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Elise, Dr Ouankou Christian, Dr Sini Victor, Dr Kissougle aimé, Dr Yondjio Nadine, Dr Mapoko
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Figure 68 (a)-Poincaré map for heteroclinic orbits (noisy system, F2 at the critical

threshold): F2 = 6.1; η = 0.1; (b)-Poincaré map for heteroclinic orbits
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Abstract

In this thesis, the first basic structural model adopted is the two fluid model for
plasma density. The second one is define by a set of Ginzburg-Landau type differen-
tial equations, modeling mean electric field change in tokamak L-H transition. These
models capture the basic nonlinear phenomena in plasma device and their generaliza-
tion in large plasma devices as tokamaks, with a minimal complexity in the equations
of motion, thus providing a balance between simplicity and accuracy.

We first study the chaotic dynamics of one-degree-of-freedom nonlinear oscillator
representing a density perturbation in plasma device excited by parametric force com-
ing from sheath oscillation when heating the plasma with a sinusoidal oscillating volt-
age, and an external driven forces coming from the control device. For this first in-
vestigation, parameters for the onset of chaotic motions are specified using Melnikov
method. The analytical results are confirmed by numerical simulations. The global dy-
namical changes of the system have been examined by evaluating parametric changes
of the bifurcation diagrams, maximum Lyapunov exponent, Poincare map and the basin
boundaries of attraction. The transitions to chaos caused by the cascade bifurcation and
intermittency are clearly shown by graphical methods.

Secondly we show that the random fluctuations in the electronic density referring
to the above model, can influence considerably the profile of the resonance and stabil-
ity curves of a column of plasma. The fluctuations affect the resonance in a different
way according to the order of the considered resonance. The purpose of this effort is to
investigate the effects of bounded noise on the primary resonances of density fluctua-
tion in plasma. Along this second study, the response and stability are considered and
analyzed using the method of multiple scales and the technic of stochastic averaging.
Further, the statistical moments are calculated and their stability condition established.
Through numerical simulations, we show that the density perturbation may undergo
hysteretic transitions induced by external noisy excitation. The response of the global
system is affected by bounded noise as demonstrated through Poincare map.

We end our work by studying the Melnikov function associated with a bounded
noise perturbation of a differential equation modeling mean electric field change in
tokamak L-H transition, having two homoclinic orbits and one heteroclinic orbit. Our
main interest is the characterization of perturbations that give rise to vanishing or non-
vanishing of the Melnikov function. For the purpose of analyzing this third model, we
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use a test of chaos to verify our prediction. The results reveal that noise intensity, mod-
ify the attractor size through power spectra, correlation function and Poincare map. We
then found that, the criterion from Melnikov’s method could be a valid tool for pre-
dicting harmful parameters values involved in experiment on Tokamak L-H transition,
allowing quantitative predictions and qualitative description of different control opera-
tions.

Keywords: Plasma, Two-fluid model, L-H transition, Energy, Melnikov, Bifurcation, Resonance,
Chaos.
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Résumé

Nous considérons dans cette thèse, des modèles qui illustrent les phénomènes non
linéaires de base, avec une complexité réduite, dans les dispositifs à plasma de lab-
oratoire, et leur généralisation dans les machines à plasma de grande taille comme
les tokamaks. Le premier modèle est le plasma à double-fluide, généralement utilisé
pour étudier la dynamique des perturbations de densité des ions et des électrons. Nous
tenons compte de deux cas de figure: le cas où le modèle n’est influencé par aucun bruit,
et le cas où il est soumis à un bruit borné. Le second modèle de notre étude, est défini
par des équations de diffusion de type Ginzburg-Landau adimensionnées, caractérisant
les fluctuations de densité liées à la variation moyenne du champ électrique radial. Ce
modèle permet d’expliquer la transition des états de faible énergie de confinement vers
les états de grande énergie de confinement dans le tokamak.

Le travail s’ouvre par l’étude de la dynamique chaotique des perturbations de den-
sité d’un dispositif à plasma soumis simultanément à une excitation paramétrique et
à une force motrice externe. Cette force et cette excitation proviennent respectivement
d’un dispositif de contrôle et de l’oscillation de la gaine, suite au chauffage du plasma
avec une tension sinusoı̈dale. Les paramètres critiques définissant l’apparition des com-
portements chaotiques dans ce premier modèle sont déterminés et exprimés analytique-
ment à l’aide de la méthode de Melnikov. Les simulations numériques, qui s’appuient
sur l’étude des diagrammes de bifurcation, le calcul des exposants de Lyapunov, l’analyse
des sections de Poincaré et des bassins d’attraction, sont effectuées et confirment les
résultats analytiques.

Ensuite, se référant au premier modèle sus-évoqué et en utilisant la méthode des
échelles de temps multiples et les techniques d’approximation stochastiques, nous mon-
trons que les fluctuations aléatoires de la densité électronique influencent les résonances
et la stabilité d’une colonne de plasma. Il apparait aussi que les effets de ces fluctuations
sur la résonance varient d’un ordre à un autre. Les moments statistiques sont également
calculés et leurs conditions de stabilité établies. Numériquement, nous montrons par
ailleurs que les perturbations de densité peuvent subir des transitions hystérétiques in-
duites par l’excitation bruitée externe. L’analyse des sections de Poincaré indique des
réponses du système affectées par ce bruit.

Afin de déterminer les perturbations qui donnent naissance aux fluctuations chao-
tiques dans le second modèle, nous nous intéressons enfin à l’étude de la fonction de

xxvi



Melnikov associée à une perturbation de type bruit borné. Ici les équations d’évolution
modélisent les variations du champ électrique radial dans le tokamak. A cet effet, un test
binaire appelé 0-1-test est utilisé pour vérifier les prédictions analytiques. Les résultats
révèlent que l’intensité du bruit peut modifier la taille des attracteurs. Ces résultats sont
confirmés par le biais du tracé des spectres de puissance, des fonctions de corrélation
et des sections de Poincaré. Il résulte que le critère de la méthode de Melnikov pour-
rait être un outil valable pour prédire les valeurs nocives des paramètres utilisés dans
les expériences sur le Tokamak. Ceci permet des prédictions quantitatives et des de-
scriptions qualitatives de différentes opérations de contrôle servant à l’optimisation du
chauffage du plasma, le confinement d’énergie et la diminution du risque d’accidents.

Mots-Clefs: Plasma, modèle double fluide, transition L-H, Energie, Melnikov, Bifurcation, Réso-
nance, Chaos.
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General Introduction

Bifurcations and chaos theory started with the intention of investigating the qualitative

behavior of nonlinear problems which were difficult to be solved analytically. In the first

half of the 1900s, scientists were interested in nonlinear oscillators like the Van der Pol

oscillator; with the advent of high speed computers, many different nonlinear problems

were solved [1] . Bifurcation diagrams, Lyapunov exponent, correlation dimension, etc.,

derived on the basis of chaos theory, have been used to characterize chaos and its dif-

ferent routes [2, 3]. Since the development of nonlinear dynamics, most applications

have been in the field of fluid dynamics, particularly fluid turbulence; because fluid and

plasma are closely related, the concepts of nonlinear dynamics had been successfully

utilized in plasmas.

In the late sixties and later, the idea of van der Pol oscillator was applied to explain

the growth and saturation of the plasma instabilities which could not be done using

conventional linear theories [4, 5] (and references therein). In their work, Abrams et al.

[6] first observed the nonlinear phenomena like period pulling, frequency entrainment,

etc., in periodically forced self-oscillatory plasmas. Keen et al., showed using a two-

fluid model that the ion sound instabilities behaved in a manner similar to a van der Pol

oscillator, when subjected to a driving force. The period doubling route to chaos was

also reported in the driven pulsed filament discharge plasma and an electrical discharge

tube [7, 8]. In 1989, the intermittency route to chaos was observed in the low frequency

self-oscillations in the undriven DC discharge system [9, 10]. Homoclinic chaos [11]

was reported in the same electrical discharge plasma system in which the deterministic

chaos has been observed, quasiperiodic route to chaos was observed in the driven and

undriven discharge plasmas [10]. Period adding route to chaos and period subtracting

had been observed in ion beam plasma in double plasma device [12]. In many other

researches, almost similar phenomena had been observed where different types of gases,

geometric configurations and parametric regimes were explored [13]. In all the above
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studies, the common feature was that the plasma dynamics goes towards a chaotic state

as the discharge current or discharge voltage (DV) was raised. Plasma machines could

be also subjected to external and/or internel noise.

Noise is usually considered as a troublesome feature of real physical systems. More-

over, noise as a source of stochastic motion, plays an important role in the formation

of structures in states far from thermodynamic equilibrium. An important step toward

a better understanding of the interplay between stochastic and organized motion is the

concept of stochastic resonance (SR). SR, which has been observed in many physical,

chemical and biological systems [14, 15, 16], is a phenomenon in which the response of

the nonlinear system to a weak periodic input signal is amplified or optimized by the

presence of a particular level of noise [14], i.e., a previously untraceable subthreshold

signal applied to a nonlinear system can be detected in the presence of noise. Over the

last few years, it has become apparent that, in a system far from thermal equilibrium,

even a small noise can also result in a qualitative change in the system’s properties, e.g.

the transformation of an unstable equilibrium state into a stable one and vice versa; and

the occurrence of multistability or multimodality [17]. The mechanism of SR shows that

the response of a bistable system to a weak signal can be optimally amplified by the pres-

ence of an intermediate level of dynamical noise. Furthermore, it has been proved that

noise may play a constructive or destructive role in nonlinear systems, by enhancing

coherent or incoherent behavior near bifurcations and phase transitions [18]. Because

the ability to construct coherent plasma structures appears to be of great potential value

in a variety of practical problems and in the study of the dynamics of engineering struc-

tures such as plasma devices, the existence of noise as an external perturbation cannot

be ruled out.

It is known that sudden transitions (the transitions can be considered like bifurca-

tions) to improved confinement modes have been a focus of toroidal confinement re-

search for more than a decade since the discovery of the H-mode in 1982 in a divertor

tokamak. The great variety of plasma situations in which the transition to improved

confinement is observed suggests that there may be some universal mechanism respon-

sible for the formation of a transport barrier and the decrease in the particle outflow

[19]. Several theoretical models on the transition from L-mode to H-mode plasmas have
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been presented. In 1990, a radial electric field Er near the plasma periphery has been

found both experimentally and theoretically to play an important role in the L-H transi-

tion. This radial electric field, in the thermal transport barrier, is found to become more

negative at the L-H transition [20].

Homoclinic or heteroclinic bifurcations could be an important sources of structural

instabilities in nonlinear dynamical plasmas models. The subsequent occurrences of

scattered chaotic dynamics and fractal basin boundaries are usually derived from the ho-

moclinic or heteroclinic transversal intersections between the stable and unstable mani-

fold of the hilltop saddle in the Poincaré map. In general homoclinic and heteroclinic

bifurcations are unwanted dynamical behaviors in most cases, consequently their

suppression by using several methods, is desirable from a practical point of view

[21].

Melnikov’s method was used to study the chaotic behavior [22] of a nonlinear

damped three-well ϕ6-Vander Pol oscillator under external and parametric excitations;

resonance and homoclinic bifurcation [23]; the occurrence of chaos in a parametri-

cally driven extended Rayleigh oscillator with three-well potential [24]. In Ref.[25], the

chaotic behavior of Duffing oscillator possessing both homoclinic and heteroclinic or-

bits and subjected to harmonic and bounded noise excitations was investigated. The

result based on Lyapounov exponent reveal that for larger noise intensity the thresh-

old amplitude of bounded noise for onset of chaos will move upward as the noise

intensity increases. The same behavior was demonstrated in [26, 27].

So, Homoclinic bifurcations are manageable dynamical behaviors in most cases, con-

sequently their monitoring could be helpful from a practical point of view [21]. For

example, Rempel et al. [28] have investigated the relevance of chaotic saddles and un-

stable periodic orbits at the onset of intermittent chaos in plasmas. They focus on the

role of non attracting chaotic solutions, known as chaotic saddles, in the transition from

weak chaos to strong chaos via an interior crisis and show how two of these unsta-

ble chaotic saddles can interact to produce the plasma intermittency observed in the

strongly chaotic regimes. Nevertheless, with the advent of the study of chaotic mo-

tion by means of strange attractors, Poincaré maps and fractal basin boundaries, it has

become necessary to look for a better understanding of these nonlinear systems like

Ph.D. Thesis of B. C. Nono Dueyou Laboratory of mechanics



4

density perturbation in plasma with higher order nonlinear terms.

The Melnikov method [29, 30], is an effective approach to detect chaotic dynamics

and to analyze near homoclinic or heteroclinic motion with deterministic or random

perturbation. The method was first applied in [31] to study a periodically forced Duffing

oscillator with negative linear stiffness, and by [32] to investigate the chaotic behavior

of a parametrically excited system such as the transverse vibration of a buckled column

under axial periodic excitation.

Chaos and the induced transport are key ingredients to a number of problems in

building a working device for nuclear fusion. Thus effectively controlling or influencing

chaos is a major issue in fusion research. There are two ways to control plasma: choosing

the right parameters and geometry or activate a control mechanism. In this thesis, we

will be focus to the first one.

Plasma processing technology, through many applications, is used in many manu-

facturing industries [34], especially in the surface treatment of components for the au-

tomotive, aerospace and biomedical sectors. Plasma technologies offer advantages in

terms of environmental impact, through reduced use of toxic liquids, and in terms of

engineering scale, through their compatibility with nanoscale fabrication [35].

In this thesis, the concept of bifurcation and chaos associated to plasma is studied.

Two example of macroscopic property (charge density and radial electric field) affected

by internal and /or external perturbations are considered for illustration with an inci-

dence on energy confinement. We discuss basic concepts of dynamical chaos and then

give their connection with chaos in plasmas.

This Thesis also aims at making a bridge between the fundamental nonlinear the-

ories and nonlinear phenomena involving structural formation, chaos and turbulence

in plasmas with an incidence on plasma confinement. We make an emphasis on chaos

an turbulence as the consequences of intrinsic plasmas phenomena; for example, zonal

flows in magnetized plasma drift wave, with the given formulation and derivations of

the basic equations. Certainly, we had to omit a number of topics in developing fields.

The thesis also omits some basics of fusion plasmas as they are well covered in a number

of good textbooks and monographs.

