UNIVERSITE CHEIKH ANTA DIOP FACULTE DES SCIENCES ET TECHNIQUES DEPARTEMENT DE CHIMIE

LABORATOIRE DE CHIMIE MINERALE ET ANALYTIQUE (LACHIMIA)

THESE DE DOCTORAT D'ETAT MENTION CHIMIE DE COORDINATION SUR LE SUJET :

SYNTHESE ET ETUDE PAR SPECTROSCOPIES INFRAROUGE, RAMAN, MÖSSBAUER ET RMN DE NOUVEAUX DERIVES ORGANOSTANNIQUES ET COMPLEXES DE D'HALOGENURES METALLIQUES DE L'IONS IODATE ET D'ANIONS TETRAEDRIQUES

Présentée par Mamadou SIDIBE *Maître-Assistant en Chimie*

Soutenue le 07 Février 1998 devant le jury composé de :

P	r	és	i	d	en	t	:
-	-		-			-	-

	Abdoulaye	SAMB	Professeur	U. C. A. D. DAKAR
Meml	bres :			
	Libasse	DIOP	Professeur	U. C. A. D. DAKAR
	Rose	EHOLIE	Professeur	U. ABIDJAN-COCODY
	Guy V.	OUEDRAOGO	Professeur	U. OUAGADOUGOU
	Omar	GUEYE	Maître de Conférences	U. C. A. D. DAKAR
	Abdou S.	SALL	Maître de Conférences	U. C. A. D. DAKAR

JE DEDIE CE TRAVAIL

Α

La mémoire de mon père CHEIKHNA SIDIBE qui s'est battu toute sa vie pour ma réussite; que la terre de MBambara lui soit légère.

Ma mère PENDA SIDIBE pour son soutien moral et pour son amour incommensurable.

Α

Mon épouse BETTY SAMPIL pour sa patience, sa compréhension et son amour.

Α

Α

Mes enfants pour leur amour et leur affection.

А

Ma tante FATOU NDIAYE pour son soutien moral.

Ma grand - mère MAIMOUNA DIAKHATE pour son amour et son soutien moral.

A

A

SIDIKH TRAORE pour ses conseils et son soutien moral et financier ainsi qu' à sa famille.

A

IBRAHIMA AW THIAM, BARAME THIAM, DOUDOU THIAM, HABIB THIAM ainsi qu'à leurs enfants pour leur aide.

А

THIOMOKHO SIDIBE et sa famille pour leur soutien moral

А

Tous mes frères et soeurs pour leur solidarité.

А

Tous mes cousins et cousines et plus particulièrement FODE SIDIBE trop tôt arraché à notre affection.

A ADAMA DIAKHATE pour son aide constante de toujours.

HAMADY DIOP et sa famille

A Tous mes neveux pour leur soutien moral

Tous mes parents

А

Tous mes amis plus particulièrement à MALICK BA, IBOU SANE, CHEIKH NDONG, COLY DIOUF, JULES NDIAYE, OMAR SY et PAUL SYLVA.

Α

BADARA CAMARA et sa famille.

А

Tous les habitants du quartier Darou salam I plus particulièrement MAMADOU SARR et MOULAYE GAYE pour leurs conseils.

А

Tous les membres de l'A. S. C. GAALGUI

A

A

A il Municipal de la C

Tous les membres du Conseil Municipal de la Commune d'Arrondissement de Grand Yoff, plus particulièrement à Monsieur le Maire KHALIFA ABABACAR SALL et ses Adjoints.

А

Tous les membres du conseil d'Administration du foyer des jeunes de Grand Yoff

А

Tous mes camades militants du parti socialiste plus particulièrement ceux de la 10^{ème} coordination de Grand Yoff.

Α

Tous les membres du Comité Directeur de la Zone 7B de l'ODCAV I de Dakar

Α

Tous mes collègues du département de chimie plus particulièrement OUMAR SARR, MAKHTAR GUENE, DINORA DE BARROS et AMINATA DIASSE- SARR.

Α

Tous mes camarades de laboratoire plus particulièrement CHEIKH ABDOUL KHADIR DIOP, IBRAHIMA CISSE, HAYAT QAMAR et KOCHIKPA OKIO.

Tous les membres du personnel de l'école Privée Mixte Africaine.

A

Ce travail a été effectué au laboratoire de chimie minérale et analytique (LACHIMIA) de la Faculté des Sciences et Techniques de l'Université CHEIKH ANTA DIOP de Dakar sous la direction du Professeur Libasse DIOP; il m'a accueilli dans son laboratoire, initié à la recherche et réussi à me faire aimer ce travail.

Merci mon grand

Nous remercions le Professeur Abdoulaye SAMB de la Faculté des Sciences et Techniques de l'Université CHEIKH ANTA DIOP de Dakar d'avoir accepté de présider le jury de cette thèse.

Nos remerciements vont aussi à:

- Monsieur GUY VENANCE OUEDRAOGO Professeur à l'Université de Ouagadougou d'avoir accepté d'être un des rapporteurs de cette thèse et aussi d'être membre du jury.

- Madame ROSE EHOLIE Professeur à l'Université d'Abidjan- Cocody d'avoir accepté de juger ce travail.

- Monsieur OMAR GUEYE Maître de Conférences à la Faculté des Sciences et Techniques de l'Université CHEIKH ANTA DIOP de Dakar d'avoir accepté d'être un des rapporteurs de cette thèse et aussi d'être membre du jury.

- Monsieur ABDOU SALAM SALL Maître de Conférences à la Faculté des Sciences et Techniques de l'Université CHEIKH ANTA DIOP de Dakar d'avoir accepté de juger ce travail.

- Messieurs M. VIDALI et C. PECILE Professeurs à l'Université de PADOVA (ITALIE) pour m'avoir permis d'utiliser leur spectrophotomètre infrarouge.

- Messieurs BERNARD MAHIEU et UMBERTO RUSSO respectivement Professeurs à l'Université de Louvain La Neuve et à l'Université de PADOVA (ITALIE) pour m'avoir enregistré les spectres Mössbauer des composés de l'étain (IV).

- Madame le Professeur A. SANCHEZ et Monsieur le Professeur J. J. AARON respectivement des Universités de Santiago de Compostela (ESPAGNE) et de Paris 7 (ITODYS) (FRANCE) pour m'avoir enregistré les spectres Raman.

- Monsieur SERIGNE AMADOU NDIAYE Maître de Conférences à la Faculté des Sciences et Techniques de l'Université CHEIKH ANTA DIOP de Dakar d'avoir mis à ma disposition son ordinateur pour le traitement de mon manuscrit.

- L'Académie des Sciences du Tiers Monde (TWAS) (Trieste- ITALIE) (Grant number 93318 RG/ AF/ AC) pour son soutien financier.

- Monsieur OUSMANE TANOR DIENG Ministre d'Etat chargé des Services et Affaires Présidentielles et Premier Secrétaire du parti socialiste d'avoir pris entièrement en charge tous les frais de confection de la thèse.

- Monsieur KHALIFA ABABACAR SALL Ministre chargé des Relations avec les Assemblées pour son soutien moral, matériel et financier.

- Toutes les secrétaires de l'administration centrale plus particulièrement Medames AWA BEYE et MATEL KANE WANE. Ce travail a été effectué au laboratoire de chimie minérale et analytique (LACHIMIA) de la Faculté des Sciences et Techniques de l'Université CHEIKH ANTA DIOP de Dakar sous la direction du Professeur Libasse DIOP; il m'a accueilli dans son laboratoire, initié à la recherche et réussi à me faire aimer ce travail.

Merci mon grand

Nous remercions le Professeur Abdoulaye SAMB de la Faculté des Sciences et Techniques de l'Université CHEIKH ANTA DIOP de Dakar d'avoir accepté de présider le jury de cette thèse.

Nos remerciements vont aussi à:

- Monsieur GUY VENANCE OUEDRAOGO Professeur à l'Université de Ouagadougou d'avoir accepté d'être un des rapporteurs de cette thèse et aussi d'être membre du jury.

- Madame ROSE EHOLIE Professeur à l'Université d'Abidjan- Cocody d'avoir accepté de juger ce travail.

- Monsieur BERNARD MAHIEU Professeur à l'Université de Louvain La Neuve (BELGIQUE) pour m'avoir enregistré une partie des spectres Mössbauer des composés de l'étain (IV) et aussi d'être membre du jury.

- Monsieur OMAR GUEYE Maître de Conférences à la Faculté des Sciences et Techniques de l'Université CHEIKH ANTA DIOP de Dakar d'avoir accepté d'être un des rapporteurs de cette thèse et aussi d'être membre du jury.

- Monsieur ABDOU SALAM SALL Maître de Conférences à la Faculté des Sciences et Techniques de l'Université CHEIKH ANTA DIOP de Dakar d'avoir accepté de juger ce travail.

- Messieurs M. VIDALI et C. PECILE Professeurs à l'Université de PADOVA (ITALIE) pour m'avoir permis d'utiliser leur spectrophotomètre infrarouge.

- Monsieur UMBERTO RUSSO Professeur à l'Université de PADOVA (ITALIE) pour m'avoir enregistré une partie des spectres Mössbauer des composés de l'étain (IV). - Madame le Professeur A. SANCHEZ et Monsieur le Professeur J. J. AARON respectivement des Universités de Santiago de Compostela (ESPAGNE) et de Paris 7 (ITODYS) (FRANCE) pour m'avoir enregistré les spectres Raman.

- Monsieur SERIGNE AMADOU NDIAYE Maître de Conférences à la Faculté des Sciences et Techniques de l'Université CHEIKH ANTA DIOP de Dakar d'avoir mis à ma disposition son ordinateur pour le traitement de mon manuscrit.

- L'Académie des Sciences du Tiers Monde (TWAS) (Trieste- ITALIE) (Grant number 93318 RG/AF/AC) pour son soutien financier.

- Monsieur OUSMANE TANOR DIENG Ministre d'Etat chargé des Services et Affaires Présidentielles et Premier Secrétaire du parti socialiste d'avoir pris entièrement en charge tous les frais de confection de la thèse.

- Monsieur KHALIFA ABABACAR SALL Ministre chargé des Relations avec les Assemblées pour son soutien moral, matériel et financier.

- Toutes les secrétaires de l'administration centrale plus particulièrement Medames AWA BEYE et MATEL KANE WANE.

GLOSSAIRE

Me = Méthyl

Bu = Butyl

Ph = Phényl

TMN = ion Tétraméthylammonium

TEN = ion Tétraéthylammonium

RMN = Résonnance Magnétique Nucléaire

i. r. = infrarouge

SOMMAIRE

		Page
INTI	RODUCTION GENERALE	4
PΔR		
<u>. </u>	-SYNTHESE DESLIGANDES ET DES COMPLEXES	7
	-INSTRUMENTATION	42
		1 6000
MET	HODE D'ATTRIBUTION	43
	-Spectroscopie infrarouge et Raman	44
	-Spectroscopie Mössbauer	46
	-Spectroscopie Mössbauer à température variable	47
	-Spectroscopie RMN	48
ETU	DE SPECTROSCOPIQUE	49
I°/	COMPLEXES D'ADDITION	51
I-1°/	$H_2PO_2TMN.MX_2$ (M = Zn, Cd; X = Cl, Br)	52
I -2°/	2R' ₂ A'O ₂ TMN.3MX ₂ (R' = H, Me; A' = P, As; M = Zn, Cd; X = Cl, Br)	54
I-3°/	$Me_2AsO_2NR_4.nMX_2$ (R = Me, Et; M = Hg, Cd, Sn; X = Cl, Br; n = 2, 3)	57
-4°/	R´A´O ₃ NR ₄ .nMX ₂ (R´= H, Ph; A´ = P, As; R = Et, Me; n = 3, 4;	60
	M = Hg, Cd; X = Cl, Br	
I-5°/	$NH_2C_6H_4AsO_3(TMN)_2.nMX_2$ (M = Zn, Cd; X = Cl, Br; n = 2, 3, 4)	60
I-6°/	$IO_3(TEN)_2.nHgCl_2$ (n = 1, 2)	65
11°/	COMPLEXES DE SUBSTITUTION - ADDITION	68
lla-1°	/ NR ₄ (R' ₂ A'O ₂) ₃ M.nMX ₂ (R = Me, Et; R' = Me, Ph; A' = P, As;	69
	n = 1, 2, 3; M = Zn, Mn; X = Cl, Br)	
lla-2°	/(TMN) ₂ (R' ₂ A'O ₂) ₄ M.nMX ₂ (R' = H, Me; A' = P, As;	72
	n = 2, 4, 6; M = Zn, Cd; X = Cl, Br)	
lla-3°	/ $(TMN)_2(R'A'O_3)_2M.nMX_2$ (R' = H, Ph; A' = P, As;	76
	M = Zn, Hg, Cd; n = 2, 6; X = Cl, Br)	
lla-4°	$T(TMN)_2RASO_3(RASO_3M).2MX_2 (R' = Ph, NH_2C_6H_4;$	80
	M = Hg, Cd; X = Cl, Br	

- 2 -

$Ha-5^{\circ}/(R_4N)_2(NH_2C_6H_4AsO_3)_2M.nMX_2$ (R = Me, Et; M = Zn, Hg, Cd;	80
X = Cl, Br; n = 1, 2, 3, 4)	
IIb% COMPLEXES DE SUBSTITUTION TOTALE	84
IIb-1 (Ph ₂ PO ₂) ₂ Hg	85
IIb-2 RAsO ₃ Hg (R = Ph, $NH_2C_6H_4$, M = Hg, Cd, Zn)	85
IIIº/ DERIVES ORGANOSTANNIQUES	90
III-1°/ R' ₂ A'O ₂ SnR ₂ (R' = Ph, H, Me; A' = P, As; R = Me, Bu, Ph)	91
III-2°/ Me ₂ AsO ₂ SnR ₂ CI	93
III-3º/ R'A'O ₃ SnR ₂ (R' = H, Ph, NH ₂ C ₆ H ₄ ; A´= P, H; R = Me, Bu)	97
III- 4°/ $Ph_2PO_2SnR_3$ (R = Me, Bu)	101
III-5º/ Ю ₃ SnPh ₃	107
III-6°/HPO ₄ (TMN) ₂ .3SnPh ₃ CI	109
III-7°/H2PO2 TMN .2SnPh3CI	109
III-8°/ $(TMN)_2(R'_2A'O_2)_4SnR_2(SnR_2Cl_2)_2 (R' = H, Me; A' = P, As;$	113
R = Me, Ph)	
III-9°/ (Me ₂ AsO ₂) ₂ SnPh ₂ (SnPh ₂ Cl ₂) ₂	115
III-10°/H2PO2TMNSnPh2Cl2.H2PO2SnPh2Cl	118
III-11°/(Me ₂ AsO ₂) ₂ SnBu ₂ .Me ₂ AsO ₂ SnBu ₂ Cl	120
IV°/ COMPLEXES AVEC SnX_4 (X = CI, Br)	124
$IV-1^{\circ}/R'_{2}A'O_{2}NR_{4}SnX_{4}$ (R' = H, Ph, Me; A' = P, As; R = Me, Et; X = Cl,	Br) 125
$IV-2^{\circ}/(IO_3TEN)_2SnCl_4.H_2O$	132
IV-3°/ $(TMN)_2PhAsO_3(SnCl_4)_{1.5}$	135
$IV-4^{\circ}/(TEN)_2NH_2C_6H_4AsO_3(SnCl_4)_2$	138
IV-5°/ HPO ₄ (TEN) ₂ (SnX ₄) _{1,5} (X = Cl, Br)	141
CONCLUSION GENERALE	145
BIBLIOGRAPHIE	148

INTRODUCTION GENERALE

Une mise au point sur le comportement des oxoanions agissant comme ligandes a été publiée par HATHAWAY (1-4). ROSOLOVSKII, POTIER et leurs collaborateurs (5-9) ont étudié le comportement de l'ion CIO_4^- dans les dérivés perchlorato de type $M(CIO_4)_n$: [Cu(CIO_4)₂.(H₂O)], Fe(CIO_4)₃, Co(CIO_4)₂, Ni(CIO_4)₂, Cu(CIO_4)₂.

Des dérivés chromato (KFe(CrO₄)₂.(H2O) (10), molybdato et perrhenato [Nd(MoO₄)(ReO₄)] (11), hydrogénophosphato [Cs₂(Mo₂(HPO₄)₄.(H₂O)] (12), phosphato et pyrophosphato [Na(Th(PO₄)(P₂O₇)₂] (13), sulfato (NH₄)₃[In(SO₄)₃] (14) ont été étudiés.

Tous ces composés de la littérature ne sont que des substitutions totales d'halogénures métalliques par les différents oxoanions.

La structure de complexes d'oxoanions tétraèdriques substitués tel que $H_2PO_2^-$ avec les dérivés organostanniques a été décrite par CHIVERS et coll. (15a). Les structures aux rayons X de complexes oxalato tels que $(TEN)_2C_2O_4.2SnX_4$ (X = Cl, Br) ont été décrites par SKAPSKI et coll. (15b).

Dans notre laboratoire nous avons initié depuis quelques années l'étude du pouvoir coordinant d'oxoanions tétraèdriques non substitués ou pyramidaux tels

que SO_4 = (16, 17), SeO_4 = (18), MoO_4 = (19), WO_4 =, SO_3 = (20), IO_3 - (21, 22), d'oxoanions tétraèdriques substitués tels que $PhSO_3$ - (18, 23), $PhAsO_3$ = (22, 24), HPO_3 = (22, 25), H_2PO_2 - (16), Ph_2PO_2 - (21, 22) ainsi que l'ion oxalate(20, 23); les

cations antagonistes utilisés sont le tétraméthyl et le tétraéthylammonium.

Ces études nous ont permis de synthétiser des familles de composés jusqu'ici inconnues dérivant de l'action de ces sels avec les halogénures métalliques et dérivés organostanniques.

SARR et DIOP (26) ont ainsi montré la nature bichélatante du séléniate et la nature mono et bi-unidentate de l'anion $PhSO_3^-$. La nature polychélatante et biunidentate de l'ion sulfate a été mise en évidence par DIASSE- SARR et DIOP (27). GUEYE et coll. (28) ont montré la nature bichélatante et bi- unidentate de l'oxalate. DIOP et coll. (29) ont fait l'étude des dérivés triphénylstannates d'oxoanions tétraèdriques substitués et non substitués tels que $H_2PO_2^-$, $Ph_2PO_2^-$ CrO₄= et établi leur nature polydentate.

Dans ce travail nous étudions le comportement en tant que ligandes d'oxoanions tétraèdriques substitués ou pyramidaux tels que $H_2PO_2^-$, $Ph_2PO_2^-$, $PhAsO_3^=$, $HPO_3^=$, $NH_2C_6H_4AsO_3^=$ et IO_3^- en synthétisant de nouveaux complexes de ces anions avec des halogénures de métaux et des dérivés organostanniques. Les cations antagonistes utilisés sont le tétraméthyl et le tétraéthylammonium.

Les composés isolés sont étudiés par spectroscopie infrarouge et Raman dans le cas des complexes de tétrahalogénure d'étain, Mössbauer pour tous les composés d'étain et par RMN pour les dérivés solubles dans les solvants appropriés.

La symétrie de l'anion et celle de l'acide de LEWIS dans le cas où il est possible de la déterminer par spectroscopie permettra de proposer une structure pour le complexe ou le dérivé synthétisé.

Le but de ce travail, outre son intérêt structural indéniable, est de synthétiser de nouveaux complexes organostanniques susceptibles d'applications.

SYNTHESE DES LIGANDES ET DES COMPLEXES

Les différents sels utilisés $H_2PO_2TMN.H_2O$; $Ph_2PO_2TMN.H_2O$; $Ph_2PO_2TEN.2H_2O$; $Me_2AsO_2TMN.H_2O$; $Me_2AsO_2TEN.2H_2O$; $PhAsO_3HTMN.5/4H_2O$; $PhAsO_3HTEN.2H_2O$; $HPO_3TMN_2.H_2O$; $HPO_3TEN_2.3H_2O$; $NH_2C_6H_4AsO_3HTMN.H_2O$; $NH_2C_6H_4AsO_3HTEN.2H_2O$; $IO_3TEN.5/2H_2O$ sont obtenus par neutralisation des acides H_2PO_2H , Ph_2PO_2H , Me_2AsO_2H , $PhAsO_3H_2$, HPO_3H_2 , $NH_2C_6H_4AsO_3H_2$ et IO_3H respectivement par les bases TMNOH et TENOH en solution aqueuse 20% ou 30% (tous sont des produits Merck).

Les solutions obtenues à la neutralisation sont évaporées sous vide (cela **peut** durer plusieurs jours). Les poudres obtenues sont lavées à l'éther puis séchées sur P_2O_5 dans un dessicateur.

