UNIVERSITE CHEIKH ANTA DIOP DE DAKAR FACULTE DES SCIENCES ET TECHNIQUES

DEPARTEMENT DE CHIMIE

THESE DE DOCTORAT DE 3^{ème} CYCLE Spécialité CHIMIE- PHYSIQUE

ETUDE DES PROPRIETES PHOTOPHYSIQUES DES COUMARINES SUBSTITUEES

- DETERMINATION DES MOMENTS DIPOLAIRES DANS LES ETATS FONDAMENTAL (S_0) ET EXCITE (S_1) ;
- TRAITEMENT QUANTITATIF DES EFFETS DE SUBSTITUANTS ELECTRODONNEURS SUR LES SPECTRES ELECTRONIQUES D'ABSORPTION ET D'EMISSION DE FLUORESCENCE

Présentée par : M. Lamine CISSE Le 08/05/1999

JURY:

M.M. Mor Marième DIENG Professeur <u>président</u> (UCAD) Jean Jacques AARON Professeur (Paris-7) Abdoulaye DIOP Maître de conférences(UCAD) Sana FATY Maître de conférences(UCAD) Serigne Amadou NDIAYE Maître de conférences(UCAD) Alphonse TINE Maître de conférences(UCAD)

Année Académique 1998-1999

Dédicaces

Je dédie ce travail :

- A mon défunt père pour tout le dévouement qu'il portait à mes études. Que la terre lui soit légère !
- A ma mère en reconnaissance de l'éducation et de toute l'affection qu'elle ne cesse de m'apporter ;
- A mes frères et sœurs pour tout le soutien moral qu'ils m'ont apporté;
- A tous mes collègues de l'enseignement secondaire, notamment ceux de la promotion 1995, Bonne Carrière !
- A Anna BADJI et Daniel Louis BENGA pour avoir participé à la saisie de ce document.

Remerciements

Ce travail a été élaboré au laboratoire de chimie physique et d'analyse instrumentale, sous la direction de Monsieur Alphonse TINE Maître de conférences à l'université Cheikh Anta Diop de Dakar à qui je dois exprimer ma profonde reconnaissance. Après m'avoir accueilli, il m'a proposé ce sujet de Thèse, m'a guidé tout au long de la réalisation de ce travail. C'est grâce à ces nombreuses tractations à l'étranger, que j'ai pu faire tout d'abords le D E A avec l'aide de Monsieur Jean Jacques AARON Professeur à Paris 7.

Par la même occasion, je tiens à remercier particulièrement Monsieur Jean Jacques AARON qui a bien voulu m'accueillir dans son laboratoire à l'Institut de Topologie et de Dynamique des Systèmes (ITODYS) - CNRS, pendant un mois pour enregistrer des spectres de fluorescence dont l'appareillage ne se trouvait pas à Dakar.

Au professeur Mor Marième DIENG pour avoir accepté de présider ce Jury.

A tous les membres du jury, aux Professeurs Abdoulaye DIOP, Sana FATY et Serigne Amadou NDIAYE qui m'ont fait l'honneur de juger ce travail. malgré leurs multiples charges et préoccupations.

A tous ceux qui de prés ou de loin ont participé à la réalisation de ce travail.

Sommaire

INTRODUCTION

Chapitre I ETUDE BIBLIOGRAPHIQUE

A.	EFFET DE SOLVANT SUR LES SPECTRES D'ABSORPTION ET	D'EMISSION
	DE FLUORESCENCE DES COUMARINES	5
B.	EFFET DE LA TEMPERATURE	8

Chapitre II PARTIE EXPERIMENTALE

A. P	PRODUITS ET SOLVANTS	12
I.	. Produits	12
П	I. Solvants	12

B. INSTRUMENTATION	14
I. Spectres électroniques d'absorption et de fluorescence	14
II. Méthode de calcul des moments dipolaires	15
a. à l'état fondamental	15
b. à l'état excité singulet S ₁	15

Chapitre III RESULTATS ET DISCUSSIONS

A. EFFETS DE SOLVANTS	1-
I. Effets de solvants sur les spectres électroniques d'absorption	1-
II. Effets de solvants sur les spectres électroniques de fluorescence	24
B. DETERMINATION EXPERIMENTALE DES MOMENTS DIPOLAIRES A	L .
L'ETAT FONDAMENTAL ET AU PREMIER ETAT EXCITE SINGULET	
DES COUMARINES	28
I. Moments dipolaires à l'état fondamental	28
II. Moments dipolaires au premier état excité singulet	30
C. EFFET DES SUBSTITUANTS ELCTRODONNEURS SUR LES	
TRANSITIONS ELECTRONIQUES DES COUMARINES	38
I. Choix des constantes de substituants	40

U. Completion de Hemmett	41
11. Correlation de Hammell	41
1. Corrélation sur les transitions $S_0 \rightarrow S_1$	41
2. Corrélation sur les transitions $S_1 \rightarrow S_0$	42
III. Corrélation de Taft	44
1. Corrélation sur les transitions $S_0 \rightarrow S_1$	44
2. Corrélation sur les transitions $S_1 \rightarrow S_0$	45
IV. Application de l'équation de Brown-Okamoto	47
1. Corrélation sur les transitions $S_0 \rightarrow S_1$	47
2. Corrélation sur les transitions $S_1 \rightarrow S_0$	48
V. Application de l'équation de Yukawa-Tsuno	51
1. Application aux transitions $S_0 \rightarrow S_1$	51
2. Application aux transitions $S_1 \rightarrow S_0$	52
VI. Conclusion	54

55
59

61

REFERENCES BIBLIOGRAPHIQUES

INTRODUCTION

La coumarine et ses dérivés, comme la plupart des hétérocycles, ont stimulé des recherches intéressantes en biologie comme rodenticides, en médecine comme anticoagulants [1], en photochimie comme indicateurs de fluorescence [2,3] et en spectroscopie comme colorants lasers [4-7].

De nombreuses recherches concernant la fluorescence des dérivés de coumarine en solution ont abouti à des résultats intéressants [8-18]. La connaissance des propriétés photophysiques des coumarines est d'un grand intérêt depuis leurs applications importantes dans le domaine du visible comme colorants laser [19,20]. En plus, les dérivés de coumarines sont utilisés comme agents sensibilisateurs dans quelques processus photochimiques [20]. Par exemple les dérivés de 7-aminocoumarine montrent une nouvelle redistribution de charge du système π du novau aromatique à l'état excité [20] : ce phénomène explique les caractéristiques particulières de ces lasers. En effet ces études montrent qu'après excitation il y a transfert d'électrons du groupe amine vers le noyau, aboutissant ainsi à un transfert de charge intramoléculaire, caractéristique de l'état excité, favorisant ainsi la résonance mésomère (schéma I). Pill Soon-Song et collaborateurs ont étudié leurs spectres d'émission de fluorescence et de phosphorescence à basse température [5] où ils ont calculé les durées de vie des états excités singulet et triplet et comparé avec celles calculées sur la base de la méthode de Pariser Parr Popple (PPP), en chimie quantique. Quelques ressemblances ont été observées entre les résultats expérimentaux et ceux obtenus par la théorie. Leurs résultats ont montré que le rendement quantique et la durée de vie expérimentale de l'état excité de fluorescence dépendent de la compétition entre l'émission directe et les autres processus de désactivation dont leurs natures sont encore sujettes de controverses très remarquables [21-58].

Une importance particulière est observée en étudiant, dans un passé récent, les aspects photophysiques très variés : effet de pH, de solvant [59-64] et effet de température [65].

Un grand nombre de coumarines substituées aminées ont suscité d'importantes recherches et nous ont donné des renseignements beaucoup plus détaillés sur l'effet de solvant et de la température [21, 66].

C'est pourquoi il semble judicieux d'exhiber dans la partie bibliographique les études sur ces dérivés coumariniques principalement sur l'effet de solvant et de température sur les spectres électroniques d'absorption et d'émission de fluorescence, d'autant plus que la plupart des résultats énumérés ci-dessus ont été déterminés à partir de ces recherches.

Le moment dipolaire de la coumarine a été reporté par plusieurs groupes de chercheurs [67-77] et une étude des moments d'une série de 7-aminocoumarine a été publiée [75]. Pendant que Bauman et Nagy ont calculé les moments dipolaires de quatre coumarines substituées par mesure de fluorescence et d'absorption électrooptique [78], Giri et collaborateurs ont souligné les changements des moments dipolaires de sept coumarines substituées à partir de l'état excité en utilisant la méthode de déplacement solvatochromique [16-18]. Auparavant, Pill-Soon-Song et Gordon [21] ont calculé les moments dipolaires de la coumarine aux états excités triplet (T₁) et singulet (S₁), de même qu'à l'état fondamental (S₀).

Ainsi, les moments dipolaires des dérivés de coumarine ont été examinés par plusieurs chercheurs. Cependant aucune étude systématique n'a été observée en comparant, par exemple, les résultats expérimentaux et ceux obtenus par la théorie. De même, si qualitativement les coumarines substituées sont largement étudiées [21,54-58], quantitativement leur effet sur les spectres électroniques d'absorption et d'émission de fluorescence n'a pas fait l'objet de recherches approfondies.

2

Dans ce présent travail nous nous proposons donc de passer, au préalable, en revue, dans une partie bibliographique, les effets de solvant et de température sur les spectres électroniques d'absorption et d'émission de fluorescence. Ces études nous permettent d'avoir des renseignements sur les interactions solvantsoluté d'une part, et d'aboutir sur la mise en évidence d'autre part de transfert de charge intramoléculaire (TCI) et de transfert de charge intramoléculaire de déformation (TCID). L'existence de cette dernière transition serait à l'origine de l'extinction de l'intensité de fluorescence quand on élève la température [38]. Ces travaux montrent aussi le rôle que joue le substituant suivant son caractère électropositif ou négatif et sa position sur le noyau de la coumarine dans les divers processus d'émission de fluorescence et d'absorption électronique.

Dans le deuxième chapitre, nous présenterons la partie expérimentale où nous exposerons les solvants, les produits chimiques utilisés et les méthodes expérimentales pour la détermination des moments dipolaires. Nous donnerons également des études détaillées sur les spectres électroniques d'absorption et d'émission de fluorescence.

Dans le troisième chapitre, nous exposerons nos résultats sur les moments dipolaires déterminés à l'état fondamental μ_g et excité singulet μ_e : ce qui nous permettra de faire une comparaison entre μ_g et μ_e . Nous comparerons aussi nos résultats expérimentaux avec ceux calculés théoriquement par la méthode de Pariser Parr Popple (PPP) [89].

Enfin, en quatrième partie, nous présenterons l'ensemble de nos résultats expérimentaux concernant l'effet de structure sur les fréquences électroniques d'absorption et de fluorescence des coumarines substituées (schéma VII). Nous établirons ensuite des corrélations entre les nombres d'ondes des maxima de la bande 00 d'absorption \overline{v}_A ou des maxima de fluorescence \overline{v}_{Γ} et les constantes de substituants σ de Hammett [67-69], σ° de Taft [70], σ^{+} de Brown - Okamoto [71-72] et $\Delta \sigma_R^+$ de Yukawa-Tsuno [73, 74]. Les corrélations avec les constantes de substituants de Hammett nous renseigneront sur l'effet des substituants électrodonneurs sur les nombres d'ondes \overline{v}_A et \overline{v}_F . Ces corrélations pourraient prédire les conditions d'obtention des déplacements bathochromes ou hypsochromes des nombres d'onde \overline{v}_A d'absorption ou \overline{v}_F de fluorescence par les substituants [75, 76].

La probabilité avec laquelle s'exercent en même temps les effets polaires (inductifs et mésomères)et électromères (résonance directe entre le substituant et le site réactionnel) sera représentée par les corrélations de Brown-Okamoto [71, 72].

Pour quantifier les effets polaires et électromères sur les transitions $S_0 \rightarrow S_1$ et $S_1 \rightarrow S_0$, nous utiliserons les corrélations de Yukawa et Tsuno [73, 74] appliquées respectivement au nombre d'onde d'absorption et de fluorescence.

Enfin, pour terminer ce chapitre, nous discuterons sur le rôle que peut jouer le substituant électroattracteur CF₃ quand il est en compétition avec d'autres électrodonneurs, particulièrement les groupes amino, aux états fondamental et excité singulet des coumarines substituées.

Schéma I

Chapitre I ETUDE BIBLIOGRAPHIQUE

A. EFFET DE SOLVANT SUR LES SPECTRES ELECTRONIQUES D'ABSORPTION ET D'EMISSION DE FLUORESCENCE DES COUMARINES

Parmi tous les composés de coumarine, les dérivés nitrés sont les plus étudiés. Il serait donc intéressant d'étudier les effets de solvant et de température sur leurs spectres électroniques d'absorption et de fluorescence. Les dérivés du 7-aminocoumarine représentent une classe importante de colorants lasers dans la région bleu-vert [75]. Les propriétés de ces lasers dépendent de plusieurs facteurs tels que la structure moléculaire du colorant, la nature du solvant, la température et le pH [75-80]. Les dérivés de 7-aminocoumarine étudiées comprennent deux formes limites [75, 76, 81] (schéma II)

avec R_1 et R_2 pouvant être :H, CH₃, C_2H_5 et R_2 les groupes (CH₃ ou CF₃). Schéma II

La forme I (schéma II) est prédominante à l'état fondamental S_0 , tandis que le poids statistique de la forme résonante II (schéma II) augmente à l'état excité. Ainsi l'état excité singulet S_1 de ces colorants pourrait être identifié

5

comme un état caractéristique de transfert de charge intramoléculaire (TCI) [75, 81-83]. En plus, les travaux de Lopez [20] montrent que le transfert de charge intramoléculaire est toujours en compétition avec les transitions de transfert de charge intramoléculaire de déformation (TCID). En effet, il est montré que cette dernière transition (TCID), ne favorise pas la fluorescence mais plutôt le processus de désactivation non radiatif. Ainsi, le processus de conversion interne compétit avec la fluorescence et contrôle donc les propriétés des colorants lasers; c'est pourquoi certains chercheurs [19, 20, 21, 66] ont attribué la désactivation non radiative du 7-aminocoumarine, par l'existence de transfert de charge de déformation avec un poids statistique de la forme limite (TCID) dépendant des capacités donneurs ou accepteurs électroniques des substituants, et de la polarité du solvant. Lopez et collaborateurs [20] ont étudié l'effet du solvant sur les spectres électroniques d'absorption et de fluorescence des aminocoumarines en utilisant principalement deux solvants : l'eau et l'éthanol. Ils ont montré que les déplacements spectraux des bandes d'absorption quand on passe de l'eau à l'éthanol dépend du degré d'alkylation sur le groupe amino. L'expérience montre que les maxima des bandes électroniques d'absorption des aminocoumarines non alkylés se déplacent vers les grandes longueurs d'onde quand on passe de l'eau à l'éthanol comme solvant. Cependant pour les aminocoumarines alkylés, dans les mêmes conditions, on observe un déplacement hypsochrome des maxima des bandes d'absorption. Par ailleurs, ce phénomène ne s'observe pas dans le cas des bandes d'émission de fluorescence. Ces résultats nous prouvent l'existence d'interactions spécifiques solvant-soluté [20] dont la plupart sont assignées à des liaisons hydrogène entre l'aminocoumarine et le solvant protique [25, 26] (schéma III). Les liaisons hydrogène ne dépendent donc pas seulement du caractère donneur-accepteur de proton entre le solvant et les groupes fonctionnels des aminocoumarines mais aussi des forces hydrophobes entre le solvant et l'aminocoumarine.