The manuscript consists of three chapters.
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1. Chapter I provides basic concepts and fundamental theories necessary to under-

stand contemporary plasma physics, and gives some motivations of our work.

2. Chapter II covers the ideas and methodologies for exploring nonlinear phenomena

associated with plasma modelization, structural formation, turbulence and chaos;

enough for understanding the rest of the thesis. Chapter II also connects plasma

physics to the stochastic theory, needed in real engineering. Two fluid modeling,

stochastic methods, nonlinear methods use to detect chaos; and resonance modes

are mainly discussed since they are well established concepts.

3. Chapter III is devoted to summarize the findings of this thesis through character-

ization of irregular behavior (chaos and turbulence), resonances modes and direct

numerical simulations, followed by a conclusion with an outlook for future stud-

ies.
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CHAPTER I

LITERATURE REVIEW ON PLASMA

PHYSICS AND SOME METHODS USED

THEREIN

I.1 Plasma physics

Study of the nonlinear processes in plasmas started in the sixties. Usually, nonlinear dynamics

plays a central role in plasma heating and confinement, and phenomena that are involved in

turbulence and self-organization. Many nonlinear phenomena had been observed and nonlin-

ear dynamics experiments had been performed in different types of laboratory plasmas. Plasma

column devices, as a approximation of tokamaks, easily exhibits nonlinear instabilities. This

chapter gives a brief review on nonlinear dynamics in plasma physics and propose the motiva-

tion that leads to the fundamental statement of the thesis.

I.1.1 Historical perspective of plasma

In the mid-19th century the Czech physiologist Jan Evangelista Purkinje introduced use of the

Greek word plasma, meaning “formed or molded” (after the Greek word ”πλασµα”, which

means ”moldable substance” or ”jelly”) to denote the clear fluid which remains after removal

of all the corpuscular material in blood. Half a century later, the Nobel prize-winning Amer-

ican chemist Irving Langmuir proposed in 1922 that the electrons, ions and neutrals in an

ionized gas could similarly be considered as corpuscular material entrained in some kind

of fluid medium and called this entraining medium, plasma [36]. He called the discovered

electromagnetic oscillations in rarefied gases: ”plasma oscillations” [37].

The electromagnetic force is generally observed to create structure: e.g., stable atoms and

molecules, crystalline solids. In fact, the most studied consequences of the electromagnetic force

6



I.1 Plasma physics 7

form the subject matter of Chemistry and Solid-State Physics, both disciplines developed to un-

derstand essentially static structures. Structured systems have binding energies larger than the

ambient thermal energy. Placed in a sufficiently hot environment, they decompose: e.g., crys-

tals melt, molecules disassociate. At temperatures near or exceeding atomic ionization energies,

atoms similarly decompose into negatively charged electrons and positively charged ions. These

charged particles are by no means free: in fact, they are strongly affected by each other’s elec-

tromagnetic fields. Nevertheless, because the charges are no longer bound, their assemblage

becomes capable of collective motions [38] of great vigor and complexity. Such an assemblage is

termed a plasma [39].

Figure 1: Free ions and electrons in plasma. (From: Chen F. F. and Chang J. P., Lecture Notes on
principles of plasma processing, Plenum/Kluwer Publishers, (2002).)

A plasma is a hot gas consisting of charged and neutral particles which exhibit collective

behaviour [40]. Plasma is matter heated beyond its gaseous state, heated to a temperature so

high that atoms are stripped of at least one electron in their outer shells, so that what remains

are positive ions in a sea of free electrons. The plasma is often referred to as the fourth state of

matter (solid- liquid- gas- plasma) [41]. This concept arises from a thermodynamic description

but is not completely rigorous. Ordinary fluids are in thermal equilibrium, meaning that the

atoms or molecules have a Maxwellian (Gaussian) velocity distribution. The parameter T , the

temperature, determines the width of the distribution. In a plasma, the different species-ions,

electrons, and neutrals may have different temperatures: Ti, Te, and Tn. These three (or more, if

there are different kinds of ions or atoms) interpenetrating fluids (even in the case of quantum

plasmas [42]) can move through one another, but they may not collide often enough to equalize
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(a)

(b)

Figure 2: (a) Natural plasmas: A-stellar space, B-Interplanetary space, C-Solar wind, D-
Magnetosphere, E-Ionosphere, F-Solar corona, G-Stellar atmosphere, H-Lightning, I-Stellar inte-
rior; and (b) industrial plasmas: A-Flames, B-Intense bundles, C-MHD generators, D-Industrial
reactors, E-Laser lamps, F-Tokamaks, G-sparks, H-Pinch and mirrors, I-Laser/plasma interac-
tion. (From: Rax J.-M., Physique des plasmas, Cours et applications, Dunod, Paris, (2005), page
4)

the temperatures, because the densities are usually much lower than for a gas at atmospheric

pressure. However, each species usually collides with itself often enough to have a Maxwellian

distribution. The two-fluid model of plasma physics describes the electrons and ions as conduct-

ing fluids that are couples through momentum transfer collisions and Maxwell’s equations [43].

Very hot plasmas may be non-Maxwellian and would have to be treated by kinetic theory. The

variation of the basic macroscopic physical quantities like density n and temperature T deter-

mines the properties of the matter in the plasma state (see Fig. 1). However, the transition from

the liquid, gaseous or solid state into the plasma state is not abrupt but continuous. In a gas,

for example, more and more of the atoms become ionized with rising temperature and a plasma

forms [44].

Ph.D. Thesis of B. C. Nono Dueyou Laboratory of mechanics
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Langmuir, along with his colleague Lewi Tonks, was investigating the physics and chemistry

of tungsten-filament light bulbs, with a view to finding a way to greatly extend the lifetime of

the filament (a goal which he eventually achieved). In the process, he developed the theory of

plasma sheaths; the boundary layers which form between ionized plasmas and solid surfaces.

He also discovered that certain regions of a plasma discharge tube exhibit periodic variations of

the electron density, which we nowadays term Langmuir waves. This was the genesis of plasma

physics [39].

I.1.2 Plasma parameters

An appropriate way to characterize the plasma is by the Coulomb correlation parameter, Γ de-

fined as follows (in SI units):

Γ =
q2

4πϵ0kBTaWS

(1)

where aWS is the Wigner-Seitz radius defined by (4π/3)naWS = 1, n is the particle density, and

kB is Boltzmann’s constant. The correlation parameter is simply the ratio of the electrostatic en-

ergy of neighboring charges to the thermal energy kBT . It alone determines the thermodynamic

equilibrium properties of plasmas in a harmonic trap. The values of Γ encountered in practice

range from weakly correlated systems Γ << 1 where the particles execute independent motions,

to highly correlated Γ >> 1 systems whose dynamics present a many-body problem more akin

to condensed matter. More generally, values of Γ > 1 indicate ”strong coupling” with significant

correlation between the dynamical variables of the particles, which is manifested as collective

behavior.

The basic parameter characterizing collective phenomena in a non-magnetized plasma is the

Debye length, it is the natural length scale (or Debye radius, the distance that an electron has to

move to screen the plasma from radiation.), and it is defined by

λD =
√
ϵ0kBTe/nee2 (2)

which is normally very small, and the plasma, or Langmuir frequency

ωp =
√
nee2/ϵ0me. (3)
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(a)

(b) (c)

Figure 3: Examples of plasmas presents in nature: (a) A comet sketching, (b) A gaseous nebulae,
(c) A galaxie. (From: Chen F. F. and Chang J. P., Lecture Notes on principles of plasma processing,
Plenum/Kluwer Publishers, (2002), pages 1 and 2)

Here, ne is the density, Te is the temperature, e is the charge and me is the mass, all of the

electrons, while k is Boltzmann’s constant and ϵ0 is the permittivity of free space. The product of

λD and ωp equals the electron thermal velocity.

I.1.3 Plasmas in nature and in laboratory

It is well known now that 99% of the matter in the universe is in the plasma state [45]. Plasma

can be found in the interior of the stars as well as in the interstellar space and in the core of the

planets. Plasma also occurs in gas discharges (”neon light”, lightning) as part of our daily live.

Examples include astrophysical plasmas such as in dilute interstellar gas clouds or the highly

energetic and dense matter in the strongly compressed interior of stars or giant gas planets like

Jupiter (see Fig.3). On earth, examples includes hot plasma ions in the magnetosphere surround-

ing our planet, the aurora borealis, lightning bolts, or the plasma of a candle flame. Besides these
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(a) (b)

Figure 4: Tokamaks: (a) T1 the first (From: http: // alltheworldstokamaks. wordpress. com
/gallery- of - external - views/) and (b) Cut-away of ITER (From: Ariola M., Pironti A., Magnetic
Control of Tokamak Plasmas, Springer, London, (2008), page 11), (the most recent) showing the
vacuum vessel, coils and divertor region. Iter wil have a plasma volume of 840 m3.

natural plasmas, plasmas find technological application in many modern industrial processes,

in plasma chemistry, in nanoparticle sources and a variety of surface processing technologies for

the treatment of metals, optical components, and plastic materials (functionalization, steriliza-

tion, etc.).

Furthermore, they are widely used in the field of nanotechnologies which includes plasma-

assisted deposition or etching in the semiconductor industry. Plasmas play a central role in

the development of improved light sources, display technology, lasers, and solar cells. Also,

promising medical applications on living tissues are already emerging. Other novel fields of

plasma research are laser-produced plasmas, particle acceleration in plasma wake fields, the

generation of ultra-dense plasmas (so-called warm dense matter) by focusing of intense laser

beams on small targets, as well as energy research in large-scale nuclear fusion experiments

such as ITER in France or the National Ignition Facility in the US [46].

I.2 Plasmas and particles

I.2.1 Plasma processing

After Langmuir, plasma research gradually spread in other directions, of which four are partic-

ularly significant.

Firstly, the development of radio broadcasting led to the discovery of the Earth’s ionosphere,
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Figure 5: Use of tokamaks as energy provider.

a layer of partially ionized gas in the upper atmosphere which reflects and occasionally absorbs

and distorts radio waves, and is responsible for the fact that radio signals can be received when

the transmitter is over the horizon. For instance, this can give rise to ”ghost signals”1. In order

to understand, and possibly correct, some of the deficiencies in radio communication, various

scientists, such as E.V. Appleton and K.G. Budden, systematically developed the theory of elec-

tromagnetic wave propagation through a non-uniform, magnetized plasma.

Secondly, astrophysicists quickly recognized that much of the universe consists of plasma,

and, thus, that a better understanding of astrophysical phenomena requires a better grasp of

plasma physics. The pioneer in this field was Hannes Alfven, who around 1940 developed the

theory of magnetohydrodyamics, or MHD, in which plasma is treated essentially as a conduct-

ing fluid. Space scientists borrowed the theory of plasma trapping by a magnetic field from

fusion research, the theory of plasma waves from ionospheric physics, and the notion of mag-

netic reconnection as a mechanism for energy release and particle acceleration from astrophysics.

When astrophysics and nuclear physics pointed towards the conversion of nuclear binding en-

ergy into heat, the thought immediately arose that this ’latent power’ could be controlled for the

well-being of the human race-or for its suicide [47].

Thirdly, high-temperature plasmas have been studied for decades in connection with con-

1i.e., signals which arrive a little before, or a little after, the main signal
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trolled fusion; that is, the production of electric power by creating miniature suns on the earth.

The creation of the hydrogen bomb in 1952 generated a great deal of interest in controlled ther-

monuclear fusion as a possible power source for the future. Before 1958 where thermonuclear

fusion research was declassified, this research was carried out secretly, and independently, by the

United States, the Soviet Union, and Great Britain. Theoretical plasma physics first emerged as a

mathematically rigorous discipline in these years. Not surprisingly, Fusion physicists are mostly

concerned with understanding how a thermonuclear plasma can be trapped, in most cases by a

magnetic field, and investigating the many plasma instabilities which may allow it to escape.

Finally, the development of high powered lasers in the 1960’s opened up the field of laser

plasma physics. When a high powered laser beam strikes a solid target, material is immediately

ablated, and a plasma forms at the boundary between the beam and the target. A major appli-

cation of laser plasma physics is the approach to fusion energy known as inertial confinement

fusion. In this approach, tightly focused laser beams are used to implode a small solid target

until the densities and tem- temperatures characteristic of nuclear fusion (i.e., the centre of a

hydrogen bomb) are achieved. Another interesting application of laser plasma physics [48] is

the use of the extremely strong electric fields generated when a high intensity laser pulse passes

through a plasma to accelerate particles. High-energy physicists hope to use plasma acceleration

techniques to dramatically reduce the size and cost of particle accelerators.

Why study plasma processing? Because we can’t get along without computer chips and mo-

bile phones these days. About half the steps in making a semiconductor circuit require a plasma,

and plasma machines account for most of the equipment cost in a ”fab”. Designers, engineers,

and technicians need to know how a plasma behaves [49]. These machines have to be absolutely

reliable, because many millions of transistors have to be etched properly on each chip. It is

amazing that this can be done at all; improvements will certainly require more plasma expertise.

Chemically reactive plasma discharges are widely used to modify the surface properties of ma-

terials. Plasma processing technology is vitally important to several of the largest manufacturing

industries in the world. Plasma-based surface processes are indispensable for manufacturing the

very large scale integrated circuits (ICs) used by the electronics industry. Such processes are also

critical for the aerospace, automotive, steel, biomedical, and toxic waste management industries

[50]. The low-temperature plasmas used in manufacturing are more complicated because they

are not fully ionized; there are neutral atoms and many collisions [51].
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I.2.2 Particles heating

Let give more detail on the ionization process. Not all the atoms have to be ionized: the cooler

plasmas used in plasma processing are only 1− 10% ionized, with the rest of the gas remaining

as neutral atoms or molecules. At higher temperatures, such as those in nuclear fusion research,

plasmas become fully ionized, meaning that all the particles are charged, not that the nuclei have

been stripped of all their electrons [52]. Before the atoms become ionized, the electrons could

stay bound to their nuclei but in excited states. These have a higher energy than the original

ground state. The electrons later decay from these excited states accompanied by the emission

of radiation in the visible part of the spectrum. This happens, for example, in auroras where the

atoms high up in the atmosphere become excited by electrons, which enter from the solar wind

and become trapped by the Earth’s magnetic field in the polar region. The decay of the excited

atoms may subsequently generate beautiful luminous curtains of auroral radiation.

