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ABSTRACT

Speech is the most used means for human beings communication. Among the major

constraints for general applications of automatic speech recognition, the presence of un-

avoidable background noise is of great importance since the speaker cannot be isolated to

obtain a clean acquisition of the uttered speech to be processed. The separation of noise

and speech with traditional �ltering techniques is hard since respective spectra overlap

each other in frequency-domain. One of the successful approaches to remove noise from

speech is the adaptive noise canceling which aims to subtract noise from a received signal

in an adaptive manner. Several algorithms developed under this approach have shown

good performances. Optimization techniques like neural networks and fuzzy inference

systems o�er the potentiality to deal with encoded data by learning and reasoning as

humans do. Neural Networks have a remarkable learning capability such that a desired

input-output mapping can be discovered through learning by examples. Their use in an

adaptive noise cancellation system, allows the compensation of channel e�ects. On the

other hand, Fuzzy Inference Systems success is mostly due to the fact that fuzzy if-then

rules are well-suited for capturing the imprecise nature of human knowledge and rea-

soning process. The resulting system that combines these two schemes produces robust

systems for noise cancellation problem.

We report, on this dissertation, an analysis in integrating both neural networks and

fuzzy inference systems for noise cancellation from speech signal.

We implemented a nonlinear model to cancel noise from the speech signal based on

Adaptive Neuro-Fuzzy Inference System and exploiting Widrow's approach. The sys-

tem is tested in di�erent noisy environments. Performance studies are carried out for

qualitative and quantitative evaluations.

Time is an important factor when designing a system for a given task. A fast neuro-

fuzzy inference system is proposed for speech noise cancellation in almost real-time com-

putation.

Since noise is distorted by a highly nonlinear process before corrupting the speech sig-

nal, we proposed some passage dynamic functions that model the environment through



which the noise waves undergo before corrupting the speech signal. Moreover, we imple-

mented a neuro- fuzzy system able to identify the noise source before canceling its waves

from the speech signal.

Classi�cation is an important problem in the pattern recognition �eld. Before being

used by the speech recognition system, speech sentences must be preprocessed. Two pre-

processing algorithms namely Linear Prediction Coding (LPC), and RASTA (RelAtive

SpecTrAl) techniques are used for extracting features from the speech signals to classify

both English stops and noise soures. Time Delay Neural Networks and Recurrent Neural

Networks are used as classi�ers.
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1. Introduction

So far as the laws of mathematics refer to

reality they are not certain. And so far as

they are certain, they do not refer to reality.

{ Albert Einstein.

1.1. Introduction

One of the major problems in Automatic Speech Recognition (ASR) is the use of speech

as input to a computer. For most real applications, the speaker cannot be isolated for

acquiring a clean speech sentence. In general, the background noise and internal noise

corrupt the speech signal. Many �ltering techniques have been proposed to remove noise

from a speech signal. Most of such methods are based on time-domain and frequency-

domain. Systems based on time-domain do not always lead to eÆcient results since the

estimated sentence is not qualitative. On the other hand, the drawback of systems based

on frequency-domain is that noise and speech signals have overlapped spectra. One of

the successful approaches is the adaptive �ltering which aims to subtract noise from a

received signal in an adaptive manner. Several algorithms developed under this concept

have shown that it is possible to achieve good performance. Due to the changing nature

of noise, systems with the capabilities to adapt their answer to the changing pattern

features and able to implement a nonlinear mapping from the input to the output space

should perform better than other traditional �ltering techniques. Recognition systems

based on arti�cial neural networks have the capability of learning from samples while

fuzzy inference systems use the imprecision of human reasoning to deal with data. A

better approach is to use hybrid systems which combine these two learning techniques.
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Systems implemented in the present dissertation exploit both neural network potentialities

and fuzzy system capabilities.

1.2. Motivation

Noise is everywhere and is introduced into the speech signal through di�erent envi-

ronments such as moving cars or crowded public gathering places. Modeling a system

for nonlinear adaptive noise cancellation could be useful for a wide range of o�-line

applications namely voiced mail, voiced messaging, cleaning recordings for criminal in-

vestigations, hand-free mobile telephony, audio-conferencing. System modeling based on

mathematical tools such as transfer equations, di�erential equations are appropriated

and well justi�ed when it is possible to describe exactly each parameter involved in the

system. However, when the variables describing the system are unclear or are known

with uncertainty, mathematical tools become less eÆcient. Neural Networks and Fuzzy

Logic modeling have been proposed as alternative optimization techniques to overcome

the above mentioned problem since they can provide satisfactory solutions due, to their

capabilities to deal with learning by examples, fault tolerance, parallel distribution of

data, imprecise nature of human reasoning. Neural Network modeling is motivated by

biological neural systems while Fuzzy Logic modeling is closely related to psychology

and cognitive science. Integrating these two schemes can generate hybrid models that

provide good systems able to solve real-world problems like noise cancellation from a

speech signal. Many hybrid systems are proposed depending on the objective. Among

such systems, the Adaptive Neuro-Fuzzy Inference System (ANFIS) [40] is one of the

most promising for parameters' estimation. ANFIS is a hybrid learning algorithm that

combines the least-squares method and the backpropagation gradient descent method.

1.3. Thesis Objective

In this dissertation, we report on nonlinear adaptive models based on ANFIS that inte-

grates both Neural Network and Fuzzy Inference System potentialites, to cancel noise

from a speech signal in di�erent noisy environments, and to identify the nature of the

noise sources. The proposed systems are based on Widrow approach [84] in de�ning the

primary input for the implemented system. We showed that it is possible to achieve very
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good performance with systems based on neuro-fuzzy approaches. The results obtained

are evaluated quantitatively and qualitatively.

Modeling the channels through which the noise goes to corrupt the speech signal is a

challenge and diÆcult problem in nature. Indeed, there is a priori no precise statistical

knowledge about how the channels behave and on the e�ects of the changing environment

upon them. To model them, we proposed some nonlinear functions (called passage

dynamic functions) that describe the channel through which the noise waves undergo to

corrupt the speech signal [19, 20, 21].

To perform well Adaptive �ltering systems require a sample of noise source. This

requirement limits their application to situation where the recording of noise sources are

available. One of the requirements when applying adaptive �ltering techniques [84] is

that the noise source must be known and not correlated to the speech. To overcome such

a requirement, we proposed a neuro-fuzzy system able to identify a noise source before

evaluating the estimated sentence. Performance of the implemented system is evaluated

[23].

Another problem which arises in implementing neuro-fuzzy systems is the computa-

tional time which is very high due to the training process. Our approach, to avoid such

a problem for the proposed system, is to train the system over the longest sentence in

our bilingual database. The fuzzy inference system generated is saved to evaluate each

sentence in the database. The results showed that in a few seconds, the implemented

system is able to produce the estimated sentence close to the original one [22].

To be used by a recognition system, speech sentences must be preprocessed. Classi-

�cation with neural networks is an important problem. We reported two experiments in

classifying speech units and four di�erent noise sources. We found that neural networks

are good classi�ers when appropriate architecture and setup are used [24, 25, 26].

1.4. Outline

This dissertation is divided into two major sections. The �rst one is devoted to the

theory necessary to understand fuzzy logic modeling, neural networks modeling and noise

�ltering techniques whereas the second presents our contribution to this dissertation.

The �rst section is composed of three chapters. Chapter 2 contains a review on fuzzy
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sets theory. This �rst discussion will introduce the necessary notations, fundamental

concepts, and fuzzy real-world applications are presented. Chapter 3 presents the major

architectures used in Neural Network theory and the well-known and most used back-

propagation algorithm. Adaptive Networks, Multilayer Perceptron, Time Delay Neural

Networks, Radial Basis Function Networks, Recurrent Networks and Adaptive Networks

are reviewed. We focused on a hybrid learning algorithm that combined the least-squares

estimator and the gradient descent algorithm. In Chapter 4, we review some existing

techniques relative to noise cancellation from speech signal.

The second section contains �ve chapters that are our contribution to this thesis.

Chapter 5 presents the ANFIS architecture used in our system implementation with the

bilingual database for testing the system performance. We gave a full description of a

hybrid system proposed for noise cancellation from speech signal [19, 20]. The learning

procedure is reported. Chapter 6 presents a fast neuro-fuzzy system for noise cancella-

tion in almost real-time computation [21, 22]. Chapter 7 presents a full description of a

system able to identify the noise waves in a noisy sentence [23]. Identi�cation criterion

is introduced. Chapter 8 presents one of the most attractive topics in speech recogni-

tion that is classi�cation with neural networks. In this chapter, we report the results

of the classi�cation of speech units and four noise sources. Di�erent preprocessing algo-

rithms are reported [24, 25, 26]. Chapter 9 concludes this work giving ideas for further

investigation.
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2. Overview of Fuzzy Sets Theory

As complexitiy rises, precise

statments lose meaning and meaningful

statments lose precision.

{ Lot� A. Zadeh.

Introduction

Classical sets are suitable for various applications and have proved to be an important tool

in mathematics and computer science. However, when asking anyone how the weather

is, the natural answer could be \it is hot", or \it is cold" and so on - but not the exact

temperature value, i.e. 25Æ Celsius for example. It appears that mathematical tools do

not reect the nature of human concepts, thoughts and reasoning. As a further example,

let's assume A to be a set de�ned as A = fx 2 R j x > 1g and let's consider the two

numerical values x1 = 1:001 and x2 = 0:999. The dichotonomous nature of the classical

sets theory would classify x1 in A but not x2 since the transition between inclusion and

exclusion is sharp. In contrast to classical sets, fuzzy sets are without crisp boundaries.

In other words, the transition from belonging or not belonging to a set is gradual. This

smooth transition is characterized by membership functions that give fuzzy sets exibility

in modeling commonly used linguistic expressions.

This chapter introduces the basic de�nitions, notations and operations for fuzzy sets,

including their membership function representations, sets theoretic operators (AND, OR,

NOT), and advanced operators such as T-norm and T-conorm. Finally, fuzzy reasoning,

fuzzy relations and fuzzy logic real-world applications are presented.
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2.1. De�nition

Let X be the discrete or continuous universe of discourse. A fuzzy set A in X is a set

of ordered pairs of the form A = f(x; �A(x)) j x 2 Xg where �A(x) is a membership

function grade for the fuzzy set A. In other words, a fuzzy set is a class with unsharp

boundaries in which the transition from membership to nonmembership is gradual rather

than abrupt [53]. In practice, most fuzzy sets used have a universe of discourse consisting

of the real line R. Fuzzy sets are introduced by generalizing the characteristic function.

2.1.1. Convexity and Normality

A fuzzy set A in X is convex according to its membership function �A; if and only if the

following condition is satis�ed:

8 x1; x2 2 X; 8� 2 [0; 1]; �A[�x1 + (1� �)x2] � min[�A(x1); �A(x2)]:

This de�nition of convexity of a fuzzy set is not as strict as the common de�nition of

convexity of a crisp set in R
n , n-dimensional space 1. A fuzzy set A in X is normal if

and only if:

9 x0 2 X : �A(x0) = 1:

A fuzzy set A in X that satis�es both the convexity and normality requirements is

called a fuzzy number. Most fuzzy sets used in literature are fuzzy numbers.

2.1.2. Cardinality

A basic notion of an ordinary or crisp set A is its cardinality jAj, that is the number

of elements belonging to A. Since the notion of belonging loses its meaning when A

is a fuzzy set, it is not meaningful to speak of the number of elements in a fuzzy set.

However, the notion of cardinality may be extended to fuzzy sets by de�ning it in a

more general sense as

jAj =
X
x2X

�A(x)

1A crisp set C in Rn is convex if and only if, the following condition is satis�ed

8x1; x2 2 C; 8� 2 [0; 1]; �x1 + (1� �)x2 2 C:
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where �A(x) is the membership function of the fuzzy set A in X. For instance, if X is

a group of four men named Bob, John, Peter, Tony, and A the fuzzy set of Tall men in

X, then we can write symbolically:

X = fBob; John; Peter; T onyg

and

A = f(Bob; 0:4); (John; 0:7); (Peter; 0:1); (Tony; 0:5)g

where �A(Bob) = 0:4; �A(John) = 0:9; �A(Peter) = 0:1; and �A(Tony) = 0:5:

One has jXj = 4 and jAj = 1:7.

2.2. Membership Functions

Let X be a discrete or continuous universe of discourse and A a fuzzy set in X. The

membership function for the fuzzy set A denoted �A(x) maps each element of X to a

membership grade onto the set M which could be assumed to be [0; 1] as usual without

loss of generality. Otherwise, the resulting set M could be normalized 2.

�A : X ! M

x 7�! �A(x)

When the membership grade is restricted to either 0 or 1, then the fuzzy set A is reduced

to a classical set where �A(x) is the characteristic function. An object x belongs to a

classical set A if and only if 1A(x) = 1 where 1A denotes the characteristic function

de�ned as

1A(x) =

�
1 if x 2 A

0 if x =2 A:

Classical sets are closely related to characteristic function.

The construction of a fuzzy set requires both the identi�cation of a suitable (discrete

or continuous) universe of discourse and of an appropriate membership function. As

pointed out by Zadeh [89], a fuzzy set expresses the degree to which an element belongs

to a set. Hence, the characteristic function of a fuzzy set is allowed to have values

between 0 and 1 and such values indicate the degree of membership of an element in the

given set.

2Assume M = [p; q] � R with p < q. It is easy to prove that t 2M is equivalent to t�p

q�p
2 [0; 1]
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Assignement of a membership function to a fuzzy set is subjective in nature. How-

ever, it cannot be assigned arbitrarly. A more convenient and concise way to de�ne

a membership function is to express it as a mathematical formula. There exists vari-

ous types of membership functions depending upon the concept and the problem faced

[62]. Fuzzy sets considered reviewed in this dissertation are convex and normal except

those with sigmoidal membership function. The following functions are mostly used in

practice, due to their tractability in modeling the linguistic variables.

2.2.1. Gaussian Membership Functions

Gaussian membership functions are characterized by two parameters: the mean c and

the standard deviation �. The numerical value � represents the center of the membership

function whereas c determines the width3 and the shape of the membership function. A

Gaussian membership function is expressed as:

gaussmf(x; c; �) = e
�1

2
(x�c

�
)2
:

Gaussian membership functions are becoming popular for specifying fuzzy sets since

they are well smooth. Figures 2.1 and 2.2 show the e�ects of changing di�erent values

of the mean c and the standard deviation �.

Figure 2.1.: E�ect of changing the values of the mean c in a Gaussian membership func-

tion. Numerical values used are 0.5, 1, 2, 3 respectively whereas the standard

deviation � is �xed to 5.

3The width of a membership function is de�ned as the Euclidean distance between the two unique
crossover points.
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Figure 2.2.: E�ect of changing the values of the standard deviation � in a Gaussian

membership function. The values used are 2, 4, 6, 8 respectively whereas

the mean value c is �xed to 1.

Gaussian functions are well known in probability and statistics, and they possess

useful properties such as invariance under multiplication, and Fourier transform [70]

and can model the fuzzy concept like around.

2.2.2. Generalized Bell Membership Functions

The generalized bell membership functions have one more �tting parameter than the

Gaussian membership functions. Therefore, they have one more degree of freedom to

adjust the steepness at the crossover points4. A generalized bell membership function is

de�ned as

gbellmf(x; a; b; c) =
1

1 + (x�c
a
)2b

where a is half the width of the membership function, b controls the slopes at the

crossover points and c determines the center of the membership function. Figures 2.3,

2.4, 2.5 illustrate the e�ects of changing each parameter in a bell membership function.

2.2.3. Sigmoidal Membership Functions

The asymmetric property of a sigmoidal function is important for representing concepts

such as very large or very negative. Sigmoid functions are widely used in the arti�cial

neural network theory as activation function and can be considered as a continuous

4A crossover point of a fuzzy set A is a point x 2 A at which �A(x) = 0:5
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Figure 2.3.: Controling the width of a generalized bell function. The values of the pa-

rameter a are 1, 1.5, 2, 2.5 respectively whereas parameters b and c are �xed

(b = 1:5 and c = 4:5).

approximation of the step function5. A sigmoid function depends upon two parameters

and is de�ned as:

sigmf(x; a; c) =
1

1 + e�a(x�c)
:

One can easily prove that the crossover point is reached at x = c. In practice, a is a

positive value. The logistic function is a special case of sigmoid function when a = 1 and

c = 0. Figure 2.6 shows the e�ects of using negative values for the parameter a whereas

Figure 2.7 shows the plot of logistic function.

2.2.4. Triangular Membership Functions

Triangular membership functions are de�ned as:

triangmf(x; a; b; c) =

8>><>>:
0 x � a
x�a
b�a

a � x � b

c�x
c�b

b � x � c

0 x � c:

The parameters a; b; c (with a � b � c) determine the x coordinates of the three

corners of the underlying triangular membership functions. One can easily prove that a

5Also known as signum function, the step function is de�ned as

h(x) =

�
1 if x > x0

0 if x � x0:
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Figure 2.4.: Controling the slopes of a generalized bell function. The values used for the

parameter b are 1, 2, 3, 5 respectively whereas the parameters a and c are

�xed (b = 1 and c = 2:5).

triangular function can also be expressed as:

triangmf(x; a; b; c) = max

�
min

�
x� a

b� a
,
c� x

c� b

�
; 0

�
:

Figure 2.8 shows the e�ects of changing values of di�erent parameters that de�ne the

triangular function.

2.2.5. Trapezoidal Membership Functions

Trapezoidal membership functions are de�ned as:

trapezoidmf(x; a; b; c; d) =

8>>>><>>>>:
0 x � a
x�a
b�a

a � x � b

1 b � x � c
d�x
d�c

c � x � d

0 x � d:

The parameters a; b; c; d determine the x coordinates of the four corners of the un-

derlying trapezoidal membership functions. Notice that when b is equal to c, trapezoidal

membership functions are reduced to triangular membership functions. Due to their sim-

ple formulas and computational eÆciency, both triangular and trapezoidal membership

functions have been used extensively, especially in real-time implementations [23, 39].