Les analyses élémentaires donnent les résultats sulvants:

$L_1 = H_2 PO_2 TMN.H_2 O$

%calculé: C = 30,57	H = 10,19	N = 08,91
%trouvé: C = 30,94	H = 09,83	N = 08,78

$L_2 = Ph_2PO_2TMN.H_2O$

%calculé: C = 62,13 H = 07,77 N = 04,53%trouvé: C = 62,46 H = 08,03 N = 04,76

$L_3 = Ph_2PO_2TEN.2H_2O$

% calculé: C = 62,66 H = 08,88 N = 03,65**% trouvé:** C = 62,48 H = 08,74 N = 03,56

$L_4 = Me_2AsO_2TMN.H_2O$

%calculé: C = 31,45 H = 08,74 N = 06,11 %trouvé: C = 31,12 H = 08,43 N = 06,49

$L_5 = Me_2AsO_2TEN.2H_2O$

%calculé: C = 39,61 H = 09,91 N = 04,62%trouvé: C = 39,14 H = 09,12 N = 04,88

$L_6 = PhAsO_3HTMN.5/4H_2O$

%calculé: C = 40,34 H = 06,89 N = 04,70 %trouvé: C = 40,87 H = 06,34 N = 04,56

$L_7 = PhAsO_3HTEN.2H_2O$

%calculé: C = 45,79 H = 08,19 N = 03,82 **%trouvé**: C = 45,36 H = 08,79 N = 03,98

$L_8 = HPO_3TMN_2.H_2O$

%calculé: C = 39,02 H = 10,97 N = 11,38 %trouvé: C = 39,16 H = 10,42 N = 11,59

$L_9 = HPO_3 TEN_2.3H_2O$

%calculé: C = 48,73 H = 11,92 N = 07,10 **%trouvé:** C = 48,39 H = 11,45 N = 07,34

$L_{10} = NH_2C_6H_4AsO_3HTMN.H_2O$

%calculé: C = 38,97 H = 06,82 N = 09,09 %trouvé: C = 38,16 H = 06,24 N = 08,94

$L_{11} = NH_2C_6H_4AsO_3HTEN.2H_2O$

%calculé: C = 43,99 H = 08,12 N = 07,33 %trouvé: C = 43,16 H = 08,39 N = 07,46

$L_{12} = IO_3 TEN.5/2H_2O$

%calculé:	C = 27,43	H = 7,14	N = 3,99	l = 36,27
%trouvé:	C = 27,91	H = 7,14	N = 3,96	I = 36,38

Les complexes et dérivés ont été obtenus par mélange du sel intialement dissous dans l'éthanol absolu avec une solution éthanolique d'halogénures métalliques ou de SnR_XCl_{4-X} (R = Me, Bu, Ph; x = 2, 3;). On obtient ainsi soit un précipité soit une solution limpide qui est agitée pendant plusieurs heures. Le précipité est filtré et tiré sous vide, la poudre obtenue est lavée dans un solvant approprié puis séchée sur P₂O₅. La solution limpide est laissée en évaporation lente pendant quelques jours et les cristaux obtenus sont lavés à l'éther et recristallisés dans un solvant approprié. Dans le cas des complexes de SnX_4 (X = Cl, Br), les tétrahalogénures d'étain sont dissous dans le benzène. Les analyses élémentaires de ces composés donnent les résultats suivants:

H₂PO₂TMN.ZnCl₂

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁	1,917	éthanol			%C: 17,43(17,85)
					%H : 05,08(04,96)
ZnCl ₂	1,917	éthanol	poudre	blanche	%N:05,08(04,96)
					%CI: 25,78(25,35)

$H_2PO_2TMN.ZnBr_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires 、calc.(trouv.)
L ₁	1,125	éthanol			%C: 13,17(13,30)
					%H: 03,84(03,75)
ZnBr ₂	1,125	éthanol	poudre	blanche	%N: 03,84(03,88)
					%Br: 43,91(43,62)

$H_2PO_2TMN.CdBr_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
Lı	0,969	éthanol			% C : 11,66(11,69)
					%H : 03,40(03,05)
CdBr ₂	0,969	éthanol	poudre	blanche	%N: 03,40(03,90)
					%Br : 38,89(38,61)

$2Me_2AsO_2TMN.3ZnCl_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₄	2,675	éthanol			%C: 17,33(17,60)
					%H: 04,33(03,99)
ZnCl ₂	2,675	éthanol	poudre	blanche	%N:03,37(02,82)
					%Br: 25,64(25,10)

$2Me_2AsO_2TMN.3ZnBr_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₄	1,216	éthanol			%C: 13,13(12,82)
					%H: 03,28(03,13)
ZnBr ₂	4,864	éthanol	poudre	blanche	%N: 02,55(02,29)
					%Br : 43,76(43,76)

$2Me_2AsO_2TMN.3CdBr_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L4	2,180	éthanol			%C: 11,62(11,25)
					%H: 02,90(02,80)
CdBr ₂	2,180	éthanol	poudre	blanche	%N: 02,25(02,26)
					%Br: 38,73(38,66)

$2H_2PO_2TMN.3CdBr_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁	1,292	éthanol			%C: 08,76(08,89)
					%H : 02,55(02,91)
CdBr ₂	5,168	éthanol	poudre	blanche	%N: 02,55(02,95)
					%Br: 43,82(43,39)

$Me_2AsO_2TMN.2HgBr_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₄	1,653	éthanol			%C: 07,71(08,21)
					%H : 01,92(01,90)
HgBr ₂	1,653	éthanol	poudre	blanche	%N: 01,50(01,56)
					%Hg: 43,07(43,21)

Me₂AsO₂TMN.2HgCl₂

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₄	1,388	éthanol			%C: 09,55(09,89)
					%H: 02,38(02,28)
HgCl ₂	5,552	éthanol	poudre	blanche	%N: 01,85(01,95)
					%CI: 18,83(18,64)

Me₂AsO₂TEN.2CdBr₂

Réactifs	Quantités (mmoles)	Solvants utillsés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₅	1,120	éthanol			%C: 14,78(14,89)
					%H: 03,20(03,28)
CdBr ₂	2,240	éthanol	poudre	blanche	%N: 01,72(01,95)
					%Br: 39,42(39,64)

Me₂AsO₂TEN.2SnCl₂

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₅	1,100	éthanol			%C: 18,56(18,43)
					%H : 04,02(04,28)
SnCl ₂	2,200	éthanol	poudre	blanche	%N:02,17(02,35)
					%CI: 21,97(21,76)

$PhAsO_3TMN_2.2ZnBr_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv)
L ₆	1,600	éthanol			% C: 21,05(21,24)
					%H: 03,63(03,48)
ZnBr ₂	3,200	éthanol	poudre	blanche	%N: 03,50(03,63)
					%Br: 40,10(39,98)

HPO3TEN2.2HgCl2

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
Lg	1,326	éthanol			%C: 21,74(21,54)
11-01			_		%H: 04,64(04,38)
HgCl ₂ 2,6	2,652	2,652 éthanol	poudre	blanche	%N: 03,17(03,45)
					%CI: 16,08(16,21)

$NH_2C_6H_4AsO_3(TMN)_2.2ZnBr_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁₀	0,780	éthanol			%C: 20,66(20,33)
	2,340 ét	éthanol	poudre	blanche	%H : 03,69(03,47)
ZnBr ₂					%N: 05,16(05,04)
2					%Br: 39,36(39,02)
					%Zn: 15,99(16,29)

$NH_2C_6H_4AsO_3(TMN)_2.2ZnCl_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁₀	1,230	éthanol			%C : 26,43(26,72)
7-01	0.450	(Al 1			%H: 04,72(04,66) %N: 06,60(06,73)
211012	6,150	ethanoi	pouare	Dianche	%CI: 22,34(22,36)
					%Zn: 20,45(20,97)

$Me_2AsO_2TMN.3CdCl_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₄	1,233	éthanol			%C: 09,45(09,56)
0401		éthanol à			%H: 02,36(02,74)
Caci ₂	4,932	chaud	poudre	blanche	%N: 01,83(02,02)
		on a d			%CI: 27,98(27,28)

$Me_2AsO_2TEN.3HgCl_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₅	1,200	éthanol			% C: 11,10(11,24)
					%H: 02,40(02,28)
HgCl ₂	4,800	éthanol	poudre	blanche	%N: 01,29(01,45)
					%CI: 19,70(19,64)

$PhAsO_3(TMN)_2.3CdCl_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₆	1,455	éthanol			%C: 18,70(19,05)
CdCl ₂	1,455	éthanol à chaud	poudre	blanche	%H: 03,22(03,42) %N: 03,11(02,80) %CI: 23,71(23,28) %Cd: 37,54(37,47)

$PhAsO_3(TEN)_2.3CdCl_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₇	1,160	éthanol			%C: 26,13(26,05)
CdCla	2,320	éthanol à	poudre	blanche	%H: 04,45(04,41)
00012					%N: 02,77(02,89)
					%CI: 21,08(21,38)
					%Cd: 33,38(33,57)

$HPO_3(TMN)_2.3CdBr_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
Lg	2,200	éthanol			%C: 09,18(09,35)
CdBr ₂	6,600	éthanol	poudre	blanche	%H: 02,39(02,42) %N: 02,68(02,60)
					%Br: 45,92(45,78)
					%Cd: 32,26(32,47)

$NH_2C_6H_4AsO_3(TMN)_2.3CdBr_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁₀	0,738	éthanol			%C: 14,23(114,38)
CdBr ₂	3,690	éthanol	poudre	blanche	%H: 02,54(02,24) %N: 03,55(03,16) %Br: 40,67(40,73) %Cd: 28,57(28,53)

$PhAsO_3(TMN)_2.4HgBr_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₆	1,263	éthanol			% C: 09,38(09,52)
					%H: 01,62(01,85)
HgBr ₂	5,052	éthanol	poudre	blanche	%N: 01,56(01,80)
					%Hg: 44,81(44,21)

$Me_2AsO_2TEN.4CdCl_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₅	0,750	éthanol			% C : 11,99(11,75)
CdCl ₂	3,000	éthanol	poudre	blanche	%H: 02,60(02,43) %N: 01,40(01,50) %CI: 28,38(28,28)
					% Cd : 44,94(44,47)

$PhAsO_3(TEN)_2.4HgBr_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₇	0,768	éthanol			%C: 13,88(13,47)
					%H: 02,36(02,50)
HgBr ₂	3,072	éthanol	pou dr e	blanche	%N: 01,47(01,52)
					%Hg: 42,17(42,00)

$PhAsO_3(TMN)_2.4CdCl_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₆	1,150	éthanol			%C: 15,53(15,17)
CdCl ₂	4,600	éthanol à chaud	poudre	blanche	%H: 02,68(03,16) %N: 02,59(02,99) %CI: 26,26(26,85) %Cd: 41,57(41,74)

$HPO_3(TEN)_2.4CdCl_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
Lg	2,400	éthanol			%C: 17,88(17,47)
CdCl ₂	7,200	éthanol à chaud	poudre	blanche	%H: 03,82(03,36) %N: 02,61(02,79) %CI: 26,45(26,65) %Cd: 41,88(41,94)

$HPO_3(TMN)_2.4CdBr_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₈	2,450	éthanol			%C: 07,28(07,37)
CdBr ₂	9,800	éthanol	poudre	blanche	%H: 01,89(01,76) %N: 02,12(02,29) %Br: 48,57(48,75) %Cd: 34,12(34,36)

$NH_2C_6H_4AsO_3(TMN)_2.4CdCl_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁₀	0,743	éthanol			%C: 15,29(15,68)
CdCl ₂	3,175	éthanol à chaud	poudre	blanche	%H: 02,91(02,87) %N: 03,82(03,76) %CI: 25,85(25,69) %Cd: 40,92(40,56)

$IO_3TEN.2HgCl_2$

Réactifs	Quantités (mmoles)	Solvants utílisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁₂	3,200	éthanol			%C: 11,32(10,99)
HgCl ₂	9,600	éthanol	poudre	blanche	%H: 02,35(02,13) %N: 01,65(01,45) %CI: 16,74(16,36) %Hg: 47,28(47,44)

IO3TEN.HgCl2

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁₂	5,200	éthanol			%C: 16,62(16,69)
HgCl ₂	2,600	éthanol	poudre	blanche	%H: 03,46(03,16) %N: 02,42(02,16) %CI: 12,31(12,02) %Hg: 34,79(35,17)

$TEN(Ph_2PO_2)_3Zn.ZnCl_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₃	1,420	éthanol			% C: 53,75(53,81)
			poudre	blanche	%H: 05,02(05,12)
ZnCl ₂	2,840	éthanol			%N: 01,42(01,46)
					%CI: 07,22(07,43)
					%Zn: 13,23(13,39)

$\texttt{TEN}(\texttt{Ph}_2\texttt{PO}_2)_3\texttt{Zn}.\texttt{Zn}\texttt{Br}_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₃	1,324	éthanol			%C: 49,30(49,27)
ZnBr ₂	2,648	éthanol	poudre	blanche	%H: 04,66(04,69) %N: 01,30(01,36) %Br: 14,94(15,31) %Zn: 12,10(12,10)

$TMN(Me_2AsO_2)_3Mn.3MnCl_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₄	2,293	éthanol			%C: 13,07(13,22)
Mach		(., .)			%H: 03,26(03,39)
MnCl ₂	2,293 éthanol	poudre	blanche	%N: 01,52(01,07)	
					%CI: 23,21(22,98)

TMN(Me₂AsO₂)₃Mn.2MnBr₂

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₄	1,880	éthanol			%C: 12,37(12,72)
Max Da					%H : 03,10(03,19)
MnBr ₂	1,880	éthanol	poudre	blanche	%N: 01,44(01,86)
					%Br: 33,01(33,14)

$TMN(Me_2AsO_2)_3Mn.3MnBr_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₄	1,243	éthanol			%C: 10,13(09,69)
MaDr	4.070				%H : 02,53(03,13)
MnBr ₂	4,972	ethanol	poudre	blanche	%N: 01,18(01,63)
					%Br : 40,52(40,52)

$(\mathsf{TMN})_2(\mathsf{H}_2\mathsf{PO}_2)_4\mathsf{Cd}.2\mathsf{CdCl}_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L1	0,917	éthanol			%C: 10,82(10,51)
	3,668 éthanc	éthanol à	,	blanche	%H : 03,60(03,93)
CdCl ₂		chaud	poudre		%N: 03,15(02,83)
		ondud			%CI: 16,00(15,85)

$(\mathsf{TMN})_2(\mathsf{H}_2\mathsf{PO}_2)_4\mathsf{Cd}.4\mathsf{CdCl}_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁	1,583	éthanol			% C : 07,65(07,94)
CdCl ₂ 1,583		éthanol à	poudre	blanche	%H: 02,55(02,83)
	1,583				%N: 02,23(02,53)
		uu			%CI: 22,64(22,31)

$(TMN)_2(Me_2AsO_2)_4Cd.4CdCl_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₄	2,489	éthanol			%C: 12,45(12,89)
		éthanol à			%H : 03,11(03,09)
CaCl ₂	2,489	chaud	poudre	blanche	%N: 01,81(01,44)
		0.100			%CI: 18,42(18,41)

$(TMN)_2(Me_2AsO_2)_4Zn.4ZnBr_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₄	2,820	éthanol			%C: 11,56(11,54)
7.0.					%H: 02,88(02,81)
ZnBr ₂	2,820 éthanol	éthanol	poudre	blanche	%N: 01,68(01,71)
					%Br: 38,53(38,58)

$(TMN)_2(PhAsO_3)_2Cd.2CdBr_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₆	1,343	éthanol			%C: 19,91(19,81)
CdBr ₂	1,343	éthanol	poudre	blanche	%H: 02,82(02,92) %N: 02,32(02,12) %Br: 26,55(26,65) %Cd: 27,98(27,88)

$(TMN)_2(PhAsO_3)_2Cd.6CdCl_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₆	0,717	éthanol			% C : 13,64(13,78)
	2,868	éthanol	poudre	blanche	%H : 01,93(01,89)
CdBr ₂					%N: 01,59(01,39) %CI: 24 19(23 99)
					%Cd: 44,68(44,95)

$(\mathsf{TMN})_2\mathsf{PhAsO}_3(\mathsf{PhAsO}_3\mathsf{Hg})_2.2\mathsf{HgCl}_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₆	1,150	éthanol			%C: 18,44(18,22)
HgCl ₂	4,600	éthanol	poudre	blanche	%H: 02,30(02,55) %N: 01,65(01,97) %CI: 08,39(08,77) %Hg: 47,42(47,90)

$(\mathsf{TEN})_2 \mathsf{NH}_2\mathsf{C}_6\mathsf{H}_4\mathsf{AsO}_3 (\mathsf{NH}_2\mathsf{C}_6\mathsf{H}_4\mathsf{AsO}_3\mathsf{Cd})_2.2\mathsf{CdBr}_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁₁	1,132	éthanol			%C : 24,36(24,69)
CdBr ₂	1,132	éthanol	poudre	blanche	%H: 03,46(03,94) %N: 04,18(04,07) %Br: 19,11(18,98) %Cd: 26,85(26,48)

$(\texttt{TMN})_2(\texttt{NH}_2\texttt{C}_6\texttt{H}_4\texttt{AsO}_3)_2\texttt{Zn}.\texttt{Zn}\texttt{Br}_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁₀	1,320	éthanol			% C : 27,65(27,42)
ZnBr ₂	1,320	éthanol	poudre	blanche	%H: 04,14(04,39) %N: 06,45(06,22) %Br: 18,43(18,54) %Zn: 14,97(14,76)

$(\mathsf{TMN})_2(\mathsf{NH}_2\mathsf{C}_6\mathsf{H}_4\mathsf{AsO}_3)_2\mathsf{Zn}.2\mathsf{Zn}\mathsf{Cl}_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁₀	0,692	éthanol			%C : 26,28(26,08)
ZnCl ₂	2,080	éthanol	poudre	blanche	%H: 03,93(03,57) %N: 06,11(06,23) %CI: 15,51(15,44) %Zn: 21,30(21,79)

$(\texttt{TEN})_2(\texttt{NH}_2\texttt{C}_6\texttt{H}_4\texttt{AsO}_3)_2\texttt{Hg.2HgCl}_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L _{1 1}	1,044	éthanol			%C: 23,44(23,02)
HgCl ₂	1,044	éthanol	poudre	blanche	%H: 03,62(03,88) %N: 03,90(03,60) %CI: 09,90(09,93) %Hg: 41,98(42,00)

$(\texttt{TEN})_2(\texttt{NH}_2\texttt{C}_6\texttt{H}_4\texttt{AsO}_3)_2\texttt{Hg}.\texttt{3HgCl}_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁₁	1,077	éthanol			%C: 19,70(19,54)
HgCl ₂	3,230	éthanol	poudre	blanche	%H: 03,04(02,96)
					%N: 03,28(03,18)
					%CI: 12,49(12,57)
					%Hg: 47,06(46,91)

$(\mathsf{TEN})_2(\mathsf{NH}_2\mathsf{C}_6\mathsf{H}_4\mathsf{AsO}_3)_2\mathsf{Cd}.3\mathsf{CdBr}_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁₁	0,654	éthanol			% C : 20,74(20,68)
CdBr ₂	1,960	éthanol	poudre	blanche	%H: 03,21(03,48) %N: 03,45(03,42) %Br: 29,63(29,54) %Cd: 27,76(27,59)
$(\texttt{TEN})_2(\texttt{NH}_2\texttt{C}_6\texttt{H}_4\texttt{AsO}_3)_2\texttt{Cd}.4\texttt{CdCl}_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁₁	0,934	éthanol			% C : 21,87(21,45)
CdCl ₂	2,800	éthanol à chaud	poudre	blanche	%H: 03,38(03,65) %N: 03,64(03,90) %CI: 18,49(18,25) %Cd: 36,59(36,38)

$(TEN)_2(NH_2C_6H_4AsO_3)_2Hg.4HgCl_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁₁	0,670	éthanol			% C : 17,00(16,69)
	3 350	éthanol	poudre	blanche	%H: 02,63(02,74)
HaClo					%N: 02,83(02,54)
<u>-</u> <u>-</u>	0,000				%CI: 14,36(14,18)
					%Cd: 50,74(51,07)

$(Ph_2PO_2)_2Hg$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₃	1,200	éthanol			%C: 68,96(69,17)
					%H : 04,79(04,92)
HaCla	2 400	éthanol	poudre	blanche	%N:-(-)
	2,400				%Br:-(-)
					%Hg: 48,03(12,10)

PhAsO₃Hg

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁₇	1,320	éthanol			%C : 17,97(17,42)
HgBr ₂	1,320	éthanol	poudre	blanche	%H: 01,24(01,39) %N:-(-) %Br:-(-) %Hg: 50,08(49,94)

$NH_2C_6H_4AsO_3Zn$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁₁	1,460	éthanol			%C: 25,72(25,42)
ZnBr ₂	4,380	éthanol	poudre	blanche	%H: 02,14(02,39) %N: 4,98(04,52) %Br: -(-) %Zn: 23,22(14,76)

$NH_2C_6H_4AsO_3Cd$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁₁	1,520	éthanol			%C: 21,99(21,42)
CdBr ₂	4,560	éthanol á chaud	poudre	blanche	%H: 01,83(02,04) %N: 04,27(04,52) %Br: -(-) %Cd: 34,33(34,76)

$(Ph_2PO_2)_2SnMe_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₃	6,106	éthanol			%C: 53,54(53,96)
Sn Me ₂ Cl ₂	3,053	éthanol	poudre	blanche	%H:04,46(04,51) %N:-(-) %Cl:-(-) %Sn:20,37(20,58)

