Nº d'ordre: 00006/97

THESE PRESENTEE POUR OBTENIR LE GRADE

DOCTEUR EN SCIENCES DE L'UNIVERSITE NATIONALE DU BENIN

Option: Physique Mathématique

Par

Mathias HOUNKPE

Sujet: THEORIE DE LA DIFFUSION POUR LES INTERACTIONS δ-SPHERIQUE

Soutenue le 9 Juillet 1997 devant le JURY :

Président : Jean-Pierre ANTOINE (Université Catholique de Louvain, Belgique)

Rapporteurs: Sergio ALBEVERIO (Université de BOCHUM, Allemagne) Mahouton Norbert HOUNKONNOU (Université Nationale du Bénin)

Juma SHABANI (Université de Bujumbura, Burundi)

Examinateur: Côme GOUDJO (Université Nationale du Bénin)

Co-Directeurs: Juma SHABANI

Mahouton Norbert HOUNKONNOU

REMERCIEMENTS

A la fin de ce travail j'aimerais exprimer ma gratitude :

Au professeur J.SHABANI pour m'avoir proposé ce sujet et pour tous les sacrifices qu'il a dû consentir pour assurer l'encadrement de ce travail et pour les leçons de la vie qu'il m'a si spontannément et si généreusement données. Je remercie ici toute sa famille pour l'accueil chaleureux pendant mon séjour de recherche à Nairobi (KENYA).

Au professeur M.N.HOUNKONNOU pour avoir très spontannément, et surtout avec beaucoup de disponibilités et de sacrifices, assuré la codirection de ce travail.

Au professeur J.P.EZIN, Directeur de l'IMSP, pour toutes les facilités qu'il m'a accordées durant mon séjour à l'IMSP.

A J.TOSSA et J.Orou CHABI pour m'avoir aidé à tous les points de vues pendant la réalisation de ce travail.

A tous mes ainés, enseignants et membres de l'administration de l'IMSP, pour leurs aides de toutes natures tout le temps qu'a duré ce travail.

A tous les étudiants pour la bonne ambiance qui a toujours règnée entre chacun d'eux et moi.

A ma famille , à ma femme et mes amis pour toutes leurs contributions surtout morales.

1

Table des matières

,

.

1	Les interactions δ -sphérique de 1^{ere} espèce				
	1.1	Princi	pales définitions et propriétés de l'interaction δ -sphérique .		
		de 1^{er}	^e espèce	7	
		1.1.1	Interaction δ -sphérique de 1 ^{ere} espèce	7	
		1.1.2	Interaction δ -sphérique plus une interaction coulombi-		
			enne	12	
		1.1.3	Interaction δ -sphérique à support sur N sphères con-		
			centriques	14	
	1.2	Théor	ie de la diffusion pour des potentiels δ -sphérique	20	
		1.2.1	Théorie de la diffusion pour la paire $(h_{l,\{\alpha_l\},\{R\}};h_{l,o})$.	21	
		1.2.2	Théorie de la diffusion pour la paire (H_{ε}, H_{o})	23	
		1.2.3	Théorie de la diffusion pour la paire $(h_{l,U,\{R\}}; h_{l,o})$	27	
2	Les interactions δ -sphérique de 2^{eme} espèce				
2	Les	intera	ctions δ -sphérique de 2 eme espèce	30	
2	Les 2.1	intera Princi	ctions δ -sphérique de 2^{eme} espèce pales définitions et propriétés de l'interaction δ -sphérique	30	
2	Les 2.1	intera Princi de 2 ^{en}	ections δ -sphérique de 2^{eme} espèce pales définitions et propriétés de l'interaction δ -sphérique de respèce	30 30	
2	Les 2.1	intera Princi de 2 ^{en} 2.1.1	actions δ -sphérique de 2^{eme} espèce pales définitions et propriétés de l'interaction δ -sphérique ^{re} espèce	30 30 31	
2	Les 2.1	intera Princi de 2 ^{en} 2.1.1 2.1.2	actions δ -sphérique de 2^{eme} espèce pales définitions et propriétés de l'interaction δ -sphérique re espèce	30 30 31	
2	Les 2.1	intera Princi de 2 ^{en} 2.1.1 2.1.2	actions δ -sphérique de 2^{eme} espèce pales définitions et propriétés de l'interaction δ -sphérique re espèce	30 30 31 33	
2	Les 2.1	intera Princi de 2 ^{en} 2.1.1 2.1.2 2.1.3	actions δ -sphérique de 2^{eme} espèce pales définitions et propriétés de l'interaction δ -sphérique re espèce	30 31 33	
2	Les 2.1	intera Princi de 2 ^{en} 2.1.1 2.1.2 2.1.3	actions δ -sphérique de 2^{eme} espèce pales définitions et propriétés de l'interaction δ -sphérique re espèce	 30 30 31 33 34 	
2	Les 2.1 2.2	intera Princi de 2 ^{en} 2.1.1 2.1.2 2.1.3 Théor	actions δ -sphérique de 2^{eme} espèce pales définitions et propriétés de l'interaction δ -sphérique "e espèce	 30 30 31 33 34 38 	
2	Les 2.1 2.2	intera Princi de 2 ^{en} 2.1.1 2.1.2 2.1.3 Théor 2.2.1	actions δ -sphérique de 2^{eme} espèce pales définitions et propriétés de l'interaction δ -sphérique re espèce	30 31 33 34 38 38	
2	Les 2.1 2.2	intera Princi de 2 ^{en} 2.1.1 2.1.2 2.1.3 Théor 2.2.1 2.2.2	actions δ -sphérique de 2^{eme} espèce pales définitions et propriétés de l'interaction δ -sphérique "e espèce	30 31 33 34 38 38 38 41	

ť

3	LES	INTERACTIONS δ' -SPHERIQUE DE 1 ^{ere} ESPECE	44		
	3.1	Définition du modèle	44		
	3.2	Propriétés principales de l'interaction δ' -sphérique	47		
		3.2.1 Equation résolvante	47		
		3.2.2 Propriétés Spectrales	50		
		3.2.3 Résonnances de $h_{l,\tilde{\alpha}_l}$	53		
	3.3	Théorie de la diffusion pour la paire $(h_{l,\tilde{\alpha}_l}, h_{l,0})$	55		
	3.4 Particule chargée dans une interaction δ' -sphérique		58		
		3.4.1 Définition du modèle	58		
		3.4.2 Equation résolvante	59		
		3.4.3 Théorie de la diffusion pour la paire $(h_{l,\gamma,\tilde{\alpha}_l}; h_{l,\gamma})$	60		
	3.5	Interactions δ' sphérique à support sur N sphères concentriques	61		
		3.5.1 Définition de l'Hamiltonien	61		
	3.6	Propriétés spectrales	64		
		3.6.1 Théorème	64		
	3.7	Théorie de la diffusion pour la paire $(h_{l,\{\tilde{lpha}_l\},\{R\}};h_{l,0})$	65		
4	LES INTERACTIONS δ' -SPHERIQUE DE 2 ^{eme} ESPECE				
	4.1	Interactions δ' -sphérique de 2^{eme} espèce à support sur une sphère	67		
		4.1.1 Définition du modèle	67		
		4.1.2 Equation résolvante	68		
		4.1.3 Propriétés spectrales	69		
		4.1.4 Théorie de la diffusion pour la paire $(h_{l,\tilde{a}_{l}}, h_{l,o})$	71		
	4.2	Particule chargée dans une interaction δ' -sphérique de 2^{eme}			
		espèce	72		
		4.2.1 Définiton du modèle	72		
		4.2.2 Equation résolvante	73		
		4.2.3 Propriétés spectrales	73		
		4.2.4 Théorie de la diffusion pour la paire $(h_{l,\gamma,\tilde{\beta},\gamma},h_{l,o})$	74		
	4.3	Interactions δ' -sphérique de 2^{eme} espèce à support sur N sphères			
		concentriques:conditions frontières séparées	75		
		4.3.1 Définition de l'Hamiltonien	75		
		4.3.2 propriétés spectrales	76		
		4.3.3 Théorie de la diffusion pour la paire $(h_{l,\{\tilde{\beta}_l\},\{R\}};h_{l,o})$.	76		
5	GEI	NERALISATIONS ET PROBLEMES OUVERTS	78		

3

-

INTRODUCTION

Notre intérêt pour l'étude de l'interaction δ -sphérique et ses généralisations tient d'abord au fait que ces interactions sont exactement solubles en ce sens qu'on peut déterminer analytiquement explicitement leurs résolvants et par conséquent leurs spectres, leurs fonctions propres de même que leurs résonances et les éléments de la théorie de la diffusion par ses interactions.

Ensuite l'interaction δ -sphérique a été beaucoup utilisée dans plusieurs domaines de la physique; notamment en physique nucléaire, en physique de l'état solide et en physique moléculaire [1].

Plus récemment, les interactions δ -sphérique ont été utilsées pour construire un modèle mathématique des quarkonia lourds en physique des particules élémentaires [2].

Sur le plan mathématique, une définition rigoureuse de l'Hamiltonien correspondant à cette interaction a été donnée dans [3]. Cette définition est basée sur la théorie des extensions auto-adjointes d'opérateurs symétriques fermés dans un espace de Hilbert.

T.Ikebe et S.Shimada [4] ont défini, il n'y a pas longtemps, l'interaction δ sphérique en utilisant la théorie des formes symétriques fermées semi bornées inférieurement.

Les résultats obtenus pour l'interaction δ -sphérique ont été généralisés aux cas de l'interaction δ -sphérique de 2^{eme} espèce et de l'interaction δ sphérique de 1^{ere} et 2^{eme} espèces à support sur N sphères concentriques avec des conditions frontières séparées et non séparées.

D'autre part, les Hamiltoniens correspondant aux interactions δ -sphérique de 1^{ere} espèce ont été obtenus comme limite, au sens d**e** la convergence en norme des résolvants, d'une famille d'Hamiltoniens d'échelle de courte portée H_{ϵ} .

Notre contribution à l'étude des interactions δ -sphérique a consisté à :

- 1. Etudier la théorie de la diffusion pour les interactions δ -sphérique de 1^{ere} et 2^{eme} espèces à support sur N sphères concentriques avec conditions frontières séparées et non séparées.
- 2. Etudier la théorie de la diffusion pour la paire (H_{ε}, H_{o}) et à montrer que les éléments de la théorie de la diffusion pour H_{ε} convergent vers ceux de $H_{\{\alpha\},\{R\}}$ quand $\varepsilon \to 0_{+}$ [Voir sections 1.1.3 B) et 1.2.2].
- 3. Etudier la théorie de la diffusion pour l'interaction δ sphérique de 2^{eme} espèce plus une interaction coulombienne.

Tous ces résultats nouveaux ont fait l'objet de deux articles dont l'un est dejà accepté pour publication au Journal of Mathematical Physics.

Une autre interaction sphérique exactement soluble est l'interaction δ' sphérique dont nous présentons ici l'étude ainsi que celle de certaines de ses généralisations. A notre connaissance tous les résultats de cette étude sont nouveaux.

Ce travail est composé de cinq (5) chapitres et de deux (2) appendices.

Le chapitre I, composé de deux parties, est consacrée dans sa première partie au rappel de la définition de l'Hamiltonien quantique décrivant une interaction δ -sphérique de 1^{ere} espèce à support sur une sphère et à la définition de certaines de ses généralisations.

La deuxième partie présente l'étude de la théorie de la diffusion pour certains des Hamiltoniens dont les définitions ont été rappelées dans la première partie.

Le chapitre II, aussi composé de deux parties, rappelle dans sa première partie d'abord la définition de l'interaction δ -sphérique de 2^{eme} espèce à support sur une sphère et celle de certaines de ses généralisations, puis montre la construction de l'interaction δ -sphérique de 2^{eme} espèce à support sur N sphères concentriques avec des conditions frontières non séparées. La deuxième partie contient la théorie de la diffusion pour chacun des modèles indiqués ci dessus.

Le chapitre III est consacré à l'étude d'une particule neutre dans une interaction δ' -sphérique de l^{ere} espèce.

La section 3.1 donne, en dimension n = 3, la définition de l'Hamiltonien quantique décrivant une interaction δ' -sphérique de 1^{ere} espèce à support sur une sphère formellemmt donné par l'expression:

$$H = -\Delta + \tilde{\alpha}\delta'(|x| - R); x \in IR^3, \tilde{\alpha} \in IR, R > 0$$

$$(0.1)$$

en termes d'extensions auto-adjointes d'opérateurs symétriques. Après avoir montré que les indices de défaut de l'Hamiltonien radial correspondant à (0.1)pour $r \neq R$ ne peuvent être que (2,2), nous avons considéré dans $L^2(IR^3)$ l'opérateur symétrique fermé et non négatif

$$H = -\Delta$$

$$\mathcal{D}(\tilde{H}) = \left\{ f \in H^{2,2}(IR^3) / f\left(\partial \overline{K(O,R)}\right) = f'\left(\partial \overline{K(O,R)}\right) = 0 \right\} (0.2)$$

où $\partial \overline{K(O,R)}$ représente la surface de la sphère de centre l'origine de IR^3 et de rayon R. A l'aide de la décomposition (1.7) on montre que (0.1) correspond à la famille suivante d'extensions auto-adjointes de \tilde{H} :

$$H_{\tilde{\alpha}} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} h_{l,\tilde{\alpha}_l} \tilde{U} \bigotimes 1 \quad ; \quad \tilde{\alpha} \equiv \{\tilde{\alpha}_l\}_{l=0}^{\infty} \quad ; \quad l = 0, 1 \cdots \quad \tilde{\alpha}_l \in IR \quad (0.3)$$

où l'Hamiltonien partielle $h_{l,\bar{\alpha}_l}$ est défini par (3.16).

La section 3.2 contient les propriétés principales de l'interaction δ' -sphérique de l^{ere} espèce à support sur une sphère; notamment l'équation résolvante de $H_{\tilde{\alpha}}$ et les propriétés spectrales de $h_{l,\tilde{\alpha}_l}$.

La section 3.3 est consacrée à la discussion sur l'existence des résonances de $h_{l,\tilde{\alpha}_l}$, définies comme étant les pôles du noyau du résolvant de $h_{l,\tilde{\alpha}_l}$, situés dans le demi plan $Imk \leq 0$.

La section 3.4 présente l'étude de la théorie de la diffusion pour l'interaction définies par (0.3). La section 3.5 porte sur l'étude de l'interaction δ' -sphérique de 1^{ere} espèce à support sur une sphère plus une interaction coulombienne et la section 3.6 sur celle de l'interaction δ' -sphérique de 1^{ere} espèce à support sur N sphères concentriques avec conditions frontières séparées.

Le chapitre IV présente dans l'ordre l'étude des interactions δ' -sphérique de 2^{eme} espèce à support sur une sphère, à support sur une sphère plus une interaction coulombienne et à support sur N sphères concentriques avec conditions frontières séparées.

Le chapitre V présente quelques problèmes ouverts sur l'étude des interactions δ' -sphérique.

L'appendice A contient quelques éléments de la théorie générale des extensions auto-adjointes d'opérateurs symétriques et l'appendice B quelques éléments sur la convergence des opérateurs non bornés.

Chapitre 1

Les interactions δ -sphérique de 1^{ere} espèce

Dans ce chapitre nous passons d'abord en revue les définitions et propriétés principales de l'interaction δ -sphérique de 1^{ere} espèce et de ses généralisations. Ensuite, nous présentons les résultats nouveaux obtenus [5] à partir d'une étude systématique de la théorie de la diffusion pour des interactions de type δ à support sur N sphères concentriques avec des conditions frontières séparées et non séparées et pour des interactions décrites par l'Hamiltonien H_{ϵ} .

1.1 Principales définitions et propriétés de l'interaction δ -sphérique de 1^{ere} espèce

Dans cette section nous présentons successivement le modèle δ - sphérique de l^{ere} espèce, le modèle δ -sphérique couplé avec un potentiel de Coulomb [3] et le modèle δ -sphérique à support sur N sphères avec conditions frontières séparées [6] et non séparées [7].

1.1.1 Interaction δ -sphérique de 1^{ere} espèce

L'interaction δ -sphérique de 1^{ere} espèce appelée aussi potentiel delta de surface [8], potentiel delta modifié [9] ou potentiel sphérique [3] se caractérise par deux conditons frontières obtenues de la façon suivante. Considérons l'équation de Schrödinger radiale pour le potentiel δ -sphérique:

$$\left[-\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + \alpha_l \delta(r-R)\right] f_l(k,r) = k^2 f_l(k,r)$$
(1.1)

où la fonction d'onde $f_l(k,r)$ est supposée continue au point r = R, c'est-àdire

$$f_l(k, R_+) = f_l(k, R_-) \equiv f_l(k, R).$$
 (1.2)

Si on "intègre" l'équation (1.1) de $r = R - \varepsilon$ à $r = R + \varepsilon$ puis on fait tendre ε vers zéro, on obtient la condition suivante

$$f'_{l}(k, R_{+}) - f'_{l}(k, R_{-}) = \alpha_{l} f_{l}(k, R).$$
(1.3)

En dimension physique n = 3 l'Hamiltonien quantique décrivant cette interaction est formellement donné par

$$H_1 = -\Delta + \alpha \delta(r - R), \quad R > 0. \tag{1.4}$$

Un Hamiltonien quantique doit être représenté par un opérateur auto- adjoint dans un espace de Hilbert. Suivant [3], nous allons rappeler la définition mathématique de l'expression (1.4). Cette définition est basée sur la théorie des extensions auto-adjointes d'opérateurs symétriques fermés dans un espace de Hilbert.

Une autre définition basée sur la théorie des formes symétriques fermées, semi bornées inférieurement a été proposée récemment par Ikebe et Shimada [4].

Pour donner la définition mathématique de (1.4) nous procédons comme suit:

Considérons dans $L^2(IR^3)$ l'opérateur symétrique et non négatif:

$$\dot{H} = -\Delta$$

$$\mathcal{D}(\dot{H}) = C_o^{\infty} \left(IR^3 \setminus \partial \overline{K(O,R)} \right).$$
(1.5)

Suivant par exemple [10] on montre que la fermeture de \dot{H} , notée $\overline{\dot{H}}$, est donnée par :

$$\frac{\overline{H}}{\mathcal{D}(\overline{H})} = -\Delta
\mathcal{D}(\overline{H}) = \left\{ f \in H^{2,2}(IR^3) / f\left(\partial \overline{K(O,R)}\right) = 0 \right\}.$$
(1.6)

où $H^{m,n}(\Omega)$ est l'espace de Sobolev local d'indices (m,n) et $\overline{K(O,R)}$ la boule fermée de centre l'origine de IR^3 et de rayon R. La symétrie sphérique du problème permet la décomposition suivante de $L^2(IR^3)$ par rapport aux moments angulaires:

$$L^{2}(IR^{3}) = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1}L^{2}((0,\infty); dr) \otimes [Y_{l}^{-l}, ..., Y_{l}^{l}]$$
(1.7)

où les harmoniques sphériques Y_l^m , $l \in IN$, $-l \leq m \leq l$, constituent une base de $L^2(S^2)$ (S^2 est la sphère unité de IR^3) et [...] l'espace linéaire engendré par les vecteurs de $L(S^2)$. Dans la décomposition (1.7) \tilde{U} désigne l'opérateur unitaire:

$$\tilde{U}: L^2((0,\infty); r^2 dr) \longrightarrow L^2((0,\infty)); f \mapsto (\tilde{U}f)(r) = rf(r), r > 0.$$
(1.8)

La décomposition (1.7) permet d'écrire \overline{H} sous la forme

$$\overline{H} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} \overline{h}_l \tilde{U} \otimes 1$$
(1.9)

où les opérateurs $\overline{\dot{h_l}}$ définis dans $L^2((0,\infty))$ sont donnés par

$$\overline{\dot{h}_{l}} = -\frac{d^{2}}{dr^{2}} + \frac{l(l+1)}{r^{2}}$$

$$\mathcal{D}(\overline{\dot{h}_{l}}) = \left\{ f \in L^{2}((0,\infty))/f, f' \in AC_{loc}((0,\infty)); f(0_{+}) = 0 \text{ si } l = 0; \\ f(R_{\pm}) = 0; -f'' + l(l+1)r^{-2}f \in L^{2}((0,\infty)) \right\}, l \in IN \quad (1.10)$$

où $AC_{loc}(\Omega)$ est l'ensemble des fonctions localement absolument continues sur $\Omega \subset IR$, et $f(x_{\pm}) = \lim_{\epsilon \to 0_{\pm}} f(x \pm \epsilon)$. L'adjoint \overline{H}^* de \overline{H} est défini par:

$$\overline{\dot{H}} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} \overline{\dot{h}_l} \tilde{U} \otimes 1$$
(1.11)

où

$$\vec{h}_{l} = -\frac{d^{2}}{dr^{2}} + \frac{l(l+1)}{r^{2}}$$

$$\mathcal{D}(\vec{h}_{l}) = \left\{ f \in L^{2}((0,\infty))/f, f' \in AC_{loc}((0,\infty) \setminus \{R\}); f(0_{+}) = 0 \text{ si } l = 0; \\ f(R_{+}) = f(R_{-}) \equiv f(R); -f'' + l(l+1)r^{-2}f \in L^{2}((0,\infty)) \right\},$$

$$l \in IN$$

$$(1.12)$$

L'équation

$$\overline{\dot{h}_l}^* \phi_l(k) = k^2 \phi_l(k), \phi_l(k) \in \mathcal{D}(\overline{\dot{h}_l}), \ Imk > 0 \quad , \ l \in IN$$
(1.13)

admet la solution unique

$$\phi_l(k,r) = \begin{cases} G_l^{(o)}(k,R)F_l^{(o)}(k,r) & r \le R\\ F_l^{(o)}(k,R)G_l^{(o)}(k,r) & r \ge R \end{cases}$$
(1.14)

où

$$F_l^{(o)}(k,r) = \Gamma\left(l + \frac{3}{2}\right) \left(\frac{k}{2}\right)^{-l-1/2} r^{1/2} J_{l+1/2}(kr)$$
(1.15)

$$G_{l}^{(o)}(k,r) = -\frac{\pi}{2}i\Gamma\left(l+\frac{3}{2}\right)^{-1}\left(\frac{k}{2}\right)^{l+1/2}r^{1/2}H_{l+1/2}^{(2)}(kr) \qquad (1.16)$$

et $J_{\nu}(z)$; $H_{\nu}^{(2)}(z)$ sont respectivement des fonctions de Bessel et de Hankel de 2^{eme} espèce d'ordre ν [11].

 $F_l^{(o)}$ et $G_l^{(o)}$ ont été choisies de sorte que $W(G_l^{(o)}(k,r), F_l^{(o)}(k,r)) = 1.$

On traduit cette propriété en disant que $\overline{h_l}$ possède les indices de défaut (1,1).

Dès lors, selon la théorie générale d'extensions auto-adjointes d'opérateurs symétriques fermés [12], toutes les extensions auto-adjointes de $\overline{h_l}$ sont données par une famille à un paramètre d'opérateurs auto-adjoints dans $L^2((0,\infty))$.

D'après [3], les extensions auto-adjointes de $\dot{h_l}$ sont données par:

$$h_{l,\alpha_{l}} = -\frac{d^{2}}{dr^{2}} + \frac{l(l+1)}{r^{2}}$$

$$\mathcal{D}(h_{l,\alpha_{l}}) = \left\{ f \in L^{2}((0,\infty))/f, f' \in AC_{loc}((0,\infty) \setminus \{R\}); f(0_{+}) = 0 \text{ si } l = 0; \right.$$

$$f(R_{+}) = f(R_{-}) \equiv f(R); f'(R_{+}) - f'(R_{-}) = \alpha_{l}f(R);$$

$$-f'' + l(l+1)r^{-2}f \in L^{2}((0,\infty)) \right\}, -\infty < \alpha_{l} \leq \infty, l \in IN (1.17)$$

Le domaine de h_{l,α_l} contient les conditions frontières (1.2) et (1.3) qui caractérisent le potentiel δ -sphérique. h_{l,α_l} correspond donc à l'Hamiltonien quantique radial décrivant le potentiel $V(r) = \alpha_l \delta(r - R)$.

Le cas $\alpha_l = 0$ conduit à l'Hamiltonien libre $h_{l,o}$ pour un moment angulaire l fixé, tandis que $\alpha_l = \infty$ décrit une condition frontière de Dirichlet au point r = R.

Posons $\alpha = {\alpha_l}_{l \in IN}$ et introduisons dans $L^2(IR^3)$ l'opérateur

$$H_{\alpha} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} h_{l,\alpha_l} \tilde{U} \otimes 1$$
(1.18)

Par définition H_{α} représente l'interaction δ -sphérique et fournit donc la définition mathématique de l'expression (1.4).

Le cas $\alpha = 0$ donne l'Hamiltonien libre

$$H_o = -\Delta$$
 ; $\mathcal{D}(H_o) = H^{2,2}(IR^3)$ (1.19)

La formule de Krein [12] et un calcul direct (cfr [3]) donnent le résolvant de h_{l,α_l}

$$(h_{l,\alpha_{l}} - k^{2})^{-1} = (h_{l,\sigma} - k^{2})^{-1} + \mu_{l}(k) \left(\phi_{l}(-\overline{k}), .\right) \phi_{l}(k)$$

$$k^{2} \in \rho(h_{l,\alpha_{l}}), \ Imk > 0, \ l \in IN$$
(1.20)

où

$$\mu_l(k) = -\alpha_l [1 + \alpha_l g_{l,k}(R, R)]^{-1}$$
(1.21)

 \mathbf{et}

$$g_{l,k} = (h_{l,o} - k^2)^{-1} \qquad Imk > 0$$
 (1.22)

est le résolvant libre de noyau intégral

$$g_{l,k}(r,r') = \begin{cases} G_l^{(o)}(k,r)F_l^{(o)}(k,r') , r' \leq r \\ F_l^{(o)}(k,r)G_l^{(o)}(k,r') , r' \geq r \end{cases}$$
(1.23)

Les relations (1.18) et (1.20) permettent d'écrire le résolvant de H_{α} :

$$(H_{\alpha} - k^{2})^{-1} = (H_{o} - k^{2})^{-1} + \bigoplus_{l=0}^{\infty} \bigoplus_{m=-l}^{l} \mu_{l}(k) \left(|.|^{-1} \phi_{l}(-\overline{k}) Y_{l}^{m}, . \right) \times \\ \times |.|^{-1} \phi_{l}(k) Y_{l}^{m} ; \quad k^{2} \in \rho(H_{\alpha}), \ Imk > 0$$
(1.24)

1.1.2 Interaction δ -sphérique plus une interaction coulombienne

Nous présentons ici le modèle [3] correspondant au couplage de l'interaction δ -sphérique et d'une interaction coulombienne. L'Hamiltonien quantique du système est formellement donné par

$$H_2 = -\Delta + \gamma |x|^{-1} + \alpha \delta(|x| - R), \gamma \in IR, R > 0$$
 (1.25)

L'étude de H_2 peut se faire en suivant le dévéloppement de la section 1.1.1 après avoir remplacé H_o par l'Hamiltonien de Coulomb

$$H_{\gamma} = -\Delta + \gamma |x|^{-1}, \mathcal{D}(H_{\gamma}) = H^{2,2}(IR^3), \gamma \in IR.$$

$$(1.26)$$

Nous nous contenterons d'en donner les résultats essentiels. Soit l'opérateur symétrique, fermé et non négatif donné par

$$\mathcal{D}(\overline{H}_{\gamma}) = \left\{ f \in H^{2,2}(IR^3) / f\left(\partial \overline{K(O,R)}\right) = 0 \right\}$$
(1.27)

$$\overline{\dot{H}}_{\gamma} = -\Delta + \gamma |x|^{-1}$$
$$= \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} \overline{\dot{h}}_{l,\gamma} \tilde{U} \otimes 1$$
(1.28)

où $\overline{\dot{h}}_{l,\gamma}$ est défini dans $L^2((0,\infty))$ par

$$\overline{h}_{l,\gamma} = -\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + \frac{\gamma}{r}$$

$$\mathcal{D}(\overline{h}_{l,\gamma}) = \left\{ f \in L^2((0,\infty))/f, f' \in AC_{loc}((0,\infty)); f(0_+) = 0 \text{ si } l = 0; \\ f(R_{\pm}) = 0; -f'' + l(l+1)r^{-2}f + \gamma r^{-1}f \in L^2((0,\infty)) \right\}$$

$$l \in IN, \ \gamma \in IR$$
(1.29)

Puisque

$$\mathcal{D}(\overline{h}_{l,\gamma}) = \left\{ f \in L^2((0,\infty))/f, f' \in AC_{loc}((0,\infty) \setminus \{R\}); f(0_+) = 0 \text{ si } l = 0; \\ f(R_+) = f(R_-) \equiv f(R); -f'' + l(l+1)r^{-2}f + \gamma r^{-1}f \in L^2((0,\infty)) \right\} \\ l \in IN, \ \gamma \in IR$$
(1.30)

l'équation

$$\vec{h}_{l,\gamma}^*\phi_{l,\gamma}(k) = k^2\phi_{l,\gamma}(k), \phi_{l,\gamma}(k) \in \mathcal{D}(\vec{h}_{l,\gamma}), \ Imk^2 \neq 0, \ Imk > 0 \quad , \ l \in IN$$
(1.31)

admet l'unique solution

$$\phi_{l,\gamma}(k,r) = \begin{cases} G_{l,\gamma}^{(o)}(k,R)F_{l,\gamma}^{(o)}(k,r) , r \leq R\\ F_{l,\gamma}^{(o)}(k,R)G_{l,\gamma}^{(o)}(k,r) , r \geq R \end{cases}$$
(1.32)

où

$$F_{l,\gamma}^{(o)}(k,r) = r^{l+1}exp(-ikr)_{1}F_{1}\left(l+1-\frac{i\gamma}{2k};2l+2;2ikr\right)$$
(1.33)

$$G_{l,\gamma}^{(o)}(k,r) = \Gamma(2l+2)^{-1}\Gamma\left(l+1-\frac{i\gamma}{2k}\right)(2ik)^{2l+1}exp(ikr) \times U\left(l+1-\frac{i\gamma}{2k};2l+2;2ikr\right)$$
(1.34)

sont les fonctions régulière et irrégulière associées à $\overline{h}_{l,\gamma}$ et $_1F_1(a;b;z)$ (resp. U(a;b;z)) est la fonction hypergéométrique confluente régulière (resp.irrégulière) [11]. L'opérateur $\overline{h}_{l,\gamma}$ a donc pour indices de défaut (1,1) et d'après [3] toutes ses extensions auto-adjointes sont données par:

$$h_{l,\gamma,\alpha_{l}} = -\frac{d^{2}}{dr^{2}} + \frac{l(l+1)}{r^{2}} + \frac{\gamma}{r}$$

$$\mathcal{D}(h_{l,\gamma,\alpha_{l}}) = \left\{ f \in L^{2}((0,\infty))/f, f' \in AC_{loc}((0,\infty) \setminus \{R\}); f(0_{+}) = 0 \text{ si } l = 0; \\ f(R_{+}) = f(R_{-}) \equiv f(R); f'(R_{+}) - f'(R_{-}) = \alpha_{l}f(R); \\ -f'' + l(l+1)r^{-2}f + \gamma r^{-1}f \in L^{2}((0,\infty)) \right\}, \\ -\infty < \alpha_{l} \leq \infty, \gamma \in IR, l \in IN$$
(1.35)

Le cas $\alpha_l = 0$ conduit à l'Hamiltonien de Coulomb $h_{l,\gamma}$ pour un moment angulaire l fixé.