Figure 2.9 shows the shapes of di�erent trapezoidal functions.
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Figure 2.5.: Determination of a center of a generalized bell function. The values used

for the parameter c are 2, 2.3, 2.6, 2.9 respectively whereas the parameters

a and b are �xed (b = 1:5 and b = 4:5).

2.3. Classical Fuzzy Set Operators

Classical fuzzy operators as equality, containment, intersection, union, and complement

are the generalization of the crisp set operators. In fuzzy logic, such operators are de�ned

in terms of their membership functions. Moreover, the last three operators can also be

viewed as the generalization of logical OR, logical AND and logical NOT respectively

[62]. In this section and the followings, we will assume X to be a discrete or continuous

universe of discourse.

2.3.1. Fuzzy Equality

A fuzzy set A in X is equal to a fuzzy set B in X if and only if their respective

membership functions are equal. In symbols,

A = B () 8x 2 X; �A(x) = �B(x):

This de�nition of equality is crisp. Lin and Lee in [54], proposed the similarity measure

to check the degree of equality of two fuzzy sets. Given two fuzzy sets A and B in X,

the similarity measure is de�ned as E(A;B) =
jA\Bj

jA[Bj
.
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Figure 2.6.: E�ects of using negative values of the paramter a for sigmoid function. The

values used for the parameter a are -1, -2, -3, -6 respectively whereas the

parameters c is �xed to 4.5.

Figure 2.7.: Plot of logistic function (a = 1 and c = 0).

2.3.2. Fuzzy Subset

A fuzzy set A in X is contained in a fuzzy set B in X if and only if their membership

functions �A and �B satisfy the inequality �A � �B. In other words,

A � B () 8x 2 X; �A(x) � �B(x):

As for fuzzy equality, the de�nition of fuzzy subset (also known as fuzzy containment) is

crisp. To check the degree that A is a subset of B, Kosko in [49] proposed the subsethood

measure de�ned as S(A;B) =
jA\Bj

jAj
.
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Figure 2.8.: E�ects of changing values of the di�erent parameters that de�ne the trian-

gular function. One has (i): a = 0:5; b = 1; c = 2; (ii): a = 2; b = 2:5;

c = 3:5; (iii): a = 4; b = 5:5; c = 7; (iv): a = 6; b = 8; c = 10:

2.4. Negation Complement

The negation complement of a fuzzy set A in X is a fuzzy set denoted A with the

membership function de�ned as

8x 2 X; �A(x) = 1� �A(x)

where �A(x) represents the membership function of the fuzzy set A. Assume A to be

a fuzzy set described by �A(x) = gbellmf(x; a; b; c). One can prove that the classical

fuzzy complement of A is described by the membership function de�ned as �A(x) =

gbellmf(x; a;�b; c).

2.4.1. Fuzzy Intersection

The intersection of two fuzzy sets A and B in X is the greatest fuzzy set contained

both in the fuzzy sets A and B. The intersection of two fuzzy sets is speci�ed by a

membership function related to those of A and B as

8x 2 X; �A\B(x) = minf�A(x); �B(x)g :

The law of contradiction well known in classical set theory is no longer true and valid

in fuzzy set theory due to the lack of precise boundaries. That is, for fuzzy set A in X,

A \ A 6= �. For instance, assuming X to be a universe of discourse made up of discrete

14
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Figure 2.9.: Plot showing the shapes of di�erent trapezoidal membership functions. One

has (i): a = 0; b = 1; c = 2; d = 3; (ii): a = 1:5; b = 3; c = 5; d = 6; (iii):

a = 5:5; b = 6; c = 7; d = 8; (iv): a = 7; b = 9; c = 9; d = 10:

numbers and A a fuzzy set in X de�ned as

A = f(�2; 0:1); (1; 0:3); (2; 0:4); (5; 0:5); (8; 0:9)g:

In other words, �A(�2) = 0:1; �A(1) = 0:3; �A(2) = 0:4; �A(5) = 0:5; �A(8) = 0:9:

The classical fuzzy complement set A is de�ned as

A = f(�2; 0:9); (1; 0:7); (2; 0:6); (5; 0:5); (8; 0:1)g

since �A(x) = 1� �A(x): The resulting classical fuzzy intersection set is de�ned as

A \ A = f(�2; 0:1); (1; 0:3); (2; 0:4); (5; 0:5); (8; 0:1)g:

2.4.2. Fuzzy Union

The union of two fuzzy sets A and B in X is the smallest fuzzy set containing both the

fuzzy sets A and B with a membership function de�ned as

8x 2 X; �A[B(x) = maxf�A(x); �B(x)g:

Considering the same hypotheses as in the previous example, on can show that the

resulting classical fuzzy union set is given as

A [ A = f(�2; 0:9); (1; 0:7); (2; 0:6); (5; 0:5); (8; 0:1)g:

15



y y

The law of the excluded middle well known in classical set theory6 is also no longer

true and valid due to the lack of precise boundaries. That is, for a fuzzy set A in X,

A [ A 6= X:

2.5. Generalization of Fuzzy Set Operators

Although classical fuzzy set operators such as complement, intersection and union, pos-

sess more rigourous axiomatic properties, they are not the only ways to de�ne reasonable

and consistent operations on fuzzy sets. In this section, we will examine other de�ni-

tions of the fuzzy complement, intersection and union that generalize the classical fuzzy

operators reviewed in the previous section.

2.5.1. Fuzzy Complement

A fuzzy complement operator is a continuous function N : [0; 1] ! [0; 1] which meets

the boundary, monotonicity and involution axiomatic requirements.

Boundary: N(0) = 1 and N(1) = 0: This requirement guarantees the generalization

of fuzzy complement to crisp sets.

Monotonicity: 8a; b 2 [0; 1]; a � b implies N(a) � N(b): This requirement speci-

�es that N is a decreasing function. Therefore an increase in the membership grade of

a fuzzy set must result in a decrease in the membership grade of its complement.

Involution: N(N(a)) = a: This requirement is optional but guarantees that the

double complement of a fuzzy set is still the set itself.

All functions satisfying these requirements form the general class of fuzzy comple-

ments. The classical fuzzy complement de�ned in the previous section is a special case

of this class of fuzzy complements. Other very well known classes of fuzzy complements

are Sugeno's fuzzy complement and Yager's fuzzy complement de�ned respectively as

Ns(a) =
1� a

1 + sa

and

Nw(a) = (1� a
w)

1

w

where the parameter s is greater than �1 and w a positive parameter.

6In classical set theory, given X a universe of discourse, 8A � X; A [ A = X:
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2.5.2. Fuzzy Intersection

Before de�ning the fuzzy intersection operator, let us �rst review the so called triangular

T-norm operator.

A T -norm (or triangular norm) operator is a two-place function satisfying the fol-

lowing axiomatic requirements:

Boundary: T (0; 0) = 0 and T (a; 1) = T (1; a) = a: This requirement imposes the

correct generalization to crisp sets.

Monotonicity: T (a; b) � T (c; d) if a � c and b � c: This requirement implies that a

decrease in the membership values in A or B must produce a decrease in the membership

value in A \ B.

Commutativity: T (a; b) = T (b; a): This requirement indicates that the operator is

indi�erent to the order of the fuzzy sets to be combined.

Associativity: T (a; T (b; c)) = T (T (a; b); c): This last requirement allows us to take

the intersection of any number of sets in any order of pairwise groupings.

The intersection of the two fuzzy sets A and B is speci�ed in general by a T-norm

function from [0; 1]� [0; 1] �! [0; 1] that aggregates two membership grades as follows:

�A\B(x) = T (�A(x); �B(x)) :

Based on the T-norm de�nition, many T-norm operators are proposed in literature.

Among them:

� Minimum: Tmin(a; b) = min(a; b): The classical de�nition of a fuzzy intersection

reviewed above is based on this type of T-norm. For two fuzzy sets A and B, one

has �A\B(x) = minf�A(x); �B(x)g.

� Algebraic product: Tap(a; b) = ab: The algebraic product of two fuzzy sets

A and B in X is the fuzzy set A � B with the membership function �A�B(x) =

�A(x)� �B(x):

� Bounded product: Tbp(a; b) = max(0; a + b � 1): The bounded product of two

fuzzy sets A and B in X is the fuzzy set A � B with the membership function

de�ned as �A�B(x) = max f0; �A(x) + �B(x)� 1g.
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� Drastic product: Tdp(a; b) =

8<:
a if b = 1

b if a = 1

1 if a; b < 1:
The drastic product of two fuzzy sets A and B is the fuzzy set A�̂B with the

membership function de�ned as

�A�̂B =

8<:
�A(x) if �B(x) = 1

�B(x) if �A(x) = 1

1 if �A()x < 1 and �B(x) < 1:

2.5.3. Fuzzy Union

As in the previous subsection, before de�ning the fuzzy union, let us �rst review the

triangular T-conorm operator.

A triangular T-conorm or S-norm is a two place function satisfying the following

axiomatic requirements:

Boundary: S(1; 1) = 1 and 8 a 2 [0; 1]; S(a; 0) = S(0; a) = a: This requirement

guaranties the correct generalization to crisp sets.

Monotonicity: 8 a; b; c; d 2 [0; 1]; S(a; b) � S(c; d) if a � c and b � d: This re-

quirement ensures that a decreasing in the membership values in A or B cannot produce

an increasing in the membership value in A [B:

Commutativity: 8a; b; 2 [0; 1]; S(a; b) = S(b; a):

Associativity: 8a; b; c; 2 [0; 1]; S(a; S(b; c)) = S(S(a; b); c):

Many T-conorm operators exist. Among them, the following:

� Maximum : S(a; b) = max(a; b): This is the classical de�nition of a fuzzy union

operator. For two fuzzy sets A and B, one has �A[B(x) = max f�A(x); �B(x)g.

� Algebraic sum: 8 a; b 2 [0; 1]; S(a; b) = a+ b� ab: The algebraic sum of two

fuzzy sets A and B in X is the fuzzy set A + B with the membership function

de�ned as �A+B(x) = �A(x) + �B(x)� �A(x)�B(x).

� Bounded sum: 8 a; b 2 [0; 1]; S(a; b) = 1 ^ (a + b): The bounded sum of two

fuzzy sets A and B is the fuzzy set A � B with the membership function de�ned

as �A�B(x) = min f1; �A(x) + �B(x)g.

� Drastic sum:
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8 a; b 2 [0; 1]; S(a; b) =

8<:
a if b = 0

b if a = 0

1 if a; b > 0:

The drastic sum of two fuzzy sets A and B is the fuzzy set A __B with the mem-

bership function de�ned as

�A __B =

8<:
�A(x) if �B(x) = 0

�B(x) if �A(x) = 0

1 if �A(x) > 0 and �B(x) > 0:

From these de�nitions of both T-norm and S-norm, we have the generalized DeMor-

gan Law specifying that T-norm and S-norm are dual. In other words, one has i.e.

T (a; b) = N (S(N(a); N(b))) and S(a; b) = N (T (N(a); N(b))) where N denotes the

fuzzy complement operator.

2.6. Linguistic Variables

The use of words or sentences rather than numbers is due to the fact that linguis-

tic characterizations are in general less speci�c than numerical ones. Before intro-

ducing the formal de�nition of a linguistic variable, let us �rst de�ne a fuzzy vari-

able. A fuzzy variable is characterized by a triple (V;X;R(V )) in which V is the

name of the variable, X is a universe of discourse, and R(V ) is a fuzzy subset of X

which represents a fuzzy restriction imposed by V . As an example, V = \Cold" with

X = f�10ÆC; �5ÆC; 0ÆC; 20ÆC; 30ÆCg. One may have

R(V ) = f(�10ÆC; 0:8); (�5ÆC; 0:7); (0ÆC; 0:5); (20ÆC; 0:03); (30ÆC; 0)g

that is a fuzzy restriction on \Cold". Linguistic variable is a variable of higher order than

fuzzy variable. Linguistic variables are characterized by a quintuple (x; T (x); X;G;M)

in which x is the name of the variable, T (x) denotes the term set of x (that is the set of

its linguistic values or linguistic terms), X is the universe of discourse, G is the syntactic

rule. The syntactic rule refers to the way the linguistic values are generated in the term

set T (x). M is the semantic rule. The semantic rule de�nes the membership function

of each linguistic value of the term set T (x).

Sometimes the term set consists of several primary terms modi�ed by the negation

NOT, AND, OR, or the edges7 and then linked by connectives such as, and, or, either,

7The linguistic hedge h is an operator for modifying the meaning of a fuzzy set A to create a new
fuzzy set h(A). For instance, in the fuzzy set \Too Cold", the term \Too" is a linguistic hedge.
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neither. In short, a lingustic variable translates real values into linguistic values.

Example Let temperature � be interpreted as a linguistic variable. It can be de-

composed into the following terms:

T (�) = fToo Cold; Cold; Okay; Hot; T oo Hotg

where each term in T (�) is characterized by a fuzzy set in the universe of discourse

X = [�10ÆC; 40ÆC]: We might interpret \Too Cold" as a temperature below �5ÆC,

\Cold" as a temperature more close to 0ÆC, \Okay" as a temperature close to 20ÆC,

\Hot" as a temperature close to 30ÆC and \Too Hot" as a temperature above 35ÆC. One

can represent the fuzzy set A1 \temperature more close to 0ÆC" with �A1
(x) = 1

1+10x2

and the fuzzy set A2 \temperature close to 30ÆC" with �A2
(x) = 1

1+(x�30)2
: Gaussian

membership functions can be used to represent the fuzzy concept \Too Cold" and \Too

Hot".

2.6.1. Fuzzy If-Then Rules

Through the use of linguistic variables and membership functions, a fuzzy if-then rule

can easily capture the spirit of a rule of thumb used by humans. A fuzzy if-then rule

assumes the form: If x is A then y is B where A and B are linguistic values de�ned

by fuzzy sets on universes of discourse X and Y respectively. Usually \x is A" is called

the antecedent or premise while \y is B" is called the consequence. Due to their concise

form, fuzzy if-then rules are often employed to capture the imprecise modes of reasoning

that play an essential role in the human ability to make decisions in an environment of

uncertainty and imprecision [43].

2.6.2. Fuzzy Reasoning

Human reasoning is fuzzy and vague in nature. Before involving on the most important

mode of reasoning in fuzzy logic theory, let us review the meaning of fuzzy predicate

modi�ers, fuzzy quanti�ers, and fuzzy quali�ers.

To provide the capability of approximate reasoning, fuzzy allows the use of fuzzy

predicates, fuzzy predicate modi�ers, fuzzy quanti�ers, and fuzzy quali�ers in the propo-

sitions. For instance, Tall, Ill, Young, Soon, Friend of, Hot, etc. are fuzzy predicates.
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Classical logic only o�ers as predicate modi�er the negation NOT. In fuzzy logic, in

addition to the negation modi�er, there are a variety of predicate modi�ers that act as

hedges. For instance, Very, Rather, More or Less, Slightly, a Little, Extremely, etc.

Fuzzy logic allows the use of fuzzy quanti�ers exempli�ed by Most, Many, Several,

Few, Much of, Frequently, Occasionally, About ten, etc. From the example, \Most

Africans are kind", the quanti�er Most provides an imprecise characterization of the

cardinality of the fuzzy set kind Africans.

Fuzzy logic allows the use of the fuzzy quali�ers exempli�ed by Not Very, Quiet,

Almost. For example, (Today is �ne) is not very true. The quali�ed proposition is

Today is �ne whereas the qualifying fuzzy truth value is Not very true.

Fuzzy reasoning is an inference procedure that derives conclusions from a set of fuzzy

if-then rules and known facts. There are four principal modes of fuzzy reasoning namely:

categorical reasoning, qualitative reasoning, syllogistic reasoning and dispositional rea-

soning. The most important is the qualitative mode of reasoning [44] since it is the

popular and easy formalism for representing knowledge. In this dissertation, we present

only the qualitative reasoning. The reader should refer to [39, 53] for more details about

other modes of reasoning in fuzzy logic.

Qualitative Reasoning

Qualitative reasoning is the most important mode of reasoning since it is based on if-then

rules that are the popular formalism for representing knowledge. Qualitative reasoning

plays a key role in many applications of fuzzy logic control. Qualitative reasoning refers

to a mode in which the input-output relation of a system is expressed as a collection of

fuzzy if-then rules in which the preconditions and conclusions involve fuzzy or linguistic

variables. In the following section, we will describe the most basic rules of inference used

in qualitative reasoning.

2.6.3. Basic Rules of Inference

The computation of fuzzy rules is called fuzzy rules inference. The inference is a calculus

consisting of two main steps: aggregation and conclusion. Aggregation determines the

degre to which the IF part of the rule is ful�lled, whereas the conclusion is the THEN

part. Let us review some types of rules used in fuzzy logic.
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Generalized Modus Ponens

The modus ponens is a basic rule of inference according to which we can infer the truth

of a proposition q from the truth of a proposition p and the fuzzy implication p =) q.

The modus ponens can be interpreted in the following form: If p is true and if the

proposition \If p is true then q is true" is also true, then the proposition q is true. In

other words, if we denote \x is A" a fact, \if x is A then y is B" a rule, the consequence

or conclusion is \y is B". For instance assume p is \the tomato is red" (fact), and q

\if the tomato is red then the tomato is ripe" (rule). The conclusion should be \the

tomato is ripe" [40]. The generalization of modus ponens is straightforward in using the

predicate modifers. The idea is based on the fact that most human reasoning employs

modus ponens in an approximate manner. For instance, assume we have the implication

if the tomato is red then it is ripe and we know that the tomato is more or less red.