$(Ph_2PO_2)_2SnBu_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₃	2,460	éthanol			%C : 57,59(57,73)
SnBu ₂ Cl ₂	1,230	éthanol	poudre	blanche	%H:05,59(05,99) %N:-(-) %Cl:-(-) %Sn:17,80(17,59)

$(Ph_2PO_2)_2SnPh_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L3	2,720	éthanol			%C: 61,13(60,90)
					%H : 04,24(04,24)
SnPh ₂ Cl ₂	1,360 é	éthanol	poudre	blanche	%N: -(-)
••••• <u>2</u> •• <u>2</u>					%Cl:-(-)
					%Sn : 16,79(16,54)

$(H_2PO_2)_2SnMe_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁	3,458	éthanol			%C:08,61(08,59)
SnMe ₂ Cl ₂	1,729	éthanol	poudre	blanche	%H: 03,58(03,60) %N: -(-) %Cl:-(-) %Sn:42,58(42,58)

$(H_2PO_2)_2SnBu_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁	4,464	éthanol			%C: 26,46(26,66)
SnBu ₂ Cl ₂	2,232	éthanol	poudre	blanche	%H:06,06(06,03) %N:-(-) %Cl:-(-) %Sn:32,72(32,27)

$(H_2PO_2)_2SnPh_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁	2,168	éthanol			%C: 35,75(35,98)
		éthanol	poudre	blanche	%H : 03,47(03,72)
SnPh ₂ Cl ₂	1,084				%N: -(-)
					%Cl:-(-)
					%Sn: 29,47(29,16)

•

$(Me_2AsO_2)_2SnMe_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₄	3,600	éthanol			% C : 17,04(17,33)
		éthanol		blanche	%H: 04,26(04,58)
SnMe ₂ Cl ₂	1.800		poudre		%N: -(-)
					%Cl:-(-)
					%Sn: 28,09(28,31)

Me₂AsO₂SnMe₂Cl

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₄	3,007	éthanol	poudre		%C : 14,94(14,63)
	3,007 éthanol	éthanol		blanche	%H: 03,73(03,84)
Sn Me ₂ Cl ₂					%N: -(-)
22		ounditor			%CI: 11,05(10,98)
					%Sn: 36,96(36,47)

$Me_2AsO_2SnBu_2CI$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L4	1,926	éthanol			% C : 29,62(29,96)
SnBu ₂ Cl ₂	1,926	éthanol	poudre	blanche	%H: 05,92(06,01) %N: -(-) %Cl: 08,76(08,99) %Sn: 29,29(29,10)

HPO_3SnMe_2

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₈	2,317	éthanol			% C : 10,49(10,71)
SnMe ₂ Cl ₂	2,317	éthanol	poudre	blanche	%H:03,06(03,42) %N: -(-) %Cl:-(-) %Sn:51,90(52,06)

HPO_3SnBu_2

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₈	1,580	éthanol			%C: 30,70(30,65)
SnBu ₂ Cl ₂	1,580	éthanol	poudre	blanche	%H:06,06(06,28) %N:-(-) %CL:-(-)
					%Sn: 37,95(37,27)

$NH_2C_6H_4AsO_3SnMe_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁₁	1,150	éthanol			%C: 26,40(26,50)
			poudre	blanche	%H : 03,30(03,26)
SnMe ₂ Cl ₂	1,150	éthanol			%N: 03,85(03,84)
					% Sn : 32,64(32,46)

$NH_2C_6H_4AsO_3SnBu_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁₁	1,330	éthanol			%C: 37,53(37,79)
	1 330	éthanol	poudre	blanche	%H : 05,80(05,61)
SnBu ₂ Cl ₂					%N: 3,12(3,20)
	,				%Cl:-(-)
					%Sn: 26,31(26,54)

$PhAsO_3SnMe_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₆	1,930	éthanol			%C: 27,53(27,41)
SnMe ₂ Cl ₂	1,930	éthanol	poudre	blanche	%H: 03,15(03,42) %N: -(-) %Cl: -(-) %Sn:34,04(34,42)

PhAsO₃SnBu₂

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₆	2,140	éthanol			% C : 38,83(39,05)
	2,140 éthanol		poudre	blanche	%H: 05,32(05,62)
SnBu ₂ Cl ₂		éthanol			%N: -(-)
					%Cl:-(-)
					%Sn: 27,43(27,52)

Ph₂PO₂SnMe₃

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires caic.(trouv.)
L ₃	2,520	éthanol			%C : 47,28(47,39)
SnMe₃Cl	2,520	éthanol	poudre	blanche	%H:04,99(04,89) %N:-(-) %Cl:-(-) %Sn:31,18(31,29)

Ph₂PO₂SnBu₃

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₃	3,800	éthanol			% C : 56,83(56,74)
					%H : 07,30(07,24)
SnBu ₃ Cl	3,800	éthanol	poudre	blanche	%N: -(-)
					%Cl:-(-)
					%Sn: 23,42(23,36)

10_3 Sn Ph₃

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁₂	2,400	éthanol			% C : 41,16(41,24)
					%H: 02,85(02,85)
SnPh ₃ Cl 4	4 800	éthanol à	poudre	blanche	%N: -(-)
	.,	chaud			%Cl: -(-)
					%Sn : 22,62(22,46)

(TMN)₂HPO₄.3SnPh₃Cl

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₈	1,800	éthanol			%C: 53,74(53,43)
					%H: 5,05(04,85)
SnPh ₃ Cl	5,400	éthanol à	poudre	blanche	%N: 2,02(2,15)
J		chaud	F		%CI: 07,69(08,03)
		0.1000			%Sn: 25,72(25,91)

H₂PO₂TMN.2SnPh₃Cl

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁	2,500	éthanol			%C: 52,78(52,40)
	5,000	éthanol à	poudre	blanche	%H : 04,83(04,71)
SnPh ₂ Cl					%N: 01,54(01,33)
		chaud	pouuro	Diariorio	%CI: 07,80(06,20)
		0.1444			%Sn : 26,09(26,33)

$(TMN)_2(H_2PO_2)_4SnMe_2(SnMe_2Cl_2)_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁	2,930	éthanol			%C: 16,86(16,79)
SnMe ₂ Cl ₂	2,930	éthanol	poudre	blanche	%H: 05,02(04,95) %N: 02,81(03,00) %CI: 14,25(13,81) %Sn: 35,74(35,65)

$(TMN)_2(Me_2AsO_2)_4SnPh_2(SnPh_2Cl_2)_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₄	2,424	éthanol			%C: 37,68(37,48)
SnPhaCla	1,212	éthanol	poudre	blanche	%H: 04,71(04,55) %N: 01,69(01,65)
5119112012					%CI: 08,57(08,71)
					%Sn: 21,50(21,36)

$(Me_2AsO_2)_2SnPh_2.(SnPh_2Cl_2)_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L4	3,007	éthanol			%C: 38,90(38,66)
	3,007 é	éthanol	poudre	blanche	%H: 03,40(03,84)
SnPh ₂ Cl ₂					%N: -(-)
					%C1: 11,50(11,58) %Sn: 28,85(28,54)

$H_2PO_2TMNSnPh_2CI_2, H_2PO_2SnPh_2CI$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁	2,167	éthanol			%C: 39,25(39,51)
SnPh ₂ Cl ₂	2,167	éthanol	poudre	blanche	%H: 04,20(04,36) %N: 01,63(01,92) %CI: 12,44(12,18) %Sn: 27,73(27,73)

$(Me_2AsO_2)_2SnBu_2.Me_2AsO_2SnBu_2CI$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₄	2,646	éthanol			%C: 28,96(28,63)
	1,323 ét	éthanol	poudre	blanche	%H: 05,92(06,03)
SnBu ₂ Cl ₂					%N: -(-)
					%CI: 03,89(04,08)
					%Sn: 26,04(26,13)

H₂PO₂TMN.SnCl₄

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁	3,527	éthanol			%C : 12,01(12,55)
	3,527	benzène	poudre	blanche	% H: 03,50(03,71)
SnCl ₄					%N: 03,50(03,44) %Cl: 35,52(35,84)
					%Sn : 29,69(29,46)

H₂PO₂TMN.SnBr₄

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁	2,244	éthanol			%C: 08,31(08,52)
	2,244	benzène	poudre	jaune	%H : 02,42(02,43)
SnBr₄					%N: 02,42(02,32)
4					%Br : 55,42(54,92)
					%Sn: 20,56(20,71)

Me₂AsO₂TMN.SnCl₄

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentalres calc.(trouv.)
L ₄	4,142	éthanol			%C: 15,27(15,48)
	4,142	benzène	poudre	blanche	%H: 03,82(03,28)
SnCl₄					%N: 02,97(03,11)
					%CI: 30,11(30,32)
					%Sn: 25,17(25,76)

Me₂AsO₂TMN.SnBr₄

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₄	1,528	éthanol			%C: 11,09(11,35)
SnBr₄	1,528	benzène	poudre	jaune	%H: 02,77(02,97) %N: 02,16(02,49)
UND14					%Br: 49,29(48,92)
					%Sn: 18,28(18,28)

Me₂AsO₂TEN.SnCl₄

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₅	4,610	éthanol			% C : 22,74(22,87)
SnCl ₄	4,610	benzène	poudre	blanche	%H: 04,92(04,67) %N: 02,65(02,06) %Cl: 26,91(26,87) %Sn:22,49(22,63)

Me₂AsO₂TEN.SnBr₄

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₅	1,500	éthanol			%C: 17,02(16,89)
	1,500	benzène		jaune	%H : 03,69(03,34)
SnBr₄			poudre		%N: 01,98(01,70)
•					%Br: 45,37(45,57)
					%Sn: 16,82(16,41)

Ph2PO2TEN.SnCl4

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₃	1,522	éthanol			%C : 39,50(39,30)
SnCl	1,522	benzène	poudre	blanche	%H: 04,93(05,27) %N: 02,30(02,26)
011014					%CI: 23,36(23,45)
					%Sn: 19,53(19,76)

Ph₂PO₂TEN.SnBr₄

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₃	1,245	éthanol			% C : 30,57(30,58)
SnBr ₄	1,245	benzène	poudre	jaune	%H: 03,84(04,02) %N: 01,78(01,69) %Br: 40,67(40,22) %Sn: 15,11(15,37)

$(IO_3TEN)_2SnCI_4$. H₂O

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁₂	5,104	éthanol			%C: 21,60(21,38)
	2,552	benzène			%H: 04,72(04,60)
SnCl ₄			poudre	blanche	%N: 03,15(03,10)
•					%CI: 15,98(15,80)
					%Sn: 13,35(13,28)

$(TMN)_2 PhAsO_3(SnCl_4)_{1,5}$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₆	1,650	éthanol			%C: 22,73(22,51)
	3,300	benzène	poudre I	blanche	%H: 03,92(03,70)
SnCl₄					%N: 03,79(03,51)
•					%C1: 28,82(28,94)
					%Sn: 24,09(24,31)

$(\mathsf{TEN})_2\mathsf{NH}_2\mathsf{C}_6\mathsf{H}_4\mathsf{AsO}_3(\mathsf{SnCI}_4)_2$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
L ₁₁	1,650	éthanol			%C: 26,49(26,30)
SnCl ₄	3,300	benzène	poudre	blanche	%H: 04,61(05,23) %N: 04,21(04,18) %CI: 28,50(28,04)
					%Sn : 23,82(23,44)

$(TEN)_2HPO_4(SnCl_4)_{1,5}$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
Lg	1,300	éthanol			%C : 25,70(25,25)
	2,600	benzène	poudre blanche		%H: 05,49(05,58)
SnCl₄				blanche	%N: 03,74(03,64)
•					%CI: 28,51(28,35)
					%Sn: 23,83(23,74)

$(TEN)_2HPO_4(SnBr_4)_{1,5}$

Réactifs	Quantités (mmoles)	Solvants utilisés	Nature du composé obtenu	Couleur	Analyses Elémentaires calc.(trouv.)
Lg	1,225	éthanol			%C: 18,94(18,87)
	2,450	benzène	poudre	jaune	% H : 04,04(03,81)
SnBr ₄					%Br: 47,36(47,71)
					%Sn : 17,56(17,63)

INSTRUMENTATION

Les spectres infrarouge ont été enregistrés dans le Nujol à l'aide d'un spectrophotomètre Perkin Elmer 580 (4000 - 200 cm⁻¹) et d'un spectrophotomètre FTIR NICOLET basse fréquence (600 - 50 cm⁻¹); les faces utilisées sont en lodure de Césium ou en polyéthylène.

Les spectres Raman ont été enregistrés à l'Université de Santiago de Compostela (ESPAGNE) et à l'Université de Paris VII à l'aide d'un spectrophotomètre Dilor Omars 89.

Les spectres Mossbauer ont été enregistrés à l'Université Catholique de Louvain (BELGIQUE) et à l'Université de Padova (ITALIE) en utilisant une source de Ca¹⁹SnO₃ (Amersham- Royaume Uni) en accélération constante; la source est est à température ambiante tandis que l'échantillon est maintenu entre 80 et 100K. Le spectre expérimental est calculé en utilisant un programme adéquat qui permet de déterminer les paramètres δ (déplacement isomérique), ΔE (éclatement quadripolaire) et Γ (largeur de raie à mi hauteur).

Les spectres RMN en solution ont été enregistrés au centre National des Mesures Physiques de l'Ouest de Rennes (FRANCE) à l'aide d'un spectrophotomètre Bruker 300.

Le spectre RMN ¹¹³Cd à l'état solide a été enregistré par Dr S. STEUERNAGEL de Bruker Analytishe Messtechnik (ALLEMAGNE) avec un spectromètre MSL 100, la reférence étant Cd(NO₃)₂.4H₂O.

Les analyses élémentaires ont été réalisées au Service Central d'Analyses (C. N. R. S.) de Vernaison (FRANCE).

METHODES D'ATTRIBUTION

•

Spectroscopie infrarouge et Raman

B-1% ANIONS NON SUBSTITUES

a°/ L'anion XO4ⁿ⁻ libre est de symétrie Td ; il possède 4 vibrations fondamentales qui sont : v₁; v₂; v₃ et v₄ dont deux de valence (v₃ et v₁) et deux de déformation (v₄ et v₂). On a : $\Gamma_{Vib} = 2T_2 + A_1 + E$ pour l'ion libre.

Les vibrations v_3 et v_4 d'espèce T_2 sont actives en infrarouge et en Raman alors que v_1 et v_2 d'espèce E ne sont actives qu'en Raman. Lorsque l'oxoanion est coordiné, il peut conserver sa symétrie Td ou subir un abaissement de symétrie: on peut obtenir les symétries C_{3v} ; C_{2v} ; C_s ou C_1 .

* Symétrie Td.

Si dans une coordination l'anion est tétra-unidentate, les oxygènes étant perturbés de la même façon on a une symétrie Td. v_3 et v_4 apparaissent sous forme d'une seule bande et v_1 est absente.

L'absence de v_1 en infrarouge est une condition necessaire et suffisante pour conclure à la présence d'un oxoanion de symétrie Td. Quand il y a un effet de cristal, v_1 peut apparaître sous forme de trace.

* Symétrie C_{3v}

Si trois oxygènes sont équivalents dans un état de coordination c'est à dire lorsque l'oxoanion est monodentate, tri-unidentate ou tétra-unidentate avec un oxygène différent des trois autres, on a une symétrie C_3v : les vibrations d'éspèce T_2 éclatent en E et A₁ toutes deux actives en infrarouge; v₁ devient active en infrarouge. Ainsi v₃ et v₄ apparaîssent chacune sous forme de deux bandes, v₁ et v₂ sous forme d'une seule bande.

* Symétrie C_{2v}

C'est le cas quand l'oxoanion est bi-unidentate ou tétra-unidentate avec les oxygènes pérturbés deux à deux de la même façon : les vibrations d'espèce T_2 éclatent en trois composantes $A_1 + B_1 + B_2$ toutes actives en infrarouge ; v_2 éclate en $A_1 + A_2$ mais seule A_1 est active en infrarouge, v_1 est aussi active en infrarouge. v_3 et v_4 apparaîssent chacune sous forme de trois bandes actives en infrarouge, v_1 et v_2 sous forme d'une seule bande.

* Symétrie Cs ou C1

Dans ce cas, l'oxoanion a , soit deux oxygènes pérturbés de la même façon (C_s) , soit les quatre oxygènes perturbés de façon différente (C_1) . Comme dans le cas de la symétrie C_{2v} , v_3 et v_4 apparaissent sous forme de trois bandes ; v_2 apparaît dans le cas de C_s ou de C_1 sous forme de deux bandes.

La présence des deux bandes dues à v_2 permet de différencier un anion de symétrie C_{2v} d'un anion de symétrie C_s ou C_1 . Il n'est pas possible par

spectroscopie infrarouge de différencier un anion de symétrie C_s d'un anion de symétrie C_1 .

Sur le tableau ci- dessous est résumée l'activité infrarouge des vibrations de l'oxoanion XO4ⁿ-.

Symétrie de l'anion	ν ₁	v ₂	ν ₃	∿4
Td	0	0	1	1
C _{3v}	1	1	2	2
C _{2v}	1	1	3	3
C _s ou C ₁	1	2	3	3

 v_3 et v_1 sont respectivement des vibrations de valence antisymétrique et symétrique alors que v_2 et v_4 sont des vibrations de déformation antisymétrique et symétrique.

b°/L'oxoanion YO3ⁿ⁻ libre est de symétrie C_{3v} ; il a quatre vibrations qui sont: v1 et v2 d'espèce A₁, v₃ et v₄ d'espèce E toutes actives en infrarouge. Si l'anion est coordiné il peut être C_{3v} , C_s ou C_1 .

* Symétrie C_{3v}

L'anion est tri-unidentate ou tétra- unidentate (si Y est donneur) c'est à dire les trois oxygènes sont perturbés de la même façon.; v_1 , v_2 , v_3 et v_4 apparaîssent chacune sous forme d'une seule bande.

* Symétrie C_s ou C₁

L'anion est monodentate ou bi-unidentate; les vibrations de v_3 et v_4 éclatent en deux composantes A' et A" toutes deux actives en infrarouge. v_1 et v_2 restent actives en infrarouge et apparaissent sous forme d'une seule bande.

B-2°/ ANIONS SUBSTITUES

- Les oxoanions de type ZXO₃ⁿ⁻ dérivant des anions de type XO₄ⁿ⁻ ont leur groupement XO₃ⁿ⁻ de symétrie C_{3v} quand ils sont libres. Ces groupements peuvent être C_s ou C₁ suivant leur nature monodentate, bi-unidentate ou tri-unidentate avec les oxygènes perturbés de la même façon ; ils peuvent aussi rester C_{3v} quand ils sont tri-unidentates ou tri-O-chélatant.

Il n'est pas possible de faire pour ces oxoanions substitués une corrélation entre la symétrie et l'activité infrarouge comme on peut le faire avec les oxoanions non substitués de type YO₃n- par exemple. On ne peut en effet pas conclure que le groupement XO_3^n - de l'anion ZXO_3^n - est C_{3v} , C_s ou C_1 uniquement à partir du nombre de bandes de v_3 (33).

- L'oxoanion de type Z_2XO_2 - est de symétrie C_{2v} ; suivant qu'il est monodentate ou bidentate il est C_s ou C_{2v} :

Il est aussi impossible comme dans le premier cas de faire une corrélation entre la symétrie et l'activité infrarouge.

-Les molécules SnX_4 (X = Cl ; Br) sont tétraèdriques; les vibrations antisymétriques d'espèce T_2 sont actives en infrarouge. Si SnX_4 est coordiné, l'environnement du métal est en général octaèdrique.

**Cis* coordiné, SnX₄ est de symétrie C_{2v} et T₂ éclate en trois composantes A₁ + B₁ + B₂ qui sont toutes actives en infrarouge. vasSnX₄ apparaît sous forme de trois bandes alors que vsSnX₄ d'espèce A₁ apparait sous forme d'une raie intense en Raman.

**Trans* coordiné, SnX₄ est de symétrie D_{4h} ; parmi les vibrations de valence seule la vibration d'espèce Eu est active en infrarouge (30- 33). On obtient ainsi une seule bande due à vasSnX₄ alors que les vibrations symétriques d'espèce A_{1g} et B_{1g} apparaissent sous forme de deux raies intenses en Raman.

- Dans le cas des composés de type SnR₂Cl₂ et SnR₃Cl (X=Cl ; R = Et ; Me); les géométries linéaires des groupements SnR₂ ou plane de symétrie D_{3h} des groupements SnR₃ sont respectivement liées à la non apparition de vsSnR₂ ou vsSnR₃. Quand ces bandes apparaîssent les squelettes sont coudés ou de symétrie C_{3v} (34- 40).