Le modèle (1.25) est donc représenté par l'Hamiltonien défini dans $L^2(IR^3)$ par

$$H_{\gamma,\alpha} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} h_{l,\gamma,\alpha_l} \tilde{U} \otimes 1$$
(1.36)

Introduisons le résolvant de Coulomb

$$g_{l,\gamma,k} = (h_{l,\gamma} - k^2)^{-1}, k \neq -i\gamma/2n, n \in IN, Imk > 0, l \in IN$$
(1.37)

qui a pour noyau intégral

$$g_{l,\gamma,k}(r,r') = \begin{cases} G_{l,\gamma}^{(o)}(k,r)F_{l,\gamma}^{(o)}(k,r') &, r' \leq r \\ F_{l,\gamma}^{(o)}(k,r)G_{l,\gamma}^{(o)}(k,r') &, r' \geq r \end{cases}$$
(1.38)

La formule de Krein [12] nous donne le résolvant de h_{l,γ,α_l}

$$(h_{l,\gamma,\alpha_{l}} - k^{2})^{-1} = (h_{l,\sigma} - k^{2})^{-1} - \alpha_{l}[1 + \alpha_{l}g_{l,\gamma,k}(R,R)]^{-1} \left(\phi_{l,\gamma}(-\overline{k}), \cdot\right) \phi_{l,\gamma}(k)$$

$$k^{2} \in \rho(h_{l,\gamma,\alpha_{l}}), \ Imk > 0, \gamma \in IR$$

$$-\infty < \alpha_{l} \le \infty, \ l \in IN$$

$$(1.39)$$

1.1.3 Interaction δ -sphérique à support sur N sphères concentriques

A. Conditions frontières séparées

Toute cette section est basée sur le dévéloppement fait dans [6].

A.1 Définition du modèle

Considérons en dimension n = 3 une particule neutre dans une interaction δ -sphérique à support sur N sphères concentriques de rayons $0 < R_1 < \cdots < R_N$. L'Hamiltonien quantique décrivant cette interaction est formellement donné par

$$H_3 = -\Delta + \sum_{j=1}^{N} \alpha_j \delta(|x| - R_j).$$
(1.40)

Considérons dans $L^2(IR^3)$ l'opérateur symétrique, fermé et non négatif

$$\overline{\dot{H}}_{\{R\}} = -\overline{\Delta | C_o^{\infty} \left(IR^3 \setminus \bigcup_{j=1}^N \partial \overline{K(O, R_j)} \right)}, 1 \le j \le N$$
(1.41)

où $\overline{K(O, R_j)}$ est la boule fermée de rayon R_j centrée à l'origine de IR^3 . La décomposition (1.7) permet d'écrire $\overline{H}_{\{R\}}$ sous la forme

$$\overline{\dot{H}}_{\{R\}} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} \overline{\dot{h}}_{l,\{R\}} \tilde{U} \otimes 1$$
(1.42)

où

$$\overline{\dot{h}}_{l,\{R\}} = -\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2}$$

$$\mathcal{D}(\overline{\dot{h}}_{l,\{R\}}) = \left\{ f \in L^2((0,\infty))/f, f' \in AC_{loc}((0,\infty)) ; f(0_+) = 0 \text{ si } l = 0 ; \\
f(R_{j^{\pm}}) = 0 ; -f'' + l(l+1)r^{-2}f \in L^2((0,\infty)) \right\} ; l \in IN$$

$$i \leq j \leq N, \{R\} = \{R_1, \cdots, R_N\} \qquad (1.43)$$

L'adjoint $\overline{\dot{H}}^{*}_{\{R\}}$ de $\overline{\dot{H}}_{\{R\}}$ est donné par

$$\overline{\dot{H}}_{\{R\}}^{*} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} \overline{\dot{h}}_{l,\{R\}}^{*} \tilde{U} \otimes 1$$
(1.44)

où

$$\overline{\dot{h}}_{l,\{R\}} = -\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2}$$

$$\mathcal{D}(\overline{\dot{h}}_{l,\{R\}}) = \left\{ f \in L^2((0,\infty))/f, f' \in AC_{loc}((0,\infty) \setminus \{R\}); f(0_+) = 0 \text{ si } l = 0; \\ f(R_{j+}) = f(R_{j-}) \equiv f(R_j); -f'' + l(l+1)r^{-2}f \in L^2((0,\infty)) \right\},$$

$$l \in IN \qquad (1.45)$$

l'équation

$$\overline{h}_{l,\{R\}}^{*}\phi_{l}(k) = k^{2}\phi_{l}(k), \phi_{l}(k) \in \mathcal{D}(\overline{h}_{l,\{R\}}), Imk > 0, l \in IN$$

admet N solutions linéairement indépendantes:

$$\phi_{l,j}(k,r) = \begin{cases} G_l^{(o)}(k,R_j)F_l^{(o)}(k,r) , r \leq R_j \\ F_l^{(o)}(k,R_j)G_l^{(o)}(k,r) , r \geq R_j \\ Imk > 0, l \in IN, j = 1, ..., N. \end{cases}$$
(1.46)

L'opérateur $\overline{h}_{l,\{R\}}$ a donc pour indices de défaut (N, N) et toutes ses extensions auto-adjointes sont données par une famille à N^2 paramètres d'opérateurs auto- adjoints [12].

On présente ici une famille particulière à N paramètres d'extensions autoadjointes de $\overline{h}_{l,\{R\}}$ correspondant à (1.40) et définie par:

$$h_{l,\{\alpha_{l}\},\{R\}} = -\frac{d^{2}}{dr^{2}} + \frac{l(l+1)}{r^{2}}$$

$$\mathcal{D}(h_{l,\{\alpha_{l}\},\{R\}}) = \left\{ f \in L^{2}((0,\infty))/f, f' \in AC_{loc}((0,\infty) \setminus \{R\}); f(0_{+}) = 0 \text{ si } l = 0; \\ f(R_{j+}) = f(R_{j-}) \equiv f(R_{j}); f'(R_{j+}) - f'(R_{j-}) = \alpha_{l}f(R_{j}); \\ -f'' + l(l+1)r^{-2}f \in L^{2}((0,\infty)) \right\}, \{\alpha_{l}\} = \{\alpha_{1l} \cdots \alpha_{Nl}\} \\ -\infty < \alpha_{jl} \le \infty, 1 \le j \le N, l \in IN$$
(1.47)

Par définition l'opérateur $H_{\{\alpha_l\},\{R\}}$ donné dans $L^2(IR^3)$ par

$$H_{\{\alpha_l\},\{R\}} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} h_{l,\{\alpha_l\},\{R\}} \tilde{U} \otimes 1$$
(1.48)

décrit l'interaction δ -sphérique à support sur N sphères concentriques de rayons $0 < R_1 < \cdots < R_N$ et représenté par (1.40).

Le théorème suivant donne le résolvant de $h_{l,\{\alpha_l\},\{R\}}$.

<u>Théorème 1.1</u> Si $\alpha_{jl} \neq 0, j = 1, ..., N$, alors le résolvant de $h_{l,\{\alpha_l\},\{R\}}$ est donné par

$$(h_{l,\{\alpha_l\},\{R\}} - k^2)^{-1} = (h_{l,\sigma} - k^2)^{-1} + \sum_{j,j'=1}^{N} \mu_{jj'}(k) \left(\phi_{l,j'}(-\overline{k}), \cdot\right) \phi_{l,j}(k)$$
$$k^2 \in \rho(h_{l,\{\alpha_l\},\{R\}}), \ Imk > 0, \ l \in IN$$
(1.49)

où

$$[\mu(k)]_{jj'}^{-1} = -[\alpha_{jl}^{-1}\delta_{jj'} + g_{l,k}(R_j, R_{j'})]_{j,j'=1}^N$$
(1.50)

Le résolvant de $H_{\{\alpha_l\},\{R\}}$ est donné par :

.

$$(H_{\{\alpha_l\},\{R\}} - k^2)^{-1} = (H_o - k^2)^{-1} + \bigoplus_{l=0}^{\infty} \bigoplus_{m=-l}^{l} \sum_{j,j'=1}^{N} \mu_{jj'}(k) \left(|.|^{-1} \phi_{l,j'}(-\overline{k})Y_l^m, .\right) \times \\ \times |.|^{-1} \phi_{l,j}(k)Y_l^m \quad k^2 \in \rho(H_{\{\alpha_l\},\{R\}}), \ Imk > 0, \ l \in IN$$

$$(1.51)$$

A.2 Interaction δ -sphérique à support sur N sphères concentriques comme limite d'interactions locales d'échelle de courte portée

Dans cette section nous montrons comment $h_{l,\{\alpha_l\},\{R\}}$ peut être obtenu comme limite d'une suite d'Hamiltoniens décrivant des interactions locales d'échelle de courte portée.

Considérons une fonction $\lambda_{jl} : [0,\infty) \longrightarrow IR, l \in IN$, analytique au voisinage de 0 avec $\lambda_{jl}(0_+) = 0$ et le groupe unitaire des dilatations définies dans $L^2((0,\infty))$ par:

$$(U_{\varepsilon}f)(r) = \varepsilon^{-1/2} f\left(\frac{r}{\varepsilon}\right), \, \varepsilon > 0, \, f \in L^2((0,\infty)).$$
(1.52)

Supposons que $\forall j = 1, ..., N$ $V_j : IR \longrightarrow IR$ est une fonction mesurable, $V_j \equiv 0$ pour r < 0, $V_j \in L^1((R_j, \infty))$, et définissons

$$v_j(r) = |V_j(r)|^{1/2}$$
, $u_j(r) = |V_j(r)|^{1/2} sgn[V_j(r)]$ (1.53)

Introduisons ensuite les opérateurs ci-après dans $L^2((0,\infty))^N$

$$\tilde{B}_{l,\epsilon}(k) : L^2((0,\infty))^N \longrightarrow L^2((0,\infty))^N
\left[\tilde{B}_{l,\epsilon}(k)(g_1,...,g_N)\right]_j = \sum_{j'=1}^N \tilde{B}_{l,\epsilon,jj'}(k)g_{j'}, \quad g_j \in L^2((0,\infty))$$
(1.54)

où

$$\tilde{B}_{l,\epsilon,jj'}(k) = \lambda_{jl}(\epsilon)\tilde{u}_j g_{l,k}\tilde{v}_{j'}, \epsilon > 0, \ Imk > 0, \ j,j' = 1,...,N$$
(1.55)

$$\tilde{u}_j(r) = u_j\left(r - \frac{1}{\varepsilon}R_j\right), \ \tilde{v}_j(r) = v_j\left(r - \frac{1}{\varepsilon}R_j\right), \ \varepsilon > 0, \ j = 1, ..., N \quad (1.56)$$

En suivant [10], nous pouvons montrer que les opérateurs $B_{l,\varepsilon,jj'}(k), j, j' = 1, ..., N$ se prolongent en des opérateurs de Hilbert-Schmidt pour $Imk \ge 0, k \ne 0$.

Définissons dans $L^2((0,\infty))$ et au sens des formes quadratiques [13] l'opérateur:

$$h_{l}(\varepsilon) = h_{l,o} \dot{+} \sum_{j=1}^{N} \lambda_{jl}(\varepsilon) V_{j}\left(r - \frac{1}{\varepsilon}R_{j}\right), \, \varepsilon > 0 \qquad (1.57)$$

Le résolvant de $h_l(\varepsilon)$ est donné par:

$$(h_{l}(\varepsilon) - k^{2})^{-1} = g_{l,k} - \sum_{j,j'=1}^{N} (g_{l,k}\tilde{v}_{j})[1 + \tilde{B}_{l,\varepsilon}(k)]^{-1}(\tilde{u}_{j'}g_{l,k})$$

$$\varepsilon > 0, \ k^{2} \in \rho(h_{l}(\varepsilon)), \ Imk > 0$$
(1.58)

Introduisons ensuite les Hamiltoniens $h_{l,\epsilon}$ et H_{ϵ} définis respectivement dans $L^2((0,\infty))$ et $L^2(IR^3)$ par:

$$h_{l,\varepsilon} = \varepsilon^{-2} U_{\varepsilon} h_{l}(\varepsilon) U_{\varepsilon}^{-1} = h_{l,\sigma} \dot{+} \varepsilon^{-2} \sum_{j=1}^{N} \lambda_{jl}(\varepsilon) V_{j}\left(\frac{r-R_{j}}{\varepsilon}\right)$$
(1.59)

$$H_{\varepsilon} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} h_{l,\varepsilon} \tilde{U} \bigotimes 1$$
(1.60)

Le résolvant de $h_{l,\epsilon}$ est donné par:

$$(h_{l,\varepsilon} - k^2)^{-1} = g_{l,k} - \varepsilon^{-1} \sum_{j,j'=1}^{N} A_{l,\varepsilon,j}(k) [1 + B_{l,\varepsilon}(k)]_{jj'}^{-1} \lambda_{jl}(\varepsilon) C_{l,\varepsilon,j'}(k),$$

$$\varepsilon > 0, \ k^2 \in \rho(h_{l,\varepsilon}), \ Imk > 0$$
(1.61)

où $A_{l,\epsilon,j}(k), B_{l,\epsilon,jj'}(k)$ et $C_{l,\epsilon,j}(k)$ sont des opérateurs de Hilbert-Schmidt définis ci après à l'aide de leurs noyaux intégraux

$$A_{l,\varepsilon,j}(k,r,r') = g_{l,k}(r,\varepsilon r'+R_j)v_j(r')$$
(1.62)

$$B_{l,\epsilon,jj'}(k,r,r') = \epsilon^{-1} \lambda_{jl}(\epsilon) u_j(r) g_{l,k}(\epsilon r + R_j, \epsilon r' + R_{j'}) v_{j'}(r') \quad (1.63)$$

$$C_{l,\varepsilon,j}(k,r,r') = u_j(r)g_{l,k}(\varepsilon r + R_j,r'), \ Imk > 0.$$

$$(1.64)$$

Le théorème suivant est démontré.

<u>Théorème 1.2</u> Supposons que pour tout $j = 1, ..., N, V_j : IR \longrightarrow IR$, est mesurable, $V_j \equiv 0$ pour r < 0, et $V_j \in L^1((R_j, \infty))$. Alors $h_{l,\varepsilon}$ converge dans la topologie forte des résolvants vers $h_{l,\{\alpha_l\},\{R\}}$ quand $\varepsilon \to 0_+$, c'est-à-dire, si $k^2 \in \rho(h_{l,\{\alpha_l\},\{R\}})$ alors $k^2 \in \rho(h_{l,\varepsilon})$ pour ε assez petit et

$$n - \lim_{\epsilon \to 0_+} (h_{l,\epsilon} - k^2)^{-1} = (h_{l,\{\alpha_l\},\{R\}} - k^2)^{-1}$$
(1.65)

où

$$\alpha_{jl} = \lambda'_{jl}(0) \int_{R_j}^{\infty} dr' V_j(r'), \ l \in IN$$
(1.66)

B) Conditions frontières non séparées

L'opérateur $h_{l,\{R\}}$ défini par (1.43) a pour indices de défaut (N, N) et nous avons présenté dans A.1 l'étude d'une famille particulière à N paramètres d'extensions auto-adjointes correspondant à (1.41). Ici nous présentons l'étude de la famille générale à N^2 paramètres d'extensions auto-adjointes de $\overline{h}_{l,\{R\}}$ faite dans [7].

Considérons dans $L^2(IR^3)$ l'opérateur symétrique fermé et non négatif

$$\overline{\dot{H}}_{\{R\}} = -\overline{\Delta} |C_o^{\infty} \left(IR^3 \setminus \bigcup_{j=1}^N \partial \overline{K(O, R_j)} \right), \ 1 \le j \le N$$
(1.67)

où $\overline{K(O, R_j)}$ est la boule fermée de rayon R_j centrée à l'origine de IR^3 . La décomposition (1.7) permet d'écrire $\overline{H}_{\{R\}}$ sous la forme (1.42) et l'opérateur $\overline{h}_{l,\{R\}}$ défini par (1.43) a pour indices de défaut (N, N).

La théorie générale des extensions auto-adjointes d'opérateurs symétriques [12], permet de dire que les extensions auto-adjointes $h_{l,U,\{R\}}$ de $\overline{h}_{l,\{R\}}$ sont données par:

$$\mathcal{D}(h_{l,U,\{R\}}) = \left\{ g + \sum_{j=1}^{N} C_j [\phi_{l,j^+} + \sum_{j'=1}^{N} U_{jj'} \phi_{l,j'^-}] / g \in \mathcal{D}(\overline{\dot{h}}_{l,\{R\}}), C_j \in C \right\}$$

$$h_{l,U,\{R\}} \left\{ g + \sum_{j=1}^{N} C_j [\phi_{l,j^+} + \sum_{j'=1}^{N} U_{jj'} \phi_{l,j'^-}] \right\} = \overline{h}_{l,\{R\}} g - i \sum_{j=1}^{N} C_j [\phi_{l,j^+} - \sum_{j'=1}^{N} U_{jj'} \phi_{l,j'^-}]$$
(1.68)

où $\phi_{l,j}$ est définie par (1.46), $U_{jj'}$, $1 \leq j, j' \leq N$, désignent une matrice de C^N et $\phi_{l,j\pm} = \phi_{l,j}(\sqrt{\pm i}, r)$, $Im\sqrt{\pm i} > 0$, constituent respectivement une base de $Ker[\overline{h}_{l,\{R\}} \mp i]$.

L'opérateur $H_{U,\{R\}}$ défini dans $L^2(IR^3)$ par

$$H_{U,\{R\}} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} h_{l,U,\{R\}} \tilde{U} \bigotimes 1$$
 (1.69)

décrit l'interaction δ -sphérique à support sur N sphères concentriques avec conditions frontières non séparées.

Le cas U = -1 donne l'Hamitonien libre:

$$H_{-1,\{R\}} = -\Delta$$
 , $\mathcal{D}(H_{-1,\{R\}}) = H^{2,2}(IR^3)$ (1.70)

La formule de Krein [12] nous donne

$$(h_{l,U,\{R\}} - k^2)^{-1} = (h_{l,o} - k^2)^{-1} + \sum_{j,j'=1}^{N} [M_l(k)]_{jj'}(\phi_{l,j'}(-\overline{k}), .)\phi_{l,j}(k)$$
$$k^2 \in \rho(h_{l,U,\{R\}}), \ Imk > 0, \ U \neq -1, \ l \in IN \ (1.71)$$

où

$$[M_l(k)]^{-1} = (U^T + 1)^{-1} [g_l(\sqrt{i}) - g_l(\sqrt{-i})] + g_l(\sqrt{-i}) - g_l(k)$$
(1.72)

 \mathbf{et}

$$[g_l(k)]_{jj'} = \phi_{l,j}(k, R_{j'}) = g_{l,k}(R_j, R_{j'})$$
(1.73)

Le résolvant de $H_{U,\{R\}}$ est donné par

$$(H_{U,\{R\}} - k^{2})^{-1} = (H_{-1,\{R\}} - k^{2})^{-1} + \bigoplus_{l=0}^{\infty} \bigoplus_{m=-l}^{l} \sum_{j,j'=1}^{N} [M_{l}(k)]jj'(|.|^{-1}\phi_{l,j'}(-\overline{k})Y_{l}^{m},.)|.|^{-1}\phi_{l,j}(k)Y_{l}^{m}$$

$$k^{2} \in \rho(H_{U,\{R\}}), \ Imk > 0$$
(1.74)

On note que les éléments de $\mathcal{D}(h_{l,U,\{R\}})$ peuvent être caractérisés par les conditions frontières suivantes

$$\forall f_l \in \mathcal{D}(h_{l,U,\{R\}}), \quad \forall j \text{tel quel} \le j \le N$$
$$f_l(R_{j^+}) = f_l(R_{j^-}) \equiv f_l(R_j) \tag{1.75}$$

$$f_l'(R_{j^+}) - f_l'(R_{j^-}) = \sum_{j'=1}^N [\Lambda_l(k)]_{jj'} f_l(R_{j'})$$
 (1.76)

où Λ_l est défini par

$$-[\Lambda_l(k)]^{-1} = [M_l(k)]^{-1} + g_l(k)$$
(1.77)

1.2 Théorie de la diffusion pour des potentiels δ -sphérique

Dans cette seconde partie, nous développons la théorie de la diffusion pour certains des modèles définis dans la section 1.1.

1.2.1 Théorie de la diffusion pour la paire $(h_{l,\{\alpha_l\},\{R\}};h_{l,o})$

Pour $k \ge 0$, définissons la fonction

$$\mathcal{F}_{l,\{\alpha_l\},\{R\}}(k,r) = F_l^{(o)}(k,r) + \sum_{j,j'=1}^N \mu_{jj'}(k) F_l^{(o)}(k,R_{j'}) g_{l,k}(R_j,r)$$
(1.78)

où

$$g_{l,k}(r,r') = \begin{cases} F_l^{(o)}(k,r)G_l^{(o)}(k,r') & r \le r' \\ F_l^{(o)}(k,r')G_l^{(o)}(k,r) & r \ge r' \end{cases}$$
(1.79)

 $F_l^{(o)}$ et $G_l^{(o)}$ étant données par (1.15) et (1.16).

Un calcul direct montre que pour tout $j \in \{1, ..., N\}$, la fonction $\mathcal{F}_{l,\{\alpha_l\},\{R\}}(k, r)$ vérifie les conditions suivantes:

$$\mathcal{F}_{l,\{\alpha_l\},\{R\}}(k,R_{j^+}) = \mathcal{F}_{l,\{\alpha_l\},\{R\}}(k,R_{j^-}) \equiv \mathcal{F}_{l,\{\alpha_l\},\{R\}}(k,R_j) \quad (1.80)$$

$$\mathcal{F}'_{l,\{\alpha_l\},\{R\}}(k,R_{j^+}) - \mathcal{F}'_{l,\{\alpha_l\},\{R\}}(k,R_{j^-}) = \alpha_{jl}\mathcal{F}_{l,\{\alpha_l\},\{R\}}(k,R_j) \quad (1.81)$$

$$-\mathcal{F}_{l,\{\alpha_l\},\{R\}}'(k,r) + l(l+1)r^{-2}\mathcal{F}_{l,\{\alpha_l\},\{R\}}(k,r) = k^2\mathcal{F}_{l,\{\alpha_l\},\{R\}}(k,r)$$

$$k \ge 0 \qquad (1.82)$$

Dès lors, les fonctions $\mathcal{F}_{l,\{\alpha_l\},\{R\}}(k,r)$ constituent un ensemble de fonctions propres généralisées associées à $h_{l,\{\alpha_l\},\{R\}}$.

Les déphasages de $h_{l,\{\alpha_l\},\{R\}}$ s'obtiennent alors à partir de l'expression asymptotique de $\mathcal{F}_{l,\{\alpha_l\},\{R\}}(k,r)$ quand $r \to \infty$. En effet, en suivant par exemple [14], on obtient le comportement asymptotique ci-après:

$$\mathcal{F}_{l,\{\alpha_l\},\{R\}}(k,r) \xrightarrow{k>0} A_l(k) \sin\left(kr - \frac{l\pi}{2}\right) + \sum_{j,j'=1}^N \mu_{jj'}(k) F_l^{(o)}(k,R_j) \times \\ \times F_l^{(o)}(k,R_{j'}) B_l(k) exp\left[-i\left(kr - \frac{l\pi}{2}\right)\right] \\ = \left\{A_l(k) - iB_l(k)\sum_{j,j'=1}^N \mu_{jj'}(k) F_l^{(o)}(k,R_j) F_l^{(o)}(k,R_{j'})\right\} \times \\ \times \sin\left(kr - \frac{l\pi}{2}\right) + B_l(k)\sum_{j,j'=1}^N \mu_{jj'}(k) F_l^{(o)}(k,R_j) \times$$

$$\times F_{l}^{(o)}(k, R_{j'}) \cos\left(kr - \frac{l\pi}{2}\right)$$

$$= \left[C_{1,l}^{2}(k) + C_{2,l}^{2}(k)\right]^{1/2} \sin\left(kr - \frac{l\pi}{2}\delta_{l,\{\alpha_{l}\},\{R\}}(k)\right) + o(1)$$
(1.83)

ce qui permet de définir les déphasages par

$$\delta_{l,\{\alpha_l\},\{R\}}(k) = -\arctan\frac{C_{2,l}(k)}{C_{1,l}(k)}$$

= $-\arctan\frac{B_l(k)\sum_{j,j'=1}^{N}\mu_{jj'}(k)F_l^{(o)}(k,R_j)F_l^{(o)}(k,R_{j'})}{A_l(k)-iB_l(k)\sum_{j,j'=1}^{N}\mu_{jj'}(k)F_l^{(o)}(k,R_j)F_l^{(o)}(k,R_{j'})}$ (1.84)

où [14]

$$A_{l}(k) = 2^{-l}k^{-l-1}\Gamma(2l+2)\Gamma(l+1)^{-1} \quad \text{et} \quad B_{l}(k) = \frac{1}{k A_{l}(k)}$$
(1.85)

Les éléments de la matrice de diffusion sont donnés par

$$S_{l,\{\alpha_l\},\{R\}}(k) = exp\left[2i\delta_{l,\{\alpha_l\},\{R\}}(k)\right]$$

= $1 - 2ikB_l^2(k)\sum_{j,j'=1}^N \mu_{jj'}(k)F_l^{(o)}(k,R_j)F_l^{(o)}(k,R_{j'})(1.86)$

Le dévéloppement de portée effective est donné par [15]

$$[(2l+1)!!]^2 k^{2l+1} \cot \delta_{l,\{\alpha_l\},\{R\}}(k) = -a_{l,\{\alpha_l\},\{R\}}^{-1} + \frac{1}{2} r_{l,\{\alpha_l\},\{R\}} k^2 + o(k^4) \quad (1.87)$$

où les coefficients $a_{l,\{\alpha_l\},\{R\}}$ et $r_{l,\{\alpha_l\},\{R\}}$ sont appelés respectivement longueur de diffusion et portée effective correspondant à l'onde partielle l.