Les interactions A (schéma III) sont donc plus importantes, à l'état fondamental pour l'aminocoumarine non alkylée dans l'eau que dans l'éthanol, en raison du caractère plus acide de l'eau. Cependant, pour les aminocoumarines dialkylés, les interactions A sont favorisées dans l'éthanol. Ainsi la structure résonante (a) (schéma III) est plus stable dans l'éthanol pour ces derniers composés. Dans tous les cas, nous avons les interactions C. Ces interactions stabilisent la forme résonante (a) en déplaçant les maxima des bandes d'absorption vers les faibles longueurs d'onde quand nous remplaçons l'eau par l'éthanol.

Dans l'état excité, la structure résonante (b) est prédominante et puisque l'interaction A ne peut avoir lieu, il ne peut y avoir que les mêmes interactions B et C. C'est pourquoi il est difficile de voir la différence des interactions spécifiques solvant-soluté à partir des spectres de fluorescence [26]. Ainsi les structures des dérivés des coumarines influencent beaucoup les processus radiatifs ; il apparaît par exemple que la décroissance de l'intensité de fluorescence est essentiellement due au mécanisme intramoléculaire indépendant de la température [2].

7

B. EFFET DE LA TEMPERATURE

Il était connu que le mécanisme intramoléculaire de transfert d'énergie à l'état excité par croisement inter-système pourrait aboutir à la diminution de l'intensité de fluorescence, de même ce mécanisme était aussi connu pour être indépendant de la température [22]. Dix ans plus tard, Eisinger et Navon [23] ont suggéré la possibilité de processus de désactivation tels que le transfert de charges intramoléculaires à un groupe inhibiteur [82]et la formation d'exciplexes [24]. Une étude systématique de l'effet de température pourrait donc aboutir à une meilleure connaissance de l'effet de l'environnement aussi bien pour les processus radiatifs que non radiatifs.

Récemment la recherche faite par Giri [21] décrit les changements de comportement dans la fluorescence de plusieurs dérivés de 4-méthylcoumarines en fonction de la température.

Pour cela, il étudie la variation de l'intensité de fluorescence en fonction de la température (entre 293 K et 353 K) des solutions aqueuses de 4-Me-7methoxycoumarine (I), 4-Me-5,7-diethoxycoumarine (II), 4-Me-5-ethoxy-7methoxycoumarine (III) et 4-Me-7,8-diethoxycoumarine (IV) (schémas IV).

La proportion dont l'intensité de fluorescence décroît en fonction de l'élévation de la température, dépend de la nature et de la position du groupe de substituant sur le noyau de la coumarine. La vitesse de décroissance de l'intensité de fluorescence en fonction de l'augmentation de la température suit la séquence:

 $k(I) \ge k(II) \ge k(III) \ge k(IV).$

Cette séquence peut s'expliquer par le schéma de la cinétique suivante : soit F la molécule de la coumarine substituée à l'état fondamental S₀; et F* la molécule de la coumarine substituée à l'état excité S₁.

Le mécanisme de la cinétique pour le processus d'inhibition de fluorescence en l'absence d'un "quencher" externe peut s'écrire:

$$F + h \nu_{A} \xrightarrow{I_{Abs}} F^{*}$$

$$F^{*} \xrightarrow{k_{1}} F + h \nu_{F} \quad (décroissance radiative)$$

$$F^{*} \xrightarrow{k_{2}(T)} F \quad (décroissance non radiative)$$

Dans ce cas, la durée de vie expérimentale $\tau_0(T)$ de la molécule à l'état excité et à la température T peut s'écrire :

$$\tau_0(T) = \frac{1}{k_1 + k_2(T)} \tag{1}$$

 k_1 et k_2 sont respectivement les constantes de vitesse des processus radiatif et non radiatif.

En supposant que k_1 est indépendante de la température (l'intervalle de température est assez faible), la relation entre la durée de vie et l'intensité de la fluorescence peut s'écrire:

$$\tau_0(T) = \tau_0(293) \cdot \frac{I_0(T)}{I_0(293)} \quad (2)$$

où $\tau_0(293)$ et $\tau_0(T)$ représentent respectivement les durées de vie expérimentales à 293K et à la température T et I₀ l'intensité d'émission de fluorescence.

S'il y a un seul processus dominant de désactivation radiatif, l'expression (1) peut s'écrire:

$$\frac{1}{\tau_0(T)} - k_1 = k_2(T) = k_0 \exp\left(-\frac{E}{RT}\right)$$
(3)

où E et k_0 représentent respectivement l'énergie d'activation et le facteur de fréquence du même processus d'activation.

A partir des relations (2) et (3) on a pu déterminer respectivement la durée de vie expérimentale et l'énergie d'activation lorsque l'on fait varier la température.

De ces résultats obtenus on a pu calculer les énergies d'activation des composés (I), (II), (III) à l'exception du composé (IV) suivant la séquence: E(I) > E(II) > E(III). L'énergie d'activation du produit (IV) ne pouvait être calculée car le processus de désactivation était inexistant expérimentalement. On a donc, pour ce produit :

$$\tau_0(293) = \tau_0(T) = \text{cte} = \frac{1}{k_1}.$$

Après avoir exclu tout effet de concentration et d'existence de complexe ou d'exciplexe par liaison hydrogène, il apparaît que les structures chimiques des dérivés de coumarine influencent beaucoup les processus radiatifs. Il semble donc que la décroissance de l'intensité de fluorescence soit essentiellement due à un mécanisme intramoléculaire dépendant de la température [20].

A partir de cette étude, il s'ensuit que l'effet de la température y est très varié, notamment quand il y a un ou plusieurs substituants qui sont en compétition avec le groupe CH_3 à la position 4 du noyau de coumarine.

La dépendance très marquée de la température sur l'émission de fluorescence du composé I (4-méthyl-7-methoxycoumarine) est attribuée aux mécanismes de transfert de charge intramoléculaire (TCI), en transfert de charge intramoléculaire de déformation (TCID) (Schéma V, structure (a) et (b)), état qui ne favorise pas la fluorescence mais plutôt le processus de désactivation non radiative.

Schéma V

De ces études, il semble que la position des substituants autour du noyau de coumarine influence beaucoup le processus de décroissance non radiative. Dans le même sens, à cause du gène stérique, le pouvoir de charge intramoléculaire de déformation diminue dans le même ordre que les énergies d'activation. Ainsi pour le composé (IV) (schéma V), le gène stérique dans les positions 7 et 8 est tellement important, que le transfert charge de déformation est quasiment impossible, ce qui entraîne l'absence de l'énergie d'activation et par conséquent, pour ce produit, on n'observe aucun changement sur l'intensité de fluorescence avec la température ce qui prouve, encore, que la fluorescence ne provient pas de la transition de charge intramoléculaire de déformation.

Chapitre II PARTIE EXPERIMENTALE

A.PRODUITS ET SOLVANTS

I. PRODUITS

Nous avons étudié la coumarine (1) avec douze de ses dérivées : le 7méthylcoumarine (2), le 7-acétoxy-4-méthylcoumarine (3), le 3-acétylcoumarine (4), l'acide 3-carboxylique coumarine (5), le 7-hydroxycoumarine (6), le 7hydroxy-4-méthylcoumarine (7), le 7-méthoxycoumarine (8), le 7-amino-4méthylcoumarine (9), le 7-diméthylamino-4-méthylcoumarine (10), le 7diéthylamino-méthylcoumarine (11), le 7-amino-4-trifluorométhylcoumarine (12) et le 7-diméthylamino-4-trifluorométhylcoumarine (13), schéma (VI). Tous ces produits sont fournis par Aldrich et ont des degrés de pureté supérieurs à 99,9%. Parmi ces composés seuls les quatre premiers n'émettent pas la fluorescence du moins, à la température ordinaire.

II SOLVANTS

Les solvants utilisés pour la préparation des solutions sont : le Dioxane, l'éther diéthylique, l'acétate d'éthyle. le méthanol, l'éthanol, le diméthylformamide, l'acétonitrile et le diméthylsulfoxyde. Ces solvants, également fournis par Aldrich ont tous des degrés de pureté qui dépassent 99,9%.

Le tableau 1 regroupe les valeurs des constantes diélectriques (D) et les indices de réfraction (n) des solvants. Ces valeurs sont tirées du Hand-Book.

Tableau 1

Solvants	Diox	Et ₂ O	A _c OET	M _e OH	EtOH	DMF	CH ₃ CN	DMSO
D	2,209	4,335	6,020	32,63	24,30	36,71	38,80	45
n	1,423	1,350	1,372	1,329	1,360	1,428	1,366	1,478

Diox	= Dioxane	EtOH	= Ethanol
Et ₂ O	= Ether diéthylique	DMF	= Diméthylformamide
A _c OEt	= Acétate d'éthyle	CH ₃ CN	= Acétonitrile
M _e OH	= Méthanol	DMSO	= Diméthylsulfoxyde

B. INSTRUMENTATION

I. DETERMINATION DES MOMENTS DIPOLAIRES, DES INDICES DE REFRACTION ET DES SPECTRES ELECTRONIQUES D'ABSORPTION ET DE FLUORESCENCE

Les moments dipolaires à l'état fondamental des coumarines sont mesurés dans le dioxane à 298 K par un dipolemètre DM-01 équipé de cellule DFL-2. Les indices de réfraction sont obtenus par un réfractomètre Abbé.

Les spectres électroniques d'absorption U.V-visible des coumarines sont enregistrés à 298 K à l'aide d'un spectrophotomètre Cary 210 (Varian).

Les spectres électroniques d'émission de fluorescence sont déterminés avec un spectrofluorimètre Perkin-Elmer modèle L S-5.

1. METHODE DE CALCUL DES MOMENTS DIPOLAIRES

1. A l'état fondamental

Les moments dipolaires μ_g à l'état fondamental des coumarines substituées sont mesurés à l'aide de la relation:

$$\mu_{g}^{2} = \frac{27kT}{4\pi N} \cdot \frac{1}{d(D+2)^{2}} \cdot (A_{D} - A_{n}) \cdot M \qquad (4)$$

où $k = 1,381. 10^{-16}$ erg. K⁻¹ représente la constante de Boltzman.

T = 298 K représente la température absolue de mesure

d et D sont respectivement la densité et la constante diélectrique du solvant A_D et A_n sont des valeurs numériques obtenues respectivement à partir de la constante diélectrique (D) et de l'indice de réfraction (n).

M = masse molaire du soluté

N = 6.02. 10^{23} , représente le nombre d'Avogadro

2. A l'état excité singulet S₁

Cette méthode qui permet de déterminer les moments dipolaires dans l'état excité est basée sur la théorie de l'effet de solvant sur les spectres électroniques d'absorption et d'émission de fluorescence [83-87]. Selon cette théorie, le déplacement des fréquences d'absorption et d'émission des molécules provient d'interactions dipolaires solvant-soluté. L'expression générale des déplacements solvatochromiques s'écrit :

$$A(\overline{v}_{A}, \overline{v}_{F}) = \frac{2}{hca_{0}^{3}} \cdot A(\mu) \cdot \left[Af(x, D)\right] \quad (5)$$

 $A(\overline{v}_A, \overline{v}_F)$ est fonction des nombres d'onde (en cm⁻¹) des maxima d'absorption (\overline{v}_A) ou de fluorescence (\overline{v}_F) du soluté dans les différents solvants étudiés.

 $A(\mu)$: fonction des moments dipolaires dans l'état fondamental (μ_g) ou dans l'état excité (μ_e)

Différentes fonctions ont été proposées :

 $A(\mu) = (\mu_e - \mu_g)^2$ dans les corrélations de Bakhshiev

 $A(\mu) = (\mu_e^2 - \mu_g^2)$ dans les corrélations de Kawski-Chamma -Viallet

 $A(\mu) = \frac{\mu_s(\mu_s - \mu_s)}{2}$ dans les corrélations de Suppan et de Mac-Rae

f(n,D): fonction de l'indice de réfraction n et de la constante diélectrique (D) du solvant

h: constante de Planck $(6,62 \cdot 10^{-27} \text{ erg.s})$

c: célérité de la lumière $(3.10^{10} \text{ cm.s}^{-1})$

 a_0 : rayon de la cavité d'Onsager (en Å)

Chapitre III RESULTATS ET DISCUSSIONS

A. EFFETS DE SOLVANTS

Nous avons étudié l'effet de solvant sur les spectres d'absorption et d'émission de fluorescence des coumarines substituées. Nous avons choisi les nombres d'onde des bandes d'absorption de plus grandes longueurs d'onde (\overline{v}_A) correspondant à la transition 00, ainsi que ceux des maxima de fluorescence (\overline{v}_F), pour déterminer les déplacements de Stokes dans divers solvants (tableaux 2-5).