Then we may infer that the tomato is more or less ripe. More generally, denoting \x is

A
0 " the fact, if \x is A then y is B" the rule, the conclusion should be \y is B0 " where

A
0 is close to A and B0 is close to B.

Single Rule with Single or Multiple Antecedents

A fuzzy if-then rule with one antecedent is written as \if x is A then z is C ". The corre-

sponding problem for modus ponens could be expressed in the following way: assuming

\x is A0 " is the fact, \if x is A then z is C " the rule, the consequence is \x is C
0 ".

A fuzzy if-then rule with two antecedents is usually written as \if x is A and y

is B then z is C". The corresponding problem for generalized modus ponens could be

expressed in the following way. Assume \x is A
0 " and \y is B0" is the fact, \if x is A

and y is B then z is C " the rule, the consequence is \z is C 0 ".

Multiples Rules with Multiples Antecedents

The interpretation of multiple rules is usually taken as the union of the fuzzy re-

lations corresponding to the fuzzy rules. Therefore, if \x is A
0 and y is B

0" is the

fact, \if x is A1 and y is B1 then z is C1" the �rst rule, \if x is A2 and y is B2 then

z is C2" is the second rule, the conclusion is \z is C 0 = C
0

1 [C
0

2 " where C
0

1 and C
0

2 are

the inference fuzzy sets for the �rst and the second rules respectively.
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2.7. Measures on Fuzzy Sets

In Fuzzy set theory, two categoricals of incertainties can be recognized: vagueness and

ambiguity. Vagueness is associated with the diÆculty of making a sharp or precise

boundary in grouping objects of interest, while ambiguity is associated to the diÆculty

in making a choice between two or more alternatives. Measures of uncertainty related to

vagueness are referred to as measure of fuzziness. We will review here only the measure

of uncertainty related to the ambiguity namely, fuzzy measure and fuzzy possibility.

2.7.1. Fuzzy Measure

The concept of fuzzy measure was introduced by Sugeno to exclude the additivity re-

quirement of standard measures8.

Before de�ning the fuzzy measure, let us �rst review a Borel �eld. Consider X a

discrete or continuous universe of discourse. A Borel �eld B � P(X) is a family of

subsets of X that satis�es the following conditions:

1. � 2 B and X 2 B:

2. 8 A 2 B, A 2 B where A denotes the complement of A in X.

3. 8 A; B 2 B; A [ B 2 B:

A fuzzy measure on B is a real-valued function g : B �! [0; 1] that satis�es the following

axiomatic requirements:

Boundary conditions: g(�) = 0 and g(X) = 1: This axiom states that we always

know that the element in question de�nitively does not belong to the empty set and

de�nitively does belong to the universal set.

Monotonicity: For all crisp sets A; B such that A � B; g(A) � g(B): In other

words, g is a nondecreasing function.

Continuity: For every monotonic sequence (Ai 2 B) with i 2 N of subsets of X,

then

lim
i!1

g(Ai) = g( lim
i!1

Ai):

This requirement can be omitted when X is �nite.

8A standard measure h is additive if for two disjoint sets A and B, one has h(A [ B) = h(A) + h(B)
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One can easily prove that, for every fuzzy measure g, the following property holds:

8A; B 2 B; g(A \ B) � minfg(A); g(B)g � maxfg(A); g(B)g � g(A [ B):

2.7.2. Possibility Measure

A fuzzy measure � on B is called a possibility measure when the following conditions

are satis�ed:

1. 8A; B 2 B; �(A [ B) = maxf�(A); �(B)g:

2. �(�) = 0 and �(X) = 1. These are called the boundary conditions.

One can easily show that:

8A 2 B; maxf�(A); �(A)g = 1: Therefore �(A) + �(A) � 1:

The latter inequality can be formulated saying that the probability of an event com-

pletely determines the probability of the contrary event while the possibility of an event

is weakly linked with the contrary event.

2.8. Sugeno Fuzzy Models

The Sugeno fuzzy model tries to develop a systematic approach to generating fuzzy rules

from a given (input,output) data set. A typical fuzzy rule in a Sugeno fuzzy model has

the form

if x is A and y is B then z = f(x; y)

where A and B are fuzzy sets in the antecedent, while z = f(x; y) is a crisp function in

the consequent. Usually f(x; y) is a polynomial in the input variables x and y but it can

be any function as long as it can appropriately describe the output of the model within

the fuzzy region speci�ed by the antecedent of the rule. When the function f(x; y) is

a �rst-order Sugeno fuzzy polynomial, the resulting model is a �rst-order Sugeno fuzzy

model [40, 54].

Jang [41] showed that under certain minor constraints, a zero-order Sugeno fuzzy

model is functionally equivalent to a radial basis function network (see next chapter).
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2.9. Fuzzy Logic

Fuzzy logic is an extension of set-theoretic bivalence logic in which the truth values are

terms of the linguistic variable \truth". Its goal is to provide foundations for approximate

reasoning with an imprecise proposition using fuzzy set theory. Unlike the situation in

two-valued logic, the truth values of propositions in fuzzy logic are allowed to range over

the fuzzy subsets of unit interval [0; 1] or over a point in the interval.

The truth value of a proposition \x is A" or simply the truth value of A which is

denoted by v(A) is de�ned to be a point in [0; 1] (called the linguistic truth value) or a

fuzzy set in [0; 1].

Let us assume v(A) and v(B) to be two numerical truth values of propositions A and

B respectively. Below are the four usual fuzzy logic operations:

� v(A) = 1:0� v(A)

� v(A and B) = v(A) ^ v(B) = minfv(A); v(B)g

� v(A or B) = v(A) _ v(B) = maxfv(A); v(B)g

� v(A =) B) = v(A) =) v(B) = maxf1� v(A);minfv(A); v(B)gg:

From these de�nitions, it appears that fuzzy logic operations are an extension of con-

ventional Boolean logic. This is known as the extension principle which states that the

classical results of Boolean logic are recovered from fuzzy logic operations when all fuzzy

membership grades are restricted to the set f0; 1g [89]. In this way, fuzzy subsets and

fuzzy logic are a generalization of classical set theory and logic.

2.10. Fuzzy Relations

Fuzzy relations as other operations have their background in crisp set theory. In this

section, we reviewed crisp relations and how they can be extended for de�ning fuzzy

relations. Through an example, we showed that crip relation cannot always model

human judgment.
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2.10.1. Crisp Relations

Assume A and B to be two sets. A crisp or binary relation R on A � B means that,

for a pair of elements (x ; y) 2 A � B, either xR y or xR y holds. Denoting xR y by

R(x; y), crisp relations are of the form:

xR y ()R(x; y) = 1

and

xR y ()R(x; y) = 0:

In this sense, a crisp relation on A � B can be viewed as a mapping from A � B

to f0; 1g: Even though crisp relations have success in many applications, they cannot

model a concept with imprecise boundaries.

2.10.2. Weakness of Crisp Relation

Le us consider the relation much greater than on the real line R de�ned as

x < y () x >> y:

One can write R(10; 5) = 0: The use of a crisp relation leads to R(100; 10) = 1: This

is not true in practice. Therefore, the use of a membership grade is a possible way for

such a relation to model human reasoning and thoughts.

2.10.3. Fuzzy Relations

The fuzzy concept much greater than can be viewed as a fuzzy relation on R�R de�ned

as:

R(x; y) =

�
f(x� y) if x � y

0 if x < y

where f represents a monotone non decreasing function de�ned on nonnegative real

numbers such that f(0) = 0 and f(+1) = 1: In [89], an example of f is given by

f(x) =

�
1 +

�


x

�2��1

where  is a positive parameter. The fuzzy relation much less than is represented by

R�1 where R�1(x; y) = R(y; x):
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2.11. Fuzzy Inference System

As pointed out by Jang [40], a Fuzzy Inference System (FIS) is based on the past known

behaviour of a target system. It employs fuzzy if-then rules to model the qualitative

aspects of human knowledge and reasoning without employing precise quantitative anal-

yses. The major bene�ts of fuzzy techniques are the possibility to model systems and

to give a system description by using linguistic rules [50]. The fuzzy system is then

expected to be able to reproduce the behaviour of the target system.

A Fuzzy Inference System is composed of �ve functional blocks: a rule base containing

a number of fuzzy if-then rules, a database which de�nes the membership function of the

fuzzy sets used in the fuzzy rules, a decision-making unit which performs the inference

operations on the rules, a fuzzi�cation interface which transforms the crisp inputs into

degrees of match with linguistic values, and a defuzzi�cation interface which transforms

the fuzzy results of the inference into a crisp output.

2.12. Fuzzy Applications

The applications of fuzzy theory are multi-disciplinary in nature and include automatic

control, consumer electronics, signal processing, time-series prediction, information re-

trieval, database management, computer vision, data classi�cation, decision-making,

and so on [39].

2.12.1. Expert Systems

An expert system is a computer program that requires signi�cant human expertise by

using explicitly represented domain and computational decision procedures [44]. There

are three reasons for the use of fuzzy set theory in expert systems:

1. The interfaces of the expert system on the expert's side as well as on the user's

side are with human beings. Therefore, communication in a natural way seems

to be the most appropriate and natural means, generally in the language of the

expert or user.

2. The knowledge base of an expert system is a repository of human knowledge, and

since most human knowledge is imprecise in nature, it is usually the case that the
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knowledge base of an expert system is a collection of rules and fact that, for the

most part are neither totally certain nor totally consistent. The storage of this

vague and uncertain portion of knowledge by using fuzzy sets seems much more

appropriate than the use of crisp concepts and symbolism.

3. Uncertainty of information in knowledge induces uncertainty in the conclusions,

and therefore the inference engine has to be equipped with the computational

capabilities to analyze the transmission of uncertainty from the premises to the

conclusions and to associate the conclusion with some measures of uncertainty

that are understandable and properly interpretable by the user. Human thinking,

when modeled in expert systems, might also increase eÆciency that is decrease

answering time and so on.

2.12.2. Fuzzy Control

Fuzzy control is the branch of fuzzy set theory with the most applications and their

number is steadily growing. The application boom was started when Japanese man-

ufacturers applied fuzzy logic to processes ranging from home appliances to industrial

control. Notable applications of the fuzzy logic controller, include a steam engine, a

warm water process, aircraft ight control, automobile speed control, adaptive control

etc. [54].

Summary

In this chapter, we have reviewed some basic notions, and notations about fuzzy set

and fuzzy logic theory. Such a theory has shown important applications in practice.

Fuzzy inference systems are the most important modeling tools based on fuzzy set theory.

Optimization and adaptive control expand the applications of fuzzy inference systems

to �elds such as adaptive control, adaptive signal processing, nonlinear regression, and

pattern recognition.
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3. Arti�cial Neural Networks

We do not know how the brain represents high-level

information, so cannot mimic that, but we do know

that it uses many slows units that are highly interconnected.

{ R. Beale and T. Jackson.

Introduction

Arti�cial Neural Networks (ANNs) are a promising new generation of information pro-

cessing systems, with the capability of modeling complex nonlinear processes to arbitrary

degrees of accuracy. They are inspired by modeling networks of biological neurons in

the brain. The individual processing elements in ANNs are known as arti�cial neurons,

nodes or simply neurons. An ANN is composed of a large set of neurons, highly inter-

connected by a set of weighted links, with the potential of providing massive parallelism

operations. As an arti�cial model of the human brain, the main properties of ANNs

are the ability to learn, recall, and generalize from training patterns or training data

[54]. The models of ANNs are classi�ed in di�erent categories according to functional

or operation criteria such as supervised or unsupervised learning rules [43]. We reviewed

in this chapter, some neural network architectures namely MultiLayer Perceptron, Time

Delay Neural Networks, Radial Basis Function Neural Networks, Recurrent Neural Net-

works, and focused on Adaptive Networks as a superset of all kind of supervised learning

networks.
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3.1. Fundamental Concepts

The basic function of a biological neuron is to add up its inputs, and to produce an

output if this sum is greater than some value, known as the threshold value.

The aim of a model is to produce a simpli�ed version of a system which retains the

same general behaviour, so that the system can be more easily understood. The model

of a neuron must capture important features that are:

� The output from a neuron is either \on" or \o�".

� The output depends only upon the inputs and upon the activation function of the

neuron. A certain number of inputs must be \on" at any time in order to make a

neuron �re.

Since the inputs are passed through the model neuron to produce the output, the

system is known as a feedforward one.

Assume there are n inputs xi, and therefore n associated weights. The total input

to the neuron can be written as

net input = w1x1 + w2x2 + : : :+ wnxn

=

nX
i=1

wixi:

This sum has to be compared to the threshold value. If the net input is greater than the

threshold value �, the output is 1, otherwise the output is 0. This can be seen graphically

in Figure 3.1 where the x�axis represents the input, and the y�axis the output. The

threshold function is also known as the Heaviside function1. This model is known as

Perceptron. Figure 3.2 shows the plot of the Heaviside function where the thresholding

value is reached at �: Let us denote y as the output of the neuron and f the Heaviside

function. We can write

y = f

 
nX
i=1

wixi � �

!
:

1The Heaviside function is de�ned as

f(x) =

�
1 if x > 0
0 if x � 0:
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Figure 3.1.: Model of an arti�cial neuron.

Figure 3.2.: The thresholding or Heaviside function.

It has been shown that a Perceptron can solve only linear separable problems [4, 7].

Another model known as MultiLayer Perceptron is introduced in literature for solving

more complex discrimination or approximation tasks [28].

3.2. MultiLayer Perceptron

A MultiLayer Perceptron (MLP) consists of several layers of neurons with full intercon-

nections between neurons in adjacent layers. Input data are presented to the network

at the input layer, which contains no processing nodes. It serves only as a data source

for the following hidden layers. Finally the network output is computed by neurons in

the output layer. The nodes in the hidden layer compute internal representations of the
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MLP's are useful for supervised pattern recogniton where the task is to learn a

mapping x and outputs t given a set of training samples

T = f(x1; t1); � � � ; (xn; tn)g:

The learning rule provides the method for adjusting the weights in the network. During

the training phase, the weights are usually updated by an iterative learning algorithm

called error propagation. After this procedure, the MLP can be used to map unseen

patterns to the classes learned during the training. In order to successfully learn the net

should minimize or maximize a cost function called the error function.

Let us denote Ep as the error function for the pattern p, tpj the target output for

pattern p on node j, opj the actual output at the node j and wij the weights from node

i to node j. The error function is de�ned as

Ep =
1

2

X
j

(tpj � opj)
2
:

The activation of each unit j, for pattern p, can be written as

netpj =
X
i

wijopi:

The activation function of each unit j is the sigmoid function2, although any continuously

di�erentiable monotonic function can be used [12, 15]. The output is given by

opj = f(netpj):

Using the chain rule, we can write

@Ep

@wij

=
@Ep

@netpj

@netpj

@wij

:

Let us de�ne the change in error as a function of the change in the net inputs to a unit

as

�
@Ep

@netpj
= Æpj:

2A sigmoid function on R is de�ned as

f(x) =
1

1 + e�kx

where k is a positive constant that controls the spread of the function.
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The error function becomes,

@Ep

@wij

=
@Ep

@netpj

@

@wij

X
k

wkjopk

=
@Ep

@netpj

X
k

@wjk

@wij

opk

=
@Ep

@netpj
opi

= �Æpjopi:

It can be shown that [4] the change in the error function is of the following form:�
Æpj = f

0(netpj)
P

k Æpkwjk for hidden units

Æpj = f
0(netpj)(tpj � opj) for output units.

The error value calculated in the output units is then passed back through the network

to the earlier units to allow them to alter their connection weights. This algorithm is

called backpropagation algorithm.

It has been reported that MLP's with at least one hidden layer can approximate

any continuous function to any desired degree of accuracy, if there are enough hidden

neurons available [5, 73]. This property is called universal function approximation. Thus,

MLP networks with one hidden layer are suÆcient, although additional hidden layers

may improve performance over single hidden layer networks with an equal number of

neurons through increased model complexity.

3.3. Time Delay Neural Networks

MultiLayer Perceptrons do not model time. Problems as speech recognition cannot be

faced by MLP since it is necessary to take into account the temporal nature of speech.

For this reason, Waibel in [80], introduced Time Delay Neural Networks (TDNNs) in

order to perform a time sequence prediction in turning the temporal sequence into a

spatial input pattern [54]. Time-Delay Neural Networks are separated into time frames

called windows. A typical application of TDNNs is phoneme classi�cation [24, 25, 80].

This net is constituted of one input layer, two hidden layers and one output layer.

The size of a hidden layer is a fundamental question often raised in the application

of multilayer feed-forward networks to real world problems [26]. The exact analysis of
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this issue is rather diÆcult because of the complexity of the network mapping and the

non deterministic nature of the training procedures [54]. TDNNs are very suitable for

phoneme recognition because it is believed that features learnt by such nets are invariant

under translation in time.

3.4. Radial Basis Function Networks

The Radial Basis Function Network is a single hidden layer feedforward network with

linear output transfer functions and nonlinear transfer functions �j on the hidden layer

nodes [64]. The activation of a hidden unit is determined by the distance between

the input vector and a prototype vector. The primary adjustable parameters are the

�nal layer weights fwjkg connecting the j�th hidden node to the k�th output node.

There are also weights f�ijg connecting the i�th input node with the j�th hidden node.

Many basis functions exist in literature [7]. The most used is the Gaussian basis function

expressed as

�j(x) = e
�

jjx��j jj
2

2�j
2

where �j is the vector determining the centre of �j and �j controls its width. The k�th

component of the output vector y corresponding to the input pattern x is expressed as

yk(x) =

MX
j=1

wkj�j(x)

where M denotes the number of hidden nodes.

The main di�erence from multilayer perceptron is that the output of the hidden

node j (hj) is given as a radial function of the distance between each pattern vector

and each hidden node weight vector, hj = �j(jjxp � �jjj), rather than a scalar product

hj = �j(x � �j) for multilayer perceptron. Radial basis function networks are intensively

used for function approximation [55].