Un calcul direct montre que

$$a_{l,\{\alpha_l\},\{R\}} = -\sum_{j,j'=1}^{N} \mu_{jj'}(0) (R_j R_{j'})^{l+1}$$
(1.88)

L'amplitude de diffusion $f_{\{\alpha_l\},\{R\}}(k,\omega,\omega')$ associée à $H_{\{\alpha_l\},\{R\}}$ est définie par:

$$f_{\{\alpha_l\},\{R\}}(k,\omega,\omega') = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{e^{2i\delta_{l,\{\alpha_l\},\{R\}}(k)} - 1}{2ik} \overline{Y_l^m(\omega')} Y_l^m(\omega)$$

$$= 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{l,\{\alpha_l\},\{R\}}(k) \overline{Y_l^m(\omega')} Y_l^m(\omega)$$

$$k \ge 0 \quad ; \quad \omega , \ \omega' \in S^2$$
(1.89)

où l'amplitude de diffusion $f_{l,\{\alpha_l\},\{R\}}(k)$ correspondant à l'onde partielle l est donnée par:

$$f_{l,\{\alpha_l\},\{R\}}(k) = -B_l^2(k) \sum_{j,j'=1}^N \mu_{jj'}(k) F_l^{(o)}(k,R_j) F_l^{(o)}(k,R_{j'})$$
(1.90)

L'opérateur de diffusion dans $L^2(S^2)$, associé à $H_{\{\alpha_l\},\{R\}}$, est défini par

$$\begin{pmatrix} S_{\{\alpha_l\},\{R\}}(k)\phi \end{pmatrix}(\omega) &= \phi(\omega) - \frac{k}{2\pi i} \int_{S^2} d\omega' f_{\{\alpha_l\},\{R\}}(k,\omega,\omega')\phi(\omega') \\ k \ge 0 \quad ; \quad \omega , \, \omega' \in S^2$$
(1.91)

ce qui donne l'expression de $S_{\{\alpha_l\},\{R\}}(k)$

$$S_{\{\alpha_l\},\{R\}}(k) = 1 + 2ik \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{l,\{\alpha_l\},\{R\}}(k)(Y_l^m,.)Y_l^m(\omega)$$
(1.92)

1.2.2 Théorie de la diffusion pour la paire (H_{ε}, H_o)

Dans cette partie, nous étudions la théorie de la diffusion indépendante du temps pour l'opérateur de Schrödinger H_{ε} défini par (1.60) et nous montrons que l'amplitude de diffusion et l'opérateur de diffusion associés à H_{ε} convergent respectivement vers $f_{\{\alpha_i\},\{B\}}(k)$ et $S_{\{\alpha_i\},\{B\}}(k)$ quand $\varepsilon \to 0_+$.

convergent respectivement vers $f_{\{\alpha_l\},\{R\}}(k)$ et $S_{\{\alpha_l\},\{R\}}(k)$ quand $\varepsilon \to 0_+$. Nous supposons que $\forall j = 1, ..., N$ $V_j : IR \longrightarrow IR$ est une fonction mesurable, $V_j \equiv 0$ pour r < 0, $V_j \in L^1((0,\infty))$, et nous suivons la stratégie utilisée dans [10] pour une étude analogue des interactions ponctuelles.

Notons U_{ϵ} le groupe unitaire des dilatations définies dans $L^{2}((0,\infty))$ par

$$(U_{\varepsilon}f)(r) = \varepsilon^{-1/2} f(r/\varepsilon) , \varepsilon > 0, f \in L^{2}((0,\infty))$$
(1.93)

et définissons

$$v_j(r) = |V_j(r)|^{1/2}$$
, $u_j(r) = |V_j(r)|^{1/2} sgn[V_j(r)].$ (1.94)

Nous introduisons ensuite dans $L^2(IR^3)^N$ les quantités

$$\Phi_{\varepsilon}^{\pm}(k\omega, x) = \left(\phi_{\varepsilon,1}^{\pm}(k\omega, x), \dots, \phi_{\varepsilon,N}^{\pm}(k\omega, x)\right)$$
(1.95)

où pour $\varepsilon, k > 0$ nous utilisons les définitions suivantes:

$$\phi_{l,\epsilon,j}^{+}(k\omega,x) = u_{\epsilon,j}(r) \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \tilde{F}_{l}^{(o)}(k,r) Y_{l}^{m}(\omega)$$
$$= \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \phi_{l,\epsilon,j}^{+}(k,r) Y_{l}^{m}(\omega)$$
(1.96)

$$\phi_{l,\varepsilon,j}^{-}(k\omega,x) = v_{\varepsilon,j}(r) \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \tilde{F}_{l}^{(o)}(k,r) Y_{l}^{m}(\omega)$$
$$= \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \phi_{l,\varepsilon,j}^{-}(k,r) Y_{l}^{m}(\omega)$$
(1.97)

$$u_{\varepsilon,j}(r) = u_j((r-Rj)/\varepsilon)$$
(1.98)

$$v_{\varepsilon,j}(r) = v_j((r-Rj)/\varepsilon)$$
(1.99)

$$\tilde{F}_{l}^{(o)}(k,r) = B_{l}(k)F_{l}^{(o)}(k,r) \qquad (1.100)$$

L'amplitude de diffusion correspondant à H_{ε} est définie par

$$f_{\varepsilon}(k,\omega,\omega') = 4\pi \left(\Phi_{\varepsilon}^{+}(k\omega), t_{\varepsilon}(k)\Phi_{\varepsilon}^{-}(k\omega')\right)$$
(1.101)

où $t_{\epsilon}(k)$ est l'opérateur de transition de H_{ϵ} dans $L^{2}(IR^{3})$.

L'opérateur de diffusion $S_{\epsilon}(k)$ associé à H_{ϵ} est défini dans $L^{2}(S^{2})$ par:

$$(S_{\epsilon}(k)\phi)(\omega) = \phi(\omega) - \frac{k}{2i\pi} \int_{S^2} d\omega' f_{\epsilon}(k,\omega,\omega')\phi(\omega')$$
(1.102)

Décomposant $L^2(IR^3)$ par rapport aux moments angulaires, on réécrit (1.101) sous la forme

$$f_{\varepsilon}(k,\omega,\omega') = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{l,\varepsilon}(k) \overline{Y_{l}^{m}(\omega')} Y_{l}^{m}(\omega)$$
(1.103)

où l'amplitude de diffusion $f_{l,\epsilon}(k)$ correspondant à l'onde partielle l est donnée par

$$f_{l,\epsilon}(k) = \sum_{j,j'=1}^{N} \left(\phi_{l,\epsilon,j}^{+}(k,r), t_{l,\epsilon,jj'}(k) \phi_{l,\epsilon,j'}^{-}(k,r') \right)$$
(1.104)

r et r' étant juste des variables d'intégration.

Les éléments $t_{l,\epsilon,jj'}(k)$ de l'opérateur de transition $t_{\epsilon}(k)$ intervenant dans (1.104) sont définis dans $L^2((0,\infty))$ par :

$$t_{l,\epsilon j j'}(k) = \varepsilon^{-2} \lambda_{jl}(\varepsilon) [1 + \hat{B}_{l,\epsilon}(k)]_{j,j'}^{-1}$$

$$\varepsilon > 0, \ Imk \ge 0, \ k \ne 0, \ k^2 \notin \mathcal{E}_{\varepsilon}$$
(1.105)

où les opérateurs $\hat{B}_{l,\epsilon}(k)$ sont donnés par

$$\hat{B}_{l,\epsilon}(k) : L^{2}((0,\infty))^{N} \longrightarrow L^{2}((0,\infty))^{N}$$
$$\left[\hat{B}_{l,\epsilon}(k)(g_{1},...,g_{N})\right]_{j} = \sum_{j'=1}^{N} \hat{B}_{l,\epsilon,jj'}(k)g_{j'}, g_{j} \in L^{2}((0,\infty)) \quad (1.106)$$

$$\hat{B}_{l,\varepsilon,jj'}(k) = \varepsilon^{-2} \lambda_{jl}(\varepsilon) u_{\varepsilon,j} g_{l,k} v_{\varepsilon,j'}$$
(1.107)

 $\mathbf{e}\mathbf{t}$

$$\mathcal{E}_{\epsilon} = \left\{ k^2 \in IC - \{0\} / B_{l,\epsilon}(k)g = -g \text{ pour } g \in L^2((0,\infty))^N \right\}$$
(1.108)

L'opérateur $B_{l,\epsilon}(k)$ qui apparait dans (1.108) est défini par [6]

$$B_{l,\epsilon}(k) : L^{2}((0,\infty))^{N} \longrightarrow L^{2}((0,\infty))^{N}$$
$$[B_{l,\epsilon}(k)(g_{1},...,g_{N})]_{j} = \sum_{j'=1}^{N} B_{l,\epsilon,jj'}(k)g_{j'}, g_{j} \in L^{2}((0,\infty)) \quad (1.109)$$

où $B_{l,\varepsilon,jj'}(k)$ est défini à l'aide de son noyau intégral par

$$B_{l,\varepsilon,jj'}(k,r,r') = \varepsilon^{-1}\lambda_{jl}(\varepsilon)u_j(r)g_{l,k}(\varepsilon r + R_j,\varepsilon r' + R_{j'})v_{j'}(r')$$
(1.110)

<u>Théorème 1.3</u>

Supposons que $\forall j = 1, ..., N, V_j : IR \longrightarrow IR$ est mesurable, $V_j \equiv 0$ pour r < 0 et $V_j \in L^1((R_j, \infty))$.

Si $\alpha_{jl} = \lambda'_{jl}(0) \int_{R_j}^{\infty} dr V_j(r)$, alors l'opérateur $S_{\varepsilon}(k)$, k > 0 converge vers $S_{\{\alpha_l\},\{R\}}$ quand $\varepsilon \to 0_+$.

Si de plus V_j a un support compact, alors $S_{\varepsilon}(k)$ est analytique en ε au voisinage de $\varepsilon = 0$ et nous avons le développement

$$S_{\epsilon}(k) = S_{\{\alpha_l\},\{R\}} + o(\epsilon) \tag{1.111}$$

<u>Démonstration</u> De (1.102) et (1.103), on note que la dépendance de $S_{\varepsilon}(k)$ en ε est due seulement à $f_{l,\varepsilon}(k)$. Il suffit donc de prouver que $f_{l,\varepsilon}(k)$ tend vers $f_{\{\alpha_l\},\{R\}}(k)$ quand $\varepsilon \to 0_+$.

Pour cela en utilisant (1.105), on peut reécrie (1.104) sous la forme

$$f_{l,\varepsilon}(k) = \sum_{j,j'=1}^{N} \varepsilon^{-1} \lambda_{jl}(\varepsilon) \times \\ \times \left(v_j \tilde{F}_l^{(o)}(k, \varepsilon r + R_j), U_{\varepsilon}^{-1} [1 + \hat{B}_{l,\varepsilon}(k)]_{jj'}^{-1} U_{\varepsilon} u_{j'} \tilde{F}_l^{(o)}(k, \varepsilon r' + R_{j'}) \right)$$

$$(1.112)$$

où r et r' sont des variables d'intégration.

A l'aide de la relation

$$U_{\varepsilon}^{-1}[1+\hat{B}_{l,\varepsilon}(k)]^{-1}U_{\varepsilon} = [1+\tilde{B}_{l,\varepsilon}(k)]^{-1}$$
(1.113)

où $\tilde{B}_l(k) \equiv \tilde{B}_{l,0}$ est défini dans [6] par

$$\tilde{B}_{l}(k) : L^{2}((0,\infty))^{N} \longrightarrow L^{2}((0,\infty))^{N}$$

$$\left[\tilde{B}_{l}(k)(g_{1},...,g_{N})\right]_{j} = \sum_{j'=1}^{N} \tilde{B}_{l,jj'}(k)g_{j'}, g_{j} \in L^{2}((0,\infty)) \quad (1.114)$$

$$\tilde{B}_{l,jj'}(k) = \lambda'(0)g_{l,k}(R_j, R_{j'})(v_{j'}, .)u_j$$
(1.115)

On peut finalement écrire

$$f_{l,\varepsilon}(k) = \sum_{j,j'=1}^{N} \varepsilon^{-1} \lambda_{jl}(\varepsilon) \left(v_j \tilde{F}_l^{(o)}(k,\varepsilon r + R_j), [1 + \tilde{B}_{l,\varepsilon}(k)]_{jj'}^{-1} u_{j'} \tilde{F}_l^{(o)}(k,\varepsilon r' + R_{j'}) \right)$$

$$(1.116)$$

A l'aide du théorème de la convergence dominée, on obtient

$$\lim_{\epsilon \to 0} f_{l,\epsilon}(k) = \sum_{j,j'=1}^{N} \lambda'_{jl}(0) \tilde{F}_{l}^{(o)}(k, R_{j}) \left(v_{j}, [1 + \tilde{B}_{l}(k)]_{jj'}^{-1} u_{j'} \right) \tilde{F}_{l}^{(o)}(k, R_{j'})$$
(1.117)

De plus (1.115) entraine que:

$$[1 + \tilde{B}_{l}(k)]_{jj'}^{-1} = \delta_{jj'} - \lambda'_{jl}(0) \sum_{m=1}^{N} g_{l,k}(R_{j}, R_{m})[\hat{\mu}(k)]_{j'm}^{-1}(v_{j'}, .)u_{j}$$
(1.118)

où

$$[\hat{\mu}(k)]_{j'm} = \left[\delta_{jj'} + \lambda'_{jl}(0)(v_j, u_j)g_{l,k}(R_j, R_{j'})\right]_{j,j'=1}^{N}$$
(1.119)

Si $\lambda'_{jl}(0)(v_j, u_j) \neq 0, \forall j = 1, ..., N$, alors une comparaison avec (1.50) montre que

$$[\hat{\mu}(k)]_{j'm}^{-1}\lambda'_{jl}(0)(v_j, u_j) = -[\mu(k)]_{jj'}$$
(1.120)

. .

Introduisant (1.119)-(1.120) dans (1.118), on obtient

$$\lim_{\epsilon \to 0} f_{l,\epsilon}(k) = -\sum_{j,j'=1}^{N} \mu_{jj'}(k) \tilde{F}_{l}^{(o)}(k, R_{j}) \tilde{F}_{l}^{(o)}(k, R_{j'}) = f_{l,\{\alpha_l\},\{R\}}(k) \quad (1.121)$$

Si $\lambda'_{j_ol}(0)(v_{j_o}, u_{j_o}) = 0$ pour j_o , alors tous les termes avec $j = j_o$ dans (1.119)-(1.120) s'annulent et donc n'apparaissent pas dans (1.121). $\mu(k)$ contient donc précisément les α_{jl} non nuls.

Si V_j a un support compact, alors $B_{l,\varepsilon}(k)$ est analytique en ε pour ε suffisamment petit et k fixé; ce qui entraine que $S_{\varepsilon}(k)$ est analytique en ε au voisinage de $\varepsilon = 0$.

1.2.3 Théorie de la diffusion pour la paire $(h_{l,U,\{R\}}; h_{l,o})$

Pour $k \ge 0$ considérons la fonction

$$\mathcal{F}_{l,U,\{R\}}(k,r) = F_l^{(o)}(k,r) + \sum_{j,j'=1}^N [\Lambda_l(k)]_{jj'} F_l^{(o)}(k,R_{j'}) g_{l,k}(R_j,r)$$
(1.122)

où $\Lambda_l(k)$ et $g_{l,k}(r,r')$ sont définis respectivement par (1.77) et (1.79).

En procédant comme dans la section 1.2.2, on montre que les $\mathcal{F}_{l,U,\{R\}}(k,r)$ sont des fonctions propres généralisées de $h_{l,U,\{R\}}(k,r)$.

Le comportement asymptotique de $\mathcal{F}_{l,U,\{R\}}(k,r)$ quand $r \to \infty$ donne:

$$\mathcal{F}_{l,U,\{R\}}(k,r) \xrightarrow{k>0} A_l(k)\sin\left(kr - \frac{l\pi}{2}\right) + \sum_{j,j'=1}^N [\Lambda_l(k)]_{jj'} \times$$

$$= \begin{cases} \times F_{l}^{(o)}(k, R_{j})F_{l}^{(o)}(k, R_{j'})B_{l}(k)e^{-i\left(kr - \frac{l\pi}{2}\right)} \\ \left\{ A_{l}(k) - iB_{l}(k)\sum_{j,j'=1}^{N}[\Lambda_{l}(k)]_{jj'}F_{l}^{(o)}(k, R_{j})F_{l}^{(o)}(k, R_{j'})\right\} \times \\ \times \sin\left(kr - \frac{l\pi}{2}\right) + B_{l}(k)\sum_{j,j'=1}^{N}[\Lambda_{l}(k)]_{jj'}F_{l}^{(o)}(k, R_{j}) \times \\ \times F_{l}^{(o)}(k, R_{j'})\cos\left(kr - \frac{l\pi}{2}\right) \\ = [\tilde{D}_{1,l}^{2}(k) + \tilde{D}_{2,l}^{2}(k)]^{1/2}\sin\left(kr - \frac{l\pi}{2} + \delta_{l,U,\{R\}}(k)\right) + o(1) \\ (1.123) \end{cases}$$

l'équation (1.123) définit les déphasages de $h_{l,U,\{R\}}$ par

ŗ

$$\delta_{l,U,\{R\}}(k) = -\arctan\frac{\tilde{D}_{1,l}(k)}{\tilde{D}_{2,l}(k)}$$

= $-\arctan\frac{B_l(k)\sum_{j,j'=1}^{N}[\Lambda_l(k)]_{jj'}F_l^{(o)}(k,R_j)F_l^{(o)}(k,R_{j'})}{A_l(k) - iB_l(k)\sum_{j,j'=1}^{N}[\Lambda_l(k)]_{jj'}F_l^{(o)}(k,R_j)F_l^{(o)}(k,R_{j'})}$
(1.124)

Les éléments de la matrice de diffusion sont donnés par

$$S_{l,U,\{R\}}(k) = exp\left[2i\delta_{l,U,\{R\}}(k)\right]$$

= $1 - 2ikB_l^2(k)\sum_{j,j'=1}^N [\Lambda_l(k)]_{jj'}F_l^{(o)}(k,R_j)F_l^{(o)}(k,R_{j'})$
(1.125)

Le dévéloppement de portée effective correspondant à $h_{l,U,\{R\}}$ s'écrit:

$$[(2l+1)!!]^2 k^{2l+1} \cot \delta_{l,U,\{R\}}(k) = -a_{l,U,\{R\}}^{-1} + \frac{1}{2} r_{l,U,\{R\}} k^2 + o(k^4)$$
(1.126)

où la longueur de diffusion est donnée par

$$a_{l,U,\{R\}} = -\sum_{j,j'=1}^{N} [\Lambda_l(0)]_{jj'} (R_j R_{j'})^{l+1}$$
(1.127)

L'amplitude de diffusion $f_{U,\{R\}}(k,\omega,\omega')$ correspondant à $H_{U,\{R\}}$ est définie par:

$$f_{U,\{R\}}(k,\omega,\omega') = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{e^{2i\delta_{l,U,\{R\}}(k)} - 1}{2ik} \overline{Y_{l}^{m}(\omega')} Y_{l}^{m}(\omega)$$
$$= 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{l,U,\{R\}}(k) \overline{Y_{l}^{m}(\omega')} Y_{l}^{m}(\omega)$$
$$k \ge 0 \quad ; \quad \omega , \ \omega' \in S^{2}$$
(1.128)

où l'amplitude de diffusion $f_{l,U,\{R\}}(k)$ correspondant à l'onde partielle l est donnée par:

$$f_{l,U,\{R\}}(k) = -B_l^2(k) \sum_{j,j'=1}^N [\Lambda_l(k)]_{jj'} F_l^{(o)}(k,R_j) F_l^{(o)}(k,R_{j'})$$
(1.129)

L'opérateur de diffusion $S_{U,\{R\}}(k)$ associé à $H_{U,\{R\}}$ est défini dans $L^2(S^2)$ par

$$\left(S_{U,\{R\}}(k)\phi \right)(\omega) = \phi(\omega) - \frac{k}{2\pi i} \int_{S^2} d\omega' f_{U,\{R\}}(k,\omega,\omega')\phi(\omega') k \ge 0; \quad \omega, \; \omega' \in S^2$$
 (1.130)

ce qui donne l'expression de $S_{U,\{R\}}(k)$ sous la forme

$$S_{U,\{R\}}(k) = 1 + 2ik \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{l,U,\{R\}}(k)(Y_{l}^{m},.)Y_{l}^{m}(\omega)$$
(1.131)

Chapitre 2

and the second

Les interactions δ -sphérique de 2^{eme} espèce

Ce chapitre est composé de deux parties. La première partie est consacrée à la définition des modèles correspondant aux interactions δ -sphériques de 2^{eme} espèce, δ -sphériques de 2^{eme} espèce plus une interaction coulombienne et δ -sphérique de 2^{eme} espèce à support sur N sphères concentriques avec des conditions frontières séparées. Elle contient aussi la définition de l'interaction δ -sphérique de 2^{eme} espèce à support sur N sphères concentriques avec des conditions frontières non séparées. Ce résultat est nouveau. La 2^{eme} partie de ce chapitre, contient tous les résultats que nous avons obtenus sur la théorie de la diffusion pour δ -sphérique de 2^{eme} espèce plus une interaction coulombienne, δ -sphérique de 2^{eme} espèce à support sur N sphères concentriques avec des conditions frontières séparées et non séparées.

2.1 Principales définitions et propriétés de l'interaction δ -sphérique de 2^{eme} espèce

Nous présentons successivement les modèles δ -sphérique de 2^{eme} espèce, δ -sphérique de 2^{eme} espèce plus une interaction coulombienne [3], l'interaction δ -sphérique de 2^{eme} espèce à support sur N sphères concentriques avec des conditions frontières séparées [16].Les résultats nouveaux que nous avons obtenus [5] et [17] concernent:

- La définition de l'interaction de 2^{eme} espèce à support sur N sphères con-

centriques correspondant aux conditions frontières non séparées.

- la théorie de la diffusion pour les interactions δ -sphériques de 2^{eme} espèce à support sur N sphères concentriques.

2.1.1 Interaction δ -sphérique de 2^{eme} espèce

Nous présentons dans cette section le modèle correspondant à l'interaction δ -sphérique de 2^{eme} espèce [3].

Considérons la décomposition (1.7) et introduisons l'opérateur minimal fermé et non négatif dans $L^2(IR^3)$

$$\overline{\ddot{H}} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} \overline{\ddot{h}}_l \tilde{U} \bigotimes 1$$
(2.1)

$$\overline{\ddot{h}}_{l} = -\frac{d^{2}}{dr^{2}} + \frac{l(l+1)}{r^{2}}; \quad r > 0, l \in IN$$

$$\mathcal{D}(\overline{\ddot{h}}_{l}) = \left\{ f \in L^{2}((0,\infty)); f, f' \in AC_{loc}((0,\infty)); f(0_{+}) = 0 \text{ si } l = 0; \\ f'(R_{+}) = f'(R_{-}) = 0; -f'' + l(l+1)r^{-2}f \in L^{2}((0,\infty)) \right\}, \quad l \in IN.$$
(2.2)

L'adjoint $\overline{\ddot{H}}^*$ de l'opérateur $\overline{\ddot{H}}$ est défini par :

$$\overline{\ddot{H}}^{*} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} \overline{\ddot{h}}_{l}^{*} \tilde{U} \bigotimes 1.$$
(2.3)

$$\overline{\ddot{h}}_{l}^{*} = -\frac{d^{2}}{dr^{2}} + \frac{l(l+1)}{r^{2}}; \quad r > 0,$$

$$\mathcal{D}(\overline{\ddot{h}}_{l}^{*}) = \{f \in L^{2}((0,\infty)); f, f' \in AC_{loc}((0,\infty) \setminus \{R\}); f(0_{+}) = 0 \text{ si } l = 0;$$

$$f'(R_{+}) = f'(R_{-}); -f'' + l(l+1)r^{-2}f \in L^{2}([0,\infty))\}, \ l \ge 0. \quad (2.4)$$

L'équation aux indices de défaut de $\overline{\ddot{h}}_l$

$$\overline{\ddot{h}_{l}^{*}}\tilde{\phi}_{l}(k) = k^{2}\tilde{\phi}_{l}(k) ; \quad \tilde{\phi}_{l}(k) \in \mathcal{D}(\overline{\ddot{h}_{l}}) ; \quad Imk > 0$$
(2.5)

admet (à une constante multiplicative près) la solution unique:

$$\tilde{\phi}_{l}(k,r) = \begin{cases} \frac{d}{dr} [G_{l}^{(0)}(k,r)]_{r=R} F_{l}^{(0)}(k,r); & r < R\\ \frac{d}{dr} [F_{l}^{(0)}(k,r)]_{r=R} G_{l}^{(0)}(k,r); & r > R \end{cases}$$
(2.6)

Dès lors, def $\overline{h}_l = (1, 1)$, et il découle de la théorie générale d'extensions autoadjointes d'opérateurs symétriques que toutes les extensions auto-adjointes de \overline{h}_l sont données par une famille h_{l,β_l} à un paramètre d'opérateurs autoadjoints.

Toutes les extensions auto-adjointes de $\overline{\ddot{H}}_l$ sont données par [3]:

$$H_{\beta} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} h_{l,\beta_l} \tilde{U} \bigotimes 1 \quad ; \quad \beta = \{\beta_l\}_{l=0}^{\infty}$$
(2.7)

$$h_{l,\beta_{l}} = -\frac{d^{2}}{dr^{2}} + \frac{l(l+1)}{r^{2}}; \quad r > 0, r \neq R.$$

$$\mathcal{D}(h_{l,\beta_{l}}) = \left\{ f \in L^{2}((0,\infty)); f, f' \in AC_{loc}((0,\infty) \setminus \{R\}) \ f(0_{+}) = 0 \ \text{si} \ l = 0; \\ f'(R_{+}) = f'(R_{-}) \equiv f'(R); f(R_{+}) - f(R_{-}) = \beta_{l}f'(R); \\ -f'' + l(l+1)r^{-2}f \in L^{2}((0,\infty)) \right\}, \quad l \ge 0, -\infty < \beta_{l} \le \infty.$$
(2.8)

Le cas $\beta_l = 0$ donne l'opérateur $h_{l,0}$ (cfr (1.19)), tandis que $\beta_l = \infty$ conduit à une condition frontière de Neumann en r = R. La formule de Krein [12] et un calcul direct (cfr [3]) donnent le résolvant de h_{l,β_l} :

$$(h_{l,\beta_{l}} - k^{2})^{-1} = (h_{l,0} - k^{2})^{-1} + \frac{\beta_{l}}{1 - \beta_{l}\tilde{\phi}_{l}'(k,R)} \left(\tilde{\phi}_{l}(-\overline{k}), \cdot\right) \tilde{\phi}_{l}(k)$$
$$k^{2} \in \rho(h_{l,\beta_{l}}), \quad Imk > 0, \quad -\infty < \beta_{l} \le \infty.$$
(2.9)

où $\phi_l(k, r)$ est défini par (2.6). Les relations (2.7) et (2.9) permettent d'écrire le résolvant de H_{β} :

$$(H_{\beta} - k^{2})^{-1} = (H_{0} - k^{2})^{-1} + \bigoplus_{l=0}^{\infty} \bigoplus_{m=-l}^{l} \beta_{l} [1 - \beta_{l} \tilde{\phi}_{l}'(k, R)]^{-1} \left(|.|^{-1} \tilde{\phi}_{l}(-\overline{k}) Y_{l}^{m}, . \right)$$
$$|.| \tilde{\phi}_{l}(k) Y_{l}^{m}; k^{2} \in \rho(H_{\beta}), \quad Imk > 0.$$
(2.10)

2.1.2 Interaction δ -sphérique de 2^{eme} espèce plus une interaction coulombienne

Ici nous suivons le développement fait dans [3] pour étudier l'expression formelle

$$-\Delta + \gamma \mid x \mid^{-1} + \beta \delta(\mid x \mid -R), \gamma \in IR, R > 0, -\infty < \beta_l \le \infty.$$
 (2.11)

Comme nous l'avons noté au début de ce chapitre, en pratique, il suffit d'interchanger f et f' dans les conditions frontières en R dans (1.29), (1.30) et (1.35).

