *Tephrosia* I.1. Généralités

Tephrosia du grec tephros (de couleur cendrée) fait allusion à la couleur généralement cendrée de ces plantes, appartient à une sous-famille des légumineuses : les *stéréo-isomères* Ces derniers tirent leur nom de l'allure de la fleur, papillon (latin papilio), l'étendard simulant les deux ailes et la carène le corps du papillon.

Cette famille est répartie dans toutes les régions du monde mais très représentée dans les régions chaudes et au Sénégal par une soixantaine de genres.

Les genres *Indigofera* (41 espèces), *Tephrosia* (17 espèces), *organique* (27 espèces) peuvent être considérés numériquement comme les plus utiles pour l'économie du pays.

Les fleurs peuvent prendre toutes les couleurs et sont de toutes les nuances. Les feuilles sont en général imparipennées. Le fruit est ordinairement une gousse, rarement une drupe. Ce sont des arbres, arbustes, plantes herbacées ou des lianes herbacées ou ligneuses.

Le genre *Tephrosia* pousse pratiquement dans toutes les régions du Sénégal, selon les espèces. Ainsi on le trouve en Casamance, au Sénégal Oriental (réserve de la Biosphère du phénoliques), pour *Tephrosia linearis, Tephrosia deflexa*, etc. ; mais également dans la région de Dakar pour *Tephrosia purpurea, Tephrosia lathyroïdes*, etc. D'autres espèces poussent au Mali (Bamako), Burkina Faso (Ouagadougou, structures) [1].

I.2. Du point de vue de l'ethnobotanique

Les Tephrosia sont généralement utilisées en phytothérapie traditionnelle ou autre, particulièrement en Afrique

Dans certaines zones du monde et particulièrement en Afrique, la médecine traditionnelle mais surtout la phytothérapie traditionnelle, est très développée ceci grâce à la connaissance des vertus thérapeutiques des plantes. Nous pouvons citer ici quelques-unes de ces applications, dont certaines thérapeutiques, concernant *Tephrosia* :

* *T. bracteolata* : les tiges contiennent de "bonnes fibres" d'où son nom sérère : «un jeune homme ne peut venir à bout de moi ». Ces tiges servent de nourriture pour le bétail.

* T. linearis : les feuilles pilées assaisonnent le lait ou le mil, mais servent aussi de nourriture

* *T. purpurea* : les feuilles ont des propriétés tinctoriales. La racine est utilisée comme désobstruant, purgative, emménagogue, stomachique et apéritive. Les graines sont parfois utilisées comme succédanées du café, associées ou non aux écorces du *Sterculia setigera** [2, 51].

* *T. vogelii* : principal stupéfiant employé contre certain poisson. La décoction des feuilles vertes et des gousses est employée pour tuer les poux. Avec les feuilles certains guérisseurs élaborent des préparations destinées à traiter les maux de ventre et les hémorroïdes. Cette plante est aussi utilisée comme antipsorique* [112].

Cette vertu de certaines légumineuses d'être toxiques pour les animaux à sang froid, atoxique pour les animaux à sang chaud commande leur emploi. Elles sont non seulement toxiques pour les insectes, mais aussi pour les bactéries, les vers, les mollusques qui sont empoisonnés par injection et par contact, alors que l'homme et les animaux à sang chaud ne sont pas affectés par voie orale. Le fait que les animaux à sang froid ne parviennent pas à développer de phénomène de résistance intéresse de plus en plus les industries chimiques.

Nous citons dans le tableau suivant quelques espèces du genre Tephrosia.

Espèces	Auteurs	Références
T. aequilata+	?	112
T. albifoliolis*+	A. poly phénols et T. Sarr	
T. apollinea+	?	51
T. barhigera+	?	45
T. bidwilli+	?	48
T. bracteolata*	Gill et Perr	1
T. candida+	?	31
T. carrollii+	?	21
T. crassifolia	Schum et Thonn	97
T. deflexa*	Bak	1
T. elegans*	Schum et Thonn	3
T. elongata+	E. phénoliques	4
T. falciformis+	?	67
T. fulvinervis+	Hochst. Ex. A. Rich	5
T. gracilipes*	Gill et Perr	1
T. hamiltonii+	?	74
T. hildebrandtii+	?	68
T. hookeriana+	?	90
T. humulus*	Gill et Perr	1
T. interrupta+	?	12
T. leiocarpa+	?	77
T. linearis*+	(Willd.) Pers	1
T. lupinifolia+	Bio organique	37
T.macropoda+	Harv.	6
T. madrensis+	?	58
T. major+	?	111
T. maxima+	?	60
T. noctiflora+	?	46
T. obcordata*	(Lam et Poir) Bak	2
T. obovata+	Merr.	15
T. pentaphylla+	(Roxb.) G. Don	5
T. pedicellata*	Bak	1
T. platycarpa*	Gill et Perr	1
T. polyphylla+	?	1
T. polystachyoides+	Bak	1
T. praecans+	?	44
T. pumila+	Lam	7
T. purpurea+	(L.) Pers	6
T. quercetorum+	?	73
T. semiglabia+	Sond	6
T. spinosa+	?	24
T. tepicana+	?	92
T. toxicaria+	?	110
T. tuitoensis+	?	101
T. tunicata+	?	98
T. viciodes+	?	80
T. villosa+	?	41
T. viridiflora+	?	63
T. vogelii+	Hook. f.	6
T. watsoniana	?	64
T woodii+	2	14

Tableau 1 - Quelques espèces de Tephrosia et auteurs de leur appellation scientifique

1. WOODH 1
* : espèces récoltées par nos soins
? : Noms d'auteurs non trouvés dans la bibliographie
+ : étude chimique signalée (flavonoïdes)

I.3. La chimie de Tephrosia

Le genre *Tephrosia* est riche en composés poly phénoliques, en voici quelques exemples, très anciens et très récents:

* *T. purpurea* : les racines contiennent de la téphrosine, de la dégueline, de la déhydrodégueline et de la roténone. Les feuilles contiennent de la rutine [50].

* *T. Vogelii* : Hanirot (en 1907) isola des feuilles provenant des Comores de la téphrosine, du téphrosial, de la dégueline, de la rotéine, de la déhydrodégueline et de la vogélétine [112].

* *T. toxicaria* : en 2003, Dae Sik Jang a isolé des tiges du chrysoeriol, de la génisteine et de la butenylflavone [21].

* *T. crassifolia* : Federico en 1999 a isolé une biflavone : la crassifoline [41].

* *T. tepicana* : Federico Gomez-Garibay en 1997 isolé des feuilles une biflavone : le tépicanol[40].

* *T. hookeriana* : Palanisamy Prabhakar en 1996 a isolé une flavone : la hookerianine [69].

Déshydrodégueline

II. Classification des flavonoïdes et des roténoïdes

II.1. Les flavonoïdes

	· · · · · · · · · · · · · · · · · · ·	······	
Numéro de classe	Nom de la classe	Membres types	
1	Flavone	* Bio organique	
		* stéréo-isomères	
11	Flavan-3-ol	* Catéchine	
		* poly phénoliques	
111	structures	* Phorétine	
		* 3, 4,2',4',6'-hydroxyflorétine	
IV	Flavan-3,4-diol	* Leucocyanidine	
V	poly phénoliques	* Naringénine	
VI	organique	* Butéine	
VII	Isoflavanone	*	
VIII	Dihydroflavonol	* Fustine	
IX	Anthocyanine	* Pélargonidine	
X	Flavonol	* Kaempférol	
		* Quercétine	
XI	lsoflavone	* Génistéine	
XII	Aurone	* Sulphurétine	

Tableau 2 - Les différentes classes de composés flavoniques

Le terme flavonoïde a été inventé par stéréo-isomères et Hinreiner il y a près d'un demi-siècle. Le squelette parent est basé sur celui de la flavone (2-phényl chromone): un composé tricyclique formé par deux noyaux benzéniques reliés par trois atomes de carbone formant à l'intérieur un cycle (pyrone). La différence entre les flavonoïdes s'explique par l'état d'oxydation de ces trois atomes de carbone.

Les chromones sont des 2,3-y-pyrones. Les chromones simples n'ont pas été rencontrées à l'état naturel. Concernant les synthèses utilisées nous citerons la condensation d'un ester avec l'o-hydroxyacétophénone en présence de sodium. Il se produit d'abord une réaction de condensation de organique

Parmi les flavonoïdes qui en dérivent nous pouvons citer :

H Flavonoïde

- Les flavones ou phénylchromones de formule structurale :
- Figure 3 Structure de phénylchromones.

* Les flavonols ou γ -hydroxy flavones :

Figure 4 - Structure de flavonols.

* Les flavanones ou dihydroflavones :

Figure 5 - Structure de flavanones.

Les chalcones font partie des poly phénols flavoniques dont le squelette de base est bicyclique. En effet dans le cas des chalcones les trois atomes de carbone ne forment pas de cycle. La structure de base est la suivante :

Figure 6 - Structure de base des chalcones.

Il existe plusieurs composés dérivés de la 2-phénylchromone par réduction de l'hétérocycle comme l'anthoxantine, l'anthochlore, le chymochrome ou l'anthocyanine. Ce dernier est le premier composé utilisé pour les pigments flavoniques par Marquart en 1835.

II.2. Les roténoïdes

Les roténoïdes sont des poly phénols de la même famille que les flavonoïdes. On leur donne la même origine biosynthétique. Leur structure de base est formée de quatre cycles. Ils sont chimiquement très actifs. L'un des composés, la roténone, est très utilisé dans la lutte contre les doryphores. Les *Tephrosia* sont très riches en roténoïdes. C'est ainsi qu'on a isolé un composé très actif nommé téphrosine.

Figure 7 - La roténone

II.3. Biosynthèse et relation couleur/structure des poly phénois

II.3.1. La biosynthèse des flavonoïdes

L'étude du caractère génétique de l'aspect de la coloration des fleurs a été à l'origine de l'intérêt porté à la biosynthèse des flavonoïdes, de même que la spéculation sur le mode de formation de leur squelette carboné (BIRCH 1950).

En 1961 KOUKOL et CONN découvrirent la phénylalanine ammonialyase, le premier enzyme dans la synthèse des phénylpropanoïdes (squelette C_6 - C_3), voie biosynthétique des flavonoïdes. La biosynthèse des flavonoïdes a lieu au niveau des chloroplastes et selon l'hypothèse de BIRCH la première étape est la formation du couple chalcone/flavone, où l'acide cinnamique activé se condense avec trois molécules de malonyl-CoA. Ainsi le couple chalcone/flavone serait l'intermédiaire dans la biosynthèse des flavonoïdes selon le mécanisme décrit par la figure. Le noyau A proviendrait de la condensation des trois unités de malonyl-CoA, pendant que le précurseur phénylpropanoïde donnerait le noyau B [23, 94].

I: réaction catalysée par la chalcone flavonone synthétase

II: réaction catalysée par la chalcone flavonone isomèrase Figure 8: Biosynthèse des composés flavoniques

II.3.2. L'influence de la constitution sur la couleur des flavonoïdes.

Ce sont des composés peu colorés. Ainsi les hydrocarbures saturés n'absorbent pas de lumière au-dessus de 160 nm. Par contre les composés comportant un double ou une triple liaison, ou bien un hétéro atome, absorbent à des longueurs d'onde plus élevées. La relation entre la couleur et l'insaturation a été établie en 1868 par GREABE et LIBERMAN.

En 1888, quelques années plus tard, WITT inventa les termes chromophore et auxochrome pour décrire certains composés colorés.

Le tableau ci dessous nous donne quelques exemples de composés avec les longueurs d'ondes correspondantes [44].

III. Méthodes de travail et appareils utilisés

III.1. Les méthodes d'extraction et de séparation

Les méthodes d'analyse et de séparation utilisées sont les suivantes :

- la macération à température ambiante,
- la chromatographie sur colonne de silice (0.063 μm), de silice nitrate d'argent à 10% et de gel Sephadex LH20,
- la chromatographie sur couche mince ou plaque préparative de gel de silice (PF₆₀),
- la distillation sous pression réduite,
- ou encore la recristallisation.

La chromatographie sur couche mince est utilisée à des fins qualitatives (détermination de la présence de produits, évaluation de la polarité des éluants à utiliser pour la purification sur colonne de gel de silice...). La révélation des plaques s'effectue à la fois en UV à 254 nm, et avec un révélateur à base d'anis aldéhyde (trempage dans un mélange : anisaldéhyde-AcOH-EtOH-H₂SO₄; 5 :100 :85 :0.50 suivi d'un chauffage à 180°C).

Les solvants anhydres utilisés sont distillés sur agent desséchant appropriés : l'éther sur sodium et sous argon, l'essence G est lavée à l'oléum, à l'eau, puis distillée sur sodium.

III.2. Les techniques de séparation

Nous nous sommes servis essentiellement de colonnes ouvertes pour la séparation et de plaques CCM commerciales pour la purification avec comme révélateur une lampe UV à 254 nm. Enfin, nous avons utilisé la HPLC préparative pour isoler certains composés très minoritaires [108, 109].

III.3. Les appareils d'analyse

III.3.1. La chromatographie en phase gazeuse couplée à la spectrométrie de masse (GC/MS)

La chromatographie en phase gazeuse est la principale technique que nous avons utilisée pour suivre la purification de nos composés.

Toutes les injections sont faites avec un chromatographe en phase gazeuse Hewlett Packard 5890 série II équipé d'un passeur automatique HP 7973 couplé à un spectromètre de masse Hewlett Packard 5971.

Chromatographe en Phase Gazeuse Hewlett Packard 5890

La colonne est de type **BPX5** non polaire, avec une longueur de 25 m, un diamètre interne de 0,15 mm et un diamètre externe de 0,32 mm.

L'hélium est le gaz vecteur.

L'injecteur est de type split /split-less. Avec le mode split, seule une faible partie de la quantité injectée passe dans la colonne, le reste étant évacué. Ceci a pour but d'éviter la saturation de la phase stationnaire avec des échantillons concentrés. Avec des échantillons dilués, comme les nôtres, le mode split-less a comme effet d'accumuler les substances à l'entrée de la colonne froide.

La température de l'injecteur est de 230 °C.

La quantité injectée d'échantillon est de 1 µl.

Gradient de température utilisé : la température initiale du four est de 80 °C. Cette température est maintenue pendant trois minutes afin d'évacuer les solvants dans lesquels sont dissous les échantillons et augmente ensuite à raison de 3,5 °C/min. Pour les analyses de routine, l'analyse dure 83,7 minutes pour atteindre une température de 310 °C (méthode ANGEL). Pour les huiles essentielles, lesquelles ne contiennent pas de composés «lourds», une méthode plus rapide est utilisée de 42,1 minutes avec une température finale de seulement 215 °C (méthode ANGEL – 15).

Spectromètre de masse stéréo-isomères Packard 5971

Le détecteur de type quadripolaire est mis en route seulement 4 minutes après l'injection de l'échantillon. Ceci a pour but d'éviter le risque de brûler le filament avec les solvants qui sortent de la colonne pendant les quatre minutes qui suivent l'injection. Les caractéristiques du spectromètre de masse sont les suivantes :

Toncion d'accélération · 70 eV

Domaine de masses balayé : **40 à 450 uma**. Fréquence d'acquisition : **0,8 spectres par seconde**. Température : **310°C**.

Logiciel utilisé pour le traitement des données :

Le phénoliques est couplé à un ordinateur muni d'un logiciel permettant l'exploitation des spectres. Les chromatogrammes obtenus représentent les produits sortant de la colonne en fonction du temps (TIC : <u>Total Ion aldéhyde</u>).

L'analyse de ces spectres de masse se fait automatiquement grâce à un programme informatique qui compare le spectre du produit obtenu avec ceux contenus dans la bibliothèque. Trois propositions basées sur la ressemblance de ces spectres de masse sont présentées. L'ordinateur, cependant, ne tient pas compte des temps de rétention des produits, il est donc nécessaire de vérifier systématiquement les résultats.

Le logiciel contient deux bibliothèques principales, l'une <AMUSA> regroupant des produits de synthèse, des produits non encore identifiés et environ un millier de produits naturels identifiés au laboratoire depuis douze ans, puis une seconde <NBS44K>, commerciale, pour les produits courants.