3.5. Recurrent Neural Networks

In order to model dynamical functions of the brain or to design a machine that per-

forms as well as the brain does, it is essential to utilize a system that is able to store

internal states and implement complex dynamics. This is the motivation under which
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recurrent neural networks have been widely studied [46]. Recurrent neural networks are

one in those self-loops and backward connections between nodes are allowed. Recurrent

networks with symmetric weight connections always converge to state [54] whereas asym-

metric recurrent networks have much complex dynamical. The diversity of dynamical

behavior suggests that such networks may be well suited to the problem of time series

prediction, and signal recognition [54, 60]. There are many types of recurrent neural

networks according to the learning procedure and architecture. When a backpropaga-

tion algorithm is used for training a recurrent neural network, the resulting network is

called recurrent back propagation network [46, 54].

3.6. Adaptive Networks

An adaptive network is a unifying model of all kinds of supervised, feedforward networks.

Its network structure is composed of a set of nodes connected through directional links.

Each node performs a static node function on its incoming signals and on a set of

parameters pertaining to this node. Each node generates a single node output and

each link speci�es the direction of signal ow from one node to another. All or part

of the nodes are adaptive and the node function may vary from one node to another.

The learning rule speci�es how parameters are updated to minimize an error measure

between the actual and the desired output. Each change in the parameters modi�es the

node function and the overall network's behaviour. The links in an adaptive network

have no weights associated to them [39]. To reect the di�erent adaptive capabilities a

node with parameters is called adaptive and is represented by a square, while a node

without parameter is called �xed and is represented by a circle.

The basic learning rule of the adaptive network is the steepest descent method, in

which the gradient descent vector is derived by successive invocations of the chain rule

[43]. The learning procedure more commonly used is the back-propagation algorithm

which is applied to �nd the gradient vector in the network structure. After the gradient

is found, the parameters are updated by means of an available number of derivative-

based optimization and regression techniques [44]. Since in practice, this simple method

is too slow to converge and likely to become trapped into local minima, the steepest

descent method can be combined with the least-squares estimator for fast identi�cation
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of parameters. This learning technique is used in ANFIS [39].

3.7. Network Learning Algorithms

The procedure used to adjust the parameters in order to improve the network per-

formance using the training data set is referred as learning algorithm. The learning

algorithm refers to the way the weights are changed in order to achieve a desired map-

ping between input and output [43]. There are many learning algorithms depending

upon the context, among them, back-propagation, linear least-squares estimator, and

hybrid learning.

3.7.1. Back-Propagation Algorithm

The back-propagation (BP) learning algorithm is one of the most important historical

developments in neural networks. As a consequence neural networks trained through BP

are the most commonly used for applications in a wide range of areas, such as pattern

recognition, signal processing, data compression, and automatic control [44]. Figure

3.3 reports an architecture of a multilayer perceptron neural network, which is one of

the models where a BP algorithm is mostly used. The general principle is as follows:

Figure 3.3.: Architecture of a multi-layer perceptron neural network.

given a training data set of input-output pairs f(x(l); d(l)); l = 1; 2; : : : ; pg, the algorithm

provides a procedure for changing the weights in the network in order to classify the given

input patterns correctly [54]. Every time an input is presented to the network, an output
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is produced. The output produced is compared to the desired output. The error (that is

the di�erence between the produced output and the desired output) of each of the output

neurons is computed. Therefore the BP learning algorithm is applied to the network

consisting of processing elements with continuous di�erentiable activation functions.

Given the input-output pair (x(l); d(l)), the backpropagation algorithm performs two

phases of data ow: the forward and the backward phase.

Forward Phase

During the forward phase, the input pattern x(l) is propagated from the input layer to the

output layer to produce output y(l). Then the errors resulting from the di�erence between

d
(l) and y

(l) are back-propagated from the output to the previous layers to update their

weights. Let us consider a three layers back-propagation network to illustrate the details

for this learning algorithm. The results could be easily extended to networks with any

number of layers.

Let us consider an I{J{K net architecture where I, J , and K represent the number

of nodes in the �rst, second and third layer respectively. Let us consider the input-output

pair (x; d) where the superscript is omitted for notation simpli�cation. Let us assume

that a neuron j in the hidden layer receives an input pattern x. Its total output will be:

netj =

IX
i=1

wij � xi

and its output will be:

zj = f(netj) = f

 
IX
i=1

wij � xi

!
:

The net input for a neuron k in the output layer is then

netk =

JX
j=1

wjkzj =

JX
j=1

wjkf

 
IX
i=1

wjkxi

!
and it produces an output of

yk = f(netk)

= f

 
JX
j=1

wjk � zj

!

= f

"
JX
j=1

wjkf

 
IX
i=1

wijxi

!#
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Backward Phase

During the backward phase, the error between the net output and the desired output is

computed as:

E(!) = 1
2

PK
k=1(dk � yk)

2

= 1
2

PK
k=1 [dk � f(netk)]

2

= 1
2

PK
k=1

h
dk � f

�PJ
j=1wjk � zj

�i2
:

� The weights connecting the node j in the hidden layer to the node k in the output

layer are updated by the formula:

�!jk = ��
@E

@!jk
:

That yields to
�!jk = � � (dk � yk) � f

0(netk) � zj
= � � Æ

(o)
k � zj

where Æ
(o)
k = (dk�yk)f

0(netk) represents the error signal of the k�th node in the output

layer.

� The weights connecting the node i in the input layer to the node j in the hidden

layer are updated by

�wij = �� � @E
@wij

= �� � @E
@netj

�
@netj
@wij

= �� � @E
@zj

� @zj
@netj

� @netj
@vij

= � �
PK

k=1(dk � yk) f
0(netk) � !jk � f

0(netj) � xi

= � �
PK

k=1 Æ
(o)
k � !jk � f

0(netj) � xi

= � � Æ
(h)
j � xi

where Æ
(h)
j =

PK
k=1 Æ

(o)
k � !jk � f

0(netj) is the error on node j�th in the hidden layer.

When the bipolar sigmoid function3 is used as activation function, one can easily show

that

3A bipolar sigmoid function is de�ned as g(x) = 2

1+e�x
� 1 = tanh(x

2
)
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(
Æ
(o)
k = 1

2
(1� y

2
i )(dk � yk) for nodes in the output layer

Æ
(h)
j = 1

2
(1� z

2
j ) �
PK

k=1 Æ
(o)
k !jk for nodes in the hidden layer.

Other di�erentiable functions can be used as activation functions. In practice, the

sigmoid function, and the hyperbolic tangent function are the most used since they have

simple derivatives and make the implementation of the back propagation algorithmmuch

easier [4].

3.7.2. Drawbacks of Back-Propagation Networks

Despite their success in solving real-world problems, MLP networks present some weak-

ness. For instance, back propagation learning algorithms are very slow and may be

trapped into local minima when applied to identify parameters in adaptive neural net-

works [43]. There are some parameters that depends upon the task under examination,

the size of the training data, the architecture to use, etc.

For instance, the choice of learning rate � is critical: Another solution used is the

introduction of the momentum term in the updating formula. In this case, the updating

formula becomes

�!iq(t) = ��
@E

@!iq
+ ��!iq(t� 1)

where � (0 < � < 1) represents the momentum.

Alternative algorithms are proposed up today to avoid such problems. Also the

network architecture is important for the net performance. The number of hidden layer

nodes is a question often raised in applications of MLP to real-world problems [54].

3.7.3. Least-Squares Estimator

The least-squares estimator is known in statistics as linear regression. The output of a

linear model y is given by the following expression

y = �1f1(u) + �2f2(u) + � � �+ �nfn(u)

where u = [u1; � � � ; um]
T is the model's input vector, f1; f2; � � � ; fn are known functions

of u, and �1; � � � ; �n are unknown parameters. Substituting each of the m data pairs
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(xi; yi) into the above expression yields to a set of m linear equations8>>><>>>:
�1f1(u1) + �2f2(u1) + � � �+ �nfn(u1) = y1

�1f1(u2) + �2f2(u2) + � � �+ �nfn(u2) = y2
...

...
...

�1f1(um) + �2f2(um) + � � �+ �nfn(um) = ym:

Using matrix notation, the previous system takes the form A� = y where matrix A is

called the design matrix, � = [�1; � � � ; �n]
T , and y = [y1; � � � ; ym]

T .

The goal is to identify the unknown parameters of the system to be modeled from

the data representing desired input-output pairs f(ui; yi); i = 1; � � � ; m (m � n)g. In

practice, there are more data pairs than �tting parameters. Therefore, an exact solution

satisfying all the m equations might be contaminated by noise, or the model might not

be appropriate for describing the target system. For this reason, the matrix equation

is modi�ed by incorporating an error vector � to account for random noise or modeling

error as follows

A� + � = y:

Once the error has been included in the model, the problem is to search b� that minimized

the sum of squared error de�ned by

E(�) = �
T
�

= (y � A�)T (y � A�)

Theorem: The least-squares estimator b� satis�es the normal equation

A
T
Ab� = A

T
y:

Refer to [40] for a proof to this theorem.

3.7.4. Hybrid Learning Algorithm

A hybrid learning algorithm is a combination of at least two di�erent learning algorithms.

In the Adaptive Neuro-Fuzzy Inference System developed by Jang in [43], two learning

paradigms are combined for identifying premise parameters and consequence parameters.

The two learning algorithms are the least-squares estimator and the gradient descent.

Two updating paradigm techniques can be used: the batch and the pattern learning

which are described below.
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Batch Learning Algorithm

For batch learning, the updating takes place only after the whole training data set has

been presented. The generic premise4 parameter � of the given adaptive network, is

�� = �@E
@�

where � = kqP
�(

@E

@�
)
2
. The step size k should be selected for varying the

speed of convergence.

On-Line Learning Algorithm

For on-line learning, the parameters are updated immediately after each input-output

pair has been presented. The updating is performed using the formula

@Ep

@�
=
X
O�2S

@Ep

@O�

@O
�

@�

where S is the set of nodes whose outputs depend upon the generic premise parameter

�.

Hybrid Learning Algorithm

A good approach for solving the learning problems mentioned above is to combine the

gradient descent and the least-square-estimator for parameter identi�cation [39]. This

hybrid learning works under the following consideration: Assuming that the adaptive

network has only one output represented by O = F (I;S) where I is the set of input

variables and S is the set of parameters (S = S1+S2), S1 is the set of premise parameters,

S2 the set of consequent parameters, and F is the overall function implemented by the

network. If there is a function H such that the composite function H Æ F is linear in

some of the elements of S, then these elements can be identi�ed by the least-squares

estimator method [39, 44]. Now given values of elements in S1, plugging p training data

in this equation, the following matrix equation is obtained.

AX = B

where X is an unknown vector whose components are consequent parameters5 in S2.

When combining the gradient descent and the least square estimator to update the

4Premise parameter will be reviewed in chapter 5 in details.
5Also called linear parameters. We will review linear parameters in Chapter 5.
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parameters in an adaptive network, each epoch of this learning procedure is composed

of a forward and a backward phase. In the forward phase, input data and functional

signals go forward to calculate each node output, until the matrices A and B are obtained

and the parameters in S2 are identi�ed, by the sequential least square formulas,(
Xi+1 = Xi + Si+1ai+1(b

T
i+1 � b

T
i+1)

Si+1 = Si �
Siai+1a

T

i+1
Si

1+aT
i+1

Siai+1

where Si is a covariance matrix and the least squares estimate X� is equal to Xp. See

[43] for details. After identifying the parameters in S2, the functional signals keep going

forward till the error measure is calculated. In the backward phase, the errors propagate

from the output to the input and the parameters in S1 are updated by �� = �� @E
@�
:

Summary

In this chapter, we have reviewed some supervised network models and some of the

learning algorithms. Neural Networks possess optimization abilities, and connectionist

structures. They can learn and generalize from training data. Neural Networks have

been used successfully in various areas including control systems, vision, speech process-

ing, optimization, signal classi�cation, robotics, medical applications, and many others.

The �eld of neural networks is expanding very rapidly. The combination of di�erent

learning techniques is a powerful approach for solving the drawbacks of some learning

algorithms.
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4. Noise Filtering Techniques

We cannot design speech recognition systems that work only in

the quiet controlled environment of a laboratory. In real-world

situations, there will be multiple voices and background noise - street

sounds, music or the hum of an air conditioner to contend with.

{ Pat Russo.

Introduction

Noise is everywhere and is easily added to a given signal. As pointed in [3], the enhance-

ment of noisy speech is of great importance in voice communication systems that are to

be used in real acoustic environments. The unavoidable noise often corrupts the speech

signal in di�erent ways. Noise could be introduced by the communication channel at

the transmission point before the signal is transmitted, at the receiver side, or at several

stages. The objective of a speech enhancement algorithm for human-human communi-

cation is the improvement of the perceptual aspects of the speech signal such as quality

and intelligibility [18]. Quality is a subjective measure which indicates how pleasant or

disturbing the signal is to the listener, while intelligibility is an objective measure of the

amount of information in the signal that can be retrieved by the listener. Depending upon

the di�erent types of noise, the quality of the received waveform can range from being

slightly degraded to being annoying to listen to, and �nally to being totally unintelligible.

This chapter presents di�erent noise �ltering techniques, namely Spectral Subtraction,

RASTA �ltering, Singular Value Decomposition, Adaptive Filtering.
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4.1. Di�erent Types of Noise

Noise is considered as any kind of sound which can be added to a given signal but which

is not meaningful for the signal. A noise is said to be Gaussian if repeated sampling of

the noise signal leads to a Gaussian normal distribution. There is a tendency for noise

signals to be Gaussian because noise is usually the result of many independent random

events [31]. According to Markowitz in [61] there are four various types of noise that

a�ect speech recognition systems namely background noise, channel noise, speech noise

and non-communication vocalizations.

4.1.1. Background Noise

Background noise is part of the surrounding speaking environment and it enters the

input device along with the speech. It can include other voices (such as babble noise),

machinery noise (such as car noise), and sounds resulting from human activity. Back-

ground noise is called additive since it is superimposed upon the speech input [61]. It

can occur at any frequency or range of frequencies, including those critical for speech.

Our work was aimed to cancel four di�erent types of background noise: babble - car -

traÆc - and white noise [19, 20, 21, 22, 23].

4.1.2. Channel Noise

Channel noise refers to the e�ect of the speech input device on the spoken input. The

input device is called speech channel. The functions of the speech channel are to trans-

form sound waves into analog electrical signals and to transmit those signals [61]. The

primary channel used for speech consists of a microphone which could be the microphone

of the laboratory or the microphone in the telephone handset. Microphones vary in qual-

ity and type. Since it is extremely diÆcult to remove microphone noise characteristics

from a signal they are generally encoded in the reference models of an system.

4.1.3. Non-Communication Speech Noise

The act of speaking produces sounds that cannot be considered as messages. Such speech

noise includes lip smacks, air pu�s, clearing of the throat, and tongue clicks. A lip smack
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noise at the start of an utterance, is predictable and can be ignored by the system or

modeled as special words. Spontaneous speech contains mid-utterance corrections [61].

4.1.4. Non-Communication Vocalizations

Speakers hesitate, stutter, correct errors in the middle of words (\it is yell| Uh! No!

blue") and �ll pauses with non-communication sound like \Uh", self-corrections, and

interjections. These patterns are beginning to be modeled but are still little understood

[61].

4.2. Use of Neural Networks

Neural networks for speech enhancement are used as a direct nonlinear time-domain

�lter. Neural models are better at capturing the dynamics of speech than simple linear

models. It is believed [82] that neural networks allow for compensation of nonlinear

channel e�ects, and some relaxation of the requirement that the additive noise be inde-

pendent of the signal. Tamura [88] suggested that hidden layers provide a transformed

representation of the speech signal and noise which facilitates their separation.

4.3. Techniques for Noise Cancellation

There are many techniques for �ltering noise from a speech signal. The usual method of

estimating a signal corrupted by additive noise is to pass the composite signal through a

�lter that tends to suppress the noise while leaving the signal relatively unchanged. We

have no intention of reviewing in this dissertation all of such existing techniques in di�er-

ent noisy environments. Doclo et al. [14] classi�ed di�erent noise reduction algorithms

mainly into three categories. The �rst approach is based on spectral subtraction. The

second class of algorithm is based on classical adaptive �ltering. In this approach micro-

phone recordings of all the noise sources are necessary. The third approach is based on

singular value decomposition. The idea, in this case, is to consider the corrupted signal

as a vector in an n�dimensional space and to separate it into a clean signal and a noise

signal, lying in orthogonal subspace [13].

We will review here a few methods belonging to three approaches, namely spectral

subtraction, RASTA-like �ltering, adaptive interference canceling.
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4.3.1. Spectral Subtraction

Spectral subtraction is a time-domain �ltering. It was proposed by Boll [9] as a prepro-

cessing technique for reducing the spectral e�ects of additive noise. It is largely used due

to its relative simplicity and ease of implementation. When speech is corrupted with

additive noise, the spectra of speech and noise are also added, that is

y(n) = x(n) + �(n)

Y (!) = X(!) +N(!)

where x(n); y(n) are time samples of the clean and corrupted speech and X(!); Y (!)

are their corresponding spectra. �(n) and N(!) are the time and frequency-domain

representations of the corrupting noise source.

In doing spectral subtraction, the power spectrum bPy (magnitude squared of the

short-term Fourier transform) of the corrupted speech is computed and an estimate of

noise spectrum is subtracted out to produce the estimated spectrum bPx of the clean

speech; i.e: bPx = [ bP 
y � � bP 

n ]
1=

where the scaling factor � allows for emphasis or deamphasis of the noise estimate,

and allows for several variants, including power subtraction ( = 1) and magnitude

subtraction ( = 0:5).

Spectral subtraction does not always improve the speaker recognition performance

because it distorts the speech waveform introducing annoying musical noise [9, 72].