I. EFFETS DE SOLVANTS SUR LES SPECTRES ELECTRONIQUES D'ABSORPTION

Nous donnons respectivement dans les tableaux (2,3,4,5) les longueurs d'onde et les nombres d'onde des maxima des bandes 00 d'absorption des coumarines substituées dans divers solvants. Les figures (1 et 2) montrent que la polarité du solvant n'affecte pas de manière significative les spectres d'absorption des coumarines. Ces spectres présentent en général trois principales bandes correspondant aux transitions $\pi\pi^*$ avec des valeurs de coefficients d'extinction molaire comprises entre 5000 et 15000 M⁻¹cm⁻¹. Toutefois les transitions $n\pi^*$ pourraient être localisées sur le site C(2) = O(11). En effet l'angle C(9)O(1)C(2) est de 122° [88 a] indiquant ainsi une hybridation sp^2 de l'atome d'oxygène correspondant. Ainsi, une des paires libres de cet atome occupe une orbitale 2pz ayant donc un caractère π assez important avec le noyau de la coumarine. Très certainement, les transitions $n\pi^*$ sont totalement recouvertes par celles de $\pi\pi^*$, ce qui pourrait en partie expliquer le grand épaulement obtenu entre les pics 296 et 338 nm (figure 1 et 2). L'oxygène O(11) représente donc le site réactionnel dans la résonance du noyau avec le substituant. Le spectre de 7-diméthyl-amino-4-méthylcoumarine (figure 3) a la même forme que celles obtenues pour toutes les dérivées de coumarines substituées à la position 7 par un groupe amine, avec une large bande vers les grandes longueurs d'onde. Cette bande correspond donc à un recouvrement de plusieurs transitions dont celle de la résonance mésomère, aboutissant à deux formes limites (schéma I).

A cause de ces diverses transitions, les dérivés aminés à la position 7 sont plus sensibles à la polarité du solvant (figure 3).

Tableau 2: caractéristiques des spectres d'absorption des coumarines dans divers solvants

Substituants ⁴	Solvants ^b	$\hat{\lambda}(nm) (\log \varepsilon)^{c}$						
Aucun	Dioxane	2 70	(4.300)	280.306	(3,995)		.	
	Ether Oxyde	271	(4.299)	280.310	(3.974)			
	Acétate d'éthyle	272	(4.302)	280.309	(4.004)			
	Ethanol	273	(4.203)	280,304	(3.905)			
	Dimethylformamide	274	(4.344)	280.310	(4.043)			
	Acétonitrile	271	(4.326)	280.310	(4,008)			
	Dimethylsulfoxyde	27-4	(4.315)	280. 3 1 2	(4.015)			
7-acétoxy-4-méthyl	Dioxane	217	(5.220)	271	(5.011)	276, 304	(4,940)	312
	Ether Oxyde	270	(4.981)	311	(4.868)			
	Acétate d'éthyle	247	(4.743)	2 70	(5.050)	300	(4.987)	
	Ethanol	2 06	(5.283)	273	(4,922)	305	(4.877)	
	Dimethylformamide	273	(4.994)	278.308	(4.938)	314		
	Acétonitrile	2 70	(5.060)	275.308	(4.999)			
	Dimethylsulfoxyde	253	(4,769)	275	(4.947)	278, 308	(4.907)	313
3-Acétyl	Dioxane	299	(3.994)	337	(3.857)			
	Ether Oxyde	297	(3.939)	338	(3.805)			
	Acétate d'éthyle	296	(3.975)	337	(3.767)			
	Ethanol	298	(4.092)	332	(3.899)			
	Dimethylformamide	300	(3.959)	337	(3.822)			
	Acamitrile	208	• (4.335)	298	(4.143)	335	(3.938)	
	Dimethylsulfoxyde	301	(4.000)	338	(3,848)			
	_		•					
7-Amino-4-methyl	Dioxane	214	(4.371)	228	(4,120)	340	(4.3-4)	
	Ether Oxyde	213	(4.821)	34 0	(4.383)			
	Acétate d'éthyle	340	(4.328)					
	. Ethanol	205	(4,677)	23 0	(4.301)	343	(4.354)	
	Dimethylformamide	351	(4,458)					
•	Acctonitrile	205	(4.656)	228	(4.227)	341	(4.348)	
•	Dimethylsulfoxyde	258	(3.756)	356	(4.477)			
3-carboxylique	Dioxane	216	(4.251)	294	(4.198)	332	(3.991)	
•	Ether Oxyde	209	(4.263)	294	(4.061)	329	(3.852)	
	Acetate d'éthyle	296	(4.160)					
	Ethanol	203	(4.475)	292	(4.211)	325		
·	Dimethylformamide	290	(4.260)					
	Acetonitrile	201	(4.520)	299	(4.179)	327		
	Dimethyisulfoxyde	291	(4.267)			33 0		
7-Diethylamino-4-methyl	Dioxane	215	(4.036)	239	(3.182)	354	(4.108)	
	Ether Oxyde	209	(4.321)	237	(3.915)	353	(4.2 06)	
	Acetate d'éthyle	251	(3,747)	355	(4.137)			
	Ethanoi	209	(4,262)	242	(3.889)	368	(4.123)	
	Dimethylformamide	371	(4.248)					
	Acconitrile	208	(4.342)	239	(3.965)	368	(4.194)	
	Dimethylsulfoxyde	259	(3,888)	375	(4.373)			
- - 								

Tableau 2 (suite)

Substituants *	Solvant ^o			λ(n	m) $(\log \epsilon)^{\circ}$			
4-hydroxy	Dioxane	216	(4.295)	276	(4.002)	279	(4.002)	290, 314
	Ether Oxyde	213	(4.301)	2 66	(3.969)	2 77	(3.970)	290, 314
	Acétate d'éhyle	266	(4.268)	278	(4,262)	<i>290</i> , 3 06	(4,130)	314
	Ethanol	266	(4.330)	278	(4.298)	<i>290</i> , 3 06	(4,147)	314
	Dimethylformamide	268	(4.089)	300	(4.105)	<i>290</i> , 306	(3,986)	314
	Acétonitrile	268	(4.270)	280	(4,274)	<i>290.</i> 306	(4,.088)	314
	Diméthylsulfoxyde	267	(4.259)	288	(4.261)	290, 306	(4,113	314
7-Hydroxy	Dioxane	320	(4,255)					
	Ether Oxyder	296.315	(4.143)					
	Acétate d'éthyle	290.318	(4.176)					
	Ethanol	306. 326	(4.155)					
	Dimethylformamide	290, 309, 323	(4.152)					
	Acétonitrile	290. 310. 319	(4.018)					
	Dimethylsulfoxyde	290, 300, 325	(4.179)					
7-hydroxy-4-methyl	Dioxane	223	(4,775),	290, 310		318	(4.091)	
	Ether Oxyde	208	(4.351),	290, 310		319	(4.151)	
	Acétate d'éthyle	290.310.319	(4.151),					
	Ethanol	290. 310. 323	(4.227),					
	Diméthylformamide	243	(2,778).	290, 310		321	(4.053)	
	Acitonitrile	215	(4.268),	2 90. <i>309</i>		317	(4.170)	
	Dimethylsulfoxyde	290.310.322						
7-Mahoxy	Dioxane	216	(4.200),	296, 302		320	(4,180)	
	Ether Oxyde	319	(4.201).					
	Acétate d'ényle	319	(4.151).					
	Ethanol	205	(4.340).	216	(4.228),	320	(4.255)	
	Dimethylformamide	320	(4.332).					
	Acétomurile	319	(4.158).					
	Dimethylsulfoxyde	320	(4.320).					
6-Mähyi	Dioxane	250	(3.910).	275	(4.012).	322	(3.679)	
	Ether Oxyde	217	(3.273),	273	(3.013).	320	(2.626)	
	Accare d'anyle	247	(3.863).	273	(4.212).	312	(3,834)	
	Ethanoi	205	(4.324),	276	(4.082).	321	(3.723)	
	Dimahyiformamide	276	(4.328),	322	(3.959).			
	Acáconarile	247	(3,880),	273	(4.226).	320	(3,851)	
	Dim a hy)suifoxyde	253	(3.951).	278	(4.277).	323	(3.930)	
7-Màhyi	Dioxane	214	(4.905).	278	(4.041).	285, 308	(4.594)	
	Ether Oxyde	213	(4.283),	277	(4.112).	285, 313	(3,930)	
	Acétate d'éthyle	277	(4.009),	306	(3,849).			
	Ethanol	212	(4,472),	285	(4. 2 77).	310	(4,144)	
	Dimethylformamide	286	(4.077),	314	(3.946).			
	Acatoninie	213	(4.112).	283	(3,966).	313	(3.831)	
	Dimahytsutfoxyde	287	(3.969).	313	(3,855)			

^d les concentrations des coumarines étaient comprises entre 2.10⁻⁵ et 10⁻⁴ M

^b les solvants sont rangés dans l'ordre croissant constante diélectrique

c les valeurs des longueurs d'onde en italique correspondent aux épaulements. Le logarithme du coefficient d'extinction moléculaire(M^{-1} .cm⁻¹) est entre parenthèses.

Solvants	Diox	Et ₂ O	A _c OEt	МеОН	EtOH	DMF	CH ₃ CN	DMSO
Composés	λ_{Λ} (nm)	$\lambda_{\Lambda}(nm)$	λ_{Λ} (nm)	$\lambda_{\rm A}$ (nm)	λ_{Λ} (nm)	λ_{Λ} (nm)	$\lambda_{\rm A}$ (nm)	$\dot{\lambda}_{ m A}$ (nm)
coumarine	306	310	309	-	304	310	310	312
7-Hydroxycoumarine	320	315	318	••••••••••••••••••••••••••••••••••••••	326	323	319	325
7-hydroxy-4-méthylcoumarine	318	319	319	-	323	321	317	322
7-méthoxycoumarine	320	319	319	-	320	320	319	320
7-amino-4-méthyl coumarine	340	340	340	347	343	351	341	356
7-diméthylamino-4-méthylcoumarine	357	349	353	367	367		360	368
7diéthylamino-4-méthylcoumarine	354	353	355	375	368	371	368	375
7-amino-4-trifluorométhylcoumarine	361	365	366	377	382		368	385
7-diméthylamino-4- trifluorométhylcoumarine	382	382	388	391	397	ten ga - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	393	400
7-méthylcoumarine	308	313	306	314	310	314	313	313
7-acétoxy-4-méthylcoumarine	304	311	300	311	305	314	308	313
3-acétylcoumarine	337	338	337	338	332	337	335	338
3-carboxylique coumarine	332	329	-	317	325		327	330

longueurs d'onde des maxima des bandes 00 d'absorption à 298 K des coumarines dans divers solvants

Tableau 4: nombres d'onde des maxima d'absorption de la bande 00 descoumarines non fluorescentes dans divers solvants.

Composés	Solvants	\overline{V}_{A} (cm ⁻¹)
	Diox.	32680
	Et ₂ O	32250
	AcOet	32362
Coumarino	MeOH	-
Countarine	EtOH	32895
	DMF	32258
	CH ₃ CN	32258
	DMSO	32051
	Diox.	32467
	Et ₂ O	31949
	AcOet	32680
7 Méthylaoumarina	MeOH	31847
/-Memyrcoumarme	EtOH	32258
	DMF	31847
	CH ₃ CN	31949
	DMSO	31949
	Diox.	32895
	Et ₂ O	32154
	AcOet	33333
7 Noátovy 1 máthylaoumarina	MeOH	32154
7-Acctoxy-4-methylcoumarme	EtOH	32787
	DMF	31847
	CH ₃ CN	32467
	DMSO	31949
	Diox.	29674
	Et₂O	29586
	AcOet	29674
2 A cothe looumoring	MeOH	29586
5-Accury countainic	EtOH	30120
	DMF	29674
	CH3CN	29851
	DMSO	29586

Tableau 5: nombres d'onde des maxima $\overline{\nu}_{_{\mathcal{A}}}$ d'absorption et $\overline{\nu}_{_{F}}$ de fluorescence des coumarines fluorescentes dans divers solvants

Composés	solvants	\overline{V} , (cm ⁻¹)	\vec{V}_{F} (cm ⁻¹)	$\overline{V}_{4} - \overline{V}_{F}$ (cm ⁻¹)	$\overline{V}_A + \overline{V}_F$
	D	20120	21/01	5 top	-
3-	DIOX.	30120	2+691	5205	27405
Carboxylique		30395	25000	5395	27697
coumarine	AcOel	-	24752	-	-
	MeOH	-	-	-	-
	EIOH	30769	24155	601+	27+62
	DMF	-	-	-	-
	CH ₃ CN	30581	24390	6191	27485
	DMSO	30303	23810	6493	27056
7-	Diox.	31250	26315	4935	28782
Hydroxycoum	Et ₂ O	31746	35974	5772	28860
arine	AcOet	31446	26316	5130	28881
	MeOH	-	-	-	-
	EtOH	30675	25907	4768	28291
	DMF	30960	25773	5287	28366
	CH ₃ CN	31348	25707	5641	28527
	DMSO	30369	25189	5180	27779
7-Hydroxy-4-	Diox.	31446	26667	4779 ·	29056
methylcoumari	Et ₂ O	31348	26738	4610	29043 ·
ne	AcOet	31348	26882	4466 -	29115
	MeOH	-	-	-	-
•	EtOH	30960	26178 .	4782	28569
	DMF	31153	26178	4975 . •	28569
	CH ₃ CN	31546	26525	5021	29035
	DMSO	31046	26042	5014 .	28549
7-	Diox.	31250 •	26178	5072	28714
Métoxycoumari	Et-O	31348	26385	4963	28866
ne	AcOet	31348	26247	5101 •	28797
•	MeOH	-	-	•	-
	EtOH	31250	26178	5072	28714
	DMF	31250	25974	5276	28612
	CH-CN	31348	26247	5101	28787
•	DVISO	31250	25907	5343	28578
7-Amino-1-	Diox	29112	21752	4660	27082
methyl	Et-O	29412	25381	4031	27396
coumarine	AcOst	29412	25000	1051	27206
countainte	MeOH	28818		-	
:	FIOH	20010	23.110	5736	26286
		28.100	ינג 17 1038	1152	26260
	CH CN	20420	2-4030 231373	5053	76708
	DMSO	19020	27272 2722	1227	20770
-	Diav	10011	. 23733	+001	23921
: /- 1 Dianáthraí annia: -	DIOX.	120011 100222 *	-	-	- 34411
Dimetnytamino		120033	2+370	1212	20011
y may m f	Acuer	20+09	24090	+313	20232
memyicouman	MeOH	222/2	22222	3333	22898
ne	EIUH	27248	224/2	+770	24800
		-	-	1207	-
		2717	23093	260+	22430
	DW20	2/1/4	22727	+++/	24920

.

.