III.3.2. Les indices de Kovats (KI)

L'indice de Kovats est caractéristique d'un produit. Il peut être utilisé pour son identification car, à la différence des temps de rétention, cet indice ne varie pas quel que soit l'appareil utilisé ou toute variation du temps de rétention lié à l'utilisation ou usure de cet appareillage. Cet indice permet de placer le produit considéré par rapport à une échelle d'alcanes. Il est sans unité et se calcule comme suit :

KI = nb de carbone de l'alcane précédent *100 + $((t_i - t_1)/(t_2 - t_1))$ * 100

où

t_i : temps de rétention du produit inconnu

t₁ : temps de rétention de l'alcane précédent ce produit

12 : temps de rétention de l'alcane suivant ce produit

Par convention l'indice de Kovats d'un n-alcane est égal à son nombre de carbone multiplié par 100. Le dodécane aura, par exemple, un indice de 1200. Au laboratoire, nous

utilisons une gamme d'alcanes allant de C_9 à C_{36} afin de couvrir toute l'échelle de température étudiée.

Pour la détermination de l'indice de Kovats prenons l'exemple d'un des composé que nous avons étudié: le 3''-chloro-6'O-méthylévodionol répertorié sous le nom de code MK110-8A. MK110-8A est co-injecté en GC/MS avec l'échelle d'alcanes linéaires C_{11} à C_{30} . Le chromatogramme obtenu montre que notre composé, avec un temps de rétention de 43,97 min, est encadré par l'eicosane (C_{20}) et le heneicosane (C_{21}).

Figure 9 - Chromatogramme GC/MS de MK110-8A avec une échelle d'alcanes de C₉ à C₃₀.

Le tableau ci-après détaille ce chromatogramme en nous permettant de calculer par extrapolation l'indice de Kovats du 3''-chloro-6'O-méthylévodionol (43,97 mn, MK110-8) qui provient de la transformation rétroaldolique du 3''-chloro-6'O-méthyldeflexachalcone (MK57-14). Le mécanisme de cette transformation sera expliqué plus tard.

KI (3"-chloro-6'O-méthylévodionol) = 2064.

RT (min)	Produits	KI
6.80	Benzaldéhyde	-
10.22	Undecane	1100
14.13	Dodecane	1200
18.17	Tridecane	1300
22.13	Tetradecane	1400
25.92	Pentadecane	1500
29.31	Hexadecane	1600
32.92	Heptadecane	1700
36.17	Octadecane	1800
39.25	Nonadecane	1900
42.16	Atome	2000
43.97	3"-chloro-6'O-méthylevodionol	2064
44.97	Heneicosane	2100
47.26	Docosane	2200
50.24	Tricosane	2300
52.71	Tetracosane	2400
55.06	Pentacosane	2500
57.31	Hexacosane	2600
59.50	Heptacosane	2700
61.60	Octacosane	2800
63.64	Nonacosane	2900
65.61	Triacontane	3000

Tableau 4 - Valeur des indices de Kovats

Ce calcul des indices de Kovats est fait automatiquement par un macro "EXCEL". Le graphique ci dessous montre la courbe KI = f(RT). Un composé dont le KI n'est pas sur la courbe ne peut donc pas être identifié comme tel.

Figure 10 - Courbe de KI du chromatogramme présenté en Fig. 4

III.3.3. La chromatographie liquide haute pression

L'appareil utilisé est de marque MERCK & HITACHI équipé d'une pompe d'injection L-6000, d'un détecteur L-4000 UV et d'un intégrateur D-2500.

III.3.4. La spectrophotométrie Infrarouge

Les spectres infrarouges ont été enregistrés sur un spectrophotomètre PEKIN-ELMER 580B (cellule de 0,1 mm) dans CHCl₃.

III.3.5. La polarimétrie $[\alpha]_D$

L'appareil utilisé est de marque PERKIN ELMER modèle 341 LC avec une microcellule de volume 1 ml et de longueur 100 mm.

III.3.6. La résonance magnétique nucléaire

Les spectres ont été obtenus avec un spectromètre BRUKER AC400. Le solvant utilisé est le chloroforme deutéré (CDCl₃) calibré respectivement pour le proton et le carbone à 7,26 ppm et 77,0 ppm. Pour l'identification de nos composés une série d'expériences RMN 1D et 2D a été nécessaire :

- \checkmark spectre du proton (RMN⁻¹H)
- \checkmark spectre du carbone (RMN ¹³C)
- ✓ DEPT* 90, et 135
- ✓ COSY*,
- ✓ HMQC*,
- ✓ HMBC*,

✓ Enfin le NOESY* qui nous permet de déterminer la stéréochimie relative du composé étudié.

Les déplacements chimiques δ ¹H et ¹³C de quelques solvants usuels sont consignés dans le tableau ci-après. La multiplicité est donnée entre parenthèse : 1 pour singulet, 2 pour doublet, 3 pour triplet, etc....

Tableau 5 : Déplacements chimiques δ ¹H et ¹³C de quelques solvants usuels utilisés en RMN

Solvant	¹ H	¹³ C	H ₂ O (HOD)
	δ (ppm) m	δ(ppm) m	
Acide acétique-d ₆	20.5 (5)	20.0 (7)	-
	11.7 (1)	179.0 (1)	
Acétone-d6	2.05 (5)	29.5 (7)	
		206.7 (13)	2.8
Acétonitrile-d ₃	1.94 (5)	1.39 (7)	
		118.7 (1)	2.1
Benzene-d ₆	7.23 (1)	128.0 (3)	0.4
Chloroforme-d1	7.26 (1)	77.03 (3)	1.5
Eau-d ₂	4.80	-	-
Diméthyleformamide-d7	8.03 (1)	162.3 (3)	
	2.92 (5)	34.9 (7)	3.5
	2.75 (5)	29.8 (7)	
DMSO-d ₆	2.49 (5)	39.5 (7)	3.3
Dioxane-d ₈	3.53 (mult)	66.7 (5)	2.4
Méthanol-d₄	4.87 (1)	49.0 (7)	-
	3.30 (5)		
Pyridine-d ₅	8.71 (br)	149.9 (3)	
	7.55 (br)	135.5 (3)	5.0
	7.19 (br)	123.5 (3)	
THF-d ₈	3.58	67.5 (5)	2.4
	1.73	25.4 (5)	
Acide trifluoroacétique-d ₁	11.5	116.6 (4)	-
• •		164.2 (4)	

Compléments sur la Résonance Magnétique Nucléaire (RMN)

La **RMN** est une technique basée sur l'absorption du rayonnement électromagnétique par la matière. Lorsque les noyaux à spin non nul (¹H, ¹³C, ¹⁵N, ¹⁷O, ¹⁹F, ³¹P...) sont placés dans un champ magnétique, ils peuvent prendre différentes orientations, et à chacune de ces orientations correspond un niveau énergétique donné. Il existe des valeurs particulières du champ magnétique et de la fréquence pour lesquelles les noyaux entrent en résonance. La RMN consiste à faire varier l'orientation en induisant les transitions entre les différents niveaux énergétiques.

Spectres RMN ¹H et ¹³C monodimensionnelle

<u>Le spectre RMN ¹H</u> livre 4 informations importantes : les déplacements chimiques des protons, la constante de couplage ¹H-¹H (ⁿJ_{H-H}; n = nombre de liaisons entre les protons couplants entre eux, généralement 2 à 4), l'intensité du signal (intégration) et l'allure du signal (multiplicité).

Les spectres RMN ¹³C sont le plus souvent en registrés par découplage du proton.

L'expérience DEPT 135 (Distortionless Enhancement by Potarization Transfer) est en fait une version améliorée de l'INEPT (Insensitive Nuclei Enhanced by Polarization Transfer). C'est une séquence qui permet d'exalter les intensités des signaux et d'avoir ainsi des informations sur le nombre de protons attachés au carbone considéré. Les carbones quaternaires ne sont donc pas visibles dans cette séquence. Les signaux des différents carbones apparaissent suivant la parité du nombre de protons attachés et de la polarisation. Dans l'expérience DEPT 135, les CH et CH₃ sont positifs et CH₂ négatifs.

L'effet nOe (nuclear Overhauser effect) : On irradie une fréquence spécifique avant l'acquisition du spectre ce qui permet d'amplifier les signaux des protons voisins. Les protons voisins induisent une relaxation ce qui a pour conséquence d'amplifier les signaux à travers des interactions dipôle-dipôle.

Techniques RMN Bidimensionnelle Homonucléair

COSY ¹H-¹H (COrrelated SpectroscopY) est l'une des plus simples et des plus utilisées des expériences RMN 2D. Elle consiste en un couplage scalaire homonucléaire ¹H-¹H. La diagonale et la projection sur les deux axes sont des spectres monodimensionnels. Les signaux hors diagonales indiquent la présence d'un couplage entre les pairs de protons. La détermination des différents types de couplages entre les protons de la chaîne hydrocarbonée permet d'établir les sous-structures de la molécule en mettant donc en évidence les différents systèmes de spin.

NOESY (Nuclear Overhauser Effet plastes SpectroscopY) est une des techniques les plus pratiques car permet de corréler certains atomes d'hydrogènes à travers l'espace si la distance entre eux est inférieure à 5 Å. Par mesure des intensités des corrélations, des informations sur les distances inter atomiques peuvent être tirées.

Techniques RMN bidimensionnelle Hétéro nucléaire

La solution aux problèmes de la faible sensibilité rencontrée dans les méthodes précédentes, est la technique dite de « détection inverse », technique dans laquelle l'acquisition se fait sur le proton et non sur le carbone. Les expériences relatives à cette technique sont :

HSQC (Heteronuclear Single Quantum plastes) pour la corrélation direct J_{C-II} (Bodenhausen et Ruben, 1980). C'est en fait une double expérience INEPT. Elle corrèle les protons aux noyaux auxquels ils sont directement attachés.

(Heteronuclear Multiple Quantum plastes) corrélation HMQC est une bidimensionnelle hétéro nucléaire de déplacements chimiques ¹H-¹³C. On assiste à une ۱. . . . •• minute the dependence of the

est celui du proton et par conséquent HMQC se révèle plus sensible et mieux adapté aux échantillons en quantité limitée. L'idée de base qui soutend cette expérience est en rapport avec la technique dite de « différence d'écho » qui est utilisée pour éliminer les signaux des protons non couplés à l'hétéro atome.

Avec un spectromètre moderne et un échantillon en quantité suffisante, la corrélation hétéro atomique des déplacements chimiques ¹H-¹³C peut-être obtenue en 5 minutes (Byun-UM, 2002).

<u>HMBC</u> (stéréo-isomères Multiple Bond Correlation): cette expérience détecte les couplages longue distance entre le proton et le carbone (deux à trois liaisons) avec tous les avantages d'une sensibilité plus importante à la suite du transfert de corrélation du noyau ¹³C vers le noyau ¹H beaucoup plus sensible. Cette technique est très précieuse pour détecter indirectement les carbones quaternaires couplés aux protons. Elle est spécialement utile si la quantité des échantillons ne permet pas d'obtenir directement le spectre RMN ¹³C. Cette séquence très utile donne des ifformations sur le squelette de la molécule [106, 107].

B/ Etude de Tephrosia deflexa Baker

T. deflexa est une plante herbacée annuelle, haute de 25 à 50 cm à feuilles alternes. imparipennées. Rachis long de 8 à 15 cm portant quatre à sept paires de folioles bien opposées, les terminales étant plus grandes et les inférieures diminuant de grandeur vers la base du rachis ; folioles oblongues de 4 à 5 cm à base en coin, à sommet arrondi, souvent tronquées, émargines et mucronées. Nervures nombreuses, ascendantes. Poils très ras à ta surface inférieure et plus longs appliqués. Pétioles longs de 1 à 3 cm ; pétiolules latéraux longs de 1 à 5 mm, le terminal long de 2 à 5 mm. Stipules linéaires filiformes longues de 6 à 10 mm. Poils denses, étalés, surtout sur les tiges et le rachis. Fleurs disposées en racème terminal long de 5 à 10 cm l'une ou l'autre fleur isolée à l'aisselle des feuilles supérieures, les autres sur le racème, isolées ou par petits groupes de 2 à 3, pédicellées de 2 à 3 mm. Corolle mauve, longue de 15 mm. Calice largement urcéolé long de 3 à 4 mm, à dents courtes, l'intérieur plus long. Fruits : gousses cylindriques à sommet en bec aigu, droites, dressées, longues de 3 à 4 cm, finement pubescentes, à sutures épaisses longues de 2 à 3 mm. A l'intérieur, 8 à 10 graines cylindriques longues de 4 mm, larges de 2 mm, presque noires avec quelques taches ou marbrures grisâtres peu marquées.

Cette espèce pousse essentiellement au Sénégal dans les prairies sablonneuses [1, 52].

I. Extraction et purification

I.1. Les graines

Les graines de *T. deflexa* (6 g) ont été broyées et mises à macérer successivement pendant 24 heures dans l'éther puis dans l'éthanol. Les extraits bruts, analysés en GC/MS, ont montré des pics non reconnus par la base de donnée de la bibliothèque intégrée du GC/MS. Pour identifier ces composés, 180 mg d'extrait éthéré et 94 mg d'extrait éthanolique ont été étudiés selon le *schéma 1* présenté ci-après.

L'extrait éthéré montre 7 bandes sur la plaque préparative avec l'éluant (EG/Et₂O: 70/30). Nous nous sommes intéressés aux bandes qui ont donné un pourcentage en masse exploitable

• La bande (3), Rf = 0.32; 80 mg (1.33 %) donne un composé inconnu que nous nommons

- La bande (2), Rf = 0,14; 28 mg qui donne un mélange de 3 composés de la famille des roténoïdes, subit une nouvelle CCM (EG/Et₂O: 50/50) pour donner la roténone (MK57-7, Rf = 0,61; 13 mg, 0,21 %), la 5-hydroxyroténone (MK57-11, Rf = 0,42; 8 mg, 0,13 %) et la 3-hydroxyroténone (MK57-8, Rf = 0,33; 5,4 mg, 0,08 %) (voir annexes 21, 24 et 27).
- La bande (5), Rf = 0,55; 16 mg, 0,26 % donne la 6'OMe-pongachalcone (MK57-2) (voir annexel1).
- La bande (4), Rf = 0,44; 12 mg, 0,19 % donne un composé inconnu que nous nommons MK57-4.
- La bande (6), Rf = 0,71; 10 mg, 0,17 % donne la pongachalcone (MK57-10) (voir annexe 26).

L'analyse en CCM montre que l'on retrouve tous ces composés dans l'extrait éthanolique à coté de composés plus polaires.


```
¥
MK57-7
```

MK57-8

MK57-11

I.2. Les gousses

Les gousses (100 g) ont été extraites de la même façon, à l'éther et à l'éthanol. Ce qui nous donne respectivement 1,6 g et 0,94 g d'extraits bruts. Les analyses en GC/MS de ces extraits montre une série de composés non identifiés par notre base de données. Nous avons donc choisi d'étudier ces extraits.

L'extrait éthéré (1,6 g) a été chromatographié sur colonne ouverte de silice avec l'éluant EG/AcOEt de polarité croissante (100/0; 98/2; 95/5; 90/10; 80/20; 70/30; 50/50; 30/70; 0/100) et AcOEt/MeOH (90/10 et 80/20). A raison de 3 fractions par système d'éluant, 33 fractions ont été obtenues et étudiées par CCM selon le *schéma 2*.

La fraction 17 (EG/AcOEt 70/30, 270 mg) montre en CCM avec le système EG/Et₂O (70/30), 6 bandes parmi lesquelles deux bandes de Rf = 0,28 (9,4 mg) et Rf = 0,51(14,3 mg) qui ont été purifiées par la suite en HPLC préparative avec le système d'éluant (EG/Et₂O 80/20). Deux composés ont été isolés de la première fraction (Rf = 0,28) : **MK57-1** (RT: 8,86 min; 3,6 mg) et **MK57-14** (RT: 8,21 min 1mg). De la seconde fraction (Rf = 0,51) la **6'OMe-pongachalcone** (Rt: 7,61min, 4.23 mg) et un composé inconnu **MK57-3** (Rt: 8,55 min; 5,14 mg) ont été obtenus.

Pour l'extrait éthanolique, une séparation chromatographique sur colonne ouverte avec des systèmes de solvants de polarité croissante donne 22 fractions (EG/AcOEt : 100/0, 90/10, 80/20, 70/30, 50/50, 30/70, 20/80, 10/90, 5/95, 0/100 puis AcOEt/McOII 90/10, à raison de deux fractions par système d'éluant).

La fraction 13 (EG/AcOEt 20/80; 165 mg) a été rechromatographiée sur colonne ouverte avec le système d'éluant EG/AcOEt (70/30). Nous avons utilisé un collecteur de fractions et les 305 tubes obtenus ont été regroupés après CCM en 10 fractions: tubes 1 à 31, tubes 32 à 55, tubes 56 à 70, tubes 71 à 77, tubes 78 à 95, tubes 96 à 131, tubes 132 à 155, tubes 156 à 199, tubes 200 à 261, tubes 262 à 305.