The next generation of large machines is being designed for auxiliary heating and current

drive systems: Neutral Beam Injection (NBI), Ion Cyclotron Resonance Heating (ICRH), Electron

Cyclotron Resonance Heating (ECRH) [53] and Lower Hybrid (LH). Since none of these systems

can fulfil all the operational requirements one attempts to increase the flexibility by using com-

binations of auxiliary systems in order to study different scenarios for optimizing performance.

The use of external heating has a tendency to lead to a degradation of plasma confinement. It

has been found that such effects are extremely sensitive to the plasma conditions near the plasma

external boundary. Detailed studies of related phenomena led to the discovery of a new mode,

the so-called H-mode (high mode) of operation, in the ASDEX machine (Garching) which was

later confirmed in other machines. Experiments with the H-mode, which was associated with

steep gradients near the boundary, showed that heating could be obtained without degradation

of the confinement. In fact, the H-mode could typically have twice the confinement time of that

with L-mode (low-mode) operation. This discovery may be seen as an example of how impor-

tant improvements and new openings in science often come in steps. One reason for building

larger and larger tokamaks is that the confinement time crudely depends on the tokamak minor

radius, and the diffusion coefficient as a relation which applies for energy as well as for par-

ticles and indicates that larger machines should provide better confinement. For practical and

economic reasons one might, however, envisage other lines of development using stronger mag-

netic fields leading to higher densities n in more compact machines. One might even for such
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devices eliminate or reduce the external heating, using essentially ohmic heating produced by

the plasma itself.

I.2.3 Plasma classiffication

Astrophysical and laboratory plasmas

There are a variety of astrophysical plasmas in nature. The interior of the sun and the stars

consists of a very dense and very hot plasma where light atomic nuclei fuse to heavier ones and

release the access of binding energy according to Einstein’s famous formula E = MC2. The

sun emits an extremely dilute supersonic plasma, the solar wind, into its planet system. By

interaction with the electromagnetic radiation from the sun the atoms of the upper atmosphere

become partly ionized. We call this plasma which expands from about 60km to 2000km altitude

the ionosphere [44].

A completely other type of plasmas are the degenerate plasmas within white dwarfs or neu-

tron stars showing extremely high densities and thus behaving differently from the typical ideal

plasmas we know from the majority of the Laboratory plasmas. Since the plasma may carry

an electric current, plasma discharges of various types are investigated in fundamental research

and applied in industry. Low-pressure discharges like glow discharges carry small currents with

cold electrodes. They serve for lightening, for gas lasers like theCO2 laser or theHeNe laser, and

for the wide-spread applications of plasma etching and deposition . High-pressure discharges

like arcs may carry larger currents and thereby attain higher temperature. They may also serve

for lightening like the well-known high-pressure mercury lamp, for switches, and for plasma-

material processing like melting, cutting, and welding. In order to gain fusion energy in labo-

ratories, high-temperature plasma physics has been started as a classified project as mentioned

before, around 1950.

The fundamental measure of a magnetic field’s effect on a plasma is the magnetization pa-

rameter δmag. The fundamental measure of the inverse effect is called β, and is defined to be

the ratio of the thermal energy density nT to the magnetic energy density B2/2µ0. It is conven-

tional to identify the plasma energy density with the pressure, and then β = 2µ0P/B
2. Although

scale-independence of the magneto hydro dynamic (MHD) equations permits analysis of global

plasma dynamics in laboratory and astrophysical plasmas by the same techniques, the important

differences of the parameters that govern overall force balance should not be neglected. For ex-
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(a) (b)

Figure 6: (a) aurora borealis ((From: Chen F. F. and Chang J. P., Lecture Notes on principles of plasma
processing, Plenum/Kluwer Publishers, (2002), pages 1 and 2)), (b) Tokamak

ample, the parameter β (J ∧B = ∇P ∼ β << 1), where J is the ion current, B the magnetic field

and P the pressure, is small for tokamak plasmas and usually large for astrophysical plasmas,

so that plasma dynamics in tokamaks is always dominated by magnetic fields whereas this may

not be the case for astrophysical plasmas [54]. Hence, MHD instabilities occur in astrophysical

plasmas under conditions that do not allow instability in laboratory plasmas.

Ideal neutral and quasi-neutral plasmas

An idealized plasma consist of an equal number of electrons, with mass me and charge −e (here,

e denotes the magnitude of the electron charge), and ions, with mass mi and charge +e. Quasi-

neutrality demands that ne ≃ ni.

Plasmas could be considered as charged fluids which obey Maxwell’s equations, but in a

complex way. One of Maxwell’s equations is Poisson’s equation

∇D = ∇ϵ0E =e (ni − ne) (4)

E can be derived from a potential V by E = −∇V . We then have ∇2V = (e/ϵ0) (ni − ne). By

replacing ∇2 with 1/L2, where L is the length over which V varies, the ratio of the potential

energy |eV | of an electron in the electric field to its thermal energy kTe is then approximately

∣∣∣∣ eVkTe
∣∣∣∣ = L2e2

(ni − ne)

ϵ0kTe
(5)
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Then, ∣∣∣∣ eVkTe
∣∣∣∣ =

L2

λ2D

(
1− ni

ne

)
(6)

The left-hand side of this equation cannot be much larger than 1, because if a large potential is

imposed inside the plasma, such as with a wire connected to a battery, a cloud of charge will

immediately build up around the wire to shield out the potential disturbance. λD is of order

50µm for kTe = 4eV and ne = 1017m−3 or 1011cm−3, a value on the high side for industrial

plasmas and on the low side for fusion plasmas. If we take L to be of order 10cm, an average

dimension for a laboratory plasma, the factor L2/λ2D is of order 108, so that ni must be equal to

ne within one part in 108 to keep the left-hand side reasonably small. In the interior of a plasma,

then, the charge densities must be very nearly equal, and we may define a common density,

called the plasma density n, to be either ni or ne [45, 46]. However, there are regions, called

sheaths, where L is the order of λD; there, the ratio ni/ne does not have to be near unity ( It is

what happens near the walls around a plasma and near objects, such as probes, inserted into

the plasma). In the preceding development we have implicitly assumed that the ions are singly

charged; if the ions have a charge Z, the condition of quasineutrality is simply ni = Zne .

Cold and hot plasmas

Space plasmas [55] vary from very hot (T > 30000K) and dense plasmas at the centre of

stars, corona flares and sunspots, to cold and less dense plasmas such as the aurora borealis and

the ionosphere within the Earth’s gravitational system. In space the chance of a collision is very

low, and electrons and ions travel through space at high velocities over large distances.

Kinetic plasmas are generally described as hot plasmas since the ion temperature which is

approximately equal to the electron temperature (Te ≈ Ti), is high although the gas is not nec-

essarily in thermal equilibrium since the neutral atoms and molecules may be at a much lower

temperature. In a kinetic plasma, the mean free path of a particle is long (i.e. the time between

collisions is long and the collision frequency is low), electrons and ions tend to behave separately

and their behaviour can be described in terms of individual particles in both space and time.

Fusion plasma is an example of hot plasma (Te ≈ Ti > 106K). At higher pressures (such

as the plasma used in atomic fusion [56]) the effects of diffusion gradients, collisions and the

fluid electromagnetic properties also affect the plasma processing process, and they may also be

described as magneto plasma dynamic (MPD) (although the collision processes can be described
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as kinetic) [57]. Very high energy densities are possible and kinetic plasmas are the subject of

areas such as fusion research.

Figure 7: Plasmas as a function of temperature and density (From: Harry J. E., Introduction to
Plasma Technology Science Engineering and Applications, Wiley-VCH, Weinheim, (2010), page 3).

Technological plasmas such as glow and arc (Te ≈ Ti ≈ 300K, Ti << Te << 105K, Low

pressure ∼ 100Pa, 1eV = 11604K), are normally supplied with energy from electric power

sources [58]. Gas pressures as low as 10−11Pa (7.52×10−14Torr) are obtainable in the laboratory,

but the use of plasmas is limited by the energy density at low pressures to about 100 × 10−3Pa

(0.752×10−3Torr), at which the mean free path is of the order of 100mm. Technological plasmas

are often referred to as cold plasmas [59]. The behaviour is more accurately described by the

behaviour of individual particles (free electrons or ions), such as those in electron and ion beams

[60].

Non neutral plasmas

A nonneutral plasma is a many-body collection of charged particles in which there is not

overall charge neutrality. Such systems can be characterized, depending on the charge density,

by intense self electric fields. It has been known for some time that nonneutral plasmas exhibit
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collective properties that are qualitatively similar to those of neutral plasmas. For example, in

klystrons and traveling-wave tubes, the collective oscillations necessary for microwave genera-

tion and amplification are excited even under conditions in which the electron beams in these

devices are unneutralized [61]. As is the case with neutral plasmas, the macroscopic and Vlasov

descriptions of nonneutral plasmas involve the use of averaged quantities such as the mean

density or the distribution function. This means that in these models the details of the motion

of individual charged particles are suppressed. There is a dramatic difference between the mo-

tion of charged particles in a neutral, field-free plasma and their motion in a nonneutral plasma,

which has an equilibrium electric field.

I.2.4 Principles of particle confinement

The main representatives of magnetic confinement are the mirror machine, the tokamak device

and the stellarator. A short description of the technical layout and the theory of plasma confine-

ment in these concepts will be given.

Trapping principles

The technique of using electromagnetic fields to confine and isolate atomic particles in vacuo,

rather than by material walls of a container, was initially conceived by W. Paul in the form of a

3D version of the original rf quadrupole mass filter, for which he shared the 1989 Nobel Prize

in physics [62]. In considering the application of electric and magnetic fields to the problem of

confining charged particles in plasma, it is useful to recall some salient properties of the motion

of particles in such fields, particularly inhomogeneous high frequency electric fields and crossed

electric and magnetic fields. Some insight can be gained by assuming that the inhomogeneity of

the electric field is so weak that the variation in the field intensity is negligible over the amplitude

of the particle oscillation: the so called adiabatic condition. The motion of charged particles in

crossed static electric and magnetic fields is also of interest in the trapping of particles, since a

static electric field can be designed to trap particles along one axis, and a static magnetic field

to trap particles in a plane perpendicular to that axis. This clearly indicates the possibility of

constraining the motion of a particle in a divergent electric field by using a strong magnetic field

[63].
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General principles: Let consider a particle of mass m and charge q moving in a weakly in-

homogeneous electric field oscillating with an angular frequency Ω. consider the motion of the

particle in an electric field having a static component E0 (x) and a high frequency component

EΩ (x, t) such that, although EΩ (x, t) is not necessarily small compared with E0 (x), his par-

ticipation in the amplitude is assumed to be small. We then search for a solution in the form

x (t) = X (t) + ξp (t), where ξp is oscillatory at frequency Ω. Expanding the field in powers of ξb

and retaining only first order terms we have for the equation of motion:

d2X

dt2
+
d2ξp
dt2

= q
m(E0 + ξp

dE0

dx
+ EΩ (X) cos(Ωt) + ξp

dEΩ (X)

dx
cos(Ωt)) (7)

The solution of the oscillatory term is ξp = q
mΩ2 (EΩ (X)) cos(Ωt). Substituting this result in the

equation of motion, and averaging over the oscillation period of the field, give rise to:

d2X

dt2
= q

m(E0 −
q

mΩ2

⟨
EΩ (X)

dEΩ (X)

dx
cos(Ωt)2

⟩
) (8)

The smooth or secular motion is then determined by an effective potential given by

Ueff = U0 +
q

4mΩ2
EΩ (X)2 (9)

Clearly this can be directly generalized to three dimensions, and since the phase of the high

frequency field is not involved, it is possible to establish a three dimensional effective potential

well in which to trap ions. In general the required function U is a quadratic form in the cartesian

coordinates x, y, z, as follows:

U = qΦe = q
Φe0
2d2

(
Ax2 +By2 + Cz2

)
(10)

where Φe is the electrostatic field acting on an ion of charge q. In order to satisfy Laplace’s equa-

tion (△Φe = 0), we should have A+B + C = 0. For the interesting case of rotational symmetry

around the z-axis, this could leads to A = B = 1 and C = −2, giving us the quadrupolar form

U = qΦe = q
Φe0
2d2

(
x2 + y2 − 2z2

)
= q

Φe0
2d2

(
r2 − 2z2

)
(11)

The choice A = B, C = −2B leads to the axisymmetric three-dimensional trap.
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Paul traps and Pening traps: Three-dimensional confinement of charged particles requires a

potential energy minimum at some region in space, in order that the corresponding force is

directed toward that region in all three dimensions. From the difference in signs between the

radial and axial terms In Eq.(11), the potential has a saddle point at the origin, having a minimum

along one coordinate but a maximum along the other [63]. Earnshaw’s theorem [64] states that

it is not possible to generate a minimum of the electrostatic potential in free space. Nevertheless,

it is possible to circumvent Earnshaw’s theorem by superimposing a magnetic field along the z-

axis to create what is called the Penning trap or to use a time-dependent electric field (an electric

quadrupole field alternating at high frequency), leading to the Paul trap [65].

Magnetic and inertial confinement of plasma

Since high temperatures preclude confinement by material walls a new method of confinement

was needed in fusion plasmas. The tokamak [66], sterellator and inetial confinement machines

offers such a method . As discussed before, plasmas can be confined by magnetic fields, but in

linear configurations the end losses are by far too large to reach the necessary energy confine-

ment time tc of the order of some seconds. These end losses can be completely avoided in a

toroidal system, but in a simple toroidal system with purely toroidal magnetic field, the mag-

netic field curvature and gradient result in a vertical drift which is in opposite directions for ions

and electrons. The resulting electric field causes an outward E ∧ B drift of the whole plasma,

and therefore render the magnetic field configuration unstable. To avoid this charge separation,

it is necessary to twist the magnetic field lines by additional magnetic field components. Then,

single field lines map out so-called flux surfaces. On these flux surfaces, plasma transport is fast,

as it is always parallel to B, and therefore plasma parameters usually are constant on a given

flux surface. Perpendicular to the flux surfaces, transport is hindered because particle motion

perpendicular to B is restricted by the Lorentz force, and therefore plasma parameters can vary

strongly in this direction. Two different principles for twisting the magnetic field lines have been

invented in the 50s, and are under investigation worldwide.