•

Composés	solvants	\overline{v}_{d} (cm ⁻¹)	$\overline{V}_{\overline{v}}$ (cm ⁻¹)	$\overline{V}_A = \overline{V}_F \ (\mathrm{cm}^4)$	$\overline{V}_{4} + \overline{V}_{F}$ (am ⁴)
					$\frac{2}{2}$
7-Diéthylamino-4-	Diox.	28249	24155	4094	26202
méthylcoumarine	Et ₂ O	28329	24752	3577	26540
	AcOet	28169	23981	4188	26075
	MeOH	26667	22573	4094	24620
	EtOH	27174	23419	3755	25296
	DMF	26954	24038	2916	25496
	CH ₃ CN	27174	23148	4026	25161
	DMSO	26667	22936	3731	24801
7-Amino-4-	Diox.	27701	23419	4282	25560
trifluorométhyl	Et ₂ O	27387	22831	4566	25114
coumarine	AcOet	27322	22522	4800	24922
	MeOH	-	-	1 -	-
	EtOH	26178	21052	5126	23615
	DMF	-	-	-	-
	CH ₃ CN	27174	22124	5050	24649
	DMSO	25974	21008	4966	23491
7-Diméthylamino-	Diox.	26178	21739	4439	23958
4-trifluorométhyl	Et ₂ O	26247	21978	4269	24112
coumarine	AcOet	25773	21645	4128	23709
	MeOH	25575	19569	6006	22572
	EtOH	25252	22321	2931	23786
	DMF	-	-	-	-
	CH ₃ CN	25445	20408	5037	22926
	DMSO	25000	19920	5080	22460

Tableau 5 (suite)

II. EFFETS DE SOLVANTS SUR LES SPECTRES ELECTRONIQUES DE FLUORESCENCE

neuf Parmi les étudiés. sont fluorescents : le composés 4hydroxycoumarine, le 7-hydroxycoumarine, le 7-hydroxy-4-méthylcoumarine, le 7-méthoxycoumarine, le 7-amino-4-méthylcoumarine, le 7-diméthylamino-4-7-diéthylamino-4-méthylcoumarine, le 7-amino-4méthylcoumarine. le trifluorométhylcoumarine et le 7-diméthylamino-4-trifluorométhylcoumarine (schéma VI).

Les spectres de fluorescence de ces coumarines possèdent tous une large bande d'émission entre 370 nm et 440 nm selon le composé.

A titre d'exemple, le spectre d'émission de fluorescence du 7diméthylamino-4-méthylcoumarine (figure 4) présente une bande qui se situe à 407 nm dans l'éther diéthylique en passant à 433 nm dans l'acétonitrile et à 440 nm dans le DMSO (figure 5). Cet important déplacement bathochromique de la bande d'émission de fluorescence, en passant des solvants non polaires aux solvants polaires. s'observe également dans le cas du 7-amino-4trifluorométhylcoumarine. Ce composé émet à 438 nm dans l'éther diéthylique, à 452 nm dans l'acétonitrile et à 476 nm dans le DMSO. Nous donnons dans le tableau (6) les valeurs des longueurs d'onde correspondant aux maxima des bandes d'émission de fluorescence des coumarines à 293 K. Pour un même composé, ces valeurs augmentent lorsque nous passons des solvants non polaires aux solvants polaires.

Contrairement donc aux spectres électroniques d'absorption, les spectres d'émission de fluorescence des coumarines sont très sensibles à la polarité du solvant : on observe un déplacement bathochrome en fonction de sa polarité, ce qui confirme l'existence de transitions $\pi\pi^*$ [88 b].

propriétés spectrales d'excitation et d'émission de flucrescence des coumarines^(a) dans différents solvants

Substituants	Solvants ^(b)	$\lambda_{ex}(nm)^{c}$	$\lambda_{em}(nm)^d$
	Dioxane	341	404
	Ethyl éther	340. 350	394
	Acétate d'éthyl	342	400
7-NH2-Me	Ethanol	351	427
	Diméthylformamide	349	416
	Acétonitrile	342	412
	Diméthyl sulfoxide	351	421
	Dioxane	308	405
	Ethyl éther	301. 335	400
	Acétate d'éthyl	300. 334	404
3-COOH	Ethanol	303. 337	414
	Diméthylformamide	302. 336	408
	Acétonitrile	300. 337	4 10
	Diméthyl sulfoxide	304. 339	420
	Dioxane	358	415
	Ethyl éther	356	404
	Acétate d'éthyl	358	417
7-Nt ₂ -4-Me	Ethanol	384. <i>362</i>	443
	Diméthylformamide	381. 362	432
	Acétonitrile	362, <i>373</i>	432
	Diméthyl sulfoxide	386. <i>375</i>	4 36
	Dioxane	290, 325	369
	Ethyl éther	291. 322	374
	Acétate d'éthyi	291. 323	376
-→-OH	Ethanol	289, 320	370
	Dimethylformamide	296, 328	381
	Acétonitrile	296, 328	390
	Diméthyl sulfoxide	300. 327	395
Substituants	Solvants	$\hat{\lambda}_{ex}(nm)^{c}$	$\lambda_{em}(nm)^d$
--------------	--------------------	------------------------------	----------------------
	Dioxane	328. 332	380
	Ethyl éther	328. 333	385
	Acétate d'éthyl	329. <i>331</i>	380
7-OH	Ethanol	330. 334	386
	Diméthylformamide	331, <i>333</i>	389
	Acétonitrile	327. 332	390
	Diméthyl sulfoxide	329, 332	397
	Dioxane	323 293 330	375
	Ethyl éther	324. 290	374
	Acétate d'éthyl	321. <i>292</i>	372
7-OH-4-Me	Ethanol	323. 293, 331	382
	Diméthylformamide	325. 294	382
	Acétonitrile	320, <i>292</i>	377
	Diméthyl sulfoxide	326. <i>293</i>	384
	Dioxane	327	382
	Ethyl éther	326	379
	Acétate d'éthyl	326	381
7-OH-4-Me	Ethanol	326	382
	Dimethylformamide	331	385
	Acetonitrile	326	381
	Diméthyl sulfoxide	329	386

"Les concentrations des coumarines sont comprises entre 10⁻⁵ M

⁶ Les solvants sont rangés dans l'ordre croissant de leurs constantes diélectriques

^e Maxima d'excitation: précision de la longueur d'onde = ±1 nm. (Longueurs d'onde en italique correspondent aux épaulements.)

³ Maxima d'émission: précision de la longueur d'onde = ± 1 nm.

B. DETERMINATION EXPERIMENTALE DES MOMENTS DIPOLAIRES A L'ETAT FONDAMENTAL ET AU PREMIER ETAT EXCITE SINGULET DES COUMARINES

I. MOMENTS DIPOLAIRES A L'ETAT FONDAMENTAL

Dans un travail préliminaire, [89-90] nous avons comparé les valeurs des moments dipolaires expérimentaux, à partir de la formule (4), avec ceux calculés à l'état fondamental par la méthode de Pariser Parr Popple (PPP) [91,92]. La bonne concordance des résultats montre que la direction choisie, avec laquelle nous avons calculé les moments dipolaires est correcte. En réalité, la différence entre les deux valeurs respectives est de 1 à 34 % (tableau 7). Les angles θ choisis pour les moments dipolaires sont représentés par le schéma (VII) par rapport à l'axe des *x*.

Les valeurs expérimentales s'échelonnent entre 4,94 D pour l'Umbelliférone, 6,78D pour le 7-diéthylamino-4-methylcoumarine et 6.33 D pour le 7-amino-4-méthylcoumarine.

Cependant, les moments dipolaires calculés présentent des valeurs un peu plus élevées que les valeurs expérimentales. Cette différence n'est pas étonnante car, la méthode PPP fournit généralement des valeurs trop grandes pour des densités de charges des électrons π [91]. Néanmoins, on peut constater, à quelques exceptions près, que les moments dipolaires des coumarines substituées par les groupes amines correspondent à des valeurs plus élevées dans les deux cas. Ainsi le substituant électrodonneur accroît les moments dipolaires dans l'état fondamental.

28

Comparaison à l'état fondamental des moments dipolaires (a) calculés et expérimentaux

Substituant(s)	μ _g ^b	θ°	μ_g^{d}
coumarine	5,15 ^e	14°	4,77
7-Acétoxy-4-méthyl	5,76	67°	4,86
3-Acétyl	6,98	-5°	4,55
7-Amino-4-méthyl	7,07	12°	6,33
3-Carboxylique	7,10	- 19°	5,70
7-Diéthylamino-4-méthyl	6,86	16°	6,78
4-Hydroxy	5,96	44°	5,00
7-Hydroxy	5,75	16°	4,94
7-Hydroxy-4-méthyl	5,93	18°	5,20
7-Méthoxy	5,27	21°	4,89
6-Méthyl	6.12	32°	5,05
7-Méthyl	6,13	31°	4,79

^d Toutes les valeurs sont en Debye (D)

^b Moment dipolaire à l'état fondamental, calculé

^c Angle calculé entre la direction positive de l'axe des x et la direction de la résultante du moment dipolaire, pris dans le sens trigonométrique par rapport à l'axe

² moment dipolaire expérimental à l'état fondamental dans le Dioxane (à 298K)

^e Exemples de valeurs calculées trouvées dans la littérature [21]: par la méthode PPP, 4.07 et 5.18D:.

la littérature donne 4,61 D [73] dans le Dioxane:

II. MOMENTS DIPOLAIRES AU PREMIER ETAT EXCITE SINGULET

Afin de déterminer les moments dipolaires au premier état singulet S_1 des coumarines μ_e , nous avons utilisé la méthode solvatochromique (5). Selon cette méthode, le déplacement des fréquences d'absorption des molécules provient d'interactions soluté-solvant. Les expressions des déplacements solvatochromiques sont données par les équations (6) de Bakhshiev [87, 93] et (7) de Kawski-Chamma-Viallet [67, 72] dans le cas des coumarines fluorescentes ; tandis que les équations (8) de Mc-Rae [70] et (9) de Suppan [94-97] sont utilisées dans le cas de coumarines non fluorescentes.

$$\overline{v}_{A} - \overline{v}_{F} = \frac{2(\mu_{e} - \mu_{g})^{2}}{hca^{3}} [F_{1}]$$
 (6)

$$\frac{\overline{v}_{.4} + \overline{v}_F}{2} = -\frac{2(\mu_e^2 - \mu_g^2)}{hca^3} [F_2]$$
(7)

$$\overline{v}_{A} = -\frac{\mu_{g} \left(\mu_{e} - \mu_{g}\right)}{hca^{3}} \left[F_{3}\right]$$
(8)

$$\overline{v}_{A} = -\frac{\mu_{g} \left(\mu_{e} - \mu_{g}\right)}{hca^{3}} \left[F_{4}\right] \tag{9}$$

où F₁, F₂, F₃, et F₄ sont appelées fonctions des solvants. Avec :

$$F_{1} = \left[\frac{D-l}{D+2} - \frac{n^{2}-l}{n^{2}+2}\right] \left(\frac{2n^{2}+l}{n^{2}+2}\right)$$
(10)

$$F_{2} = \left[\frac{2n^{2}+1}{2(n^{2}+2)}\left(\frac{D-1}{D+2} - \frac{n^{2}-1}{n^{2}+2}\right) + \frac{3(n^{4}-1)}{2(n^{2}+2)^{2}}\right]$$
(11)

$$F_{s} = \frac{2(D-1)}{(D+2)}$$
(12)

$$F_{\perp} = \frac{2(D-1)}{2D+1}$$
(13)

D et n représentent respectivement la constante diélectrique et l'indice de réfraction du solvant. Leurs valeurs sont regroupées dans le tableau 1 et celles des fonctions de solvant dans le tableau (8).

 \overline{v}_{\pm} et \overline{v}_{F} représentent respectivement les maxima des nombres d'ondes

d'absorption et de fluorescence

 $h = 6.62. \ 10^{-27}$ erg.s est la constante de Planck

 $c = 3 \cdot 10^{10}$ cm/s est la célérité de la lumière

a est le rayon de la cavité d'Osanger du soluté [84]. Sa valeur est obtenue à partir de la formule

$$a = \left(\frac{3M}{4\pi\delta N}\right)^{1}$$
(14)

où M est la masse molaire du soluté

N = nombre d'Avogadro

 δ = densité du soluté

La détermination des pentes des droites obtenues à partir des équations (6), (7), (8) et (9) nous ont permis de calculer les moments dipolaires au premier état excité des coumarines.

solvants	F ₁	F ₂	F ₃	F4
Diox	0,0501	0,3114	0,5882	0,4545
Et ₂ O	0,3762	0,4282	1,0536	0,6901
AcOEt	0,4902	0,4969	1,2519	0,7699
МеОН	0,8544	0,6512	1,8271	0,8547
EtOH	0,8117	0,6516	1,7719	0,9395
DMF	0,8356	0,7098	1,8450	0,9597
CH3CN	0,8630	0,6659	1,8481	0,9605
DMSO	0.8377	0,7424	1,8723	0,9670

Tableau 8 : valeurs des fonctions de solvants utilisées

La mesure dipolemétrique directe des moments dipolaires des molécules dans l'état excité singulet serait délicate en raison inverse de leurs très courtes durées de vie. Nous avons donc déterminé les moments dipolaires au premier état singulet des coumarines fluorescentes en utilisant les formules de Bakhshiev (6) et Chamma-Viallet (7) et nous avons comparé ces résultats avec ceux calculés à partir des relations de Mac-Rae (8) et Suppan (9) appliquées aux nombres d'onde d'absorption.

Nous donnons respectivement dans les tableaux (9, 10, 11,12) les résultats des traitements statistiques des corrélations de Bakhshiev (figures 6 et 7). Kawski-Chamma-Viallet (figures 8 et 9), Mac-Rae (figures 10 et 11) et Suppan (figures 12 et 13).