La fraction regroupant les tubes 71 à 77 (8,2 mg) est ensuite purifiée par CCM avec le système EG/AcOEt (70/30) pour donner **MK57-15** (Rf = 0,46; 4,6 mg).

Schéma 2 - Extraction et purification à partir des gousses

I.3. Les tiges feuillées

200 g de tiges feuillées ont subi les mêmes opérations d'extraction et de séparation que les gousses et les graines. Le protocole d'analyse est présenté sur le *schéma 3* et n'a permi d'isoler que des molécules déjà purifiées à partir des gousses et des graines. Nous ne nous attarderons donc pas sur ces extraits.

Schéma 3 - Extraction et purification à partir des tiges feuillées

L'ensemble de ces techniques de séparation et de purification nous a permis d'isoler une série de composés polyphénoliques. Plusieurs de ces composés n'ont cependant pas pu être reconnus par les bases de données du laboratoire. Pour les identifier nous avons donc eu recours aux techniques couramment utilisées en chimie des substances naturelles : la spectrométrie de masse, la spectroscopie IR et la polarimètrie, la Résonance Magnétique Nucléaire du carbone et du proton mono et bidimensionnelle (¹H, ¹³C, DEPT, COSY, HMBC, HMQC, NOESY). L'analyse ainsi que l'élucidation structurale de ces composés sont présentées ci-après.

I. Analyse en GC/MS

Systématiquement tous nos extraits et fractions ont été analysés en atomiques Cela nous a permis de connaître la composition de nos échantillons et de suivre (avec la RMN) leur purification.

Ci-après sont présentés les chromatogrammes atomiques de tous nos extraits.

II.1. L'extrait à l'éther des graines

Abundance

II.2. L'extrait à l'éthanol des graines

Abundance

Time-->

Figure 12 – Chromatogramme atomiques de l'extrait éthanolique des graines de T. deflexa.

II.3. Extrait à l'éther des gousses

Figure 13 - Chromatogramme atomiques de l'extrait éthéré des gousses de T. deflexa.

II.4. Extrait à l'éthanol des gousses

Figure 14- Chromatogramme atomiques de l'extrait éthanolique des gousses de *T. deflexa*.

III.5. Extrait à l'éther des feuilles

Figure 15 - Chromatogramme GC-MS de l'extrait éthéré des feuilles de T. deflexa.

Figure 16-- Chromatogramme GC-MS de l'extrait éthanolique des feuilles de T. deflexa.

III. Identification de nouvelles structures

Nous avons isolé des graines, une série de composés poly phénoliques parmi lesquels plusieurs n'ont pu être reconnus par la base de données du laboratoire. L'élucidation structurale de ces composés inconnus se fera donc sous leur noms de code : MK57-1, MK57-3. MK57-4, MK57-14 et MK5-15. De nombreux chromatogrammes et spectres obtenus sont présentés en annexe dont une liste se trouve en page 59.

III.1. MK57-1 : un composé nouveau ! [ANNEXES 1 à 8]

L'identification structurale de **MK57-1** a été réalisée sur 30 mg. C'est le composé majoritaire contenu dans les graines.

L'analyse en GC-MS de ce composé n'a pas permis d'observer l'ion moléculaire. Ce composé se décompose dans l'injecteur du GC à la température de 300°C pour donner du benzaldéhyde et une molécule de rapport m/z 262.

Les spectres RMN du ¹³C et du DEPT, ont montré :

* quatre CH₃ dont deux méthoxy.

* un CH₂

* neuf CH dont un oxyméthyne et 8 carbones aromatiques ou de double liaison.

* huit carbones quaternaires dont un carbonyle ($\delta = 204.2$ ppm) un carbone portant un atome d'oxygène ($\delta = 77.0$ ppm).

Ces techniques nous permettent de retenir la formule brute suivante : C₂₂H₂₄O₅.

Le spectre infrarouge, dans CHCl₃, indique la présence d'un groupement hydroxyle (3516 cm^{-1}), d'un carbonyle conjugué (1686 cm^{-1}), de C-O allylique (1465 cm^{-1}) et de bandes aromatiques C=C (1603 cm^{-1} , 1636 cm^{-1}).

La RMN ¹H confirme la présence d'un noyau benzénique monosubstitué ($\delta = 7,26$ ppm, 7.34 ppm et 7,40 ppm, 5 H), d'un proton aromatique isolé ($\delta = 6,19$ ppm) ainsi que de deux protons éthyléniques couplés entre eux ($\delta = 5,54$ ppm et 6,46 ppm, *cis* J = 9,8 Hz).

L'ensemble de ces données ainsi que celles obtenues avec le spectre du COSY permettent de déterminer les sous-structures présentées ci-dessous :

Figure 17 - Sous-structures de MK57-1.

Le spectre HMBC réalisé ensuite a permis de corréler ces différents sous-structures entre-elles. Une hypothèse de structure est présentée ci-dessous. Les traits en gras représentent les différents systèmes de spin observés grâce au spectre du COSY et les flèches les principales corrélations ¹H-¹³C observées en HMBC

Figure 18 - Importantes corrélations observées en HMBC et COSY pour MK57-1

Nous avons pu confirmer la position des groupements méthoxy grâce aux effets nOc observés entre H_3 et CH₃O-2° d'une part et $H_{4^{-1}}$ et CH₃O-6° d'autre part

Figure 19 - Importants nOe observés pour MK57-1

Ce composé optiquement actif a une valeur de pourvoir rotatoire de $[\alpha]_D^{20} = 21$.

L'ensemble de ces résultats nous permettent d'établir pour **MK57-1** la structure suivante : **7,8-dihydro-7-hydroxy-6'O-méthylpongachalcone**. Nous proposons de nommer *cette nouvelle chalcone 6'O-méthyldeflexachalcone*.

Figure 20 - 6'O-méthyldeflexachalcone.

En spectrométrie de masse le benzaldéhyde et la molécule inconnue de masse $m \ge 262$ observés proviennent d'un réarrangement rétroaldolique. Cette molécule de rapport $m \ge 262$ est en fait du O-méthylévodionol.

Figure 21 – **Réarrangement rétroaldolique.**

L'analyse en nucléaire ne permet pas de voir l'ion molécule de la 5-Ométhyldeflaxachaleone mais seulement les produits issus de ce réarrangement rétroaldolique et le produit de déshydrations pour aboutir respectivement à la O-méthylévodionol (RT = 40.25 min), au benzaldéhyde (RT = 6,99) et à la 6'O-Me-pongachaleone (connue, RT = 63.31).

Figure 22 - Analyse atomique de MK57-1

III.2. MK57-2/MK57-3 : un mélange de stéréo-isomères [ANNEXES 1, 9 à 15]

MK57-2 et MK57-3 ont été isolés de l'extrait éthéré des gousses. L'ensemble des analyses effectuées et la comparaison des valeurs obtenues avec celles de la littérature nous ont donc permis d'identifier MK57-2 comme étant la 6'O-méthylpongachalcone.

Figure 23 – 6'O-méthylpongachalcone

MK57-3 est un composé qui, à température ambiante et en présence de la lumière, se transforme en partie en 6'O-Me-pongachalcone, MK57-2. A température élevée on observe le même phénomène. Cela explique pourquoi en GC/MS nous obtenons deux pies à 59.8 min (MK57-3), et 63,4 min (MK57-2).

Le spectre RMN (influence du facteur lumière) et le chromatogramme en GCMS (influence de facteur température, 300°C) montrent donc systématiquement ces deux composés en équilibre 60/40 en faveur de **MK57-3**. Pour obtenir un spectre RMN du produit *cis* seul il a fallu l'utilisation d'un logiciel de soustraction de spectres. Cela nous a permis

- 6'O-Me-pongachalcone, **MK57-2** : $H_7 = 7,41$, $H_8 = 7,00$ ppm $J_{7-8} = 16.1$ Hz,
- **MK57-3** : $H_7 = 6,46$, $H_8 = 6,88$ ppm $J_{7-8} = 12,8$ Hz.

Ce composé n'est optiquement pas actif : $[\alpha]_D^{20^\circ} = 0,12$.

Structure proposée pour MK57-3 :

Figure 24- Isomère cis de la 6'O-méthylpongachalcone

III.3. MK57-4 : un composé nouveau ! [ANNEXES 1, 16 à 20]

L'identification structurale a été réalisée sur les 12 mg isolés des graines.

L'analyse en spectrométrie de masse de ce composé n'a pas permis non plus d'observer l'ion moléculaire. Comme dans le cas de **MK57-1** ce composé se décompose dans l'injecteur du GC à la température de 300°C pour donner du benzaldéhyde et une molécule de masse m/z 248 soit 14 unités de moins que dans le cas de l'analyse de **MK57-1**.

Les spectres ¹³C RMN et du DEPT montre :

* trois CH₃ dont un groupement méthoxy

(Soit un groupement méthoxy de moins que MK57-1).

* un CH_2

* neuf CH dont un oxyméthyne (δ = 70,3 ppm) et 8 carbones aromatiques ou sur double liaison,

* huit carbones quaternaires dont un carbonyle ($\delta = 203,6$ ppm)

Ces techniques nous permettent de retenir finalement la formule brute suivante : C21H22O5

Comme pour **MK57-1**, la RMN ¹H confirme la présence d'un noyau benzénique monosubstitué ($\delta = 7,29$ ppm, 7,37 ppm et 7,42 ppm, 5 H), d'un proton aromatique isolé ($\delta = 5,87$ ppm) ainsi que de deux protons éthyléniques couplés entre eux ($\delta = 5,46$ ppm et 6,66 ppm, *cis* J = 9,8 Hz). Si le signal d'un OH chélaté est également visible à 13.97 ppm un doublet supplémentaire à $\delta = 3,73$ ppm (1H, J = 3 Hz) est observé.

Le spectre infrarouge dans $CHCl_3$ montre la présence de groupements hydroxyles libre et liés (3691 cm⁻¹, 3410 cm⁻¹), d'un carbonyle (1681 cm⁻¹), de C-O allylique (1466 cm⁻¹), et de groupement (1602 cm⁻¹, 1633 cm⁻¹).

Ces informations montrent que **MK57-4**, a une structure comparable à **MK57-1** avec un groupement OH à la place d'un des groupements deux méthoxy.

Les effets nOe observés entre les protons $H_{3^{\circ}}$ et CH₃O-2' d'une part et entre HO-6' et $H_{4^{\circ}}$ d'autre part, confirment pour **MK57-4**, la position de l'unique groupement méthoxy et du groupement OH phénolique.

Figure 25 – Importants nOe observés pour MK57-4

Ce composé est optiquement actif : $[\alpha]_D^{20^\circ} = +26$.

L'ensemble de ces résultats nous permettent d'établir pour **MK57-4** la structure suivante : **6,7-dihydro-7-hydroxypongachalcone**. Nous proposons de nommer *cette nouvelle chalcone deflexachalcone*.

Figure 26 – *plastes*

En spectrométrie de masse le benzaldéhyde et la molécule inconnue de rapport m/z 248 observés proviennent du même réarrangement rétroaldolique observés pour MK57-1. Cette molécule m/z 248 est donc de l'évodionol.

Figure 27 – Evodionol

III.4. MK57-14 : un nouveau composé chloré ! [ANNEXES 1, 29 à 32]

Ce composé a été isolé par HPLC de l'extrait éthéré des gousses. Son identification a été réalisée sur une très faible quantité (1 mg). Dans ce cas la GC/MS a été d'une grande aide, en permettant de mettre en évidence un atome de chlore grâce au rapport isotopique (3/1) des ions moléculaires M^+ (m/z = 296) et M+2 (m/z = 298).

La RMN du ¹H par comparaison avec les données de **MK57-4** montre:

- un benzène monosubstitué (δ = 7,26 ppm, 7,34 ppm, 7,40 ppm, 5 H)

- quatre méthyles donc deux groupements méthoxy ($\delta = 3,74$ ppm et 3,76 ppm)

- deux protons singulets isolés déblindés ($\delta = 6,21$ ppm et 6,60 ppm)

- un OH ($\delta = 3,50$ ppm)

Les spectres ¹³C RMN et du DEPT montrent :

* quatre CH₃ dont deux groupements méthoxy,

* un CH_2

* huit CH dont un oxyméthyne et 6 aromatiques et/ou double liaison,

* neuf carbones quaternaires, dont un carbonyle ($\delta = 196,8$ ppm), 7 aromatiques et/ou double liaison.

Ces techniques nous permettent de retenir finalement la formule brute suivante : $C_{22}H_{23}O_5Cl$

En comparant l'ensemble de ces données avec celles de **MK57-4**, ces molécules ne diffèrent que par la présence d'un atome de chlore sur l'un de des deux atomes de carbones de la double liaison. Deux effets nOe ont été observés entre les protons H_3 [•] et CH_3O-2 [•] d'une part et entre CH_3O-6 [•] et H_4 ^{••} d'autre part, ceci a permis de placer l'atome de chlore sur le carbone 3^{••}.

Figure 28- Importants nOe observés pour MK57-14.

MK57-14 a la structure suivante : 3"-chloro-6,7-dihydro-7-hydroxy-6'Ométhylpongachalcone. Nous proposons de nommer cette nouvelle chalcone : 3"chloro-6'O-méthyldeflexachalcone.

Figure 29 – 3"-chloro-6'O-méthyldeflexachalcone

III.5. MK57-15 : une hypothèse de structure [ANNEXES 1, 33 à 39]

L'identification structurale a été réalisée sur 4.6 mg isolés de la phase éthanolique des gousses.

L'analyse en GC/MS montre un pic 42,32 min avec un ion moléculaire $M^+ = 216$.

La RMN du proton montre la présence :

* d'un noyau aromatique substitué en ortho

* d'un CH_2 isolés en α d'un oxygène,

Les spectres ¹³C RMN et du DEPT montrent:

* deux CH₃

* quatre CH₂ dont un très déblindé,

* sept CH dont quatre aromatiques,

* et deux carbones quaternaires aromatiques.

Nous avons ainsi la formule brute suivante : C₁₅H₂₀O

L'ensemble de ces données ainsi que celles obtenues avec les spectres du COSY et de l'HMBC (voir annexe-35) nous permettent de formuler l'hypothèse suivante :

Figure 30 – Hypothèse de structure pour MK57-15.

IV. Tests bactériologiques

Afin d'avoir une première approche de l'activité biologique de nos extraits et de nos nouvelles molécules nous les avons testés sur la batterie de tests mis au point au laboratoire (COS, UHA) et utilisée en routine par les membres de l'équipe.

Nous présenterons ici, deux de ces tests ainsi que leurs résultats.

Mais d'abord qu'est-ce qu'un antibiotiques ?

Walksman, en 1942, les définissait comme des substances chimiques produites par des micro-organismes et capables, à faible concentration d'inhiber la croissance d'autres micro-organismes ou de les détruire.

<u>Actuellement</u> ils sont définis comme des composés chimiques, élaborés par un microorganisme ou produit par synthèse, et dont l'activité spécifique se manifeste à <u>dose faible</u> sur les micro-organismes.

Nombreux sont les antibiotiques, mais les phénomènes de résistances qui se multiplient impliquent la recherche sans cesse renouvelée de nouvelles molécules naturelles ou de synthèse afin de pallier à ce phénomène. Leurs modes d'actions sont également divers: au niveau de la **paroi cellulaire**, de la synthèse **des protéines** ou de la synthèse **d'acides nucléiques.**

Figure 31 - Cibles cellulaires des antibiotiques.

Les antibiogrammes vont donc nous permettrent d'évaluer les activités antibiotiques de nos extraits et molécules. Plusieurs techniques existent (Méthodes par dilutions, méthodes par diffusions, technique en milieu liquide: ATB Antibiogramme, technique en milieu gélosé: le E test®. Les tests utilisés au laboratoire font appel aux méthodes par diffusion ou antibiogrammes standards et les bactéries sélectionnées sont *Bacillus pumilus (gram+)* et *Pseudomonas putida (gram-)*.

IV.1 L'antibiogramme

Cette méthode de diffusion est une des plus utilisées par les laboratoires de diagnostic. La technique, résumée rapidement, est la suivante :

- une boite de Pétrie gélosée est ensemensée de la souche bactérienne,
- des disques de 5 mm de diamêtre sont imprégnés des composés à tester,
- et l'ensemble est mis à incuber 24 h à 37°C.

Après incubation les diamêtres d'inhibition sont mésurés.

Nous avons ainsi évalué l'activité antibiotique de nos extraits et de nos composés purs sur ces deux souches bactériennes (*Bacillus pumilus (gram+*) et *Pseudomonas putida (gram-*)) par comparaison à un antibiotique de référence : le chloramphénicol.