Spectroscopie Mössbauer

La spectroscopie Mössbauer (41) est une spectroscopie de résonance qui implique les niveaux fondamentaux et excités du noyau atomique avec émission ou absorption de photon gamma monochromatiques. Les éléments plus favorables à l'expérimentation étant le fer ⁵⁷Fe, l'étain ¹¹⁹Sn et récemment l'antimoine ¹²¹Sb. Son application à la chimie repose sur le fait que l'environnement électronique des noyaux peut influencer suffisamment l'écartement entre les niveaux d'énergie pour rendre la résonance impossible. Le grand intérêt de la spectroscopie Mössbauer est qu'il est possible de compenser facilement ou de mesurer les perturbations causées par les interactions hyperfines. Les interactions hyperfines sont les faibles perturbations induites dans les niveaux nucléaires par les couches électroniques externes responsables des propriétés chimiques des éléments. Il existe trois types d'interactions hyperfines:

- une interaction monopolaire électrique, causée par la pénétration du nuage électronique dans le noyau atomique; elle est responsable du **déplacement isomérique**.

-Une interaction quadripolaire électrique, causée par un gradient de champ électrique externe agissant sur le moment quadripolaire du noyau atomique; elle est responsable de l'éclatement quadripolaire.

- une interaction dipolaire magnétique, causée par l'action d'un champ magnétique sur le moment magnétique du noyau; elle est responsable de l'éclatement magnétique.

Dans notre étude nous nous intéresserons aux deux paramètres que sont le déplacement isomérique δ et l'éclatement quadripolaire ΔE .

Le déplacement isomérique peut nous informer sur l'état d'oxydation du métal et les valeurs de l'éclatement quadripolaire nous informent sur l'environnement du métal. Dans le cas de l'étain des études (42, 43) nous ont permis de classer ces valeurs de l'éclatement quadripolaire sur des intervalles en fonction de l'environnement du métal.

Cependant on rencontre des difficultés dans les zones limites de ces intervalles. Pour contourner ces difficutés HERBER (44) a introduit le paramètre ρ qui se définit comme étant le rapport de l'éclatement quadripolaire sur le déplacement isomérique ($\Delta E/\delta$):

- si 0< ρ<1,8 alors l'environnement autour de l'étain est tétraèdrique

- si ρ >2,1 l'environnement de l'étain est octaèdrique. Cette théorie contestée plus tard par NASIELSKY et coll. (45) est assez satisfaisante dans le cas des composés organostanniques trialkylés(46-49).

Dans le cas des complexes de SnCl₄, TUDELA (109) considére que $\Delta E < 0.53$ mms⁻¹ correspond à un isomère *cis* alors que $\Delta E > 0.57$ mms⁻¹ correspond à un isomère *trans*.

Spectroscopie Mössbauer à température variable

La spectroscopie Mössbauer à température variable est une technique qui permet d'avoir des renseignements très importants sur la rigidité et la nature des structures des composés. En effet le facteur de LAMB varie avec la température et avec la rigidité des liaisons et est proportionel à l'aire du spectre Mössbauer notée A(T). Ainsi l'étude de la variation du facteur de LAMB en fonction de la température revient à étudier celle de l'aire du spectre. Cette technique consiste à tracer la courbe ln[A(T)] en fontion de la température; on obtient une droite de pente a = - <u>d[ln(A (T))]</u> qui peut être correlée à la structure des composés

dT

organostanniques:

-si 0,9.10⁻²< a < 1,510⁻²K⁻¹, les composés sont linéaires et polymériques (50) -si a > 1,2.10⁻²K⁻¹ alors les composés sont monomériques (50)

Spectroscopie de Résonance Magnétique Nucléaire (R. M. N.)

a°/En solution

La constante de couplage notée J est un paramètre important surtout pour la la détermination de l'environnement autour de l'étain pour les composés organostanniques.

Exemple: Dans le cas des dérivés triméthylés l'étain est pentacoordiné avec un environnement bipyramidal trigonal quand ${}^{1}J({}^{119}Sn-{}^{13}C) > 400Hz$ et ${}^{2}J({}^{119}Sn-{}^{13}C-{}^{1}H) \approx 70$ Hz (51).

Sur le spectre RMN ¹¹⁹Sn le nombre de pics nous permet de connaître les différents types d'étain contenu dans la molécule.

La reférence pour les spectres ¹H et ¹³C est le TMS, celle des spectres ¹¹⁹Sn, SnMe₄ et celle des spectres ³¹P, H_3PO_4 .

b°/ A l'état solide

Cette technique est la seule aujourd'hui en spectroscopie qui nous permet de différencier des centres métalliques chimiquement différents quand les composés sont insolubles dans les solvants de RMN. Nous étudieront un spectre de ¹¹³Cd. La reférence est Cd(NO₃)₂.4H₂O.

ETUDE SPECTROSCOPIQUE

COMPLEXES D'ADDITION, DE SUBSTITUTION- ADDITION ET DE SUBSTITUTION TOTALE AVEC LES HALOGENURES METALLIQUES DE TYPE MX₂ (M = Zn, Cd, Hg, Mn; X = Cl, Br)

I°/ COMPLEXES D'ADDITION

ABENOZA et coll. (52) ont fait l'étude i.r. et Raman de $H_2PO_2^-$, $HDPO_2^-$ et $D_2PO_2^-$. CORBRIDGE et LOW (53) ont étudié les spectres i.r. des phosphites $Li_2HPO_3.H_2O$, $Na_2HPO_3.5H_2O$, $CaHPO_3$ et PbHPO_3. Ils ont montré que vPH apparaît sous forme d'une bande faible ou intense entre 2430 et 2400 cm⁻¹. Des études détaillées sur $H_2PO_2^-$ et HPO_3^{2-} par spectroscopie i. r. et Raman ont été réalisées par TSUBOI (54) et récemment par BICKLEY et coll (55).

and the second second

RIDENOUR et coll. (56) ont fait les études par spectroscopie i.r., RMN et Mössbauer des dérivés de type $R'_2PO_2SnR_3$ (R' = Me, C_6H_{13} ; R = Me, Bu, Ph).

Dans notre laboratoire l'étude par spectroscopie i. r. du comportement en tant que ligande des oxoanions tels que HPO_3^{2-} , $PhAsO_3^{2-}$, $H_2PO_2^{-}$, $Me_2AsO_2^{-}$, $Ph_2PO_2^{-}$ et IO_3^{-} a été respectivement initiée par GUEYE (25), LAHLOU (24), SALL (16) et ALLOUCH (21). C'est ainsi que les complexes $Me_2AsO_2TMN.SnCl_4$ (21); $PhAsO_3TMN_2.3CuCl_2$ (24); $(H_2PO_2)_2SnR_2$ (R = Me, Ph) (16); $SnPh_3IO_3.0,4EtOH$ (21); $HPO_3TMN_2.3SnPh_3Cl$, $HPO_3TMN_2.nMX_2$ (n = 2, 3; M = Co, Mn, Zn, Cu; X = Cl, Br) (25) ont été isolés et étudiés par spectroscopie infrarouge.

Dans ce travail nous avons initié l'étude du comportement de l'anion amino -4 benzène arséniato ($NH_2C_6H_4AsO_3^{2-}$) en tant que ligande et avons repris celles de HPO_3^{2-} , $PhAsO_3^{2-}$, $H_2PO_2^{-}$, $Me_2AsO_2^{-}$, $Ph_2PO_2^{-}$ et IO_3^{-} dans le but d'obtenir de nouveaux complexes en utilisant comme cations antagonistes les ions tétraméthyl et tétraéthylammonium.

Nous avons ainsi obtenu des complexes d'addition, de substitution- addition et de substitution totale avec les halogénures métalliques de type MX_2 (M = Zn, Hg, Cd, Mn; X = Cl, Br); sur la base des données spectroscopiques des structures sont proposées. Les attributions des bandes sur les spectres i.r. des complexes sont basées sur les travaux antérieurs relatifs aux oxoanions libres.

$I-1^{\circ}/H_2PO_2TMN.MX_2$ (M = Zn, Cd; X = CI, Br) (A₁-C₁)

Sur le tableau l nous avons reporté les données i.r. de ces complexes et sur la figure 1 le spectre infrarouge de $H_2PO_2TMN.ZnCl_2$.

Nous essayerons autant que faire se peut de favoriser l'environnement tétraèdrique des centres métalliques: ceci est basé sur l'environnement necessairement tétraèdrique des centres métalliques dans $(R_4N)_2SO_4.2CdX_2$ (R = Me, Et; X = Cl, Br) (puisque l'anion est de symétrie Td) (27b).

La présence de vMO sur les spectres de ces complexes permet de conclure à une coordination oxygène-métal. Entre les dérivés chloré et bromé du zinc nous notons le glissement de la bande due à vZnX₂ dû à l'effet de masse.

figure 1: Spectre infrarouge de $H_2PO_2TMN.ZnCI_2$

schéma 1b

M = Zn, CdX = Cl, Br

schéma 1a

Deux structures sont possibles dans l'hypothèse d'un métal à environnement tétraèdrique: une structure discrète avec un anion monochélatant (schéma 1a) et une chaîne infinie avec un anion bi-unidentate (schéma 1b).

D'aprés MOLLOY et coll. (57) les anions de type $R_2PO_2^-$ ont une tendance à la polymérisation.

 $A_1 = H_2 PO_2 TMN.ZnCl_2$ $B_1 = H_2 PO_2 TMN.ZnBr_2$ $C_1 = H_2 PO_2 TMN.CdBr_2$

Tableau I: Données infrarouge des complexes A1- C1

attributions	vPH ₂	vPO ₂	δPH ₂	ωPO ₂	ρPH_2	δPO2	ρPO ₂	vMX ₂	vМО
	2400tF	1185tF							
A ₁	2380F	1183f	1145F	1090m	810tF	460m	-	310tF	245f
1		1060tF							
B₁	2395m	1183tF	1143m	1090m	810tF	455m	285m	207tF	234F
	2385m	1058F					20011	2070	2011
C1	2380F	1175F	1140F	1110F	810F	455F	322m	178tF	241m
	2410m	1062F		,,,,,,,			022m	1,00	

tF = très forte, F = forte, m = moyenne, f = faible; X = Cl, Br

I -2°/ 2R'₂A'O₂TMN.3MX₂ (R' = H, Me; A' = P, As; M = Zn, Cd; X = Cl, Br) (D₁-G₁)

Les données i.r. de ces complexes sont regroupées sur le tableau II et le spectre de 2Me₂AsO₂TMN.3ZnBr₂ est reporté sur la figure 2.

Ces complexes peuvent être considérés comme formés de deux complexes 1-1 de type $R'_2A'O_2TMN.MX_2$ se partageant une molécule de MX_2 , ce qui revient à considérer une molécule de $(TMN)_2MX_4$ (27a) dans laquelle deux ions complexes $[R'_2A'O_2MX_2]^-$ se sont substitués à deux halogénures.

On obtient ainsi une structure discrète dans laquelle tous les centres métalliques sont tétraèdriques (schéma 2).

$$\begin{split} D_1 &= 2Me_2AsO_2TMN.3ZnCl_2\\ E_1 &= 2Me_2AsO_2TMN.3ZnBr_2\\ F_1 &= 2Me_2AsO_2TMN.3CdBr_2\\ G_1 &= 2H_2PO_2TMN.3CdBr_2 \end{split}$$

Tableau	11:	Données	infrarouge	des	complexes	D ₁ -	G ₁
---------	-----	---------	------------	-----	-----------	------------------	----------------

Attributions	vA'R'2	vA'O2	δΑ'Ο ₂	ρΑ'Ο ₂	νMX ₂	vMO
D ₁	650F 610m	920m 886F 850f 832m 782tF	525tF 441F	325m	280tF	231m
E ₁	652m 610f	920m 880F 850f 837m 785tF	517tF 441F	289F	206tF	241m
F ₁	650m 605f	910f 837tF 785tF	400F 357m	322m	178tF	288m
G ₁	2438m 2417m	1065tF 1030tF	455m	321m	178tF	281m

tF = très forte, F = forte, m = moyenne, f = faible; A' = As, P; R' = Me, H; X = Cl, Br δPH_2 , ωPH_2 et ρPH_2 sont respectivement localisées à 1140(m), 1105(tF) et 825 cm⁻¹(F).

I-3°/ $Me_2AsO_2NR_4.nMX_2$ (R = Me, Et; M = Hg, Cd, Sn; X = CI, Br; n = 2, 3) (H₁-M₁)

Les données i.r. sont regroupées sur le tableau III et le spectre de $Me_2AsO_2TMN.2HgBr_2$ (H₁) reporté sur la figure 3.

Nous notons une similitude spectrale dans le cas des complexes du mercure.

Dans l'hypothèse d'un métal à environnement tétraèdrique deux structures sont possibles pour les composés 1-2 (H_1 , I_1 , J_1 et K_1): une structure discrète avec un anion bichélatant (schéma 3a) et une structure de type chaîne infinie avec un anion monochélatant et bi-unidentate (schéma 3b).

Pour les composés 1-3 (L_1 , M_1) nous proposons une structure discrète contenant un anion bi-unidentate et monochélatant avec deux molécules de CdCl₂ dont le cadmium a un environnement triangulaire et une molécule de CdCl₂ dont le cadmium a un environnement tétraèdrique (schéma3c). (On aurait pu faire participer les chlorures de la molécule de CdCl₂ du milieu afin d'avoir un environnement tétraèdrique).

Pour le complexe 1-4 (N₁) nous proposons une structure discrète avec un anion tétradentate (schéma 3d) avec un environnement triangulaire autour du cadmium.

M = Hg, Cd, Snschéma 3a X = Cl, Br

H_1	= Me ₂ AsO ₂ TMN.2HgBr ₂
11	= Me ₂ AsO ₂ TMN.2HgCl ₂
J ₁	= Me ₂ AsO ₂ TEN.2CdBr ₂
N_1	= Me ₂ AsO ₂ TEN.4CdCl ₂

$$\begin{split} & \mathsf{K}_1 \texttt{=} \mathsf{Me}_2 \mathsf{AsO}_2 \mathsf{TEN}.2\mathsf{SnCl}_2 \\ & \mathsf{L}_1 \texttt{=} \mathsf{Me}_2 \mathsf{AsO}_2 \mathsf{TMN}.3\mathsf{CdCl}_2 \\ & \mathsf{M}_1 \texttt{=} \mathsf{Me}_2 \mathsf{AsO}_2 \mathsf{TEN}.3\mathsf{HgCl}_2 \end{split}$$

Attributions	vAsO ₂	vAsC ₂	δAsO ₂	δAsC ₂ ρAsO ₂	vMX ₂	vMO
H ₁	920f 885m 815m 790F	640m 605f	405tF	316tF	235F	213m
I ₁	920m 890m 832m 790F	645m 605f	462m 401tF	316F	356F	258m
J ₁	908m 867f 842F	645f 606f	420F 400F	317m	180F	235m
К1	915m 832F 820F	650m 602f	487F 437F	350f	315F	250f
L1	920f 900f 840tf 788tf	650m 605f	419F 406F 365m	331f	201tF	291f
M ₁	920f 890m 830m	645m 609f	470f 428f	285f	345F	258f
N ₁	910f 870m 842F	650m 605f	450f 420F	370f	220F	232f

tF = très forte, F = forte, m = moyenne, f = faible; X = Cl, Br

I-4°/ R'A'O₃NR₄.nMX₂ (R'= H, Ph; A' = P, As; R = Et, Me; n = 3, 4; M = Hg, Cd; X = Cl, Br) (O₁-V₁)

Sur le tableau IV nous avons regroupé les données i.r. de ces complexes; le spectre de $PhAsO_3(TMN)_2.3CdCl_2$ (O₁) est reporté sur la figure 4a et le spectre RMN ¹¹³Cd à l'état solide de Q₁ sur la figure 4b.

La présence d'une raie à -79 ppm sur le spectre RMN¹¹³Cd à l'état solide permet de conclure à un seul type de cadmium.

Pour les complexes 1-3 (O_1 , P_1 , Q_1) nous proposons dans l'hypothèse d'un métal à environnement tétraèdrique une structure discrète avec un anion trichélatant (schéma 4a).

Dans le cas des complexes 1-4 (R_1 - V_1) l'anion est tétrachélatant avec un métal à environnement tétraèdrique (schéma 4b).

I-5°/ $NH_2C_6H_4AsO_3(TMN)_2.nMX_2$ (M = Zn, Cd; X = Cl, Br; n = 2, 3, 4) (O₁- R₁)

Sur le tableau V nous avons regroupé les données i.r. de ces complexes; le spectre de $NH_2C_6H_4AsO_3(TMN)_2.2ZnCl_2$ (W₁)est reporté sur la figure 5.

Pour les complexes 1-2 (W_1 , X_1) nous proposons une structure discrète avec un anion bichélatant et un métal à environnement tétraèdrique (schéma 5a). L'anion est trichélatant dans le cas du complexe 1-3 (Y_1) (schéma 5b) et tétrachélatant dans le cas du complexe 1-4 (Z_1) (schéma 5c). On ne peut cependant pas exclure la participation du groupement NH₂ comme centre donneur.

$O_1 = PhAsO_3(TMN)_2.3CdCl_2$	$S_1 = PhAsO_3(TEN)_2.4HgBr_2$
$P_1 = PhAsO_3(TEN)_2.3CdCl_2$	$T_1 = PhAsO_3(TMN)_2.4CdCl_2$
$Q_1 = HPO_3(TMN)_2.3CdBr_2$	$U_1 = HPO_3(TEN)_2.4CdCl_2$
$R_1 = PhAsO_3(TMN)_2.4HgBr_2$	$V_1 = HPO_3(TMN)_2.4CdBr_2$

Tableau IV: Données infrarouge des complexes O1-V1

Attributions	vA´O ₃	vA′R′	δΑΌ3	vMX ₂	vMO
0 ₁	865tF 805ep 790F	690F	416m 393m 350f	202tF	248f
P ₁	870m 838m 781F	690F	429F 393m 356m	251tF	297f
Q ₁	1070F 1050f 1030m	2415f	587F 512m 455f	152F	268m
R ₁	839F 825F 785tF	690F	411f 362f 346m 320m	187F	227f
S ₁	870f 830m 790F	695m	421m 374F 339f 310m	191tF	220f
T ₁	865F 810m 790m	690m	416m 393m 350m	202F	278f
U ₁	1068tF 1040m	2400f	610F 520m	220tF	258m
V ₁	1075F 1055F 1030m	2415f	590m 510f 458f	187m	272F

tF = très forte, F = forte, m = moyenne, f = faible, ep = épaulement; X = CI, Br A' = P, As; R' = H, Ph. Pour les complexes de HPO³⁼ vPH et δ PH apparaissent respectivement aux environs de 2400 cm⁻¹ et 1010 cm⁻¹

......

figure 4b: Spectre RMN ¹¹³Cd à l'état solide de (TMN)₂HPO₃.3CdBr₂

$$\begin{split} &W_1 = NH_2C_6H_4AsO_3(TMN)_2.2ZnCI_2 \\ &X_1 = NH_2C_6H_4AsO_3(TMN)_2.2ZnBr_2 \\ &Y_1 = NH_2C_6H_4AsO_3(TMN)_2.3CdBr_2 \\ &Z_1 = NH_2C_6H_4AsO_3(TMN)_2.4CdCI_2 \end{split}$$

Tableau V: Données infrarouge des complexes W1-Z1

Attributions	vNH ₂	δNH ₂	ωNH ₂	ρNH_2	vAsO ₃	vAsC	δAsO ₃	vMX ₂	vМО
W ₁	3325f 3200f	1600F	1020f	518F	830tF 775tF	680ep	440F 410tF	275tF	215ep
X ₁	3330f 3200f	1600F	1020f	509F	825F 775tF	670f	435F 402tF	203tF	225ep
Y ₁	3300f 3240f	1600F	1030f	515F	870F 830tF 776tF	670f	453m 424F	150tF	275m
Z ₁	3300f 3240f	1600m	1040f	517m	870F 830tF 767F	670f	425F	201tF	250ep

tF = très forte, F = forte, m = moyenne, f = faible, ep = épaulement; X = Cl, Br

 $I-6^{\circ}/IO_{3}TEN.nHgCl_{2}$ (n = 1, 2) (S₁, T₁)

Les données infrarouge et Raman sont regroupées sur le tableau VI. Les spectres i.r. et Raman de $IO_3TEN.2HgCl_2$ sont reportés sur les figures 6a et 6b. L'éclatement de v_3 et de v_4 sur les spectres infrarouge et Raman de ces complexes indique que l'anion IO_3^- est de symétrie C_S ou C_1 . vHgO présente à 225 cm⁻¹ sur

- 65 -

les spectres i.r. des complexes 1-1 et 1-2 confirme la liaison entre le ligande et $HgCl_2$. v $HgCl_2$ est localisée à 350 cm⁻¹ sur les deux spectres des complexes. La multiplicité des bandes dues à v_3 et v_4 s'explique par un effet de cristal.