Figure 7 : Corrélation de Bakhshiev entre les déplacements spectraux et la fonction de solvant F_1 pour le 7-amino-4-trifluorométhylcoumarine

5250 -

Figure 9 : Corrélation de Kawski-Chamma-Viallet entre les déplacements spectraux et la fonction de solvant F_2 pour le 7-diéthylamino-4-méthylcoumarine

Tableau 9 : corrélations de Bakhshiev

Composés	Pentes	Ordonnées à l'origine	Coefficients de corrélation	Nombres de données
4-Hydroxycoumarine	1607	8672	0,990	4
7-Hydroxycoumarine	840	4867	0,994	-4
7-Hydroxy-4-méthyl coumarine	1055	4099	0,930	5
3-Carboxyliquecoumarine	3413	7562	0,965	5
7-Méthoxycoumarine	942	4622	0,990	-1
7-Amino-4-méthyl coumarine	1948	3424	0,960	-1
7-Diméthylamino-4- méthylcoumarne	1317	3627	0,974	-4
7-Diéthylamino-4-méthyl coumarine	345	6576	0,987	3

Tableau 10: corrélations de Kawski-Chamma-Viallet

Composés	Pentes	Ordonnées à l'origine	Coefficients de corrélation	Nombres de données
4-Hydroxycoumarine	-1 964	33659	0,940	5
7-Hydroxycoumarine	-3371	30621	0,915	5
7-Hydroxy-4-methyl coumarine	-1301	29507	0,932	5
3- Carboxyliquecoumari ne	-1246	30038	0,980	1
7-Méthoxycoumarine	-855	29226	0,974	5
7-Amino-4-methyl coumarine	-4275	29336	0,955	5
7-Diméthylamino-4- méthylcoumarne	-5186	28837	0,999	4
7-Diéthylamino-4- méthyl coumarine	-5227	28578	0,932	6

Figure 11 : Corrélation de Mac-Rae entre les déplacements spectraux et la fonction de solvant F₃ pour le 7-acétoxy-4-méthylcoumarine

Tableau 11 : corrélations de Mac-Rae

Composés	Pentes	Ordonnées à l'origine	Coefficients de corrélation	Nombres de données
Coumarine	-415	37301	0,983	6
7-Méthylcoumarine	-1540	37845	0,961	6
7-Acétoxy-4- méthylcoumarine	-169	3826	0,920	4
3-Acétylcoumarine	-412	29957	0,979	3
4-Hydroxycoumarine	NC	NC	NC	NC
7-Hydroxycoumarine	-964	32659	0,969	4
7-Hydroxy-4- méthylcoumarine	-332	31682	0,903	6
7-Méthoxycoumarine	-138	31505	0,984	5
7-Amino-4- méthylcoumarine	-1484	31124	0,958	5
7-Diéthylamino-4- méthylcoumarine	-1619	29899	0,947	6
3- Carbocyliquecoumari ne	-453	34359	0,940	5
6-Méthylcoumarine	-577	37285	0,975	4

NC : non corrélé

Figure 13 : Corrélation de Suppan entre les déplacements spectraux et la fonction de solvant F_4 pour le 7-acétoxy-4-méthylcoumarine

Pour toutes les coumarines étudiées les coefficients des corrélations sont compris entre 0,93 et 0,99, montrant ainsi qu'elles sont déterminées avec une précision satisfaisante. Cependant, la précision des corrélations de Bakhshiev est, en général, meilleure que celle de Chamma-Viallet, néanmoins, cette dernière correspond à un nombre plus grand de points.

Les corrélations de Suppan et de Mac-Rae présentent des résultats comparables à l'exception de 3-acétylcoumarine et 4-hydroxycoumarine où les corrélations ne sont guère satisfaisantes. Dans la plupart des cas, les solvants tels que le dioxane, l'acétonitrile, l'éthanol, présentent des déviations en dehors de la droite de corrélation. Aussi les a-t-on très souvent écartés des corrélations. On pourrait l'expliquer par l'existence d'interactions spécifiques solvant-soluté (liaisons hydrogène par exemple) et aussi par des approximations relatives à la méthode solvatochromique elle-même.

Les moments dipolaires du premier état excité singulet déterminés à partir des pentes des corrélations de Bakhshiev, Kawski-Chamma-Viallet, Mac-Rae et Suppan sont regroupés dans le tableau (13), avec ceux déterminés à l'état fondamental. Pour la plupart des coumarines nous avons observé des concordances assez satisfaisantes entre les moments dipolaires à l'état singulet obtenus à partir de ces différentes corrélations.

Nous avons aussi comparé ces valeurs de moments dipolaires avec celles trouvées expérimentalement à l'état fondamental. D'après notre étude, il s'avère que les moments dipolaires à l'état excité ont des valeurs plus élevées que celles obtenues à l'état fondamental pour l'ensemble des produits que nous avons utilisés (tableau 13). La différence est approximativement entre 0,6 et 3 D environ pour les corrélations de Bakhshiev et de Kawski-Chamma-Viallet et encore beaucoup plus élevée pour celles de Mac-Rae et de Suppan. Le fait que le premier état singulet du 7-amino et du 7-diéthylamino-4-méthyl coumarine exhibe des moments dipolaires beaucoup plus élevés dans l'état excité singulet que dans l'état fondamental pourraient être attribué à l'intense résonance de corrélations de Suppan

Composés	Pentes	Ordonnées à l'origine	Coefficients de corrélation	Nombres de données
Coumarine	-1054	37560	0,969	6
6-Méthylcoumarine	-2079	38137	0,923	5
7-Méthylcoumarine	-4535	39381	0,959	6
7-Acétoxy-4- méthylcoumarine	-72	3787	0,933	5
3-Acétylcoumarine	NC	NC	NC	NC
4-Hydroxycoumarine	NC	NC	NC	NC
7-Hydroxycoumarine	-3007	33767	0,972	4
7-Hydroxy-4- méthylcoumarine	-699	31807	0,923	5
7-Méthoxycoumarine	-410	32644	0,971	5
7-Amino-4- méthylcoumarine	-4402	32619	0,953	5
7-Diéthylamino-4- méthylcoumarine	-4872	31589	0,948	6
3-Carboxyliquecoumarine	-1117	34612	0,914	5

l'effet électrodonneur des substituants amino et diéthylamino dans l'état excité singulet de ces composés. Les interactions entre les systèmes π et les chromophores NH2 et NEt2 en position 7, conduisent à une forte délocalisation à l'état excité et rendent les molécules beaucoup plus polaires aboutissant ainsi à de grandes valeurs de moments dipolaires.

	moments	dipolaires	^(a) à	l'état	fondar	mental	et a	u premie	er état	: excité
singulet des	coumarine	€S								

Composós	(b)	$\mu_{e(S_1)}$ (c)				
Composes	μ_{g}	I (d)	II ^(e)	III ^(f)	IV ^(g)	
Coumarine	4,77	NF	NF	6,50	5,45	
6- Méthylcoumarine	5,05	NF	NF	9,16	6,19	
7-Méthylcoumarine	4,79	NF	NF	16,75	8,85	
7-Acétoxy-4- méthylcoumarine	4,86	NF	NF	5,05	5,31	
3-Acétylcoumarine	4,55	NF	NF	NC	NC	
4-Hydroxycoumarine	5,00	7,82	7,04	NC	NC	
7-Hydroxycoumarine	4,94	7.22	6,72	7,35	12,43	
7-Hydroxy-4- méthylcoumarine	5,20	7,53	5.81	5,86	6,59	
7-Méthoxycoumarine	4.89	7.16	5.36	5,20	5,81	
7-Amino-4-methylcoumarine	6.33	9,65	8.02	8.99	14,22	
7-Diethylamino-4- methylcoumarine	6,78	8,39	9,23	10,37	17.60	
3-Carboxyliquecoumarine	5,70	9,51	6,15	6,38	7.37	

(a) en Debve (D)

- (f) corrélations de Mac-Rae
- (b) moments dipolaires à l'état fondamental
- (2) corrélations de Suppan
- NF: non fluorescent
- NC: non corrélé
- (c) valeurs experimentales des moments dipolaires au premier état excité singulet
- (d) corrélations de Bakhshiev
- (e) corrélations de Kawski-Chamma-Viallet

C. EFFET DES SUBSTITUANTS ELECTRODONNEURS SUR LES TRANSITIONS ELECTRONIQUES DES COUMARINES SUBSTITUEES

En général, comme nous l'avons remarqué, la substitution de la coumarine par des groupes électrodonneurs provoquent le déplacement bathochrome plus ou moins accentué par rapport à la coumarine non substituée des bandes 00 d'absorption λ_A (figures 14, 15, 16 et tableaux 3 et 4) et des maxima de fluorescence λ_F (figures 17, 18 et tableaux 5 et 6). L'importance du déplacement spectral de ces bandes dépend aussi, comme on le sait, de la position du substituant sur le cycle de la coumarine. Nous donnons dans les tableaux (3 à 6) les caractéristiques des bandes d'absorption et des maxima de fluorescence des coumarines substituées par les groupes électrodonneurs dans des solvants de polarités différentes.

Pour étudier quantitativement l'effet des substituants électrodonneurs sur l'énergie des transitions électroniques, nous avons appliqué le traitement classique de Hammett [67-69], de Taft [70], de Brown et Akomoto [71, 72] et enfin de Yukawa-Tsuno [73, 77]. Les valeurs σ , σ^2 , σ^2 , σ^2 , $\Delta\sigma^2_R$ ont été déterminées à partir des constantes de dissociations des acides benzoïques substitués [67].

Les substituants sont tous en position 4 et 7 du cycle de la coumarine. On peut donc prévoir en plus de l'effet inductif, un effet de résonance sur les doublets libres de l'oxygène O(11). Ainsi, pour chaque substituant nous avons retenu les constantes σ_p , σ_p^{-} et σ_p° . Pour les dérivés de la coumarine ayant plusieurs substituants, nous avons pris la somme algébrique des constantes. Les valeurs algébriques des constantes de substituants utilisées sont dans les tableaux (14 et 15).

Figure 15 : Spectres électroniques d'absorption de diverses coumarines dans le DMSO

Figure 17 : Spectres d'émission de fluorescence de diverses coumarines dans l'Ether oxyde

Tableau 14 : constantes de substituants utilisées pour les corrélations

Substituants	$\sigma^{(a)}$	$\sigma^{o^{-(b)}}$	$\sigma^{-(c)}$	$\Delta \sigma_R^+ = \sigma^+ - \sigma^\circ$
Н	0	0	0	0
CH ₃	-0,170	-0.150	-0,311	-0,187
NH ₂	-0,660	-0.380	-1,300	-0.940
NCH ₃	-0,830	-0.470	-1,700	-1.270
ОН	-0.370	-0,170	-0,920	-0,760
OCH ₃	-0.270	-0.150	-0.778	-0.678

- (a) valeurs de Hammett tirées dans la référence [69]
- (b) valeurs de Taft tirées dans la référence [70]
- (c) valeurs de Brown-Okamoto tirées dans les références [71 et 72]
- (d) valeurs Yukawa-Tsuno tirées dans la référence [74]

 Tableau 15 : sommes algébriques des constantes de substituants des coumarines suivant leur position sur le noyau.

Composés	Σσ	$\Sigma \sigma^{\circ}$	Σσ	$\Sigma \Delta \sigma_R$
coumarine	0	0	0	0
7-methyl coumarine	-0,170	-0.150	-0,311	-0,187
7-hydroxy coumarine	-0.370	-0.170	-0,920	-0.760
7-hydroxy-4- méthylcoumarine	-0.540	-0.320	-1,231	-0.947
7-méthoxy coumarine	-0.270	-0.150	-0,778	-0.678
7-amino-4-méthyl coumarine	-0.830	-0.530	-1.611	-1,127
7-diméthylamino-4- méthyl coumarine	-1.000	-0.620	-2,011	-1,457

I. CHOIX DES CONSTANTES DE SUBSTITUANTS

Dans le but d'examiner quantitativement les effets des substituants électrodonneurs sur les spectres d'absorption (transition $S_0 \rightarrow S_1$) et de fluorescence (transition $S_1 \rightarrow S_0$) nous avons établi des corrélations linéaires entre les nombres d'onde d'absorption et de fluorescence (tableau 4) et les constantes de substituants σ de Hammett, σ° de Taft, σ^{-} de Brown-Okamoto, $\Delta \sigma^+_R$ de Yukawa-Tsuno. Tous les substituants occupent la position 4 ou 7 de la coumarine. Pour tous ces substituants nous pouvons observer l'existence des effets inductifs et/ou de résonance avec le doublet électronique de l'atome d'oxygène en position 11 qui représente le site réactionnel.

Nous donnons dans le tableau (14) les valeurs algébriques des constantes de substituants σ , σ° , σ^{+} et $\Delta \sigma^{+}_{R_{-}}$ Pour les dérivés des coumarines ayant plusieurs substituants, nous avons pris la somme algébrique des valeurs respectives des constantes de substituants (tableau 15).

Les constantes de substituants σ° de Taft comprennent principalement les effets inductifs et mésomères entre le substituant et le cycle de la coumarine. Les contantes de substituants σ^{-} de Brown et Akomoto sont généralement utilisées pour évaluer l'effet de la résonance directe (résonance électromère) du substituant sur le site réactionnel (oxygène en position 11) fixé sur le cycle, en plus des effets inductifs et mésomères.

Les constantes de substituants $\Delta \sigma_R^{-}$ de Yukawa et Tsumo nous ont permis de séparer les effets de résonance directe et inductifs d'une part et de résonance mésomère d'autre part. L'équation de Yukawa-Tsuno nous permet aussi de quantifier leurs contributions respectives dans les transitions $S_0 \rightarrow S_1$ et $S_1 \rightarrow S_0$.

1. Corrélation sur les transitions $S_0 \rightarrow S_1$

Dans le but de déterminer quantitativement les effets des substituants électrodonneurs sur les énergies des transitions électroniques $S_0 \rightarrow S_1$, nous avons appliqué le traitement classique de Hammett selon l'équation (15):

$$\bar{v}_{A} = \rho_{A} \sigma + \bar{v}_{A} \circ \tag{15}$$

où la pente ρ_A représente la constante de réaction ; \vec{v}_A et \vec{v}_A° représentent les nombres d'onde correspondant au maximum de la bande 00 d'absorption respectivement des coumarines substituées et non substituée ($\sigma = 0$).

Nous avons obtenu des corrélations linéaires de Hammett de type "propriété spectrale--structure" entre les nombres d'onde des maxima d'absorption de plus grande longueur d'onde \bar{v}_A et les constantes de substituants de Hammett pour la majorité des coumarines dans les différents solvants étudiés. Les caractéristiques de ces corrélations qui ont fait l'objet d'une publication préliminaire [98] sont résumées dans le tableau (16) avec des pentes ρ_A toutes positives. Les coefficients sont compris entre 0,94 et 0.997 ce qui signifie que pour tous les solvants utilisés nous avons obtenu des corrélations linéaires assez satisfaisantes (figures 19 et 20). Les valeurs de la constante de réaction $\rho_{\rm d}$ sont positives et se situent entre 3,661.10³ cm⁻¹ et 5,501.10³ cm⁻¹. Puisque les constantes de substituants σ sont négatives, le produit $\rho\sigma$ est toujours négatif; d'où \overline{v}_{4} - \overline{v}_{4}° < 0. Ce qui signifie que les nombres d'onde d'absorption diminuent en fonction du pouvoir électrodonneur du substituant. Nous observons aussi une diminution de gap énergétique de la transition $S_0 \rightarrow S_1$ en fonction du pouvoir électrodonneur du substituant. Un tel phénomène est lié à l'existence d'une transition $\pi\pi^*$ [19, 88 b].