Nous commençons donc avec l'opérateur minimal fermé et non négatif dans $L^2(IR^3)$

$$\overline{\ddot{H}}_{\gamma} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} \overline{\ddot{h}}_{l,\gamma} \tilde{U} \bigotimes 1$$
(2.12)

$$\overline{\ddot{h}}_{l,\gamma} = -\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + \frac{\gamma}{r}; \quad r \ge 0, \quad r \ne R.$$

$$\mathcal{D}(\overline{\ddot{h}}_{l,\gamma}) = \left\{ f \in L^2((0,\infty)); f, f' \in AC_{loc}((0,\infty)); f(0_+) = 0 \text{ si } l = 0; \\ f'(R_+) = f'(R_-) = 0; -f'' + l(l+1)r^{-2}f + \gamma r^{-1}f \in L^2((0,\infty)) \right\},$$

$$\gamma \in IR, \quad l \in IN_0.$$
(2.13)

L'adjoint $\overline{\tilde{h}}_{l,\gamma}^*$ de $\overline{\tilde{h}}_{l,\gamma}$ est défini par:

$$\overline{\ddot{h}}_{l,\gamma}^{*} = -\frac{d^{2}}{dr^{2}} + \frac{l(l+1)}{r^{2}} + \frac{\gamma}{r}; \quad r \ge 0, \quad r \ne R.$$

$$\mathcal{D}(\overline{\ddot{h}}_{l,\gamma}^{*}) = \left\{ f \in L^{2}((0,\infty)); f, f' \in AC_{loc}((0,\infty) \setminus \{R\}); f(0_{+}) = 0 \text{ si } l = 0; \\ f'(R_{+}) = f'(R_{-}); \quad -f'' + l(l+1)r^{-2}f + \gamma r^{-1}f \in L^{2}((0,\infty)) \right\}, \\ \gamma \in IR, \quad l \in IN_{0}.$$
(2.14)

L'équation aux indices de défaut

$$\overline{\ddot{h}}_{l,\gamma}^{*}\tilde{\phi}_{l,\gamma}(k) = k^{2}\tilde{\phi}_{l,\gamma}(k) ; \quad \tilde{\phi}_{l,\gamma}(k) \in \mathcal{D}(\overline{\ddot{h}}_{l,\gamma}) ; \quad Imk > 0; \quad l \in IN_{0} \quad (2.15)$$

admet l'unique solution (cfr (1.31))

A State of the second

$$\tilde{\phi}_{l,\gamma}(k,r) = \begin{cases} \frac{d}{dr} [G_{l,\gamma}^{(0)}(k,r)]_{r=R} F_{l,\gamma}^{(0)}(k,r); & r < R \\ \frac{d}{dr} [F_{l,\gamma}^{(0)}(k,r)]_{r=R} G_{l,\gamma}^{(0)}(k,r); & r > R \end{cases}$$

$$k \neq \frac{i\gamma}{2n}, \quad n \in IN, \quad Imk > 0 \qquad (2.16)$$

où $F_{l,\gamma}^{(0)}(k,r)$ et $G_{l,\gamma}^{(0)}(k,r)$ sont définies par (1.33) et (1.34). $\overline{h}_{l,\gamma}$ a donc pour indice de défaut (1.1) et toutes ses extensions auto-adjointes sont données dans [3].

$$h_{l,\gamma,\beta_{l}} = -\frac{d^{2}}{dr^{2}} + \frac{l(l+1)}{r^{2}} + \frac{\gamma}{r}; \quad r > 0, r \neq R$$

$$\mathcal{D}(h_{l,\gamma,\beta_{l}}) = \left\{ f \in L^{2}((0,\infty)); f, f' \in AC_{loc}((0,\infty) \setminus \{R\}) f(0_{+}) = 0 \text{ si } l = 0; \\ f'(R_{+}) = f'(R_{-}) \equiv f'(R); f(R_{+}) - f(R_{-}) = \beta_{l}f'(R); \\ -f'' + l(l+1)r^{-2}f + \gamma r^{-1}f \in L^{2}((0,\infty)) \right\}; \\ l \in IN_{0}, -\infty < \beta_{l} \leq \infty; \gamma \in IR.$$

$$(2.17)$$

Ce modèle est donc représenté par l'Hamiltonien défini dans $L^2(IR^3)$ par

$$H_{\gamma,\beta} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} h_{l,\gamma,\beta_l} \tilde{U} \bigotimes 1$$
(2.18)

Le résolvant de h_{l,γ,β_l} est donné par

$$(h_{l,\gamma,\beta_l} - k^2)^{-1} = g_{l,\gamma,k} + \beta_l [1 - \tilde{\phi}'_{l,\gamma}(k,R)]^{-1} (\tilde{\phi}_{l,\gamma}(-\overline{k}), .) \tilde{\phi}_{l,\gamma}(k)$$

$$k^2 \in \rho(h_{l,\gamma,\beta_l}); \quad Imk > 0, \quad ,\gamma \in IR, \quad -\infty < \beta_l \le \infty, \quad l \in IN_0. \quad (2.19)$$

où $g_{l,\gamma,k}$ est défini par (1.36).

2.1.3 Interaction δ -sphérique de 2^{eme} espèce à support sur N sphères concentriques

A) Conditions frontières séparées [16] Considérons dans $L^2(IR^3)$ l'opérateur fermé, symétrique et non négatif

$$\overline{H}_{\{R\}} = -\Delta$$

$$\mathcal{D}(\overline{H}_{\{R\}}) = \left\{ f \in H^{2,2}(IR^3) / f'(\partial \overline{K(O,R_j)}) = 0; 1 \le j \le N \right\} (2.20)$$

Utilisant les relations (1.7), (2.20) peut se réécrire:

$$\overline{\ddot{H}}_{\{R\}} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} \overline{\ddot{h}}_{l,\{R\}} \tilde{U} \bigotimes 1$$
(2.21)

où

$$\overline{\ddot{h}}_{l,\{R\}} = -\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2}$$

$$\mathcal{D}(\overline{\ddot{h}}_{l,\{R\}}) = \left\{ f \in L^2((0,\infty)); f, f' \in AC_{loc}((0,\infty)); f(0_+) = 0 \text{ si } l = 0; \\ f'(R_{j\pm}) = 0; -f'' + l(l+1)r^{-2}f \in L^2((0,\infty)) \right\},$$

$$l \in IN_0, \quad 1 \le j \le N, \quad \{R\} = \{R_1, ..., R_N\}. \quad (2.22)$$

Comme indiqué dans [16], $\overline{\tilde{h}}_{l,\{R\}}$ a pour indices de défaut (N, N) et le sousespace de défaut $\tilde{N}_{-\overline{k}}$ est engendré par les N fonctions linéairement indépendantes définies par:

$$\tilde{\phi}_{l,j}(k,r) = \begin{cases} \frac{d}{dr} [G_l^{(0)}(k,r)]_{r=R_j} F_l^{(0)}(k,r); & r < R_j \\ \frac{d}{dr} [F_l^{(0)}(k,r)]_{r=R_j} G_l^{(0)}(k,r); & r > R_j \\ Imk > 0; & 1 \le j \le N \end{cases}$$
(2.23)

Toutes les extensions auto-adjointes de $\overline{\tilde{h}}_{l,\{R\}}$ sont données par une famille à N^2 paramètres d'opérateurs auto-adjoints [12].

Ici nous considérons une famille particulière à N paramètres d'extensions auto-adjointes de $\overline{\tilde{h}}_{l,\{R\}}$:

$$h_{l,\{\beta_l\},\{R\}} = -\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2}$$

$$\mathcal{D}(h_{l,\{\beta_l\},\{R\}}) = \left\{ f \in L^2((0,\infty)); f, f' \in AC_{loc}((0,\infty) \setminus \{R\}); f(0_+) = 0 \text{ si } l = 0; \\ f'(R_{j-}) = f'(R_{j+}) \equiv f'(R_j); f(R_{j+}) - f(R_{j-}) = \beta_{jl}f'(R_j); \\ -f'' + l(l+1)r^{-2}f \in L^2((0,\infty)) \right\}$$

$$l \in IN_0 \quad 1 \le j \le N, \quad -\infty < \beta_{jl} \le \infty; \{\beta_l\} = \{\beta_{1l}, \dots, \beta_{Nl}\}.$$
(2.24)

L'Hamiltonien quantique décrivant l'interaction δ -sphérique de 2^{eme} espèce à support sur N sphères concentriques de rayons $0 < R_1 < \cdots < R_N$ correspondant aux conditions frontières séparées est l'opérateur $H_{\{\beta_l\},\{R\}}$ défini
dans $L^2(IR^3)$ par:

$$H_{\{\beta_l\},\{R\}} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} h_{l,\{\beta_l\},\{R\}} \tilde{U} \bigotimes 1$$
 (2.25)

Les résolvants de $h_{l,\{\beta_l\},\{R\}}$ et $H_{\{\beta_l\},\{R\}}$ sont donnés par le théorème suivant: <u>Théorème 2.1</u> Si $\beta_{jl} \neq 0, j = 1, ..., N$, alors: (i) Le résolvant de $h_{l,\{\beta_l\},\{R\}}$ est donné par:

(i) Le résolvant de
$$h_{l,\{\beta_l\},\{R\}}$$
 est donné par:

$$(h_{l,\{\beta_l\},\{R\}} - k^2)^{-1} = (h_{l,0} - k^2)^{-1} + \sum_{j,j'=1}^{N} \tilde{\mu}_{jj'}(k) (\tilde{\phi}_{l,j'}(-\overline{k}), .) \tilde{\phi}_{l,j}(k)$$
$$k^2 \in \rho(h_{l,\{\beta_l\},\{R\}}); \quad Imk > 0, \quad l \in IN. \quad (2.26)$$

où

$$[\tilde{\mu}(k)]_{jj'}^{-1} = [\beta_{jl}^{-1}\delta_{jj'} - \tilde{\phi}'_{l,j'}(k, R_{j'})]_{j,j'=1}^N$$
(2.27)

(ii) Le résolvant de $H_{\{\beta_l\},\{R\}}$ est donné par:

$$(H_{\{\beta_l\},\{R\}} - k^2)^{-1} = (H_0 - k^2)^{-1} + \bigoplus_{l=0}^{\infty} \bigoplus_{m=-l}^{l} \sum_{j,j'=1}^{N} \tilde{\mu}_{jj'}(k) \times \\ \times (|\cdot|^{-1} \tilde{\phi}_{l,j'}(-\overline{k})Y_l^m, \cdot) |\cdot|^{-1} \tilde{\phi}_{l,j}(k)Y_l^m \\ k^2 \in \rho(H_{\{\beta_l\},\{R\}}); \quad Imk > 0.$$
(2.28)

B) Conditions frontières non séparées

Dans cette section, nous nous proposons une définition mathématique de l'Hamiltonien quantique décrivant une interaction δ -sphérique de 2^{eme} espèce à support sur N sphères concentriques correspondant à des conditions frontières non séparées.

Considérons dans l'espace $L^2(IR^3)$ l'opérateur

$$\overline{\tilde{H}}_{\{R\}} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} \overline{\tilde{h}}_{l,\{R\}} \tilde{U} \bigotimes 1$$

défini au (2.20) où $\overline{\tilde{h}}_{l,\{R\}}$ défini par (2.22) a pour indices de défaut (N, N) et donc admet une famille à N^2 paramètres d'extensions auto- adjointes de

 $\overline{\tilde{h}}_{l,\{R\}}$

No. and

De la théorie générale des extensions auto-adjointes d'opérateurs symétriques dans un espace de Hilbert [12], il ressort que la famille d'extensions auto-adjointes de $\overline{\ddot{h}}_{l,\{R\}}$ peut être donnée par:

$$\mathcal{D}(h_{l,\hat{U},\{R\}}) = \{g + \sum_{j=1}^{N} dj [\tilde{\phi}_{l,j^+} + \sum_{j'=1}^{N} \hat{U}_{jj'} \tilde{\phi}_{l,j'^-}] / g \in \mathcal{D}(\overline{\ddot{h}}_{l,\{R\}}), dj \in C\}$$

$$h_{l,\hat{U},\{R\}}\{g + \sum_{j=1}^{N} dj [\tilde{\phi}_{l,j^{+}} + \sum_{j'=1}^{N} \hat{U}_{jj'} \tilde{\phi}_{l,j'^{-}}]\} = \overline{h}_{l,\{R\}}g + i \sum_{j=1}^{N} dj [\tilde{\phi}_{l,j^{+}} - \sum_{j'=1}^{N} \hat{U}_{jj'} \tilde{\phi}_{l,j'^{-}}]$$

$$(2.29)$$

où $\hat{U}_{jj'}$, $1 \leq j, j' \leq N$, désigne une matrice unitaire de C^N , et $\tilde{\phi}_{l,j^{\pm}} = \tilde{\phi}_{l,j}(\sqrt{\pm i}, r)$, $Im\sqrt{\pm i} > 0$, constituent respectivement une base de $Ker[\overline{\tilde{h}_{l,\{R\}}}\mp i]$.

La fonction $\tilde{\phi}_{l,j}(k,r)$ ci-dessus est définie par (2.23) et $\overline{\tilde{h}}_{l,\{R\}}^*$ est l'adjoint de $\overline{\tilde{h}}_{l,\{R\}}$.

L'Hamiltonien quantique qui décrit l'interaction δ -sphérique de 2^{eme} espèce à support sur N sphères concentriques correspondant aux conditions frontières non séparées est défini par:

$$H_{\hat{U},\{R\}} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} h_{l,\hat{U},\{R\}} \tilde{U} \bigotimes 1$$
(2.30)

et, à l'aide de la formule de Krein [12], le résolvant de $h_{l,\hat{U},\{R\}}$ est donné par

$$(h_{l,\hat{U},\{R\}} - k^2)^{-1} = (h_{l,0} - k^2)^{-1} + \sum_{j,j'=1}^{N} [\tilde{M}_l(k)]_{jj'}(\tilde{\phi}_{l,j'}(-\overline{k}), .)\tilde{\phi}_{l,j}(k)$$
$$k^2 \in \rho(h_{l,\{\hat{U},\{R\}}); Imk > 0. (2.31)$$

où les éléments $[\tilde{M}_l(k)]_{jj'}$ peuvent être obtenus par des techniques utilisées dans [7].

En plus, suivant [7], on devrait pouvoir montrer que le domaine $\mathcal{D}(h_{l,\hat{U},\{R\}})$ contient exactement les fonctions f_l vérifiant les conditions suivantes en chaque point R_j fixé.

$$f'_{l}(R_{j^{+}}) = f'_{l}(R_{j^{-}}) \equiv f'_{l}(R_{j})$$
(2.32)

$$f_l(R_{j^+}) - f_l(R_{j^-}) = \sum_{j=1}^{N} [\tilde{\Lambda}_l(k)]_{jj'} f_l'(R_{j'})$$
(2.33)

où $[\tilde{\Lambda}_l(k)]$ devrait être lié à $[\tilde{M}_l(k)]$ par une relation analogue à (1.77).

2.2 Théorie de la diffusion

2.2.1 Théorie de la diffusion pour la paire $(h_{l,\gamma,\beta_l}; h_{l,\gamma})$

Pour $k \ge 0$, définissons la fonction

$$\mathcal{F}_{l,\gamma,\beta_l}(k,r) = F_{l,\gamma}^{(0)}(k,r) + \mu_{l,\gamma}(k)F_{l,\gamma}^{(0)'}(k,R)\tilde{\phi}_{l,\gamma}(k,r); k > 0$$
(2.34)

où

E Liste

$$\mu_{l,\gamma}(k) = \beta_l [1 - \beta_l \tilde{\phi}'_{l,\gamma}(k, R)]^{-1}$$
(2.35)

et $\tilde{\phi}_{l,\gamma}(k,r)$ est définie par (2.16)

Un calcul direct montre que $\mathcal{F}_{l,\gamma,\beta_l}(k,r)$ vérifie les conditions suivantes:

$$\mathcal{F}'_{l,\gamma,\beta_l}(k,R_+) = \mathcal{F}'_{l,\gamma,\beta_l}(k,R_-) \equiv \mathcal{F}'_{l,\gamma,\beta_l}(k,R)$$
(2.36)

$$\mathcal{F}_{l,\gamma,\beta_l}(k,R_+) - \mathcal{F}_{l,\gamma,\beta_l}(k,R_-) = \beta_l \mathcal{F}_{l,\gamma,\beta_l}(k,R)$$
(2.37)

$$-\mathcal{F}_{l,\gamma,\beta_l}'(k,r) + l(l+1)r^{-2}\mathcal{F}_{l,\gamma,\beta_l}(k,r) + \gamma r^{-1}\mathcal{F}_{l,\gamma,\beta_l}(k,r) = k^2\mathcal{F}_{l,\gamma,\beta_l}(k,r);$$

$$k \ge 0 \qquad (2.38)$$

Ainsi les fonctions $\mathcal{F}_{l,\gamma,\beta_l}(k,r)$ sont les fonctions d'onde de h_{l,γ,β_l} .

Les déphasages de h_{l,γ,β_l} peuvent être obtenus à partir des expressions asymptotiques de $F_{l,\gamma}^{(0)}$ et $G_{l,\gamma}^{(0)}$ quand $r \longrightarrow \infty$. Elles sont données par [14]:

$$F_{l,\gamma}^{(0)}(k,r) \xrightarrow[r \to \infty]{} A_{l,\gamma}(k) \sin\left(kr - \frac{\gamma}{2k}\ln(2kr) - \frac{l\pi}{2} + \delta_l^{(0)}(k)\right) \quad (2.39)$$

$$G_{l,\gamma}^{(0)}(k,r) \xrightarrow{k>0} B_{l,\gamma}(k) \exp\left(-i(kr - \frac{\gamma}{2k}\ln(2kr) - \frac{l\pi}{2} + \delta_l^{(0)}(k))\right)$$
$$\gamma \in IR(2.40)$$

où $\delta_l^{(0)}(k)$ est le déphasage associé à $h_{l,\gamma}$ et qui est donné par:

$$\delta_l^{(0)}(k) = \arg\left[\Gamma\left(l+1+\frac{i\gamma}{2k}\right)\right]$$
(2.41)

Introduisant (2.39) et (2.40) dans (2.34) et adoptant la notation

$$x = kr - \frac{\gamma}{2k}\ln(2kr) - \frac{l\pi}{2} + \delta_l^{(0)}(k)$$
 (2.42)

On peut écrire l'expression asymptotique de $\mathcal{F}_{l,\gamma,\beta_l}(k,r)$ quand $r \longrightarrow \infty$ sous la forme:

où le déphasage de Coulomb modifié $\delta_{l,\gamma,\beta_l}^{(c)}$ est donné par:

$$\delta_{l,\gamma,\beta_{l}}^{(c)}(k) = -\arctan \frac{C_{2,l}(k,\gamma)}{C_{1,l}(k,\gamma)}$$

= $-\arctan \frac{B_{l,\gamma}(k)\mu_{l,\gamma}(k)[F_{l,\gamma}^{(0)'}(k,R)]^{2}}{A_{l,\gamma}(k)-iB_{l,\gamma}(k)\mu_{l,\gamma}(k)[F_{l,\gamma}^{(0)'}(k,R)]^{2}}$ (2.44)

Le déphasage total $\delta_{l,\gamma,\beta_l}(k)$ correspondant à h_{l,γ,β_l} est donné par:

$$\delta_{l,\gamma,\beta_l}(k) = \delta_{l,\gamma,\beta_l}^{(c)}(k) + \delta_l^{(0)}(k)$$
(2.45)

Les éléments de la matrice de diffusion correspondant à $\delta^{(0)}_{l,\gamma,\beta_l}(k)$ sont donnés par

$$S_{l,\gamma,\beta_{l}}^{(c)}(k) = \exp[2i\delta_{l,\gamma,\beta_{l}}^{(c)}(k)] = 1 - 2ikB_{l,\gamma}^{2}(k)\mu_{l,\gamma}(k)[F_{l,\gamma}^{(0)'}(k,R)]^{2}$$
(2.46)

L'amplitude de diffusion correspondant à l'onde partielle l est donné par

$$f_{l,\gamma,\beta_{l}}^{(c)}(k) = (2ik)^{-1} [\exp(2i\delta_{l,\gamma,\beta_{l}}^{(c)}(k)) - 1] = -B_{l,\gamma}^{2}(k)\mu_{l,\gamma}(k) [F_{l,\gamma}^{(0)'}(k,R)]^{2}$$
(2.47)

Le développement de portée effective correspondant à $\delta_{l,\gamma,\beta_l}^{(0)}(k)$ s'écrit [18]

$$\Gamma(2l+2)^{-2}(2k)^{2l} | \Gamma(l+1+\frac{i\gamma}{2k})^2 e^{\frac{-\pi\gamma}{2k}} [k \cot \delta_{l,\gamma,\beta_l}^{(c)}(k) - ik + e^{\frac{\pi\gamma}{2k}} h_l(k,\gamma)] = -\frac{1}{a_{l,\gamma,\beta_l}^{(c)}} + 0(k^2); \quad k > 0; \quad \gamma \in IR$$
(2.48)

où $a_{l,\gamma,\beta_l}^{(c)}$ est la longueur de la diffusion et la fonction $h_l(k,\gamma)$ est définie par

$$h_l(k,\gamma) = \gamma \left| \Gamma\left(1 + \frac{i\gamma}{2k}\right)^2 \left[\frac{ik}{\gamma} + \ln\left(\frac{2k}{i|\gamma|}\right) + \psi\left(1 + \frac{i\gamma}{2k}\right)\right]$$
(2.49)

Dans (2.49) $\psi(Z)$ représente une fonction digamma [11]. Dans le cas $\gamma = 0$, (2.48) devient

$$\Gamma(l+\frac{3}{2})^{-2}(\frac{k}{2})^{2l+1}\frac{\pi}{2}\cot\delta_{l,\beta_l}(k) = -\frac{1}{a_{l,\beta_l}} + o(k^2); \quad k > 0$$
(2.50)

Utilisant des propriétés des fonctions hypergéométriques, on peut obtenir explicitement $a_{l,\gamma,\beta_l}^{(c)}$ sous la forme:

$$-\frac{1}{a_{l,\gamma,\beta_{l}}^{(c)}} = \frac{1 - 2\beta_{l}\frac{d}{dr}[r^{\frac{1}{2}}I_{\nu}(y)]_{r=R}\frac{d}{dr}[r^{\frac{1}{2}}K_{\nu}(y)]_{r=R}}{\beta_{l}\gamma^{-2l-1}\Gamma(2l+2)^{2}\left\{\frac{d}{dr}[r^{\frac{1}{2}}I_{\nu}(y)]_{r=R}\right\}^{2}}; \quad \gamma \ge 0$$

$$-\frac{1}{a_{l,\gamma,\beta_{l}}^{(c)}} = \frac{1 + i\pi\beta_{l}\frac{d}{dr}[r^{\frac{1}{2}}J_{\nu}(z)]_{r=R}\frac{d}{dr}[r^{\frac{1}{2}}H_{\nu}^{(2)}(z)]_{r=R}}{\beta_{l}|\gamma|^{-2l-1}\Gamma(2l+2)^{2}\left\{\frac{d}{dr}[r^{\frac{1}{2}}J_{\nu}(z)]_{r=R}\right\}^{2}}; \quad \gamma \le 0 \quad (2.51)$$

où nous avons utilisé les notations: $\gamma = 2l + 1$, $y = (4\gamma r)^{\frac{1}{2}}$ et $z = (4|\gamma|r)^{\frac{1}{2}}$. Dans le cas $\gamma = 0$, on obtient le résultat suivant:

$$-a_{l,\beta_l}^{-1} = R^{-2l} \left[\frac{1}{\beta_l (l+1)^2} + \frac{l}{(l+1)(2l+1)R} \right]$$
(2.52)

2.2.2 Théorie de la diffusion pour la paire $(h_{l,\{\beta_l\},\{R\}}; h_{l,0})$

Pour $k \ge 0$, considérons la fonction

$$\mathcal{F}_{l,\{\beta_l\},\{R\}}(k,r) = F_l^{(0)}(k,r) + \sum_{j,j'=1}^N \tilde{\mu}_{jj'}(k) F_l^{(0)'}(k,R_{j'}) \tilde{\phi}_{l,j}(k,r)$$
(2.53)

où $\tilde{\phi}_{l,j}(k,r)$ est définie par (2.23) et $\tilde{\mu}_{jj'}(k)$ donné par (2.27). Un calcul direct montre que $\mathcal{F}_{l,\{\beta_l\},\{R\}}$ satisfait aux conditions

$$\mathcal{F}'_{l,\{\beta_l\},\{R\}}(k,R_{j^+}) = \mathcal{F}'_{l,\{\beta_l\},\{R\}}(k,R_{j^-}) \equiv \mathcal{F}'_{l,\{\beta_l\},\{R\}}(k,R_j)$$
(2.54)

$$\mathcal{F}_{l,\{\beta_l\},\{R\}}(k,R_{j^+}) - \mathcal{F}_{l,\{\beta_l\},\{R\}}(k,R_{j^-}) = \beta_{jl}\mathcal{F}'_{l,\{\beta_l\},\{R\}}(k,R_j)$$
(2.55)

$$-\mathcal{F}_{l,\{\beta_l\},\{R\}}'(k,r) + l(l+1)r^{-2}\mathcal{F}_{l,\{\beta_l\},\{R\}}(k,r) = k^2\mathcal{F}_{l,\{\beta_l\},\{R\}}(k,r);$$

$$k \ge 0; \quad \forall j = 1, ..., N$$
(2.56)

Ainsi $\mathcal{F}_{l,\{\beta_l\},\{R\}}$ sont des fonctions d'onde de diffusion de $h_{l,\{\beta_l\},\{R\}}$. En faisant tendre r vers ∞ , on a l'expression asymptotique suivante de $\mathcal{F}_{l,\{\beta_l\},\{R\}}$.

$$\mathcal{F}_{l,\{\beta_l\},\{R\}}(k,r) \xrightarrow{k>0} A_l(k)\sin(kr - \frac{l\pi}{2}) + \sum_{j,j'=1}^{N} \tilde{\mu}_{jj'}(k)F_l^{(0)'}(k,R_{j'}) \times \\
\times F_l^{(0)'}(k,R_j)B_l(k)e^{-i(kr - \frac{l\pi}{2})} \\
= \{A_l(k) - iB_l(k)\sum_{j,j'=1}^{N} \tilde{\mu}_{jj'}(k)F_l^{(0)'}(k,R_{j'}) \times \\
\times F_l^{(0)'}(k,R_j)\}\sin(kr - \frac{l\pi}{2}) + \\
+ B_l(k)\sum_{j,j'=1}^{N} \tilde{\mu}_{jj'}(k)F_l^{(0)'}(k,R_{j'})F_l^{(0)'}(k,R_j)\cos(kr - \frac{l\pi}{2}) \\
= [\tilde{C}_{1,l}^2(k) + \tilde{C}_{2,l}^2(k)]^{\frac{1}{2}}\sin(kr - \frac{l\pi}{2} + \delta_{l,\{\beta_l\},\{R\}}(k)) + 0(1) \\$$
(2.57)

Ce qui donne les déphasages sous la forme:

$$\delta_{l,\{\beta_l\},\{R\}}(k) = -\arctan\frac{\tilde{C}_{2,l}(k)}{\tilde{C}_{1,l}(k)}$$

$$= -\arctan\frac{B_l(k)\sum_{j,j'=1}^N \tilde{\mu}_{jj'}(k)F_l^{(0)'}(k,R_{j'})F_l^{(0)'}(k,R_j)}{A_l(k) - iB_l(k)\sum_{j,j'=1}^N \tilde{\mu}_{jj'}(k)F_l^{(0)'}(k,R_{j'})F_l^{(0)'}(k,R_j)}$$
(2.58)