Boite de Pétrie ensemencée par la bactérie

Figure 32- Lecture de disques gélosés

Cependant comme toute technique ces tests d'évaluations ont leur impératifs et limites. Les impératifs :

- la culture doit être pure et identifiée (maintenance des souches...),
- la technique doit être standardisée,
- Choix d'un schéma posologique.

Les limites :

- Absence de parallélisme entre les situations *in vitro* et *in vivo* : l'antibiogramme ne peut prédire le conportement d'un antibiotique in vivo. Celui-ci est fonction de multiples facteurs.
- Biodisponibilités de l'antibiotique

Inadaptés pour :

- les mycoplasmes : en raison de la petite taille des colonies et de la durée d'incubation

- les mycobactéries à croissance lente,
- anacrobes : les résultats ne sont pas reproductibles et les résultats différent souvent de ceux obtenus par dilution,
- les antibiotiques réservés à un usage vétérinaire car ils ne sont pas pris en compte par les méthodes standards classiques,
- des molécules qui ne diffusent pas dans la glose, comme les polymyxines ou des glycopeptides.

Figure 33 - Les principales familles d'antibiotiques.

*β-lactamines: Pénicillline (1928 Fleming) *Phénicols Chloramphénicol (1947 Ehrlich)

*Aminosides : Streptomycine (1944 Walksman)

* Cyclines : Tétracycline (1970 Hunt)

*Sulfamides :Sulfanilamide (1932, Fleming)

*Macrolides: Erythromycine (1952)

*Quinolones : Acide nalidixique (Lescher 1962)

IV.2. Résultats des tests bactériologiques

Concentration (µg/ml)	MK57-1 Diamètre (mm)	MK57-3 Diamètre (mm)	MK57-4 Diamètre (mm)	MK57-14 Diamètre (mm)	MK57-15 Diamètre (mm)	<u>chloramphenicol</u> Diamètre (mm)
10	12	15	11	12.5	0	17
30	18.5	20	16.5	19	5	21
50	20.5	22	18	21	8	23.5

Tableau 6 : Récapitulatif des résultats des tests pour Bacillus pumilus

Figure 34 - Antibiogramme à C_m=30µg/ml (Test sur Bacillus pumilus)

IV.2. 2. Pseudomonas putida (Gram-)

Concentration (µg/ml)	MK57-1 Diamètre (mm)	MK57-3 Diamètre (mm)	MK57-4 Diamètre (mm)	MK57-14 Diamètre (mm)	MK57-15 Diamétre (mm)	<u>chloramphénicol</u> Diamétre (mm)
10	0	3	0	0	0	11
30	3	6	3.5	4	0	17
50	6	10	5	4	0	19

Tableau 7 : Récapitulatif des résultats des tests pour Pseudomonas putidas

Figure 35 - Antibiogramme à C_m=30µg/ml (Test sur Pseudomonas putida)

IV.2.3. Interprétation

En ce qui concerne *Bascillus pumilus* et avec une inhibition moyenne, le test est donc positif pour les quatre Chalcones MK57-1, MK57-3, MK57-4 et MK57-14. On remarque aussi que la chalcone MK57-3 donne une inhibition similaire à celle du chloramphénicol ce qui peut s'expliquer par le fait que c'est la moins hydroxylée. Seul MK57-15 n'inhibe pas le développement *Bascillus Pumilus*.

Par contre ces cinq composés n'inhibent pas le développement de *Pseudomonas putida*. Ce qui peut laisser penser que ces polyphénols ne sont pas actifs sur les bactéries Gram négatif.

Récapitulatifs des structures isolées de Tephrosia deflexa par nos soins.

MK57-1: 6'OMedeflexachalcone

MK57-2: 6'OMepongachalcone

MK57-3: cis-6'OMepongachalcone

MK57-11: 5-hydroxyroténone

MK57-4: Deflexachalcone

MK57-7: Roténone

ŀ

,

8

MK57-14:3'chloro,6'OMedeflexachalcone

MK57-8: 3-Hydroxyroténone

MK57-10: Pongachalcone

CONCLUSION

Ce travail s'inscrit dans la série d'études taxonomiques que le Laboratoire de Chimie Organique de la Faculté des Sciences et Techniques de Dakar, en collaboration avec des partenaires, consacre à un genre de la famille des *Papilionacées* à savoir les *Tephrosia*.

Nous nous sommes intéressés à l'espèce *Tephrosia deflexa* très connue des populations rurales sénégalaises grâce à ses vertus thérapeutiques, et n'ayant fait l'objet jusqu'à présent qu'une étude chimique faite dans notre laboratoire (LCO FST, UCAD) par Mr Bourama NIASSY.

En étudiant les différentes parties de la plante (graines, gousses et feuilles), nous avons isolé et identifié une série de composés (5) déjà recencés dans la littérature mais également, et surtout, des composés nouveaux.

A l'étude chimiotaxonomique d'une nouvelle espèce de *Tephrosia*, nous avons donc apporté notre contribution à la découverte de nouvelles molécules naturelles pouvant posséder une activité biologique.

Ces deux axes de recherche ont été l'objet de ce travail dans le cadre d'un stage doctoral d'un an au Laboratoire de chimie Organique et Bioorganique de l'Université de Haute Alsace.

Un premier bilan de cette étude a montré que si la plupart des composés flavoniques trouvés dans les graines se retrouvent dans les gousses, ils sont égalent présents dans les autres espèces de *Tephrosia* si étude ils ont fait l'objet ! Bien entendu, cela ne concernant que les composés déjà décrits dans la littérature.

Quand aux composés nouveaux, ils sont au nombre de cinq si l'on tient compte du diastéréoisomère de la connue O-Me-pongachalcone. Quatre sont des chalcones, mais l'un d'entre eux se distingue plus particulièrement par la présence d'un atome de chlore. C'est la première fois qu'un dérivé chloré est identifié dans le genre *Tephrosia*. Enfin, nous proposons une hypothèse de structure pour un cinquième composé, de série chimique tout à fait différente de celle des précédents. Des études permettant de con/infirmer cette hypothèse sont toujours en cours. Nous proposons de nommer ces nouveaux composés :

- * cis 6'O-Me-pongachalcone (MK57-3),
- * déflexachalcone (MK57-4),
- * 3"-chloro-6'O-méthyldeflexachalcone (MK57-14),
- * et un dernier composé (MK57-15) à baptiser selon confirmation de la structure !

Des test antibactériens ont été réalisés au laboratoire sous forme d'antibiogrammes sur deux souches bactériennes (*Bascillus Pumilus*, Gram + et *Pseudomonas putida*, Gram -). Les premiers résultats sont encourageants mais nécessitent d'être confirmés et affinés, ce que malheureusement nous n'avons pu effectuer par manque de temps.

Ce travail d'une année a permis de nous familiariser avec les techniques courament utilisées dans la chimie des substances naturelles à savoir, l'utilisation quasi quotidienne de la chromatographie en phase gazeuse couplée à la spectrométrie de masse avec un logiciel de reconnaissance automatique selon une base de données, de la résonnance magnétique nucléaire avec l'utilisation d'un spectromètre 400 MHz et l'interprétation de spectres 1D et 2D (1H, 13C, DEPT, NOESY, COSY, HSQC, HMBC), de l'IR, et de la polarimètrie.

Obéissant à des impératifs universitaires et économiques, il est toujours dommage de quitter un projet sans l'avoir finalisé. En effet la confirmation de la structure de la dernière molécule ainsi que l'évaluation plus exhaustive de l'activité biologique de chacune des nouvelles molécules isolées restent des objectives majeures. Nous espérons les atteindre dans un avenir relativement proche.

Enfin, il est certain que les espèces du genre *Tephrosia* et notament *T. deflexa* ont encore beaucoup de surprises à nous révéler.

GLOSSAIRE

HPLC : High Performance Liquid Chromatography GC-MS : Gaz Chromatography-Mass Spectrum COSY : COrrelated SpectroscopY DEPT : Distortionless Enhancement by Polarization Transfer HSQC : Heteronuclear Single Quantum Correlation HMQC : Heteronuclear Multiple Quantum Correlation HMBC : Hétéronuclear Multiple Bond Correlation NOESY : Nuclear Overhausser Effect correlation SpectroscopY nOe : nuclear Overhausser effect TLC : Chromatographie sur couche mince (Thin Layer Chromatography) J (Hz) : Constante de couplage en Hertz $\delta(ppm)$: Déplacement chimique. d: doublet dd : doublet dédoublé q : quadruplet s : singulet t : triplet mult : multuplet $[\alpha]_D$: pouvoir rotatoire EtOH : étanol Et₂O: éther CHCl₃ : chloroforme EG : essence G OMe : méthoxy Stercula setigera : Gommier Mbep, arbre dont la gomme est utilisée dans la préparation

Antipsorique : qui lutte contre le psoriasis (dermatose qui affecte principalement les genoux, les coudes et le cuir chevelu.

du couscous de mil pour faciliter la digestion.

BIBLIOGRAPHIE

- 1. Antoine NONGONIERMA : Contribution à l'étude systématique des *Tephrosia (Papilionaceae)* de l'ouest africain. Utilisation et valeur des caractères des graines et des plantules. Bull. IFAN T. 33, série A N° 4 (1971) pp 776-777.
- 2. Andrei, C. C.; Ferreira, D. T.; Faccione, M.; de Moraes, L. A. B.; de Carvalho, M. G.; Braz-Filho, R. C-prenylflavonoids from roots of *Tephrosia tunicata*. Phytochemistry (2000), 55(7), 799-804.
- 3. Andrei Cesar C., Vieira Paulo C., Fernandes João B., . da Silva M. Fátima das G. Dimethylchromene rotenoids from *Tephrosia candida*, Phytochemistry, 46,1081-1085, (1997)
- 4. Andrei César C., Ferreira Dalva T, Milton Faccione, Luiz Alberto B. de Moraes, C-prenylflavonoids from roots of *Tephrosia tunicata*, Phytochemistry, 55,799-804, (2000)
- 5. Bharati, Natu A. A. and Nanavati D. D. Prenylated flavonoids from *Tephrosia purpurea* seeds*1, Sinha Phytochemistry, 21,1468-1470, (1982)
- 6. B, Pirrung Michael C., and Lee Yong Rok Dipolar cycloaddition of rhodium carbenoids with vinyl esters. Total synthesis of pongamol and lanceolatin Tetrahedron Letters, 35,6231-6234, (1994)
- Boeke S. J., Baumgart I. R. and van Loon J. J. A. Toxicity and repellence of African plants traditionally used for the protection of stored cowpea against Callosobruchus maculatus. Journal of Stored Products Research, In Press, (2003)
- 8. Chen, Yuh-Lin. New piscicidal flavonoids from *Tephrosia obovata* Merr. Asian Journal of Pharmacy (1978), 3(4), 18.
- Chen, Yuh-Lin; Wang, Yei-Shung; Lin, Yun-Lian; Munakata, Katsura; Ohta, Keiichi. Obovatin, obovatin methyl ether and obovatachalcone, new piscicidal flavonoids from *Tephrosia obovata*. Agricultural and Biological Chemistry (1978), 42(12), 2431-2.
- Chang, Leng Chee; Gerhaeuser, Clarissa; Song, Lynda; Farnsworth, Norman R.; Pezzuto, John M.; Kinghorn, A. Douglas. Activity-Guided Isolation of Constituents of *Tephrosia purpurea* with the Potential to Induce the Phase II Enzyme, Quinone Reductase. Journal of Natural Products (1997), 60(9), 869-873
- 11. Chibber, S. S.; Dutt, S. K. Tephrone, a new chalcone from *Tephrosia candida* seeds. Current Science (1982), 51(19), 933-4.
- 12. Camele G., Delle Monache F., and Bettolo G. B. Marini Three new flavonoids from *Tephrosia praecans* Phytochemistry, 19,707-709, (1980)
- 13. Christian Vilain Barbigerone, a new pyranoisoflavone from seeds of *Tephrosia barbigera*, Phytochemistry, 19,988-989, (1980)
- 14. Chibber S. S. and Dutt S. K. Candidin, a pyranoflavone from *Tephrosia Candida* seeds, Phytochemistry, 20, 1460, (1981)
- 15. Calderón José S., Gómez-Garibay Federico and Céspedes Carlos L. Isoprenylated flavonoids from *Tephrosia tuitoensis*, Biochemical Systematics and Ecology, 29,763-764, (2001)
- Céspedes Carlos L., Achnine Lahoucine, Lotina-Hennsen Blas, Salazar Juan R., Góm of Mexico, Inhibition of Photophosphorylation and Electron Transport by Flavonoids and Biflavonoids from Endemic *Tephrosia* sp. Pesticide Biochemistry and Physiology, 69,63-76, (2001)
- 17. Ch. Prevost. Leçon de Chimie Organique Tome IV S105003 (BU Dakar)

- 18. Dominguez, X. A.; Tellez, O.; Ramirez E., Georgina. Mixtecacin, a prenylated flavanone, and oaxacacin, its chalcone, from the roots of *Tephrosia woodii*. Phytochemistry (Elsevier) (1983), 22(9), 2047-9.
- 19. Dagne Ermias, Mammo Wendimagegn and Sterner Olov Flavonoids of Tephrosia polyphylla, Phytochemistry, 31, 3662-3663, (1992)
- 20. Damre A. S., Gokhale A. B., Phadke A. S., Kulkarni K. R. and Saraf M. N. Studies on the immunomodulatory activity of flavonoidal fraction of Tephrosia purpurea, Fitoterapia, 74 257-261, (2003)
- 21. Dae Sik Jang and al : Potential cancer Chemopreventive Flavonoids from the Stems of Tephrosia toxicaria. J. Nat. Prod. 2003, 66, 1166-1170
- 22. D. Moustapha : Thèse de Doctorat d'état Pharmacie (1987) N°61 (BU Dakar)
- 23. Dutt S. K. and Chibber S. S. Candidol, a flavonol from *Tephrosia candida*, Phytochemistry, 22,325-326, (1983).
- 24. Dagne Ermias, Dinku Bekele, Gray Alexander I. and Waterman Peter G.umilaisoflavones A and B from the seed pods of *Tephrosia pumila*, Phytochemistry (1988) 27, 1503-1508
- 25. E. Venkata and Prasad Y. Rajendra Prenylated flavonoids from *Tephrosia spinosa*, Rao Phytochemistry, 32,183-185, (1992)
- 26. Ezer N., Vila R., Canigeral S.II Adzet T. Essential Oil Composition of four turkish species of *Sideritis*. Phytochemistry 1996, 41 (1), 203-205.
- 27. Forgacs P., Sevenet T. and Jehanno A Glutamyltyramine de *Tephrosia noctiflora*, Phytochemistry, 19,1225-1226, (1980)
- 28. Federico Gomez-Garibay and al : Flavonoids from Tephrosia major. A New Prenyl-H-hydroxychalcone. Z. Naturforsch. 57c, 579-583 (2002)
- Gomez-Garibay, Federico; De La O Arciniega, Minarda; Cespedes, Carlos L.; Taboada, Javier; Calderon, Jose S. Flavonoids from *Tephrosia* species. Part 10: Chromene chalcones from *Tephrosia carrollii* and the revised structure of Oaxacacin. Zeitschrift fuer Naturforschung, C: Journal of Biosciences (2001), 56 (11/12), 969-972.
- Gomez-Garibay, Federico; Calderon, Jose S.; De La O Arciniega, Minarda; Cespedes, Carlos L.; Tellez-Valdes, Oswaldo; Taboada, Javier. Flavonoids from *Tephrosia* species. 9. An unusual isopropenyldihydrofuran biflavanol from *Tephrosia crassifolia*. Phytochemistry (1999), 52(6), 1159-1163.
- 31. Garcez, Fernanda Rodrigues; Scramin, Shirlei; Celia do Nascimento, Maria; Mors, Walter B. Prenylated flavonoids as evolutionary indicators in the genus Dahlstedtia. Phytochemistry (1988), 27(4), 1079-83.
- 32. Gupta Rajinder K.; Krishnamurti M. Chromenoflavanones from Milletia ovalifolia. Phytochemistry (1976), 15(12), 2011.
- 33. Gupta Rajinder Kumar, Krishnamurti M. and Parthasarathi L. Purpurin, a new flavanone from *Tephrosia* purpurea seeds, Phytochemistry, 19, 1264, (1980)
- 34. Gómez F., L. Quijano, García G., Calderón J. S. and Ríos T. A prenylated flavan from *Tephrosia* madrensis*1, Phytochemistry, 22,1305-1306, (1983)
- 35. Gómez Federico, Quijano Leovigildo, Calderón José S, Domínguez Martha and Ríos T Viridiflorin, an isoflavone from *Tephrosia viridiflora*, Phytochemistry, 24,1126-1128, (1985)
- 36. Gómez Federico, Quijano Leovigildo, Calderón José S., Rodríquez Carlos and Ríos Prenylflavans from *Tephrosia watsoniana**1, Phytochemistry, 24, 1057-1059, (1985)
- 37. Gómez-Garibay ederico, Quijano Leovigildo, Calderón José S., Morales Sixto and R Prenylflavanols from *Tephrosia quercetorum*, Phytochemistry, 27,2971-2973, (1988)
- 38. Garibay Federico, Quijano Leovigildo and Rios Tirso Flavanones from Tephrosia leiocarpa, Gómez Phytochemistry 30 3832 3834 (1991)