Sur la base de ces données spectroscopiques nous proposons dans le cas du complexe 1-2 une structure discrète avec un anion bichélatant (schéma 6a). Pour le complexe 1-1 la structure est discrète avec un anion monochélatant (schéma 6b). Dans les deux cas le métal a un environnement tétraèdrique.

schéma 6b

 $Z'_1 = IO_3 TEN.2HgCl_2$ $Z''_1 = IO_3 TEN.HgCl_2$

Tableau VI: Données infrarouge des complexes Z'1- Z''1

Attributions	٧1	v ₂	v ₃	ν4	vMX ₂	vHgO
Zʻ ₁	760F (758F)	460F (472m)	730F (717F) 695F (692F) 670ep (665f)	435F (415m) 400m (396m) 300m (324m)	350tF	225m
Z´´1	760tF (756tF)	460tF (467f)	740F (716F) 695F (690F) 670ep(664ep)	432F (412m) 400m (393ep) 330F (322m)	350tF	225m

tF = très forte, F = forte, m = moyenne, f = faible, ep = épaulement; X = CI, Br

Les fréquences en Raman sont mises entre parenthèses

figure 6a: Spectre infrarouge de IO₃TEN.2HgCl₂

figure 6b: Spectre Raman de IO3TEN.2HgCl2

IIa°/ COMPLEXES DE SUBSTITUTION ADDITION

.

IIa-1°/ NR₄(R'₂A'O₂)₃M.nMX₂ (R = Me, Et; R' = Me, Ph; A' = P, As; n = 1, 2, 3; M = Zn, Mn; X = Cl, Br) (A₂-E₂)

Les données infrarouge de ces composés sont regroupées sur le tableau VII et le spectre Lr. de TEN(Ph₂PO₂)₃Zn.ZnBr₂ (B₂) reporté sur la figure 7.

Notons la similitude spectrale entre les complexes chloré (A_2) et bromé (B_2) de l'ion diphénylphosphinate d'une part et les complexes cacodylato du mercure d'autre part. La présence de vMO est due à la liaison métal-ligande.

Les complexes A_2 et B_2 peuvent être considérés comme deux molécules de Ph_2PO_2ZnX qui se partagent un ion diphénylphosphinate. La structure proposée est discrète dans le cas des complexes A_2 et B_2 avec un anion bi-unidentate et deux anions monochélatants, l'environnement autour du Zn étant tétraèdrique (schéma 7a).

Pour le complexe C_2 la structure est discrète avec deux anions monochélatants et monodentates et un anion monochélatant, l'environnement autour de Mn est tétraèdrique (schéma 7b).

Les complexes D_2 et E_2 peuvent être considérés comme deux molécules de $[Me_2AsO_2MnX]$ qui viennent se fixer au complexe TMNMe_2AsO_2.2MnX₂ (X = Cl, Br). La structure proposée est discrète avec un anion bichélatant et monodentate et deux anions monochélatants, l'environnement autour de Mn est tétraèdrique, (schéma 7c).

 $\begin{array}{l} A_2 = \mathsf{TEN}(\mathsf{Ph}_2\mathsf{PO}_2)_3\mathsf{Zn}.\mathsf{ZnCI}_2\\ B_2 = \mathsf{TEN}(\mathsf{Ph}_2\mathsf{PO}_2)_3\mathsf{Zn}.\mathsf{ZnBr}_2\\ C_2 = \mathsf{TMN}(\mathsf{Me}_2\mathsf{AsO}_2)_3\mathsf{Mn}.\mathsf{2MnBr}_2\\ D_2 = \mathsf{TMN}(\mathsf{Me}_2\mathsf{AsO}_2)_3\mathsf{Mn}.\mathsf{3MnCI}_2\\ E_2 = \mathsf{TMN}(\mathsf{Me}_2\mathsf{AsO}_2)_3\mathsf{Mn}.\mathsf{3MnBr}_2 \end{array}$

Tableau VII: Données infrarouge des complexes A2- E2

····· ··· ··· •···· •····

Attributions	vA'C ₂	vA'O ₂	δΑ'Ο ₂	δΑ'C ₂	ρΑ'Ο ₂ δAsC ₂	vMX ₂	νMO
A ₂	765F 703tF	1210tF 1160m 1130tF 1050tF	555tF 540F	301m	390m	310F	245f
B ₂	761F 701tF	1205tF 1170f 1160f 1130tF 1050tF	548F 535F	301F	387F	215F	231ep
C ₂	650F 612f	919F 902F 870m 840tF 785tF	405tF 370f	302m	327m	218tF	243ep
D ₂	647F 603f	920m 902m 875m 845tF 795tF	407F 367m	308f	332m	227F	248f
E ₂	650m 608f	920f 865ep 840tF 760tF	404F 374m	301f	329	209F	243m

tF = très forte, F = forte, m = moyenne, f = faible, ep = épaulement;

.

Les données infrarouge sont regroupées sur le tableau VIII et les spectres de F₂ et l₂ reportés respectivement sur les figures 8a et 8b.

Les complexes G₂, H₂ et l₂ peuvent être considérés comme une molécule de $MX_4(TMN)_2$ (27) dans laquelle les ions complexes $[R'_2A'O_2MX_2]^-$ se sont substitués aux quatre halogènures. (Notons que contrairement à ce qu' on a l' habitude de voir vZnBr₂ dans le cas du complexe l₂ apparait sous forme de deux bandes).

La structure proposée dans le cas de ces trois complexes est discrète avec des anions monochélatants et unidentates (schéma 8a).

Le complexe F₂ a une structure discrète avec des anions bi-unidentates (schéma 8b).

Le complexe J_2 est considéré comme un ion complexe $CdX_4^=$ dans lequel deux des X⁻ sont substitués par $[Me_2AsO_2(CdBr_2)_2]^-$ et les deux autres par $[Me_2AsO_2CdBr_2]^-$. La structure proposée est discrète avec deux anions bichélatants et deux monochélatants (schéma 8c): dans tous les cas l'environnement autour du métal est tétraèdrique.

 $F_{2} = (TMN)_{2}(H_{2}PO_{2})_{4}Cd.2CdCl_{2}$ $G_{2} = (TMN)_{2}(H_{2}PO_{2})_{4}Cd.4CdCl_{2}$ $H_{2} = (TMN)_{2}(Me_{2}AsO_{2})_{4}Cd.4CdCl_{2}$ $I_{2} = (TMN)_{2}(Me_{2}AsO_{2})_{4}Zn.4ZnBr_{2}$ $J_{2} = (TMN)_{2}(Me_{2}AsO_{2})_{4}Cd.6CdBr_{2}$

1

Attributions	vPH ₂ vAsC ₂	vA'O ₂	δΑ'Ο ₂	ρΑ'Ο ₂ δAsC ₂	vMX ₂	νMO
F ₂	2420m 2400m	1115tF 1030tF	455m 329m	290m	209F	244ep
G ₂	2380m 2340m	1120F 1025F	480m	290f	209F	244ep
H ₂	645m 602f	915f 900f 870f 840F 790F	407tF 362F 328m	291m	208F	224ep
I ₂	651m 610f	921m 882F 850f 835m 785tF	520tF 440F	292F	219F 207F	241m
J ₂	650m 600f	920f 892ep 860ep 835F 775F	416tF 380F 323f	285f	177m	236f

Tableau	VIII:	Données	infrarouge	des	complexes	F ₂ -	J ₂
---------	-------	---------	------------	-----	-----------	------------------	----------------

tF = très forte, F = forte, m = moyenne, f = faible, ep = épaulement;

Pour les complexes F_2 et $G_2 \delta PH_2$, ωPO_2 et ρPH_2 apparaissent respectivement à 1140(m), 1080(tF) et 810(F) cm⁻¹

figure 8b: Spectre infrarouge de (TMN)₂ (Me₂AsO₂)₄Zn.4ZnBr₂

IIa-3°/ $(TMN)_2(R'A'O_3)_2M.nMX_2$ (R' = H, Ph; A' = P, As; M = Zn, Hg, Cd; n = 2, 6; X = Cl, Br) (K₂- N₂)

Les données infrarouge sont regroupées sur le tableau IX, le spectre de L₂ reporté sur la figure 9a. Notons la similitude spectrale entre les composés hypophosphito chloré (K₂) et bromé (L₂). vMO présente sur tous les spectres traduit la liaison métal-ligande.

La structure proposée dans le cas des complexes K_2 , L_2 et M_2 est discrète avec un anion bichélatant, l'environnement autour du métal étant tétraèdrique (schéma 9a).

Pour le complexe N₂ qui peut être considéré comme un des complexes précédents auquel ont été ajoutées quatre molécules de CdCl₂, la structure est discrète avec un anion tétrachélatant, l'environnement autour du cadmium est tétraèdrique (schéma 9b).

$$\begin{split} &\mathsf{K}_2 = (\mathsf{TMN})_2(\mathsf{HPO}_3)_2\mathsf{Zn.2ZnCl}_2\\ &\mathsf{L}_2 = (\mathsf{TMN})_2(\mathsf{HPO}_3)_2\mathsf{Zn.2ZnBr}_2\\ &\mathsf{M}_2 = (\mathsf{TMN})_2(\mathsf{PhAsO}_3)_2\mathsf{Cd.2CdBr}_2 \end{split}$$

$$N_2 = (TMN)_2 (PhAsO_3)_2 Cd.6 CdCl_2$$

$$O_2 = (TMN)_2 PhAsO_3 (PhAsO_3Hg)_2.2 HgCl_2$$

	vPH	δΡΗ	10			
Attributions	vAsC	δAsC	vA'O ₃	0A'U3	vMX ₂	vMO
K ₂	2390F 2380F	1010m	1170tF 1120m 1060tF 1040F 990F	630f 580m 505m 460m 320f	275tF	225f
L2	2390F 2380F	1010m	1170tF 1120m 1060F 1040F 990F	630f 580m 500m 456m 358f 313m	205tF	234ep
M ₂	695m	306F	915f 875F 835F 772F	433F 399f 367f 358F 332F	178tF	271m
N ₂	690m	302m	875F 835F 790F 772F	430m 416m 394m 350m 327m	201tF	287m
0 ₂	690F	307ep	870m 845tF 830tF 800F 770F	423m 372F 340m	276tF 262tF	250ep

Tableau I	X:	Données	Infrarouge	des	complexes	K2-	0,
-----------	----	---------	------------	-----	-----------	-----	----

tF = très forte, F = forte, m = moyenne, f = faible, ep = épaulement A' = P, As; R' = H, Ph; X = Cl, Br

lia-4°/ $(TMN)_2 R'AsO_3(R'AsO_3M).2MX_2$ (R' = Ph, NH₂C₆H₄; M = Hg, Cd; X = Cl, Br) (O₂-P₂)

Les données infrarouge du complexe O_2 sont regroupées sur le tableau IX et celles de P_2 sur le tableau Xa. Le spectre du complexe O_2 est reporté sur la figure 9b.

vMO apparaît à 250 cm⁻¹ sur le spectre de O_2 et à 228 cm⁻¹ sur celui de P_2 .

vHgCl₂ apparait sous forme de deux bandes à 262 cm⁻¹ et 276 cm⁻¹ comme dans le cas du complexe (TMN)₂(Me₂AsO₂)₄Zn.4ZnBr₂.

La structure proposée est discrète avec un anion bichélatant, l'environnement autour du métal étant tétraèdrique (schéma 9c).

schéma 9c

IIa-5°/ $(R_4N)_2(NH_2C_6H_4AsO_3)_2M.nMX_2$ (R = Me, Et; M = Zn, Hg, Cd; X = Cl, Br; n = 1, 2, 3, 4) (Q₂- W₂)

Les données infrarouge sont regroupées sur le tableau Xa et le spectre de T_2 reporté sur la figure 10a. Nous notons une similitude spectrale entre les complexes Q_2 et R_2 .

Pour le complexe Q₂ la structure est dimère avec un anion monochélatant et unidentate; les métaux ont un environnement tétraèdrique (schéma10a).

La structure des complexes R_2 et S_2 est similaire à celle des complexes $(TMN)_2(R'A'O_3)_2M.2MX_2$ (schéma 9a).

Pour les complexes T_2 et U_2 la structure dérive de celle de Q_2 par addition de deux molécules de MX₂. L'anion est bichélatant et unidentate (schéma 10b).

La structure des complexes V_2 et W_2 est discrète avec un anion trichélatant et un métal à environnement tétraèdrique (schéma 10c).

 $\mathsf{P}_2 = (\mathsf{TEN})_2 \, \mathsf{NH}_2\mathsf{C}_6\mathsf{H}_4\mathsf{AsO}_3(\mathsf{NH}_2\mathsf{C}_6\mathsf{H}_4\mathsf{AsO}_3\mathsf{Cd})_2.2\mathsf{CdBr}_2$

 $Q_2 = (TMN)_2(NH_2C_6H_4AsO_3)_2Zn.ZnBr_2$

 $\mathsf{R}_2 = (\mathsf{TMN})_2(\mathsf{NH}_2\mathsf{C}_6\mathsf{H}_4\mathsf{AsO}_3)_2\mathsf{Zn}.2\mathsf{Zn}\mathsf{CI}_2$

 $S_2 = (TEN)_2 (NH_2C_6H_4AsO_3)_2Hg.2HgCI_2$

 $T_2 = (TEN)_2 (NH_2C_6H_4AsO_3)_2Hg.3HgCI_2$

 $U_2 = (TEN)_2 (NH_2C_6H_4AsO_3)_2Cd.3CdBr_2$

 $V_2 = (TEN)_2(NH_2C_6H_4AsO_3)_2Cd.4CdCl_2$

 $W_2 = (TEN)_2(NH_2C_6H_4AsO_3)_2Hg.4HgCl_2$

Tableau Xa: Données infrarouge des complexes P2-W2

Attributions	P ₂	Q ₂	R ₂	S ₂	T ₂	U ₂	V ₂	W ₂
vNH ₂	3300f	3320f	3320f	3300f	3279f	3350f	3290f	3300f
2	3200f	3200f	3200f	3200f	3200f	3200f	3240f	3200f
δNH ₂	1600m	1600F	1600F	1590m	1590F	1597F	1600F	1590m
ωNH ₂	-	1015f	1020f	-	-	_	-	1020f
ρNH ₂	519m	511F	520F	518m	517F	510F	516F	517F
1-0	870F	835tF	830F	840m	850F	870F	870F	850F
vAsO ₃	830F	772tF	775tE	820m	840m	830F	830F	825f
	760F	1120	///011	790m	782m	761F	765F	785m
vAsC	670f	670f	680f	650m	650m	670f	668f	650f
δAsOa	462m	411f	440F	367F	367tF	422F	424F	385F
0.003	431m	440F	410F	341F	340F	389ep	375f	368F
vMX ₂	171F	209F	275tF	304F	302F	177tF	211F	303m
vMO	228F	234ep	228ep	229F	252F	242m	240ep	257m

tF = très forte, F = forte, m = moyenne, f = faible, ep = épaulement; X = CI, Br

figure 10a: Spectre infrarouge de $(TEN)_2(NH_2C_6H_4AsO_3)_2Hg.3HgCl_2$

schéma 10b

Ces complexes ont été obtenus par substitution totale des halogénures par les anions tels que $Ph_2PO_2^-$, $PhAsO_3^-$ et $NH_2C_6H_4AsO_3^-$. Ces types de composés sont rencontrés dans la littérature avec les oxoanions perchlorato (5-9), chromato (10), molybdato (11), phosphato(12). sulfato(14). Cette substitution totale se manifeste par la disparition des bandes de vibration dues aux cations et aux halogénures métalliques. Sur tous les spectres la présence de vMO traduit la liaison métal-ligande.

IIb-1 $(Ph_2PO_2)_2Hg$ (A'_2)

Sur le figure 10b est reporté le spectre infrarouge du composé A². *Données infrarouge:* 750cm⁻¹ (m), 701cm⁻¹(m) vPC₂; 1170cm⁻¹(m), 1130(F), 1060(F), 1075(ep)vPO₂; 570cm⁻¹(F) 540cm⁻¹(F) δPO₂; 237cm⁻¹(F) vHgO.

La structure proposée est une chaine infinie contenant un anion biunidentate, l'environnement autour du mercure étant tétraèdrique (schéma 10d).

IIb-2 RAsO₃M (R = Ph, $NH_2C_6H_4$, M = Hg, Cd, Zn) (B'₂- D'₂)

Sur le tableau Xb sont regroupés les données infrarouge des composés et le spectre de $NH_2C_6H_4AsO_3Zn$ (C²) reporté sur la figure 10c. Nous notons une similitude spectrale pour les composés C² et D², ce qui serait dû à un même comportement de l'anion vis à vis des métaux.

La structure proposée est une chaine infinie avec un anion bichélatant, l'environnement autour du métal étant tétraèdrique (schéma 10e).

 $B'_2 = PhAsO_3Hg$ $C'_2 = NH_2C_6H_4AsO_3Zn$ $D_{2} = NH_2C_6H_4AsO_3Cd$

Tableau Xb: Données infrarouge des complexes B'2- D'2

- ----

	vNH ₂	δNH ₂	ωNH ₂	ρNH ₂	vAsO ₃	vAsC	δAsO ₃	vMO
B′2					840ep 815tF	701tF	415m 395F	260m
C′2	3320m 3200m	1600tF	1015f	516F	824F 775tF	640f	400tF	230f
D'2	3300m 3240	1600tF	1025f	516F	870F 830tF 770tF	645f	430tF	290m

Tf = très Fort, F = Fort, f = faible, ep = épaulement

مهو والمورد ومدارية والمراجع

CONCLUSION

Ce travail nous a permis de synthétiser cinquante sept [57] nouveaux complexes d'halogénures métalliques; l'ion $NH_2C_6H_4AsO_3^{2-}$ a été étudié en tant que ligande par spectroscopie infrarouge pour la première fois dans ce travail. A partir des complexes obtenus nous avons pu constater que les anions se comportent comme chélatants et/ou polydentates. Nous observons qu'ils ont surtout tendance à donner des structures discrètes avec les halogénures métalliques contrairement à MOLLOY (57) qui dans les composés organostanniques avait constaté une tendance à la polymérisation.

Le complexe $Me_2AsO_2TMN.ZnX_2$ correspondant de $H_2PO_2TMN.ZnX_2$ n'a pas pu être isolé dans ce travail mais peut être considéré comme étant à la base de la formation des complexes obtenus et expliquerait la similitude spectrale des complexes diméthylarséniato. Il faut cependant noter que des complexes d'addition directe avec les halogénures métalliques de type MX_2 n'ont pas pu être isolés dans ce travail avec l'ion $NH_2C_6H_4AsO_3^{2-}$ quand on utilise comme cation antagoniste le tétraéthylammonium mais seulement des complexes de substitution- addition (P₂, S₂- W₂). Ceci explique le rôle joué par les cations dans la formation des ces complexes. Les dérivés di et triorganométalliques contenant des oxoanions organiques et inorganiques ont fait l'objet de plusieurs travaux (58-72).

Ces dérivés sont utilisés dans l'industrie comme stabilisateurs de PVC (73) et peuvent avoir une activité biologique (74-80). Les études aux rayons X des dérivés $MeCO_2SnMe_2CI$ (63) et $2-NC_5H_4CO_2SnMe_2CI$ (81) ont révélé des structures polymériques. La structure aux rayons X de $SnMe_2F_2$ a été réalisée par ClarK et coll.(82); elle est polymérique avec une transcoordination octaédrique.

Dans notre laboratoire des dérivés organostanniques d'oxoanions tétraédriques, pyramidaux, plans et l'oxalate ont été isolés et caractérisés par spectroscopie i.r., Mössbauer et RMN; citons $NO_3TEN(SnPh_3Cl)_3$ (83); (PhSO₃TMN)₂SnBu₂Cl₂, (PhSO₃TMN)₃(SnMe₂Cl₂)₂ (26); C₂O₄(SnPh₃)₂ (28); SeO₄(SnBu₃)₂, SeO₄TMN₂(SnPh₂Cl₂)₂ (26).

Les structures aux rayons X des dérivés $(SnMe_3)_2SeO_3.H_2O$ et $(SnMe_3)_2C_2O_4.2H_2O$ synthétisés dans notre laboratoire ont été récemment réalisées (84, 85).

Dans ce travail nous avons synthétisé de nouveaux dérivés organostanniques avec des oxoanions substitués tels que $H_2PO_2^-$, $Ph_2PO_2^-$, $Me_2AsO_2^-$, $PhAsO_3^{2-}$, HPO_3^{2-} et $NH_2C_6H_4AsO_3^{2-}$ en utilisant comme cations antagonistes les ions tétraméthyl et tétraéthylammonium. Ces dérivés sont caractérisés par spectroscopie i.r., Mössbauer; l'étude RMN a été réalisée pour le composé $Ph_2PO_2SnMe_3$. Des structures sont proposées sur la base de ces données spectroscopiques.

III-1°/ $R'_2A'O_2SnR_2$ (R' = Ph, H, Me; A' = P, As; R = Me, Bu, Ph) (A₃-G₃)

Les données infrarouge et Mössbauer de ces composés sont reportées respectivement sur les tableaux XIa et XIb. Les spectres i.r.et Mössbauer de G_3 et E_3 sont respectivement représentés sur les figures (11a, 11b).

La présence de vSnO sur tous les spectres i.r. est la preuve de la coordination entre le ligande et l'étain.

L'absence de la bande due à vsSnC₂ ou son apparition sous forme de trace (dérivés méthylés) ou faible (dérivés butylés) sur les spectres i. r. des composés (A₃-G₃) (elle apparait sur le spectre Raman de B₃ sous forme d'une raie intense à 600 cm⁻¹ et sur celui de E₃ sous forme d'une raie intense à 603 cm⁻¹) est une indication suffisante pour conclure à un groupement SnC₂ linéaire et centrosymétrique (34- 40).