Les éléments de la matrice de diffusion correspondant sont donnés par

$$S_{l,\{\beta_l\},\{R\}}(k) = \exp[2i\delta_{l,\{\beta_l\},\{R\}}(k)]$$

= $1 - 2ikB_l^2(k)\sum_{j,j'=1}^N \tilde{\mu}_{jj'}F_l^{(0)'}(k,R_{j'})F_l^{(0)'}(k,R_j)$ (2.59)

Le développement de portée effective correspondant à $h_{l,\{\beta_l\},\{R\}}$ est donné par

$$[(2l+1)!!]^{2}k^{2l+1}\cot\delta_{l,\{\beta_{l}\},\{R\}}(k) = -a_{l,\{\beta_{l}\},\{R\}}^{-1} + \frac{1}{2}r_{l,\{\beta_{l}\},\{R\}}k^{2} + o(k^{4})$$
(2.60)

où la longueur de la diffusion $a_{l,\{\beta_l\},\{R\}}$ est donnée par

$$a_{l,\{\beta_l\},\{R\}} = -(l+1)^2 \sum_{j,j'=1}^{N} \tilde{\mu}_{jj'}(0) (R_{j'}R_j)^l$$
(2.61)

L'amplitude de diffusion $f_{\{\beta_l\},\{R\}}(k,\omega,\omega')$ associée à $H_{\{\beta_l\},\{R\}}$ se définit comme

$$f_{\{\beta_l\},\{R\}}(k,\omega,\omega') = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{e^{2i\delta_{l,\{\beta_l\},\{R\}}(k)}(k) - 1}{2ik} \overline{Y_l^m(\omega')} Y_l^m(\omega)$$

= $4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{l,\{\beta_l\},\{R\}}(k) \overline{Y_l^m(\omega')} Y_l^m(\omega)$ (2.62)

où l'amplitude de diffusion $f_{l,\{\beta_l\},\{R\}}(k)$ correspondant à l'onde partielle l est donnée par

$$f_{l,\{\beta_l\},\{R\}}(k) = -B_l^2(k) \sum_{j,j'=1}^N \tilde{\mu}_{jj'}(k) F_l^{(0)'}(k, R_{j'}) F_l^{(0)'}(k, R_j)$$
(2.63)

2.2.3 Théorie de la diffusion pour la paire $(h_{l,\hat{U},\{R\}};h_{l,0})$

De (2.32) et (2.33), on peut montrer que les fonctions d'onde correspondant à $h_{l,\hat{U},\{R\}}$ sont données par:

$$\mathcal{F}_{l,\hat{U},\{R\}}(k,r) = F_l^{(0)}(k,r) + \sum_{j,j'=1}^N [\tilde{\Lambda}_l(k)]_{jj'} F_l^{(0)'}(k,R_{j'}) \tilde{\phi}_{l,j}(k,r)$$
(2.64)

où $\tilde{\phi}_{l,j}(k,r)$ est définie par (2.23). Utilisant des techniques standards on obtient les déphasages de $h_{l,\hat{U},\{R\}}$ sous la forme

$$\delta_{l,\hat{U},\{R\}}(k) = -\arctan \frac{B_l(k) \sum_{j,j'=1}^{N} [\tilde{\Lambda}_l(k)]_{jj'} F_l^{(0)'}(k, R_{j'}) F_l^{(0)'}(k, R_j)}{A_l(k) - i B_l(k) \sum_{j,j'=1}^{N} [\tilde{\Lambda}_l(k)]_{jj'} F_l^{(0)'}(k, R_{j'}) F_l^{(0)'}(k, R_j)}$$
(2.65)

Les éléments de la matrice de diffusion sont donnés par

$$S_{l,\hat{U},\{R\}}(k) = \exp[2i\delta_{l,\hat{U},\{R\}}(k)]$$

= $1 - 2ikB_l^2(k)\sum_{j,j'=1}^N [\tilde{\Lambda}_l(k)]_{jj'}F_l^{(0)'}(k,R_j)F_l^{(0)'}(k,R_j)$
(2.66)

Le développement de portée effective correspondant à $h_{l,\hat{U},\{R\}}$ est donné par

$$[(2l+1)!!]^2 k^{2l+1} \cot \delta_{l,\hat{U},\{R\}}(k) = -a_{l,\hat{U},\{R\}}^{-1} + \frac{1}{2} r_{l,\hat{U},\{R\}} k^2 + 0(k^4)$$
(2.67)

où $a_{l,\hat{U},\{R\}}$ est donné par

$$a_{l,\hat{U},\{R\}} = -(l+1)^2 \sum_{j,j'=1}^{N} [\tilde{\Lambda}_l(0)]_{jj'} (R_j R_{j'})^l$$
(2.68)

L'amplitude de diffusion $f_{l,\hat{U},\{R\}}(k)$ correspondant à l'onde partielle l est donnée par

$$f_{l,\hat{U},\{R\}}(k) = -B_l^2(k) \sum_{j,j'=1}^N [\tilde{\Lambda}_l(k)]_{jj'} F_l^{(0)'}(k,R_{j'}) F_l^{(0)'}(k,R_j)$$
(2.69)

Chapitre 3

LES INTERACTIONS δ' -SPHERIQUE DE 1^{ere} ESPECE

3.1 Définition du modèle

Considérons l'équation de Schrödinger radiale pour le potentiel δ' -sphérique :

$$h_{l,\tilde{\alpha}_{l}}f_{l}(k,r) \equiv \left[-\frac{d^{2}}{dr^{2}} + \frac{l(l+1)}{r^{2}} + \tilde{\alpha}_{l}\delta'(r-R)\right]f_{l}(k,r) = k^{2}f_{l}(k,r) \quad (3.1)$$

et supposons que la fonction $f_l(k, r)$ est continue au point r = R c'est- à dire

$$f_l(k, R_+) = f_l(k, R_-) \equiv f_l(k, R)$$
(3.2)

La dérivée $f'_l(k,r)$ doit être nécéssairement discontinue au point r = R, si non l'opérateur $h_{l,\tilde{\alpha}_l}$ coïnciderait avec l'Hamiltonien libre h_l correspondant à l'onde partielle l.

Ainsi, au point r = R, la fonction $f'_l(k,r)$ peut être définie par :

$$f'_{l}(k,R) = \frac{1}{2} [f'_{l}(k,R_{+}) + f'_{l}(k,R_{-})]$$
(3.3)

Si on "intègre" l'équation (3.1) de $r = R - \varepsilon$ à $r = R + \varepsilon$ puis on fait tendre ε vers zéro, on obtient la condition aux limites suivantes :

$$\left(1 + \frac{\tilde{\alpha}_l}{2}\right) f'_l(k, R_+) - \left(1 - \frac{\tilde{\alpha}_l}{2}\right) f'_l(k, R_-) = 0 \tag{3.4}$$

L'interaction δ' -sphérique peut donc être caractérisée par les conditions frontières (3.2) et (3.4).

Une comparaison de ces conditions frontières avec les conditions (1.2) et (1.3) décrivant l'interaction δ -sphérique suggère de définir l'hamiltonien quantique radial $h_{l,\bar{\alpha}_l}$ de l'interaction δ' -sphérique de la façon suivante à partir de l'opérateur \overline{h}_l donné par (1.10) possédant les indices de défaut (1,1)

$$h_{l,\tilde{\alpha}_{l}} = -\frac{d^{2}}{dr^{2}} + \frac{l(l+1)}{r^{2}}$$

$$\mathcal{D}(h_{l,\tilde{\alpha}_{l}}) = \left\{ f \in \mathcal{D}(\overline{h}_{l}) ; f(R_{+}) = f(R_{-}) \equiv f(R) \\ (1 + \frac{\tilde{\alpha}_{l}}{2})f'(R_{+}) - (1 - \frac{\tilde{\alpha}_{l}}{2})f'(R_{-}) = 0 \\ -f'' + l(l+1)r^{-2}f \in L^{2}((0, +\infty)) \right\}$$
(3.5)

où $\mathcal{D}(\overline{h_l})$ est défini par (1.12)

Comme \overline{h}_l est un opérateur symétrique, fermé non négatif et def $(\overline{h}_l) = (1, 1)$ il découle de la formule de Krein [12] que le résolvant de $h_{l\tilde{\alpha}_l}$ doit satisfaire l'équation ci-après :

$$(h_{l,\tilde{\alpha}_{l}} - k^{2})^{-1} - (h_{l,0} - k^{2})^{-1} = \tilde{\mu}_{l}(k)(\phi_{l}(-\bar{k}), .)\phi_{l}(k)$$
(3.6)

où $\phi_l(k,r)$ est définie par (1.14)

Soit $g_l \in L^2((0,\infty))$ et définissons la fonction

$$\chi_{l}(k,r) = \left((h_{l,\tilde{\alpha}_{l}} - k^{2})^{-1} g_{l} \right)(r)$$

= $\int_{0}^{\infty} dr' g_{lk}(r,r') g_{l}(r') + \tilde{\mu}_{l}(k) \phi_{l}(k,r) \int_{0}^{\infty} dr' \phi_{l}(k,r') g_{l}(r')$
(3.7)

comme $\chi_l(k,r) \in \mathcal{D}(h_{l,\tilde{\alpha}_l})$, il découle de (3.5) que $\chi_l(k,r)$ satisfait les conditions frontières :

$$\chi_l(k, R_+) = \chi_l(k, R_-) \text{ et } (1 + \frac{\tilde{\alpha}_l}{2})\chi_l'(k, R_+) - (1 - \frac{\tilde{\alpha}_l}{2})\chi_l'(k, R_-) = 0$$

La vérification de ces conditions frontières montre qu'il n'existe pas de fonction $\tilde{\mu}_l(k)$ satisfaisant l'équation (3.7) ceci signifie que $h_{l,\tilde{\alpha}_l}$ ne peut pas être défini à partir d'un opérateur minimal d'indices de défaut (1.1)D'après [21], l'opérateur minimal doit avoir comme indices de défaut (2,2). Nous allons dès lors définir l'opérateur $h_{l,\tilde{\alpha}_l}$ de la façon suivante : Considérons dans $L^2(R^3)$ l'opérateur fermé, symétrique et non négatif

$$\dot{H} = -\Delta
\mathcal{D}(\tilde{H}) = \{f \in H^{2,2}(\mathbb{R}^3) / f(\partial \overline{K(0,\mathbb{R})}) = f'(\partial \overline{K(0,\mathbb{R})}) = 0\} \quad (3.8)$$

En utilisant la décomposition obtenue au (1.7), on peut réécrire l'opérateur \tilde{H} sous la forme

$$\tilde{H} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} \tilde{h}_l \tilde{U} \bigotimes 1$$
(3.9)

où

$$\tilde{h}_{l} = -\frac{d^{2}}{dr^{2}} + \frac{l(l+1)}{r^{2}}, \quad r > 0, \ l \in N_{0}$$

$$\mathcal{D}(\tilde{h}_{l}) = \left\{ f \in L^{2}((0,\infty))/f, f' \in AC_{loc}((0,\infty)); \ f(0_{+}) = 0 \text{ si } l = 0; \\ f(R) = f'(R) = 0; \ -f'' + l(l+1)r^{-2}f \in L^{2}((0,\infty)) \right\}$$
(3.10)

L'adjoint \tilde{H}^{\star} de l'opérateur \tilde{H} est défini de la façon suivante :

$$\tilde{H}^{\star} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} \tilde{h}_l^{\star} \tilde{U} \bigotimes 1$$
(3.11)

avec

$$\tilde{h}_{l}^{\star} = -\frac{d^{2}}{dr^{2}} + \frac{l(l+1)}{r^{2}}; \quad r > 0,$$

$$\mathcal{D}(\tilde{h}_{l}^{\star}) = \left\{ f \in L^{2}((0,\infty))/f, f' \in AC_{loc}((0,\infty) \setminus \{R\}) -f'' + l(l+1)r^{2}f \in L^{2}((0,\infty)] \right\} ; l \in N \quad (3.12)$$

On montre facilement que l'équation aux indices de défaut de \tilde{h}_l

$$\tilde{h}_l^*\phi_l(k) = k^2\phi_l(k); \quad \phi_l(k) \in \mathcal{D}(\tilde{h}_l^*), \quad Im \ k > 0$$
(3.13)

admet les solutions linéairement indépendantes.

$$\psi_l^{(1)}(k,r) = \begin{cases} F_l^{(0)}(k,r) & r < R\\ 0 & r > R \end{cases}$$
(3.14)

$$\psi_l^{(2)}(k,r) = \begin{cases} 0 & r < R\\ G_l^{(0)}(k,r) & r > R \end{cases}$$
(3.15)

où $F_l^{(0)}(k,r)$ et $G_l^{(0)}(k,r)$ sont définies par (1.15) et (1.16) L'opérateur \tilde{h}_l a donc pour indices de défaut (2.2). \tilde{h}_l admet donc une famille à 4 paramètres d'extensions auto-adjointes. Nous nous intéressons ici à une famille particulière d'extensions auto- adjointes de \tilde{h}_l dépendant d'un paramètre définie par :

$$h_{l,\tilde{\alpha}_{l}} = -\frac{d^{2}}{dr^{2}} + \frac{l(l+1)}{r^{2}}; r > 0,$$

$$\mathcal{D}(h_{l},\tilde{\alpha}_{l}) = \left\{ f \in \mathcal{D}(\tilde{h}_{l}^{\star})/f(R_{+}) = f(R_{-}) \equiv f(R) ; (1 + \frac{\tilde{\alpha}_{l}}{2})f'(R_{+}) - (1 - \frac{\tilde{\alpha}_{l}}{2})f'(R_{-}) = 0 \right\}; \tilde{\alpha}_{l} \in R (3.16)$$

Par définition $h_{l,\tilde{\alpha}_l}$ décrit le potentiel $V(r) = \tilde{\alpha}_l \delta(r-R)$. Le cas $\tilde{\alpha}_l = 0$ conduit à l'Hamiltonien libre $h_{l,0}$ correspondant à l'onde partielle l. L'opérateur $H_{\tilde{\alpha}}$ défini dans $L^2(R^3)$ par :

$$H_{\tilde{\alpha}} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} h_{l,\tilde{\alpha}_l} \tilde{U} \bigotimes 1$$

$$\tilde{\alpha} = \{\tilde{\alpha}_l\}_l \in N_0$$
(3.17)

est par définition l'Hamiltonien quantique décrivant un potentiel δ' -sphérique. Le cas $\tilde{\alpha} = 0$ conduit à l'Hamiltonien libre.

$$H_0 = -\Delta$$
 $\mathcal{D}(H_0) = H^{2,2}(R^3)$ (3.18)

3.2 Propriétés principales de l'interaction δ' sphérique

3.2.1 Equation résolvante

<u>Théorème 3.1</u> (i) Le résolvant de $h_{l,\tilde{\alpha}_l}$ est donné par

$$(h_{l,\tilde{\alpha}_{l}} - k^{2})^{-1} = (h_{l,0} - k^{2})^{-1} + \Theta_{l}(k)(\tilde{\phi}_{l}(-k), .)\phi_{l}(k) k^{2} \in \rho(h_{l,\tilde{\alpha}_{l}}), \ Imk > 0, \ l \in N$$
 (3.19)

$$\Theta_l(k) = 2\tilde{\alpha}_l [2 - \tilde{\alpha}_l g'_{l,k}(R, R)]^{-1}$$
(3.20)

$$\phi_l(k,r) = \begin{cases} G_l^{(0)}(k,R)F_l^{(0)}(k,r) & r \le R\\ F_l^{(0)}(k,R)G_l^{(0)}(k,r) & r \ge R \end{cases}$$
(3.21)

$$\tilde{\phi}_{l}(k,r) = \begin{cases} G_{l}^{(0)'}(k,R)F_{l}^{(0)}(k,r) & r < R\\ F_{l}^{(0)'}(k,R)G_{l}^{(0)}(k,r) & r > R \end{cases}$$
(3.22)

et
$$g'_{l,k}(R,R) = F_l^{(0)'}(k,R)G_l^{(0)}(k,R) + F_l^{(0)}(k,R)G_l^{(0)'}(k,R)$$
 (3.23)

(ii) le résolvant de $H_{\tilde{\alpha}}$ est donné par :

$$(H_{\tilde{\alpha}} - k^{2})^{-1} = (H_{0} - k^{2})^{-1} + \bigoplus_{l=0}^{\infty} \bigoplus_{m=-l}^{l} \Theta_{l}(k) \left| |.|^{-1} \phi_{l}(k) Y_{l}^{m} > < |.|^{-1} \tilde{\phi}_{l}(-\overline{k}) Y_{l}^{m}(\omega) \right| ; k^{2} \in \rho(H_{\tilde{\alpha}}), \quad Imk > 0, \quad \tilde{\alpha} \in IR$$
(3.24)

Démonstration

(i) Puisque \tilde{h}_l a pour indices de défaut (2,2), la formule de Krein [12] nous permet d'écrire le résolvant de $h_{l,\tilde{\alpha}_l}$ sous la forme

$$(h_{l,\tilde{\alpha}_{l}} - k^{2})^{-1} = (h_{l,0} - k^{2})^{-1} + \sum_{i,j=1}^{2} \lambda_{ij}(k)(\psi_{l}^{(j)}(-\overline{k}), .)\psi_{l}^{(i)}(k)$$

$$k \in \rho(h_{l,\tilde{\alpha}})$$
(3.25)

Soit $f \in L^2((0,\infty))$ et considérons l'élément suivant

$$\chi_l(r) = ((h_{l,\tilde{\alpha}_l} - k^2)^{-1} f)(r)$$

$$\chi_{l}(r) = \begin{cases} \int_{0}^{\infty} g_{l,k}(r,r')f(r')dr' + \lambda_{11}(k)F_{l}^{(0)}(k,r)\int_{0}^{R}F_{l}^{(0)}(k,r')f(r')dr' + \\ +\lambda_{12}(k)F_{l}^{(0)}(k,r)\int_{R}^{\infty}G_{l}^{(0)}(k,r')f(r')dr' & r < R \\ \\ \int_{0}^{\infty}g_{l,k}(r,r')f(r')dr' + \lambda_{21}(k)G_{l}^{(0)}(k,r)\int_{0}^{R}F_{l}^{(0)}(k,r')f(r')dr' + \\ +\lambda_{22}(k)G_{l}^{(0)}(k,r)\int_{R}^{\infty}G_{l}^{(0)}(k,r')f(r')dr' & r < R \end{cases}$$
(3.26)

48

où

où
$$g_{l,k} = (h_{l,0} - k^2)^{-1}$$
 (3.27)

et
$$g_{l,k}(r,r') = \begin{cases} F_l^{(0)}(k,r)G_l^{(0)}(k,r'), & r \leq r' \\ F_l^{(0)}(k,r')G_l^{(0)}(k,r), & r \geq r' \end{cases}$$

$$(3.28)$$

En imposant à $\chi_l(r)$ les conditions frontières

$$\chi_l(R_+) = \chi_l(R_-)$$
 (3.29)

$$\left(1+\frac{\tilde{\alpha}_l}{2}\right)\chi_l'(R_+) - \left(1-\frac{\tilde{\alpha}_l}{2}\right)\chi_l'(R_-) = 0$$
(3.30)

On obtient

.

$$\lambda(k) = \frac{2\tilde{\alpha}_{l}}{2 - \tilde{\alpha}_{l}g_{l,k}^{\prime}(R,R)} \begin{bmatrix} G_{l}^{(0)}(k,R)G^{(0)'}(k,R) & G_{l}^{(0)}(k,R)F_{l}^{(0)'}(k,R) \\ F_{l}^{(0)}(k,R)G_{l}^{(0)'}(k,R) & F_{l}^{(0)}(k,R)F_{l}^{(0)'}(k,R) \end{bmatrix}$$
(3.31)

<u>Remarque</u> On note que $det[\lambda(k)] \equiv 0$. Ceci veut dire [12] en fait que \tilde{h}_l n'estpas une partie commune maximale à $h_{l,\tilde{\alpha}_l}$ et $h_{l,0}$.

Introduisant (3.31) dans (3.25), l'équation (3.35) se réduit à (3.19)

(ii) L'équation (3.24) s'obtient de (3.19) et de la décomposition en somme directe (3.17).

D'autres informations sur $h_{l,\tilde{\alpha}_l}$ sont contenues dans théorème ci-après : <u>Théorème</u> Le domaine $\mathcal{D}(h_{l,\tilde{\alpha}_l}), \alpha_l \in IR$, est constitué de tous les éléments de la forme :

$$\psi_{l}(k,r) = \varphi_{l,0}(k,r) + \Theta_{l}(k) < \phi_{l}(-\bar{k}), (h_{l,o} - k^{2})\varphi_{l,0} > \phi_{l}(k,r); \varphi_{l,0} \in \mathcal{D}(h_{l,o})$$
(3.32)

Cette décomposition est unique et on a la relation :

$$(h_{l,\tilde{\alpha}_l} - k^2)\psi_l(k) = (h_{l,0} - k)\varphi_{l,0}(k)$$
(3.33)

En plus, si $\psi \in \mathcal{D}(h_{l,\tilde{\alpha}_l})$ et $\psi \equiv 0$ dans un ouvert de U de $(0,\infty)$, alors $h_{l,\tilde{\alpha}_l}\psi \equiv 0$ dans U, c'est-à dire que $h_{l,\tilde{\alpha}_l}$ décrit une interaction locale. Démonstration

par définition on a :

$$\mathcal{D}(h_{l,\tilde{\alpha}_l}) = ((h_{l,\tilde{\alpha}_l} - k^2)^{-1} (h_{l,0} - k^2) \mathcal{D}(h_{l,0})$$
(3.34)

Alors si $\psi_l \in \mathcal{D}((h_{l,\tilde{\alpha}_l}), \text{ on obtient})$

$$\begin{aligned}
\varphi_l &= \{(h_{l,0} - k^2)^{-1} + \Theta_l(k) | \phi_l(k) > < \tilde{\phi}_l(-\bar{k}) | \}(h_{l,0} - k^2) \varphi_{l,0} \\
&= \varphi_{l,0} + \Theta_l(k) < \tilde{\phi}_l(-\bar{k}), (h_{l,0} - k^2) \varphi_{l,0} > \phi_l(k).
\end{aligned}$$
(3.35)

Ce qui prouve (3.32).

La relation (3.33) découle trivialement de (3.34).

Pour montrer l'unicité de (3.32) on suppose que $\psi_l = 0$ alors

$$\varphi_{l,0}(k,r) = -\Theta_l(k) < \phi_l(-k), (h_{l,0} - k^2)\varphi_{l,0} > \phi_l(k,r)
= -\Theta_l(k)C_l\phi_l(k,r)$$
(3.36)

Comme $\varphi_{l,0} \in \mathcal{D}(h_{l,0})$, on a en particulier que $\varphi_{l,0}, \varphi'_{l,0} \in AC_{loc}((0,\infty))$ tandisque $\phi'_l(k,r)$ est discontinue en r = R. Dès lors, (3.36) n'est satisfait que si $\varphi_{l,0} = 0$.

Montrons maintenant que $h_{l,\tilde{\alpha}_l}$ est local.

★ Si $R \notin U$, alors $(h_{l,0} - k^2)\phi_l(k,r) = 0$, et les relations (3.33) et (3.36) donnent

$$\begin{array}{ll} h_{l,\tilde{\alpha}_{l}}\varphi_{l}(k,r) &= k^{2}\varphi(k,r) + (h_{l,0}-k)\varphi_{l,0}(k,r) \\ &= -\Theta_{l}(k)C_{l}(h_{l,0}-k^{2})\phi_{l}(k,r) = 0; \ r \in U \text{ d'où le résultat }. \end{array}$$

* Si $R \in U$, alors $\varphi_{l,0}, \varphi'_{l,0} \in AC_{loc}((0,\infty))$ si et seulement si $\varphi_{l,0} = 0$ ceci implique que :

$$h_{l, ilde{lpha}_l}\psi_l(k,r)=k^2\psi_l(k,r)=0\;,\;\;r\in U$$

3.2.2 Propriétés Spectrales

Nous allons définir le spectre ponctuel dont la structure est déterminée par la position des états liés de $h_{l,\tilde{\alpha}_l}$. Ces états liés s'obtiennent en cherchant les solutions $\psi_l \in L^2((0,\infty))$ de l'équation

$$h_{l,\tilde{\alpha}_l}\varphi_l = E\psi_l \; ; E < 0 \; , \psi_l(E,r) \in \mathcal{D}(h_{l,\tilde{\alpha}_l}) \tag{3.37}$$

Les solutions régulières et irrégulière de (3.37) sont respectivement données par $r^{\frac{1}{2}}I_{l+1/2}(\sqrt{-E}r)$ et $r^{\frac{1}{2}}K_{l+1/2}(\sqrt{-E}r)$, où $I_{\nu}(z)$ et $K_{\nu}(z)$ sont les fonctions de Bessel modifiées d'ordre ν [11]. On normalise ces solutions de sorte que

$$A_l(E)r^{1/2}I_{l+1/2}(\sqrt{-E}r) \quad r \to 0 \quad r^{l+1}$$
(3.38)

$$B_l(E)r^{1/2}K_{l+1/2}(\sqrt{-E}r) \quad r \to 0 \quad \frac{r^{-1}}{2l+1}$$
 (3.39)

où les coefficients de normalisation $A_l(E)$ et $B_l(E)$ sont donnés par

$$A_l(E) = \Gamma\left(l + \frac{3}{2}\right) \left(\frac{\sqrt{-E}}{2}\right)^{-l - \frac{1}{2}}$$
(3.40)

$$B_{l}(E) = 2\Gamma \left(l + \frac{3}{2}\right)^{-1} \left(\frac{\sqrt{-E}}{2}\right)^{l + \frac{1}{2}}$$
(3.41)

avec

$$W[B_{l}(E)r^{1/2}K_{l+1/2}(\sqrt{-E}r), A_{l}(E)r^{\frac{1}{2}}I_{l+1/2}(\sqrt{-I}r)] = 1$$
(3.42)

On peut écrire la solution de (3.40) sous la forme

$$\varphi_{l}(E,r) = \begin{cases} C_{1}A_{l}(E)r^{1/2}I_{l+\frac{1}{2}}(\sqrt{-E}r), & 0 < r \leq R\\ \\ C_{2}B_{l}(E)r^{\frac{1}{2}}K_{l+1/2}(\sqrt{-E}r), & r \geq R \end{cases}$$
(3.43)

Comme $\varphi_l(k,r) \in \mathcal{D}(h_{l,\tilde{\alpha}_l})$, On a :

$$\psi_l(E, R_-) = \psi_l(E, R_+) \tag{3.44}$$

$$(1 + \frac{\tilde{\alpha}_l}{2})\psi_l'(E, R_+) - (1 - \frac{\tilde{\alpha}_l}{2})\psi_l'(E, R_-) = 0$$
(3.45)

La vérification de ces conditions frontières nous donne l'équation pour les états liés de $h_{l,\tilde{\alpha}}$:

$$2 - \tilde{\alpha}_l \frac{d}{dr} [r I_{l+1/2}(\sqrt{-E}r) K_{l+1/2}(\sqrt{-E}r)]_{r=R} = 0$$
 (3.46)

Nous allons résoudre (3.46) graphiquement en la mettant sous la forme

$$\frac{2}{\tilde{\alpha}_{l}} = \frac{d}{dr} [r I_{l+\frac{1}{2}} (\sqrt{-E}r) K_{l+\frac{1}{2}} (\sqrt{-E}r)]_{r=R} \equiv f(E) \qquad (3.47)$$

Chaque onde partielle a exactement 1 état lié si $\frac{2}{\tilde{\sigma}_l} < \frac{1}{2l+1}$ <u>Thórème3.3</u>

Si $\tilde{\alpha}_l \in R, l \in N$ alors le spectre essentiel $\sigma_{ess}(h_{l,\tilde{\alpha}_l})$ est purement absolument continu et couvre la partie non négative de l'axe réel :

$$\sigma_{\epsilon ss}(h_{l,\tilde{s}_l}) = \sigma_{ac}(h_{l,\tilde{s}_l}) = [0,\infty) \tag{3.48}$$

Le spectre singulièrement continu $\sigma_{sc}(h_{l,\tilde{\alpha}_l})$ est vide, et pour tout $l \in R, h_{l,\tilde{\alpha}_l}$ ne possède pas de valeurs propres non négatives. les valeurs propres négatives E < 0 de $h_{l,\tilde{\alpha}_l}$ sont obtenues de l'équation.

$$2 - \tilde{\alpha}_l \frac{d}{dr} [r I_{l+1/2}(\sqrt{-Er}) K_{l+1/2}(\sqrt{-Er})]_{r=R} = 0; E < 0$$
(3.49)

Ce qui entraine que

$$\sigma_p(h_{l,\tilde{\alpha}_l}) = \begin{cases} \phi & Si \quad \tilde{\alpha}_l \le 2(2l+1) \quad \tilde{\alpha}_l \in R. \ l \in N_0 \\ \{E_0\} \quad Si \quad \tilde{\alpha}_l > 2(2l+1) \end{cases}$$
(3.50)

où E_0 est une solution de l'équation (3.49) <u>Démonstration</u>

Comme $(h_{l,\tilde{\alpha}_l} - k^2)^{-1}$ est un opérateur de rang fini, il découle du théorème de Weyl [19; Pge112] que $\sigma_{ess}(h_{l,\tilde{\alpha}_l}) = \sigma_{ess}(h_{l,0} = [0,\infty)$.