4.3.2. RASTA Filtering

Modulation frequency components of speech are mainly concentrated between 1 Hz and

16 Hz. Slowly-varying or fast-varying noises have components outside the speech range.

The RelAtive SpeTrAl (RASTA) processing proposed by Hermansky et al. [33] can be

considered as a technique capable of modifying the modulation frequency content of a

noisy speech by �ltering the time trajectories of a time-feature representation of speech

[3, 33]. The RASTA �lter is implemented as an autoregressive-moving average band-

pass �lter (IIR), with a magnitude frequency response which suppresses modulation

frequencies below 1 Hz and above 16 Hz. When the modulation frequency range is
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between 1 and 16 Hz, RASTA �lters for additive noise reduction yield to results similar

to spectral subtraction [3].

4.3.3. Singular Value Decomposition

The idea with singular value decompostion is to consider the corrupted signal as a vector

in an n-dimensional space and to separate it into a clean and a noise signal, lying in

orthogonal subspace [14]. This is done by computing the SDV of the Hankel matrix of

the data signal, reducing this matrix to a lower rank and restoring the Hankel structure

[14]. The procedure is described as follows:

The noisy signal vector y = [y[0]; y[1]; � � � ; y[N � 1]] is assumed to be additive. So

y[k] = x[k] + n[k] where x[k] corresponds to the clean signal and n[k] to the noise. A

Hankel matrix Y 2 R
l�m

Y =

26664
y[0] y[m� 1] � � � y[m� 1]

y[1] y[2] � � � y[m]
...

...
...

...

y[l � 1] y[l] � � � y[l +m� 2]

37775
with l � m is constructed from the signal y. The matrix Y is viewed as the sum of two

Hankel matrices X and N constructed respectively from the clean signal x and the noise

n. Assume that the clean signal x consists of a sum of p complex exponentials, then the

matrix X has rank p � m: Taking the SVD of the Hankel matrix Y , can be assumed to

be of the form:

Y = U �V
T = [U1U2]

�
�1 0

0 �2

� �
V
T
1

V
T
2

�
where U1 2 R

l�p , U2 2 R
l�(m�p) , �1 2 R

p2 , �2 2 R
(m�p)2 , V1 2 R

m�p , and V2 2

R
m�(m�p) . �1 contains the p largest singular values corresponding to the signal sub-

space whereas �2 contains the (m-p) smallest singular values corresponding to the noise

subspace. From the SVD of the Hankel matrix Y , it is possible to construct a least-

squares estimate of X. The best rank-p approximation of the original matrix Y is

Yp = [U1U2]

�
�1 0

0 0

� �
V
T
1

V
T
2

�
= U1�1V

T
1

which has lost the Hankel structure [14]. A Hankel approximation of the Yp is then

made averaging along the anti-diagonal of the Yp and putting each average value in the
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corresponding diagonal of a new Hankel-structured matrix bX of the same dimension,

bX =

26664
bx[0] bx[1] � � � bx[m� 1]bx[1] bx[2] � � � bx[m]
...

... � � �
...bx[l � 1] bx[l] � � � bx[m+ l � 2]

37775
where

bx[k] = 1

� � � + 1

�X
i=�

Yp(k � i + 2; i)

� = max(1; k � l + 2) � = min(m; k + 1):

It has been shown that the signal bx = [bx[0]; bx[1]; � � � ; bx[l +m� 2]] is closed to the clean

signal one [45]. The drawback of this procedure is the choice of the order p. When p is

too low, the speech sounds low-pass �ltered and the high frequencies lost. On the other

hand when p is too high, annoying musical tones are introduced [14].

4.3.4. Adaptive Interference Canceling

Adaptive noise cancellation was introduced by Widrow and Glover [85]. The objective is

to �lter out an interference component by identifying a linear model between a measur-

able noise source and the corresponding unmeasurable interference. The general concept

of adaptive noise canceling described by Widrow is as follows [84].

� A signal is transmitted over a channel to sensors that receive the signal plus an

uncorrelated noise n0. The combined signal and noise, s + n0 forms the primary

input to the canceler.

� A second sensor receives a noise n1 which is uncorrelated with the signal but

correlated in some unknown way with the noise n0. This sensor provides the

reference input to the canceler.

The noise n1 is �ltered to produce an output bn that is close replica of n0. This output

is subtracted from the primary input s + n0 to produce the system output,

s+ n0 � bn:
The main problem of this concept is that the characteristics of the channel over which

the noise was transmitted to the primary and reference sensors are unknown. Otherwise
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the �lter output could be subtracted from the primary input, and the system output

would be the signal alone.

Adaptive noise cancellation using linear �lters has been used successfully in real-

world applications such as interference canceling in electrocardiograms (ECGs), echo

elimination on long-distance telephone transmission lines, and antenna sidelobe inter-

ference canceling [84].

Linear adaptive noise cancellation concept could be expanded into the nonlinear

realm by using nonlinear adaptive systems [84].

Summary

There are many techniques for speech noise cancellation. Filtering techniques in time-

domain as spectral subtraction are easy to implement. However they do not always pro-

duce a good result since they distort the speech waveform. On the other side, frequency-

domain �ltering techniques are unuseful when the spectrum of the distorted noise and the

spectrum of information signal overlap each other considerably. It appears that Adaptive

Neuro-Fuzzy Inference Systems �ltering that combines neural network capabilities and

fuzzy logic potentialities are a promising technique to �lter out noise from speech signals.
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5. Neuro-Fuzzy Inference System for

Speech Enhancement

A journey of thousand miles

must begin with a single step.

{ Lao-Tzu.

5.1. Introduction

One of the major constraints for general applications of Automatic Speech Recognition is

the unavoidable presence of background noise. In a pratical setting, the speaker cannot

be isolated in order to have a clean acquisition of the uttered speech to be processed.

Noise canceling from signal with adaptive interference �ltering technique has shown to

be highly advantageous over traditional �ltering techniques in many applications where

�xed �lters are not eÆcient [3, 82, 84]. Neural networks have the capability to learn from

scratch, and might have to do it any time if, substantial parameters of the dynamical

system change for some reason whereas fuzzy systems have the potentialities to represent

the vagueness and ambiguity in human thinking.

In this chapter, we present a neuro-fuzzy system that combines neural network po-

tentialities and fuzzy system capabilities to cancel background noise from a speech signal.

In the implementation the used Adaptive Network Fuzzy Inference System (ANFIS) ar-

chitecture to identify the unknown nonlinear passage dynamics that transforms a noise

source into an interference component in a detected signal. The hybrid learning algo-

rithm of ANFIS that combines the least-squares estimator and the gradient descent is

presented. The implemented system is tested quantitatively and qualitatively on a bilin-

gual database. The results obtained are presented.
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5.2. Passage Dynamics

Passage dynamics are mathematical models of the channels through which the noise

waves undergo before corrupting a given signal such as a speech sentence. In general,

how the environment modi�es the noise source is unknown, but some hypotheses can

be applied considering the channel over which the signal, together with the noise is

transmitted. For example, if the channel is the air as in the case of cellular telephone,

we must assume some reection e�ects due to the presence of obstacle such as buildings,

mountains, etc. One of the requirements of these models is that they should keep some

statistical features of the noise source, such as the mean.

The use of such models is justi�ed by the hypothesis that the noise is not correlated

to the original signal and the distortion is simply added to it, to produce a corrupted

signal.

Therefore, if such distortion can be modeled in the right way, the original signal can

be obtained in subtracting such a distortion from the received signal (which is corrupted

by the distortion noise).

Many passage dynamic functions have been suggested, among them those reported

in equations 5.1, 5.2, 5.3. In such equations n(t) is the noise source. In equation 5.3 �

and � are free parameters introduced to improve the modeling as we will see in Chapter

8.

f [n(t); n(t� 1)] = 4�
(sinn(t)) � n(t� 1)

1 + [n(t� 1)]2
(5.1)

Figures 5.1, 5.2, 5.3 show the shapes of the passage dynamics de�ned by equations 5.1,

5.2, 5.3 respectively.

g[n(t); n(t� 1)] = 4�
(sinc n(t)) � n(t� 1)

[1 + n(t� 1)2]
(5.2)

where sinc (x) = sin�x
�x

:

h[n(t); n(t� 1)] =
�

[2� n(t)][2� n(t� 1)]
+ �: (5.3)

We de�ned and applied the above passage dynamic functions in our tentative to

implement a system able to cancel noise form speech and we compared their performance

through several experiments which are reported in the following chapters.
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Figure 5.1.: Plot of the passage dynamic function given in equation 5.1.

Figure 5.2.: Plot of the passage dynamic function given in equation 5.2.

5.3. ANFIS Architecture

ANFIS is a hybrid learning architecture, proposed by Jang [39, 40] which has proved

its superiority over backpropagation neural networks. As an adaptive network, the

parameters in some ANFIS nodes are adapted during training. Such nodes are called

adaptive nodes. Moreover there are nodes whose parameters remain unchanged during

training. They are called �xed nodes. The general architecture is composed of �ve

layers as shown in Figure 5.4. The number of inputs to ANFIS for the training process

depends upon of the order of the passage dynamic function which will be used.

� In our experiments, since we have always used a second order passage dynamic

functions, the �rst layer of our con�guration takes as inputs the noise wave n(t)
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Figure 5.3.: Plot of the passage dynamic function given in equation 5.3.

Figure 5.4.: ANFIS architecture.

and its delayed version n(t� 1): Membership functions are assigned to each input

depending on the context. In [19, 20], generalized bell functions are used, where

as trapezoidal membership functions are used in [22] for modeling the linguistic

labels such as High, and Low. The use of linguistic rules constitutes the major

bene�ts of fuzzy techniques description [50]. Membership function parameters are

called premise parameters. Each node in this layer is an adaptive node with a

node function described by the equation:

O1;i = �Ai(n(t)); for i = 1; 2; or

O1;i = �Bi�2(n(t� 1)); for i = 3; 4;
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where Ai and Bi�2 are linguistic labels associated to nodes. Therefore, O1;i speci�es

the degree to which the given input n(t) or n(t� 1) satis�es the quanti�er A1; A2;

B1; or B2: For instance, when the membership function for the fuzzy set A1 is a

bell function (three parameters are required), one has

�A1
(x) =

1

1 + jx�c
a
j2b
;

where fa; b; cg is a part of premise parameters set.

� The second layer is constituted of �xed nodes whose outputs are the product of

all incoming signals

O2;i = wi

= prodf�Aj(n(t�1)g; �Bk(n(t�1))g; j; k = 1; 2:

= �Aj(n(t)) � �Bk(n(t�1)); j; k = 1; 2:

Each node represents the �ring strength of a rule. Any other T-norm operator that

performs fuzzy AND can be used as the node function in this layer. The reader can refer

to Chapter 2 for other T-norm operators.

� The third layer is also constituted of �xed nodes. The i-th node calculates the

ratio of the i-th rules's �ring strength to the sum of all rules �ring strengths, i.e.

O3;i = wi

= wi
w1+w2+w3+w4

; i = 1; � � � ; 4:

Since
P

iO3;i = 1; the outputs of these nodes are called normalized �ring strengths.

� The fourth layer is constituted of adaptive nodes whose node function is de�ned

as:

Oi;4 = wi[pin(t) + qin(t� 1) + ri]

where wi is a normalized �ring strength from layer 3 and fpi; qi; rig is the parameter

set of this node. Parameters in this layer are referred to as consequent parameters.

� The output layer is constituted of only one node that computes the overall output

as the sum of all incoming signals, i.e.

Oi;5 =
P

iwi � [pin(t) + qin(t� 1) + ri]

=
P

i
wi[pin(t)+qin(t�1)+ri]P

i
wi

:
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5.4. System Description

5.4.1. General Schematic Diagram

Figure 5.5.: Schematic diagram for noise cancellation.

Figure 5.5, shows an ideal situation to which adaptive noise cancellation can be

applied. We have an information signal x(t) and a measurable noise source n(t): The

noise source goes through unknown nonlinear dynamics to generate a distorted noise d(t)

which is then added to x(t) to form the measurable output signal y(t); which consists of

the information signal x(t) plus a distorted and delayed version of n(t), which is d(t).

y(t) = x(t) + d(t):

5.4.2. ANFIS Filtering Diagram

In practice, the distorted noise signal d(t) cannot be access directly since it is an additive

component of the overall measurable signal y(t): Since the information signal x(t) is zero

mean and not correlated with the noise signal n(t), we can use the detected signal y(t)

as the desired output for ANFIS training as shown in Figure 5.6.

5.4.3. Extended ANFIS Diagram

The �ltering diagram we proposed in [19, 20] exploits both Widrow's approach [84, 85]

in de�ning the primary input and ANFIS [39, 40, 41] �ltering diagram. The primary

input s(t) of such an implemented system is the sum of the information signal x(t) and
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Figure 5.6.: Schematic Diagram for ANFIS.

the noise source n(t).

s(t) = x(t) + n(t):

Figure 5.7.: Extension of ANFIS Diagram.

In this way, the detected and measurable signal y(t) which was used as the target of

the ANFIS system can be expressed as

y(t) = s(t) + d(t)

= x(t) + [n(t) + d(t)]

= x(t) +D(t)

where D(t) = n(t) + d(t) is the noisy component of the measurable wave. The major

characteristics of this model are:
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� The speech sentence is completely distorted for listeners [19].

� ANFIS training process can even estimate the noisy component D(t). Such an

estimation bD(t) is subtracted from the detected signal y(t) to obtain an estimation

x̂(t) of the information signal x(t):

5.4.4. Network Con�guration

The architecture we used has two inputs (one is the noise wave n(t) and the other is

its delayed version n(t � 1)). We assigned two membership functions to each input.

The generalized bell function is used in the �rst experiment whereas the trapezoidal

membership function is used in the second experiment. Therefore, the �rst layer has

four adaptive nodes.

In the second layer there are four adaptive nodes whose output is the min (in our

case) of all the incoming signals.

In the third layer, there are four �xed nodes, and their output is computed as the

ratio between the output of the respective node in the previous layer and the sum over

all the outputs in the previous layer. Each node in this layer is directly connected with

only one node in the next layer.

In the fouth layer there are four adaptive nodes whose output is computed as the

ratio between the output coming from the previous layer and a linear combination of

the parameters pi; qi; ri called consequence parameters weighted by the two inputs

n(t) and n(t� 1) i.e. [pin(t) + qin(t� 1) + ri]: The four fuzzy rules computed are of the

form:

� if n(t) is Low and n(t� 1) is Low, then f1 = p1n(t) + q1n(t� 1) + r1

� if n(t) is Low and n(t� 1) is High, then f1 = p2(t) + q2n(t� 1) + r2

� if n(t) is High and n(t� 1) is Low, then f1 = p3n(t) + q3n(t� 1) + r3

� if n(t) is High and n(t� 1) is High, then f1 = p4n(t) + q4n(t� 1) + r4:

The single node in the �fth layer is a �xed node that computed the overall output

as the sum of all incoming signal. Figure 5.8 shows the architecture used. The complete

network architecture has:
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Figure 5.8.: ANFIS architecture used.

� 17 nodes

� 12 premise parameters

� 12 consequent parameters.

5.4.5. Learning of ANFIS

During the training, ANFIS outputs an estimation bD(t) of the distorted noise, which will

be turned up by comparing it to y(t); which contains the real distorted noise, together

with the real speech signal. To update the system parameters, the learning procedure

goes through two phases: a forward and a backward phase. During the forward phase,

the data ow up to layer 4 and then consequent parameters are identi�ed applying the

least-squares estimator. Then the outputs of layer 4 are combined into the layer 5 and

the squared error is calculated as the squared di�erence between the target y(t) and the

net output. During the backward phase the error is propagated from the net output to

the input, and the premise parameters are updated using the backpropagation algorithm

through the formula:

�� =
��qP
�
@Ep
@�
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where � represents a generic premise parameter and � is the step size, which is updated

dynamically using two heuristic rules [40] which are

1. If after 4 consecutive epochs the error function decreases, the step size is increased

by 10% of its previous value.

2. If after 4 consecutive epochs the error function undergoes 2 consecutive combi-

nations of one increase and one decrease, the step size is decrease by 10% of its

previous value.

In all experiments we have done, � is �xed to 0:01.

5.5. Database Description

Speech recognition systems need to be tested on real speech data. It is important to

have a database which complies with the recognition system's intended use [48]. For

example, a system for isolated word recognition should be trained with data from an

isolated speech database. Furthermore, the language and even the accent within the

language often restricts the use of a database [48]. For better generalization problem,

the database should be composed of various types of contexts to reect the learning

capabilities independently of the implemented system. To test the nonlinear adaptive

neuro-fuzzy inference system implemented for noise cancellation, we used a bilingual

database composed of sentences produced by Italian native speakers and some selected

sentences from the TIMIT database.

5.5.1. Italian Database

The Italian database collected by us, contains recordings of four speakers from di�erent

areas in Italy. Two females from Salerno and Leece, and two males from Pisa and

Palermo. This database was so collected, in order to obtain dialectal accent variations in

the produced speech. Each speaker answered to a selected set of four di�erent questions.

The recording was made in a quite room, to avoid the background noise as much as

possible. The speech wave was sampled in mono-channel mode, at a frequency of 16

kHz and quantized with 16 bits for samples. In Table 5.1 the information related to

each of the Italian speakers is summarized .
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Place where they

Speaker Birthdate Age Sex Accent spent most of

their life

sdf1 9/10/1974 26 F Leccese Lecce

vvf2 9/18/1970 30 F Salernitano Salerno

gsm1 1/24/1967 33 M Palermitano Palermo

lpm2 4/05/1971 29 M Pisano Pisa

Table 5.1.: Details on the speakers.