2. Corrélation de Hammett sur les transitions $S_1 \rightarrow S_0$

Les figures (21 et 22) sont obtenues en portant les nombres d'onde des maxima des bandes 00 d'émission de fluorescence en fonction des constantes de substituants de Hammett selon l'équation (16) :

$$\bar{v}_{F} = \rho_{F} \sigma + \bar{v}_{F}^{\circ} \qquad (16)$$

 $\rho_{\rm F}$ a la même signification que dans l'équation (15),

 \bar{v}_F et \bar{v}_F° représentent respectivement les nombres d'onde correspondant aux maxima des bandes d'émission de fluorescence des coumarines substituées et de la coumarine non substituée ($\sigma = 0$).

Nous avons obtenu des corrélations linéaires dont les caractéristiques sont données dans le tableau (17), avec des coefficients de corrélation compris entre 0,966 et 0,998. Pour tous les solvants étudiés, les valeurs de ρ_F sont positives et comprises entre 2,157.10³ cm⁻¹ et 4,006.10³ cm⁻¹. Là aussi, puisque les constantes de substituants sont toutes négatives, on a le produit $\rho_F \sigma$ négatif ; d'où $\overline{v}_F - \overline{v}_F^{\circ} < 0$, ce qui confirme l'existence de transitions $\pi\pi^*$ [88]. Dans tous les cas les substituants électrodonneurs exercent un effet bathochrome sur les transitions électroniques des coumarines.

On remarque aussi que les valeurs de ρ_A sont supérieures, en général, à celles de ρ_F dans le même solvant. Ainsi les substituants électrodonneurs exercent un effet plus intense sur les transitions $S_0 \rightarrow S_1$ que sur la fluorescence.

Pour l'ensemble des solvants, les nombres d'onde de 7-hydoxy-4-méthyl coumarine sont généralement à l'écart des corrélations (figures 21 et 22). Les déviations observées paraissent indiquer que les substituants hydroxyl et méthyl en compétition, respectivement à la position 7 et 4, délocalisent les électrons π

Figure 21: Corrélation de Hammett appliquée aux nombres d'onde des maxima de la bande 00 de fluorescence des coumarines substituées dans l'éther oxyde.

III. CORRELATION DE TAFT

Les études physico-chimiques des effets de solvants et de pH sur les spectres électroniques d'absorption et de fluorescence des coumarines [98, 99] ont démontré le rôle essentiel des paires électroniques de l'oxygène en position 11 dans les processus photophysiques. Ainsi, l'atome d'oxygène peut être considéré comme le site réactionnel dans ces divers processus. L'échelle des constantes normales de substituants (σ°) définie par Taft [70], est indépendante de la contribution de la résonance directe (résonance électromère) entre le substituant et le site réactionnel. Cette échelle prend principalement en compte les effets inductifs et mésomères entre le substituant et le cycle coumarinique.

1. Corrélations de Taft sur les transitions $S_0 \rightarrow S_1$

Dans le but d'élucider l'importance des effets inductifs et mésomères sur les transitions $S_0 \rightarrow S_1$ nous avons tracé les courbes $\overline{v}_A = f(\sigma^\circ)$ dans les différents solvants (figures 23 et 24) selon l'équation (17) :

$$\overline{v}_{A} = \rho_{A}^{\circ} \sigma^{\circ} + \overline{v}_{A}^{\circ} \quad (17)$$

où ρ_{A}° représente la constante de réaction (elle mesure la sensibilité de la réaction aux effets électroniques des substituants)

 \vec{v}_{A} et \vec{v}_{A}° représentent les nombres d'onde du maximum de la bande 00 d'absorption de la coumarine substituée et de la coumarine non substituée ($\sigma^{\circ} = 0$) respectivement.

Dans tous les solvants utilisés, nous avons obtenu des corrélations linéaires pour la plupart des dérivés de coumarine. Les caractéristiques de ces résultats

sont rassemblés dans le tableau (18). Les valeurs des pentes (ρ_A^o) comprises entre 5,978.10³ cm⁻¹ et 7,773.10³ cm⁻¹ sont positives dans tous les solvants et généralement augmentent dans le même sens que la polarité du solvant.

Les coefficients de corrélation sont compris entre 0,967 et 0,994 ce qui montre que les corrélations de Taft sont obtenues avec une bonne précision.

2. Corrélation sur les transitions $S_1 \rightarrow S_0$

Nous avons établi l'existence de corrélations linéaires «propriétés spectrales–structures »entre les nombres d'onde des maxima de fluorescence $\bar{\nu}_{F}$ et les constantes de substitutions σ° de Taft à partir de l'équation (18)

$$\bar{v}_F = \rho_F^{\circ} \sigma^{\circ} + \bar{v}_F^{\circ} \qquad (18)$$

où ρ_{F}° représente la constante de réaction;

 \vec{v}_F représente le nombre d'onde du maximum du spectre de fluorescence de la coumarine substituée;

 \overline{v}_{F}° représente le nombre d'onde du maximum du spectre de fluorescence de la coumarine non substituée ($\sigma^{\circ} = 0$).

Dans tous les solvants, nous avons obtenu des corrélations linéaires pour la plupart des dérivés de coumarine (figures 25 et 26). Le traitement statistique des corrélations de Taft est rapporté dans le tableau (19). Nous avons obtenu des valeurs de pente ρ_F° positives pour tous les solvants avec des coefficients de corrélation compris entre 0,942 et 0.999, ce qui montre que les corrélations sont déterminées avec une précision satisfaisante. Les valeurs de ρ_F° positives confirment que les transitions de coumarines sont de type $\pi\pi^*$ [64, 88 b] et que le " gap " énergétique entre les états excité et fondamental varie en sens inverse

de l'importance de l'effet électrodonneur du substituant. Notons que les valeurs des pentes ρ_A° en absorption électroniques sont supérieures à celles trouvées en émission de fluorescence comprises entre 3,064.10³ cm⁻¹ et 7,540.10³ cm⁻¹.

Ainsi les substituants électrodonneurs exercent des effets inductifs et de résonance mésomère plus importante en absorption qu'en fluorescence.

	a	nalyse	statistique	des	corrélations	de	Taft	appliquées	aux	transitions
$S_0 \not \to S$	1 des co	umarir	nes compor	tant	des substitua	ants	élec	trodonneurs	5	

Solvants	$ ho^{\circ}$ (a)	\overline{V}_{A}^{0} (b)	r ^(c)	n ^(d)
DIOXANE	6713	32494	0,984	5
Et ₂ O	5978	32508	0,985	6
AcOEt	6063	32378	0,994	5
EtOH	7773	32529	0,967	5
DMF	7322	32425	0,979	5
CH ₃ CN	6936	32540	0,976	6
DMSO	7735	32061	0,992	5

Tableau 19: analyse statistique des corrélations de Taft appliquées aux transitions $S_1 \rightarrow S_0$ des coumarines comportant des substituants électrodonneurs

Solvants	$ ho^{\circ^{-(a)}}$	$\overline{oldsymbol{ u}}_F^{(i)}$ (b)	r ^(c)	n ^(d)	
DIOXANE	4015	26886	0,992	3	
Et ₂ O	3061	26702	0,942	4	
AcOEt	4303	26996	0,978	4	
EtOH	7540	27264	0,998	4	
DMF	4972	26670	0,999	3	
CH ₃ CN	5724	26933	0,974	4	
DMSO	5729	26499	0,974	4	

(a) constantes de reaction

(b) ordonnées à l'origine

(c) coefficient de correlation

(d) nombres de données

1. Corrélation sur les transitions $S_0 \rightarrow S_1$

Les constantes de substituants σ^+ de Brown-Okamoto sont généralement utilisées pour évaluer l'effet de la résonance directe (résonance électromère) du substituant sur le site réactionnel (oxygène en position 11 du noyau) en plus des effets inductifs et mésomères. Pour cela nous avons donc utilisé l'équation (19) :

$$\overline{v}_{A} = \rho_{A}^{-}, \ \sigma^{-} + \overline{v}_{A}^{\circ} \qquad (19)$$

où $\rho_{\rm d}^{-}$ représente la constante de réaction de Brown

 \overline{v}_{A} et \overline{v}_{A}° ont la même signification que dans l'équation (14)

Dans tous les solvants nous avons obtenu des corrélations linéaires entre \bar{v}_{A} et les constantes de substituants σ^{+} (figures 27 et 28). Les résultats du traitement statistique de Brown-Okamoto sont résumés dans le tableau (20). Les valeurs positives de ρ_{A}^{--} sont comprises entre 1,774.10³ cm⁻¹ et 2,709.10³ cm⁻¹ selon la nature du solvant.

La précision est satisfaisante avec des coefficients de corrélation compris entre 0,956 et 0,995. Les valeurs positives de ρ_{a}^{-1} confirment que le "gap" énergétique entre l'état excité singulet et l'état fondamental varie en sens inverse de l'importance des effets électrodonneurs des substituants.

Il est aussi intéressant de noter que, pour chaque solvant, les constantes de réaction obéissent à la séquence suivante : $\rho_{d}^{\circ} > \rho_{d}^{-}$. On sait, par ailleurs que les échelles σ° et $\sigma^{-\tau}$ sont respectivement proportionnelles à la probabilité de l'existence des effets : inductif et résonance mésomère d'une part, et inductif, résonance mésomère et résonance directe (résonance électromère) d'autre part, sur les transitions $S_0 \rightarrow S_1$.

Ainsi, de cette séquence, nous pouvons en déduire que les transitions électroniques $S_0 \rightarrow S_1$ sont plus sensibles aux effets de résonance mésomère qu'aux effets de résonance directe (électromère) entre le substituant et le site réactionnel et par ailleurs, les effets de résonance directe doivent être très faibles si nous tenons compte de l'ordre de grandeur des deux pentes ρ° et ρ^{-} .

2. Corrélation sur les transitions $S_1 \rightarrow S_0$

Nous avons aussi établi l'existence de corrélations linéaires "propriétés spectrales – structures" (figures 29 et 30) entre les nombres d'onde des maxima de fluorescence \bar{v}_F et les constantes de substituants σ^- de Brown-Okamoto à partir de l'équation (20) :

$$\bar{v}_{F} = \rho_{F}^{-} \sigma^{-} + \bar{v}_{F}^{\circ} \qquad (20)$$

où $\rho_{=}^{-}$ est la constante de réaction de Brown-Okamoto,

 \overline{v}_{z} et \overline{v}_{z}^{2} ont la même signification que dans l'équation (18).

Les résultats du traitement statistique sont résumés dans le tableau (21). Les valeurs de ρ_{π}^{-1} sont positives et comprises entre 1,328.10³ cm⁻¹ et 3,139.10³ cm⁻¹ selon le solvant. La précision est satisfaisante avec des coefficients de corrélation compris entre 0,971 et 0,998. Comme en absorption, le "gap" énergétique entre les états excité et fondamental varie en sens inverse de l'importance des effets des substituants électrodonneurs.

Nous avons aussi en fluorescence la séquence suivante $\rho_{F}^{-\theta} \gg \rho_{F}^{-\theta}$. Nous pouvons en déduire que les transitions $S_1 \rightarrow S_0$ sont plus sensibles aux effets de résonance mésomère qu'aux effets de résonance directe (électromère) entre le substituant et le site réactionnel. Là aussi, compte tenu des valeurs de $\rho_{F}^{-\theta}$ et de

ρ_F^- , les effets de résonance directe devraient être assez faibles. Les tableaux (18, 19, 20, 21) nous montrent la séquence suivante en valeur moyenne :

$$\frac{\rho_A}{\rho_A^+} > \frac{\rho_F}{\rho_F^+}$$

De cette séquence nous pouvons en déduire que les effets de résonance directe (électromère) entre le substituant et le site réactionnel (le groupe carbonyle), devraient jouer un rôle plus important en fluorescence qu'en absorption.

V. APPLICATION DE L'EQUATION DE YUKAWA-TSUNO

Dans le but de séparer les effets inductifs et de résonance mésomère d'une part, des effets de résonance directe entre le substituant et le site réactionnel d'autre part, nous avons appliqué le traitement de Yukawa-Tsuno [73, 74] aux nombres d'onde d'absorption \overline{v}_A et de fluorescence \overline{v}_F afin de pouvoir quantifier leurs contributions respectives sur les transitions $S_0 \rightarrow S_1$ et $S_1 \rightarrow S_0$.

1. Application aux transitions $S_0 \rightarrow S_1$

Pour appliquer le traitement de Yukawa-Tsuno[73,74] sur les transitions électroniques d'absorption, nous avons utilisé l'équation (21) :

$$\overline{v}_{A} = \rho_{A}^{0} \left(\sigma^{0} + R \Delta \sigma_{R}^{+} \right) = \rho^{0} \sigma^{0} + b \Delta \sigma_{R}^{+} \quad (21)$$

où ρ_A° est la constante de réaction relative aux effets inductifs et de résonance mésomère :

R est le paramètre correspondant aux effets de résonance directe (électromère) appelé facteur de conjugaison entre le substituant et le site réactionnel ;

 $\Delta \sigma_{R}^{-} = \sigma^{-} - \sigma^{\circ}$ et $b = R \rho_{4}^{\circ}$:

 \overline{v}_{a} représente le nombre d'onde de la bande 00 d'absorption.