L'absence de $\sigma_{sc}(h_{l,\tilde{\alpha}_l})$ s'obtient en suivant [10] et de l'équation (3.28).

L'absence de valeurs propres non négatives s'obtient en considérant l'équation $h_{l,\tilde{\alpha}_l}\psi_l = k^2\psi_l$ et en montrant que les fonctions propres $\psi_l \notin L^2((0,\infty))$ pour $k \ge 0$

La structure de $\sigma_p(h_{l,\tilde{\alpha}_l})$ est déterminée par l'équation (3.49)

3.2.3 Résonnances de $h_{l,\tilde{\alpha}_l}$

Les résonnances de h_{l,\tilde{a}_l} sont définies [20] comme étant les pôles du noyau du résolvant de h_{l,\tilde{a}_l} situés dans le demi-plan non physique $Imk \leq 0$ (i) Pôles situés sur l'axe imaginaire négatif

On cherche les solutions $k = ix, x \ge 0$ de

$$2 - \tilde{\alpha}g'_{l,k}(R,R) = 0$$
 (3.51)

$$2 + i\frac{\pi}{2}\tilde{\alpha}_{l}\frac{d}{dr}[rJ_{l+1/2}(-ixr)H^{(2)}_{l+1/2}(-ixr)]_{r=R} = 0 \qquad (3.52)$$

On utilise les relation suivantes [11]

$$J_{l+1/2}(-ixr) = e^{\frac{3}{2}(l+1/2)\pi i} I_{l+1/2}(xr)$$
(3.53)

$$H_{l+1/2}^{(2)}(-ixr) = \frac{2i}{\pi} e^{\frac{1}{2}(l+1/2)\pi i} K_{l+1/2}(xr)$$
(3.54)

d'où (3.52) devient :

$$-\frac{2}{\tilde{\alpha}_{l}} = \frac{d}{dr} [r I_{l+\frac{1}{2}}(xr) K_{l+\frac{1}{2}}(xr)]_{r=0}$$
(3.55)

Cette résolution aussi se fera graphiquement.

(ii) <u>Pôles situés dans $Imk \leq 0$ </u> On étudie ici seulement le cas l = 0. On cherche donc les solutions $k = k_i - ik_2, k_2 \geq 0$, de l'équation

$$2 - \tilde{\alpha}_0 g'_{o,k}(R,R) = 0 \text{ dans } Imk \le 0$$

$$\Rightarrow 2 - \tilde{\alpha}_0 e^{-2ikR} = 0 \text{ dans } Imk \le 0$$

$$(3.56)$$

$$\Leftrightarrow \begin{cases} 2 - \tilde{\alpha}_0 e^{-2ik_2R} \cos 2k_1R = 0\\ k_2 \ge 0\\ \sin 2k_1R = 0 \end{cases}$$

$$\Leftrightarrow \left\{ \begin{array}{ll} k_1 = \frac{n\bar{\pi}}{2R}, & n \in Z\\ k_2 = \frac{1}{2R} ln \frac{2(-1)^n}{\hat{\alpha}}, & k_2 \ge 0 \end{array} \right.$$

On a donc

$$\begin{cases} k_1 = \frac{n\pi}{2R} \\ k_2 = \frac{1}{2R} ln\frac{2}{\tilde{\alpha}}, n \text{ pair } , 0 < \tilde{\alpha} \le 2 \end{cases}$$

ou

$$\begin{cases} k_1 = \frac{n\pi}{2R} \\ k_2 = \frac{1}{2R} ln \frac{-2}{\tilde{\alpha}}, n \text{ impair } , -2 \leq \tilde{\alpha} < 0 \end{cases}$$
(3.57)

Il y a donc une infinité de solutions de (3.56) dans $Imk \leq 0$

3.3 Théorie de la diffusion pour la paire $(h_{l,\tilde{\alpha}_l}, h_{l,0})$

Pour $k \ge 0$, considérons la fonction

$$\psi_{l,\hat{\alpha}_l}(k,r) = F_l^{(0)}(k,r) + \Theta_l(k)F_l^{(0)'}(k,R)\phi_l(k,r)$$
(3.58)

où $F_l^{(0)}(k,r), \phi_l(k,r)$ et $\Theta_l(k)$ sont respectivement définis par (3.15), (3.21) et (3.26). On vérifie que

$$\psi_{l,\tilde{\alpha}_{l}}(k,R_{-}) = \psi_{l,\tilde{\alpha}_{l}}(k,R_{+})$$
(3.59)

on peut voir que

$$\psi'_{l,\tilde{\alpha}_{l}}(k,R_{-}) = F_{l}^{(0)'}(k,R) + \Theta_{l}(k)F_{l}^{(0)'}(k,R)F_{l}^{(0)'}(k,R)G_{l}^{(0)}(k,R)$$

$$\psi'_{l,\tilde{\alpha}_{l}}(k,R_{+}) = F_{l}^{(0)'}(k,R) + \Theta_{l}(k)F_{l}^{(0)'}(k,R)F_{l}^{(0)}(k,R)G_{l}^{(0)'}(k,R)$$

alors

$$\begin{split} \psi'_{l,\tilde{\alpha}}(k,R_{-}) &- \psi'_{l}(k,R_{+}) &= \Theta_{l}(k)F_{l}^{(0)}(k,R) \\ \text{et } \psi'_{l,\tilde{\alpha}}(k,R_{-}) &+ \psi'_{l}(k,R_{+}) &= 2F_{l}^{(0)'}(k,R) + \hat{\mu}_{l}(k)F_{l}^{(0)'}(k,R)g'_{l,k}(k,R) \\ &= \frac{2}{\tilde{\alpha}_{l}}\Theta_{l}(k)F_{l}^{(0)'}(k,R) \end{split}$$

d'où

$$\psi_{l,\tilde{\alpha}_{l}}'(k,R_{-}) - \psi_{l,\tilde{\alpha}_{l}}'(k,R_{+}) = \frac{\tilde{\alpha}_{l}}{2} [\psi_{l,\tilde{\alpha}_{l}}'(k,R_{-}) + \psi_{l,\tilde{\alpha}_{l}}'(k,R_{+})]$$

Soit

$$(1 + \frac{\tilde{\alpha}_l}{2})\psi'_{l,\tilde{\alpha}_l}(k, R_+) - (1 - \frac{\tilde{\alpha}_l}{2})\psi'_{l,\tilde{\alpha}_l}(k, R_-) = 0$$
(3.60)

On montre aussi

$$-\psi_{l,\bar{\alpha}_{l}}(k,r) + l(l+1)r^{-2}\psi_{l,\bar{\alpha}_{l}}(k,r) = k^{2}\psi_{l,\bar{\alpha}_{l}}(k,r)$$
(3.61)

Alors $\psi_{l,\tilde{\alpha}_l}(k,r)$ est un ensemble de fonctions propres généralisées associées à $h_{l,\tilde{\alpha}_l}$ ou en d'autres termes, les fonctions d'onde de $h_{l,\tilde{\alpha}_l}$.

Le déplasage de $h_{l,\tilde{\alpha}_l}$ s'obtient alors à partir du comportement asymptotique de $\psi_{l,\tilde{\alpha}_l}(k,r)$ quand $r \to \infty$. En effet, on a [14]

$$\begin{split} \psi_{l,\tilde{\alpha}_{l}}(k,r) & \xrightarrow{k>0} & A_{l}(k)sin\left(kr - \frac{l\pi}{2}\right) + \Theta_{l}(k)F_{l}^{(o)'}(k,R)F_{l}^{(o)}(k,R)e^{-i\left(kr - \frac{l\pi}{2}\right)} \\ & = & \left\{A_{l}(k) - iB_{l}(k)\Theta_{l}(k)F_{l}^{(o)'}(k,R)F_{l}^{(o)}(k,R)\right\}sin\left(kr - \frac{l\pi}{2}\right) + \\ & +\Theta_{l}(k)B_{l}(k)F_{l}^{(o)'}(k,R)F_{l}^{(o)}(k,R)cos\left(kr - \frac{l\pi}{2}\right) \\ & = & \left[T_{1,l}^{2}(k) + T_{2,l}^{2}(k)\right]^{1/2}sin\left(kr - \frac{l\pi}{2} + \delta_{l,\tilde{\alpha}_{l}}\right) + o(1) \quad (3.62) \end{split}$$

d'où le déphasage

$$\delta_{l,\tilde{\alpha}_{l}}(k) = -\arctan\frac{T_{2,l}(k)}{T_{1,l}(k)}$$

= $-\arctan\frac{\Theta_{l}(k)B_{l}(k)F_{l}^{(o)'}(k,R)F_{l}^{(o)}(k,R)}{A_{l}(k)-iB_{l}(k)\Theta_{l}(k)F_{l}^{(o)'}(k,R)F_{l}^{(o)}(k,R)}$ (3.63)

où on a utilisé les mêmes notations que celles de [14]:

$$A_l(k) = 2^{-l} k^{-l-1} \Gamma(2l+2) \Gamma(l+1)^{-1}$$
(3.64)

$$B_l(k) = \frac{1}{kA_l(k)} = (2l)^l \Gamma(l+1) \Gamma(2l+2)^{-1}$$
(3.65)

(3.63) peut se mettre sous la forme

$$\delta_{l,\tilde{\alpha}_{l}}(k) = \arctan \frac{\tilde{\alpha}_{l}\pi \left[R^{1/2} J_{l+1/2}(kR) \right] \frac{d}{dr} \left[r^{1/2} J_{l+1/2}(kr) \right]_{r=R}}{2 + \tilde{\alpha}_{l} \frac{\pi}{2} \frac{d}{dr} \left[r J_{l+1/2}(kr) Y_{l+1/2}(kr) \right]_{r=R}}$$
(3.66)

où $Y_{\nu}(z)$ est une fonction de Neumann dordre ν [11]. Les éléments de la matrice de diffusion sont donnés par

$$S_{l,\tilde{\alpha}_{l}}(k) = exp[2i\delta_{l,\tilde{\alpha}_{l}}(k)]$$

= 1 - 2ikB_{l}^{2}(k)\Theta_{l}(k)F_{l}^{(o)'}(k,R)F_{l}^{(o)}(k,R) (3.67)

Le dévéloppement de portée effective correspondant à $h_{l,\tilde{\alpha}_l}$ est donné par

$$[(2l+1)!!]k^{2l+1}\cot\delta_{l,\tilde{\alpha}_l}(k) = -a_{l,\tilde{\alpha}_l}^{-1} + \frac{1}{2}r_{l,\tilde{\alpha}_l}k^2 + o(k^4)$$
(3.68)

où les coefficients $a_{l,\tilde{\alpha}_l}$ et $r_{l,\tilde{\alpha}_l}$ sont appelés respectivement longueur de diffusion et portée effective.

Un calcul direct montre que

$$a_{l,\hat{\alpha}_l} = \Theta_l(0)(l+1)R^{2l+1}$$
(3.69)

L'amplitude de diffusion $f_{\hat{\alpha}}(k,\omega,\omega')$ associée à $H_{\hat{\alpha}}$ est définie par

$$f_{\tilde{\alpha}}(k,\omega,\omega') = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{e^{2i\delta_{l,\tilde{\alpha}_{l}}(k)} - 1}{2ik} \overline{Y_{l}^{m}(\omega')} Y_{l}^{m}(\omega)$$
$$= 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{l,\tilde{\alpha}_{l}}(k) \overline{Y_{l}^{m}(\omega')} Y_{l}^{m}(\omega)$$
$$k \ge 0 \quad , \quad \omega , \, \omega' \in S^{2}$$
(3.70)

où l'amplitude de diffusion $f_{l,\tilde{\alpha}_l}(k)$ correspondant à l'onde partielle l est donnée par

$$f_{l,\tilde{\sigma}_{l}}(k) = -B_{l}^{2}(k)\Theta_{l}(k)F_{l}^{(o)'}(k,R)F_{l}^{(o)}(k,R)$$
(3.71)

L'opérateur de diffusion $S_{\tilde{\alpha}}(k)$, associé à $H_{\tilde{\alpha}}$ est défini dans $L^2(S^2)$ par

$$(S_{\tilde{\alpha}}(k)\phi)(\omega) = \phi(\omega) - \frac{k}{2i\pi} \int_{S^2} d\omega' f_{\tilde{\alpha}}(k,\omega,\omega')\phi(\omega')$$

$$k \ge 0 \; ; \; \omega, \quad \omega' \in S^2$$
(3.72)

Ce qui nous donne

$$S_{\bar{\alpha}}(k) = 1 + 2ik \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{l,\bar{\alpha}}(k)(Y_l^m, .)Y_l^m(\omega)$$
(3.73)

3.4 Particule chargée dans une interaction δ' sphérique

Dans cette section, nous étudions l'Hamiltonien d'une particule chargée soumise à une interaction δ' -sphérique. Dans ce cas, l'Hamiltonien non perturbé est l'Hamiltonien de Coulomb:

$$H_c = -\Delta + \frac{\gamma}{|x|} \quad ; \quad \mathcal{D}(H_c) = H^{2,2}(IR^3) \quad \gamma \in IR \tag{3.74}$$

3.4.1 Définition du modèle

On considère la décomposition (1.7) et on introduit dans $L^2(IR^3)$ l'opérateur fermé et non négatif

$$\tilde{H}_{\gamma} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} \tilde{h}_{l,\gamma} \tilde{U} \bigotimes 1$$
(3.75)

$$\tilde{h}_{l,\gamma} = -\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} + \frac{\gamma}{r} \quad r > 0 \quad l \in N \quad \gamma \in IR
\mathcal{D}(\tilde{h}_{l,\gamma}) = \left\{ f \in L^2((0,\infty))/f, f' \in AC_{loc}((0,\infty)); \ f(0_+) = 0 \text{ si } l = 0;
f(R_{\pm}) = f'(R_{\pm}) = 0 \quad -f'' + l(l+1)r^{-2}f + \gamma r^{-1}f \in L^2((0,\infty)) \right\}
l \in IN$$
(3.76)

L'adjoint \tilde{H}^*_{γ} de l'opérateur \tilde{H}_{γ} est donné par

$$\tilde{H}_{\gamma}^{*} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} \tilde{h}_{l,\gamma}^{*} \tilde{U} \bigotimes 1$$
(3.77)

avec

$$\tilde{h}_{l,\gamma}^{*} = -\frac{d^{2}}{dr^{2}} + \frac{l(l+1)}{r^{2}} + \frac{\gamma}{r} \quad r > 0, \quad l \in IN \quad \gamma \in IR$$

$$\mathcal{D}(\tilde{h}_{l,\gamma}^{*}) = \left\{ f \in L^{2}((0,\infty)) / f, f' \in AC_{loc}((0,\infty) \setminus \{R\}) - f'' + l(l+1)r^{2}f + \gamma r^{-1}f \in L^{2}((0,\infty)) \right\} \quad l \in IN \quad (3.78)$$

L'équation aux indices de défaut de $\tilde{h}_{l,\gamma}$

$$\tilde{h}_{l,\gamma}^*\phi_{l,\gamma}(k) = k^2\phi_{l,\gamma}(k); \quad \phi_{l,\gamma}(k) \in \mathcal{D}(\tilde{h}_{l,\gamma}^*), \quad Im \ k > 0 \quad \gamma \in IR$$
(3.79)

admet les solutions linéairement indépendantes.

$$\psi_{l,\gamma}^{(1)}(k,r) = \begin{cases} F_{l,\gamma}^{(0)}(k,r) & r < R\\ 0 & r > R \end{cases}$$
(3.80)

$$\psi_{l,\gamma}^{(2)}(k,r) = \begin{cases} 0 & r < R\\ G_{l,\gamma}^{(0)}(k,r) & r > R \end{cases}$$
(3.81)

où $F_{l,\gamma}^{(0)}(k,r)$ et $G_{l,\gamma}^{(0)}(k,r)$ sont définies par (1.33) et (1.34)

Par conséquent def $h_{l,\gamma} = (2,2)$ et dès lors toutes les extensions autoadjointes de $\tilde{h}_{l,\gamma}$ sont données par une famille à 4 paramètres d'opérateurs auto-adjoints. Nous considérons ici le cas d'une famille à un paramètre d'extensions auto-adjointes $h_{l,\gamma,\tilde{\alpha}_l}$ définie par :

$$h_{l,\gamma,\tilde{\alpha}_{l}} = -\frac{d^{2}}{dr^{2}} + \frac{l(l+1)}{r^{2}} + \frac{\gamma}{r}; r > 0, r \neq R$$

$$\mathcal{D}(h_{l,\gamma,\tilde{\alpha}_{l}}) = \left\{ f \in \mathcal{D}(\tilde{h}_{l,\gamma}^{\star}) / f(R_{+}) = f(R_{-}) \equiv f(R) \\ (1 + \frac{\tilde{\alpha}_{l}}{2}) f'(R_{+}) - (1 - \frac{\tilde{\alpha}_{l}}{2}) f'(R_{-}) = 0 \right\}$$

$$l \in IN \quad ; \gamma, \quad \tilde{\alpha}_{l} \in IR \qquad (3.82)$$

Le cas $\tilde{\alpha}_l = 0$ conduit à l'Hamiltonien de Coulomb $h_{l,\gamma}$ correspondant à l'onde partielle l. Par définition l'opérateur $H_{\gamma,\tilde{\alpha}}$ défini dans $L^2(R^3)$ par :

$$H_{\gamma,\tilde{\alpha}} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} h_{l,\gamma,\tilde{\alpha}_l} \tilde{U} \bigotimes 1 \quad \tilde{\alpha} = \{\tilde{\alpha}_l\}_{l \in IN}$$
(3.83)

décrit une interaction δ' -sphérique plus une interaction coulombienne.

3.4.2 Equation résolvante

<u>Théorème</u>

Le résolvant de $h_{l,\gamma,\tilde{\alpha}_l}$ est donné par

$$(h_{l,\gamma,\tilde{\alpha}_{l}} - k^{2})^{-1} = (h_{l,\gamma} - k^{2})^{-1} + \Theta_{l,\gamma}(k)(\tilde{\phi}_{l,\gamma}(-\overline{k}), .)\phi_{l,\gamma}(k) k^{2} \in \rho(h_{l,\gamma,\tilde{\alpha}_{l}}), \quad Imk > 0, \quad l \in N_{0} \quad \tilde{\alpha}_{l} \in IR \ (3.84)$$

où les fonctions $\phi_{l,\gamma}(k,r)$, $\tilde{\phi}_{l,\gamma}(k,r)$ et $\Theta_{l,\gamma}(k)$ qui apparaissent dans (3.89) sont définies respectivement par (3.21),(3.22) et (3.20) où on a remplacé $F_l^{(0)}(k,r)$ et $G_l^{(0)}(k,r)$ respectivement par $F_{l,\gamma}^{(0)}(k,r)$ et $G_{l,\gamma}^{(0)}(k,r)$.

3.4.3 Théorie de la diffusion pour la paire $(h_{l,\gamma,\tilde{\alpha}_l}; h_{l,\gamma})$

Pour $k \ge 0$ on considère la fonction

$$\mathcal{F}_{l,\gamma,\tilde{\alpha}_l}(k,r) = F_{l,\gamma}^{(0)}(k,r) + \Theta_{l,\gamma}(k)F_{l,\gamma}^{(0)'}(k,R)\phi_{l,\gamma}(k,r)$$
(3.85)

On montre que $\mathcal{F}_{l,\gamma,\tilde{\alpha}_l}(k,r)$ est une fonction d'onde de $h_{l,\gamma,\tilde{\alpha}_l}$ et on obtient, en prenant son expression asymptotique, le déphasage de Coulomb modifié:

$$\delta_{l,\gamma,\tilde{\alpha}_{l}}^{(c)}(k) = -\arctan\frac{\Theta_{l,\gamma}(k)B_{l,\gamma}(k)F_{l,\gamma}^{(0)'}(k,R)F_{l,\gamma}^{(o)}(k,R)}{A_{l,\gamma}(k) - iB_{l,\gamma}(k)\Theta_{l,\gamma}(k)F_{l,\gamma}^{(0)'}(k,R)F_{l,\gamma}^{(0)'}(k,R)}$$
(3.86)

avec

$$A_{l,\gamma}(k) = 2^{-l} exp(\pi\gamma/4k)\Gamma(2l+2) \left| \Gamma\left(l+1+\frac{i\gamma}{2k}\right) \right|^{-1} k^{-l-1}$$
(3.87)

$$B_{l,\gamma}(k) = \frac{1}{kA_{l,\gamma}(k)} = (2k)^{l} exp(-\pi\gamma/4k)\Gamma(2l+2)^{-1} \left| \Gamma\left(l+1+\frac{i\gamma}{2k}\right) \right|$$
(3.88)

Les éléments de la matrice de diffusion correspondant à $\delta^{(c)}_{l,\gamma,\tilde{\alpha}_l}(k)$ sont donnés par

$$S_{l,\gamma,\bar{\alpha}_{l}}^{(c)}(k) = exp[2i\delta_{l,\gamma,\bar{\alpha}_{l}}^{(c)}(k)] = 1 - 2ikB_{l,\gamma}^{2}(k)\Theta_{l,\gamma}(k)F_{l,\gamma}^{(0)'}(k,R)F_{l,\gamma}^{(o)}(k,R)$$
(3.89)

Le dévéloppement de portée effective correspondant est donné par [18]

$$(2k)^{2l} \Gamma(2l+2)^{-2} |\Gamma\left(l+1+\frac{i\gamma}{2k}\right)|^2 \left[k \cot \delta_{l,\gamma,\tilde{\alpha}_l}^{(c)}(k) - ik + exp(\pi\gamma/2k)h_l(k,\gamma)\right] = -\frac{1}{a_{l,\gamma,\tilde{\alpha}_l}^{(c)}} + o(k^2) , \ k > 0 , \ \gamma \in IR$$

$$(3.90)$$

où $a_{l_l\gamma,\tilde{\alpha}_l}^{(c)}$ est la longueur de diffusion et la fonction $h_l(k,\gamma)$ est définie par

$$h_l(k,\gamma) = \gamma |\Gamma\left(1 + \frac{i\gamma}{2k}\right)|^2 \left[\frac{ik}{\gamma} + Ln\left(\frac{2k}{i|\gamma|}\right) + \psi\left(1 + \frac{i\gamma}{2k}\right)\right]$$
(3.91)

Utilisant des propriétés des fonctions hypergéométriques, on obtient $a_{l,\gamma,\tilde{\alpha}_l}^{(c)}$ explicitement sous la forme:

$$\frac{1}{a_{l,\gamma,\tilde{\alpha}_{l}}^{(c)}} = \frac{1 - \tilde{\alpha}_{l}[rI_{\nu}(y)K_{\nu}(y)]'_{r=R}}{\tilde{\alpha}_{l}\gamma^{-\nu}\Gamma(2l+2)^{2}[r^{1/2}I_{\nu}(y)]'_{r=R}[r^{1/2}I_{\nu}(y)]_{r=R}} \quad \gamma \ge 0$$

$$\frac{1}{a_{l,\gamma,\tilde{\alpha}_{l}}^{(c)}} = \frac{2 + i\pi\tilde{\alpha}_{l}[rJ_{\nu}(z)H_{\nu}^{(2)}(z)]'_{r=R}}{2\tilde{\alpha}_{l}|\gamma|^{-\nu}\Gamma(2l+2)^{2}[r^{1/2}J_{\nu}(z)]'_{r=R}[r^{1/2}J_{\nu}(z)]_{r=R}} \quad \gamma \le 0$$
(3.92)

où on a utilisé les notations $\nu = 2l + 1$, $y = (4\gamma r)^{1/2}$ et $z = (4|\gamma|r)^{1/2}$. Dans le cas $\gamma = 0$, on obtient le résultat suivant:

$$a_{l,\tilde{\alpha}_{l}}^{-1} = \frac{2 - \frac{\tilde{\alpha}_{l}}{2l+1}}{2\tilde{\alpha}_{l}(l+1)R^{2l+1}}$$
(3.93)

3.5 Interactions δ' sphérique à support sur N sphères concentriques

3.5.1 Définition de l'Hamiltonien

Dans cette section, nous étudions l'Hamiltonien quantique décrivant un nombre fini d'interactions δ' sphérique à support sur des sphères concentriques de rayons $0 < R_1 < \cdots < R_N$. Nous définissons cet Hamiltonien comme étant une famille particulière à N paramètres d'extensions auto-adjointes de l'opérateur fermé, symétrique et non négatif

$$H_{\{R\}} = -\Delta$$

$$\mathcal{D}(\tilde{H}_{\{R\}}) = \{f \in H^{2,2}(R^3) / f(\partial \overline{K(0,R_j)}) = f'(\partial \overline{K(0,R_j)}) = 0\}$$

$$1 \le j \le N$$
(3.94)

A l'aide de la décomposition obtenue au (1.7), cet opérateur peut se reécrire sous la forme:

$$\tilde{H}_{\{R\}} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} \tilde{h}_{l,\{R\}} \tilde{U} \bigotimes 1$$
(3.95)

où

$$\tilde{h}_{l,\{R\}} = -\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2}, \quad r > 0, \ l \in N_0$$

$$\mathcal{D}(\tilde{h}_{l,\{R\}}) = \left\{ f \in L^2((0,\infty])/f, f' \in AC_{loc}((0,\infty)); \ f(0_+) = 0 \text{ si } l = 0; \\ f(R_{j\pm}) = f'(R_{j\pm}) = 0; -f'' + l(l+1)r^{-2}f \in L^2((0,\infty)) \right\}$$

$$l \in IN, \ 1 \le j \le N$$
(3.96)

L'adjoint $\tilde{H}^{\star}_{\{R\}}$ de $\tilde{H}_{\{R\}}$ est défini de la façon suivante :

$$\tilde{H}_{\{R\}}^{*} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} \tilde{h}_{l,\{R\}}^{*} U \bigotimes 1$$
(3.97)

avec

$$\tilde{h}_{l,\{R\}}^{*} = -\frac{d^{2}}{dr^{2}} + \frac{l(l+1)}{r^{2}}; \quad r > 0, \quad l \in N_{0}$$

$$\mathcal{D}(\tilde{h}_{l,\{R\}}^{*}) = \left\{ f \in L^{2}((0,\infty))/f, f' \in AC_{loc}((0,\infty) \setminus \{R\}) - f'' + l(l+1)r^{-2}f \in L^{2}((0,\infty)) \right\} \quad l \in IN \quad \{R\} = \{R_{1}, ..., R_{N}\}$$

$$(3.98)$$

On peut montrer facilement que l'équation aux indices de défaut de $h_{l,\{R\}}$:

$$h_{l,\{R\}}^*\phi_l(k) = k^2\phi_l(k); \ \phi_l(k) \in \mathcal{D}(h_{l,\{R\}}^*), \ Im \ k > 0$$
 (3.99)

admet les 2N solutions linéairement indépendantes ci après

$$\psi_{l,j}^{(1)}(k,r) = \begin{cases} F_l^{(0)}(k,r) & r < R_j \\ 0 & r > R_j \end{cases}$$
(3.100)

$$\psi_{l,j}^{(2)}(k,r) = \begin{cases} 0 & r < R_j \\ G_l^{(0)}(k,r) & r > R_j \end{cases}$$
(3.101)

où $F_l^{(0)}(k,r)$ et $G_l^{(0)}(k,r)$ sont définies par (1.15) et (1.16). Ainsi $\tilde{h}_{l,\{R\}}$ a pour indices de défaut (2N,2N) et par conséquent toutes les extensions auto-adjointes de $\tilde{h}_{l,\{R\}}$ sont données par une famille à $4N^2$ paramètres d'opérateurs auto-adjoints. Nous nous intéressons ici à des conditions frontières séparées sur chaque sphère et nous introduisons la famille suivante à Nparamètres d'extensions auto-adjointes de $\tilde{H}_{\{R\}}$

$$\tilde{H}_{\{\tilde{\alpha}_l\},\{R\}} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} \tilde{h}_{l,\{\tilde{\alpha}_l\},\{R\}} \tilde{U} \bigotimes 1$$
(3.102)

$$h_{l,\{\tilde{\alpha}_{l}\},\{R\}} = -\frac{d^{2}}{dr^{2}} + \frac{l(l+1)}{r^{2}}; \ r > 0, \ l \in IN \ r \neq R_{j}$$

$$\mathcal{D}(h_{l,\{\tilde{\alpha}_{l}\},\{R\}}) = \left\{ f \in L^{2}((0,\infty))/f, f' \in AC_{loc}((0,\infty) \setminus \{R\}) \ f(0_{+}) = 0 \ \text{si} \ l = 0 \\ f(R_{j+}) = f(R_{j-}) \equiv f(R_{j}) \\ \left(1 + \frac{\tilde{\alpha}_{jl}}{2}\right) f'(R_{+}) - \left(1 - \frac{\tilde{\alpha}_{jl}}{2}\right) f'(R_{-}) = 0 \\ -f'' + l(l+1)r^{-2}f \in L^{2}((0,\infty)) \right\} \\ l \in IN \ ; 1 \leq j \leq N \ ; \{\tilde{\alpha}_{l}\} = \{\tilde{\alpha}_{1l}, ..., \tilde{\alpha}_{Nl}\} \ ; \tilde{\alpha}_{jl} \in IR$$
(3.103)

Le cas $\tilde{\alpha}_{jl} = 0$ donne l'opérateur énergie cinétique. Par définition, $H_{\tilde{\alpha}_l, \{R\}}$ décrit une interaction δ' -sphérique à support sur N sphères concentriques.