The stellarator was invented in 1951 by Lyman Spitzer, Jr. in Princeton. In a stellarator the

twist of the field lines is created by external coils [67], wound around the plasma torus, it could

have different configurations [68]; an example is shown in Figs. 8(a), (b). Due to these external

currents the plasma shape is not circular, but shows some indentation. In this case, with f-our
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(a) (b)

Figure 8: (a) Stellarator configuration (From: Piel A., Plasma Physics, An Introduction to Labora-
tory, Space, and Fusion Plasmas, Springer, New York, (2010), page 21) and (b) The Large Helical
Device (LHD) at the National Institute for Fusion Science in Toki, Japan is the world’s largest
stellarator (from the Fusion Energy Division Oak Ridge National, TN 37831-6169).

coils (neighboring coils carry opposite current), the plasma has an oval shape. These external

coils have the advantage that the current can be controlled from outside, and can flow contin-

uously, but the configuration shown in Figure 8-(b), is very difficult from the engineering point

of view. Therefore such ”classical” stellarators nowadays have been replaced by ”modular” stel-

larators, where the planar toroidal coils and the helical coils have been replaced by one complex,

but modular system of non-planar coils. In stellarator, the toroidal drift of particles is compen-

sated by external helical magnetic fields. Then, there is no induced toroidal current flowing in

the plasma. Unlike a tokamak, a stellarator can therefore operate continuously. The absence of

plasma current also limits the possibilities for undesired instabilities.

The basic geometry of fusion reactors will be a torus (ring) for magnetically confined plasmas.

A schematic cross-section of such a reactor is shown in figure . The hot plasma is surrounded

by the first wall and blanket. The latter is filled with lithium to produce the tritium, and the

majority of thermal energy of the plant is delivered here by neutron moderation. A shield is

provided behind the blanket to stop the neutrons not captured by the blanket in order to reduce

the heat and radiation loads to the cold structures of the superconducting magnets.

In order to gain energy by fusion in a similar way as the sun, specific conditions must be

fulfilled [69]. For example, in the case of a deuterium–tritium plasma the triple product nTtc,

which is the product of density, temperature and confinement time, must be larger than 3.3

×1021 m−3 keV s in the ideal case of a clean plasma. As a side condition the temperature must
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(a) (b)

Figure 9: (a) Cut of ITER tokamak showing location of plasma facing materials and impurity
concentration limit in the plasma core for different elements, and (b) JFT2M tokamak (From:
http: // alltheworldstokamaks. wordpress. com /gallery- of - external - views/).

be about 15keV , where the maximum of the fusion output is. The goal of magnetic confinement

is to reach a Lawson parameter of ntc > 2.2× 1020 m−3s at a density of about 2× 1020 m−3 and a

confinement time of several seconds [70].

Controlled fusion devices of Tokamaks type: importance and configuration

The second approach for confinement is the tokamak proposed by two Russian physicist, Tamm

and Sakharov, in the year 1952 and realized by Artsimovich. The tokamak concept invented in

the Soviet Union in the late 1950s is now the major and most promising magnetic confinement

approach being pursued around the world [71]. Tokamak is an acronym developed from the

Russian words TOroidalnaya KAmera ee MAgnitaya Katushka which means “toroidal chamber

with magnetic coils”. As the name suggests, it is a magnetic confinement device with toroidal

geometry. The largest tokamak in the world is the Joint European Torus (JET) in Culham, Eng-

land. The DIII-D tokamak, is one of roughly a dozen medium-sized tokamaks around the world;

other tokamak, as FTU in Italy and TCV, in Switzerland are also used. Tokamaks are nowadays

the most promising devices for the development of nuclear fusion power plants. These devices

could be one of the best approaches to energy generation in the long term and therefore are the

subject of intensive international programmes of research, one of the most important being the

ITER [72] project.

The concept of the ITER tokamak is outlined in figure(9-(a)) with

Ph.D. Thesis of B. C. Nono Dueyou Laboratory of mechanics



I.2 Plasmas and particles 24

Figure 10: Particles movement in the torus. (From: Piel A., Plasma Physics, An Introduction to
Laboratory, Space, and Fusion Plasmas, Springer, New York, (2010), page 63).

- the vacuum vessel, the chamber where the plasma is contained;

- the blanket, which has the main roles of absorbing the 14 MeV neutrons and of breeding the

plasma with tritium, which is needed for the reaction (12).

D + T → 4He+ n+ 17.6MeV (12)

For this reason, the blanket is usually composed of lithium so that reaction (13) can occur;

6Li+ n → 4He+ T + 4.8MeV (13)

- the toroidal coils. The currents flowing in these coils generate a poloidal field (poloidal

field coils, or PF coils). The necessary twist is produced by the plasma itself, by means of an

electric current in the plasma which gives rise to the poloidal component of the twisted magnetic

field. The current also serves for plasma build-up and heating. This current is produced by

induction, the plasma acting as the secondary winding of a transformer. The coils in the centre

of the machine are called central solenoids (CS); the plasma current is built up by transformer

action, where the central solenoids are the transformer primary and the plasma itself acts as the

transformer secondary;

- the poloidal coils. The currents flowing in these coils generate a toroidal field (toroidal field

coils, or TF coils).

To understand the collective behaviour of charged particles, one may start from the motions

of individual particles in electric and magnetic fields, E and B, governed by the Lorentz force,
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in the non-relativistic approximation.

m
dv

dt
= q(E+ v ∧B) (14)

where m and q are the mass and charge of the particle, respectively, v is the particle velocity. In

uniform and constant crossed fields (E ⊥ B), this equation is satisfied by v = vd, where vd is the

drift velocity, which is independent of mass and charge. This relation reappears as the drift of

a plasma in crossed electric and magnetic fields. Superimposed on this drift may be a random

velocity in the form of a spiralling motion with arbitrary radius and pitch, that is with arbitrary

parallel and perpendicular velocities, and with angular frequency

vd =
(E ∧B)

B2
; (15)

charged particle will describe a simple cyclotron gyration around the magnetic field line. When

the component of thevelocity parallel to the magnetic field, which is not affected by the Lorentz

force, is different from zero, the trajectory of the charged particle is a helix as shown in figure

(10-(b)).

In this case the particle would fall out from the ends of the magnetic field line, contrary to

our desire to keep them confined. To solve this, the tokamak uses field lines bent into a torus so

that there is no end. The addition of a poloidal field generated by the toroidal plasma current,

produces a combined field. To initiate the discharge, hydrogen gas is puffed into the tokamak

vacuum vessel and the toroidal field coil current is increased to create a steady-state magnetic

field to contain the plasma when initially created. Then a large electric field is produced within

the torus using the CS (ohmic heating) coils. This electric field rips apart the neutral gas atoms

and produces the plasma. The plasma current in the plasma is built up by transformer action.

The collisions of the ions in the plasma make the plasma resistive. It is this resistance that heats

up the plasma (thus the origin of the term ”ohmic heating”). When the temperature increases, the

resistance decreases and the ohmic heating loses effectiveness. To significantly increase fusion

reactions, the temperature must be increased to over 100 million degrees, which is six times the

temperature at the centre of the sun. This heating is accomplished by particle beams (injecting

energetic ions) or by radio frequency or microwaves (heating ions or electrons). Shortly after the

discharge starts, additional gas is puffed into thechamber to increase the density and/or pressure
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to the desired levels. In fully ionized plasmas, a homogeneous electric field causes E ∧ B drift

both for electrons and ions perpendicular to the electric field and no current in the direction of

the electric field is generated [73].

Tokamaks which is subject to various instabilities [74] (such as magneto hydro dynamic in-

stabilities, resistive instabilities driven by external (ideal) ballooning, electrostatic microinstabili-

ties, some varieties of electromagnetic instabilities and others), have proved to be very successful

in improving the desired fusion plasma conditions and the today’s best experiments are based

on the tokamak principle. A transformer can induce the plasma current only during a finite

time, while, as mentioned before, a stellarator may principally run steady-state. For truely con-

tinuous tokamak operation, alternative current drive methods are being developed. Another

disadvantage of the required large plasma current is the potential danger of so-called disrup-

tions: uncontrolled very fast (∼ 10ms) plasma current decays which can give rise to large forces

on the machine. A review on the status of tokamak research is given in [75].

I.2.5 Plasmas and technological application

Fusion for energy supply as a response to environemental problems

If man is to survive, he needs energy. Energy provides us with electricity, heat, transportation,

communication, and a multitude of other things. However, most important is the fact that energy

enables us to acquire food. In order to feed the vast world population of about six billion people

of today and to provide for the growing number of the future, an enormous amount of energy

is required. Today, we can obtain energy by burning coal and petroleum on a large scale and

from the Sun, waterfalls, or windmills on a small scale. In developed countries, energy is also

acquired from nuclear reactors by the burning of nuclear fuel such as uranium. But what will

happen when most of the energy supplies of today become exhausted? Without an alternative

solution, civilization will be destroyed (see figure 11). Moreover, the environmental damage

from a coal or an oil plant is very disturbing. The pollution from these plants may also change

the climate, causing irreversible damage. One coal-fired power plant produces 2000 railcars of

ash per year and about 100 tons of poisonous sulfur oxides are absorbed into our atmosphere

every day from this one power plant alone. Oil plants cause similar atmospheric pollution. The

ocean waters of the Earth contain an effectively inexhaustible supply of deuterium. The second

generation of fusion reactors will use only deuterium as the thermonuclear burning fuel. There
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(a)

(b)

Figure 11: (a)Energy consumption (From: http:// www.courtfool. info) and (b)population
growth (From: http:// www.roperld.com/ science/ energyfuture. htm) curves .
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are no comparable ‘ashes’ and chemical pollution from either fission or fusion plants. However,

whereas fission nuclear power stations have the problem of radioactive waste, fusion plants are

clean reactors, both chemically and radioactively [41].

Plasmas present a new kind of matter not previously encountered and that investigation of

this new field of physics is only in its first stage. Usually, most new discoveries in fundamental

science have many future applications, new discoveries usually require some time to be incor-

porated into everyday life. But the situation with plasmas is different because the recent boom

in the field not only stems from scientific discoveries but was simultaneously dictated by several

problems of industry.

Material sciences

The procedure of deposition of a mono-layer complex plasma crystal on the surface of a mate-

rial can be continued by depositing one surface layer after another, and each of the subsequent

mono-layers can either have a different crystal structure or be composed of different types of

grains. This is the way to produce a new composite material. This possibility of using complex

plasma mono-layer crystals to create materials with different surface properties as well as the

possibility of producing new composite materials have been discussed in literature [76]. In this

context, one should notice the success of implanting in nano-tubes the fullerene molecules which

can serve as valves in possible future nanohydraulic technology. All this is only provisional, and

attempts have been made to initiate experiments on complex plasmas with nano-tubes or exper-

iments for the creation of nano-hydraulics. Mono-layer magnetic crystals also await laboratory

discovery and detailed investigations. Covering materials with magnetic mono-layer crystals

can be of major importance for new technologies. Another possibility is related to the creation of

a magnetic field by complex plasma crystals. This possibility is due to the alignment of asymmet-

ric dust grains to the ion flow [77]. Finally, plasma phase offers an unique way for the synthesis

of hard ultra materials that do not exist at the natural state as carbon nitrure.

Others applications

Plasmas physics is located as upstream of a vast field of technological applications; for exam-

ple, in the high technology domains like micro-electronics and spatial exploration: more of the

half manufacture operations of processors and memory chips are done currently in plasmas re-
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actors; and, plasmas propulsors are considered as the most applicable option for a lived mission

toward Mars. Beams of electrons and ion beams at low pressures that are used in semiconduc-

tor manufacture and for welding and melting can be regarded as kinetic plasmas. Low-pressure

glow discharge plasma processes are also used extensively in the manufacture of semiconductors

and specifically computer memory chips.

The continuous electric discharges, found numerous applications; that it is the sparks in igni-

tion systems, arc in steel-making industries, luminescent discharges (glow) lighting systems or

the discharges so-called crowns (corona) in dépollution systems. The electric, thermal, optic and

chemical properties, of these non-linear structures allowed the elaboration of reliable devices

replacing the flames advantageously.

I.3 Plasma and numerical computation

The key obstacle for reaching the ignition has been the lack of fundamental understanding, and

thus the limited ability to control the complex, nonlinear, and dynamical system characteristic

of high temperature plasma in fusion tokamak experiments. Renewed optimism in magnetic

confinement has come from recent progress marked by the strong coupling between experiment

( with a contruction of a data base needed for plasma processing [78]), theory, and simulation. In

particular, large-scale simulations enabled by the ever increasing power of modern computers

are rapidly advancing fusion energy science. Numerical simulations, in tandem with analytic

theories and experimental measurements, have helped to discover fundamental physics in fu-

sion plasmas, to understand tokamak experimental results, to guide the design and installation

of advanced tokamak diagnostics, to control plasma behavior, and to optimize tokamak opera-

tion regimes [79].

Over the years, there have been numerous examples, and it is not possible to review all of

them in this section. Let mention the effort to reduce the uncertainty in plasma devices; signif-

icant theoretical effort has been devoted to improve our understanding of the processes which

govern the ELM [80] and E ∧ B flow for example when the physics of the mean E ∧ B flow

becomes relatively well-established [81]. The study of turbulence driven zonal flows then be-

come an active area of current research in both the theory and experimental communities. Codes

based on the ideal magneto-hydrodynamics model of the plasma have predicted the no-wall and

infinitely conducting wall β-limits for many years with some accuracy, confirmed by numerous
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experiments on tokamaks. However, it is only relatively recently that we are starting to under-

stand the full physics of the resistive wall mode. For example, theory predicts that sufficient

plasma rotation can stabilize the RWM, allowing higher values of β to be achieved [82]. Experi-

ments, notably on DIII-D confirm that provided rotation can be maintained, the RWM is indeed

stabilized and values of β well above the no-wall limit can be reached [83].

I.4 Plasma instabilities

Why is it that the field of waves and instabilities has constantly attracted such great interest since

the very beginning of fusion plasma research? One reason is that these phenomena may have

very important consequences for the behaviour of fusion plasmas, and another is that they offer

many challenging basic scientific problems.