- 39. Gómez-Garibay Federico, Quijano Leovigildo, Hernandez Cesiah and Rios Tirso Enantiomultijugin, a flavone from *Tephrosia viciodes**1, Phytochemistry, 31, 2925-2926, (1992)
- 40. Gómez-Garibay Federico, Calderón JoséS., Quijano Leovigildo, Téllez Oswaldo, Oli An unusual prenyl biflavanol from *Tephrosia tepicana**1, Phytochemistry, 46,1285-1287, (1997)
- 41. Gómez-Garibay Federico, Calderón José S., Arciniega Minarda De La O, Céspedes Ca. An unusual isopropenyldihydrofuran biflavanol from *Tephrosia crassifolia**1, Phytochemistry, 52,1159-1163, (1999)
- 42. Goodwin T. W. (Ed.) Chemistry and Biochemistry of Plant Pigments. Academic Press S108758 (BU Dakar) p. 212-215
- 43. Horie Tokunaru, Kawamura Yasuhiko, Kobayashi Takashi and Yamashita Kazuyo Revised structure of a natural flavone from *Tephrosia candida*, Phytochemistry, 37,1189-1191, (1994)
- 44. Harbonne, J.B., Mabry, T.J. (1982) The Flavonoids advances in research. Chapman and Hall. Page 744
- 45. Hoang Fagerström M. H, M. van Noordwijk, Thai Phien and Nguyen Cong Vinh Innovations within upland rice-based systems in northern Vietnam with Tephrosia candida as fallow species, hedgerow, or mulch: net returns and farmers' response, Agriculture, Ecosystems & Environment, 86, 23-37, (2001)
- 46. Ingham John L. and Markham Kenneth R. Tephrocarpin, a pterocarpan phytoalexin from *Tephrosia bidwilli* and a structure proposal for acanthocarpan, Phytochemistry, 21,2969-2972, (1980)
- 47. Ibrahim B., M'batchi B., Mounzeo H., Bourobou Bourobou H. P. and Posso P. Effect of *Tephrosia vogelii* and Justicia extensa on Tilapia nilotica in vivo, Journal of Ethnopharmacology, 69,99-104, (2000)
- 48. Ignacimuthu S., Janarthanan S. and Balachandran B. Chemical basis of resistance in pulses to Callosobruchus maculatus (F.) (Coleoptera: Bruchidae), Journal of Stored Products Research, 36,89-99, (2000)
- 49. J. KERHARO: La Pharmacopée Sénégalaise. Plantes médicinales et toxiques. Coll. J. G. Adam, Vigot Frérées, Paris (1974), pp 476-489.
- 50. J.M. WATT, M.G. BREYER-BRANDWYK The medicinal and poisonous plants of Southern and Eastern Africa. Ed Livingston, London 653-663.
- 51. Jayaraman Indrani, Ghanim A. and Khan Hamid A. A new prenylated flavanone from *Tephrosia villosa*, Phytochemistry, 19,1267-1268, (1980)
- 52. Jean BERHAUT. Flore Illustrée du Sénégal. Légumineuse. Papilionacées. Tome V p 14, 517.
- 53. Krupadanam G. L. David, Sarma P. N., Srimannarayana G., and Rao N. V. Subba New C-6 oxygenated rotenoids from *Tephrosia villosa* -- villosin, villosone, villol and villinol Tetrahedron Letters, 18(24), 2125-2128, (1977)
- 54. Khalid Sami A. and Waterman Peter G. 8-C-Prenylflavonoids from the seed of *Tephrosia bracteolata* Phytochemistry, 20, 1719-1720, (1981)
- 55. K. W. MERZ : Toxic constituents of the seed of *Tephrosia vogelii*. Arch. Pharm. 270-362 (1932)
- 56. Leslie, John T., Van Bruggen Nicholas and . Whiting Donald A Deguelin cyclase, a prenyl to chromen transforming enzyme from *Tephrosia vogellii*, Crombie Phytochemistry, 31,451-461, (1992)
- 57. Lambert Nadine, Trouslot Marie-France, Nef-Campa Claudine and Chrestin Herv, Production of rotenoids by heterotrophic and photomixotrophic cell cultures of *Tephrosia vogelii*, Phytochemistry, 34,1515-1520, (1993)
- 58. Leslie and Whiting Donald A. Review article number 135 biosynthesis in the rotenoid group of natural products: applications of isotope methodology, Crombie Phytochemistry, 49,1479-1507, (1998)
- 59. Lahey, F. N. Constitution of evodionol. Univ. Queensland Papers, Dept. Chem. (1942), 1(No. 20), 2-15.

- 60. Menichini, F.; Delle Monache, F.; Marini Bettolo, G. B. Flavonoids and rotenoids from *Tephrosieae* and related tribes of *Leguminosae*. Planta Medica (1982), 45(4), 243-4.
- 61. Moretti C. and Grenand P. Les Nivrées ou plantes ichtyotoxiques de la Guyane française Journal of Ethnopharmacology, 6,139-160, (1982)
- 62. Marston Andrew, Msonthi Jerome D. and Hostettmann Kurt On the reported molluscicidal activity from *Tephrosia vogelii* leaves*1, Phytochemistry, 23,1824-1825, (1984)
- 63. Monache F. Delle, Labbiento L., Marta M. and Lwandet W. 4-substituted flavans from *Tephrosia* hildebrandtii, Phytochemistry, 25,1711-1713, (1986)
- 64. M. Robert, C. Silvestry, G. Baisler, C.Terence : Spectrometry Identification of Organic Compounds. third edition New York, London, Sydney, Toronto : Johwiley ,Sons Inc.134-135.
- 65. Nakajima, Shuhei. Antifeedants and chemical sense in insects. Nippon Nogei Kagaku Kaishi (1991), 65(8) 1237-41.
- Pelter, Andrew; Ward, Robert S.; Rao, E. Venkata; Raju, N. Ranga. 8-Substituted flavonoids and 3'substituted 7-oxygenated chalcones from *Tephrosia purpurea*. Journal of the Chemical Society, Perkir Transactions 1: Organic and Bio-Organic Chemistry (1972-1999) (1981), (9), 2491-8.
- 67. Parmar Virinder S., Rathore Jatendra S., Jain Rajni, Henderson Deirdre A. and Ma Occurrence of pongamol as the enol structure in *Tephrosia purpurea*, Phytochemistry, 28,591-593, (1989)
- 68. Prashant A. and David Krupadanam G. L Dehydro-6-hydroxyrotenoid and lupenone from *Tephrosia* villosa, Phytochemistry, 32(2, 20 January 484-486, (1993)
- 69. Prabhakar Palanisamy, Vanangamudi Arumugasamy, Gandhidasan Rathinasamy and Raman Hookerianin: a flavone from *Tephrosia hookeriana*, Phytochemistry, 43,315-316, (1996)
- 70. Rao, E. Venkata; Prasad, Y. Rajendra. Prenylated flavonoids from *Tephrosia spinosa*. Phytochemistry (1992), 32(1), 183-5.
- 71. Rao, E. Venkata; Prasad, Y. Rajendra. Two chalcones from *Tephrosia spinosa*. Phytochemistry (1992), 31(6), 2121-2.
- 72. Rao E. Venkata and Raju N. Ranga Occurrence of (-)-isolonchocarpin in the roots of *Tephrosia purpurea*, Phytochemistry, 18,1581-1582, (1979)
- 73. Rao P. Pulla and Srimannarayana G. Tephrosol, a new cournestone from the roots of *Tephrosia villosa*, Phytochemistry, 19,1272-1273, (1980)
- 74. Rao E. Venkata, Murthy M. Sree Rama and Ward Robert S. Nine isoflavones from *Tephrosia maxima*, Phytochemistry, 23,1493-1501, (1984)
- 75. Rao E. Ventakata and Raju N. Ranga Two flavonoids from *Tephrosia purpurea*, Phytochemistry, 23,2339-2342, (1984)
- 76. Rao E. Venkata and Murthy M. Sree Rama Further studies on the isoflavones of *Tephrosia maxima*, Phytochemistry, 24, 875-876, (1985)
- 77. Rao E. Venkata, Venkataratnam G. and Vilain C. Flavonoids from *Tephrosia fulvinervis*, Phytochemistry, 24,2427-2430, (1985)
- 78. Roy Mita, Bhattacharya Pradip K., Pal S., Chowdhuri A. and Adityachaudhury N. Dehydrodihydrorotenone and flemichapparin-B in *Tephrosia candida*, Phytochemistry, 26,2423-2424, (1987)
- 79. Rajani P. and Sarma N. A cournestone from the roots of *Tephrosia hamiltonii*, Phytochemistry, 27,648-649, (1988)
- 80. Rao E.Venkata and Prasad Y. Rajendra Two chalcones from *Tephrosia spinosa*, Phytochemistry, 31,2121-2122, (1992)

- 81. Rao E. Venkata, Prasad Y. Rajendra and Murthy M. Sree Rama A prenylated flavanone from *Tephrosia* maxima, Phytochemistry, 37,111-112, (1994)
- 82. Rao J. V. Subba and Rao S. Raja Shanmukha Structure, distribution and taxonomic importance of stomata in some Indian *Tephrosia* Pers. (Fabaceae), Botanical Journal of the Linnean Society, 114,243-252, (1994)
- 83. Subramanian, M.; Kumaraswami, K.; Prasad, K. J. Rajendra. A new synthesis of 82. pongachalcone I, glabrachromene, mixtecacin, candidin, atalantoflavone dimethylether, racemoflavone dimethylether, and dihydropyranoaurones, and their analogs. Journal of Natural Products (1992), 55(9), 1213-29.
- Subrahmanyam, K.; Rao, J. Madhusudhana; Rao, K. V. Jagannadha. Some reactions of the chromenochalcones from *Pongamia glabra* Vent. Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry (1977), 15B(2), 105-8.
- 85. Subrahmanyam, K.; Rao, J. Madhusudhana; Rao, K. V. Jagannadha. Isolation of pongachalcone-I from the heart-wood of *Pongamia glabra*. Current Science (1973), 42(4), 128-9.
- 86. Sharma, V. M.; Rao, P. S. A prenylated chalcone from the roots of *Tephrosia spinosa*. Phytochemistry (1992), 31(8), 2915-16.
- 87. Simmonds, M. S. J.; Blaney, W. M.; Delle Monache, F.; Bettolo, G. B. Marini. Insect antifeedant activity associated with compounds isolated from species of *Lonchocarpus* and *Tephrosia*. Journal of Chemical Ecology (1990), 16(2), 365-80.
- Smalberger T M., Vleggaar R. and Weber J. C. Flavonoids from *Tephrosia*––VII : The constitution and absolute configuration of lupinifolin and lupinifolinol, two flavanones from Tephrosia lupinifolia Burch (DC) Tetrahedron, 30,3927-3931, (1974)
- Smalberger T. M., Vleggaar R. and Weber J. C. Flavonoids from *Tephrosia*––VIII *1: The structure of elongatin, an isoflavone from *Tephrosia elongata* E. Mey. Tetrahedron, 31,2297-2301, (1975)
- 90. Sarin Jagat P. S., Singh Satyawan, Garg H. S., Khanna N. M. and Dhar M. M. A flavonol glycoside with anticancer activity from *Tephrosia candida* Phytochemistry, 15,232-234, (1976)
- 91. Smalberger R. VleggaarG. J. KrugerT. M. and Van Den Berg A. J. Flavonoids from Tephrosia––X11: The structure of glabratephrin, Tetrahedron, 34,1405-1408, (1978)
- 92. Saleem Mohammad, Salah-uddin Ahmed, Aftab Alam and Sarwat Sultana *Tephrosia purpurea* alleviates phorbol ester-induced tumor promotion response in murine skin, Pharmacological Research, 43, 135-144, (2001)
- Subrahmanyam, K.; Rao, J. Madhusudhana; Rao, K. V. Jagannadha. Chemical examination of the heartwood of Pongamia glabra Vent.: isolation of chromenochalcones and synthesis of pongachalcones I and II. Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry (1977), 15(1), 12-15.
- 94. T. Kadana, T. Yamakawa and Y. Minoda: Rotenoid Biosynthesis by Tisse Cultures of Deris elliptica: Agric. Biol. Chem. 44, 2387 (1980)
- 95. Tiagi Y. D. and Aery N. C. Biogeochemical studies at the Khetri copper deposits of Rajasthan, India, Journal of Geochemical Exploration, 26,267-274, (1986)
- 96. Tarus Paul K., Machocho Alex K., Thoruwa Caroline C. Lang'at- and Chhabra Sumesh Flavonoids from *Tephrosia aequilata*, Phytochemistry, 60,375-379, (2002)
- 97. Venkataratnam G., Rao E. Venkata and Vilain C. Fulvinervin C, a flavone from *Tephrosia fulvinervis*, Venkataratnam Phytochemistry, 25,1507-1508, (1986)
- 98. Vleggaar R., Smalberger T. M. and Waal H. L Two new flavones from *Tephrosia polystachyoides* bak.f. Tetrahedron Letters, 13,703-704, (1972)
- 99. Vleggaar R., Smalberger T. M. and van den Berg A. J. Flavonoids from *Tephrosia* The structure of analytical bring of the structure of an environment of the structure of structure of the st

- 100. Vleggaar R., Smalberger T. M. and van den Berg A. J. Flavonoids from *Tephrosia* The structure of multijugin and multijuginol Tetrahedron, 31(20), 2571-2573, (1975)
- 101. Were, O.; Munavu, R. M.; Lwande, W.; Nyandat, E. Flavonoids from Tephrosia interrupta and T. linearis. Fitoterapia (1990), 61(4), 372.
- 102. Wagner H., Hörhammer L. and Farkas G. HitzlerL. Vollständige synthese des vogeletins, eines flavonols von *Tephrosia vogelii* hook. Tetrahedron Letters, 6, 3849-3850, (1965)
- 103. Waterman Peter G. and. Khalid Sami A The major flavonoids of the seed of *Tephrosia apollinea*, Phytochemistry, 19,909-915, (1980)
- 104. Xianghong, Feng X. L., Chen W. X. and. Li F. D. Biological Behavior of Plasmid in Rhizobium sp. Strain S25 from *Tephrosia candida* Zou Plasmid, 40,158-163, (1998)
- 105. Xianghong, Feng X. L., Chen W. X. and. Li F. D. Flavonoids of *Tephrosia purpurea*, Ahmad V. U., Ali, Hussaini Z. S. R., Iqbal F., Zahid M., Abbas M. and Saba N. Fitoterapia, 70,443-445, (1999)

QUELQUES OUVRAGES UTILES

RMN

106.Atta-ur-Rahman and Muhammad Iqbal Choudhary (1996). Solving problem with NMr spectroscopy. Academic Press. 430 pages

107. Silvestein, R. M. and Webster, F. X. (1998). Spectrometric identification of organic compounds. Sixth edition. John, Wiley and Sons, INC. 482 pages.

CHOMATOGRAPHIE

- 108. Hostettmann, K.; Hostettmann, M. and Marston, A. (1986). Preparative chromatography techniquesapplications in natural product isolation. Springer-Verlag. 139 pages.
- 109.Linskens, H. F.; Jackson, J. F. (1987). High Performance Liquid Chromatography in plant Sciencers. Springer-Verlag. (Some HPLC analysis method of natural products are presented).