<u>Théorème</u>

Si $\tilde{\alpha}_{jl} \neq 0$, j = 1, ..., N, le résolvant de $h_{l,\{\tilde{\alpha}_l\},\{R\}}$ est donné par

$$(h_{l,\{\tilde{\alpha}_{l}\},\{R\}} - k^{2})^{-1} = (h_{l,0} - k^{2})^{-1} + \sum_{j,j'=1}^{N} \Theta_{jj'}(k) (\tilde{\phi}_{l,j'}(-\overline{k}), .) \tilde{\phi}_{l,j}(k)$$
$$k^{2} \in \rho(h_{l,\{\tilde{\alpha}_{l}\},\{R\}}), \quad Imk > 0 , \quad \tilde{\alpha}_{jl} \in IR , \quad 1 \le j \le N$$
(3.104)

où

$$[\Theta(k)]_{jj'}^{-1} = \begin{cases} \tilde{\alpha}_l^{-1} - \frac{1}{2}g'_{l,k}(R_j, R_j) & j = j' \\ -\frac{1}{2}\phi'_{l,j}(k, R_{j'}) & j \neq j' \end{cases}$$
(3.105)

où $\phi_{l,j}$ et $\tilde{\phi}_{l,j}$ sont respectivement définies par (1.46) et (2.25). <u>Démonstration</u> Considérons $g \in L^2((0,\infty))$ et définissons

$$\chi_{l}(k,r) = ((h_{l,\{\tilde{\alpha}_{l}\},\{R\}} - k^{2})^{-1}g)(r)$$

$$= \int_{0}^{\infty} dr' g_{l,k}(r,r')g(r') + \sum_{j,j\leq 1}^{N} \Theta_{jj'}(k)\phi_{l,j}(k,r) \int_{0}^{\infty} \phi'_{l,j'}(k,r')g(r')dr'$$
(3.106)

où k est choisie de sorte que $det[\Theta(k)] \neq 0$. Alors $\chi_l(k, r)$ appartient évidemment à $AC_{loc}((0, \infty) \setminus \{R\})$ et on peut montrer que

$$(1+\frac{\tilde{\alpha}_l}{2})\chi_l'(k,R_{j+}) - (1-\frac{\tilde{\alpha}_l}{2})\chi_l'(k,R_{j-}) = 0, \quad j = 1..., N$$
(3.107)

donc $\chi_l \in \mathcal{D}(h_{l,\{\tilde{\alpha}_l\},\{R\}})$ et

$$((h_{l,\{\tilde{\alpha}_l\},\{R\}} - k^2)\chi_l)(k,r) = -\chi''_l(k,r) + l(l+1)r^{-2}\chi_l(k,r) - k^2\chi_l(k,r) = g(r)$$
(3.108)

d'où (3.104)

<u>Remarque</u>: La définition de $h_{l,\{\tilde{\alpha}_l\},\{R\}}$ peut être étendue au cas où certains $\tilde{\alpha}_{jl}$ sont nuls. Par exemple, si $\tilde{\alpha}_{j_0l} = 0$, on supprime la j_0^{eme} ligne et j_0^{eme} colonne de la matrice $\Theta(k)$

3.6 Propriétés spectrales

Les propriétés spectrales de $h_{l,\{\tilde{\alpha}_l\},\{R\}}$ sont contenues dans le théorème ciaprès :

3.6.1 Théorème

Si $\tilde{\alpha}_{jl} \neq 0, j = 1, ..., N$ alors $h_{l,\{\tilde{\alpha}_l\},\{R\}}$ possède au plus 2N valeurs propres négatives comptant les multiplicités. Le reste du spectre est purement absolument continu et couvre la partie non négative de l'axe réel.

$$\sigma_{ess}(h_{l,\{\tilde{\alpha}_l\},\{R\}}) = \sigma_{ac}(h_{l,\{\tilde{\alpha}_l\},\{R\}}) = (0,\infty)$$

$$\sigma_{sc}(h_{l,\{\tilde{\alpha}_l\},\{R\}}) = \phi$$
(3.109)

<u>Démonstration</u> : Comme $\tilde{h}_{l,\{R\}} \geq 0$ et $def\tilde{h}_l = (2N, 2N)$, $h_{l,\{\tilde{\alpha}_l\},\{R\}}$ admet au plus 2N valeurs propres négatives en comptant les multiplicités ([22] pge 246). Les relations(3.109) découlent du théorème de Weyl [21] et par exemple de [10, lemme 2.4].

3.7 Théorie de la diffusion pour la paire $(h_{l,\{\tilde{\alpha}_l\},\{R\}}; h_{l,0})$

Pour $k \ge 0$, on considère la fonction

$$\psi_{l,\{\tilde{\alpha}_l\},\{R\}}(k,r) = F_l^{(0)}(k,r) + \sum_{j,j'=1}^N \Theta_{jj'}(k) F_l^{(0)'}(k,Rj')\phi_{l,j}(k,r)$$
(3.110)

où $F_l^{(0)}(k,r)$ et $\Theta_{jj'}(k)$ sont respectivement définis par (3.15) et (3.105). On montre comme au (1.21) que $\psi_{l,\{\tilde{\alpha}_l\},\{R\}}(k,r)$ constituent une famille de fonctions d'onde de $h_{l,\{\tilde{\alpha}_l\},\{R\}}$

Le déplasage de $h_{l,\{\tilde{\alpha}_l\},\{R\}}$ s'obtient à partir de l'expression asymptotique de $\psi_{l,\{\tilde{\alpha}_l\},\{R\}}(k,r)$ quand $r \to \infty$. En effet [14]

$$\begin{split} \psi_{l,\{\tilde{\alpha}_{l}\},\{R\}}(k,r) & \xrightarrow{k>0} \\ r \to \infty \\ & = \\ \begin{cases} A_{l}(k)\sin(kr - \frac{l\pi}{2}) + \sum_{j,j=1}^{N}\Theta_{jj'}(k)F_{l}^{(0)'}(k,R_{j'}) \times \\ & \times F_{l}^{(0)}(k,R_{j})e^{-i(kr-l(\frac{\pi}{2}))} \\ & = \\ \begin{cases} A_{l}(k) - iB_{l}(k)\sum_{j,j'=1}^{N}\Theta_{jj'}(k)F_{l}^{(0)'}(k,R_{j'}) \times \\ & \times F_{l}^{(0')}(k,R_{j}) \end{cases} \sin(kr - \frac{l\pi}{2}) + \\ & B_{l}(k)\sum_{j,j=1}^{N}\Theta_{jj'}(k)F_{l}^{(0)'}(k,R'_{j})F_{l}^{(0)'}(k,R_{j})\cos(kr - \frac{l\pi}{2}) \\ & = \\ & [\hat{T}_{1,l}^{2}(k) + \hat{T}_{2,l}^{2}(k)]^{\frac{1}{2}}\sin(kr - \frac{l\pi}{2} + \delta_{l,\{\tilde{\alpha}_{l}\},\{R\}}(k)) + 0(1) \\ & (3.111) \end{split}$$

Cette expression nous permet d'obtenir le déphasage sous la forme

 $\delta_{l,\{\tilde{\alpha}_l\},\{R\}}(k) = -\arctan \frac{\hat{T}_{2,l}(k)}{\hat{T}_{1,l}(k)}$

$$= -\arctan\frac{B_{l}(k)\sum_{j,j'=1}^{N}\Theta_{jj'}(k)F_{l}^{(0)'}(k,Rj')F_{l}^{(0)}(k,Rj)}{A_{l}(k)-iB_{l}(k)\sum_{j,j'=1}^{N}\Theta_{jj'}(k)F_{l}^{(0)}(k,Rj')F_{l}^{(0)}(k,Rj)}$$
(3.112)

où $A_l(k)$ et $B_l(k)$ sont définis par (3.64) et (3.65). Le dévéloppement de portée effective correspondant à $h_{l,\{\tilde{\alpha}_l\},\{R\}}$ est donné par :

$$[(2l+1)!!]^{2}k^{2l+1}\cot\delta_{l,\{\tilde{\alpha}_{l}\},\{R\}}(k)) = -a_{l,\{\tilde{\alpha}_{l}\},\{R\}}^{-1} + \frac{1}{2}r_{l,\{\tilde{\alpha}_{l}\},\{R\}}k^{2} + 0(k^{4}) \quad (3.113)$$

où dans ce cas un calcul direct donne

$$a_{l,\{\tilde{\alpha}_l\},\{R\}} = -\sum_{j,j'=1}^{N} \theta_{jj'}(0)(l+1)R_{j'}^l, R_j^{l+1}$$
(3.114)

L'amplitude de diffusion $f_{\{\tilde{\alpha}_l\},\{R\}}(k,\omega,\omega')$ associée à $H_{\{\tilde{\alpha}_l\},\{R\}}$ est définie par

$$f_{\{\tilde{\alpha}_l\},\{R\}}(k,\omega,\omega') = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{e^{2i\delta_{l,\{\tilde{\alpha}_l\},\{R\}}} - 1}{2ik} \overline{Y_l^m(\omega')} Y_l^m(\omega)$$

= $4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{l,\{\tilde{\alpha}_l\},\{R\}}(k) \overline{Y_l^m(\omega')} Y_l^m(\omega) \quad k \ge 0, \ \omega, \ \omega' \in S^2$
(3.115)

où l'amplitude de diffusion $f_{l,\{\bar{\alpha}_l\},\{R\}}(k)$ correspondant à l'onde partielle est donnée par :

$$f_{l,\{\tilde{\alpha}_l\},\{R\}}(k) = -B_l^2(k) \sum_{j,j'=1}^N \Theta_{jj'}(k) F_l^{(0)'}(k,R_{j'}) F_l^{(0)}(k,R_j)$$
(3.116)

L'opérateur de diffusion $S_{\{\tilde{\alpha}_l\},\{R\}}(k)$, associé à $H_{\{\tilde{\alpha}_l\},\{R\}}$ est défini dans $L^2(S^2)$ par :

$$S_{\{\bar{\alpha}_l\},\{R\}}(k) = 1 + 2ik \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{l,\{\bar{\alpha}_l\},\{R\}}(k)(Y_l^m,.)Y_l^m(\omega)$$
(3.117)

Chapitre 4

LES INTERACTIONS δ' -SPHERIQUE DE 2^{eme} ESPECE

4.1 Interactions δ' -sphérique de 2^{eme} espèce à support sur une sphère

4.1.1 Définition du modèle

Dans ce chapitre nous étudions un autre type d'interaction δ' -sphérique qui s'obtient en interchangeant dans (1.16) les rôles de f et f'. On obtient donc une famille à un paramètre d'extensions auto-adjointes de \tilde{h}_l , définie par

$$h_{l,\tilde{\beta}_{l}} = -\frac{d^{2}}{dr^{2}} + \frac{l(l+1)}{r^{2}} \quad r > 0$$

$$\mathcal{D}(h_{l,\tilde{\beta}_{l}}) = \left\{ f \in \mathcal{D}(\tilde{h}_{l}^{*}) / f'(R_{+}) = f'(R_{-}) \equiv f'(R); \\ \left(1 + \frac{\tilde{\beta}_{l}}{2}\right) f(R_{+}) - \left(1 - \frac{\tilde{\beta}_{l}}{2}\right) f(R_{-}) = 0 \\ ; f(0_{+}) = 0 \text{ si } l = 0; \right\} l \in IN; \qquad \tilde{\beta}_{l} \in IR$$
(4.1)

Par définition, l'opérateur

$$H_{\tilde{\beta}} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} h_{l,\tilde{\beta}_l} \tilde{U} \bigotimes 1$$
(4.2)

représente l'Hamiltonien quantique décrivant une interaction δ' - sphérique de 2^{eme} espèce.

Le cas $\tilde{\beta}_l = 0$ conduit à l'Hamiltonien libre $h_{l,o}$ correspondant à l'onde partielle l.

4.1.2 Equation résolvante

Théorème4.1

1. Le résovant de $h_{l,\hat{\beta}_l}$ est donné par

$$(h_{l,\tilde{\beta}_{l}} - k^{2})^{-1} = (h_{l,o} - k^{2})^{-1} + \tilde{\Theta}_{l}(k) \left(\phi_{l}(-\overline{k}), .\right) \tilde{\phi}_{l}(k) k^{2} \in \rho(h_{l,\tilde{\beta}_{l}}), \ Imk > 0, \ l \in IN$$

$$(4.3)$$

où $\phi_l(k)$, $\tilde{\phi}_l(k)$ sont définies respectivement par (3.21) et (3.22) et

$$\tilde{\Theta}_l(k) = -2\tilde{\beta}_l[2 + \tilde{\beta}_l g'_{l,k}(R,R)]$$
(4.4)

 $g'_{l,k}(R,R)$ étant défini par (3.23),

2. Le résolvant de $H_{\bar{\beta}}$ est donné par

$$(H_{\tilde{\beta}} - k^{2})^{-1} = (H_{o} - k^{2})^{-1} + \bigoplus_{l=0}^{\infty} \bigoplus_{m=-l}^{l} \tilde{\Theta}_{l}(k) ||.|^{-1} \tilde{\phi}_{l}(k) Y_{l}^{m} > < |.|^{-1} \phi_{l}(-\overline{k}) Y_{l}^{m} | k^{2} \in \rho(H_{\tilde{\beta}}), \ Imk > 0, \ \tilde{\beta}_{l} \in IR$$

$$(4.5)$$

<u>Démonstration</u> Elle se fait exactement comme celle du théorème 3.1. On obtient dans ce cas

$$\tilde{\lambda}(k) = \frac{-2\tilde{\beta}_l}{2 + \tilde{\beta}_l g'_{l,k}(R,R)} \begin{bmatrix} G_l^{(o)}(k,R) G_l^{(o)'}(k,R) & F_l^{(o)}(k,R) G_l^{(o)'}(k,R) \\ G_l^{(o)}(k,R) F_l^{(o)'}(k,R) & F_l^{(o)}(k,R) F_l^{(o)'}(k,R) \end{bmatrix}$$
(4.6)

<u>Remarque 4.1</u> On note ici aussi que $det[\tilde{\lambda}(k)] \equiv 0$. Ce qui veut dire que \tilde{h}_l n'est pas une partie maximale commune à $h_{l,o}$ et $h_{l,\tilde{\beta}_l}$.

<u>Théorème 4.2</u> Le domaine $\mathcal{D}(h_{l,\tilde{\beta}_l}), \tilde{\beta}_l \in IR, R > 0$, est constitué des éléments de la forme

$$\psi_l = \phi_o + \tilde{\Theta}_l(k) < \phi_l(-\overline{k}), (h_{l,o} - k^2)\phi_o > \tilde{\phi}_l(k) \quad \phi_o \in \mathcal{D}(h_{l,o})$$
(4.7)

Cette décomposition est unique et on a la relation

$$(h_{l,\tilde{\beta}_l} - k^2)\psi_l = (h_{l,o} - k^2)\phi_o$$
(4.8)

En plus, si $\psi_l \in \mathcal{D}(h_{l,\tilde{\beta}_l})$ et $\psi_l \equiv 0$ dans un ouvert U de $(0,\infty)$, alors $h_{l,\tilde{\beta}_l} \equiv 0$ dans U.

Démonstration Suivre exactement celle du théorème 3.2

4.1.3 Propriétés spectrales

La structure du spectre ponctuel de $h_{l,\tilde{\beta}_l}$ est déterminée par la position des états liés de $h_{l,\tilde{\beta}_l}$ qui sont obtenus en cherchant les solutions $\psi_l \in L^2((0,\infty))$ de l'équation

$$h_{l,\tilde{\beta}_l}\psi_l = E\psi_l , \quad E < 0 , \quad \psi_l \in \mathcal{D}(h_{l,\tilde{\beta}_l}).$$
(4.9)

Nous écrivons la solution de (4.9) sous la forme

$$\psi_l(E,r) = \begin{cases} \tilde{C}_1 A_l(k) r^{1/2} I_{l+1/2}(\sqrt{-E}r) & 0 < r < R\\ \tilde{C}_2 B_l(k) r^{1/2} K_{l+1/2}(\sqrt{-E}r) & r > R \end{cases}$$
(4.10)

où les coefficients de normalisation $A_l(k)$ et $B_l(k)$ sont donnés respectivement par (3.40) et (3.41).

Comme $\psi_l(E,r) \in \mathcal{D}(h_{l,\tilde{\beta}_l})$, alors on a

$$\psi'_l(E, R_-) = \psi'_l(E, R_+) \tag{4.11}$$

$$\left(1+\frac{\tilde{\beta}_l}{2}\right)\psi_l(E,R_+) - \left(1-\frac{\tilde{\beta}_l}{2}\right)\psi_l(E,R_-) = 0$$
(4.12)

La vérification de ces conditions frontières nous donne l'équation pour les états liés de h_{l,\tilde{b}_l} :

$$2 + \tilde{\beta}_l \frac{d}{dr} \left[r I_{l+1/2} (\sqrt{-E}r) K_{l+1/2} (\sqrt{-E}r) \right]_{r=R}^{-1} = 0.$$
 (4.13)

On résoudra graphiquement cette équation

Dans chaque onde partielle $l \ge 0$ il y a exactement un état lié si et seulement si

$$0 < -\frac{2}{\tilde{\beta}_l} < \frac{1}{2l+1}$$

<u>Théorème 4.3</u> Soit $\tilde{\beta}_l \in IR, l \in IN$. Le spectre essentiel $\sigma_{ess}(h_{l,\tilde{\beta}_l})$ est purement absolument continu et couvre la partie non négative de l'axe réel:

$$\sigma_{ess}(h_{l,\tilde{\beta}_l}) = \sigma_{ac}(h_{l,\tilde{\beta}_l}) = [0,\infty).$$

$$(4.14)$$

Le spectre singulièrement continu $\sigma_{sc}(h_{l,\tilde{\beta}_l})$ est vide, et pour tout $\tilde{\beta}_l \in IR$, $h_{l,\tilde{\beta}_l}$ n'admet pas de valeurs propres non négatives.

Si $\tilde{\beta}_l < -2(2l+1)$, alors $\sigma_p(h_{l,\tilde{\beta}_l})$ contient exactment un point. Si $\tilde{\beta}_l \geq -2(2l+1)$, alors $\sigma_p(h_{l,\tilde{\beta}_l}) = \phi$.

<u>Démonstration</u> La structure de $\sigma_p(h_{l,\bar{\beta}_l})$ est déterminée par (4.13). Le reste du théorème se démontre de la même façon que le théorème 3.3.

<u>Remarque</u> Les résonances de $h_{l,\tilde{\beta}_l}$ peuvent être obtenues à partir de l'équation

$$2 + \hat{\beta}_l g'_{l,k}(R,R) = 0 \quad Imk \le 0$$
(4.15)

On obtient pour l = 0 les solutions

$$k = \frac{n\pi}{2R} - \frac{i}{2R} Ln \frac{2(-1)^{n+1}}{\tilde{\beta}_l} \quad \text{avec} \quad Ln \frac{2(-1)^{n+1}}{\tilde{\beta}_l} > 0$$

Tout le reste des résonances s'obtient comme à la section 3.2.3.

4.1.4 Théorie de la diffusion pour la paire $(h_{l,\tilde{\beta}_l}, h_{l,o})$

Pour $k \geq 0$, considérons la fonction

$$\psi_{l,\tilde{\beta}_{l}}(k,r) = F_{l}^{(o)}(k,r) + \tilde{\Theta}_{l}(k)F_{l}^{(o)}(k,R)\tilde{\phi}_{l}(k,r)$$
(4.16)

où $\tilde{\phi}_l(k,r)$ est définie par (3.22) et $\tilde{\Theta}_l(k)$ par (4.4).

On vérifie comme dans la section 3.4 que les $\psi_{l,\tilde{\beta}_l}(k,r)$ constituent bien un ensemble de fonctions d'onde de $h_{l,\tilde{\beta}_l}$.

Le déphasage de $h_{l,\tilde{\beta}_l}$ s'obtient en déterminant le comportement asymptotique de $\psi_{l,\tilde{\beta}_l}(k,r)$ quand $r \to \infty$.

En suivant exactement la section 3.4 on obtient:

$$\delta_{l,\tilde{\beta}_{l}}(k) = -\arctan\frac{\tilde{\Theta}_{l}(k)B_{l}(k)F_{l}^{(o)'}(k,R)F_{l}^{(o)}(k,R)}{A_{l}(k) - iB_{l}(k)\tilde{\Theta}_{l}(k)F_{l}^{(o)'}(k,R)F_{l}^{(o)}(k,R)}$$
(4.17)

où $A_l(k)$ et $B_l(k)$ sont définis respectivement par (3.64) et (3.65). Les éléments de la matrice de diffusion sont donnés par

$$S_{l,\tilde{\beta}_{l}}(k) = exp[2i\delta_{l,\tilde{\beta}_{l}}(k)]$$

= $1 - 2iB_{l}^{2}(k)\tilde{\Theta}_{l}(k)F_{l}^{(o)'}(k,R)F_{l}^{(o)}(k,R)$ (4.18)

Le dévéloppement de portée effective correspondant à $h_{l,\tilde{\beta}_l}$ est donné par

$$[(2l+1)!!]^2 k^{2l+1} \cot \delta_{l,\bar{\beta}_l}(k) = -a_{l,\bar{\beta}_l}^{-1} + \frac{1}{2}r_{l,\bar{\beta}_l}k^2 + o(k^4)$$
(4.19)
où les coefficients $a_{l,\tilde\beta_l}$ et $r_{l,\tilde\beta_l}$ sont respectivement la longueur de diffusion et la portée effective.

Un calcul direct montre que

$$a_{l,\tilde{\beta}_{l}} = \tilde{\Theta}_{l}(0)(l+1)R^{2l+1}$$
(4.20)

L'amplitude de diffusion $f_{\hat{\beta}}(k,\omega,\omega')$ associée à $H_{\hat{\beta}}$ est définie par

$$f_{\tilde{\beta}}(k,\omega,\omega') = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{e^{2i\delta_{l,\tilde{\beta}_{l}}(k)} - 1}{2ik} \overline{Y_{l}^{m}(\omega')} Y_{l}^{m}(\omega)$$
$$= 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{l,\tilde{\beta}_{l}}(k) \overline{Y_{l}^{m}(\omega')} Y_{l}^{m}(\omega)$$
$$k \ge 0; \, \omega, \omega' \in S^{2}$$
(4.21)

où l'amplitude de diffusion $f_{l,\tilde{\beta}_l}(k)$ correspondant à l'onde partielle l est donnée par:

$$f_{l,\tilde{\beta}_{l}}(k) = -B_{l}^{2}(k)\tilde{\Theta}_{l}(k)F_{l}^{(o)'}(k,R)F_{l}^{(o)}(k,R)$$
(4.22)

L'opérateur de diffusion $S_{\tilde{\beta}}$ associé à $H_{\tilde{\beta}}$ est défini dans $L^2(S^2)$ par

$$S_{\tilde{\beta}}(k) = 1 + 2ik \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{l,\tilde{\beta}_{l}}(k)(Y_{l}^{m},.)Y_{l}^{m}$$
(4.23)

4.2 Particule chargée dans une interaction δ' sphérique de 2^{eme} espèce

4.2.1 Définition du modèle

Dans cette section nous étudions le modèle obtenu en interchangeant dans (3.82) les rôles de f et f'.

On obtient alors une famille à un pramètre, $h_{l,\gamma,\tilde{\beta}_l}$, d'extensions auto-adjointes de $\overline{h}_{l,\gamma}$ définie par

$$h_{l,\gamma,\bar{\beta}_{l}} = -\frac{d^{2}}{dr^{2}} + \frac{l(l+1)}{r^{2}} + \frac{\gamma}{r} \quad r > 0$$

$$\mathcal{D}(h_{l,\gamma,\bar{\beta}_{l}}) = \left\{ f \in \mathcal{D}(\bar{h}_{l,\gamma}^{*}) / f'(R_{+}) = f'(R_{-}) \equiv f(R) \right\}$$

$$\left(1 + \frac{\tilde{\beta}_l}{2}\right) f(R_+) - \left(1 - \frac{\tilde{\beta}_l}{2}\right) f(R_-) = 0 ; f(0_+) = 0 \text{ si } l = 0; -f'' + l(l+1)r^{-2}f \in L^2((0,\infty)) \} \quad l \in IN, \, \tilde{\beta}_l \in IR, \, \gamma \in IR$$

$$(4.24)$$

-

Le cas $\tilde{\beta}_l = 0$ conduit à l'Hamiltonien de Coulomb $h_{l,\gamma}$ correspondant à l'onde partielle l.

4.2.2 Equation résolvante

Théorème4.4

Le résovant de $h_{l,\gamma,\tilde{\beta}_l}$ est donné par

$$(h_{l,\gamma,\tilde{\beta}_{l}} - k^{2})^{-1} = (h_{l,\gamma} - k^{2})^{-1} - 2\tilde{\beta}_{l}[2 + \tilde{\beta}_{l}g'_{l,\gamma,k}(R,R)]^{-1} \left(\phi_{l,\gamma}(-\overline{k}), .\right) \tilde{\phi}_{l,\gamma}(k) k^{2} \in \rho(h_{l,\gamma,\tilde{\beta}_{l}}), \ Imk > 0, \ l \in IN, \ \gamma \in IR$$

$$(4.25)$$

où $\phi_{l,\gamma}(k,r)$, $\tilde{\phi}_{l,\gamma}(k,r)$ sont définies dans la section 3.5.2

$$g'_{l,\gamma,k}(R,R) = F^{(o)'}_{l,\gamma}(k,R)G^{(o)}_{l,\gamma}(k,R) + F^{(o)}_{l,\gamma}(k,R)G^{(o)'}_{l,\gamma}(k,R)$$
(4.26)

Remarque 4.3 Les états liés (resp. les résonances) de $h_{l,\gamma,\tilde{\beta}_l}$ peuvent être définis comme étant les pôles du noyau du résolvant de $h_{l,\gamma,\tilde{\beta}_l}$ (c'est-à- dire les solutions de l'équation $2 + \tilde{\beta}_l g'_{l,\gamma,k}(R,R) = 0$ situées dans Imk > 0 (resp. $Imk \leq 0$).