A fusion plasma can carry a large variety of different types of wave, such as plasma waves,

electromagnetic waves, ion-cyclotron waves, electron-cyclotron waves, hybrid waves, magne-

toacoustic waves, magnetohydrodynamic waves (Alfvén waves) ..etc [84]. From a practical point

of view certain waves are particularly important, because heating of the plasma to high temper-

atures by external sources can be achieved by exciting the plasma at certain frequencies which

are characteristic of those particular waves. As examples low-frequency ion-cyclotron waves or

high-frequency electron-cyclotron waves can be used for this purpose, the excitation frequencies

being determined by the magnetic field and the masses of the particles. Instabilities of waves

or other perturbations may occur as self-amplifying phenomena in plasmas. They have been

investigated extensively with regard to various plasma configurations and conditions and with

regard to different kinds of wave oscillation. Such instabilities show a tendency to develop when

the plasma possesses some kind of free energy, which it would prefer to get rid of and transfer to

wave motion. The origin of such free energy could be an inhomogeneity in the plasma density

or temperature or magnetic field. Such inhomogeneities almost always exist.

Instabilities may affect the plasma configuration negatively and even spoil the confinement

completely. An example of an instability which could have disastrous effects is one that could oc-

cur in a tokamak torus if the current in a plasma were to be driven by magnetic induction to such

high values that the magnetic poloidal field became too strong for the plasma torus to be kept

together causing it to break into wiggles. In limiting the plasma current to avoid the risk of such

instabilities one also limits the heating due to plasma resistance, ohmic heating. Nonlinearities
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may saturate instabilities but they can also cause or enhance instabilities [85]. Hydromagnetic

instabilities of the Rayleigh–Taylor and Kelvin–Helmholtz type for example may occur in the

plasma when domains of different densities meet each other. In the nonlinear regime interaction

between modes may lead to turbulence, which is studied intensively using numerical simulation

methods. Parametric instabilities may occur for example when a laser radiation interacts with

the natural modes of oscillation of the plasma [86]. Plasma instabilities known as ELM present a

significant challenge to the development of next-generation fusion reactors [87]. Flute instability,

anomalous transport, and back-reaction on density profile in the Helimak can be self-consistently

described by the diffusionless Lorenz-model. The model exhibits chaos and is to some extent an-

alytically tractable. As demonstrated before chaos and turbulence are considered as troublesome

features of plasma devices; a number of strategies have been developed to achieve control over

this complex temporal or spatio-temporal behavior. Many of these techniques apply to plasma

instabilities.

I.5 Chaos as an explanation of plasma collapse

In Plasma Physics chaos could be useful in somme ways. In the laboratory of NCSR

“Demokritos” the plasma chemistry method through the exploitation of chaos, has been used

for the restoration and conservation of metallic archaeological objects during the last decades.

The obtained experience conduct to conclude that plasma parameters and different status of

treated objects are so specific, so as to become unique [88]. But chaos is generally associated with

harmful behavior for confinement system.

Izrailev and Chirikov [89], discovered that the ordered motions found by Fermi, Pasta and

Ulam [90] in their model [91] become chaotic above a certain stochasticity threshold. Transitions

of this type were met also in the frame of plasma physics, in connection with the destruction of

magnetic surfaces [92], and also with the chaoticity thus induced on single particle motions [93].

The relaxation time from order to chaos can be very long, as occurs for example with glasses and

with the FPU model, and was recently pointed out also in connection with orbital magnetization

[94].

Plasma in a magnetic field, conceived microscopically as a system of point charges, can ex-

ist in a magnetized state, and thus remain confined, in as much as it is in an ordered state of

motion, with the charged particles performing gyrational motions transverse to the field. The
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phenomenon of destruction of magnetic surfaces was considerad to play a role in explaining the

breakdown occurring at the density limit. However, such considerations did not prove suficient

to explain the quick collapses of plasmas. The above ordered motions induced by the external

magnetic field, persist indefinitely in the unperturbed case, when one neglects the perturbation

due to the so called microfield, i.e., the microscopic electric field acting on each charge and due

to the Coulomb interactions with all the other ones2. In microscocpic terms, each electron is

equivalent to a magnetic moment, just in virtue of its dynamical property of performing gyra-

tional motions transverse to the field lines, this is the kind of analogous ordered motions we are

referring to. The perturbations caused by the fluctuations of the microfield3 introduce a chaoti-

zation, until a stochasticity limit4 is attained, beyond which ordered motions are lost, together

with magnetic pressure and confinement. Such a theoretical density limit5, is found to fit pretty

well the empirical data for collapses of fusion machines.

Experiment exhibiting period doubling and chaos in a plasma was made by Jain et al. [97],

they observed an instability occurring in rather unusual conditions. The frequency of about

10 kHz was below that of most instabilities except drift waves, but was above the argon-ion

cyclotron frequency. The magnetic field was sufficient to constrain the electrons but not the

ions. The dependence of the occuring of self-oscillations and its period-doubling route to chaos

on many input parameters vary from system to system [98]. The self-oscillations in undriven

[99] without external ac driver and driven [100] plasma systems are observed in many parallel-

plate thermionic with an electron beam injected from the cathode discharges, electron-cyclotron-

resonance plasma discharge [101], and rf plasmas [102]. Once excited, these self-oscillations

follow one of the standard routes to chaos via period-doubling, intermittency, or quasiperiodic

oscillation. As another example, a plasma-filled diode can be used as a model for the interaction

space in a virtual cathode oscillator (VCO) (vircator). It is shown that depending on the sep-

aration of the electrodes, the initial ion/electron ratio, and the load, the system may exhibit a

cascade of bifurcations leading to chaos. The positioning and extent of chaos can be controlled

by a judicious choice of the above parameters [103]. Chaotic behavior caused by the ion-ion in-

stability was observed by Matsukuma et al. [104]. An experimental observations of deterministic

chaos in a steady-state plasma which is not driven by any extra periodic forces was made by Qin

2see [95]
3which increase as the density
4and so a density limit
5see [96]

Ph.D. Thesis of B. C. Nono Dueyou Laboratory of mechanics



I.5 Chaos as an explanation of plasma collapse 33

et al. [105]. Two routes to chaos have been found, period-doubling and intermittent chaos. The

fine structures in chaos such as periodic windows and bifurcations in windows have also been

observed [106]. A transition scenario from stability to drift wave turbulence was experimentally

investigated in a magnetized low-β plasma with cylindrical geometry. It was demonstrated that

the temporal dynamics is determined by the interaction and destabilization of spatiotemporal

patterns, in particular, traveling waves. The bifurcations sequence towards weakly developed

turbulence follows the Ruelle-Takens scenario [107]. Some investigation have shown the role of

noise on the plasma dynamics [108].

I.5.1 Motivation

To summarize the highlights of this chapter, we can say that the understanding of matter,

the development of electricity, and the unveiling of the structure of the atom have led to the

discovery of a new state of matter, giving rise to many challenges. Some of them could be used

as motivation for this study.

(i)-When heating the plasma with a sinusoidally oscillating voltage, the sheath oscillate; the

heating is enhanced when the sheaths are oscillated. There is a good quantitative agreement with

a resonant particle heating theory in the measured rates [109]. In the usual resonance method,

the oscillations of particles are excited by adding a low frequency voltage of small amplitude to

the rf voltage. The voltage modulation can be a sine or a square wave. This additional volt-

age leads to a periodic change of the sheath width which “shakes” the potential well of the

particles, thus leading to the excitation of the oscillations of the entire plasma. This sheath

disturbance in the width, could then give rise to an oscillation of the particles density, thus

the parametrization of the density potential [110].

When the plasma is excited by a probe wire inserted in the plasma sheath, this results in

a number of horizontal and vertical type of oscillations and waves. Anharmonic effects due to

distortion of the potential well by variation of the particles charge in the sheath can’t be neglected

if the electrode modulation voltages used in the experiment is not small. It is also found that the

particles in the plasma sheath excited by a biased wire show parametric resonances, when using

a simplified analysis, that is based on the reasonable assumption that the probe bias affects the

sheath width, at least in the vicinity of the wire. A change in the sheath width or in the particles

charge results in a periodic modulation of the potential well and its resonance frequency;
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which show that the wire itself strongly distorts the plasma trap [111].

The sheath instability discussed below could appears also to be due to the nonlinear depen-

dence of the total electron current in the sheath on the plasma potential. The electron current at

the wall with second electron energy is

Je = −e (Γ1 − Γ2) (16)

where Γ1,2 are the primary and the secondary electron current. If for some reason, the secondary

electron flux decreases faster than the primary flux, then the wall will continue to charge neg-

atively and the sheath becomes unstable [112]. Based on all the above arguments we could

conclude that there is a coupling between the sheath instability and a potential parametriza-

tion, with an incidence on plasma confinement [113].

(ii)-The various dynamical regimes of collisional drift waves in a magnetized plasma column

are related with strong modulations of the ion and electron density. Using a control parameter

of the dynamics, could give rise to: regular, chaotic and turbulent regimes. The obtained

turbulent regime could be controlled [114].

A dynamical scenario could reflects a situation of chaotic regime that is close to the well-

developed turbulent regimes found in plasmas, where one expects a huge number of modes to

become actively involved in the dynamics. Also, the intermittency phenomenon is character-

ized by a strong departure from noisy Gaussian behavior related to turbulence. The serious

role of turbulence in fusion-oriented plasmas creates a special interest in controlling chaos.

The transition from spontaneous regular regimes to chaotic and turbulent regimes could be

obtained by changing the plasma parameters. Magnetized bounded plasmas are subjected to

a class of low-frequency electrostatic instabilities, the drift waves, caused by the E ∧ B motion

of particles in the presence of electric field fluctuations and gradients in the background plasma

parameters. Drift waves can be responsible for anomalous transport in magnetically confined

high-temperature plasmas. Therefore, controlling these instabilities is of great interest [115].

Zonal flows could be nonlinearly generated by a finite amplitude monochromatic drift wave

[116]. Zonal flows and transient dynamics of the L-H transition recent studies revealed a crucial

role of self-generated zonal flows in regulating turbulence [117].

The onset of intermittent chaos is leads to chaotic saddles and unstable periodic orbits. Nonat-

tracting chaotic solutions, known as chaotic saddles, play an important role in the transition from
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weak chaos to strong chaos via an interior crisis; unstable chaotic saddles can interact to produce

the plasma intermittency observed in the strongly chaotic regimes [28].

Plasma has an intrinsic property: structural formation through interaction with the electro-

magnetic field, generally explained by bifurcation of electric field. The mutual interaction be-

tween many particles is an essential aspect of plasmas. Collective effects must be taken into

account [118]. In many magnetically confined fusion experiments, plasmas may undergo

a spontaneous transition to a turbulence suppressed regime, which is known as the before

mentioned L-H transition [119]. It is then possible to modify the global confinement and edge

plasma parameters with limiter biasing, illustrating the direct impact of radial electric fields on

confinement properties [120].

I.6 Fundamental statement of the thesis

The preceding description of various motivating phenomena occurring in plasma give rise to

many theoretical challenges. In this thesis we propose some axes of investigation, in order to

better understand plasma systems and theoretical insight on chaos management:

• Aim 1: Build and explore the dynamics of plasma with a minimal set of model (two fluid

model) equations built in order to explain the possible density instability and achieves a reliable

density confinement.

• Aim 2: Search for the consequences of change in the sheath width, and it consequences on

the appearance of chaotic motion that lead to the plasma collapse.

• Aim 3: Explore the effect of physical (bounded) noise on the density state and divert reso-

nance phenomena, using two fluid model.

• Aim 4: Analyze the relation between noise presence and plasma collapse, using a dynamical

approach, using two fluid model.

• Aim 5: Explore the effect of noise on the appearance of chaos and turbulence regarded as

irregular behavior in a model of L-H transition in tokamak, in order to improve confinement.

I.7 Conclusion

We addressed a brief overview of plama science and the nonlinear processes and different ap-

plications therein. High-temperature plasmas have been studied for decades in connection with
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controlled fusion; that is, the production of electric power by creating miniature suns on the

earth. About half the steps in making a semiconductor circuit require a plasma, and plasma ma-

chines account for most of the equipment cost in a fab. Designers, engineers, and technicians

need to know how a plasma behaves. For many years, plasma sources were developed by trial

and error, there being little understanding of how these devices worked. With the vast store of

knowledge built up by the fusion effort, the situation is changing. Chapter II present the differ-

ent methods and modelizations we used to give our little contribution, in other to perform this

changes.
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CHAPTER II

METHODOLOGY: MODELLING AND

MATHEMATICAL METHODS

The previous chapter has introduced five problems: the dynamics of species in plasmas and

the confinement configuration, the problem of instability in plasma density, the parametrization

of confinement well due to instabilities in the sheath, the problem of noise presence in plasma

devices and the role of parameters such as electric field in confinement. The above problems

were described literally i.e. without any mathematical details. The aim of this chapter is to

highlight on the methodology through mathematical description, and details on the numerical

simulation.

Plasma can not provide quasi-neutrality of the densities and the diffusion of the fluxes in the

entirety of its volume. Plasmas, are joined to wall surfaces across thin positively charged layers

called sheaths. The force acting on electrons is directed into the plasma; this reflects electrons

traveling toward the walls back into the plasma. Conversely, ions from the plasma that enter the

sheaths are accelerated into the walls.

II.1 Modelling

The wide range of time scales and space scales present in the most general mathematical descrip-

tion of plasmas make meaningful numerical simulations which span these scales enormously

difficult. This is the motivation for deriving and solving reduced systems of equations that pur-

port to describe plasma phenomena over restricted ranges of time and space scales, but are more

amenable to numerical solution [121].

As mentioned before, a plasma is an ensemble of particles electrons e, ions i and neutrals with

different positions r and velocities v which move under the influence of external forces (electro-

magnetic fields, gravity) and internal collision processes (ionization, Coulomb, charge exchange

etc.). However, what we observe is some “average” macroscopic plasma parameters such as J-
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Figure 12: Plasma sheath.

current density, ns-species density, P - pressure, Ti - ion temperature etc. These parameters are

macrsocopic averages over the distribution of particle velocities and/or positions. The particle

velocity distribution is critical in plasma science, and can be derived from the Boltzmann trans-

port equation. The transport properties of the electrons and the ions can be derived once their

velocity distributions are determined [122]. The ultimate goal of magnetic confinement fusion

research is to produce steady-state burning plasmas in a fusion power plant [123].