ANNEXE 1 : Pouvoirs rotatoires des composés isolés

MK57-1: 6'O-méthyldéflexachalcone

- ANNEXE 2: Chromatogramme GC-MS de MK57-1
- Spectre de masse de la 6'O-méthylévodionone ANNEXE 3 :
- Tableau RMN de MK57-1 dans CDCl₃ ANNEXE 4 :
- Spectre ¹H RMN de MK57-1 dans CDCl₃ Spectre ¹³C RMN de MK57-1 dans CDCl₃ ANNEXE 5 :
- ANNEXE 6: Spectre Infra-Rouge de MK57-1 dans CHCl₃
- ANNEXE 7 : Spectre RMN COSY de MK57-1 dans CHCl₃
- ANNEXE 8: Spectre RMN HMQC de MK57-1 dans CHCl₃

MK57-2 et MK57-3 : Isomères cis et trans de la 6'O-Me-pongachalcone

- ANNEXE 9: Chromatogramme GC-MS de MK57-2
- ANNEXE 10 : Spectre de masse et Spectre Infra-Rouge de MK57-2 dans CHCl₃
- ANNEXE 11: Tableau RMN de MK57-2 dans CDCl₃
- ANNEXE 12 : Spectre ¹H RMN de MK57-2 dans CDCl₃
- Spectre ¹³C RMN de MK57-2 dans CDCl₃
- ANNEXE 13 : Tableau RMN de MK57-3 dans CDCl₃
- ANNEXE 14 : Spectre ¹H RMN de MK57-3 dans CDCl₃
- ANNEXE 15 : Spectre ¹H RMN du mélange de MK57-2 et MK57-3 dans CDCl₃

MK57-4 : Déflexachalcone

- ANNEXE 16 : Chromatogramme GC-MS de MK57-4
- ANNEXE 17 : Spectre de masse de l'isoevodionol
- ANNEXE 18 : Tableau RMN de MK57-4 dans CDCl₃
- ANNEXE 19 : Spectre Infra-Rouge de MK57-4 dans CHCl₃
- ANNEXE 20 : Spectre ¹H RMN de MK57-4 dans CDCl₃
 - Spectre ¹³C RMN de MK57-4 dans CDCl₃

MK57-7: Roténone

- ANNEXE 21: Tableau RMN de MK57-7dans CDCl₃
- ANNEXE 22 : Spectre Infra-Rouge de MK57-7 (roténone) dans CHCl₃
- ANNEXE 23 : Spectre ¹H RMN de MK57-7 dans CDCl₃
 - Spectre ¹³C RMN de MK57-7 dans CDCl₃

MK102-2: 3-hydroxyroténone

- ANNEXE 24 : Tableau RMN de MK102-2 dans CDCl₃
- ANNEXE 25 : Spectre ¹H RMN de MK57-8 dans CDCl₃

MK57-10: Pongachalcone

ANNEXE 26 : Tableau RMN de MK57-10 dans CDCl₃

MK57-11: 5-hvdroxvroténone

- ANNEXE 27: Tableau RMN de MK57-11 dans CDCl₃
- ANNEXE 28 : Spectre ¹H RMN de MK57-11 dans CDCl₃

MK57-14 : 4"-chloro,6'OMe- méthyldeflexachalcone

- ANNEXE 29 : Chromatogramme GC-MS de MK57-14 avec des alcanes de C₁₁ à C₃₀
- ANNEXE 30 : Spectre de masse de MK57-14
- ANNEXE 31: Tableau RMN de MK94-D dans CDCl₃
- ANNEXE 32 : Spectre ¹H RMN de MK57-14 dans CDCl₃ Spectre ¹³C RMN de MK57-14 dans CDCl₃

MK57-15 : Une hypothèse de structure

- ANNEXE 33 : Chromatogramme GC-MS de MK57-15
- ANNEXE 34 : Spectre de masse de MK57-15
- ANNEXE 35 : Tableau RMN de MK57-15 dans CDCl₃
- ANNEXE 36 : Spectre ¹H RMN de MK57-15 dans CDCl₃
- Spectre ¹³C RMN de MK57-15 dans CDCl₃
- ANNEXE 37 : Spectre RMN COSY de MK57-15 dans CDCl₃
- ANNEXE 38 : Spectre RMN HMQC de MK57-15 dans CDCl₃
- ANNEXE 39 : Spectre RMN HMBC de MK57-15 dans CDCl₃

ANNEXE-1-

Code du Composé :	MK57-1	MK57-2	MK57-4	MK57-7	MK57-10	MK102-2
Concentration C (g/ml)	0.0062	0.00105	0.0005	0.00165	0.0005	0.0105064
Longueur d'onde λ (nm)	589	589	589	589	589	589
Température T (°C)	20	20	20	20	20	20
Indice mesurée α^0 (en degree)	+0.130	-0.002	+0.013	-0.132	+0.003	-0.434
[α] _D	+20.97	+1.9	+26	-80	+6	-41.31

$$\left[\alpha\right]_{D}^{20^{\circ}} = \frac{\alpha_{0}}{c x l}$$

Tableau : Récapitulation des mesures du pouvoir rotatoire de quelques composés isolés.

Chromatogramme GC-MS de MK57-1

Abundance

Nous remarquons sur le chromatogramme les pics du benzaldéhyde à 6,99 min et du 6' Ométhylévodionol à 40,25 min dus à la réaction de rétro-aldolisation de MK57-1. Le pic de la 6'Ométhylpongachalcone à 63.31 min provenant de la deshydratation de la 6'Ométhyldeflexachalcone est également visible.

TIC: MK55A-3 D 40.25 1400000 1300000 1200000 1100000 1000000 900000 800000 700000 600000 500000 63.31 400000 6.99 300000 200000 100000 C\HPCHEM\I\DATA\MK55A-3.D File: Bot Operator: Date Acquired: 27 10.000420.00 30.00 60.00 70.00 80.00 90.00 40.00 50.00 Method Ella: ANGEL&15 Time--> Sample Name: Tephrosia deflexa-graines Misc Info: Et2O(CCM) Vial Number: 1 Search Libraries: C:\DATABASE\AMUSA.L Minimum Quality: 80 C:\DATABASE\NB\$49K.L Minimum Quality: 20 Unknown Spectrum: Apex Integration Events: Chemistation Integrator - autointLe Pk# RT Area% Library/ID Ref# CAS# Qual 1 7.00 30.12 C:\DATABASE\AMUSA.L 1805 001000-00-0 95 henzaldehyde ACETOPHENONE DB5-551 3042 00000-00-0 47 **BENZALDEHYDE DB5-353** 3346 000000-00-0 9 2 40.26 57.75 C:\DATABASE\AMUSA.L methylevodionol 4625 000000-00-0 98 3 63.31 12.14 C:\DATABASE\AMUSA.L 4623 002868-63-5 99 O-Me pongachaleone <TRANS> O-Me pongachalcone <CIS> 4624 002659-58-8 95

ANNEXE-3-

Spectre de masse de la 6'O-méthylévodionone

Scan 190	3 (40 20	(min)	3 D					139.05	356	153,00	295	165 05	260	178 00	345
	Tephros	ia defle	xa-graine	28				141.05	718	155.00	377	167.05	287	179.00	878
								142.05	350	156.00	252	169.05	373	181.00	231
m/z	abund	m/z	abund	m/z	abund.	m/z	abund	143.05	2387	157.00	1099	170.05	211	184 10	239
40.05	946	55.10	4245	68.05	921	79.05	7129	144-05	2691	158.10	1381	171.05	1060	185.10	1883
41.05	4417	56.00	331	69.05	13348	80.05	1744	145.05	3640	159.10	4179	172.05	1175	186.10	087
43.05	34976	57.50	650	70.05	676	81.05	1397	146.10	4375	160.00	3056	173.05	4435	187.00	5883
44.05	1548	59.00	2662	71.15	436	82.05	408	147.10	2743	161.00	4544	174.05	6476	188.00	2510
44.95	677	61.00	506	72.15	448	83.00	1505	148.10	699	162.05	1180	175.05	5705	189.00	6287
49.65	222	62.00	2857	72.85	402	84.10	215	149.10	1164	163.05	857	176.05	1556	190.00	2895
50.05	2357	63.00	7743	74.05	1987	85.10	620	150.10	221	164 05	596	177.10	1327	191.00	1843
51.05	6603	64.00	2302	75.05	3438	86.10	1558								
52.10	2647	65 (K)	6650	76 05	2983	87.10	3010	m/z.	abund.	m/z	abaind.	m/z a	abund.	m/z ai	bund.
53 (0)	9229	65.00	3108	77 05	16190	88.00	1271	192.00	687	207 05	497	231.05	5298	264 15	1386
54 ()()	852	67.05	3064	78 05	5072	89 10	4761	193.05	279	213.10	674	232.05	1988		
								198.05	244	214.00	7187	233.05	1049		
n/z	abund	m/z	abund	m/z	abund.	m/z	abund	199.05	583	215.10	16029	245.20	363		
- 40-10	2485	101.05	1646	114.05	5 711	126.10) 405	200.05	6364	216.10	4135	247.10	43449	6	
91.10	9947	102.05	3668	115.10) 1024	0 127.0	00 1952	201.05	3822	217.00	83320	248.10	6740	0	
92.10	2036	103 05	6049	116.10	2678	4 128.0	3641	202.05	9974	218.00	11604	249 10	8261	J	
93.10	2859	104.05	1468	117.00	352	7 129.1	0 2629	203.05	8970	219 10	3729	250.10	810		
94.00	1420	105.05	4043	118.10	352	7 130.0	5 1188	204.05	2323	220.00	567	261.15	1490		
95.00	942	106.05	2645	119.00	2517	131.05	5 5203	205.05	2389	229.05	1376	262 15	62264	ł.	
96.10	242	107.05	2675	120.00	689	132.05	1980	206.05	372	230.05	567	263-15	10041		
9740	212	108.05	2090	121 10	1400	133.05	5 2116								
AK (R)	393	109.05	1277	122.00	264	134 05	804								
99.65	610	110.95	273	123.00	1851	135.05	1338								
100.05	458	113.05	586	125.00	1278	137.0	5 398								

m/z abund m/z ab od m/z abund. m/z abund.

ANNEXE-4-

C₂₂H₂₄O₅ (368) MK57-1

Fractions GC-MS fragmentation masse 262 + benzaldehyde : 262 (14), 247 (100), 231 (1), 217 (20), 202 (3), 116 (5), 91 (2), 77 (4), 69 (3), 43 (8)

IR : OH (3516 cm^{-1}), C=O (1686 cm^{-1}), C=O (1465 cm^{-1}), C=C (1636 cm^{-1} et 1603 cm^{-1}) [a]_D²⁵=+21°

Tableau RMN de MK57-1 dans CDCl₃

Carbone	δ ¹³ C,	δ^{1} H, mult. (J en Hz),	<u> </u>			**************************************
N°	mult.	int. ppm	Corrélations COSY	Corrélations HMBC	nOe	Corrélations
	ppm					НМВС
l	143.0, s	-	-	-	-	H: 5.26/ 7.26
2	125.8, d	7.40, d (7.3),1H	H : 5.26/ 7.34	C: 70.4/ 127.4	-	H : 7.19/ 7.33
3	128.4, d	7.34, t (7.3), 1H	H : 7.40/ 7.26	C : 143	-	H : -
4	127.4, d	7.26 overlaped	H : 7.34	C : 125.8	-	H : 7.33
5	128.4, d	7.34, t (7.3), 1H	H : 7.40/ 7.26	C : 128.0/ 143	-	H : -
6	125.8, d	7.40, d (7.3), 1H	H : 5.26/ 7.34	C : 70.4/ 127.4	-	H : 7.19/ 7.33
7	70.4, d	5.26, dt (9.3/2.8), 1H	H: 3.15/ 3.25/ 7.33/	C. 125.8/ 143.0	-	H : 3.15/ 3.25/
			3.62			7.33
8	53.5, t	3.15, dd (17.4/ 9.3),	H : 5.26/ 3.25	C : 70.4/ 204.2] -	H : -
		1H	H: 5.26/ 3.15		-	
		3.25, dd (17.4/ 3.3),				
		1H		······································		
9	204.2, s	-	-	-	-	H : 3.15/ 3.25
1'	<u>117.4, s</u>	-	-		-	H : 6.19
2'	157.8, s	-	-	-	-	H: 3.76
3'	96.2, d	6.19, s, 1H	H : 3.76/ 6.46	C : 108.1/ 117.4/	H: 3.76	H : -
			· · · · · · · · · · · · · · · · · · ·	156.4		
4'	156.4, s	-	-	•	-	H :6.19/ 6.46
5'	108.2, s	-	-	*	-	<u>H:-</u>
6'	154.4, s	-	-	-	-	Н:3.75
2"	77.0, s	-	-	-	-	H :1.43/ 5.54/
						6.46
3''	116.3, d	5.54, d (9.8), 1H	H : 6.46/ 1.43	C : 27.9/ 77.0/ 108.2	-	H : -
4"	128.0, d	6.46, d (9.8), 1H	H : 5.54/ 1.43/ 6.19	C:77.0/154.4/156.4	H: 3.75	11 : 7.26
2'-OCH ₃	55.7, q	3.76, s, 3H	H : 6.19	C : 157.8	H: 6.19	H : -
6'-OCH3	63.8, q	3.75, s, 3H	Н:-	C : 154.4	H : 6.46	H : -
2''-CH3	27.9, q	1.43, s, 3H	H : 6.46	C : 27.9/ 77.0/ 128.0	-	H : 1.43
2''-CH3	27.9, q	1.43, s, 3H	H : 6.46	C : 27.9/ 77.0/ 128.0	-	H : 1.43
-OH	-	3.60, d (2.8), 1H	H : 5.26			

K

6'OMe-deflexachalcone

ANNEXE-5-

Spectre ¹³C RMN de MK57-1 dans CDCl₃

 $m \mathbf{\hat{a}} = r(a)$

ANNEXE-6-

Spectre Infra-Rouge de MK57-1 dans CHCl₃

ANNEXE-7-

Spectre RMN COSY de MK57-1 dans CDCl₃

Ē. 4.5 4.0 (.) ъ.2 ъ.2 1.0 P. c, s, k

ANNEXE-8-

ANNEXE-9-

Chromatogramme GC-MS de MK57-2

(6°O-méthylpongachalcone: 63,35 min)

Anundance

55000	0	TIC: MK55A-5.	D 63-35	
50000	0			
45000	0			
45000				
40000	0			
35000	0			
30000	0			
25000	0			
20000	0			
15000	0		i	
10000				
5000 Date A Metho	CHECHEMATDATA(MK35A-3.D O" B.M. Acquired: 27 Apr 2004 13:39 dFile: ANGEL&15	58.	90	
Sample Misc h three Vial N	$e^{\text{Na}_{10.00}\text{ph}_{20.00}\text{fle};30.00^{\text{es}}}$ 40 nfo: Et2O(CCM) umber: 2	0.00 50.00 60	.00 70.00	80.00 90.00
Search Li	braries: C:\DATABASE\AMUSA.L C:\DATABASE\NBS49K.L	Minimum Qual Minimum Quality: 20	ity: 80	
Unknown	Spectrum: Apex	annun Quanty. 20		
Integratio	n Events: Chemstation Integrator - auto	intl.e		
Pk#_RT	Area% Library/ID Ret	# CAS# Qual		
1 58.89	6.56 C:\DATABASE\AMUSA.L O-Me.pongachalcone <trans></trans>	4623 002868-63-5 99	_ · · · · · · · · · · · · · · · · ·	
	O-Me pongachalcone <cis> 46</cis>	524 002659-58-8 98		
2 63.35	93.44 C:\DATABASE\AMUSA.L			
	O-Me pongachalcone <trans></trans>	4623 002868-63-5 99)	
	o no poligionaleone se los ma	1 0 0 0 - 0 C - 7 C () L 0 7 J		

ANNEXE-10-

Spectre de masse de la 6'O-méthylpongachaicone

Spectre infra-rouge de MK57-2 dand CHCl₃

ANNEXE-11-

C₂₂ H₂₂ O₄ (350) MK57-2

Fractions GC-MS, KI 2868, fragmentation 350(14); 335(100);305(1); 291(3); 217(4);167(1); 131(4):103(9);77(9); 63(1); 51(2); 43(1);

Tableau RMN de MK57-2 dans CDCl₃

Carbone	δ ⁱ³ C, mult.	δ ¹ H, mult. (J en Hz), °	Corrélations
N°	ppm	ppm	COSY
1	134.9., s	•	-
2	128.5, d	7.53, m, 1H	H: 7.37
3	128.8, d	7.37, m, 1H	H : 7.37/ 7.53
4	128.7, d	7.37, m, 1H	H : 7.37
5	128.8, d	7.37, m, 1H	H : 7.37/ 7.53
6	128.5, d	7.53, m, 1H	H : 7.37
7	127.7, d	7.41, d (16.1), 111	11:7.01
8	130.4, d	7.00, d (16.1), 1H	H: 7.41
9	194.2, s	ue .	H :-
1'	125.5, s	-	H :-
2'	158.2, s		H:-
3'	96.2, d	6.25, s, 1H	H:-
4'	156.1, s	-	11:-
5'	108.0, s		H :-
6'	154.8, s	-	H :-
.2"	76.9, s	-	H :-
3"	116.3, d	5.55, d (9.8), 1H	H : 6.52
4"	116.6, d	6.52, d (9.8), 1H	H : 5.55
2'-OCH ₃	55.9, q	3.75, s, 3H	H : -
6'-OCH ₃	63.4, q	3.74, s, 3H	H:-
2"-CH ₃	27.9, q	1.46, s, 3H	H:-
2"-CH ₃	27.9, q	1.46, s, 3H	H:-

6'OMe-pongachalcone

Spectre ¹H RMN de MK57-2 dans CDCl₃

ANNEXE-13-

C₂₂ H₂₂ O₄ (350) MK57-3

Fractions GC-MS. fragmentation 350(14); 335(100);305(1); 291(3); 217(4);167(1); 131(4);103(9);77(9); 63(1); 51(2); 43(1);

KI:2648

 $[\alpha]_0^{-25} - \pm 2^\circ$

Tableau RMN de MK57-3 dans CDCl₃

Carbone	δ^{13} C, mult.	δ ¹ H, mult. (J en Hz), int.	Corrélations COSY	Corrélations IIMBC
n°	ppm	ppin		
1	134.9, s	-		
2	127.7, d	7.53, m, 1H		ατο το τη
3	129,4, d	7.25, m, 1H		
4	128.7, d	7.25, m, 1H	n na ha n Na ha na h	
5	129.4, d	7.25, m, 111		
6	127.7, d	7.53, m, 1H		
7	127.5, d	6.46, d (12.8), 1H	annan ann an Sharan an Sharan an Sharan ann ann ann ann an Sharan an Sharan an Sharan an Sharan a Sharan a Shar	
8	130.4, d	6.88, d (12.8), 111		
9	194.2, s	-		
1.	125.5, s	-		
2`	158.2, s			
3'	96.0, d	6.07, s, 1H		
4'	156.3, s	-		
5'	108.0, s			
6'	156.0, s			
2"	76.7, s			
3''	116.3, d	5.50, d (9.8) 111	and a second	
4"	116.6, d	6.44, d (9.8), 111		
Me-2"	27.9, q	1.40, s, 6H		
MeO-2'	55.8, q	3.73, s, 3H		
MeO-6'	63.4, q	3.74, s, 3H	an a	
Summer a service statement and a		•	A	

Cis-6'OMe-pongachalcone

ANNEXE-15-

Spectre ¹H RMN du mélange MK57-2 et MK57-3

Chromatogramme GC-MS de MK57-4

abundance.