4.2.3 Propriétés spectrales

En suivant la section 3.2.2 on obtient pour la détermination des états liés, l'équation

$$2 + \tilde{\beta}_l g'_{l,\gamma,\sqrt{-E}}(R,R) = 0 \quad ; \quad E < 0 \tag{4.27}$$

<u>Théorème 4.5</u> Soit $\tilde{\beta}_l \in IR, l \in IN$, pour tout $\gamma \in IR$, on a

$$\sigma_{ess}(h_{l,\gamma,\tilde{\beta}_l}) = \sigma_{ac}(h_{l,\gamma,\tilde{\beta}_l}) = [0,\infty). \qquad \sigma_{sc}(h_{l,\gamma,\tilde{\beta}_l}) = \phi \tag{4.28}$$

Le spectre ponctuel $\sigma_p(h_{l,\gamma,\tilde{\beta}_l})$ est déterminé par l'équation (4.27).

4.2.4 Théorie de la diffusion pour la paire $(h_{l,\gamma,\tilde{\beta}_l}, h_{l,o})$

Pour $k \ge 0$, considérons la fonction

$$\mathcal{F}_{l,\gamma,\bar{\beta}_l}(k,r) = F_{l,\gamma}^{(o)}(k,r) - 2\tilde{\beta}_l [2 + \tilde{\beta}_l g'_{l,\gamma,k}(R,R)]^{-1} F_{l,\gamma}^{(0)}(k,R) \tilde{\phi}_{l,\gamma}(k,r) \quad (4.29)$$

On montre que les $\mathcal{F}_{l,\gamma,\tilde{\beta}_l}(k,r)$ constituent une famille de fonctions d'onde de $h_{l,\gamma,\tilde{\beta}_l}$ et en considérant son comportement asymptotique on obtient le déphasage [14]:

$$\delta_{l,\gamma,\tilde{\beta}_{l}}(k) = -\arctan\frac{\dot{\mu}_{l,\gamma}(k)B_{l,\gamma}(k)F_{l,\gamma}^{(o)'}(k,R)F_{l,\gamma}^{(o)}(k,R)}{A_{l,\gamma}(k)-ikB_{l,\gamma}(k)\dot{\mu}_{l,\gamma}(k)F_{l,\gamma}^{(o)'}(k,R)F_{l,\gamma}^{(o)}(k,R)}$$
(4.30)

où

$$\dot{\mu}_{l,\gamma} = -\frac{2\hat{\beta}_l}{2 + \tilde{\beta}_l g'_{l,\gamma,k}(R,R)}$$
(4.31)

et $A_{l,\gamma}(k)$ et $B_{l,\gamma}(k)$ sont définis respectivement par (3.87) et (3.88). Les éléments de la matrice de diffusion sont donnés par

$$S_{l,\gamma,\hat{\beta}_{l}}(k) = exp[2i\delta_{l,\gamma,\hat{\beta}_{l}}(k)]$$

= $1 - 2iB_{l,\gamma}^{2}(k)\dot{\mu}_{l,\gamma}(k)F_{l,\gamma}^{(o)'}(k,R)F_{l,\gamma}^{(o)}(k,R)$ (4.32)

Le dévéloppement de portée effective correspondant à $h_{l,\tilde{\beta}_l}$ est donné par

$$[(2l+1)!!]^2 k^{2l+1} \cot \delta_{l,\gamma,\bar{\beta}_l}(k) = -a_{l,\gamma,\bar{\beta}_l}^{-1} + \frac{1}{2} r_{l,\gamma,\bar{\beta}_l} k^2 + o(k^4)$$
(4.33)

Un calcul direct donne

$$a_{l,\gamma,\tilde{\beta}_{l}}^{-1} = \frac{1 + \beta_{l}\frac{d}{dr} [rI_{\nu}(y)K_{\nu}(y)]_{r=R}}{\tilde{\beta}_{l}\gamma^{-\nu}\Gamma(2l+2)^{2}\frac{d}{dr}[r^{1/2}I_{\nu}(y)]_{r=R}[r^{1/2}I_{\nu}(y)]_{r=R}} \qquad \gamma \ge 0$$

$$a_{l,\gamma,\tilde{\beta}_{l}}^{-1} = \frac{2 - i\pi\tilde{\beta}_{l}\frac{d}{dr} [rJ_{\nu}(z)H_{\nu}^{(2)}(z)]_{r=R}}{2\tilde{\beta}_{l}|\gamma|^{-\nu}\Gamma(2l+2)^{2}\frac{d}{dr}[r^{1/2}J_{\nu}(z)]_{r=R}[r^{1/2}J_{\nu}(z)]_{r=R}} \qquad \gamma \le 0$$
(4.34)

où on rappelle que $\nu = 2l + 1$, $y = (4\gamma r)^{1/2}$ et $z = (4|\gamma|r)^{1/2}$. Dans le cas où $\gamma = 0$, on obtient le résultat suivant

$$a_{l,\tilde{\beta}_{l}}^{-1} = \frac{2 + \frac{\beta_{l}}{2l+1}}{2\tilde{\beta}_{l}(l+1)R^{2l+1}}$$
(4.35)

4.3 Interactions δ' -sphérique de 2^{eme} espèce à support sur N sphères concentriques:conditions frontières séparées

4.3.1 Définition de l'Hamiltonien

Comme dans la section précédente, ici aussi on définit ce modèle en interchangeant dans (3.103) les rôles de f et f'. Ceci conduit à la famille à Nparamètres d'extensions auto-adjointes $h_{l,\{\bar{\beta}_l\},\{R\}}$ de $\tilde{h}_{l,\{R\}}$ suivante:

$$\begin{split} h_{l,\{\tilde{\beta}_l\},\{R\}} &= -\frac{d^2}{dr^2} + \frac{l(l+1)}{r^2} \quad r > 0 \\ \mathcal{D}(h_{l,\{\tilde{\beta}_l\},\{R\}}) &= \left\{ f \in L^2((0,\infty))/f, f' \in AC_{loc}((0,\infty) \setminus \{R\}); f(0_+) = 0 \text{ si } l = 0; \right. \\ &\quad f'(R_{j+}) = f'(R_{j-}) \equiv f(R_j) ; \\ &\quad \left(1 + \frac{\tilde{\beta}_{jl}}{2} \right) f(R_{j+}) - \left(1 - \frac{\tilde{\beta}_{jl}}{2} \right) f(R_{j-}) = 0 \\ &\quad -f'' + l(l+1)r^{-2}f \in L^2((0,\infty)) \right\} \\ &\quad l \in IN, \ 1 \le j \le N, \ \{R\} = \{R_1, ..., R_N\}; \\ &\quad \{\tilde{\beta}_l\} = \{\tilde{\beta}_{1l}, ..., \tilde{\beta}_{Nl}\}; \ \tilde{\beta}_{jl} \in IR \end{split}$$

$$\end{split}$$

Le cas $\tilde{\beta}_{jl} = 0, 1 \leq j \leq N$, donne l'Hamiltonien libre $h_{l,o}$ correspondant à l'onde partielle l.

L'opérateur $H_{\{\hat{\beta}_l\},\{R\}}$, défini dans $L^2(IR^3)$ par

$$H_{\{\bar{\beta}_l\},\{R\}} = \bigoplus_{l=0}^{\infty} \tilde{U}^{-1} h_{l,\{\bar{\beta}_l\},\{R\}} \tilde{U} \bigotimes 1$$
(4.37)

décrit, par définition, l'interaction δ' -sphérique de 2^{eme} espèce à support sur N sphères concentriques correspondant aux conditions frontières séparées. <u>Théorème4.6</u>

Si $\hat{\beta}_{jl} \neq 0, j = 1, ..., N$, alors le résolvant de $h_{l,\{\hat{\beta}_l\},\{R\}}$ est donné par

$$(h_{l,\{\tilde{\beta}_{l}\},\{R\}} - k^{2})^{-1} = (h_{l,o} - k^{2})^{-1} + \sum_{jj'=1}^{N} \tilde{\Theta}_{jj'}(k) \left(\phi_{l,j'}(-\overline{k}), .\right) \tilde{\phi}_{l,j}(k)$$

$$k^{2} \in \rho(h_{l,\{\tilde{\beta}_{l}\},\{R\}}), \ Imk > 0$$

$$\tilde{\beta}_{jl} \in IR, \ 1 \le j \le N$$

$$(4.38)$$

où

$$\tilde{\Theta}_{jj'}(k) = \begin{cases} -\tilde{\beta}_{jl}^{-1} - \frac{1}{2}g'_{l,k}(R_j, R_j); & j = j' \\ -\frac{1}{2}\tilde{\phi}_{l,j}(k, R_{j'}) & , \quad j \neq j' \end{cases}$$
(4.39)

avec $\phi_{l,j}$ et $\tilde{\phi}_{l,j}$ définies respectivement par (1.46) et (2.25). <u>Démonstration</u> Suivre exactement la preuve du théorème 3.4

Remarque 4.4 Dans ce cas aussi la définition de $h_{l,\{\tilde{\beta}_l\},\{R\}}$ peut être étendue au cas où certains $\tilde{\beta}_{jl}$ sont nuls. Par exemple si $\tilde{\beta}_{jol} = 0$ on supprime la j_o^{eme} ligne et la j_o^{eme} colonne de la matrice $\tilde{\Theta}_l(k)$.

4.3.2 propriétés spectrales

Soit $\tilde{\beta}_{jl} \neq 0, j = 1, ..., N$, alors $h_{l,\{\tilde{\beta}_l\},\{R\}}$ possède au plus 2N valeurs propres négatives en comptant les multiplicités.

le reste du spectre est purement absolument continu et couvre la partie non négative de l'axe réel:

$$\begin{aligned} \sigma_{ess}(h_{l,\{\tilde{\beta}_l\},\{R\}}) &= \sigma_{ac}(h_{l,\{\tilde{\beta}_l\},\{R\}}) = [0,\infty) \\ \sigma_{sc}(h_{l,\{\tilde{\beta}_l\},\{R\}}) &= \phi \quad , \quad \tilde{\beta}_{jl} \in IR \, , \, j = 1, ..., N \end{aligned}$$
(4.40)

Démonstration Suivre la preuve du théorème 3.5

4.3.3 Théorie de la diffusion pour la paire $(h_{l,\{\tilde{\beta}_l\},\{R\}};h_{l,o})$

Pour $k \geq 0$, on considère la fonction

$$\mathcal{F}_{l,\{\bar{\beta}_l\},\{R\}}(k,r) = F_l^{(o)}(k,r) + \sum_{j,j'=1}^N \tilde{\Theta}_{jj'}(k) F_l^{(o)}(k,R_{j'}) \tilde{\phi}_{l,j}(k,r)$$
(4.41)

où $F_l^{(o)}(k,r)$, $\tilde{\phi}_{l,j}(k,r)$ et $\tilde{\Theta}_{jj'}(k)$ sont respectivement défins par (1.15), (3.22) et (4.39). On montre que les $\mathcal{F}_{l,\{\tilde{\beta}_l\},\{R\}}(k,r)$ sont des fonctions d'onde de $h_{l,\{\tilde{\beta}_l\},\{R\}}$.

Le déphasage $\delta_{l,\{\bar{\beta}_l\},\{R\}}(k)$ de $h_{l,\{\bar{\beta}_l\},\{R\}}$ s'obtient de la même façon qu'au (3.112). On a:

$$\delta_{l,\{\tilde{\beta}_l\},\{R\}}(k) = -\arctan\frac{\sum_{j,j'=1}^{N}\tilde{\Theta}_{jj'}(k)B_l(k)F_l^{(o)'}(k,R_j)F_l^{(o)}(k,R_{j'})}{A_l(k) - iB_l(k)\sum_{j,j'=1}^{N}\tilde{\Theta}_{jj'}(k)F_l^{(o)'}(k,R_j)F_l^{(o)}(k,R_{j'})}$$
(4.42)

où $A_l(k)$ et $B_l(k)$ sont respectivement définis par (3.64) et (3.65). Le dévéloppement de portée effective correspondant à $\delta_{l,\{\tilde{\beta}_l\},\{R\}}$ est:

$$[(2l+1)!!]^{2}k^{2l+1}\cot\delta_{l,\{\tilde{\beta}_{l}\},\{R\}}(k) = -a_{l,\{\tilde{\beta}_{l}\},\{R\}}^{-1} + \frac{1}{2}r_{l,\{\tilde{\beta}_{l}\},\{R\}}k^{2} + o(k^{4}) \quad (4.43)$$

où un calcul direct donne

$$a_{l,\{\tilde{\beta}_l\},\{R\}} = -\sum_{j,j'=1}^{N} \tilde{\Theta}_{jj'}(0)(l+1)R_j^l R_{j'}^{l+1}$$
(4.44)

.

L'amplitude de diffusion $f_{\{\tilde{\beta}_l\},\{R\}}(k,\omega,\omega')$ associée à $H_{\{\tilde{\beta}_l\},\{R\}}$ est définie par

$$f_{\{\bar{\beta}_l\},\{R\}}(k,\omega,\omega') = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{e^{2i\delta_{l,\{\bar{\beta}_l\},\{R\}}(k)} - 1}{2ik} \overline{Y_l^m(\omega')} Y_l^m(\omega)$$

$$= 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{l,\{\bar{\beta}_l\},\{R\}}(k) \overline{Y_l^m(\omega')} Y_l^m(\omega)$$

$$k \ge 0; \ \omega, \omega' \in S^2$$
(4.45)

où l'amplitude de diffusion $f_{l,\{\bar{\beta}_l\},\{R\}}(k)$ correspondant à l'onde partielle l est donnée par:

$$f_{l,\{\tilde{\beta}_l\},\{R\}}(k) = -B_l^2(k) \sum_{j,j'=1}^N \tilde{\Theta}_{jj'}(k) F_l^{(o)'}(k,R_j) F_l^{(o)}(k,R_{j'})$$
(4.46)

L'opérateur de diffusion $S_{\{\tilde{\beta}_l\},\{R\}}$ associé à $H_{\{\tilde{\beta}_l\},\{R\}}$ est défini dans $L^2(S^2)$ par

$$S_{\{\bar{\beta}_l\},\{R\}} = 1 + 2ik \sum_{l=0}^{\infty} \sum_{m=-l}^{l} f_{l,\{\bar{\beta}_l\},\{R\}}(k)(Y_l^m,.)Y_l^m(\omega)$$
(4.47)

Chapitre 5

GENERALISATIONS ET PROBLEMES OUVERTS

Nous présentons dans ce chapitre quelques problèmes que nous jugeons très intéressants et qui pourraient faire l'objet d'études approfondies.

1. Interactions de type coulombien [14]

Les résultats obtenus dans les chapitres 1-4 peuvent être généralisés au cas des interactions δ et δ' -sphérique plus des interactions de type coulombien. Dans ce cas, l'Hamiltonien libre est remplacé par l'opérateur H défini dans $L^2(IR^3)$ par

$$H = -\Delta + rac{a^2 - 1/4}{|x|^2} + rac{\gamma}{|x|}, \ a > 0, \ x \in IR^3, \ \gamma \in IR$$

2. Interactions δ' -ponctuelle

Dans [3,Lemme 2.3] on étudie la limite de l'Hamiltonien H_{α} décrivant l'interaction δ -sphérique lorsque le rayon de la sphère tend vers zéro et on a montré que si la constante de couplage α est renormalisée d'une façon appropriée, alors H_{α} converge vers l'Hamiltonien de l'interaction δ -ponctuelle [10] lorsque $R \to 0$ dans la topologie de la convergence forte des résolvants.

Il serait intéressant d'étudier cette limite pour l'Hmiltonien $H_{\hat{\alpha}}$ de l'interaction δ' -sphérique.

L'analyse menée dans [3] pour H_{α} porte à croire que lorsque $R \to 0$, $H_{\tilde{\alpha}}$ tend vers l'Hamiltonien de l'interaction δ' -ponctuelle dans la topologie

forte des résolvants.

Le calcul de cette limite justifie l'intérêt d'une étude systématique de l'interaction δ' -ponctuelle.

On note que cette interaction est différente de l'interaction étudiée dans [10] et "inadéquatement" appelée interaction δ' -ponctuelle.

Dans [24] l'interaction ci dessus citée est appelée interaction δ - ponctuelle de 2^{eme} espèce.

3. Propriété de trace de $(H_{\tilde{\alpha}} - k^2)^{-1} - (H_o - k^2)^{-1}$

En vue d'étudier la théorie de la diffusion de $H_{\tilde{\alpha}}$ dépendant du temps, il est utile de vérifier le critère de Birman qui stipule que si la différence $(H_{\tilde{\alpha}}-k^2)^{-1}-(H_o-k^2)^{-1}$ est un opérateur à trace, alors les opérateurs d'onde correspondant à $H_{\tilde{\alpha}}$ existent et sont asymptotiquement complets.

Cette étude peut être effectuée suivant la méthode dévéloppée dans [3]. D'autre part, une étude de la théorie de la diffusion dépendant du temps correspondant à $H_{\tilde{\alpha}}$ peut être réalisée suivant [25] en utilisant la théorie des formes symétriques fermées semi-bornées inférieurement.

4. Interactions δ' -sphérique à support sur N sphères concentriques:conditions frontières non séparées

Suivant [7], il est possible de mener une étude systématique des interactions δ' -sphérique de 1^{ere} et 2^{eme} espèces à support sur N sphères concentriques correspondant à des conditions frontières non séparées.

5. <u>Cas relativiste</u>

Dans [26] et [27], Dittrich et al ont étudié le cas d'une particule relativiste dans les interactions δ -sphérique et δ -sphérique plus une interaction coulombienne. Nous avons continué cette étude par le cas δ sphérique à support sur N sphères concentriques. Il serait intéressant de voir le cas d'une interaction δ' -sphérique.

APPENDICES

<u>Appendice A</u> : Extensions auto-adjointes d'opérateurs symétr iques Soit \mathcal{H} un espace de Hilbert. Dans toute la suite les opérateurs qui seront considéres seront supposés à domaines dense dans \mathcal{H} . I) <u>Définitions</u>

(1) Soient A_1 et A deux opérateurs dans \mathcal{H} . On dit que A_1 est une <u>extension</u> de A, on note $A \subseteq A_1$, si et seulement si $\mathcal{D}(A) \subset \mathcal{D}(A_1)$ et $A_1\varphi = A\varphi$ pour tout $\varphi \in \mathcal{D}(A)$.

(2) Un opérateur A est dit <u>fermable</u> s'il admet une extension fermée. Toute opérateur fermable A admet une plus petite extension fermée appelée sa <u>fermeture</u> et notée \overline{A} .

(3) Soit $\mathcal{D}(A^*)$ l'ensemble des $\phi \in \mathcal{H}$ tels qu'il existe $\eta \in \mathcal{H}$ avec

 $(A\psi,\varphi) = (\psi,\eta)$ pour tout $\psi \in \mathcal{D}(A)$

Pour tout $\varphi \in \mathcal{D}(A^*)$, on peut définir $A^*\varphi = \eta$.

 A^* est appelé <u>l'adjoint</u> de A. L'élément η est unique si $\mathcal{D}(A)$ est dense dans \mathcal{H} .

(4) Soit A un opérateur fermé dans \mathcal{H} . Un nombre complexe λ appartient à <u>l'ensemble résolvent</u> $\rho(A)$, si $\lambda I - A$ est une bijection de $\mathcal{D}(A)$ sur \mathcal{H} , et par conséquent (par le théorme du graphe fermé), $(\lambda I - A)^{-1}$ est borné.

Si $\lambda \in \rho(A), \hat{R}_{\lambda}(A) = (\lambda I - A)^{-1}$ est appelé le <u>résolvant</u> de A.

(5) L'opérateur A est dit <u>symétrique</u> si $(A\varphi, \psi) = (\varphi, A\psi)$, pour tout $\psi, \varphi \in \mathcal{D}(A)$.

A est dit auto-adjoint si $A = A^*$.

(6) Soit A un opérateur symétrique dans \mathcal{H} et considérons les espaces:

$$K_{+} = Ker(i - A^{*})$$

et

$$K_- = (i + A^*)$$

Les nombres $n_+ = \dim K_+$ et $n_- = \dim K_-$ sont appelés <u>indices de défaut</u> de A. On écrit : def $A = (n_+, n_-)$.

(7) Une application antilinéaire $C : \mathcal{H} \longrightarrow \mathcal{H} [C(\alpha \varphi + \beta \psi) = \overline{\alpha}, [C(\varphi) + \overline{\beta}C(\psi)]$ est applée une conjugaison si elle préserve la norme et $C^2 = I$.

II) Propriétés

<u>Théorme A.1</u> Un opérateur symétrique fermé est auto-adjoint si et seulement si A^* -est symétrique.

<u>Théorème A.2</u> Soit A un opérateur symétrique de domaine $\mathcal{D}(A)$. Alors le domaine $\mathcal{D}(A^*)$ de l'opérateur A^* peut s'écrire comme

$$\mathcal{D}(A^*) = \mathcal{D}(A) \bigoplus K_+ \bigoplus K_-$$

et si \tilde{A} est une extension symétrique quelconque de A, alors $\mathcal{D}(\tilde{A}) \subset \mathcal{D}(A^*)$. En plus $\forall \varphi \in \mathcal{D}(\tilde{A}), \varphi = \varphi_o + \psi_+ + V\psi_-$ où $\varphi_o \in \mathcal{H}(A), \psi_+ \in K_-$ et $\psi_- \in K_+, V$ étant une isométrie de domaine contenu dans K_+ et d'image contenu dans K_- .

<u>Théorme A.3</u> Soit A un opérateur symétrique et fermé dans \mathcal{H} , tel que def $A = (N, N), N \in IN^*$.

Soit B et C deux extensions auto-adjointes distinctes de A. Alors

$$(B-z)^{-1} - (C-z)^{-1} = \sum_{m,n=1}^{N} (\phi_n(\overline{z}, .) \phi_m(z))$$

 $z \in \rho(B) \bigcap \rho(C)$

où $\phi_m(z), m = 1, ..., N$ sont des solutions indépendantes de l'équation

 $A^*\phi(z) = z\phi(z)$; $\phi(z) \in \mathcal{D}(A^*)$

En général, on a det $[\lambda(z)] \equiv 0$. De plus $\forall z, z' \in \rho(B) \cap \rho(C)$

$$\lambda^{-1}(z) = \lambda^{-1}(z) + (z - z') \left[(\phi_n(z'), \phi_m(\overline{z}) \right]_{n,m=1}^N$$

<u>Théorème A.4</u> Soit A un opérateur symétrique et supposons qu'il existe une conjugaison C avec $C : \mathcal{D}(A) \to \mathcal{D}(A)$ et AC = CA. Alors, A a des indices de défaut égaux et donc admet des extensions auto-adjointes.

Appendices B Convergence des opérateurs non bornés

<u>Définitions</u> Soient $A_n, n = 1, 2, ...$ et A des opérateurs auto-adjoints. On dit que A_n converge vers A au sens de la <u>convergence en norme des résolvants</u> si $R_{\lambda}(A_n) \longrightarrow R_{\lambda}(A)$ en norme pour tout λ tel que $Im\lambda \neq 0$. A_n converge vers A au sens de la <u>convergence forte en norme des résolvants</u> si $R_{\lambda}(A_n) \longrightarrow$ $R_{\lambda}(A)$ fortement pour tout λ tel que $Im\lambda \neq 0$.

<u>Théorème B.1</u> Soient $\{A_n\}_{n=1}^{\infty}$, et A une famille d'opérateurs auto-adjoints uniformément bornés. Alors $A_n \longrightarrow A$ au sens de la convergence en norme des résolvants si et seulement si $A_n \longrightarrow A$ en norme.

<u>Théorème B.2</u> Soient $\{A_n\}_{n=1}^{\infty}$, et A des opérateurs auto-adjoints, et λ_o un point de *IC*.

(a) Si $Im\lambda_o \neq 0$ et $||R_{\lambda_o}(A_n) - R_{\lambda}(A)|| \to 0$, alors $A_n \to A$ au sens de la convergence en norme des résolvants.

(b) Si $Im\lambda_o \neq 0$ et si $R_{\lambda_o}(A_n)\phi - R_{\lambda_o}(A)\phi \longrightarrow 0$, pour tout $\phi \in \mathcal{H}$, alors $A_n \to A$ au sens de la convergence forte en norme des résolvants.

<u>Théorème B.3</u> Soient $\{A_n\}_{n=1}^{\infty}$, et A des opérateurs auto-adjoints. Alors $A_n \longrightarrow A$ au sens de la convergence forte en norme des résolvants si et seulement si e^{itA_n} converge fortement vers e^{itA} pour chaque t.

Références

- J.Shabani: Thèse Université Catholique de Louvain, Faculté des Sciences. Modèles exactement solubles d'interactions de surface en Mécanique Quantique non relativiste Louvain la Neuve, 1986
- [2] J.P.Antoine, P.Exner, P.Seba and J.Shabani: Reprinted from Annals of Physics. vol.233, No.1,1-16(1994)
- [3] J.P.Antoine, F.Gesztesy and J.Shabani: J.Phys A<u>20</u> (1987), 3687-3712.
- [4] T.Ikebe and S.Shimada: J.Math.Kyoto Univ, 31-1 (1991), 219-258.
- [5] M.N.Hounkonnou, M.Hounkpe and J.Shabani:"Scattering theory for finitely many sphere interactions supported by concentric spheres". Accepté pour publication dans le J.Math.Phys.
- [6] J.Shabani: J.Math.Phys <u>29</u>,660 (1988)
- [7] L.Dabrowski and J.Shabani:J.Math.Phys <u>29</u> (1988), 2241-2244
- [8] I.M.Green, S.A.Moszkowski:Phys.Rev vol 139 N_o 43, 790 (1965)
- [9] S.M.Blinder: Phys.Rev <u>18A</u>, 853 (1978)
- [10] S.Albeverio, F.Gesztesy, R.Hoegh-Krohn and H.Holden: Solvable Models in Quantum Mechanics. Texts and Monographs in Physics (Springer Verlag, Berlin 1988).
- [11] M.Abramowitz and I.A.Stegun: Handbook of Mathematical Functions. (Dover Publications Inc, New York, N.Y 1972)

- [12] N.I.Akhiezer and I.M.Glazman: Theory of Linear Operators in Hilbert Space. Vol2 (Pitman Publishing Inc. Boston, London, Melbourne, 1981)
- [13] B.Simon: Quantum Mechanics for Hamiltonians Defined as Quadratic Forms (Priceton Univ Press, Princeton-New York 1971)
- [14] F.Gesztesy, B.Thaller: J.Phys A 14 (1981) 639-657
- [15] R.G.Newton: Scattering Theory of Waves and Particles (Springer Verlag, New York-Heidelberg, Second Ed 1982)
- [16] : J.Shabani Nuovo Cim <u>101 B</u> (1988), 429-439
- [17] M.Hounkpe, P.C. Rutomera and J. Shabani : Scattering Theory for a Coulomb plus a Sphere Interaction soumis pour publication au Journal of Physics A.
- [18] D. Bolle and F. Gesytesy : Phys. Rev. A. 30 (1984) 1279-1293
- [19] N.Dunford, J.T.Schwartz: Linear Operators-Part II.Spectral Theory. Interscience Publ.New York-London 1963.
- [20] M.Reed,B.Simon: Methods of Modern Mathematical Physics. IV: Analysis of Operators. Academic Press, New York, San Fransisco-London 1978.
- [21] S.Albeverio, Hoegh-Krohn: J.Math anal appl 101,491 (1984)
- [22] J.Weidmann: Linear Operators in Hilbert Space. Springer- Verlag, New York-Heidelberg-Berlin 1980
- [23] S.Albeverio, F.Gesztesy, Hoegh-Krohn and Kirsh: J.Operators Theory 12 (1984) 101-126
- [24] P.Seba: Reports Math.Phys <u>24</u>(1986) 111-120.
- [25] S.Shimada : Low Energy Scattering with penetrable wall Interaction. Kyoto Univ ;Preprint Kyoto Univ, 1991
- [26] J. Dittrich, PiExner and P.Seba: J.Maths. Phys <u>30</u>,2275-2282 (1989)
- [27] J. Dittrich, P¿Exner and P.Šeba: J.Maths. Phys <u>33</u>,2207-2214 (1992)