Les valeurs élevées de l'éclatement quadripolaire dans le cas de A₃, B₃, E₃, D₃ et G₃ indiquent une transcoordination octaédrique des groupements SnR₂ comme dans le cas de SnMe₂F₂ ($\Delta E = 4,38$ mms⁻¹) (86).

figure 11b: Spectre Mössbauer de $(Me_2AsO_2)_2SnMe_2$

Pour les composés C_3 et F_3 les valeurs de l'éclatement quadripolaire ($\Delta E > 4mms^{-1}$) supérieures à celle de $SnPh_2Cl_2$ ($\Delta E = 2,82 mms^{-1}$) qui a une structure tétraédrique (86a, 87, 88) indiquent une transcoordination octaédrique des groupements $SnPh_2$.

Sur la base de ces données spectroscopiques nous proposons pour les composés (A_3 - G_3), une structure de type chaîne infinie avec un anion bi-unidentate pontant et un groupement SnC₂ linéaire similaire avec celle proposée par CHIVERS et coll. pour SnMe₂(H₂PO₂)₂ (15, 86a) (schéma 11a).

Dans tous ces composés le rapport ρ de HERBER (44) supérieur à 2,1 confirme la polymérisation

III-2°/ $Me_2AsO_2SnR_2CI$ (H₃, I₃)

Les données infrarouge et Mössbauer de H_3 et I_3 sont respectivement reportées sur les tableaux XIa et XIb. Les spectres i.r. et Mössbauer de H_3 et le spectre Raman de I_3 sont représentés respectivement sur les figures 11c, 11d et 11e.

L'apparition de vsSnC₂ à 517 cm⁻¹ sur le spectre i. r. de H₃ et à 606 cm⁻¹ sous forme d'une bande faible sur le spectre i. r. de l₃ (cette vibration apparait sous forme d'une raie intense à 606 cm⁻¹ sur le spectre Raman) montre que le groupement SnC₂ est coudé.

La valeur de l'éclatement quadripolaire du dérivé méthylé ($\Delta E = 4,12 \text{ mms}^{-1}$) indique une transcoordination. L'éclatement quadripolaire du dérivé Me₂AsO₂SnBu₂Cl ($\Delta E = 3,33 \text{ mms}^{-1}$) est similaire à celle de SnBu₂Cl₂ ($\Delta E = 3,40 \text{ mms}^{-1}$) qui a une structure polymérique avec une transcoordination non symétrique des groupements SnBu₂ et des distances courtes et longues des liaisons SnCl (89).

Sur la base de ces données spectroscopiques nous proposons une structure de type chaîne infinie contenant une transcoordination non symétrique des groupements SnR₂, le chlore et l'anion servant de ponts avec des distances courtes et longues des liaisons SnCl et SnO. (schéma 11b).

$A_3 = (Ph_2PO_2)_2SnMe_2$	$D_3 = (H_2 PO_2)_2 SnMe_2$	$G_3 = (Me_2AsO_2)_2SnMe_2$
$B_3 = (Ph_2PO_2)_2SnBu_2$	$E_3 = (H_2 PO_2)_2 SnBu_2$	$H_3 = Me_2AsO_2SnMe_2CI$
$C_3 = (Ph_2PO_2)_2SnPh_2$	$F_3 = (H_2 PO_2)_2 SnPh_2$	$I_3 = Me_2AsO_2SnBu_2CI$

Tableau	XIa:	Données	infrarouge	des	dérivés	A3 -	12	
						~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	· · · ·	

Attributions	A ₃	B ₃	C ₃	D ₃	E ₃	F ₃	G ₃	H ₃	l ₃
vA'R'2	763m 619F	750F 634m	750F 620f	2400tF 2330m	2376 2302	2380F 2330m	640F 605m	650m 605m	650m 605m
νΑ'Ο ₂	1146tF 1131tF 1047tF	1142tF 1050F	1145tF 1130tF 1060tF 1050tF	1150tF 1130ep 1050tF	1152tF 1060tF	1145tF 1060tF	900F 880f 850tF 825f	883tF 837F	870tF 800tF
δΡΗ ₂ ωΡΗ ₂ ρΡΗ ₂				1150tF 1085tF 805tF	1152tF 1080tF 810tF	1145tF 1080tF 810tF			
δΑ'Ο ₂	543tF 523tF	550tF 526tF	560tF 540ep	441F	455m	452F	430F	430tF	430tF
ρΑ'Ο ₂	360F	348F	345F	-	-	-	325F	315F	320F
δΑ'Β' ₂	309m	316m	300ep				305m	290m	285m
vasSnC ₂	578F	645F	320F	571F	645F	291F	564F	582F	650F
vsSnC ₂	-	602f (600m)	-	-	600f (603m)	-	517tr	517m	606m (606F)
vSnCl								260F	250tF
vSnO	204m	200f	230F	250tF	250f	275m	255m	230m	230tF

tF = très forte, F = forte, m = moyenne, f = faible, ep = épaulement; tr =trace,

A' = P, As; R' = Ph, Me; Les fréquences en Raman sont entre parenthèses

Tableau XIb: Données Mössbauer des dérivés A3- H3

composés	A ₃	B ₃	C ₃	D ₃	E ₃	F ₃	G3	H ₃	13
δ(mms ⁻¹)	1,23	1,35	1,10	1,08	1,36	1,10	1,06	1,35	1,31
∆E(mms⁻¹)	4,45	4,41	4,11	3,78	4,49	4,02	3,75	4,12	3,33
Γ	0,85	0,98	0,89	0,97	0,89	1,00	0,95	0,84	0,80

TRANSMISSION

figure 11e: Spectre Raman de Me₂AsO₂SnBu₂Cl

III-3°/ R'A'O₃SnR₂ (R' = H, Ph, NH₂C₆H₄; A' = P, H; R = Me, Bu) (J₃-O₃)

Les données i.r. et Mössbauer de ces composés sont reportées respectivement sur les tableaux XIIa et XIIb. Les spectres i. r. de L_3 , Mössbauer de J_3 et Raman de K_3 sont représentés respectivement sur les figures 12a, 12b et 12c.

La présence de vsSnC₂ sur les spectres infrarouge de L₃ (530 cm⁻¹) et M₃ (606 cm⁻¹) permet de conclure à un groupement SnC₂ non linéaire. La présence de vSnO est la preuve de la liaison entre le métal et l'anion.

L'éclatement quadripolaire ($\Delta E = 2,92 \text{ mms}^{-1}$) dans le cas du dérivé M₃ et celui de L₃ ($\Delta E = 3,03 \text{ mms}^{-1}$) similaires à celui de SnBu₂(N₃)₂ ($\Delta E = 2,99 \text{ mms}^{-1}$) connu comme étant tétraèdrique et obtenu par HERBER et coll. (86a, 90) indiquent un environnement tétraédrique autour de l'étain.

L'absence de la bande de vibration due à vsSnC₂ sur le spectre i. r. de N₃ et les valeurs de l'éclatement quadripolaire des complexes J₃, K₃, et N₃ indiquent une transcoordination octaèdrique avec un groupement SnC₂ linéaire.

Sur la base de ces données spectroscopiques nous proposons deux types de structure pour les complexes L_3 et M_3 : une structure discrète avec un anion monochélatant, l'environnement autour de l'étain étant tétraédrique (schéma 12a) ou une chaîne infinie avec un anion bi-unidentate (shéma 12b).

Pour les complexes J_3 , K_3 , et N_3 la structure est une chaine infinie similaire à celle de $SnMe_2F_2$ (86) avec un anion bichélatant comme dans le cas de SnR_2SeO_3 (R = Me, Bu), l'environnement autour de l'étain est octaèdrique (schéma 12c).

 $J_3 = HPO_3SnMe_2$ $K_3 = HPO_3SnBu_2$ $L_3 = NH_2C_6H_4AsO_3SnMe_2$
$$\begin{split} \mathsf{M}_3 &= \mathsf{NH}_2\mathsf{C}_6\mathsf{H}_4\mathsf{A}\mathsf{sO}_3\mathsf{S}\mathsf{n}\mathsf{B}\mathsf{u}_2\\ \mathsf{N}_3 &= \mathsf{Ph}\mathsf{A}\mathsf{sO}_3\mathsf{S}\mathsf{n}\mathsf{M}\mathsf{e}_2 \end{split}$$

Attributions	J ₃	K ₃	L ₃	M ₃	N ₃
vA'R'	2400tF	2380m	680m	675f	690F
δΝΗ ₂ δΡΗ	1045F	1040ep	1600tF 1630tf	1598F 1622tF	
ωΝΗ ₂ ρΝΗ ₂			1015f 515F	1010f 515m	
νΑ'Ο ₃	1200m 1120ep 1110tF 1080tF 1010F	1170f 1125f 1095F 1070F 1020F	890tF 860tF 830m 820m	880ep 860F 827F	898F 855F 785tF
δΑ'Ο ₃	605tF 545m 435F	530m 432F	410m 380m 360m	420m 360m	414m 377tF
vasSnC ₂	580m	632f	570m	635f	582F
vsSnC ₂	525tr	600f (602F)	530m	606F (601F)	-
vSnO	280tF	275tF	270m	250f	268m

Tableau XIIa: Données infrarouge des dérivés J_3 - N_3

tF = très forte, F = forte, m = moyenne, f = faible, ep = épaulement vNH₂ apparait à 3200 et 3500 cm⁻¹ pour L₃ et M₃

Tableau XIID: Donnees Mossbauer des derives J3- 1	N
---	---

Composés	J ₃	K ₃	L ₃	M ₃	N ₃
δ (mms ⁻¹)	1,41	1,61	1,25	1,14	1,45
$\Delta E(mms^{-1})$	3,87	4,07	3,03	2,92	4,21
Г	0,93	1,02	0,96	1,05	1,02

III- 4°/ $Ph_2PO_2SnR_3$ (R = Me, Bu) (O₃, P₃)

Les données i.r. sont reportées sur le tableau XIII et les spectres i.r., Mössbauer et RMN de Ph₂PO₂SnMe₃ sont représentés respectivement sur les figures 13a, 13b et 13c.

Sur le spectre de $Ph_2PO_2SnMe_3$ la bande intense à 526 cm⁻¹ est due à δPO_2 . vsSnC₃ absente sur le spectre de $Ph_2PO_2SnBu_3$ nous permet de conclure à un groupement SnC₃ plan et de symétrie D_{3h} .

Les paramètres Mössbauer (O₃: δ = 1,30mms⁻¹, Δ E = 3,78mms⁻¹, Γ = 0,83; $P_3: \delta = 1,39 \text{ mms}^{-1}, \Delta E = 3,89 \text{ mms}^{-1}, \Gamma = 0,95$) similaires respectivement à ceux de SnMe₃F (δ = 1,26mms⁻¹, Δ E = 3,82mms⁻¹,) (91- 92) et SnBu₃F (δ = 1,34mms⁻¹, $\Delta E = 3,73 \text{ mm s}^{-1}$) (92-93). indiguent une structure de type chaîne infinie Le spectre RMN du proton ¹H du dérivé Ph₂PO₂SnMe₃ montre une raie intense à 0,51ppm avec des bandes satéllites à 0,397, 0,402, 0,623 et 0,628ppm dues aux 119Sn méthyl couplés avec les isotopes et 117Sn protons du $(^{2}J^{119}Sn^{-13}C^{-1}H = 69,19Hz; ^{2}J^{117}Sn^{-13}C^{-1}H = 66,08Hz)$ et deux multiplets entre 7,3 et 7,9 ppm dus aux protons des phényls.

figure 13c: Spectre RMN ¹³C de Ph₂PO₂SnMe₃

figure 13c: Spectre RMN ^{3 1}P de Ph₂PO₂SnMe₃

Le spectre du carbone ¹³C montre une raie à -0,456ppm avec des bandes satéllites à 2,95, 2,80, -3,72 et -3,87ppm dues aux carbones du méthyl couplés avec les isotopes ¹¹⁷Sn et ¹¹⁹Sn (J¹¹⁷Sn-¹³C = 492,3Hz; J¹¹⁹Sn-¹³C = 514,7Hz); les carbones phényliques apparaissent sous forme de quatre doublets centrés à 129,1ppm (méta), 131,8ppm (para), 132,1ppm (ortho) et 138,4ppm (ipso) (J³¹P-¹³C = 136,9Hz). Sur les spectres de l'étain et du phosphore on observe respectivement une seule raie à 25,65ppm et 21,07ppm: cette importante diminution du déplacement chimique de ¹¹⁹Sn par rapport à celui de SnMe₃Cl (δ = 164ppm) (94) d'une part et les valeurs de ²J¹¹⁹Sn-¹³C-¹H \simeq 70Hz et J(¹¹⁹Sn-¹³C) \simeq 500Hz d'autre part indiquent une pentacoordination autour de l'étain (95- 97).

Sur la base de ces données spectroscopiques nous proposons une structure à chaîne infinie identique à celle du type c de TIEKINK dans les carboxylates de triphényl étain (IV) (98) avec un anion pontant, l'environnement autour de l'étain étant bipyramidal trigonal (schéma13).

 $O_3 = Ph_2PO_2SnMe_3$

 $P_3 = Ph_2PO_2SnBu_3$

Tableau XIII: Données infrarouge des dérivés O₃- P₃

Attributions	vPC ₂	vPO ₂	δPO ₂	ρΡΟ ₂	δPC ₂	vasSnC ₃	vsSnC ₃	vSnO
O ₃	754F	1156tF 1130tF 1047tF	526tF	349F	310F	543tF	-	246m
P ₃	750F	1149tF 1128tF 1047tF	544tF 526tF	347m	305m	645m	-	254m

tF = très forte, F = forte, m = moyenne

III-5°/ IO_3 SnPh₃ (Q₃)

Sur la figure 13d nous avons reporté le spectre i. r. du composé. v_1 apparait à 761 cm⁻¹. L'éclatement de v_3 sous forme deux bandes à 786 et 744 cm⁻¹ montre que l'anion est de symétrie C_s ou C₁. v_2 est localisé à 448 cm⁻¹ et v_4 à 347cm⁻¹. L'apparition de la bande faible de vibration due à v_s SnC₃ à 216 cm⁻¹ montre que le squelette SnC₃ n'est pas rigoureusement plan. v_{as} SnC₃ est localisée à 271 cm⁻¹. Les bandes à 234 et 189 cm⁻¹ sont respectivement attribuées à δ_{as} SnC₃ et δ_s SnC₃.

La valeur élevée de l'éclatement quadripolaire ($\delta = 1,60$ mms⁻¹; $\Delta E = 3,05$ mms⁻¹; $\Gamma = 0,9$ mms⁻¹) traduit une transcoordination de SnPh₃.

Sur la base de ces données spectroscopiques nous proposons une structure à chaine infinie avec une transcoordination dissymétrique contenant des liaison SnO courtes et longues comme dans le cas de $2\text{-OHC}_6\text{H}_4\text{COOSnPh}_3$ (99) et $2\text{-C}_6\text{H}_5\text{COC}_6\text{H}_4\text{COOSnPh}_3$ (100), l'anion étant bi- unidentate: les oxygènes intervenant dans la coordination sont un oxygène chargé et un oxygène non chargé, ce qui pourrait expliquer la transpentacoordination légérement dissymétrique. (schéma 13a).

 $III-6^{\circ}/HPO_4(TMN)_2.3SnPh_3CI$ (R₃)

Sur les figures 13e et 13e'sont reportés respectivement les spectres infrarouge et Mössbauer du composé R_3 . Ce composé a été obtenu par oxydation de l'anion HPO₃= mise en évidence par la disparition de vPH à 2360 cm⁻¹.

L'apparition de vs SnC₃ à 217 cm⁻¹ indique que le groupement SnC₃ n'est pas plan.

Données Mössbauer: $\delta = 1,26$ mms⁻¹; $\Delta E = 3,10$ mms⁻¹; $\Gamma = 0,96$ mms⁻¹ La valeur élevée de l'éclatement quadripolaire comparée à celle de SnPh₃Cl (2,55 mms⁻¹) indique une transcoordination du résidu SnPh₃.

Sur la base de ces données spectroscopiques la structure proposée est discrète avec un anion tri- unidentate (schéma 13b)

H_2PO_2 TMN .2SnPh₃Cl (S₃)

Sur la figure 13f est reporté le spectre du composé S₃. *Données infrarouge:* 2340cm⁻¹ (F), 2320cm⁻¹(m) vPH₂; 1150cm⁻¹(tF), 1060(F)vPO₂; 1070(F) ω PH₂; 810(F) ρ PH₂; 492cm⁻¹(F) δ PO₂; 273cm⁻¹(tF) vasSnC₃; 227cm⁻¹(ep) δ asSnC₃; 216cm⁻¹(m) vsSnC₃; 204cm⁻¹(F) vSnO; 191cm⁻¹(F)vSnCl + δ _sSnC₃.

– **1**10 –

figure 13f: Spectre infrarouge de H₂PO₂ TMN .2SnPh₃Cl

Comme dans le cas du composé R_3 l'apparition de la bande de vibration due à vsSnC₃ indique que le groupement SnC₃ n'est pas plan.

Données Mössbauer: $\delta = 1,28$ mms⁻¹; $\Delta E = 3,24$ mms⁻¹; $\Gamma = 0,98$ mms⁻¹ La valeur élevée de ΔE comparée à celle de SnPh₃CI traduit une transcoordination du groupement SnPh₃.

La structure rendant compte de ces données spectrales est discrète avec un anion bi- unidentate, l'environnement autour de l'étain étant bipyramidal trigonal (schéma 13c).

III-8°/ $(TMN)_2(R'_2A'O_2)_4SnR_2(SnR_2CI_2)_2$ (R' = H, Me; A' = P, As; R = Me, Ph) (T₃, U₃)

Les données infrarouge de ces composés sont reportées sur le tableau XIV et les spectres i.r. et Mössbauer du composé T₃ représentés respectivement sur les figures 14a et 14b.

Sur le spectre de U₃ vsSnC₂ qui apparait à 235cm⁻¹ montre que le squelette SnC₂ n'est pas linéaire.

Données Mössbauer de U₃ ($\delta = 0.83$ mms⁻¹, $\Delta E = 3.23$ mms⁻¹; $\Gamma = 0.87$): ΔE est faible comparé aux composés contenant des groupements SnPh₂ trans coordinés comme dans SnPh₂(Ph₂PO₂)₂ (C₃) ($\Delta E = 4.11$ mms⁻¹) ou SnPh₂(H₂PO₂)₂ (F₃) ($\Delta E = 4.02$ mms⁻¹) mais supérieur à 2.82mms⁻¹ (SnPh₂Cl₂) qui a un environnement tétraèdrique autour de l'étain. Cette valeur de ΔE dans le cas du composé U₃ traduit une trans coordination non symétrique. La différence de comportement des oxoanions et des chlorures (pontant ou unicoordinant) explique la non linéarité de SnC₂ et la faible valeur de ΔE comparée aux groupements SnC₂ linéaires.

Sur la base de ces données spectroscopiques nous proposons une structure discrète contenant deux anions unidentates, deux anions bi- unidentates et deux atomes de CI pontants et non pontants (schéma 14a).

L'absence de la bande due à $vsSnC_2$ sur le spectre de T₃ nous permet de conclure à un groupement SnC₂ linéaire.

figure 14a: Spectre infrarouge de $(TMN)_2(H_2PO_2)_4SnMe_2(SnMe_2Cl_2)_2$

Données Mössbauer de T₃ (δ = 1,30mms⁻¹, Δ E = 4,30mms⁻¹; Γ = 0,91): la valeur élevée de Δ E dans le cas de T₃ montre une transcoordination octaèdrique des groupements SnR₂ et un seul type d'étain.

Sur la base de ces données spectroscopiques nous proposons une structure discrète contenant des anions bi- unidentates servant de pont sur lesquels viennent se fixer deux molécules de $SnMe_2Cl_2$ (schéma 14b). Dans ce cas la spectroscopie Mössbauer ne peut différencier ces étains comme dans $(TMN)_2(C_2O_4)_2SnPh_2.2SnPh_2Cl_2$ (23).

schéma 14b

III-9°/ $(Me_2AsO_2)_2SnPh_2(SnPh_2Cl_2)_2$ (V₃)

Les données i.r. sont reportées sur le tableau XIV et les spectres i.r. et Mössbauer représentés respectivement sur les figures 15a et 15b.

La présence de la bande due à $vsSnC_2$ à 230 cm⁻¹ montre un groupement SnPh₂ non linéaire. vSnO apparaît à 220 cm⁻¹.

Les paramètres Mössbauer ($\delta_1 = 1,01$ mms⁻¹, $\Delta E_1 = 2,55$ mms⁻¹; $\delta_2 = 1,43$ mms⁻¹; $\Delta E_2 = 3,40$ mms⁻¹; $\Gamma = 0,93$) montrent deux sites d'étain avec un rapport égale à 2/1. Nous considérerons V₃ comme une molécule de (Me₂AsO₂)₂SnPh₂ sur laquelle viennent se fixer deux molécules de SnPh₂Cl₂.