II.1.1 Boltzman equations for species

Let consider a single particle of species s, described by a position vector

r = x i+ y j+ z k (17)

in the configuration space and a velocity

v = vx i+ vy j+ vz k (18)

in velocity space.

For multiple-particles systems, let introduce the distribution function fs(r, v, t) [124], which

temporal evolution gives a description of the system more detailed than a fluid description, but

less detailed than following the trajectory of each individual particle, for species s, defined such
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Figure 13: A configuration space volume element dr with the equivalent velocity space element.
dV = drdv is the volume element in (r,v) phase space.

that

fs(r,v, t)drdv = dn(r,v, t) (19)

is the number of particles in the element of volume dV = drdv in phase space. Where dr ≡ d3r ≡

dxdydz and dv ≡ d3v ≡ dvxdvydvz . fs(r, v, t) is a positive finite function that decrease to zero as

|v| becomes large. The element must not be so small that it doesn’t contain a statistically signif-

icant number of particle, then allowing fs(r, v, t) to be approximated by a continuous function.

The distribution is: (i) inhomogeneous if fs depends on r. (ii) anisotropic if fs depends on the

direction of v. fs(r, v, t)drdv is the number of particles at time t having positions in the range

between r and r+ dr and velocities in the range between v and v+ dv. Using the evolution of fs

to characterize the system rather characterizes classes of particles having the same r,v.

By using the derivation given in [125], we could notice that fs(r, v, t) changes because of the

flux of particles across the surface bounding the elemental volume drdv in phase space. Con-

servation of particles requires that the rate of particle flow over the surface ds bounding the

elemental volume δVo plus those generated by collisions and source, be eaqual to the rate at

which particle phase space density changes with time. by letting V = (v, a) be the generalized

velocity vector for phase space (r, v), then the rate of flow over the surface Sv into the volume

element is

−
∫
Sv

ds · [Vf ] (20)
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Using the divergence theorem, Eq. (20) can be rewritten as

−
∫
δVo

drdv [∇r · (vf) +∇v · (af)] (21)

where
∇r = i ∂∂x + j ∂∂y + k ∂

∂z

∇v = i ∂
∂vx

+ j ∂
∂vy

+ k ∂
∂vz

(22)

Since δVo is an elemental volume, the integrand in Eq.(21) changes negligibly and can be re-

moved from the integral. For plasmas, the dominant force is electromagnetic, then

a = qs(E+ v ∧B) (23)

As mentioned in [121], the most basic set of equations describing the six dimension plus time

(r, v, t) phase space probability distribution function fs(r, v, t) for species s of indistinguishable

charged particles (electrons or a particular species of ions) is a system of Boltzmann equations

for each species:

∂fs(r,v, t)

∂t
+ v · ∇r(fs(r,v, t)) +∇v ·

[
qs
ms

(E+ v ∧B)fs(r,v, t)

]
= Cs +

a
Ss (24)

where ms is the particle mass and qs is the particle charge for species s. The collision operator

Cs =
∑

iCis represents the effect of scattering due to collisions between particles of species s and

i. External sources of particles, momentum, and energy are represented by
a
Ss . The electric and

magnetic fields E(r, t) and B(r, t) are obtained by solving the free space Maxwell’s equations

∂B

∂t
= −∇ ∧E

∇∧B =
1

c2
∂E

∂t
+ µ0J

∇ ·E =
1

ϵ0
ρq

∇ ·B = 0

(a)

(b)

(c)

(d)

(25)

here charge and current density given by the following integrals over velocity space:

ρq =
∑
s

qs

∫
d3v fs(r,v, t)

J =
∑
s

qs

∫
d3v v fs(r,v, t)

(26)
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where ϵ0 and µ0 are the permittivity and permeability of free space, and c is the speed of light.

II.1.2 Two fluid equations

In plasma fluid theory, a plasma is characterized by a few local parameters, such as the

particle density, the kinetic temperature, the flow velocity, and the time evolution of which are

determined by means of fluid equations. These equations are analogous to, but generally more

complicated than, the equations of hydrodynamics.

We now take the moments of the entire Vlasov equation to obtain a set of partial differential

equations relating the mean quantities ns(r, t), us(r, t); where ns(r, t) is the density and us(r, t)

is the mean velocity

n(r, t) =

∫
fs(r,v, t)dv ; u(r, t) =

∫
vfs(r,v, t)dv

n(r, t)
, (27)

The collision-induced velocity jump occurs very fast so that if the phase-space trajectories were

recorded with a “movie camera” having insufficient framing rate to catch the details of the jump

the resulting movie would show particles being spontaneously created or annihilated within

given volumes of phase-space. Here we really want to know is the cumulative effect of many

collisions. It is therefore both efficient and sufficient to follow the trajectories on the slow time

scale while accounting for the apparent “creation” or “annihilation” of particles by inserting a

collision operator on the right hand side of the Vlasov equation. In the example shown here it

is seen that when a particle is apparently “created” in one box, another particle must be simul-

taneously “annihilated” in another box at the same r coordinate but a different v coordinate.

Inclusion of collisions and source term in the Vlasov equation is expressed in the form

∂fs
∂t

+
∂

∂r
(vfs) +

∂

∂v
(a fs) =

∑
k

Csk(fs) +
a
Ss (28)

Boltzmann’s collision operator Cs(fs) =
∑
k

Csk(fs), for a neutral gas considers only binary

collisions, and is, therefore, bilinear in the distribution functions of the two colliding species. Csk

is linear in each of its arguments. Unfortunately, such bilinearity is not strictly valid for the case

of Coulomb collisions in a plasma. Because of the long range nature of the Coulomb interaction,

the closest analogue to ordinary two-particle interaction is mediated by Debye shielding, an
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intrinsically many-body effect. Fortunately, the departure from bilinearity is logarithmic in a

weakly coupled plasma, and can, therefore, be neglected to a fairly good approximation (since a

logarithm is a comparatively weakly varying function). Thus, from now on, Csk is presumed to

be bilinear.

We begin by integrating the Vlasov equation,

∫ [∂fs
∂t

+
∂

∂r
(vfs) + (

qs
ms

(E+ v ∧B)) · ∂fs
∂v

]
dv =

∑
k

∫
Csk(fs)dv+ Ss (29)

Where Csk is characterized by constrained sources and sinks for particles in phase-space. Be-

cause r, v, and t are independent variables, the velocity integral commutes with both the time

and space derivatives on the left hand side, while the third term on the left hand side is the vol-

ume integral of a divergence in velocity space. Using Gauss’s theorem (
∫
vol
dr∇·Q =

∫
surf

ds·Q),

we obtain fs evaluated on a surface at v = ∞. Because fs −→ 0 as v −→ ∞, this surface integral

in velocity space vanishes. For the fourth term of the left hand side of Eq. (29) we have

∫ [
(v ∧B) · ∂fs

∂v

]
dv =

∫
∂

∂v
· (fsv ∧B)dv−

∫
fs

∂

∂v
∧ (v ∧B)dv = 0 (30)

because
(
∂

∂v

)
is perpendicular to (v ∧ B). The first term of the right hand side of Eq. (29)

vanish because collisions cannot change the number of particles (at least for warm plasmas,

where recombination can be ignored). We then obtain the following species continuity equation

∂ns
∂t

+∇ · (nsus) = Ss (31)

Where external sources of particles, momentum, and energy are represented by Ss =
∫
vol
d3v

a
Ss.

From thermodynamic arguments [126], Si is a source term which can be due to heating of the

plasma, and is, consequently, a function of density, n, electron temperature, Te, and electric field,

E, in the plasma. The species source Si could also been caused by the pressure of large amplitude

fluctuations in the plasma or by ionization. By multiplying Eq. (29) without source term by v

and integrate over velocity to take the “first moment”,

∫
v

[
∂fs
∂t

+
∂

∂r
(vfs) +

∂

∂v
(a fs)

]
dv =

∑
k

∫
vCsk(fs)dv (32)
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by letting v = v′ + us(r, t) where v′(r, t) is the random part of a given velocity, us(r, t) is the

relative velocity, and using
(
∂v
∂r

)
ij
= δij , the first moment of the Vlasov equation becomes

ns
∂(us)

∂t
= − ∂

∂r
· (
∫

(v′v′ + v′us + usv
′ + usus)fsdv

′)

+
qs
ms

∫
(E+ v ∧B)fs dv

′ − 1

ms
Rsk

(33)

where uu is the tensor or dyatic

uu =


uxux uxuy uxuz

uyux uyuy uyuz

uzux uzuy uzuz

 (34)

and Rsk is the net frictional drag force due to collisions of species s with species k. Note that

Rss = 0 since a species cannot exert net drag on itself. This form for frictional drag has the

following properties:

- Rsk+ Rks = 0 showing that the plasma cannot have a frictional drag on itself,

- Friction causes the faster species to be slowed down by the slower species,

- There is no friction between species if both have the same mean velocity.

Collisions cannot change: the total number of particles at a particular location, the total mo-

mentum of a species, or the total energy of that species.

By using
∫
v′fi dv

′ = 0 we then obtain

msns

[
∂us
∂t

+ us ·
∂us
∂r

]
= nsqs(E+ us ∧B)− ∂

∂r
·
↔
Ps −Rsk (35)

where
↔
P = ms

∫
v′v′fsdv

′ is the pressure tensor. If f is an isotropic function of v, expanding the

derivatives on the left hand side of Eq. (35) and removing the embedded continuity, we then

obtain following equation of motion for each species

msns

[
∂us
∂t

+ us · ∇(us)

]
= nsqs(E+ us ∧B)−∇Ps −Rsk (36)

In plasma physics, one has to deal with a model with two fluids and an additional term, the

transfer of impulse between the electronic fluid and the ionic fluid −Rsk, characterized by the

frequency of impulse transfer ν, is more significant than the transfer due to viscosity. Indeed
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⟨υ⟩
ν ≈ νs and Rsk ≈ msnsνsus [127]. Eq. (36) is then reduced to

msns
dus
dt

= nsqs(E+ us ∧B)−∇Ps −msnsνsus (37)

when considering the convective derivative

d

dt
=

∂

∂t
+ us · ∇ (38)

which characterizes the temporal rate of change seen by an observer moving with the mean fluid

velocity us of species s.

Let us now take the second moment of Eq. (28). Here we use a more general pressure defini-

tion. Multiplying Eq. (28) equation by ms
v2

2 and integrating over velocity gives

∑
k

∫
ms

v2

2
Csk(fs)d

3v =

∫ (
ms

v2

2

∂fs
∂t

)
dv+

∫ (
ms

v2

2

∂

∂r
(vfs)

)
dv

+

∫ (
qs
v2

2

∂

∂v
((E+ v ∧B) fs)

)
dv

(39)

by letting as before v = v′ + u(r, t) we obtain

−
(
∂W

∂t

)
sk

=
∂

∂t

(
3Ps
2

+
msnsu

2
s

2

)
+▽ ·

(
Qs +

5

2
Psus +

msnsu
2
s

2
us

)
− qsnsus ·E

(40)

where Qs =

∫
ms

v′2

2
(v′fs)dv is the heat flux and

(
∂W

∂t

)
sk

is the rate at which species s colli-

sionally transfers energy to species k. By using the convective derivative and Eq. (37), we then

obtain
3

2

dPs
dt

+
5

2
Ps ▽ ·us = −▽ ·Qs +Rsk · us −

(
∂W

∂t

)
sk

(41)

The first term on the right hand side represents the heat flux, the second term gives the frictional

heating of species s due to frictional drag on species k, while the last term on the right hand side

gives the rate at which species s collisionally transfers energy to other species. In the absence of

transport process, or discontinuity, the scalar pressure verifies an adiabatic equation. Collisions,

being randomizing, drive the distribution function towards isotropy, while competing processes

simultaneously drive it towards anisotropy. Thus, each situation must be considered individu-

ally in order to determine whether there is sufficient collisionality to make f isotropic. For an
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isotropic-adiabatic ( based on geometry and statistical mechanics rather than on thermodynamic

arguments) model, the pressure P and density n are not two independent variables and the re-

lation translating the conservation of the entropy, i.e. the absence of heat transfer in a reversible

transformation, is given by:

− 1

ns

dns
dt

= ▽ · us (42)

substituting Eq. (42) into Eq. (41) then gives

d(Pin
−γ
i )

dt
= 0 (43)

According to Eq. (37), the species-s flow accelerates along a fluid trajectory under the influence

of the scalar pressure gradient, the viscous stresses, the Lorentz force, and the frictional force

due to collisions with other species. Finally, according to Eq. (41), the species-s energy density

changes along a fluid trajectory because of the work done in compressing the fluid, viscous

heating, heat flow, and the local energy gain due to collisions with other species. The electrical

contribution to plasma heating, which was explicit in Eq. (39), has now become entirely implicit.

It can seem, in first analysis, that the two-fluid models have a descriptive and predictive

restricted potential with particular situations; in fact, except for the cases of wave-particles reso-

nances and when the Knudsen numbers are great, the fluid models are often sufficient in plasma

physics.

Recent studies having retained the attention of the researchers were focused on the develop-

ment of two fluid models for non-equilibrium anisotropic plasma flows by using a 10-moment or

Gaussian anisotropic moment closure to model ion and electron species transport [128]. A three-

dimensional Hall-Magnetohydrodynamic (Hall-MHD) simulation code has been developed to

study the self-organization process in a two-fluid plasma [129]. E.A. Johnson et al [130] fol-

lowing Loverich et al [131], has simulate magnetic reconnection in the geospace environmental

modeling problem using a two-fluid model with 10-moments for the electron fluid as well as the

proton fluid. They show that use of 10-moments for electrons gives good qualitative agreement

with the the electron pressure tensor components in published [132] kinetic simulations. Several

studies [133, 134] have focused on the simulation of two fluid plasmas models by using methods

such as Runge-Kutta methos, Galerkin method..etc.