Pour les calculs de ρ_4° et de *R*, nous avons utilisé la méthode de régression linéaire à paramètres multiples avec σ° et $\Delta \sigma_2^{\circ}$ comme variables indépendantes. Dans tous les solvants étudiés nous avons établi des corrélations linéaires à paramètres multiples (figures 31 et 32) avec une précision satisfaisante puisque les coefficients de corrélation varient entre 0.973 et 0.988 (tableau 22). Figure 31: Corrélation multiparamétrique de Yukawa-Tsuno appliquée aux nombres d'onde des bandes 00 d'absorption des dérivés de coumarine dans l'acétonitrile

Figure 32: Corrélation multiparamétrique de Yukawa-Tsuno appliquée aux nombres d'onde des maxima des bandes 00 d'absorption des coumarines substituées dans l'éther oxyde

Tableau 20: analyse statistique des corrélations de Brown-Okamoto appliquées aux transitions $S_0 \rightarrow S_1$ des coumarines comportant des substituants électrodonneurs

Solvants	$ ho^{+}$ (a)	\overline{V}_{A}^{0} (b)	r ^(c)	n ^(d)
DIOXANE	3348	33048	0,987	6
Et ₂ O	1864	32480	0,992	5
AcOEt	2516	33492	0,995	5
EtOH	2709	33123	0,990	6
DMF	2286	32616	0,959	5
CH ₃ CN	1774	32529	0,956	5
DMSO	2642	32627	0,978	6

Tableau 21: analyse statistique des corrélations de Brown-Okamoto appliquées aux transitions $S_1 \rightarrow S_0$ des coumarines comportant des substituants électrodonneurs

Solvants	$ ho^{+}$ (a)	\overline{V}_F^0 (b)	r ^(c)	n ^(d)
DIOXANE	1887	27830	0,971	3
Et ₂ O	1329	27345	0,981	4
AcOEt	1815	27829	0,990	4
EtOH	3139	28669	0,997	4
DMF	2384	27891	0,998	3
CH ₃ CN	2442	28078	0,997	4
DMSO	2439	27637	0,994	4

(a) constantes de réaction

(b) ordonnées à l'origine

(c) coefficient de corrélation

(d) nombres de données

Les valeurs de ρ_A° sont comprises entre 4,857.10³ cm⁻¹ et 7,863.10³ cm⁻¹ selon le solvant. Cependant les valeurs de *R* sont très faibles, situées entre 0 et 18,2 %. Ainsi, les effets de résonance directe sont très faibles sur les transitions électroniques d'absorption. Ce qui est en accord avec nos prévisions.

2. Application aux transitions $S_1 \rightarrow S_0$

Pour appliquer le traitement de Yukawa-Tsuno sur les transitions électroniques de fluorescence, nous avons utilisé l'équation (22) :

$$\bar{v}_{F} = \rho^{\circ} \left(\sigma^{\circ} + R_{\Delta \sigma_{R}^{-}} \right) = \rho^{\circ} \sigma^{\circ} + b_{\Delta \sigma_{R}^{-}} \quad (22)$$

où \vec{v}_{F} est le nombre d'onde du maximum de fluorescence ;

 $R, \rho^{\circ}, \Delta \sigma_{R}^{-}$ et b ont la même signification que dans l'équation (21).

 σ° et $\Delta \sigma_{R}^{-}$ étant utilisés comme variables indépendantes.

Nous avons obtenu des corrélations linéaires à paramètres multiples (figures 33 et 34) avec une précision satisfaisante puisque les coefficients de corrélation varient entre 0,936 et 0,999 (tableau 23).

Comme en absorption, les faibles valeurs de R comprises entre 0.3 et 27,2 % montrent aussi qu'en fluorescence les effets de résonance mésomère (entre le substituant et le cycle de la coumarine) sont plus importants que les effets de résonance directe (entre le substituant et le site réactionnel). Cependant, ces valeurs sont, en général, plus élevées en fluorescence qu'en absorption. Ainsi, en accord avec nos prévisions, des effets de résonance directe jouent donc un rôle plus important en fluorescence qu'en absorption.

Tableau 22 : analyse statistique des corrélations de Yukawa-Tsuno appliquées auxtransitions $S_0 \rightarrow S_1$ des coumarines comportant des substituants électro

solvants	$ ho^{\circ}$ (a)	R ^(b) %	r ^(c)	n ^(d)
DIOXANE	4857	18,2	0,988	7
Et ₂ O	6279	-	0,984	7
AcOEt	5693	4,1	0.983	7
EtOH	6655	12	0,971	7
DMF	7863	4	0,976	7
CH ₃ CN	7179	8	0,983	7
DMSO	7945	5	0,985	7

Tableau 23 : analyse statistique des corrélations de Yukawa-Tsuno appliquées aux transitions $S_1 \rightarrow S_0$ des coumarines comportant des substituants électrodonneurs

Solvants	ρ ^{ο (a)}	R (b) %	r ^(c)	n ^(d)	
DIOXANE	5342	1,1	0.965	5	
Et ₂ O	3239	6,8	0.936	5	
AcOEt	4882	4,6	0,989	5	
EtOH	8214	0,3	0,973	5	
DMF	4565	22.2	0.989	5	
CH ₃ CN	3482	27,2	0.999	5	
DMSO	3718	12.6	0.996	5	

(a) constantes de réaction

(b) constantes caractéristiques de l'effet électromère

(c) coefficient de corrélation

(d) nombres de données

Figure 33 : Corrélation multiparamétrique de Yukawa-Tsuno appliquée aux nombres d'onde des maxima de fluorescence dans l'acétonitrile

Figure 34 : Corrélation multiparamétrique de Yukawa-Tsuno appliquée aux nombres d'onde des maxima de fluorescence dans l'acétate d'éthyle

VI. CONCLUSION

Des corrélations linéaires entre "propriétés spectrales et structures" peuvent être obtenues avec la coumarine et ses dérivés aussi bien en absorption électronique qu'en émission de fluorescence à partir des traitements de Hammett, de Taft, de Brown-Okamoto et de Yukawa-Tsuno.

Ces corrélations confirment que les transitions sont de type $\pi\pi^*$ et montrent aussi que les substituants électrodonneurs diminuent le "gap" énergétique aussi bien pour les transitions $S_0 \rightarrow S_1$ que pour les transitions $S_1 \rightarrow S_0$.

L'application de l'équation de Yukawa-Tsuno montre que l'effet de résonance directe entre le substituant et le site réactionnel joue un rôle faible sur les transitions $S_0 \rightarrow S_1$ et $S_1 \rightarrow S_0$ des coumarines substituées. Bien qu'elles soient légèrement plus élevées en fluorescence qu'en absorption électronique, ces transitions sont principalement affectées par les interactions inductives et de résonance mésomère entre le substituant et le cycle de la coumarine.

D. ETUDE QUALITATIVE DES EFFETS DE SUBSTITUANTS SUR LES SPECTRES ELECTRONIQUES D'ABSORPTION ET D'EMISSION DE FLUORESCENCE DES AMINOCOUMARINES

Le tableau (24) nous montre aussi que tous les substituants exercent un effet bathochrome en fonction de la polarité croissante du solvant. Ceci explique que les transitions qui gèrent l'absorption et la fluorescence sont de type $\pi\pi^*$ [19, 88 b], quelle que soit la nature du substituant. Ce tableau nous montre aussi que les maxima des longueurs d'onde des bandes 00 d'absorption et d'émission de fluorescence se déplacent vers le rouge lorsqu'on substitue le groupe méthyl, à la position 4, par le groupe CF₃. On peut expliquer ce phénomène à partir de la figure (35) représentant le diagramme des niveaux d'énergie.

 π et π^* représentant l'orbitale moléculaire liante d'énergie plus élevée et l'orbitale antiliante d'énergie plus basse de la coumarine non substituée: π_d représentant une orbitale antiliante provenant du substituant électroporteur.

Dans ce diagramme, π et π^* représentent respectivement l'énergie de l'orbitale liante la plus élevée et celle de l'orbitale antiliante la plus basse de la coumarine non substituée.

Considérons, d'abord, l'effet du seul groupe amino à la position 7 du noyau de la coumarine. La paire d'électrons libres de ce groupe réside dans les orbitales moléculaires qui sont largement localisées dans le groupe amino. Cependant, à cause du transfert de charge intramoléculaire (TCI), la charge électronique du groupe amino devient substantiellement délocalisée à travers le système π du noyau [19]. Aussi, l'énergie de cette orbitale moléculaire délocalisée π_d est elle largement plus élevée que celle de la coumarine non substituée π . Par conséquent le "gap" d'énergie entre π^* et π_d de la molécule substituée est plus faible que celui entre π^* et π de la coumarine non substituée. C'est pourquoi en comparant les valeurs obtenues dans le tableau avec celles de 7-méthyl-4-Me coumarine dans l'éthanol (λ_A =315 nm et λ_F =412 nm) [16], nous constatons que ces valeurs sont largement supérieures à celles de 7-NMe₂-4-Me coumarine et 7-N(Et)₂-4-Me coumarine dont les caractéristiques spectrales respectives dans l'éthanol sont : (λ_A =368 nm et λ_F =427 nm) et (λ_A = 367 nm et λ_F =445 nm).

Enfin cette étude nous permet aussi d'expliquer pourquoi les substituants électrodonneurs et accepteurs exercent une diminution de "gap" d'énergie par rapport à celle de la coumarine non substituée, aussi bien en absorption qu'en fluorescence. En effet les tableaux (3 et 6) nous montrent que plus. l'effet du substituant est élevé plus le niveau de π_d augmente et plus ∇_d diminue; de la même façon, plus l'effet électrodonneur ou électroattracteur du substituant est élevé, plus le niveau d'énergie π^*_a diminue, ce qui entraîne une diminution de l'énergie de transition λ_F . En plus, cette figure nous montre aussi que les substituants électrodonneurs favorisent les transitions (TCI) \rightarrow (TCID) ce qui diminue la population de l'état fluorescence en faveur du processus de désactivation non radiative. Ainsi, l'effet du substituant électroattracteur diminue donc le rendement quantique de fluorescence. Ce résultat est en parfait accord avec l'étude faite sur l'effet des substituants électroattracteurs sur le rendement quantique de fluorescence des indoles substitués [100]. Considérons maintenant la molécule de coumarine avec seulement un groupe électroattracteur CF₃ à la position 4. Il est connu que l'effet de ce groupe est d'introduire une orbitale vacante non liante π^*_a [101, 102]. De même le "gap" d'énergie entre π^*_a et π_d de la molécule fluorée est plus faible que celui de la molécule non fluorée. C'est pourquoi nous avons les valeurs des longueurs d'onde d'absorption λ_A et d'émission λ_F de 7-NHe₂-4-CF₃ coumarine et de 7-NMe₂-4-CF₃ supérieures à celles λ_A et λ_F de 7-NH₂-4-Me et 7-NMe₂-4-Me coumarine (tableau 24).

Solvants	Dioxane		Et ₂ O		EtOH		CH ₃ CN		DMSO	
substituants	$\lambda_{ m A}^{\ \ 00}$	$\lambda_{\rm F}{}^{00}$	λ_A^{00}	$\lambda_{\rm F}^{00}$	λ_A^{00}	$\lambda_{\rm F}^{00}$	λ_A^{00}	λ_F^{00}	λ_{A}^{00}	$\lambda_{\rm F}^{00}$
Coumarine	309		309		309		309		309	
7-NH2-4-CH3	340	404	340	394	343	427	341	412	356	421
7-NMe ₂ -4-CH ₃	357	414	367	407	367	445	360	433	368	440
7-N(Et) ₂ -4-CH ₃	354	414	353	394	368	427	368	412	375	421
7-NH2-4-CF3	361	427	362	438	382	475	368	452	385	476
7-NMe ₂ -4-CF ₃	382	460	382	455	397	448	393	490	400	502

Tableau 24: longueurs d'onde λ_A des maxima des bandes d'absorption et λ_F des bandes d'émission de fluorescence.

En plus les données du tableau (5) indiquent que les déplacements de Stokes $(\bar{v}_{a} - \bar{v}_{F})$ des dérivés amino sont plus faibles que ceux des autres composés. De même le tableau (24) nous montre aussi que les déplacements de Stokes de 7-NH₂-4-CF₃ coumarine et 7-NMe₂-4-CF₃ coumarine sont plus faibles que ceux correspondants non fluorés, c'est-à-dire le 7-NH₂-4-CH₃ coumarine et le 7-NMe₂-4-CH₃ coumarine. On explique ceci par l'existence de transfert de charge intramoléculaire (TCI) pour les dérivés à substituants aminés. Cependant, il y a toujours un équilibre entre l'état de transfert de charge intramoléculaire (TCI), et celui de transfert de charge intramoléculaire (TCID),

état qui ne favorise pas du tout l'émission de fluorescence. Il en résulte que l'augmentation de la population à l'état TCID correspond à une diminution du rendement quantique de fluorescence. Le tableau (24) nous montre aussi que les déplacements de Stokes sont moins élevés pour les composés à substituants fluorés que non fluorés. Puisque le substituant CF₃ est électroaccepteur, l'état excité de la molécule est plus polaire que l'état fondamental à cause bien entendu du transfert de charges intramoléculaires. Les faibles valeurs de déplacement de Stokes prouvent une plus grande déformation de la molécule en dehors du plan [19, 20, 21] favorisant ainsi le transfert de charge intramoléculaire de déformation (TCID). Cette déformation pourrait ainsi diminuer la population de ces molécules à l'état fluorescent. C'est ce qui est vérifié par les figures (17 et 18) où l'intensité de fluorescence des amino coumarines fluorés est beaucoup moins intense que celle des amino non fluorés, avec une diminution donc du rendement quantique de fluorescence.

Ainsi, la présence du groupe CF_3 en position 4 exerce un déplacement bathochrome du maximum de la bande 00 d'absorption et du pic de la fluorescence. Sa présence abaisse donc, le "gap" d'énergie entre les orbitales liantes et antiliantes par rapport à celui de la molécule non substituée. Ce substituant entraîne aussi le transfert de charge intramoléculaire de déformation à l'état excité singulet causant ainsi, la distorsion géométrique de la molécule dont l'effet est vérifié par de grandes valeurs de déplacement de Stokes et par l'extinction de fluorescence.

58

CONCLUSION GENERALE

Nous avons étudié l'effet de solvant et des substituants sur les spectres électroniques d'absorption et d'émission des coumarines substituées. Pour la plupart des coumarines, nous avons observé un déplacement bathochrome des maxima de fluorescence et de la même manière les maxima des bandes 00 d'absorption en fonction de la polarité croissante du solvant. De ces résultats, nous avons pu montrer que les diverses transitions sont principalement de type $\pi\pi$ *.

A partir des ces déplacements de bandes, nous avons pu calculer les moments dipolaires μ_e à l'état excité par les méthodes de Bakhshiev, de Chamma-Viallet, de Mac Rae et de Suppan.

Nous avons ensuite comparé les valeurs de μ_e avec celles des moments dipolaires μ_g déterminées expérimentalement. Dans tous les cas, les valeurs de μ_e sont supérieures à celles de μ_g . Ainsi, les coumarines sont réellement plus polaires dans l'état excité que dans l'état fondamental et que l'état excité est assujetti à plusieurs transitions dont celles de transferts de charge intramoléculaires de déformation (TCID). Ce type de transition est d'ailleurs plus important pour les coumarines substituées par un groupe aminé, ce qui se traduit par un fort déplacement de Stokes et de l'extinction de fluorescence.