La valeur de $\Delta E_1 = 2,55 \text{ mms}^{-1}$ est caractéristique d'un groupement SnC_2 coudé des molécules de SnPh_2Cl_2 alors que ΔE_2 indique une transcoordination du groupement SnPh_2 . Sur la base de ces donnés spectroscopiques nous proposons une structure discrète contenant des anions bichélatants, l'environnement autour des atomes de l'étain étant octaèdrique (schéma 15).

 $T_{3} = (TMN)_{2}(H_{2}PO_{2})_{4}SnMe_{2}(SnMe_{2}CI_{2})_{2}$ $U_{3} = (TMN)_{2}(Me_{2}AsO_{2})_{4}SnPh_{2}(SnPh_{2}CI_{2})_{2}$ $V_{3} = (Me_{2}AsO_{2})_{2}SnPh_{2}.(SnPh_{2}CI_{2})_{2}$ $W_{3} = H_{2}PO_{2}TMNSnPh_{2}CI_{2}.H_{2}PO_{2}SnPh_{2}CI$ $X_{3} = (Me_{2}AsO_{2})_{2}SnBu_{2}.Me_{2}AsO_{2}SnBu_{2}CI$

Tableau XIV: Données infrarouge des dérivés T₃- X₃

A STATE OF THE OWNER					
Attributions	T ₃	U ₃	V ₃	W ₃	X ₃
vA'R'2	2400F 2380F	640F 610m	650m 610f	2390m 2370m	640F 610F
vA'O ₂	1190F 1160tF 1050tF	930m 890ep 880F 790tF	880tF 845tF	1195m 1180f 1155ep 1145tF 1060F	902tF 824tF
ωΡΗ ₂ ρΡΗ ₂	1085F 805tF			1085F 810tF	
δΑ'Ο ₂	475F 455F	435F 420ep	440ep 390F	445m	450F 420F
ρΑ'Ο ₂	me	350ep	***	320m	338F
δΑ'R'2	1140ep	305F	320m	1145tF	319F
vasSnC ₂	585F	285ep	275F	298m	651m
vsSnC ₂	518tr	235m	230F	238ep	610F (606F)
vSnCl	270F	250m	245F	250m	240F
vSnO	220f	220F	215f	220m	215f

tF = très forte, F = forte, m = moyenne

Les fréquences en Raman sont entre parenthèses

figure 15a: Spectre infrarouge de $(Me_2AsO_2)_2SnPh_2(SnPh_2Cl_2)_2$

figure 15b: Spectre Mössbauer de $(Me_2AsO_2)_2SnPh_2(SnPh_2Cl_2)_2$

III-10°/ H₂PO₂TMNSnPh₂Cl₂.H₂PO₂SnPh₂Cl (W₃)

Les données infrarouge sont reportées sur le tableau XIV et les spectres i.r. et Mössbauer sont représentés respectivement sur les figures 16a et 16b.

Les paramètres Mössbauer ($\delta_1 = 1,16$ mms⁻¹, $\Delta E_1 = 3,99$ mms⁻¹; $\delta_2 = 1,27$; $\Gamma = 0,90$ mms⁻¹, $\Delta E_2 = 3,00$ mms⁻¹; $\Gamma = 0,90$ mms⁻¹) dans un rapport 1/1 montrent deux sites d'étain. Les valeurs des éclatements quadripolaires confirment une transcoordination octaédrique d'un groupement SnPh₂ alors que l'autre groupement SnPh₂ est coudé vue la valeur de $\Delta E_2 = 3,00$ mms⁻¹.

Tout se passe comme si le dérivé $SnPh_2(H_2PO_2)_2$ réagissait avec $SnPh_2Cl_4(NMe_4)_2$ accompagné du départ d'une molécule de Me_4NCl . Les valeurs des paramètres Mössbauer du premier site sont similaires à celles des paramètres de $SnPh_2(H_2PO_2)_2$ ($\Delta E = 4,02mms^{-1}$) (F_3). La structure dérive de celle de $SnPh_2(H_2PO_2)_2$ par addition de $SnPh_2Cl_3^{-}$. L'environnement immédiat des groupements $SnPh_2$ sera formé de deux oxygénes et de deux chlorures d'une part (équivalents à quatre oxygénes) comme dans $(TMN)_2(C_2O_4)_2SnPh_2.2SnPh_2Cl_2$ (23) et de trois chlorures d'autre part.

Sur la base de ces données spectroscopiques nous proposons une structure à chaine infinie contenant un anion unidentate et des atomes de chlore pontants; l'environnement autour de l'étain contenant un SnPh₂ linéaire est octaédrique alors que l'autre est bipyramidal trigonal (schéma 16).

figure 16a: Spectre infrarouge de H₂PO₂TMNSnPh₂Cl₂.SnPh₂Cl

III-11°/ $(Me_2AsO_2)_2SnBu_2.Me_2AsO_2SnBu_2CI(X_3)$

Le complexe est particulier en ce sens que $SnBu_2(Me_2AsO_2)_2$ n'a pas été isolé alors que $(Me_2AsO_2)_2SnMe_2$ existe. Ce complexe peut être considéré comme le produit de l'addition de $Me_2AsO_2SnBu_2CI$ et de $(Me_2AsO_2)_2SnBu_2$.

Les données i.r. sont reportées sur le tableau XIV et les spectres i.r., Raman et Mössbauer représentés respectivement sur les figures 17a et 17b et 17c.

 $vsSnC_2$ apparaît sur le spectre i.r. sous forme d'une bande intense à 606 cm⁻¹ (raie intense à 606 cm⁻¹) et montre que le groupement SnBu₂ est coudé. vSnO est localisée à 215 cm⁻¹ sous forme d'une bande faible et vSnCl apparaît à 240 cm⁻¹.

Les paramètres Mössbauer sont ($\delta = 1,23$ mms⁻¹; $\Delta E = 3,61$ mms⁻¹; $\Gamma=0,93$ mms⁻¹). La valeur de l'éclatement quadripolaire traduit une transcoordination octaédrique non symétrique des groupements SnBu₂ (89).

Sur la base de ces données spectroscopiques nous proposons une structure discrète contenant un anion bi-unidentate et un atome de chlore servant de ponts et deux anions monochélatants, l'environnement autour de l'étain étant octaédrique et distordu avec des distances longues et courtes des liaisons SnO et SnCI (schéma 17).

schéma 17

figure 17a: Spectre infrarouge de (Me₂AsO₂)₂SnBu₂.Me₂AsO₂SnBu₂Cl

figure 17b: Spectre Mössbauer de (Me2AsO2)2SnBu2.Me2AsO2SnBu2Cl

figure 17c: Spectre Raman de (Me₂AsO₂)₂SnBu₂.Me₂AsO₂SnBu₂Cl

CONCLUSION

a a transformation and a second s

Ce travail nous a permis de synthétiser de nouveaux dérivés organostanniques avec des oxoanions substitués. Les études spectroscopiques nous ont permis de mettre en évidence la nature chélatante et/ ou poly-unidentate des oxoanions. L'environnement octaédrique ou tétraédrique autour de l'étain est déterminé à partir des valeurs de l'éclatement quadripolaire (ΔE) de ces composés. Dans le cas du dérivé Ph₂PO₂SnMe₃ l'étude RMN nous a permis de confirmer l'environnement bipyramidal trigonal autour de l'étain.

La tendance des anions disubstitués à favoriser la polymérisation soulignée par MOLLOY (57) a été confirmée mais l'existence de composés à structure discrète a aussi été prouvée.

IV° COMPLEXES AVEC SnX₄ (X = CI, Br)

Plusieurs études spectroscopiques (i.r., Raman et Mössbauer) sur les complexes de type $SnX_4.2L$ (L = DMSO, DMF, PhAsO, CH₃CN,) ont été réalisées (101-108). Ces études ont tenté de différencier les isomères *cis* ou *trans* parmi ces complexes.

Dans notre laboratoire des complexes de SnX_4 avec les oxoanions tétraédriques ou pyramidaux ont été isolés et caractérisés par les mêmes techniques spectroscopiques; il s'agit de: $H_2PO_2TMNSnX_4$ (16); $SeO_3(TMN)_2(SnCl_4)_{1,5}(20)$; $SeO_4(TEN)_2(SnCl_4)_{1,5}$ (18).

Dans ce travail nous avons synthétisé des complexes de SnX_4 avec des oxoanions tétraèdriques substitués et pyramidaux tels que $H_2PO_2^-$, $Ph_2PO_2^-$, $Me_2AsO_2^-$, $PhAsO_3^{2-}$ et IO_3^- en utilisant comme cations antagonistes le tétraméthyl et le tétraéthylammonium; sur la base des données spectroscopiques des structures ont été proposées.

IV- $R'_2A'O_2NR_4SnX_4$ (R' = H, Ph, Me; A' = P, As; R = Me, Et; X = CI, Br) (A_4-H_4)

Les données infrarouge et Mössbauer de ces complexes sont respectivement reportées sur les tableaux XVa et XVb. Les spectres i.r., Mössbauer et Raman des complexes A_4 et H_4 sont représentés respectivement sur les figures (18a, 18b, 18c) et (18a', 18b', 18c').

Sur les spectres i. r. et Raman de l'isomère *trans* $SnX_4.2L$ dans lequel la molécule de SnX_4 est de symétrie D_{4h} , $vSnX_4$ doit faire apparaître trois modes de vibration de valence qui sont A_{1g} , B_{1g} et Eu. En infrarouge seule la vibration d'espèce Eu apparaît sous forme d'une bande intense et en Raman les vibrations d'espèce A_{1g} et B_{1g} apparaissent sous forme de deux bandes intenses.

Dans l'isomère *cis* la molécule de SnX_4 est de symétrie C_{2v} ; la vibration de valence d'espèce A_1 apparaît en Raman sous forme d'une raie intense et l'autre vibration de valence d'espèce T_2 éclate en $A_1 + B_1 + B_2$ et apparaît sous forme de trois raies de faible intensité.

Sur les spectres infrarouge de nos composés, la forme des bandes dues à vSnX ne nous permet pas de nous prononcer clairement sur la géométrie de la molécule de SnX_4 puisque l'éclatement dans le cas de la symétrie C_{2v} peut ne pas être net d'une part, et d'autre part Eu par effet de cristal peut se dédoubler.

Sur les spectres Raman de ces composés $(A_4-G_4) vSnX_4$ apparaît sous forme d'une raie intense d'espèce A_1 et de deux ou trois raies moyennes ou faibles provenant de l'éclatement T_2 en A_1 , B_1 et B_2 .

$A_4 = H_2 PO_2 TMN. SnBr_4$	$E_4 = Me_2AsO_2TEN.SnCl_4$
$B_4 = H_2 PO_2 TMN. SnCl_4$	$F_4 = M_{\Theta_2} AsO_2 TEN_S nBr_4$
$C_4 = Me_2AsO_2TMN.SnCl_4$	$G_4 = Ph_2PO_2TEN.SnBr_4$
$D_4 = Me_2AsO_2TMN.SnBr_4$	$H_4 = Ph_2PO_2TEN.SnCl_4$

Tableau XVa: Données	infrarouge des	s complexes A_4 - H_4
----------------------	----------------	---------------------------

Attributions	A ₄	B ₄	C ₄	D ₄	E ₄	F ₄	G ₄	H ₄
vA'B'a	2420m	2430m	657F	655m	656F	655m	755m	750F
	2360f	2330f	610f	605f	610m	606f	690f	675m
	1150ep	1150ep	900tF	895F	896tF	890m	1179tF	1193F
vA'02	1112tF	1110tF	872tF	870F	871tF	843m	1160ep	1181F
	1054tF	1060tF	855tF	850F	855tF	826F	1130F	1130F
			830tF	830F	831tF	811F	1045F	1045F
	518m	526m	466tF	466tF	465tF	471F	552tF	556F
δΑ'Ο2	453f	470f	413F	405tF	412F	412F	530tF	529F
~~ <u>~</u>	357F	368ep				340F	448f	426f
		327ep					371m	372m
ρΑ'Ο ₂	-		275F	279tF	275tF	288F	321m	328F
δΑ'R'2			-	-	-	-	301m	311F
√SnX ₄	210tF	300tF	300tF	209tF	299tF	214tF	207F	299tF
	(189tF)	(313tF)	(296tF)	(187tF)	((308F)	(184tF)	(205F)	(337F)
								(308F)
vSnO	227ep	226m	234F	236F	233F	232ep	224tF	240f

tF = très forte, F = forte, m = moyenne, f = faible, ep = épaulement

A' = P, As; R' = H, Me, Ph; X = Cl, Br

.

 ωPH_2 et ρPH_2 sont localisés respectivement vers 1110 cm^-1 et 810 cm^-1

Les valeurs entre parenthèses sont les fréquences des raies Raman

Figure 18b: Spectre Mössbauer de H₂PO₂TMNSnBr₄

Figure 18c: Spectre Raman de H₂PO₂TMNSnBr₄

- 129 -

La faiblesse des valeurs de l'éclatement quadripolaire ($\Lambda E \leq 0.57 \text{ mms}^{-1}$) et la bande unique due à v_sSnX₄ en Raman indiquent une coordination *cis* de la molécule de SnX₄ d'où une symétrie C_{2v}.

La valeur de l'éclatement quadripolaire du complexe $Me_2AsO_2TMN.SnBr_4$ ($\Delta E = 0,64mms^{-1}$) similaire à celle trouvée par TUDELA et coll. (109) dans le cas de *cis* SnBr_4(OPPh_3)₂ ($\Delta E = 0,64mms^{-1}$) confirme la coordination *cis*.

Sur le spectre infrarouge de $H_2PO_2TEN.SnCl_4$ (H_4), les bandes à 328cm⁻¹ et 311cm⁻¹ sont dues respectivement à δPO_2 et ρPO_2 . Ces bandes apparaissent à 321cm⁻¹ et 301cm⁻¹ sur le spectre de $H_2PO_2TEN.SnBr_4$ (G_4).

Sur le spectre Raman vSnCl₄ qui apparaît sous forme de deux bandes intenses à 336 et 308 cm⁻¹ dues aux vibrations d'espèce A_{1g} et B_{1g} indique une transcoordination et une molécule de SnCl₄ de symétrie D_{4h}. TUDELA et coll. (109) ont trouvé dans le cas du complexe *trans* SnCl₄(thf)₂ une valeur de ΔE = 0,35mms⁻¹ similaire à celle du complexe H₄ (ΔE = 0,39mms⁻¹). vSnO présente sur les spectres infrarouge est la preuve de la liaison entre le métal et le ligande.

Sur le tableau XVc nous avons regroupé les données Mössbauer en fonction de la température et sur la figure18d la courbe InA(T) en fonction de la température. La valeur de 10² a de 0,96K⁻¹ traduit une structure polymère de ces complexes (50, 110-111).

Sur la base de ces données spectroscopiques nous proposons dans le cas des complexes *cis* une chaîne infinie avec un anion bi-unidentate (schéma 18a) et dans le cas du complexe *trans* une structure de type chaîne infinie avec un anion bi-unidentate (schéma 18b).

Complexes	A ₄	B ₄	C ₄	D ₄	E ₄	F ₄	G ₄	H ₄
δ(mms ⁻¹)	0,58	0,18	0,25	0,40	0,26	0,43	0,46	0,30
$\Delta E(mms^{-1})$	0,50	0,00	0,00	0,64	0,00	0,00	0,00	0,39
Г	1,04	1,15	1,09	0,93	1,06	1,10	1,18	1,04

Tableau XVb: Données Mössbauer des complexes A₄- H₄

Tableau XVc: Données Mössbauer en fontion de la Température

δ(mms ⁻¹)	0,58	0,59	0,56	0,54	0,57	0,52	0,53
$\Delta E(mms^{-1})$	0,50	0,54	0,45	0,56	0,48	0,37	0,40
InA(T)	-4,2418	-4,3378	-4,4338	-4,5298	-4,6258	-4,8178	-5,0098
T(K)	80	90	100	110	120	140	160

figure 18d: courbe $ln(A) = f(T) de H_2 PO_2 TMN.SnBr_4$

$IV-2 (IO_3 TEN)_2 SnCI_4 H_2O (I_4)$

Les spectres infrarouge, Mössbauer et Raman du composé sont respectivement reportées sur les figures 19a, 19b et 19c. Sur le spectre i. r. vH₂O, δ H₂O et ρ H₂O apparaissent respectivement à 3200, 1642 et 474 cm⁻¹. L'éclatement

de v_4 sous forme de deux bandes à 334 et 312 cm⁻¹ en infrarouge et à 341 et 319 cm⁻¹ en Raman indique que l'iodate est de symétrie C_s ou C₁: l'iodate est O donneur. vSnO est localisée à 249 cm⁻¹.

Sur le spectre Raman (figure 19c) $vSnCl_4$ qui apparait sous forme de deux raies intenses dues aux vibrations d'espèce A_{1g} et B_{1g} à 311cm⁻¹ et 263cm⁻¹ indique une molécule de SnCl₄ de symétrie D_{4h} et nous permet d'attribuer à $vSnCl_4$ d'espèce Eu la bande intense qui apparaît en i.r. à 300cm⁻¹.

Données Mössbauer ($\delta = 0,41$ mms⁻¹; $\Delta E = 0,58$ mms⁻¹; $\Gamma = 0,91$); ΔE se situe à la limite des valeurs de ΔE des complexes *cis* et *trans* (0,53-0,57) et similaire à celui de *trans* SnCl₄(dmso)₂ ($\delta = 0,41$ mms⁻¹; $\Delta E = 0,57$ mms⁻¹; $\Gamma = 0,92$).

La molécule d'eau toujours présente à T > 150° C et en présence d'un puissant déshydratant comme le 2, 2' diméthoxypropane montre qu'elle assure fortement la cohésion du cristal, surement sous forme de liaison hydrogéne.

Sur la base de ces données spectroscopiques nous proposons une structure contenant une molécule de $SnCl_4$ transcoordinée par deux anions de symétrie C_s ou C_1 , la molécule d'eau assurant la cohésion à l'état solide (schéma 19).

 $IV-3 (TMN)_2 PhAsO_3 (SnCl_4)_{1.5} (J_4)$

Les spectres infrarouge, Raman et Mössbauer sont reportées sur les figures 20a, 20b et 20c. La bande intense à 877 cm⁻¹ est due à vAsO₃; vSnO apparaît à 250 cm⁻¹.

vSnCl₄ qui apparaît en Raman sous forme d'une raie intense à 308 cm⁻¹ et les données Mössbauer ($\delta = 0.21$ mms⁻¹; $\Delta E = 0.48$ mms⁻¹; $\Gamma = 0.89$) indiquent une *cis* coordination et une molécule de SnCl₄ de symétrie C_{2v}.

Sur la base de ces données spectroscopiques deux structures sont possibles: une structure de type couche infinie contenant un anion tri-unidentate et une molécule de $SnCl_4$ *cis* coordinée de symétrie C_{2v} (schéma 20a) ou une structure dimère contenant des anions monochélatants et unidentates (schéma 20b).

figure 20c: Spectre Mössbauer de PhAsO₃(TMN)₂(SnCl₄)_{1,5}

	HA0655	(Me ₄ N) ₂ I	PhAsO ₃ (SnCl ₄)) 1.5	167 BS
		· · · · · · · · · · · · · · · · · · ·	С	HI2=	= 1.0023
		\	ALUES OF PA	RAI	METERS
		INITIAL	FINAL		ERROR
YD=	75672	2.7188	75659.8672	+-	22.2347
	Q.S.	0.5000	0.4978	+-	0.0361
	Prof	0.0800	0.0627	+-	0.0031
	Larg	0.8500	0.9241	+-	0.0659
	I.S.	0.1000	0.1148	+-	0.0148
V	MAX = -7	.7700 F	OLDING POIN	T = 2	257.5988
AIRE TO	TALE = ().10916E+(06 (UNITES AF	RBIT	RAIRES)

- 137 -

IV-4 (TEN)₂NH₂C₆H₄AsO₃(SnCl₄)₂(K₄)

Les spectres infrarouge et Mössbauer de ce composé sont respectivement reportés sur les figures 21a et 21b.

La largeur de la bande de vibration due à $vSnCl_4$ ne nous permet pas de nous prononcer avec certitude sur la géométrie de la molécule de $SnCl_4$.

Données Mössbauer :($\delta = -0,02$ mms⁻¹; $\Delta E = 0,53$ mms⁻¹; $\Gamma = 1,01$ mms⁻¹). La valeur de ΔE qui est inférieure à 0,57mms⁻¹ permet de penser que SnCl₄ est *cis* coordinée. La structure rendant compte de ces données spectroscopiques est discrète avec un anion bichélatant; l'environnement autour de l'étain est octaèdrique (schéma 21).

figure 21a: Spectre infrarouge de $NH_2C_6H_4AsO_3(TEN)_2(SnCl_4)_2$

figure 21b: Spectre Mössbauer de $NH_2C_6H_4AsO_3(TEN)_2(SnCl_4)_2$

a second a second a second second

shéma 21

$IV-5 HPO_4(TEN)_2(SnX_4)_{1.5}$ (X = CI, Br) (L₄, M₄)

Les données infrarouge de ces complexes sont reportées sur le tableau XVI et les spectres i. r., Mössbauer et Raman du complexe M₄ sont représentés respectivement sur les figures 22a, 22b et 22c.