Ph.D. Thesis of B. C. Nono Dueyou Laboratory of mechanics



II.1 Modelling 46

II.1.3 Reduced nonlinear model for charge density under parametric and external

harmonic oscillations

Reduced nonlinear model for density perturbation

In order to deal with small amplitude waves, we consider a situation representing a uniform

infinite plasma. The values of ns, υs, Ps, E⃗, B⃗, for this will be denoted by n0s, etc; however, here

we shall take υs = E = 0 in the unperturbed state. We then have J = 0 and all of Eqs. (25), (37),

(43) are satisfied except Eq. (25-(c)) which requires ρq = 0, hence

∑
nsqs = 0. (44)

For our simple two-species plasma, that condition of charge neutrality becomes

n0e = n0i = n0. (45)

We now consider the me = 0 ion sound instability. 0nly spatial variations of the form exp(ikzz)

need to be considered, where kz is the axial wave number associated with this wave. For per-

turbed responses, one assumes

ni = n0 + ñ, Pi = P0 + P̃ ,

υi = υ̃, B⃗ = B⃗0 +
˜⃗
B,

(46)

in which the zero subscript indicates equilibrium quantities and the tilde over quantities indi-

cates perturbed variables. Electrons obey the Boltzmann equilibrium

n(x) = n0 exp(eϕ(x)/KeTe), :
ñ

n0
=

eϕ

kBTe
, (47)

where kB is the Boltzmann’s constant, ϕ(x) is the perturbed electric potential and e is a unit

charge. However, for the ion equation of motion, inertial effects are important, but the non-

isothermal case is considered in which the ion temperature Ti ≪ Te. Therefore, the pressure

gradient term is ignored. Inserting the expressions (46) into Eqs. (37) and (43 ), and after all of
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the second order perturbative terms have been discarded, we obtain the following equation

d2ñ

dt2
− dSi

dt
− νi(Si −

dñ

dt
) = − ien0kz

mi
· (υ̃ × ˜⃗

0B) +
kBk

2
z

mi
(Te + γTi)ñ. (48)

The ion source term is given by

Si = α1ñ− α2ñ
2 − α3ñ

3 (49)

Where α1 is the linear value and αj with j ∈ {2, 3} are the nonlinear saturation depending on the

type of ion source in used. By substituting (49) into Eq. (48), a differential equation for the time

varying portion of the density evolution in which we introduce an external excitation, is given

by
d2ñ

dt2
+ (νi − α1 + 2α2ñ+ 3α3ñ

2)
dñ

dt
+ ω2

0ñ+ νiα2ñ
2 + νiα3ñ

3 = F (t), (50)

where ω2
0 =

k2zkB(Te + γTi)

mi
+ νiα1 is the ion sound instability frequency. The external driving

term (the right hands term) was assumed to be in the form F0 cos(ωt), with amplitude F0 and

frequency ω, Externally applied signals could be coupled to the plasma by a number of magnetic

coils spaced azimuthaly at equal intervals around the plasma machine. The plane of each coil

is such that they produced an in-phase azimuthal oscillating magnetic field Bδ in the plasma,

which the virtue of the Bδ ∧ Er drift produce an oscillating axial velocity va in the plasma. By

varying the drive current Id to these coils the amplitude of the induced velocity (or density)

perturbation in the plasma could be changed [135].

Depending of the type and the configuration of the plasma devices, there are several phys-

ical mechanisms that could mimic the driven force F (t). For example, when describing the dis-

charge apparatus in a plasma column experiment, as mentioned before, density perturbations

could be applied to the plasma externally by a small magnetic coil wound around the glass tube.

An oscillating current at the required frequency is applied to this coil that could be moved ax-

ially along the column and set in any desired position, in order to produce an oscillating axial

magnetic field, in the plasma. This perturbation of the main containment field, had the effect

of compressing and relaxing the plasma, thus modifying the containment pressure at this point.

Consequently, this effect produced a density perturbation in the plasma, linearly proportional

to the current in the coil. The effect of this perturbation on the plasma instability could then be
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monitored by feeding the output from a floating or ion-biased probe into a spectrum analyser.

This allowed the instability amplitude, the driven amplitude F0 and the beat frequency to be

measured simultaneously [33].

In some experiment also, the transport of dust particles into plasma is proportional to the

dust charge and as well as to the coagulation of small particles into larger ones since charged

particles attract or repel each other through the coulomb potential [136]. However, considering

the fact that ultraviolet light can extract electrons from materials by photodetachment, such a

light can be used as an external force to control the charge on a dust particle [137]. Such forc-

ing terms could also be mimicked through an externally applied electric field that supplies the

system with an external drive [138].

Entrainment and periodic pulling of an ion acoustic instability observed in the power spectra

of a low-pressure high-beta plasma as in WOMBAT (waves on magnetized beams and turbu-

lence) machine, can be modeled by using the van der Pol equation with a forcing term [139].

In this configuration, a steady axial magnetic field is maintained by a set of external solenoids

surrounding the source and a large solenoid inside the diffusion chamber. A radio-frequency

powers (that could be view as F (t)) at a driving frequency is applied to one end of a single loop

antenna via a matching network, while the other end is kept grounded. External modulation of

the instability is achieved by varying the amplitude of the rf drive frequency at frequencies. The

rf amplitude modulation could be varied up to 100% of the rf signal, allowing for the instability

observed in the plasma discharge to be investigated for nonlinear behavior.

A change in the sheath width can results in a periodic modulation of the potential well and

its frequency as ω2
0 = Ω2

0(1 + h cos(ωpt)), where h is the modulation depth, ωp is the angular

frequency of the parametric excited wave. Using the following dimensionless quantities

ñ =
νi − α1

2α2
x, ::: µ =

νi − α1

ω0
, ::: γ =

α3(νi − α1)
2

4α2
2

,

τ = ω0t, ::: λ =
νiµ

2ω0
, ::: β =

α3µ
2

4α2
2

, ::: f =
2α2

ω2
0(νi − α1)

F (t).

(51)

The charge density fluctuation is then described by the following equation

d2x

dτ2
+ µ(1 + x+ γx2)

dx

dτ
+ ω(τ)x+ λx2 + βx3 = f(τ). (52)
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It has been shown experimentally that the Van der Pol type of equation gives a good descrip-

tion of various non-linear phenomena occurring in some plasma instabilities as: mode locking

and mode competition [140]; periodic pulling [6], frequency entrainment [4]. Further experi-

mental evidence have been presented showing that the ion-sound instability behaves as a single

mode Van der Pol oscillator for externally driven signals near the main instability frequency; and

as a multi-mode Van der Pol system for applied signals near other possible mode resonances in

the plasma. In the single mode state, it has been possible to measure the system’s parameters by

a number of indirect means [33].

In another experimental investigations carried out in a magnetized plasma column, for an

inductive external circuit, the oscillations appear as sharp current disruptions giving rise to large

voltage spikes over the plasma, similar to the disruptive behavior observed in fusion devices.

The nonlinearity is shown to be determined by the static current-voltage characteristic of the

plasma. For higher oscillation frequencies, the dynamic response of the plasma has to be taken

into account and the oscillations are correctly described by a generalized form of the van der Pol

equation only. By adding a periodic driver voltage in series to the external dc voltage, a rich

variety of dynamical phenomena appear as predicted by many investigations on periodically

driven van der Pol type oscillators. For the investigation of the periodically driven system, the

input of the amplifier is connected to a signal generator with a suitable output signal offset.

In this way, a proper modulated bias voltage is obtained. The modulation amplitude (driving

force) and the modulation frequency (driver frequency) are the control parameters for the study

of dynamical phenomena of the periodically driven discharge system [141].

II.1.4 Potential configuration

The above equation described the density perturbation in plasma motion where λ and β are

constant parameters, µ and γ are respectively the damping term and the nonlinear saturation

coefficient, f(τ) = A0 cosωτ is an externally excited wave, and ω(τ) = 1 + h cosΩτ . With asym-

metrical fourth-order polynomial potential

V (x) =
1

2
x2 +

λ

3
x3 +

β

4
x4. (53)

In fact, depending on the set of the parameters, it can be considered at last three physically in-
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Figure 14: Potential configuration: (a) for β = −0.25 and λ ∈ [0.05, 0.5] , (b) for β = 0.25 and
λ ∈ [0.05, 0.9] , (c) for β = 0.25 and λ ∈ [1.1, 1.9].
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teresting situations where the asymmetrical fourth-order polynomial potential is a : (i) bounded

single well, (ii) unbounded single well, (iii) double well. It has been shown in [142] that the case

of the unbounded single well with two unstable points can not be efficient for the confining of

the density energy. It is also obvious that the case of the bounded single well potential can not

be used since this type of density profile cannot be used to characterize the presence of insta-

bility in the model. Then, the only interesting case is the asymmetrical double well where the

energy confining can be possible. When h = 0, Eq. (17) has been obtained by [33] where it has

been shown the classical anharmonic resonance effects on a marginal ion sound instability, when

forcing at the fundamental and the subharmonic frequencies. A family of Eq. (17) namely van

der-Pol-Mathieu equation has been considered for the dynamics of dust grain charge in dusty

plasma by [143], the critical stability boundaries for a particular trivial solution of the govern-

ing equation with varying parameters has been studied. The Melnikov analysis to study the

homoclinic bifurcation in the model is obtained in explicit form in the next section.

II.1.5 Reduced nonlinear model for charge density under external bounded noise

excitation

The ion source term[144] is given by:

Si = α1ñ− α2ñ
2 − α3ñ

3 (54)

as mentioned in the preceding section we have

d2ñ

dt2
+ ω2

0ñ+ νiα2ñ
2 + νiα3ñ

3 + (νi − α1 + 2α2ñ+ 3α3ñ
2)
dñ

dt
= F (t), (55)

where ω2
0 =

k2zKB(Te + γTi)

mi
+ νiα1 is the ion sound instability frequency. Using the following

dimensionless quantities

ñ =
νi − α1

2α2
u, τ = ω0t, ϵ

2µ =
νi − α1

ω0
, γ =

α3(νi − α1)
2

4α2
2

, ϵ λ =
νiµ0
2ω0

,

ϵ2β =
α3µ

2
0

4α2
2

, ϵ2f =
2α2

ω2
0(νi − α1)

F (t). with νi − α1 ∼ ϵ;
1

ω0
∼ ϵ.

(56)
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The charge density fluctuation is described by the following equation.

d2u

dτ2
+ ϵ2µ(1 + u+ γu2)

du

dτ
+ u+ ϵλu2 + ϵ2βu3 = ϵ2f(τ), (57)

where u is the plasma density moving along the axis in tokamak plasmas under the influence of

a restoring force u+ ϵλu2 + ϵ2βu3, with the small terms proportional to λ and β quantifying its

nonlinearity. µ and γ are respectively the damping term and the nonlinear saturation coefficient.

We consider that f(τ) is affected by noise; then f(τ) = A0ϑ(τ) is an external superimposed

noise which yields a global perturbation. This stands in contrast to intrinsic noise of plasma,

which is typically local in space and time. It is well known that an unperturbed (’deterministic’)

particle in one of the potential wells will remain in that well for infinitely long time, independent

of whether the well is deep or flat. If there is a strong stochastic perturbation acting on the par-

ticle, it will randomly move forth and back between the two wells, again independently of their

depth. The most interesting situation occurs when there is a moderate stochastic perturbation

acting on the particle. The particle will then typically stay in the well it occupies for some time,

until the random diffusion drives it over the potential barrier into the other well. To our knowl-

edge, what is considerably less known is the effect of the bounded noise on nonlinear response

of an asymmetry plasma density with nonlinear damping. In Eq. (57), the form of the bounded

noise is given by

ϑ(τ) = A0 cos (Ω τ + ηW (τ) + η ψ0) (58)

where A0 and η are constants, W (τ) is a unit Wiener process and ηψ0 = ψ is a random variable

uniformly distributed in the interval [0, 2π]. It has finite power and its spectral shape can be made

to fit a target spectrum, such as the Dryden and Von Karman spectra of wind turbulence, by ad-

justing its parameters [145]. Therefore, it can be a reasonable model for the random excitation or

response in engineering systems. Here, we investigate some typical dynamical phenomena fea-

tures occuring in the proposed plasma model under combined nonlinear damping, asymmetry

potential [146], and external bounded noise. In order to catch the insight of the variation of sys-

tem parameters, the analytical solutions are found by multiple scale method. The steady states

and their stability regions are examined. Using the resulting solution, we discovered interesting

dynamic responses. These responses are characterized by the presence of parameters islands

that have critical implications on the global stability of the response. The statistical moments are
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calculated and their stability condition established. The response of the global system is affected

by bounded noise. Through numerical simulations, we show that the density perturbation may

undergo hysteretic transitions induced by the bounded noise.

As mentioned before, magnetized bounded plasmas are subjected to a class of instabili-

ties. These instabilities are generally believed to be responsible for anomalous crossfield par-

ticle transport. Drift waves are caused by pressure-driven instabilities in magnetized plasmas.

Drift wave turbulence is generally believed to be responsible for anomalous cross-field particle

transport and it is an appealing long-term perspective to influence systematically the turbulent

transport in magnetically confined plasmas by active control of drift wave dynamics. Whereas

chaos is characterized by the interplay between highly ordered structures and instability, noise

and strong turbulence are both of stochastic nature owing to the large number of degrees of

freedom. Indeed the turbulent regimes are seamingly accounting for anomalous transport in

the magnetically confined high-temperature plasmas of tokamaks. Therefore, controlling these

instabilities through the control of the turbulent (or chaotic) regime could be of a great interest

for improving the performance of the magnetic fusion devices. Plasma column devices, as a ap-

proximation of tokamaks, easily exhibits nonlinear instabilities. In fact the characteristics of the

unstable waves are slightly different from the instabilities observed in tokamaks. Indeed, very

high mode numbers are excited in tokamaks and thus the plasma slab approximation is valid.

On the contrary, the unstable wavelengths in plasma column devices are of the order of the

plasma radius and global modes are excited. However, the dynamics is of great interest because

the system is extended in space, leading to spatiotemporal characteristics, as in a tokamak.

Two-fluid models in plasmas are usually approximations of phenomena occuring in large

machines plasmas, such as tokamaks. The observations made in the study of plasma columns,

for example, can be generalized to large machines, or simply give a perspective on the physical

phenomena that take place there. Using the two-fluid model, gives rise to a set of nonlinear

equations, which are capable of describing the dynamics of long wavelength drift instabilities,

as well as of giving a reason for the plasma turbulence rising [147], and a way for controlling

them. Various destabilizing mechanisms have been identified. The electron collision rate or the

existence of an axial electron beam have been extensively studied. In plasma devices [148] which

exhibits easily nonlinear drift waves, the characteristics of the unstable waves are sometime

indeed very different of the drift waves observed in the plasmas of the tokamaks. Indeed, very
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high mode numbers are excited in tokamaks drift wave turbulence and thus this plasma slab

approximation is valid.