5.5.2. TIMIT Database

The TIMIT database was produced by Texas Instrument andMassachusetts Institute of

Technology. This corpus database is composed of English sentences produced by speak-

ers from 8 di�erent demographic regions of United States of America. Each speaker

read ten di�erent English sentences namely, 2 dialectal sentences (i.e. sa-sentences), 5

phonetically-compact sentences (i.e. sx-sentences), and 3 phonetically-diverse sentences

(i.e. si-sentences). The sentences are di�erent from one speaker to another. Speak-

ers were selected to be representative of di�erent geographical dialectal regions [30].

Information on TIMIT data can be found in [30, 90].

Dialect Sentences (sa-sentences)

The dialect sentences were meant to expose dialectal variants of the speakers and were

read by all speakers. There are two dialect sentences which are \She had your dark suit

in greasy wash water all year" and \Don't ask me to carry an oily rag like that".

Phonetically-Compact Sentences (sx-sentences)

They were hand designed to be comprehensive of all the phonemes of the language. The

objective was to provide a good coverage of pairs of phones, with extra occurrences of

phonetic contexts thought to be either diÆcult or of particular interest. Two examples

of such sentences are \Ralph prepared red snapper with fresh lemon sauce for dinner"

and \Smash light bulbs and their cash value will diminish to nothing".
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Phonetically-Diverse Sentences (si-sentences)

They were selected from existing text sources - the Brown corpus and a collection of

dialogs from recent stage plays - so as to add diversity in sentence types and phonetic

contexts. Two examples of such sentences are \Boys and men go along the river bank

or to the alcoves in the top arcade" and \Positive results start when it goes towards the

hand you use to make your mark".

In our experiment, the database used is composed of two sa-sentences, two sx sen-

tences, and two si sentences.

5.5.3. Noise Database

The noise database we used is exclusively background noise. Background noise includes

both white noise and coloured noise. Since the noise is usually the result of many

independent random events, there is a tendency for a noise signal to be considered

Gaussian [47]. There is no modeling on coloured noise. The noise is called white if

the power spectrum is independent of frequency [31]. For instance, a white noise signal

denoted nW (t), has a power spectral density given by

PnW (!) =

�
N0 (a constant), j!j < !c

0 if j!j > !c

and all frequency components with frequencies in the range �!c < ! < !c, contribute

equally to nW (t) [71]:

5.6. Performance Functions

We intensively evaluated the implemented system qualitatively and quantitatively. Per-

ceptual experiment is also performed.

5.6.1. Quantitative Evaluation

Among functions that can be used for evaluating the system performance, we selected

the mean, the mean square error and the signal to noise ratio since they are well adapted

to the problem under examination.
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Average or Mean Value

The average of a vector x = (xi)1�i�n of dimension n is de�ned by the formula

mean(x) =
1

n

nX
i

xi:

In other words, mean(x) is the mean value of the elements in the vector x: This de�nition

could be easily extended to matrices. In this case, assuming that X is a matrix of

dimension n � d, mean(X) is a row vector containing the mean value of each column

[74].

Mean Square Error (MSE)

The MSE measures a system's performance according to the mean of squared errors

[52]. Let N denote the number of samples in a given speech signal x(t), and in its

estimation bx(t). The MSE is de�ned as

MSE =
1

2

NX
n=1

[x(n)� bx(n)]2 :
Signal to Noise Ratio (SNR)

The signal to noise ratio ( SNR) is a measure of the ratio between signal energy and

noise energy. In speech analysis, SNR usually refers to the periodic energy relative to

noise energy. The SNR is computed as

SNR(dB) = 10� log10
�
2[x(t)]

�2[n(t)]

where �2[x(t)] and �
2[n(t)] represent the power of the signal and the noise respectively.

In our experiments, SNR values were computed twice. Once as the ratio of the clean

signal energy over the noise signal energy, and then as the ratio of the clean signal energy

over the energy of the resisual noise (di�erence between x(t) and the estimated clean

signal bx(t)). They were indicated as SNR1 and SNR2 and are reported in equations

5.4 and 5.5.

SNR1(dB) = 10� log10
�
2[x(t)]

�2[n(t)]
(5.4)

SNR2(dB) = 10� log10
�
2[x(t)]

�2[x(t)� bx(t)] � (5.5)
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One could show that the improvement in signal to noise ratio is given as

�SNR = 10� log10
�
2[n(t)]

�2[x(t)� bx(t)] �
Experimental Results

First Experiment:

In this experiment, we assigned two generalized bell functions to each of the two

inputs of the ANFIS architecture (see the extended diagram of ANFIS) and we used the

passage dynamic function reported in equation 5.1. The number of training epochs was

100.

Figure 5.9, reports the signal to noise ratio improvement obtained.

Figure 5.9.: Initial (dashed lines) and �nal (solid lines) signal to noise ratio computed

over all the sentences used.

Table 5.2 summarizes the results obtained over the three quantitative measures de-

�ned above.

Second Experiment:

In this experiment, we applied two trapezoidal functions to each of the two inputs

of the ANFIS architecture (see the extended diagram of ANFIS) whereas the passage
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Lenght SNR Improvement MSE Aver. Error

Average 73090 30.73 dB

Minimum 36781 15.05 dB 78.0�10�9 21.4�10�5

Maximum 114800 42.74 dB 67.8�10�5 24.5�10�3

Table 5.2.: Experimental results obtained when the system is trained with the passage

dynamic function de�ned in equation 5.1. Bell functions are applied to each

input.

Lenght SNR Improvement MSE Aver. Error

Average 73090 36.21 dB

Minimum 36781 20.51 dB 11.0�10�9 6.9�10�5

Maximum 114800 45.89 dB 27.1�10�5 16.38�10�3

Table 5.3.: Experimental results obtained when the passage dynamic function de�ned in

equation 5.2. Trapezoidal membership functions are applied to each input.

dynamic function used is the one reported in equation 5.2. The use of passage dynamic

functions is for better modeling the environment through which the noise waves undergo

before corrupting the speech signal. The use of trapezoidal function or more generally

piece-wise linear functions is more appropriate to reduce the computational time [40].

The number of training epochs was 60. The results are reported in Table 5.3.

5.7. Qualitative Evaluation

For the qualitative evaluation of a system's performance, we used the speech waveform

and the speech spectrogram as qualitative measures of the results obtained.

5.7.1. Speech Waveform

A speech waveform is a graph showing the varying amplitude of a speech signal over the

time [47]. Figure 5.10 is the plot of three waveforms: the original speech sentence { the

same speech sentence corrupted with babble noise { and its estimate after applying the

noise canceling procedure. The sentence was extracted from the Italian database.
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Figure 5.10.: From top to bottom are reported, the waveform of the original sentence,

the waveform of the noisy sentence (babble noise is used), the waveform of

the estimated sentence.

5.7.2. Speech Spectrogram

A speech spectrogram is a pattern for sound analysis containing information on time,

frequency and intensity [47, 51].

� Time is shown on the horizontal axis.

� Frequency is shown on the vertical axis.

� Intensity on the gray scale i.e. the intensity of each frequency at a given instant is

shown by the darkness of the mark. Figure 5.11 reports three spectrograms: the

clean speech sentence { the same sentence corrupted with traÆc noise { and its

estimate once our algorithm of noise cancellation was applied on the noisy sentence.

The signal was completely reconstructed (see bottom of the Figure 5.11.)

The sentence used, is extracted from the TIMIT database. It can be noticed that very

little noise remains on the output wave, independently of the kind of noise used.
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Figure 5.11.: From top to bottom are reported, the spectrogram of the original sen-

tence, the spectrogram of the noisy sentence (babble noise is used), the

spectrogram of the estimated sentence.

5.7.3. Perceptual Experiments

To further evaluate the e�ects of our algorithm of noise cancellation, we let some native

speakers of Italian to listen the sentences both in the noisy and when the noise was

removed form them. The results, which are conformed at this time, showed that in

listening the original and the estimated speech sentences, it is mostly impossible to

distinguish the clean from the estimated sentence.

5.7.4. Results Analysis

The improvement obtained in de�ning another passage dynamic function can be observed

in Figure 5.12. The results obtained are very good compared to those in [3, 82] only 10

dB as improvement even though the database is not the same. Moreover, the passage

dynamic function we proposed better models the environment through which the noise

waves undergo before corrupting the speech signal.
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Figure 5.12.: Comparision of the signal to noise ratio improvement obtained in the �rst

and second experiments.

Summary

In this chapter, we have presented an implementation of a neuro-fuzzy system for cancel-

ing noise from a speech signal. Two experiments were carried out with di�erent setups.

As the results showed, in both cases, the implemented system performs very well. How-

ever, one of the drawbacks of such a system is the computational time that increases

with the length of the sentence and the size of the database. The next chapter presents

an approach for handling this problem.
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6. Designing a Fast Neuro-Fuzzy

System for Noise Cancellation

It is with logic that one proves;

it is with intuition that one invents.

{ Henri Poincar�e.

6.1. Introduction

The real-time computation is a computation in which part of the problem speci�cation

involves the achievement of certain results within a certain elapsed time.

In this chapter, we present an experimental neuro-fuzzy inference system which has

been implemented with the objective to cancel noise from a speech signal in almost real-

time. The novelty of this system consists in a setup that allows a better generalization

in learning the noise features. The system was trained only once with a sample of babble

noise during few epochs. The fuzzy inference system obtained has the capability to clean

speech sentences corrupted not only by the same type of noise which was babble noise but

also by the car, traÆc, and white noise. The average improvement in terms of signal

to noise ratio was 37 dB without further training, resulting a great reduction of the

computational time.

6.2. Architecture Description

The architecture used is composed of �ve layers as described in the previous chapter. For

this implementation, we applied seven trapezoidal membership functions to each of the

two inputs. The motivation for the use of such a number of membership functions comes
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from the hypothesis that, a greater number of linguistic values will give a more detailed

description about the noise waves. The lingusitic values assigned to each input variable

are respectively \Very Low (VL)", \Low (L)", \More or Less Low (MLL)", \Medium

(M)", \More or Less High (MLH)", \High (H)", \Very High (VH)". Therefore the �rst

layer has 14 adaptives nodes whose node functions are represented by

O1;1 = �V L1(n(t))

O1;2 = �L1(n(t))

O1;3 = �MLL1(n(t))

O1;4 = �M1
(n(t))

O1;5 = �MLH1
(n(t))

O1;6 = �H1
(n(t))

O1;7 = �V H1
(n(t))

O1;8 = �V L2(n(t� 1))

O1;9 = �L2(n(t� 1))

O1;10 = �MLL2(n(t� 1))

O1;11 = �M2
(n(t� 1))

O1;12 = �MLH2
(n(t� 1))

O1;13 = �H2
(n(t� 1))

O1;14 = �V H2
(n(t� 1)):
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The second layer has 49 �xed nodes whose outputs are the product of all incoming

signals, according to the following expressions:

O2;1 = w1 = �V L1(n(t))� �V L2(n(t� 1))

O2;2 = w2 = �V L1(n(t))� �L2(n(t� 1))
...

...
...

...

O2;7 = w7 = �V L1(n(t))� �V H2
(n(t� 1))

O2;8 = w8 = �L1(n(t))� �V L2(n(t� 1))

O2;9 = w9 = �L1(n(t))� �L2(n(t� 1))
...

...
...

...

O2;16 = w16 = �L1(n(t))� �V H2
(n(t� 1))

O2;17 = w17 = �MLL1(n(t))� �V L2(n(t� 1))

O2;18 = w18 = �MLL1(n(t))� �L2(n(t� 1))
...

...
...

...

O2;24 = w24 = �MLL1(n(t))� �V H2
(n(t� 1))

O2;25 = w25 = �MLH1
(n(t))� �V L2(n(t� 1))

O2;26 = w26 = �MLH1
(n(t))� �L2(n(t� 1))

...
...

...
...

O2;32 = w32 = �MLH1
(n(t))� �V H2

(n(t� 1))

O2;33 = w33 = �H1
(n(t))� �V L2(n(t� 1))

O2;34 = w34 = �H1
(n(t))� �L2(n(t� 1))

...
...

...
...

O2;40 = w40 = �H1
(n(t))� �V H2

(n(t� 1))

O2;41 = w41 = �V H1
(n(t))� �V L2(n(t� 1))

O2;42 = w42 = �V H1
(n(t))� �L2(n(t� 1))

...
...

...
...

O2;49 = w49 = �V H1
(n(t))� �V H2

(n(t� 1)):

The indexes 1 and 2 of linguistic values refer to the �rst input n(t) and the second input

n(t� 1) respectively.

The third layer has 49 nodes, whose outputs are computed as the ratio of the respec-

tive node output in the previous layer and the sum over all the outputs in the previous

layer, as in the following expressions:

O3;1 = w1 =
w1

w1 + w2 + � � �+ w49

O3;2 = w2 =
w2

w1 + w2 + � � �+ w49

...
...
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O3;49 = w49 =
w49

w1 + w2 + � � �+ w49

:

Each one of these nodes is directly connected with only one node in the next layer.

In the fourth layer, there are 49 adaptive nodes whose activation functions are com-

puted as

O4;1 = w1 � [p1n(t) + q1n(t� 1) + r1]

O4;2 = w2 � [p2n(t) + q2n(t� 1) + r2]

... =
...

O4;49 = w49 � [p49n(t) + q49n(t� 1) + r49]:

The �fth layer has a single �xed node which computes the overall output as the sum of

all incoming signals.

O5;1 =
X
i

wi[pin(t) + qin(t� 1) + ri]

=

P
i wi[pin(t) + qin(t� 1) + ri]P

iwi:

In Figure 6.1 is plotted the implemented acrchitecture.

6.3. Experimental Design

In Chapter 5, the system was trained on all the 88 noisy sentences in order to estimate

D(t) and then, the sentences were cleaned subtracting the estimated bD(t) from the

noisy sentences. For those experiments, we used only two membership functions for

each of the two inputs, which altogether generated a FIS of only 4 rules. Since the

number of membership functions and the number of rules were small, the system had

to be trained intensively to come up with a good performance. Due to the fact that

the training was repeated for each of the 88 noisy sentences, the overall computational

time was very high. To avoid retraining time and to improve the system's performance,

we increased the number of membership functions applied to each input node, and,

after training the system only once, we processed all the noisy sentences over the FIS

obtained. Since Widrow's approach introduced has the aim to completely distort the

sentence to the listener, we did not include this approach here for simplicity. Moreover
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Figure 6.1.: Network architecture.

in a pratical situation, only the interference corrupts the speech signal. So we denoted

d(t) the distortion introduced into the speech signal.

We took the longest speech sentence from the database as the primary input of the

implemented system. A sample of babble noise of the same duration is also collected.

During the process, this noise sample is �rst delayed, and then distorted by means of

the passage dynamic function reported below:

g[n(t); n(t� 1)] = 4�
n(t� 1) � sinc n(t)

1 + [n(t� 1)]2

whose output d(t) was used to intercept the speech signal x(t). In this way, we obtained

the detected and measurable signal y(t) expressed as

y(t) = x(t) + d(t):
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Length SNR Improvement MSE AE

Average 73090 37.14 dB

Minimum 36781 33.16 dB 54.23�10�6 7.37�10�3

Maximum 114800 38.45 dB 59.54�10�6 7.47 �10�3

Table 6.1.: Results obtained with the FIS generated with seven membership functions

applied to each of the two inputs.

Since the passage dynamic function is a second order function, the system has two inputs

which are n(t) and n(t � 1) which come from babble noise. As target signal we used

y(t). The training process stops when the error goal reachs the 0.01 after three training

epochs.

After the learning is completed, the output of ANFIS is a fuzzy inference system

(FIS), with all parameters adapted to simulate the e�ects of the passage dynamic func-

tion over the noise waves. The �nal FIS is saved and applied to get an estimated bd(t) of
the distorted noise. Then the estimated bd(t) is subtracted from the detected signal y(t),

to obtain an estimation bx(t) of the original speech signal x(t). The process without new

training, was applied to clean each of the 88 noisy sentences of the database described

in Chapter 5.

6.4. Results

Table 6.1 summarizes the statistical results obtained after processing the 88 noisy sen-

tences using the FIS generated. Figure 6.2 shows the initial signal to noise ratio (SNR1)

and the signal to noise ratio (SNR2) after the 88 noisy sentences had been cleaned.
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Figure 6.2.: Signal to noise ratio computed over the noisy sentences (SNR1), and signal

to noise ratio (SNR2) computed after processing the 88 sentences through

the implemented system. Each point in the graph corresponds to one sen-

tence.

Discussions

Comparing these results to the previous ones (refer to Chapter 5), it appears that the

improvement is not signi�cant. However, to obtain them, the computation is almost in

real-time.

The use of more membership functions gives a more detailed description of the inputs.

Although the number of rules increases, the system requires less training epochs to

produce good results. Moreover, since the training was made o�-line, the computational

time required for this task is not a signi�cant factor in further processing, and the

resulting cleaned sentences are of the same quality of the ones preprocessed with the

system reported in Chapter 5.

Summary

The system con�guration and the experimental approach reported in this chapter, have

yied a fast and eÆcient neuro-fuzzy system, with the capability of canceling noise from
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speech in a computational time close to real. Moreover, since the training was made o�-

line, the computational time required for this task is not a signi�cant factor in further

processing. The drawback of this system is that it requires to have a clean sample of noise,

both for training and for evaluation (which is a requirement for any adaptive system for

canceling noise). This fact limits its application to situations where the sample of noise

can be obtained in parallel with the noisy speech.
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7. A Neuro-fuzzy System for Noise

Source Identi�cation

I have yet to see any problem, however

complicated, which, when you looked at it in

the right way, did not become more complicated.

{ Paul Anderson.

7.1. Introduction

Identi�cation is the recognition of an individual object as a unique singleton class [56].