A partir de l'étude faite sur l'effet de substituant électrodonneur sur les spectres électroniques d'absorption et de fluorescence, nous avons obtenu, pour la majorité des coumarines et dans plusieurs solvants. des corrélations linéaires de type "propriété spectrale-structure" entre les nombres d'onde des maxima d'absorption de plus grandes longueurs d'onde et les constantes de substituants σ de Hammett. Des corrélations linéaires du même type sont observées entre les nombres d'onde des maxima de fluorescence et les constantes σ de Hammett. Dans les deux cas, ces corrélations linéaires étaient assez satisfaisantes avec des coefficients de corrélation compris entre 0.98 et 0,99 et de pentes ρ toutes

59

positives. Il en résulte, que le pouvoir électrodonneur du substituant abaisse le "gap" énergétique entre l'état fondamental S_0 et l'état excité S_1 . Cependant, les substituants électrodonneurs exercent un effet plus intense sur les transitions $S_0 \rightarrow S_1$ que sur la fluorescence (transition $S_1 \rightarrow S_0$).

Dans le but d'élucider l'importance des effets inductifs et mésomères d'une part et inductifs et électromères d'autre part, sur les transitions d'absorption et de fluorescence, nous avons utilisé respectivement les équations de Taft et de Brown-Okamoto. Il en résulte que les effets mésomères sont plus importants que les effets électromères sur ces mêmes transitions.

Pour quantifier l'effet électromère des autres effets inductifs et mésomères, nous avons utilisé les équations de Yukawa-Tsuno. Les résultats obtenus confirment la faible importance que joue le rôle de l'effet électromère sur les transitions $S_0 \rightarrow S_1$ et $S_1 \rightarrow S_0$. Cependant, l'effet électromère exerce un effet plus important en fluorescence qu'en absorption (transition $S_0 \rightarrow S_1$).

Dans un travail ultérieur, nous nous proposons d'élargir le champ d'étude en déterminant les constantes d'équilibre à l'état fondamental et au premier état excité singulet dans des milieux extrêmes (très basiques et très acides respectivement). Nous étudierons également l'effet des atomes lourds sur les spectres d'émission de fluorescence et de phosphorescence. Enfin, nous nous proposerons de faire une étude analytique afin de pouvoir déterminer qualitativement et quantitativement quelques composés coumariniques contenus dans le commerce ou dans le domaine médical, dans le warfarine par exemple. Une étude sur la modélisation des dérivés coumariniques est envisagée.

Références bibliographiques

- E. R. Barnhart (publ.) 1988 Physicians' Desk Reference, 42nded (1988), Medical Economics, Oradell, NJ.
- 2. R. F. Chen Anal. Lett (1968). 1, 423.
- 3. O. S. Wolfbeis, E. Fürlinger, H. Kroneis and H. Marsoner Z. Anal. Chem 314 (1983), 119
- 4. J. L. Abernethy, J.Chem Educ, 46 (1969), 561.
- Pill-Soon Song and William H. Gordon, III. The journal of Physical Chemistry 74 (1970) (24), 4234
- 6. Gilchrist T. L. Heterocyclic Chemistry, (1985) p. 297 London
- 7. James B Gallivan. Mol. Photochem- 2 (3) (1970), 191-211.
- 8. A. Bergman and J. Jortner, J. Lumines 6 (1973), 390.
- 9. Jones II, W. R. Jackson, C. Y. Choi and W. R. Bergmark. J. Phys. Chem 89 (1985), 294
- 10. A. N. Fletcher and D Bliss, Appl. Phys. 16 (1978), 289.
- 11. T. E. Bush and G. W. Scott (1981), J. Phys. Chem. 85, 144
- 12. G. J. Shanahan, N. P. Boley and A. D. Traynor APPL Spectrosc. 45(1991), 1070.
- 13. T. Moriya, Bull. Chem. Soc. Jpn 60 (1987), 4462.
- 14. O. S. Wolfbeis, E. Fürlinger, H. Kroneis and H. Marsoner Z. Anal. Chem 314 (1983), 577
- 15. S. G. Schulman (Editor), Molecular Luminescence Spectroscopy, Methods and Applications. (1985) A Wiely Interscience Publication.
- 16. R. Giri, S. S. Rathi, M. K. Machwe and V. V. S. Murti, Spectrochim. Acta 44A (1988), 805.
- 17. R. Giri, S. S. Rathi, M. K. Machwe and V. V. S. Murti, Curr. Sci. 58 (1989), 301.
- R. Giri, S. S. Rathi, V. V. S. Murti and M. K. Machwe, Ind. J. Pure Appl. Phys. 29 (1991), 111
- S. Singh and M. K. Machwe, In dian Journ1 of Pure and Applied Physics, 29 (June 1991), 402-405
- 20. T. L. Aberloa, F. L. Aberloa, I. L. Aberloa, Journal of Luminescence 68 (1996), 149-155
- 21. R. Giri, Spectrochimica Acta, 48A, n°6 (1992), 843-848
- 22. E. J. Bowen and J. Sahu, J. Phys. Chem. 63G (1959), 4.
- 23. J. Eisinger and G. Navon, J. Chem. Phys. 50 (1969), 2069.
- 24. M. S. Wailer, T. W. Bedner and R Lumry J. Chem. Phys. 45, (1966) 3455; 47, (1967) 1020.
- 25. K. R. Lange, Deterg. Spec. 6, (1969) 19.
- 26. H. Gold, in Foulson and K Korte (Eds), *Fluorescence Whitening Agents*. Georg Thiem, Stuttgart.

- 27. F. P. Schäfer, Angew. Chem. Int. 82, (1970) 25; Angew. Chem. Int. Ed. Engl. 9 (1970) 9
- 28. A. Bergman and J. Jortner Luminescence, 6, (1973) 390
- 29. A. N. Fletcher and D. Bliss appl. Phys. 16, (1978) 289
- 30. M. Madea Laser Dyes, Academic Press, New York (1984)
- 31. J. Chmielewska and D. Ciecierska Przemysl. Chem. 31; Chem. Abstr. 47, (1952) 9773d.
- 32. H. Böhme and T. Severin Arch. Pharm. 290, (1957) 405; Chem. Abstr. 52, (1958) 81h;
- 33. K Sen and P. Bagchi J. Org. Chem. 24, (1959). 316
- 34. R. S. Shah and S. L. Bafna Indian J. Chem. 1, (1963) 400
- M. J. Metha, R.S. Hedge, R. A. Bhatt, D. J. Patel and S. L. Bafna J. Appl. Chem. 19, (1969).
 29
- 36. G. J. Yakatan, R. J. Juneau and S. G. Schulman Anal. Chem. 44, (1972) 1044
- 37. G. J. Yakatan, R. J. Juneau and S. G. Schulman J. Pharm. Sci. 61, (1972) 749
- 38. D. W. Fink and W. R. Köhler Anal. Chem. 42, (1970). 990
- 39. S. G. Schulman and L. S. Rosenberg J. Phys. Chem. 83G, (1979) 447
- 40. O. S. Wolfbeis Z. Naturforsch. 32a, (1977) 1065
- 41. O. S. Wolfbeis, E. Lippert, and H. Schwarz Ber. Bunsenges Phys. Chem. 84, (1980) 1115.
- 42. J. Grzywacz and Taszner Z. Naturforsch. 32a, (1982). 1065
- 43. O. S. Wolfbeis Z. Phys. Chem. (Wiesbaden) 125, (1981). 15
- 44. C. G. Le Fèvre and R. J. W. Le Fèvre J. Chem. Soc., 957.
- 45. M. A. G. Rau Current Sci. 5, (1936) 132
- 46. M. A. G. Rau Pro. Indian Acad. Sci. 4.A. (1936), 687
- 47. C. G. Le Fèvre and R. J. W. le Fèvre J. Chem. Soc., (1937)
- 48. V. G. Vasil'ev and Ya. K. Syrkin Acta Physicochem. USSR 6, (19371088) 639
- 49. S. K. K. Jatkar and C. M. Deshbande J. indian Chem. Soc. 37, (1960) 19.
- 50. G. O. Schenck, I. von Wilucki, and C. H Krauch Chem. Ber. 95, (1962) 1409
- 51, V. S. Griffiths and J. B. Westmore J. Chem. Soc. (1963) 4941
- 52. A. M. Ghoneim, K. N. abdel-Nour, F. F. Hanna and F. Hufnagel J. Mol. Liq. 31, (1985) 41.
- 53. L. I. Kutznetsova, M. A. Kirpichenok, V. M. Bakulev and I. I. Grandberg *Izv. Timiryazevsk* Sel' sko-Khoz. Acad. 3, 169 (1991); Chem. Abastr. 115, (1991) 207806f.
- 54. R. Giri, S. S. Rathi, M. K. Machwe and V. V. S. Murti *Indian J. Pure Appl. Phys.* 26, (1988) 445.
- 55. R. Giri and M. M. Bajaj Current Sci. 62, (1992) 522.
- 56. W. Bauman, and Z. Nagy Pure Appll. (Them. 65, (1993), 1729.
- 57. S. J. Sheng and M. A. El Sayed (Them. Phys. 20, (1977), 61

- 58. P. K. McCarthy and G. J. Blanchard J. Phys. Chem. 97, (1993). 12205
- 59. P. Soon-Song, M. L. Harter, T. A. Moore and W. C. Herndon *Photochemistry and photobiology*, **14**, (1971) 521
- P-Tai Chou;, M. L. Martinez and S. L. Studer *Chemical Physics Letters* 188, (1,2), (1992)
 49
- 61. G. S. Hammond, C. A. Stout and A. A. Lomala J. Amer. Chem. Soc. 86, (1946) 3103
- 62. J. E. Leffler et E. Grunwald Rates and equilibra of organic reaction J. Wiley and sons-NewW York, (1963) 171
- 63. G. Yagil Tetrahedron 23, (1967) 2855
- 64. M. Charton Correlation Analysisin Chemistry, rercent advances N. B. Chapman and J. Shorter, ED Plenum Press, New York, N.Y., U.S.A. (1978),175
- 65. O. Wolfbeis Molecular Luminescence spectroscop. Method and applications. I. S. G Schulman (ed), J. Wiley- New York, (1985).
- 66. T Lopez Arbeloa et al J. of Luminescence 59, (1994) 369-375
- 67. L. P. Hammett J. Am. Chem. Soc. 59, (1973) 96
- 68. L. P. Hammett Trans. Faraday Soc. 34, (1938) 156
- 69. L. P. Hammett Mc. Crawn-Hill 2^e édition N. Y., (1970)
- 70. R. W. Taft J. Phys. Chem. 64, (1960) 1805
- 71. H. C. Brown and Y. Okamoto J. Am. Chem. Soc. 80, (1958) 4979
- 72. D. H. Mc Daniel et H. C. Brown J. Org. Chem. 23, (1958) 420
- 73. Y. Yukawa and Y. Tsuno Bull. Chem. Soc Jpn 32, (1959) 971
- 74. Y. Yukawa, Y. Tsuno and M. Sawada Bull. Chem. Soc. Jpn. 39, (1966) 2274
- 75. F. P. Schäefer, Dye Lasers Springer Verlag, Berlin (1977).
- 76. G. Jones II, W. R. Jackson and M. A. Halpern, Chem. Phys. Lett. 72, (1980) 391
- 77. G. Jones H. W. R. Jackson, C. Choi and W. R. Bergmark J. Phys. Chem Soc. 89, (1985) 294
- 78. G. Chu and F. Yangbo J. Cheni. Soc. Faraday Trans I 83, (1987) 1533
- 79. O. E. Polansky, F. Frater et P. Nikolok Z. Naturforssch 36a, (1981) 197
- 80. G. Frater, P. Nikolok et O. E. Polansky Z. Naturforssch 37a, (1982) 1341
- 81. T. Mukheree, K. N. Rao and J.P. Mittal Indian J. Chem. 25, (1986) 509.
- G. Jones II, W. R. Jackson S. Konoktnaporn and A. M. Halpern Opt. Commun. 33, (1980)
 315
- 83. R.F. Steiner and E. P. Kirby J. Phys. Chem. 73, (1969) 4130
- 84. L. Onsager, J. Am. Chem. Soc. 58, (1936) 1486
- 85. E. G. Mac Rae J. Phys. Chem. 61, (1957) 562

- 86. Y Ooshika J. Phys. Soc Japan 9, (1964) 562
- 87. N. G. Bakhshiev Optics and Spectroscopy 19, (1965) 299
- 88. (a) V. S. Shukla, S. C. Dutta, R. N. Buruah, G. Thyagarajan, W. Herz, N. Kumar, K. Watanabe et J. F. Blount: *Photochemistry*, 21, (1981), 725
 (b) P. Nikolov, F. Frater and S^t Minchev Z. Naturforsch 38a, (1983) 200
- JJ Aaron, M. Buna, C. Parkanyi, M. S. Antonious, A. Tine, L. Cissé j. of Fluorescence 5, (4) (1995) 121
- C. Parkanyi, M. S. Antonious, J. J. Aaron, M. Buna, A. Tine, L. Cissé Spectraoscopy letters 27 (4), (1994) 439-449
- 91. R. Pariser and R. G. Parr J. Chem. Phys 21, (1953) 466
- 92. J. A. Pople Trans. Faraday Soc. 49G, (1953) 1375
- 93. N. G. Bakshiev Opt. Spektrosk. 16, (1964) 821
- 94. P. Suppan et C. Tsiamis Spectrochhim acta 36 A, (1980) 971
- 95. M. B. Ledger et P. Suppan Spectrochhim acta 26 A, (1967) 641
- 96. P. Suppan J. Chem. Soc. 4, (1968) 3125
- 97. P. Suppan Chem. Phys. Letters 94, (1983) 272
- 98. L. Cissé, A. Tine, J. J. Aaron Bull. Chem. Soc. Ethiopie 10 (1), (1996) 33-38
- 99. G. J. Yakatan, R.J. Juneau and S. G. Schulman Analitical Chemistry 44 (6), (1972) 1044
- 100. A. Tine, J. J. Aaron Canadian Journal of Spectroscopy 29 (5), (1984) 121
- 101. T. C. Werner fluorescence News (USA) 9, (1971) 1
- 102. Schulman S. G. and Paul W. L. Fluorescence News (USA) 7, (1973) 25
- 103. G. Vernin, M. Meyer, L. Bouscasse, J. Metzger et C. Parkanyi, J.Mol. Struct. 68 (1980) 209