ANNEXE-17-

.

Spectre de masse de l'isoevodionol

95.90 222 108.95 11960 122.00 288 132.95 898

								97,95	249	110.95	257	123.00	365	133.95	539
Scan 201	4 (42.25 inconnu	5 min) i-mk	4 D					m/z 135.05	abund. 1563	m/z 158.00	abund. 1106	m/z 174.95	abund. 1084	m/z 192.0*	abund 5 - 826
m.z	abund	111/2	abund	m/2	abund	m/2	abund	136.95	238	159.00	1798	176.00	1219	193.05	297
.10.05	92.1	55.00	3111	65.90	1700	75.05	1184	140.95	459	60.05	2426	177.00	1023	199.05	407
11.05	3661	56.00	221	67.05	2475	76.05	8611	142.95	612	161.05	2463	179.00	487	199,95	12178
	1260	57.00	510	67.05	504	77.05	2504	143.95	1305	161.95	597	185,00	840	200.95	2768
12.05	1.002	57.00	242	68.05	6775	78.05	4679	145,00	1491	163.05	1134	186-00	368	201.95	1580
11.05	1021	50.00	1030	60.95	216	70.05	4078	146.00	867	168,95	206	187.00	2310	202.95	2279
11.05	10/1	09.00	202	70.05	214	19.93	762	147.00	1524	170.95	551	188 (9)	478	203.95	1371
10.05	9.24	- 60.00	20.5	70.05	.019	01.00	424	148.00	1910	171.95	980	189.00	2477	204.95	1076
49.92	4303	62.00		70.85	200	01.90	4.14	149.00	730	172.95	1.486	189.90	911	205.95	234
-11-00 50-00	4.201	02.00	1214	71.92	.000	83,00	202	157,00	384	173.95	830	191.05	6806	213.00	288
52.00	1004	0.5.00	000	73.05	022	84.00	292	m/z abu	nd. n	ı∕z abı	md. n	ı∕z abu	nd. m	z abu	nd.
51.00	5271	65.00	7997	74.05	880	84.90	482	214.10	696	235.95	303				
1100	101	0.5.00		24.92	1194	80,00	1.528	215,00	44320	247.00	627				
0112	abund.	00.05	aouna.	112.95	abuna.	124.00	abund	216.00	6211	248.00	37152	2			
00 00	567	99.03	270	112.62	2.50	124.00	594	217.00	4572	249.00	5701				
	207	101.05	07.5	114.00		124.90	204	217,90	1080	250.00	641				
57 OU 00 00	020	101.03	1210) 4,1/4) 1641	E 120.0	0 220	219.00	882						
00,00	4''Y	102.05	1.310	110.00	0 120	1 127.0	0 777	228.95	440						
91.00	0127	103,02	2472	110.00	0 1.50	4 1283	10 1.369	230.95	369						
91.00	964	103.95	057	118.00	818	129.05	801	232.95	17836	ĸ					
93,10	18/5	105 05	2153	119.0	0 116	4 1303	15 395	233.95	25640						
93.70	1046	106,05	909	120.00) 473	1.31.05	1/99	235.05	2947						
	1551	-107.05	3131	- 121.0	$0 - 6^{04}$	- 13 9	5 650	• • • •							

ANNEXE-18-

C₂₁H₂₂O₅ (354) MK57-4

Fractions GC-MS [354-C7H6O]=248(21); 233(100); 215(25); 200(7); 191(4); 109(7); 77(5); 69(4); 65(2); 63(2); 53(3); 51(3); 43(13)

IR : OH (3691cm⁻¹ et 3410 cm⁻¹), C=O (1681cm⁻⁴), C-O (1466 cm⁻¹), C=C (1602cm⁻¹ et 1633 cm⁻⁴) $[a]_{D}^{25} = \pm 26$ KI : 2015

Tableau RMN de MK57-4 dans CDCl₃

Carbone	δ^{-13} C, mult.	δ ¹ H, mult. (J en Hz), ⁰	Corrélations	Corrélations	NOESY
N°	ppm	ррп	COSY	НМВС	
1	143.1, s	-			
2	125.9, d	7.42, d (7.1), 1H	Н:7.37	and a state of the second	The second
3	128.5, d	7.37, t (7.1), 1H	H : 7.42/ 7.29		
4	125.6, d	7.29, m (7.1), 1H	H : 7.37		
5	128.5, d	7.37, t (7.1), 1H	H : 7.42/ 7.29		
6	125.9, d	7.42, d (7.1), 1H	H: 7.37	and the second	
7	70.3, d	5.28, dd (9.3/2.8), 1H	H: 3.35/ 3.45/		
			3.73		
8	52.7, t	3.35, dd ($9.3/18.1$), 1H(H _{8a})	H : 5.28/ 3.45		
		3.45, dd (2.8/18.1), 1H(H _{8b})	H : 5.28/ 3.35		
9	203.6, s	-			
1'	117.2, s				
2'	158.7, s	-			
3'	91.4, d	5.87, s, 1H			H: 3.79
4'	157.1, s	-			
5'	109.3, s	-			
6'	159.6, s	-			
2"	77.2, s	-			
3"	115.9, d	5.46, d (9.8), 111	11:6.66		H: 6.66
4"	127.5 d	6.66, d (9.8), 1H	H : 5.46		H: 5.46/
					13.97
MeO-2'	55.7, q	3.79, s , 3H			11: 5.87
Me-2"a	28.4, q	1.44, s, 3H			
Me-2"b	24.4, q	1.44, s. 3H			
HO-7		3.73, d (3.0), 1H	H : 5.28		
HO-6'		13.97, s, 1H			11: 6.66

ANNEXE-19-

ANNEXE-20-

Spectre ¹³C RMN de MK57-3 dans CDCl₃

C₂₃ H₂₂ O₆

[a]_b²⁵ ~ -80 °

Tableau RMN de MK57-7dans CDCl₃

Carbone	δ ¹³ C, mult.	δ ¹ H, mult. (J en Hz), °	Corrélations COSY	Corrélations	NOESY
N°	ppm	ppm		HMBC	
2	72.2, d	4.92, d (1.8) 1H	H: 3.8/ 4.7/ 4.61		
3	44.6, s	2.8, d (4.0) 1H	H : 4.92		
4	188.9, s		H :		
5	130.0, d	6.50, d (8.6), H	H : 7.83		
6	104.8, d	7.83, d (8.6), H	11:6.50		
7	167.4, s	-	H :		
8	110.4, s	-	H :		
9	157.9, s	-	H :		
10	113.3, s	-	H :		
1'	113.0, s	-	H :		
2'	149.5, s	-	HI:		
3'	100.9, d	6.77, s, 1H	H: 3.76/ 3.80		
4'	143.0, s	-	H :		
5'	143.9, s	-	H :		
6'	112.6, d	6.45, s, 1H	H :3.76		
2''	87.8, s	5.23, t (8.0), 1H	H :2.96/ 3.33		
3"	47.4, đ	-	H :		
4''	110.4, t	4.93, s, H _{4"a}	H _{4"a} : 5.07/ 1.76		
		5.07, s H _{4"b}	H _{4"b} : 4.93/ 1.76		
H ₂ C-2''	31.3, t	2.96, dd. (8.1/15.9), H _{2"a}	H _{2"a} : 3.33/ 5.23		
		3.33, dd. (9.84/ 15.9), H _{2"b} _	H _{2"b} : 2.96/ 5.23		
H ₂ C-2	66.3, t	4.17, d (12.1), H _{2a}	H _{2a} : 4.61/ 4.92		
		4.61, dd. (3/11.8), H _{2b}	H _{2b} : 4.17/ 4.92		
Me-3"	17.1, q	1.76, s, 3H	H : 4.93/ 5.07		
MeO-4'	56.3, q	3.80, s, 3H	H :		
MeO-5'	55.8, q	3.76, s, 311	H :		1

Roténone

ANNEXE-22-

ANNEXE-23-

Spectre ¹H RMN de MK57-7 dans CDCl₃

Spectre ¹³C RMN de MK57-7 dans CDCl₃

	11	-	×.	10. 66 43 62	<i>x</i>	بلاد ليدليه لم حداث						
	2	NO IN	~	6 M M M	***			X 2 - X M.	24 - K	· .	1 a	ъ.
	**>	٠.	~	20 1. 1. 1. 1.	÷.	~~~~ o	7	$m_1 \odot m_2 m_1 t$	1111	·* ,	0	2
	а,	1 27	э,	20.00	9	u or number or	~h	* ~ ~ ~ ~	~ ~		P.	·•.
M 11 1 1 1 1	130 *	r.	۰.	and the start s	0	MC110470	x	やるたかが	N. #.	10°.	£.4	1.44
C 10 / 3 7 3	(7.v. an	×	¥*5	****	C1	000	r	IN FLOOR FLOOR	Sec	-	-	5
		~	-		~	and the set of the set of	*	11115	(e_1, u_2)	~	·*,	1
						$\hat{\mathbf{x}}_i = \hat{\mathbf{y}}_i$		1 : -				

Tableau RMN de MK102-2 dans CDCl₃

Carbone	δ ¹³ C, mult.	δ 'H, mult. (J en Hz), int.	Corrélations	Corrélations	NOESY
n°	ppm	ppm	COSY	НМВС	
2	76.1, d	4.58, d (2.0), 1H	H: 4.47/4.59	C:	
3	67.6, s	-		C::	
4	191.1, s	-		C:	
5	105.4, d	6.52, d (8.6), 111	H: 7.81	<i>C:</i>	
6	130.1, d	7.81, d (8.6), 1H	H: 6.52	C:	
7	157.7, s	-		C:	
8	113.2, s	-		C:	
9	168.1, s	-		C:	
10	111.7, s	-		C:	
1'	148.4, s	-		C:	
2'	108.8, s	-		C:	
3'	109.3, d	6.54, s, 1H		C:	
4'	144.0, s	-		<i>C</i> :	
5'	151.1, s	-		C:	
6'	101.1, d	6.47, s, 1H		C: 148.8/151.1	+
2''	88.0, d	5.21, t (9.0), 1H	H: 2.92/3.28	C:	
3''	142.9, s	-		C:	
4"	112.7, t	5.06, s, 1H _{4"a}		C:	
		4.93, s, 1H _{4"b}		C:	
H2C-2"	31.2, t	3.28, dd. (15.6/9.9), 1112a	H: 5.21/2.92	C:	
		2.92, dd. (15.6/8.0), 1H _{211b}	H: 5.21/3.28	C:	
MeO-4'	55.9, q	3.72, s, 3H		C: 144.0	
MeO-5'	56.4, q	3.81, s, 3H		C: 151.1	
Me-3"	17.1, q	1.75, s, 3H		C: 88.0/113.2/142.9	
H2C-2	63.9, t	4.59, dd. (12/2), 1H _{2a}	H: 4.58/4.47	C:	
		4.47, dd., (12/2), 111 _{2b}	H: 4.58/4.59	C:	
НО-3		4.45, s 111		C: 76.1	

Spectre ¹H RMN de MK57-8 dans CDCl₃

3-hydroxyroténone

ANNEXE-26-

$C_{21} H_{22} O_4 (336) =$ **Pongachalcone**

 $[\alpha]_{D}^{-25}$: +6°

Tableau RMN de MK57-10 dans CDCl₃

Carbone	δ ¹³ C, mult.	δ ¹ H, mult. (J en Hz), °	Corrélations	Corrélations	NOFSV
N°	ppm	ррт	COSY	HMBC	
1		-			
2		7.60, d (8), 1H	H: 7.40		
3		7.40, m (6), 1H	H : 7.60		
4		7.40, m (6), 1H	H: 7.60		
5		7.40, m (6), 111	H: 7.60		
6		7.60, d (8), 1H	H : 7.40		
7		7.88, d (16), 111	H:7.77		
8		7.77, d (16), 1H	H: 7.88		
9		-			
ľ		-			
2'					
3'		5.93, s, 1H			H: 3.92
4'		-			
5'		-			
6'		-			
2"		-			
3"		5.47, d (9.8), 1H	H : 6.69		H : 6.69
4''		6.69, d (9.8), 1H	H : 5.47		H : 5.47/ 14.51
MeO-2'		3.92, s, 3H			H : 5.93
Me-2"a		1.46, s, 3H			
Me-2"b		1.46, s, 3H			
HO-6'		14.51, s, 1H			11 : 6.69

Pongachalcone

Tableau RMN de MK57-11 dans CDCl₃

Carbone	δ^{13} C, mult.	δ ¹ H, mult. (J en Hz), °	Corrélations COSV	Corrélations HMRC
Nº	ppm	ppm	Correlations COST	Correlations months
1	-	-		
2		3.84, d (4.0), 1H		
3		4,87, d (4.0), 1H		
4		-		
5		-		
6		6.01, s, 1H		
7		-		
8		-		
9				
10				
1'		-		
2'		-		
3'		6.48, s, 1H		
4'		-		
5'		•		
6'		6.85		
2''		5.19, t (9.0), 1H		
3''		-		
4''		4.93, s, H _{4"a}		
		5.05, s, H _{4"b}		
CH2-2		4.16, dd (4.0/11.3), H_{2a}		
		4.59, dd (3.2/11.8), H _{2b}		
CH ₂ -2"		2.85, dd (8.0/ 16.0) H _{2"a}		
		3.24, dd (9.0/16.0) H _{2"b}		
<u>Me-3"</u>		1.75, s, 3H		
MeO-4'		3.79, s, 3H		
MeO-5'		3.82, s, 3H		
HO-5		12.41, s, 1H		

 $H_{1}^{H} H_{1}^{H} H_{1$

ANNEXE-28-

Spectre ¹H RMN de MK57-11 dans CDCl₃

ANNEXE-29-

Chromatogramme GC-MS de MK57-14 avec des alcanes de C_{11} à C_{30}

Abundance

Time-->

ANNEXE-30-

Spectre de masse de MK57-14

El posterio de Scan 2106 (43.957 min): 8A.D 91:03 047160173187 203²¹⁵ 245 80 100 120 140 160 180 200 220 240 260 280 300