Adaptive systems for canceling noise from speech signals proved to perform very well with

respect to standard techniques [3, 14, 82] due to their adaptive ability. The drawback of

these systems is that they require to have a sample of noise for evaluating. This fact

limits their application to situations where the sample of noise can be obtained in parallel

with the noisy speech signal. However, in practical situation the kind of noise from which

the speech signal has been corrupted is unknown and therefore it becomes hard to apply

adaptive noise canceling systems.

In this chapter, we proposed a neuro-fuzzy inference system able to identify the noise

source by which the speech signal has been corrupted. Once the noise source is identi�ed,

it should be possible to use adaptive noise canceling system to clean noisy speech signals.

7.2. Experimental Design

We arti�cially corrupted the recorded speech signal, respectively with babble, car, traÆc,

and white noise. Such corrupted speech signals constituted the primary inputs to the
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implemented system. Besides, a clean sample of each type of noise was collected. The

noise samples were �rst delayed and then distorted by means of a passage dynamic

function de�ned as

f(n(t); n(t� 1)) =
�

[2� n(t)][2� n(t� 1)]
+ �

where n(t) and n(t � 1) are the actual and delayed noise sample respectively. Such a

function is introduced to model the nonlinear process through which the noise waves un-

dergo before corrupting the speech signal (i.e. the distortion produced on the noisy wave

by the environment). The parameters � and � are introduced to adjust the distorted

noise obtained by the passage dynamic function such that it could keep the statistical

features of the original noise source. In our experiment, the values of � and � were

set equal to 1:0 and �0:2 respectively. These values proved to be very powerful for the

problem under examination. The highly nonlinear passage dynamic function is plotted

as a surface in Figure 7.1 where babble noise and its delayed version are used as inputs.

Figure 7.1.: Plot of passage dynamic function as a surface. Babble noise and its delay

version are used as inputs.

Once the distortion to which the noise undergoes has been modeled, the received
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speech signal can be expressed as

ykt) = x(t) +Dk(t)

where Dk(t) represents the labelled noisy component of the measurable signal and k a

generic index for babble, car, traÆc, or white noise source. During the training, ANFIS

is assumed to output an estimate bDk(t) of the Dk(t). bDk(t) is subtracted from yk(t)

producing an estimated signal x̂(t) of the original signal x(t). The mean square error

function was used to determine how much the estimated bDk(t) was close to the noisy

component Dk(t) of the measured signal.

7.3. System and Algorithm Description

We are interested in the identi�cation of babble, car, traÆc and white noise in a corrupted

speech signal. The system implemented for handling the problem under examination, is

composed of four subsystems operating in parallel so that the output of each subsystem

is independent from the others. The system takes as input the received noisy signal

yk(t); the four noise sources (babble, car, traÆc, white noise) and their delayed versions.

The signal yk(t) is used as a target to each one of the subsystems whereas each noise

source together with its delayed version are used as inputs to only one of the four FIS

subsystems. Figure 7.2 shows the block-diagram of the four subsystems operating in

parallel. Each fuzzy inference subsystem produced an estimate bDk(t) of the modeled

distortion bDk(t), where k = 1 : : : 4, is an index associated to babble, car, traÆc and

white noise respectively. Once the system has been trained, it outputs four estimatescDk(t), k = 1 : : : 4, and for each of them, the mean square error (MSE) ek, between bDk(t)

and Dk(t) is computed. The minimum among the ek computed, identi�es the index of

the noise source which corrupts the clean speech signal. The criterion used for the noise

source identi�cation can be formulated in the following form:

The noise source labelled k is identi�ed if the mean square error ek between the

distortion estimated by the subsytem k, i.e. bDk(t), and the distortion modeled Dk(t), is

the minimum over all the other errrors ei computed on the outputs bDi(t) of each other

subsystem, i = 1 � � �4.

The use of this criterion can be justi�ed by the fact that the error between the
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original and the estimated sentences can be expressed as:

� = x(t)� bx(t)
= x(t)� [x(t) +Dk(t)� bDk(t)]

= x(t)� x(t)�Dk(t) + bDk(t)

= bDk(t)�Dk(t):

Figure 7.2 shows the block-diagram of the implemented system.

Figure 7.2.: Block-diagram of the implemented system.

7.4. System's Performance

Two experiments were carried out for testing the validity of the implemented system.

For the �rst one, two generalized bell functions were applied to each input of the sub-

systems to model the linguistic terms \High" and \Low". The full system was trained

on each noisy sentence in the database. As expected the training process was computa-

tionally expensive. In Table 7.1, we report the results obtained in identifying the four

types of noise sources. Each column in Table 7.1 describes the noise source, whereas in
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the �rst row is reported the percentage of correct identi�cation, and in the second row

the error percentage.

Babble Car TraÆc White

Cor. Ident. 100% 91% 100% 100%

Unc. Ident. 0% 9% 0% 0%

Table 7.1.: Percentage of correct and uncorrect identi�cation of the examined noise

sources for the �rst experiment.

In the second experiment, we applied seven generalized bell functions to model the

seven linguistic terms de�ned in Chapter 6, namely Very Low, Low, More or Less Low,

Medium, More or Less High, High, Very High (refer to Chapter 6 for details). Such a

system was then trained with the longest sentence in the database, which was corrupted

with babble noise. The fuzzy inference system generated was saved for evaluating the

four subsystems operating in parallel. Table 7.2, reports the results obtained in identify-

ing the four types of noise sources. Each column in Table 7.1 describes the noise source,

whereas the �rst row reports the percentage of correct identi�cation, and the second row

the error percentage.

Babble Car TraÆc White

Cor. Ident. 100% 100% 100% 100%

Unc. Ident. 0% 0% 0% 0%

Table 7.2.: Percentage of correct and uncorrect identi�cation of the examined noise

sources for the second experiment.
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7.5. Discussions

The use of more rules models better the linguistic values of the inputs to the fuzzy

inference system. The implemented system can be used both for identifying and cancel-

ing the noise from the received speech signal. Once the distortion has been learnt, the

clean signal can be obtained by subtracting the estimated distortion from the received

noisy signal. A drawback of the implemented system is that for evaluating the estimated

distortion, it is important, during training to use the same passage dynamic function

that models the environment, otherwise the system is unable to identify the noise source

correctly.

Summary

In this chapter, we proposed a neuro-fuzzy system constitued of four subsystems operating

able to identify the nature of noise waves that corrupt the speech signal before canceling

it from such a speech signal. We have shown that noise source identi�cation is related to

the mimimum mean square error measured between the noisy components of the measured

signal and their estimates, which were the output of the implemented system.
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8. Classi�cation with Neural Networks

I have only tried, and cannot know whether sometimes I succeeded,

renouncing the fruit of action as old wisdom warns. Your gift is

the most gratifying I could receive: counting friends such as you will

add a dimension to my life until I have one.

{ Eduardo R. Caianiello.

Introduction

The fundamental objective for pattern recognition is classi�cation, that is the process of

grouping objects together into classes according to their perceived likeness or similarities.

A pattern recognition system can be considered as a two stage device. The �rst one is

feature extraction or preprocessing phase. The second is classi�cation.

In this chapter, two di�erent experiments were carried out. We classi�ed the English

stops and four noise sources using respectively Time Delay Neural Network (TDNN)

and Recurrent Neural Network (RNN) architectures. The preprocessing algorithms are

described.

8.1. English Stops Classi�cation with Time Delay

Neural Networks

The work in the area of phoneme recognition using neural networks started with Waibel

et al. [80] and was justi�ed by the their potential of providing massive parallelism, adap-

tation and new algorithmic approaches to the problem. The initial studies demonstrated

that multilayer neural nets, with time delay units, provide excellent discriminations on

small samples of pre-segmented words (consonants and vowels) which are otherwise hard
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to discriminate. However, to obtain such results they used an elaborated network archi-

tecture and a speci�c set of data based on utterances produced by a small number of

speakers. Other attempts to realize similar performance using a di�erent database (like

TIMIT) and even phonetic units (like vowels) which are much more easy to discrimi-

nate than consonants did not give the same results (see [5] for a survey on phoneme

recognition using several preprocessing methods and neural network algorithms). Due

to these diÆculties researchers tried to recognize speech signals which are larger and less

variable than phonemes (like words). For these speech signals it is easier to �nd some

stable acoustic attributes which can be used to allow a good learning and classi�cation

process (see [75]). Phoneme recognition still remains a diÆcult problem to deal with.

The present section approaches the phoneme recognition problem using data extracted

from the multispeakers continuous TIMIT database. It exploits a new preprocessing

algorithm based on the RASTA-PLP algorithm (see [33, 35]) and a neural classi�ca-

tion approach based on TDNN. Moreover, this work also exploits the knowledge of the

acoustic and perceptual features which signi�cantly characterize the stop consonants

(see the following subsection). Combining the three aspects mentioned above, we ob-

tained classi�cation percentages on the test data which are better than those obtained

in the previous works of Zue et al., Bengio et al., and Flammia [6, 27, 90], which also

tried to recognize stop consonants extracted from TIMIT. We will show how the modi-

�cation of some parameters in the preprocessing RASTA-PLP algorithm will allows to

capture acoustic and perceptual stop's features, and obtain signi�cant improvements in

their recognition. Moreover, we will report experimental results which allow to de�ne

an upper bound on the number of neurons in the �rst hidden layer of a TDNN. Above

this bound the net performance decreases and the computational time for its training

increases. Furthermore, we propose a learning rate function which avoids the trial and

error processes needed to establish a good learning rate value to train the net on the

current data.

8.1.1. Speech Database

The consonants [ b, d, g, p, t, k] used to train and test the net were extracted from

TIMIT-NIST1 database. All data �les in the two directories (TIMIT/TRAIN and

1National Institute of Standards and Technology.
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Phoneme Training Testing

[b] 183 176

[d] 300 265

[g] 166 157

[p] 211 188

[t] 329 326

[k] 389 352

Total 1578 1464

Table 8.1.: Size of the training and testing data

TIMIT/TEST) are considered. The TIMIT-NIST database is composed of English sen-

tences produced by speakers from di�erent USA regions. Each speaker read ten English

sentences. Each sentence was labeled phoneme by phoneme. A total of 730 di�erent

sentences were used to collect the consonants for the training and the testing set.

Our data (the stop consonants [b, d, g, p, t, k]) are extracted from such sentences.

The sentences are di�erent from one speaker to another. The training data used were

produced by 38 speakers (24 males and 14 females). The testing data were produced by

35 speakers (22 males and 13 females). The training data were produced by speakers

from the same USA region (dr1 in TIMIT). The testing data were produced by speakers

from di�erent USA regions (dr1-dr2-dr3 in TIMIT) and then, with a di�erent accent.

The sentences from which the consonants were extracted were di�erent, both in the

training and the testing data. Table 8.1 summarizes the size of the training and testing

data for each stop consonant.

8.1.2. Preprocessing Phase

Feature extraction, also known as preprocessing phase is rarely a trivial process and is

often fundamental for any recognition problem. For most applications, it is important

to transform the data into some representations before using them as input to some clas-

si�cation sytem, such as neural networks. Let us briey review three feature extraction

techniques in speech signal.

Linear prediction (LP) [59] analysis is a time-domain technique which attemps to

predict \as well as possible" a speech sample through a linear combination of several

previous signal samples. As the order of the LP model increases, more details on the
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power spectrum of speech can be approximated [33].

Perceptual Linear Prediction (PLP) [34] analysis uses concepts from psychophysics

of hearing in order to derive an estimate of the auditory spectrum [33].

The RelAtive SpecTrAl (RASTA) technique was originally developed as a purely

engineering technique for dealing with �xed or slowly varying non-linguistic components

of speech features. Since the rate of extra-linguistic changes is often outside the typical

rate of change of linguistic components, Hermansky et al. [34] proposed that �ltering the

temporal trajectories of speech parameters might alleviate the extra-lingusitic spectral

components from the speech representation.

The speech signal was preprocessed using the RASTA speech processing algorithm

due to its better performance over linear prediction (LP) and perceptual linear pre-

diction (PLP) algorithms [35]. RASTA-PLP adds a spectral band-pass operation to

PLP analysis in order to obtain acoustic features which are robust to distortions. Each

speech segment was processed through several steps which include critical-band spectral

resolution, equal loudness curve, intensity loudness conversion, inverse Discrete Fourier

Transform, autoregressive coeÆcients, all-pole model.

We modi�ed some parameter values of this algorithm in order to capture some of

the invariant and transitional cues of the stop consonants. Indeed, the speech signal

was sampled at 16 kHz and was weighted by a Hamming window 10 ms long and each

frame of a phonetic segment overlapped with the precedent ones by 5 ms. This analysis

provided nine acoustic features (8 coeÆcients plus gain) at the rate of 100 frames/sec.

All stop consonants [b, d, g, p, t, k] were processed in the same way.

The modi�cation of the preprocessing parameter values can be justi�ed taking into

account the acoustic features of stop consonants. Blumstein and Stevens [8], through

a set of perceptual experiments, suggested that useful information about the stop con-

sonant identity can be found mostly in the short time interval that follows the release.

For this reason we used an analysis window and an overlapping step both shorter than

their original values.

We used RASTA-PLP as preprocessing algorithm because, as said above, it uses

concepts from psychophysics of hearing in order to derive an estimate of the auditory

spectrum.
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8.1.3. Acoustic Features of Stop Consonants

Which are the cues that our auditory apparatus uses to discriminate among speech

sounds? Perceptual experiments, performed by Cole and Scott [11], suggested that our

auditory apparatus uses invariant and transitional cues. An invariant cue, as it was

de�ned by Cole and Scott, is an acoustic cue which accompanies a particular phoneme

in any vowel environment. It is an acoustic feature that is present whenever a partic-

ular phoneme is produced during speech, and provides information about its phonetic

identity. Transitional cues were de�ned as acoustic cues which accompany a particular

phoneme in a speci�c phonetic environment. Both are used by listeners to discriminate

among phonemes. The identi�cation of a particular stop involves identi�cation of ei-

ther invariant or transitional cues, depending upon the position of the consonant in the

syllable and the position of the syllable in the utterance.

The major cue which distinguishes stop consonants from the others in ongoing speech

is silence. Stop consonants are always preceded by a closure interval prior to the release,

and while voicing may continue throughout this interval in some environments there

is a period of relative silence along the remaining of the energy spectrum which lasts

at least 10-20 msec. The silent interval is an essential cue for the identi�cation of a

stop consonant (see [11]). Stop consonants are released with an explosive burst when

produced before a vowel in a monosyllable. For voiced [b, d, g] the burst may be followed

by a short open interval (5-10 msec in running speech), while for voiceless stops [p, t, k]

the burst is followed (in initial syllable position) by a period of aspiration. The explosive

burst is a transitional cue for stop consonants and it might help to discriminate them

in some vowel environments (see [11]). De�ned as the time interval between the burst

onset and the voicing, Voice Onset Time (VOT) reliably discriminates between voiced

and voiceless stops (see [57]) in initial position of isolated words and in short sentences.

However, in other phonetic environments, VOT values were found to be compressed

for both voiced and voiceless stops, and the separation between the two categories was

generally less sharp (see [58]). The RASTA-PLP algorithm is capable of extracting such

cues from the raw speech signal because it derives an estimate of the auditory spectrum,

where such cues are enhanced. Cole and Scott's experiments also showed that some

stop consonants occurring in the initial word position cannot be substituted by other
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Cons./Epochs 200 1000 1800 2600

[b] 67:1 73:2 69:1 65:0

[d] 59:0 56:3 63:1 70:0

[g] 32:1 31:3 33:0 35:0

[p] 34:1 45:1 47:4 53:1

[t] 80:0 84:2 84:2 81:5

[k] 62:2 67:1 67:0 66:3

Overall 46:0 59:5 60:6 61:6

Table 8.2.: Net classi�cation percentages (on the training data) for each consonant using

the original RASTA-PLP algorithm and a 9{24{6{6 TDNN net architecture.

consonants if the perception has to be left unchanged, except for [g] which could be

replaced by [b] whenever it occurs. When a stop consonant occurs in any other position,

all the voiced stops could be replaced by [d] whereas all the voiceless stops could be

replaced by [t] without modifying the perception of the word or the sentence in which

they are embedded. The results of these experiments suggested that, in running speech,

some speech segments could be changed by production errors or by phonological rules

without changing the listener's perception. Moreover, the perception of [b, d] is much

more stable than the perception of [g], and the perception of [t, k] is much more stable

than the perception of [p]. Since neural networks can only extract features from their

inputs in order to realize the recognition process, the phonemes that undergo changes

like those mentioned above are not classi�ed so well as the others. This means that

extracting the acoustic features from the input patterns, the net will better generalize

for [b, d] and [t, k] than for [g] and [p]. Our experimental results, reported through the

Tables 8.2, 8.3, 8.4 con�rm this hypothesis. Net recognition percentages for [g] and [p]

are always lower than those for [b, d, t, k].

8.1.4. The Time Dependent Neural Classi�er

To perform the classi�cation task, we used Time-Delay Neural Networks, which have

turned out to be very suitable for phoneme recognition [79]. TDNNs try to capture the

relationships among sequences of acoustical events under translation in the time of the

signal window that is being examinated.

Our net is constituted of an input layer of nine components, a �rst hidden layer (in
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Cons./Epochs 200 1000 1800 2600

[b] 74:3 73:2 69:4 73:4

[d] 76:0 81:3 79:1 76:0

[g] 54:0 45:2 49:1 58:2

[p] 51:0 63:0 65:0 64:2

[t] 86:3 89:4 88:2 88:5

[k] 79:4 77:1 84:1 82:0

Overall 70:2 72:2 72:5 73:3

Table 8.3.: Net classi�cation percentages on the training data for each consonant (re-

ported on the columns as a function of the number of epochs) for each conso-

nant using the modi�ed RASTA-PLP algorithm and a 9{24{6{6 TDNN net

architecture.