Ces complexes ont été obtenus par oxydation de l'anion HPO₃⁼ en HPO₄⁼. Cette oxydation se manifeste par la disparition de la bande de vibration due à vPH vers 2380 cm⁻¹ comme dans le cas de (TMN)₂HPO₄.3SnPh₃Cl. vPOH et δ POH sont localisées respectivements à 840 cm⁻¹ et 465cm⁻¹ pour les spectres des deux complexes.

Sur les spectres Raman de ces complexes $vSnX_4$ apparaît sous forme d'une raie intense d'espèce A₁ à 308cm⁻¹ pour le complexe chloré et à 191 cm⁻¹ pour le complexe bromé.

Donées Mössbauer : L_4 : $\delta = 0,13$ mms⁻¹, $\Delta E = 0,00$ mms⁻¹, $\Gamma = 1,46$ mms⁻¹; M_4 : $\delta = 0,28$ mms⁻¹, $\Delta E = 0,74$ mms⁻¹, $\Gamma = 1,17$ mms⁻¹

La faiblesse de la valeur de l'éclatement quadripolaire ($\Delta E < 0.57 \text{ mms}^{-1}$) dans le cas du complexe chloré et la forme de la bande due à vSnX₄ en Raman pour les deux complexes indiquent une coordination *cis* de la molécule de SnX₄ d'où une symétrie C_{2v}.(30- 33)

- 142 -

figure 22c: Spectre Raman de $HPO_4(TEN)_2(SnBr_4)_{1,5}$

La valeur de l'éclatement quadripolaire dans le cas du complexe bromé, identique á celle trouvée par TUDELA et coll. (109) dans le cas du complexe *cis* $SnBr_4(OPh_3)_2$ confirme la coordination *cis*. La structure proposée sur la base de ces données spectrales est une couche infinie avec un anion tri- unidentate et une molécule de SnX_4 *cis* coordinée (schéma 22).

the state of the state of the second s

 $L_4 = HPO_4(TEN)_2(SnCl_4)_{1,5}$ $M_4 = HPO_4(TEN)_2(SnBr_4)_{1,5}$

Tableau XVI: Données infrarouge des complexes L₄- M₄

	vPOH	vPO3	δΡΗ	δΡΟ3	vMX2	vМО
A	840m	11875m 1170f 1100F	395f	595m 550m	270F	280m
В	840m	1185m 1095F	385f	595m 550f	300tF	289f

F = forte, m = moyenne, f = faible, ép = épaulement

schéma 22

CONCLUSION

Dans ce travail une série de complexes de SnX_4 (X = CI, Br) a été synthétisée. La tendance poly-unidentate des anions a été mise en évidence. Les études spectroscopiques (i.r., Raman et Mössbauer) nous ont permis de préciser la géométrie *cis* ou *trans* de la molécule de SnX_4 . L'insuffisance de la seule étude par spectroscopie i. r. pour différencier les géométries *cis* et *trans* de SnX₄ a été montrée.

CONCLUSION GENERALE

•

Ce travail nous a permis de synthétiser près d'une centaine de nouveaux complexes et dérivés.

L'ion $NH_2C_6H_4AsO_3^{=}$ a été étudié en tant que ligande par spectroscopie infrarouge pour la première fois dans ce travail.

Les composés synthétisés au cours de ce travail sont:

-des complexes mono et polynucléaires d'addition directe tels que $H_2PO_2TMN.nMX_2$

-des complexes de substitution- addition, complexes dont la formation s'accompagne de la présence in situ du sel neutre $(NR_4)_2(NH_2C_6H_4AsO_3)_2M.nMX_2$ (R = Me, Et; M = Zn, Hg, Cd; X = Cl, Br)

-des complexes de substitution totale avec les métaux comme $(NH_2C_6H_4AsO_3M)_n$ (M = Zn, Cd).

-des complexes organostanniques de substitution totale [SnR2(H2PO2)2]

-des complexes organostanniques de substitution- addition comme $(TMN)_2(H_2PO_2)_4SnPh_2(SnPh_2Cl_2)_2$

-des complexes organostanniques d'addition directe tels que $H_2PO_2TMN.2SnPh_3CI$

-dans le cas où le composé est soluble (cas de SnMe₃O₂PPh₂) l'étude RMN ¹H, ¹³C, et ¹¹⁹Sn a été menée complètement.

La nature poly- unidentate et/ ou polychélatante des oxoanions a été mise en évidence.

Dans le cas des complexes d'halogénures métalliques, les oxoanions substitués ont tendance à donner des complexes à structure discrète.

Nous avons constaté dans ce travail que le complexe $Me_2AsO_2TMN.ZnX_2$ correspondant de $H_2PO_2TMN.ZnX_2$ n'a pu être isolé mais représente la base de la formation des complexes obtenus et explique la similitude spectrale des complexes cacodylato.

Le rôle du cation a été mis en évidence dans le cas de l'anion $NH_2C_6H_4AsO_3^{=}$ par la difficulté à obtenir des complexes d'addition avec l'ion tétraéthylammonium utilisé comme cation antagoniste.

Dans le cas des complexes organométalliques, l'environnement octaèdrique ou tétraèdrique autour de l'étain est déterminé à partir des valeurs de l'éclatement quadripolaire de ces composés.

Dans le cas du dérivé Ph₂PO₂SnMe₃, l'étude RMN nous a permis de confirmer l'environnement bipyramidal trigonal autour de l'étain.

Dans le cas des complexes de SnX_4 (X = Cl, Br), les études spectroscopiques (i. r., Raman et Mössbauer) complétée par la spectroscopie Mössbauer à température variable nous ont permis de préciser la géométrie *cis* et *trans* de la molécule de SnX_4 et la polymérisation.

L'insuffisance de l'étude par spectroscopie i. r. seule pour différencier les géométries *cis* et *trans* de SnX₄ a été montrée.

Contrairement aux composés de la littérature qui sont des composés de substitution totale, les composés obtenus dans ce travail sont pour l'essentiel des additions directes, des substitution- additions et quelques substitutions totales dans le cas des organostanniques et de l'anion $NH_2C_6H_4AsO_3^{=}$. Les organostanniques d'après la littérature s'avérent avoir un potentiel reel d'activité biologique.

BIBLIOGRAPHIE

.

- °/- B. J. HATHAWAY Proc. Chem. Soc, (1958)344
- ". B. J. HATHAWAY Struct .Bond . (Berlin) , 14 (1973) 19
- P/- B. J. HATHAWAY et A. E. UNDERHILL J. Chem. Soc., (1960) 648
- PI- B. J. HATHAWAY in Comprehensive Coordination Chemistry; ligands; Pergamon Press; vol. 2, 1^{ère} ed; (1987) 413
- i°/- CHAABOUNI, J. L. PASCAL, A. C. PAVIA, J. POTIER et A. POTIER
 a°/ C. R. Acad. Sci. Paris , 287; (1978) 419
 b°/ J. Chim. Phys., 74; 1083 (1977)
- P/- C. BELIN, M. CHAABOUNI, J. L. PASCAL, J. POTIER et J. ROZIERE J. C. S. Chem. Comm., (1980) 105
- °/- T.CHAUSSE, J. L.PASCAL et J.POTIER, Nouv . J . de Chim ., 5, (1960) 261
- P/- Z. K. NIKITINA et U. YA ROSOLOVSKII Russ . J . Inorg . Chem .(Eng . Trans), 25, (1980) 715
- P/- S. V. LOGINOV, Z. K. NIKITINA et V. YA ROSOLOVSKII Russ. J. Inorg. Chem. (Eng. Trans.), 25; 508 (1980)
- 0°/- R. E. La VILLA et S. H. BAUER, J. Am. Chem. Soc., 85, (1963) 3597
- 1aº/- C. D. GARNER et S. C. WALLWORK, J. Chem. Soc., (A), (1966) 1496
- 1b°/- D. ARGELES, J. P. SILVESTRE et M. QUARTON, *Acta Crystallogr.*, Sect. B, 38, (1982) 1690
- 2a°/-G. G. MESSMER et G. J. PALENIK, Inorg. Chem., 8 (1969) 2750
- 2b°/- A. BINO et F. A. COTTON, Inorg. Chem., 18, (1979) 3562
- 3a°/-S. TAGAKI, M. JOESTEN et P. GALEN- LENHERT, Acta Crystallogr., Sect. B, 31 (1975) 1968
- 3b°/-B. KOJIC- PRODIC, M. SLJUKIC et Z. RUSIC- TOROS, Acta Crystallogr., Sect. B, 38, (1982) 67
- 4°/- B. N. FIGGIS, P. A. REYNOLDS et S. WRIGHT, J. Am. Chem., 105, (1983) 434
- 5a°/-T. CHIVERS, J. H. G. VAN ROODE, J. N. R. RUDDICK et J. R. SAMS, *Can. J. Chem.*, 51 (1973) 3702
- 5b°/- A. C. SKAPSKI, J. E. GUERCHAIS et J. Y. CALVES, C. R. Acad. Sci., 278c, (1974) 1377
- 6°/- A.S. SALL. Thèse de doctorat d'état ès sciences (1989) Dakar
- 7°/- A. DIASSE SARR Thèse de doctorat 3ème cycle ès sciences (1994) Dakar
- 8°/- O. SARR Thèse de doctorat d'état ès sciences (1988) Dakar
- 9°/- 1. CISSE Thèse de doctorat 3^{ème} cycle ès sciences (1995) Dakar
- 20°/- O. GUEYE Thèse de doctorat d'état ès sciences (1988) Dakar

- 48°/- R. M. GOLDING, F. JACKSON et E. SINN, Theor. Chim. Acta 15, (1969) 123
- 49°/- G. M.BANCROFT, V.G.KUMAR DAS et T. K.SHAM J. S. C. Dalton, (1976) 643
- 50°/- K. C. MOLLOY et K. QUILL, J. Chem. Soc. Dalton Trans, (1985) 1417
- 51°/- J. HOLECEK, M. NADVORNIK, K. HANDLIR et A. LYCKA, J. Organomet . Chem. 41, (1983) 177
- 52°/- M. ABENOZA et V. TABACIK, J. Mol. Struct., 26, (1975) 95
- 53°/- D. E. C. CORBRIDGE et E. J. LOWE J. App . Chem., 6, (1956) 456
- 54°/- M. TSUBOI J. Am. Soc., 79; (1957) 1351
- 55°/- R. I. BICKLEY, H. G. M. EDWARDS, A. KNOWLES, J. K. F. TAIT, R. E.
- GUSTAR, D. MIHARA et S. J. ROSE, Spectrochim. Acta, 50A, 7, (1994)1285
- 56°/- R. E. RIDENOUR et E. E. FLAGG, J. Organomet. Chem., 16, (1969) 393
- 57°/- K. C. MOLLOY, F. A. K. NASSER et J. J. ZUCKERMAN *Inorg. Chem.*, 21, 5, (1982) 1710
- 58°/ P. B. SIMONS and W. A. G. GRAHAM, J. Organomet. Chem., 8, (1967) 479
- 59°/- H. SCHUMANN, P. JUTZI, A.ROTH, PSCHWABE et E.SHAUER, J. Organomet. Chem., 10, (1967) 71
- 60°/- N.W.G. DEBYE, D.E. FENTON, S.E. ULRICH et J.J. ZUCKERMAN, J. Organomet. Chem., 28, (1971) 339
- 61°/- B. F. E. FORD, J. R. SAMS, R. G. GOEL et D. R. RIDLEY, J. Inorg. Nucl. Chem., 33, (1971) 23
- 62°/- K.C. MOLLOY, K. QUILL. et I. W. NOWELL, *J. Organomet. Chem.*, 289, (1985) 271
- 63°/- D. W. ALLEN, I. W. NOWELL, J. S. BROOKS et R. W. CLARKSON, J. Organomet. Chem., 219(1981) 29
- 64°/- T. P. LOCKHART, J. C. CALABRESE et F. DAVIDSON, J. Organomet. Chem., 6 (1987) 2479
- 65°/- G.K.SANDHU, N.SHARMA et E.R.T. TIEKINK, J. Organomet. Chem., C1 (1989) 371
- 66°/- E. R. T. TIEKINK, G. K. SANDHU et S. P. VERMA, *Acta Cryst.*, (1989) C45, 1810
- 67°/- S.WENG Ng, V.G.KUMAR DAS, B.W.SKELTON et A. H. WHITE, J. Organomet. Chem., 377 (1989) 221
- 68°/- G. K. SANDHU, S. P. VERMA, et E. R. T. TIEKINK, J. Organomet. Chem., 393 (1990) 195
- 69°/- G. K. SANDHU, R. HUNDAL, et E. R. T. TIEKINK, J. Organomet. Chem., 412 (1991) 31

- 70°/- E.R.T. TIEKINK, Trends in Organomet. Chem., 1(1994)71
- 71°/- S. J. BLUNDEN, M. F. MAHON, K. C. MOLLOY et P. C. WATERFIELD, J. Chem. Soc. Dalton Trans (1994)
- 72°/- L. EE KHOO, N. K. GOH, L. LIN KOH, Y. XU, S. LUO BAO et T. C. W. MAK, *Polyhedron*, 14, 15 (1995) 2281
- 73°/- C. J. EVANS et S. KARPEL, Organotin Compounds in Modern Technology, J. Organomet. Chem. Libr., 16, Elsevier, Amsterdam, (1985)
- 74°/- K. C. MOLLOY et T. G. PURCELL, J. Organomet. Chem., 312 (1986) 167
- 75°/- M.GIELEN, M.ACHEDDAD, B.MAHIEU et R.WILLEM, *Main Group Met. Chem.*, 14, 2 (1991) 73
- 76°/- L. MOENS, H. MARAITE, B. MAHIEU, A. EL KHLOUFI, R. WILLEM et M. GIELEN, *Main Group Met. Chem.*, 15, 6 (1992) 275
- 77°/- J. M. HOOK, B.M. LINAHAN, R.L. TAYLOR, E.R.T. TIEKINK, L. VAN GORKOM et L. K. WEBSTER, *Main Group Met. Chem.*, 17, 5 (1994) 293
- 78°/- M. GIELEN, Coordination Chem. Reviews, 151 (1996) 41
- 79°/- S. WENG Ng, V. G. KUMAR DAS, M. GIELEN et E. R. T. TIEKINK, Applied Organomet. Chem., 6 (1992) 19
- 80°/- M. GIELEN, R.WILLEM, J. HOLECEK et A.LYCKA, *Main Group Chem.*, 16, 1 (1993) 29
- 81°/I. W. NOWELL, J. S. BROOKS, G. BEECH et R. HILL, J. Organomet. Chem., 244, (1983)119
- 82°/- E. O. SCHLEMPER et W. C. HAMILTON, Inorg. Chem., 5, (1966) 995
- 83°/- A. S. SALL, L. DIOP et U. RUSSO Main Group Met. Chem., 18, 5 (1995) 243
- 84°/- A. DIASSE-SARR, L. DIOP, M.F. MAHON et K.C. MOLLOY, *Main Group Met*. *Chem.*, 20 (1997) 223.
- 85°/- L. DIOP, M. F. MAHON, K. C. MOLLOY et M. SIDIBE, *Main Group Met. Chem.*,20, 10, (1997) 649
- 86a°/-G. M. BANCROFT and R. H. PLATT, Mössbauer Spectra of Inorganic Compounds: Structure and Bonding in "Advances in Inorganic Chemistry and Radiochemistry, vol 15 édité par H. J. EMELEUS et A. G. SHARPE Academic Press New York (1972)
- 86b°/- A. G. DAVIES, H. J. MILLEDGE, D. C. PUXLEY et P. J. SMITH, J. Chem. Soc., A, (1970) 2862

86c°/- N. E. ERICKSON Chem. Commun. (1970) 1349

86d°/- B. A. GOODMAN et N. N. GREENWOOD J. Chem Soc., A, (1971) 1862

87a°/-R. V. PARISH et R. H. PLATT, Inorg. Chim. Acta, 4, (1970)

- 87b°/- H. A. STÖCHLER et H. SANO Trans Faraday Soc. 64, (1968) 577
- 88°/- H. A. STÖCHLER, H. SANO et R. HERBER J. Chem. Phys., 47, (1967)1567
- 89°/- J. F. SAWYER, Acta Cryst., 44 (1988) 633
- 90°/- H. S. CHENG et R. H. HERBER Inorg. Chem., 9 (1970) 1686
- 91°/- M. CORDEY HAYES, R. D. PEACOCK et M. J. VUCELIC *Inorg. Nucl. Chem.* 29, (1967) 1177
- 92°/- B. GASSENHEIMER, R. H. HERBER Inorg. Chem., 9 (1970) 1686
- 93°/- J. DEVOOGHT, M. GIELEN et S. LEJEUNE, J. Oganomet. Chem., 21, (1970) 333
- 94°/- DAVIES et P. J. SMITH, Comprehensive Organometallic Chemistry: The Synthesis, Reactions and Structutres of Organometallic Compounds, vol 2, 1ère ed édité par G. WILKINSON, F. G. A. STONE et E. W. ABEL Pergamon Press (1982) 519
- 95°/ K. C. MOLLOY, F. A. K. NASSER et J. J. ZUCKERMAN, *Inorg. Chem.*, 21, 5, (1982) 1711
- 96°/ V. S. PETROSYAN, Prog. Nucl. Magn. Reson., Spectrosc., 11, (1977) 115
- 97°/ M. J. BEGLEY, D. B. SOWERBY, P. KAPOOR et R. KAPOOR, *Polyhedron*, 14, 13, (1995) 1937
- 98°/ E. R. T. TIEKINK Appl. Organomet. Chem., 5, (1991)1
- 99°/ K.C.MOLLOY, K.QUILL, S.J. BLUNDEN et R. HILL, Polyhedron, 5, (1986) 959
- 100°/ L. E. KHOO, N. K. GOH, L. L. KOH, Y. XO, S. L. BAO et T. C. W. MAK,

Polyhedron, 14- 16, (1995) 2281

- 101a°/I. R. BEATTIE et L. RULE J. Chem. Soc., (1964)3267
- 101bº/ I. R. BEATTIE et L. RULE J. Chem. Soc., (1965) 2995
- 102°/ J. PHILIP, M. A. MULLINS et C. CURRAN Inorg. Chem., (1986) 1895
- 103°/ P. A. YEATS, J. R. SAMS et F. AUBKE Inorg. Chem., 9 (4), (1970) 740
- 104°/ P. G. HARRISON, B. C. LANE et J. J. ZUCKERMAN Inorg. Chem., 11 (7),

(1972) 1537

- 105°/ N. OHKAKU et K. NAKAMOTO Inorg. Chem., 12, (1973) 2440
- 106°/ S. J. RUZICKA et A. E. MERBACH Inorg. Chim. Acta, 60, (1976) 221
- 107°/ C. U. DAVANZO et Y. GUSHIKEM J. Chem. Soc. Dalton Trans, (1981) 843
- 108°/ C. U. DAVANZO et Y. GUSHIKEM Inorg. Chim. Acta, 60, (1982) 219
- 109°/ D. TUDELA, V. FERNANDEZ et J. TORNERO J. Chem. Soc. Dalton Trans,

(1985) 1281

110°/ R. BARBIERI, A. SILVESTRI, A. BARBIERI, G. RUISI, F. HUBER et C. D. HAGER, *Gazzetta Chimica Italiana*, 124 (1994) 187.

111°/ R. V. PARISH,"Structure and Bonding in Tin compounds": "Mössbauer spectroscopy applied to inorganic chemistry" dans G. L. Long, Ed., Plenum Press, New York, Vol 1, (1984) 549.

Dans ce travail nous avons synthétisé de nouveaux dérivés organostanniques et de complexes d'halogénures métalliques de d'anions tétraèdriques tels aue les ions l'ion iodato et diphénylphosphinate, hypophosphite, phosdiméthylarséniate, phite, phénylarséniate et amino 4 phénylarséniate en utilisant comme cations antagonistes les ions tétraméthyl et tétraéthylammonium. Nous avons ainsi obtenu des composés d'addition, de substitution- addition et de substitution totale. Leurs analyces élémentaires et les études par spectroscopie infrarouge, Raman, Mössbauer et RMN ont été réalisées. Sur la base de ces données spectroscopiques des structures discrètes ou en chaine infinie ont été proposées, les anions étant chélatants et/ ou poly- unidentates. Dans le cas des complexes de dihalogénures métalliques, les structures ont été déterminées sur la base de la présence des bandes de vibration des anions, des dihalogénures métalliques et celles dues aux liaisons métal-ligande. L'environnement autour de l'étain dans le cas des dérivés organostanniques est déterminé à l'aide des paramètres Mössbauer (éclatement guadripolaire). Les valeurs des constantes de couplage $J(Sn-1^{3}C)$ et $2J(Sn-1^{3}C-1H)$ en spectroscopie RMN dans le cas du dérivé Ph2PO2SnMeg ont permis de mieux préciser la géométrie de la molécule. L'étude Mössbauer à température variable a permis dans le cas des complexes de SnX₄ avec les anions $R_2MO_2^-$ (R = Me, Ph; M = As, P) de préférer une structure polymérique.