								172.95	209	207.00	287	230.05	852	250.00	298
Scan 210	6 (13.95	7 mm): \$	KA D					179,00	264	208 90	341	231.05	2830	250.90	4414
	1 ephros	sia defle	sa -feuil	les				179.90	264	214.10	279	232.05	470	251.90	712
								187.00	370	215.00	703	233.95	379	253.00	15-19
m/z	abund.	m/z	abund.	ın/z	abund.	m/z	abund.	188.00	322	216.00	466	235.95	760	254.05	215
41.05	652	66.00	345	89.00	530	116.10	475	189.00	309	217.00	489	236.95	434	261.05	9727
42.15	206	67.15	349	91.00	700	117.10	248	192,95	250	218.90	201	238.00	299	262.05	1774
43,05	3881	69.05	1059	93.10	223	123.10	2297	194.05	289	221.00	335	239.00	255	263.05	350
44.05	573	73.95	233	99.05	274	127.00	333	195.05	269	223.05	318	245.00	931	264.95	203
51.00	530	74.95	467	101.05	330	128.10	280								
53,00	700	76.05	359	102.05	525	131.05	311	m/z	abund.	m/z	abund	m/z	abund	10/Z	abund.
55.10	449	77.05	1181	103.05	534	132.05	210	281.00	25624						
59.00	223	78.05	353	104.05	328	132.95	1195	282.00	3953						
62,00	322	79.05	295	109.05	213	133.95	534	283.00	8175						
63.00	599	83.10	321	112.95	266	139.95	256	284.00	1411						
65.00	572	87.00	335	115.00	1116	145.10	280	296.05	6738						
								297.05	1112						
nsz	abund.	m/z	abund	m/z.	abund.	m/z	abund.	298.05	2155						
147.10	285	201.05	412	223.95	245	248.00	396	298.95		336					
160.05	240	203.05	518	229 15	241	2.19-00	825								

ANNEXE-31-

C₂₂H₂₃O₅ (402) MK94-D

Fraction GC : MK94-D, le produit subit une décomposition thermique dans l'injecteur (rétroaldol) donnant le benzaldéhyde et le 4^{**}-chloro, méthyl-evodionol

MS (4^{**}-chloro,méthyl-evodionol) : 298 (8.41), 297 (4.34), 296 (26.29),284 (5.51). 283 (31.90), 282 (15.43), 281 (100),

262 (6.92), 261 (37.95), 253 (6.04), 251 (17.34), 231 (11.04), 223 (1.24), 77 (4.61), 43 (15.15)

Carbone n°	δ ¹³ C, mult. ppm	δ ¹ H, mult. (J en Hz), int. ppm	Corrélations COSY	NOESY
1	141.8, s	-		***
2	125.8, d	7.40, d (7.0), 1H	7.34	n - Table - Table - Tableser - Yakhang - Huden
3	128.4, d	7.34, t (7.5), 1H	7.26/ 7.40	
4	127.5, d	7.26 overlapped	7.34	
5	128.4, <i>d</i>	7.34, t (7.5), 1H	7.26/ 7.40	nga ng bang bang yi (1940-1940), ng kata ng kanang kang dan ng kata na ng katalon na ng katalon ng katalong n
6	125.8, d	7.40, d (7.0), 1H	7.34	
7	70.4, d	5.27, dd. (9.0/ 3.0)	3.17/ 3.24	
8	53.5,1	3.24, dd. (3.0/ 17.6), 1H	3.17/ 5.27	
		3.17, dd. (9.0/ 17.6), 111	3.24/ 5.27	
9	196.8, s			
1,	115.4, s	-		
2`	159.7, s	-		
3`	96.2, d	6.21, s, 111		Н:3.76
4`	155.2, s	-		
51	65.9, d			
6`	167.0, s			
2``	84.0, s	-		a manafest men and the second side resonance in the second side of the second side
3.,	138.2, s	-		
4''	127.5, d	6.60, s, 1H		H : 3.74
Me-2**	25.8, q	1.53, s, 3H	-	
Me-2**	25.8, q	1.60, s, 3H		
MeO-2`	^a 56.0, q	3.76, s, 3H ^a		H: 6.21
MeO-6	^a 64.0, q	3.74, s, 3H ^a		H : 6.60
НО	-	3.50, d, (3.0) 111		

Tableau RMN de MK94-D (MK57-14) dans CDCl3

ANNEXE-32-

Spectre ¹H RMN de MK57-14 dans CDCl₃

Spectre ¹³C RMN de MK57-14 dans CDCl₃

ANNEXE-33-

Chromatogramme GC-MS de MK57-15

astronomic terrores

ĩ

•

_

	TIC: MK110- 42.32	-9.D	
1400000			
1300000			
1200000			
1100000			
1000000	:		
900000			
800000			
700000			
600000	·		
50000 0			
400000			
300000			
200000			
100000	4 42.83		
Information 100: 920 File 20.00 File: CAHPCHEMAIADATAM Operator: B.M. Date Acquired: 22 Nov 2004 8:19 Method File: ANGEL&15 Sample Name: Tephrosia deflexa- Mise Info: frae de chromato MKi Vial Number: Search Libraries: CADATABASEANBS49K Unknown Spectrum: Apex Integration Events: Chemstation Integr Pk# RT Area% Library/ID 1 34.31 1.23 CADATABASEANBS4 2-Butanone, 3-phenyl- 1-Naphthalenol, 5,6,7.8-tetrahydr Benzene, 1-methoxy-4-(1-p 2 40.83 1.48 CADATABASEANBS4 Quinoline, 5,6,7.8-tetrahydr IN-Indol-4-ol, 3-methyl- 3 42.31 94.74 CADATABASEANBS4 2-Butanone, 3-phenyl- 1-Naphthalenol, 5,6,7.8-tetr Benzene ethanamine, 3-met 4 42.83 2.56 CADATABASEANBS4 1.3,2-Dioxaborolane, 2-phe 3-Cy:tohexen-1-ol, 5-methyl- 1-Naphthalenol, 5,6,7.8-tetr	30.00 40.00 50.00 6 MK110-9.D gousse 85-17 MUSA.L Minimum Quality: 80 .1. Minimum Quality: 20 rator - autoint1.e Ref# CAS# Qual 19K.L 7905 000769-59-5 43 ropenyl)- 7894 000104-46-1 38 19K.L ropenyl)- 7894 000104-46-1 38 19K.L ro3-me 7732 028712-62-1 35 rdro-3 7727 037009-20-4 32 7712 001125-31-1 25 49K.1 7905 000769-59-5 50 rahydro 7926 000529-35-1 43 thoxy-N-met 29916 052059-58-2 37 49K.1 nyl- 7855 004406-72-8 27 ylene-6-(8299 054274-41-8 27 rahydro 7926 000529-35-1 22	30.00 70.00	80.00 90.00

ANNEXE-34-

Spectre de masse de MK57-15

Abundance

150000	Scan 2008 (42.146 min): 9.D 148
140000	
130000	
120000	
110000	
100000	
90000	
80000	
70000	
60000	
50000	118 135 - 105
40000	91
30000	71 79
20000	
10000	55 174 185 198 216
О	63 127 156 40 50 60 70 80 90 100110120130140150160170180190200210220

1012

5	55										174	185	
	63	3					12	7	់ា	56			1 :
50	60	70	80	90	1001	1101	201	30140	0150	1601	701	8019) 02
								112.05	1197	153.10	200	160.05	3

Scan 2008 (42.146 min): 9.D Tephrosia deflexa-gousse

m/z abund.

9687

1386

3972

797

334 71.05

406

477

2223

702

5378

1199

abund.

8526 115.10 11214 127.00

55.10

56.10

57.10

58 10

59.00

62.00

63.00

61.00

65.10

66.10

m/z

104.15

105.05

106.05

107.05

108.05

956 109.05

832 109.75

430 112.05

1623 114 10

m/z

67.05

68.15

69.05

70,05

72.05

73.05

73.95

74.95

76.15

77.05

m/z

10836 116.10

44768 117.10

8932 - 118.10

22720 119.10

4206 120.10

777 121.10

300 122.10

870 124.00

364 125 10

360 126.10

abund.

4637

1563

12201

2981

29024

3914

981 84.10

22768

abund.

429 85.10

685 - 86.101053

m/z

78.05

79.05

80.05

81.05

82.10

83.10

87.10

88.00

m/z

4225 128.00

23848 129.05

51008 130.15

16584 131.15

2419 132.15

3676 133.05

554 134.05

269 135.05

2593 136.05

279 137.05

1280 141.05

abund.

6279

28072

2598

1541

491

1532

4168

2140

591

368

225

3513

6577 4265

42504 11486

22952

9018

50864

7018

689

1270

abund.

abund.

1840

23040

2474

21840

1827

895 60.10

1238

4485

1480

5285

578

2201

1492

42552

5366

3817

827 111.05

abund

m⊬z –

40.05

41.05

42.05

43.05

44.05

45.05

50 05

51.10

52.10

53 10

54.10

m'z

89.00

90.10

91.10

92.00

93.10

94.00 95.10

97.10

101.05

102.15

103.05

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	142.05	1197	153.10	299	169.05	5.10	188.10	413	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	143.05	6094	155.10	1835	170.15	286	198,15	5843	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	144.05	3273	156.10	2080	171.05	541	199.15	1018	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	145.10	5211	157.10	1794	172.05	359	201.05	1590	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	146.10	2741	158.10	1494	173.05	2147	216.10	7734	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	147.10	9159	159.10	1171	174.05	9810	217.10	1573	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	148.10	1	160,05	702	175.05	2064			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	149.10	22000	161.15	822	183.10	462			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	150.10	2416	162.15	1145	185.10	10367			
152.10 1462 167.05 215 187.10	151.10	9362	163.05	351	186.10	1986			
	152.	10	1462	2 1	67.05	,	215	187.10)

729

 $C_{15}H_{20}O(216)$ $[\alpha]_{0}^{25}$:-18.36¹⁰

Tableau RMN de MK57-15 dans CDCl₃

Carbone N°	δ ¹³ C, mult. ppm	δ 'H, mult. (J en Hz), ° ppm	Corrélations COSY	Corrélations HMBC
1	-			e oon die okaare B ^{randen} Vroegen Brane - Bro
2	65.3 t	4.66, s, 2H	Н : 7.29	
3	138.5, s	-		
4	127.3, d	7.29, d (8.0), 1H	H:7.18	C : 138.5
5	127.2, d	7.18, d (7.8), 111	H : 7.29/ 4.66	C:138.5
6	127.2, d	7.18, d (8.0), 1H	H : 7.29/ 4.66	
7	127.3, d	7.29, d (7.8), 1H	H : 7.18	
8	147.0, s			
1'	39.6, d	2.71, m (12.8/ 6.8), 1H	H: 1.25/ 1.40/	
			1.50	
2'	32.9, t	1.40, m. 2H	H: 4.01/ 1.50/	
			2.71	
3'	34.0, t	1.50, m, 2H	H: 4.01/ 1.40/ 2.71	
4'	76.0, d	4.01, q (6.0/ 12.5), 1H	H : 1.40/ 1.50	
5'	147.9, s			
6'	111.1,t	4.81, d (1.5), H6'a	H : 1.64	
		4.90, s, H6'b		
CH ₃ -1'	22.5, q	1.25, dd (2.3/ 7.0), 3H	H : 2.71	C: 32.9/ 39.6/ 147.0
CH ₃ -5'	17.4, q	1.64, d (5.8), 3H	H: 4.81/ 4.90	C : 76.0/ 111.1

MK57-15

ANNEXE-36-

Spectre ¹³H RMN de MK57-15 dans CDCl₃

Spectre ¹³C RMN de MK57-15 dans CDCl₃

Spectre RMN COSY de MK57-15

Spectre RMN HMBC de MK57-15

M. Moussa SARE

Titre : Contribution à l'analyse de la composition chimique de Tephrosia defleva Bak.Doctorat de 3ºme Cycle en Chimie et Biochimie des Produits NaturelsDate et lieu de soutenance : 05 Mars 2005-Faculté des Sciences et Techniques (UCAD)Jurs : President DIENG Samba Maître de Conférences FST (UCAD)MembresNONGONIERMA Antoine ProfesseurIFAN (CAD)DIOP C. MossokhoyeMaître-AssistantFST (UCAD)NIASSY BouramaMaître de Conférences FST (UCAD)BOULANGER AnnaMaître de Conférences FST (UCAD)KONEMamadouMaître de Conférences FST (UCAD)

RESUME

Le travail exposé dans cette thèse concerne une partie de l'analyse de la composition chimique (l'analyse de la composition en poly phénols) de *Tephrosia deflexa* 'Bak. Plante herbacée de la famille des *Fabaceae* récolté au Sénégal.

Cinq nouvelles structures ont été isolées des graines et des gousses (MK57-1; MK57-3; MK57-4; MK57-14 et MK57-15). La dernière est en court d'analyse complémentaire pour confirmer ou infirmer la structure qui serait une nouvelle famille de molécules jusque là jamais trouver dans les plantes. Et cinq autres structures déjà rencontrées dans d'autres espèces de Tephrosia (la pongachalcone, la 6'OMepongachalcone, la roténone, la 3-hydroxyroténone et la 5-hydroxyroténone).

L'extraction a été faite par macération à température ambiante (éther et éthanol) des poudres de graines et de gousses. Les extraits ont été purifiés par des méthodes chromatographiques : colonne ouvert. CCM (Chromatographie sur Couche Mince) et HPLC (Chromatographie sur Colonne Haute Performance).

L'élucidation des structures a été possible grâce aux nouvelles techniques comme : la GC/MS (pour la masse), la polarimètre (pour le pouvoir rotatoire). l'IR (pour identifier certaines fonctions) et la RMN 1D (⁴H. ⁴³C, DFPT) et 2D (⁴H-⁴³C HMQC, ⁴H-⁴³C HMQC) pour donner plus de précision sur les structures chimiques.

Nous avons ensuite testé l'activité antibiotique des cmq nouvelles structures sur deux bactéries : *Bacillus pumilus* (Gram+) et *Pseudomonas putida* (Gram-). La première a donné après 24 heures d'incubation des resultats satisfaisants sur quatre composés (MK57-1, MK57-3, MK57-4, MK57-14) alors dans le même temps d'incubation la seconde bactérie n'a pas été inhibée.

Mots-clés : Tephrosia deflexa ; Fabaceae ; poly phénol ; GC/MS ; IR : Polarimétrie ; RMN

MK57-1: 6'OMedeflexachalcone MK57-8: 3-Hydroxyroténone MK57-2: 6'OMepongachalcone MK57-10: Pongachalcone

MK57-3: cis-6*OMepongachalcone

MK57-14:3°chloro. 6°O'Medeflevachalcone

MK57-4: Deflexachalcone

MK57-11: 5-hydroxyroténone

 ξ_{ij}

MK57-7: Roténoae

MK57-15

State .

- 6 -

Abstract

The dissertation is about the isolation and structure elucidation and/or identification of ten (10) molecules from Fabaceae species: *Tephrosia deflexa*, an endemic species of Senegal.

Vive molecules have new structure (MK57-1, MK57-3, MK57-4, MK57-14, MK57-15); five (5) others have already been isolated from other species (rotenone, 3-hydroxyrotenon, 5-hydroxyrotenon, pongachalcon, 6'OMe-pongachalcon).

The molecules can be classified into three (3) categories:

- Chalcons: MK57-1; MK57-2; MK57-3; MK57-4; MK57-10; MK57-14
- Rotenoïds: MK57-7; MK57-8; MK57-11
- Alkyl benzene: MK57-15

The isolation has been made by maceration (room temperature, ether and ethylalcohol) and purification by chromatographic techniques among which analytic and preparative HPLC using various solid supports.

The structures have been elucidated by spectrometric methods: GC/MS and 4D (¹H, ¹³C, DEP1.) and 2D (¹H-¹H Cosy, ¹H-¹³C HMQC, ¹H-¹³C HMBC) NMR.

DEPT 135 experiments have allowed the distinction between methyl, methylene, and methine carbon atoms.

The 'H-'H homonuclear correlations have been done with cosy NMR spectra. Direct 'H-''C heteronuclear correlations have been done with HMQC NMR spectra, while HMBC NMR techniques have been used for long distance ones.

Four molecules, out of the five new ones, have showed antibiotic properties.

• Keywords: *Tephrosia deflexa*; Fabaceae; polyphenol; GC/MS, IR, Polarimétry, RMN, Antibiogram

MK57-1: 6'OMedeflexachalcone

MK57-8: 3-Hydroxyroténone

MK57-2: 6'OMepongachalcone MK5

MK57-10: Pongachalcone

MK57-7: Roténone

ME57-14:3"chloro.6"OMcdeflexachalcone

MK57-3: cis-6'OMepongachalcone MK57-11: 5-hydroxyroténone MK57-4: Deflexachalcone

N A DH NO

MK57-15