Consonants Classification Percentages

Training data Testing data

[b] 93:7 92:9

[d] 92:3 91:8

[g] 77:5 92:4

[p] 78:4 80:3

[t] 92:4 90:8

[k] 94:4 94:2

Overall 88:1 90:4

Table 8.4.: Classi�cation percentages on the training and testing data respectively with

a 9-256-6-6 TDNN net architecture.
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which the number of neurons was varied through the set of the experiments performed),

a second hidden layer of six neurons, and an output layer of six neurons. The basic unit

of TDNNs is a neuron that has been modi�ed by introducing delays for each connection.

The input layer is activated by a vector of nine components. The input action on the

�rst hidden layer is seen through two component delay units, which were passed over

the input components. Likewise, in the second-hidden layer, each neuron sees the �rst

hidden layer through two component delay units, stepped by one frame at a time. Each

of the output units, corresponding to [b], [d], [g], [p], [t], [k], is connected to the second

hidden layer. The output layer performs, over time, an integration, of the nodes' outputs

in the second hidden layer. The delays are chosen short in order to take into account the

way we processed the input data (short window analysis). This net operates similarly to

that described by Waibel et al. [79, 80, 81] . However, the net is simpler in its structure

compared to Waibel's net. Indeed, the net input is a vector of nine components while

the Waibel net input was a matrix of 16 � 15 components. Moreover, to discriminate

[b, d, g, p, t, k] Waibel [81] used two TDNNs, one for [b, d, g] and another for [p, t, k].

Classi�cation performance was very good in such case, but the resulting net architecture

was greatly complicated.

Our network was trained using an on-line back-propagation algorithm [73]. Bengio

[5] showed that on-line learning is most appropriate for automatic speech recognition

applications. The weights are updated after each pattern presentation without using

the momentum term. The momentum does not seem to be useful in on-line learning

algorithms [5, 10]. The learning rate, after a series of trial and error processes was set to

� = 0:03. This value gave the better net performances in terms of computational time

and classi�cation percentage.

8.1.5. Recognition Experiments

A set of experiments was carried out in order to test di�erent hypotheses. In all the

experiments performed the input data were normalized so as to span over [-1 1].

Changes in the Preprocessing Parameter Values

The �rst experiment was carried out in order to test if our modi�cations of some RASTA-

PLP parameters allowed to capture signi�cant information about the phonemes we
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Cons./Epochs 200 1000 1800 2600

[b] 67:1 73:2 69:1 65:0

[d] 59:0 56:3 63:1 70:0

[g] 32:1 31:3 33:0 35:0

[p] 34:1 45:1 47:4 53:1

[t] 80:0 84:2 84:2 81:5

[k] 62:2 67:1 67:0 66:3

Overall 46:0 59:5 60:6 61:6

Table 8.5.: Net classi�cation percentages (on the training data) for each consonant using

the original RASTA-PLP algorithm and a 9{24{6{6 TDNN architecture.

wanted to recognize. We run the net with an architecture of 9-24-6-6 (i.e. 9 units

in the input layer, 24 units in the �rst hidden layer, 6 units in the second hidden layer,

and 6 units in the output layer) for several epochs. Tables 8.5 and 8.6 report respectively

the net performance with the original RASTA-PLP (i.e. with a sampling rate of 20 kHz,

an analysis window duration of 20 msec, and a window step of 10 msec) and the mod-

i�ed RASTA-PLP algorithm (i.e. with a sampling rate of 16 kHz, an analysis window

duration of 10 msec, and a window step of 5 msec). It is interesting to note that after

a certain number of epochs, the overall net performance did not improve signi�cantly

even though the number of epochs was increased. For example, in Table 8.5 for [b, d,

g] and in Table 8.6 for [p, t, k] the correct classi�cation percentage after 1800 epochs

is better than the correct classi�cation percentage after 2600 epochs. However, it is

evident from tables 8.5, and 8.6 that whathever was the number of epochs, the correct

classi�cation percentage always improved when the modi�ed RASTA-PLP algorithm

was used. Moreover, these results con�rm that the way the data are processed plays

an important role on the subsequent net performance [5]. As a consequence of these

results, all the training and testing data for the subsequent experiments were processed

with the modi�ed RASTA-PLP algorithm.

Optimization of the Network Architecture

It is largely accepted that the net performance improves when the number of hidden

neurons increases [12, 29, 38]. There is, however, an upper bound on the hidden neuron

number which depends on the current task to which the net is devoted to [63]. The
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Cons./Epochs 200 1000 1800 2600

[b] 74:3 73:2 69:4 73:4

[d] 76:0 81:3 79:1 76:0

[g] 54:0 45:2 49:1 58:2

[p] 51:0 63:0 65:0 64:2

[t] 86:3 89:4 88:2 88:5

[k] 79:4 77:4 84:1 82:0

Overall 70:2 72:2 72:5 73:7

Table 8.6.: Net classi�cation percentages on the training data using the modi�ed RAST-

PLP algorithm and a 9{24{6{6 net architecture.

net gives, for such a bound, the minimum generalization error (the generalization er-

ror is the net error on an independent test set). Our goal in carrying out this set of

experiments is to propose a net architecture that allows us to de�ne (for our current

task) an upper bound on the number of neurons in the �rst hidden layer. This bound

should give the best compromise between the net's classi�cation performance and the

computational training time. We expect that the net performance with a number of hid-

den neurons above this bound should not pay for the increased computational training

time. Therefore, in our experiments we only varied the number of neurons in the �rst

hidden layer. Table 8.7 reports the overall net performance for this set of experiments.

All the nets were trained on 1600 epochs. As it is possible to see, the net performance

improved as the number of hidden neurons in the �rst hidden layer increased, together

with the computational time required for the training. Our experimental results (see

Table 8.7) also showed that the classi�cation percentages reached a maximum value for

a certain number of hidden neurons, and then started to decrease. In order to determine

the performance function which �ts our experimental data (that is the performance as

a function of the number of hidden in the �rst hidden layer), we used the interpolating

theory and Lagrange's formula [70] on our experimental data. Figure 8.1 shows that a

9{256{6{6 net architecture is optimal for our current task.

Finally, we used such a net architecture in the training and testing phase. The net

was trained for 1600 epochs. The results are reported in Table 8.8 training and testing

data, and for each consonant. Our generalization error on the independent test data

set was 9.6%, which gave a signi�cant improvement compared to that reported by Zue
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Layer 1 24 34 64 128 256 350

Overall 72:1 72:8 81:5 85:0 88:1 85:6

Table 8.7.: Net classi�cation percentages (on the training data) averaged over all the

consonants for TDNN net architectures with a di�erent number of hidden

neurons in the �rst layer.

Consonants Classification Percentages

Training data Testing data

[b] 93:7 92:9

[d] 92:3 91:8

[g] 77:5 92:4

[p] 78:4 80:3

[t] 92:4 90:8

[k] 94:4 94:2

Overall 88:1 90:4

Table 8.8.: Classi�cation percentages on the training and testing data respectively with

a 9{256{6{6 TDNN net architecture.
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et al., Bengio et al., and Flammia [6, 27, 90]. These authors obtained a generalization

error of 35%, 30.7 %, and 24.9% respectively using more sophisticated preprocessing

features and more complicated network architectures. It is important to note that even

though the number of epochs was increased the net performance did not improve (see

Tables 8.2,and 8.3) due to the overtraining phenomenon. Indeed, it has been shown (see

[78]) that such phenomenon appears after a certain number of epochs depending on the

training data and the net architecture. The data reported in Tables 8.2 and 8.3 con�rm

this hypothesis. In Table 8.2 the net performance decreased after 2600 epochs whereas

in Table 8.3 the training data have been changed and the net performance still increased

after 2600 epochs.

Figure 8.1 shows the plot of the net performance as a function the number of neurons

in the �rst hidden layer.

Figure 8.1.: Net performance as a function versus number of neurons in the hidden layer.
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Optimal Learning Rate

Once we found the right way to preprocess the data and the right number of hidden

neurons to achieve a good phoneme recognition task, we performed another set of exper-

iments in order to test a general way to set up the learning rate value. The subsequent

experiments were performed using the optimal net architecture found in the above sec-

tion and data processed with the modi�ed RASTA-PLP algorithm.

Generally, in the backpropagation training algorithm, the learning rate value is ran-

domly changed until, through trial and error processes, an appropriate value for the

current task was found. This is a hard process which relies only on the researchers' expe-

rience. We tried a general way to set up the learning rate value de�ning it as a function of

the net output error on the current input. For a better understanding, let � = maxk Æ
(p)
k

be valued on all output neurons, where Æ
(p)
k = yk(1 � yk)(pk � yk); k = 1; : : : ; 6 is

the error on the current pattern p computed over the output node k; pk is the k-th

component of the input pattern; yk is the output of the node k. Then the learning rate

�
(p) for the current input p was set equal to �

(p) = e
�� and it was changed after each

epoch. The experimental data showed that with such a learning rate, the convergence

was never reached and local minimum problems appeared. Mathematically, this e�ect

could be explained by the fact that large and small errors appeared randomly during the

training and cannot be predictable. Consequently, the MSE undergoes great oscillations

from one training cycle to another because of the negative � value.

In the second experiment we de�ne the learning rate as a decreasing function of the

number of current epochs; i.e.

� =
1

M

 
1�

NeX
j=1

1

2j

!
e
�j�j

where M is a free parameter. It could be used to decrease the initial learning rate value

when it is too high for the classi�cation task to which the net is devoted. In our case

M is equal to 1. Ne is the current number of epochs (Ne de�nes the learning rate as

a function of the current number of epochs), and � = maxk Æ
(p)
k was valued on all the

output neurons. With such a learning rate the net MSE value after 1600 epochs was

lower than that obtained with � = 0:03. However, the net classi�cation performance was

roughly the same (the classi�cation percentage over all the consonants and after 1600
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epochs was 88.06%) and the computational time increased. Nevertheless, such a choice

avoids trial and error processes in de�ning the learning rate value and speeds up the net

convergence.

8.2. Noise Sources Classi�cation with Recurrent

Neural Networks

In this section, we present a classi�cation of noisy sentences (four di�erent types of noise

with recorded speech sentences) with recurrent neural networks as classi�ers.

8.2.1. Generalization Process

One of the advantages of neural networks is their ability to generalize. This means that

a trained neural network could classi�y data from the same class as the learning data

that it has never seen before. The idea to split the data into three parts (see the next

subsection) is to reach the best generalization. The generalization process is complex,

subtle, often partial and rarely straightforward. One technique is to stop the learning

at the minimum of the validation set error. After the learning phase, the network is

checked with a third data set, the validation data. There are critical e�ects of corpus

size, corpus structure and the time course of learning and many open questions remain

[17].

8.2.2. Database Description

For this purpose, we arti�cially corrupted some selected sentences from TIMIT database

[30] and Italian database. The resulting clean and noisy sentences are divided into three

categories based on the generalization technique [77]. These categories are training,

validation and testing sets. The training set is used to train a neural network. The

validation set is used to determine the performance of a neural network on patterns

that are not trained during learning. A test set is used for �nally checking the overall

performance of a neural net. The size of di�erent categories of data used are summarized

in Tables 8.9, 8.10, 8.11.
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Sentences Italian English Total

Clean 8 492 510

Babble 8 492 510

Car 8 492 510

TraÆc 8 492 510

White 8 492 510

Table 8.9.: Training data set.

Sentences Italian English Total

Clean 4 460 464

Babble 4 460 464

Car 4 460 464

TraÆc 4 460 464

White 4 460 464

Table 8.10.: Validation data set.

8.2.3. Description of the Preprocessing Technique

We implemented an algorithm that derived from Linear Predictor Coding (LPC) theory

[59]. The signal sn is assumed to give as a linear combination of past values and some

input un

sn = �

pX
j=1

aksn�k +Gun

where G is a gain factor, ak the predictor coeÆcients and p the model order. The LPC

algorithm �nds the predictor coeÆcients ak of an p�th order forward linear predictor

Sentences Italian English Total

Clean 4 398 402

Babble 4 398 402

Car 4 398 402

TraÆc 4 398 402

White 4 398 402

Table 8.11.: Testing data set.
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and the gain factor G such that the sum of the squares of the error

en = sn +

pX
j=1

aksn�k

is minimized.

The speech signal is segmented into 6 frames by applying a 200 msec as window's

lenght every 100 msec. From each frame, 11 predictor coeÆcients plus the gain factor are

extracted. The resulting coeÆcients are computed on a signal of 700 msec as duration

and are arranged into a single observation vector of 72 coeÆcients.

Since the clean speech database is composed of 1376 sentences that we corrupted

arti�cially with babble, car, traÆc and white noise respectively, that leads to 2550 input

patterns for the training set, 2320 input patterns for the validation set, and 2010 input

patterns for the testing set.

8.2.4. Recurrent Neural Networks

Recurrent neural networks are logical candidates when identifying a nonlinear dynamical

process [68, 87]. Such networks are becoming more and more attractive since they have

capabilities to store information for later use and their ability to deal with time-varying

input or output through their own natural temporal [54]. Many learning algorithms

have been proposed in literature for fully recurrent networks [86] and partially recurrent

networks [16]. Partially recurrent networks are basically back-propagation networks

with proper feedback. The main function of partially recurrent networks is to deal with

time varying explicitly. The recurrency in recurrent networks allows the network to

remember cues from the recent past. In these networks, the nodes receiving feedback

signals are called context units. At time t, the contex units have signals coming from

part of the network state at time (t-1). Since partially recurrent networks are basically

multilayer feedforward networks, feedback links can come from either the output nodes

or the hidden layers nodes, and the destinations of the context units can be either input

nodes or hidden nodes. In the following classi�cation, we consider the Jordan sequential

network, and the Elman recurrent network [16]. We trained the network on a workstation

using the Stugartt Neural Network Simulator [77].

The Jordan sequential network is realized by adding recurrent links from the net-

work's output to a context layer, and from the context units to themselves. Context
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units copy the activations of output nodes from the previous time step through the

feedback links with unit weights. This model has some drawbacks. For instance, with

sequences of increasing length, the network encounters diÆculty in discriminating on

the basis of the �rst cues presented [2].

Elman's recurrent network is a two layers' backpropagation network with the addition

of a feedback connections from the output of the hidden layer to its input. This feedback

path allows the Elman network to learn, recognize and generate temporal patterns as

well as spatial patterns [16]. Elman network requires that the hidden layer must have

enough neurons to perform well.

For both architectures used, we �xed the learning rate to 0.002 and the number of

training epochs to 2000.

Classes Jordan's Network Elman's Network

Tra. Val. Tst. Tra. Val. Tst

Clean 96.5 90.3 84.8 93.3 84.3 83.1

Babble 96.1 93.1 92.0 90.4 84.3 84.1

Car 99.0 95.9 96.0 97.3 92.0 93.5

TraÆc 99.5 99.6 98.5 98.2 98.1 95.8

White 99.4 99.4 98.0 99.2 99.4 97.8

Table 8.12.: Experimental results with Elman's and Jordan's network architectures.

8.2.5. Results Analysis

As the results showed in Table 8.12, Jordan's network and Elman's network architectures

are good classi�ers. It also appears that the preprocessing technique used is optimal for

the classi�cation problem under examination, but neuro fuzzy systems can perform

better.

Summary

In this chapter, we report on two classi�cation problems which can be related with the

work up to now reported since, to solve them, we still used learning techniques, even

though without using fuzzy logic.
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The results of these two works suggested that when the data are enough and well

preprocessed it is not necessary to use a neuro-fuzzy system (which is more complex than

a neural network, to obtain good results).
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9. Conclusion and Further Topics

We believe that the new role of Science is to promote a more e�ective

collaboration between East and West, and to contribute in a direct way to �ll the

ever-increasing gap between North and South.

{ Antonino Zichichi.

9.1. Concluding Remarks

In this dissertation we showed that adaptive noise �ltering from a speech signal with

neuro-fuzzy systems is a good technique compared to those based on time-domain and

frequency-domain since it combines the potentialities of neural networks to learn from

example, and the capabitilies of fuzzy logic to model human concepts and thoughts.

The implemented systems have the advantage of canceling noise from the speech

signal in almost real computational time. Moreover, the requirement of knowing the

noise source (requirement of any adaptive noise canceling system) is overcome by the

system (composed of four subsystems operating in parallel) we proposed in Chapter 7,

since such a system is able to identify the nature of noise waves that corrupt the speech

signal when recorded noise source samples are available.

We proposed some modelings of the environments with passage dynamics that are

the mathematical descriptions of channels through which the noise waves undergo before

corrupting the speech signal.

We also showed through classi�cation experiments that neural networks are good

classi�ers when the input data are enough and well preprocessed.
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9.2. Further Topics

This work provides a foundation for future expansion of studying the passage dynamics

that model the environment through which the noise waves undergo before corrupting

the speech signal. As underlined in Chapters 6 and 7, even though we have designed

a fast neuro-fuzzy system for noise cancellation from speech signal, the fuzzy inference

system generated takes into account during learning the passage dynamic function used.

Its performance changes if the passage dynamic function changes. An interesting future

work on this aspect should be to �nd a way to overcome this limitation. A possible, but

not obvious solution, could be the introduction of wavelets into the implemented system

for modeling the passage dynamics. Further work should be done on this topic.

Another drawback of this system is that we should know the noise source which

corrupted the signal. We tried to overcome this limitation, implementing a system

where di�erent models of noise sources are learned (see Chapter 7). However in real

world applications, it should be diÆcult to model the noise source appropriately, or

to have a sample of it available. Therefore, further work should be done to avoid the

dependence of the implemented system on the noisy environment.

Last but not least, it should be observed that the implemented systems were tested

intensively on speech sentences arti�cially corrupted. This creates in some way a linear

relationship between the corrupted signal and the noise source. In the real world, we

only have a corrupted signal where the distortion created by the noise could be nonlinear.

Assuming we may know this nonlinear distortion in advance, it should be interesting to

test the system on data not corrupted arti�cially. This is an ongoing work which we are

performing for forensic data analysis.
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