But it is possible to model the phenomena described in large plasma machines, by making

simplifications related to geometry and toroidal symetry in tokamaks. This leads to fluids equa-

tions, which describe phenomena such as the L-H transition in tokamaks.

The edge region, or boundary layer, of a magnetically confined high-temperature plasma is

observed experimentally to be complex and dynamic. Significant fluctuation levels in the plasma

density and plasma potential have been related theoretically and experimentally to the anoma-

lous transport observed in tokamak devices.’ Electrostatic oscillations are found to be maximum

in this edge region. Coreplasma density limits and improved global confinement in the H-mode

have been related to the physics of the edge plasma, although the mechanisms are not well un-

derstood. Additionally, neutral particle and plasma recycling in the edge must be controlled to

maintain acceptably low plasma temperatures at the walls and to minimize sputtering and ero-

sion losses. The behavior of the edge plasma is critical in designing particle and power exhaust

systems for the power levels expected in fusion reactors. The plasma sheath formed at the walls

accelerates plasma ions to the sound speed, and acts as a sink for momentum in the plasma.

This must be balanced by the momentum efflux from the core plasma. The interface between

the core and the edge plasma region is where a boundary condition is established for the core

plasma. Expressions for the sheath potential drop show a range in values depending on the

analysis. Plasma fluid or kinetic model are applied to evaluate transmission coefficients, which

relate the plasma density flux, electron energy flux, and ion energy flux through the plasma

sheath as a function of the sheath potential drop. The core particle confinement time relates to

the core fueling flux. The flux boundary condition can be a function of time to simulate plasma

startup conditions and various time-dependent characteristics of the core such as a reduced flux

at the L-H transition, flux pulses observed in the Edge localized modes (ELM ′s), or sawteeth

propagation from the core to the edge plasma.

Void et al. [149] aim to develop a model that can be implemented computationally in a

stepwise fashion while improving approximations to drift flows and nonambipolarity. They

search for a fully self-consistent calculation in the edge region. An important consideration

is coupling these equations with the core plasma region at the core-edge interface. A set of

plasma fluid transport equations was then developed and their application to the edge plasma
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region was described. They first focusing on fluid models and then develop equations for a

toroidally symmetric device (Metric formulation (considering the toroidal symetry) transport

equations is used to describe the plasma in the fluid approximation, appropriate for the low beta

plasma edge region of a tokamak or similar magnetic confinement device.), including plasma

drifts; additional simplifications to the fluid model was discussed for numerical implementation.

The simplified plasma equations was applied to a tokamak divertor plasma and the results was

discussed with an emphasis on the poloidal flow, the plasma potential, and the potential gradient

electric fields. Implications of the results on transport was also discussed.

The electric field appears to play a vital role in confinement and is coupled to the edge

plasma physics. Consistent models of particle recycling and coupled nonambipolar flows are

simultaneously required to fully resolve the edge transport physics. Analytic results supporting

this assumption show that a drift wave model with a poloidally periodic forcing function (e.g.,

poloidal flow through a poloidally localized recycling zone) supports aperiodic or “turbulent-

like” solutions. Combining nonlinear equations for the plasma density and plasma potential

with the assumed flux (velocity component) terms has produced time-dependent simulations

with chaotic or “turbulent” solutions [150]. A coupled plasma density and potential solver in

the limit of weakly ionized plasma has proven successful in predicting experimental simula-

tions of the steady-state edge plasma [151]. The fluctuating potential and steady-state potential

profiles may be related in the H-mode improved confinement [152]. Drift waves are naturally

excited in magnetized plasmas exhibiting a radial density gradient.

It is also possible to model the phenomena described in large plasma machines, using equa-

tions that model them directly, without passing through the fluid equations. This allows us

to investigate the behavior of some plasma parameters, such as radial electric field, which has

already been reported in fluid modeling as playing a major role in the transition to the high

level of energy, that one seek to achieve in fusion plasmas. The goal here is to control the same

instabilities.

II.1.6 Reduced nonlinear model of radial electric field in plasma L-H transition un-

der external bounded moise

After the release of the first physical model showing the possible role of radial electric fields

in the development of plasma bifurcations [153], initial experimental verifications of the estab-
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lishment of the mean radial electric field during edge plasma bifurcations were reported [154].

From the empirical perspective, achieving the Low to High confinement transition requires ex-

ceeding a power threshold that is usually given in terms of plasma density, magnetic field and

edge plasma surface. However, large uncertainties are still present in the determination of this

threshold, with the consequent implications for the overall research programme of next step

magnetic confinement devices, such as the International Tokamak Experimental Reactor ITER

[155]. The build-up of the transport barrier, and the improvement of plasma confinement have

been attributed to the generation of the radial electric field. Different scenarios of relaxation of

the radial electric field toward the steady-state in response to sudden and adiabatic changes of

the equilibrium temperature gradient where presented in [156] as mentioned before; this electric

field, existing in the region of the sharp pressure gradients, produces the E∧B flow with a shear,

which in turn has a strong stabilizing influence on the plasma turbulence [157]. The reduction

of the anomalous transport due to the inhomogeneous radial electric field where theoretically

studied for toroidal helical plasmas (see [153]).

The plasma of our interest is restricted to the plasma boundary −L < τ − a < 0, where a

is the minor radius. It is also considered that plasma parameters and temperature are constant

in the toroidal and poloidal directions. In the quasineutrality assumption (ni = ne = n); the

one-dimensional Ginzburg-Landau type perturbed diffusion dimensionless [158] equations for

the density of the plasma and the radial electric field near the plasma edge in Tokamak can be

written as
∂n

∂t
=

∂

∂x

(
D(Er)

∂n

∂x

)
(59)

The Poisson equation, combined with the equation of ion motion, is written as

γ
∂Er
∂t

= Γe − Γi + µ1
∂2Er
∂x2

(60)

where x = τ − a is the cartesian coordinate, Γe − Γi represents the bipolar component of the

particle flux and derives the nonlinear relation between the particle flux and the density gradi-

ent, where, Γe and Γi are the normalized particle flux of electrons and ions, respectively. The

point which holds the relation x = 0 represents the plasma edge and γ indicates the smallness

parameter O

(
B2
p

B2

)
; where Bp, and B are the poloidal and toroidal magnetic field, respectively.

The third term in the right hand side of Eq. (60) shows the diffusion effect of the radial electric
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field Er. The influence of the inhomogeneous electric field on the anomalous transport is gov-

erned by the parameter H1 ≡ (Te/eγdlBρpi)
2; γd been the decorrelation rate of turbulence which

causes anomalous transport; l = (µ/σ(0))1/2, where σ(0) is the conductivity in the absence of the

radial electric field. We analyze the case where the assumption of the constant viscosity is valid

i.e. for H1 E
∗
r < 1, where E∗

r correspond to the extremum of bipolar flux. For our analysis, Eqs.

(59), (60) could be rewrited as

∂nd
∂t

=
∂

∂x

[
D (Er)

∂nd
∂x

]
+ f1 cos (Ω1 t)

γ
∂Er
∂t

= −Ne(Er, g) + µ1
∂2Er
∂x2

+ f2 cos (Ω2 t)

(61)

where nd and Er are the density of the particle near the plasma edge and the normalized

radial electric field respectively, D(Er) and µ1 are the diffusion coefficients of the density and

electric field, Γe − Γi = Ne(Er, g) is the total current effect (Here we retain only local part which

arise from ion orbit loss or drift wave convection), f1, Ω1, f2 and Ω2 are the amplitudes and

frequencies of the particle perturbation and the controlling radial electric field [158]. It is known

that D(Er), Ne(Er, g) and γ respectively satisfy the following equations [158]:

D(Er) =
Dp

2
(1 + tanh(Er)) +

Dm

2
(1− tanh(Er))

Ne(x, t) = g(nd)− g0 + (βEr(x, t)
3 − αEr(x, t))

(62)

g (nd) =
3

n2d

dnd
dx

; γ =

(
1 +

v2A
c2

)
B2
p

B2
(63)

where Dp and Dm respectively denote the diffusion coefficients of H-mode and L-mode, the pa-

rameters vA, c, Bp, B, α, β and g0 are constants, and vA, c, Bp, B respectively are the Alfven ve-

locity, the light velocity, the magnetic field which is parallel to the poloidal direction in tokamak,

and the characteristic magnetic field. By letting [159] nd(x, t) =
1

V (x, t)
; Er(x, t) = G(x)u(t);

V (x, t) = V0 + A(x)v(t); in equation (61), using Eqs.62 and 63, and considering that u and v are

small we obtain for u,

.
u = b1v + b2u+ b3u

3 + b4 cos (Ω2 t) + b0. (64)
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where bi [i = 0..4] are given in the appendix. Using the Taylor expansion of
1

V (x, t)
around with

the small quantity A(x)v(t)
V0

in which we only retain the term under the quartic term, we then

obtain
.
v = a0 + a1u+ a2uv + a3v + a4v

2 + a5v
3

+a6uv
2 + (a7v + a8v

2 + a9) cos (Ω1 t)
(65)

where the coefficients ai [i = 0..9] are given in appendix. By differentiating equation (64) with

respect to time and introducing equation (65) in the obtained equation, we obtain

..
u = −Ω2u+ α2u

2 + α3u
3 + α4u

4 − α5u
5 − ϵ(µ+ β3u+ β5u

2)
.
u+ ϵ(β2 + β4u+ β6

.
u)

.
u
2

−ϵδ1u cos (Ω1 t) + ϵF2 cos (Ω2 t+Θo) + ϵα0

(66)

variable u indicates the change of the normalized radial electric field near plasma edge in Toka-

mak, and ϵ is a small parameter.

One of the most important physical discoveries of the past few decades is that random be-

havior can arise in deterministic nonlinear systems with just a few degrees of freedom. This

discovery gives new hope to providing simple mathematical models for analyzing, and ulti-

mately controlling, physiological and engineering systems. Chaos occurs widely in engineering

and natural systems; historically it has usually been regarded as a nuisance and is designed out

if possible. It has been noted only as irregular or unpredictable behavior, often attributed to ran-

dom external influences [160]. Noise effects on nonlinear dynamical systems exhibiting chaotic

behavior have been of interest to researchers in various fields in recent years, and their effect on

structural instabilities in nonlinear dynamical system can’t be runned out. Homoclinic bifurca-

tions an heteroclinic bifurcations are two kinds of important sources of structural instabilities

in nonlinear dynamical systems. The subsequent occurrences of scattered chaotic dynam-

ics and fractal bassin boundaries are usually derived from the homoclinic or heteroclinic

transversal intersections between the stable and unstable manifold of the hilltop saddle in

the Poincaré map.

Virtually all engineering and most natural systems are subjected during operation to exter-

nal forcing. This forcing will contain (and hopefully be dominated by) planned and intentional

components; it will also almost invariably contain unintentional ’noise’[160]. Judicious design

and control of this forcing is often able to annihilate, or shift to a harmless region of parameter

space. We then consider that the controlling radial electric field is affected by noise, the external
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harmonic perturbation of Eq. (66) becomes F2 cos (Ω2 t+ b(t) + Θo), with b(t) = η (W (t) + φo)

different to intrinsic noise of plasma, typically local in space and time; here F2 and η are con-

stants, W (t) is a unit Wiener process and φo is a random variable uniformly distributed in the

interval [0, 2π]. The bounded noise ϑ (t) = F2 cos (Ω2 t+ b(t) + Θo) has finite power and its spec-

tral shape can be made to fit a target spectrum, such as the Dryden and Von Karman spectra

of wind turbulence, by adjusting its parameters [145]. Therefore, it can be a reasonable model

for the random excitation or response in engineering systems. The main assumption concerning

the real noise process is that it should be uniformly bounded. This will permit to use ergodic-

theoretic methods which is one of the main points in L. Arnold’s program to study random

dynamical systems. The power of these methods has been demonstrated by a vast number of

applications [161].

K. Itoh et al [162] have found that a bifurcation from the radial-uniform structure ofEr which

belong to key issues of the high confinement mode H-Mode, to the solitary structure solution

of the radial electric field Er in the tokamak plasmas occurs at a certain applied voltage, this,

associated to a hysteresis. Repeated transition phenomena with abrupt reductions and jumps of

the electron density were observed by Shunjiro Shinohara and Shoichiro Matsuyama [163], by

voltage biasing in a cylindrical magnetized plasma. These global, self-excited, density transitions

and back ones between two states were accompanied by changes of the floating potential profile

and the bias current under various parameters.

A new bifurcation1 [164] of turbulent transport caused by the change of the damping rate of

the zonal flows, which governs the global confinement of toroidal plasmas was analyzed in a

toroidal helical plasma.

Recent developments in plasma physics, including fusion research in a new era of ITER

as well as space research and astrophysics, have focused on structural formation in turbulent

plasma associated with electromagnetic field formation [165]. Progress made to date on the spe-

cially promoted research project “Structure Formation and Selection Rule in Turbulent Plasmas”

was reported [166], including the control of transport by modifying the damping rate of zonal

flow which could be regarded as a bifurcation control.

1The plasma state changes from the branch of a weak negative radial electric field to the strong positive one
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II.2 Mathematical methods for the control of global bifurcation

II.2.1 Chaos control using Melnikov method

Although the Melnikov method is merely approximative, it is one of a few methods allowing

analytical prediction of chaos occurrence. Moreover, it can be applied to a relatively large class

of dynamical systems. A generalized version of the Melnikov function for a system subjected

to an excitation with multiple frequencies was introduced by Wiggins [30], and by Gruendler

[167]. The Melnikov method [168, 30] is an effective approach to detect chaotic dynamics and to

analyze near homoclinic or heteroclinic motion with deterministic or random perturbation. The

method was first applied by Holmes [31] to study a periodically forced Duffing oscillator with

negative linear stiffness, and by Adriaratnam and Xie [32] to investigate the chaotic behavior of

a parametrically excited system such as the transverse vibration of a buckled column under axial

periodic excitation.

The main advantages of both methods cover: (i) possibility of obtaining analytical results;

(ii) possibility of applying the method in dynamical systems characterized by arbitrary but inte-

grable characteristics (including discontinuities which occur in a nite number of points like e.g.

friction characteristics); (iii) high eficiency of the verification of numerically generated results;

(iv) possibility of examination of strongly nonlinear systems.

Both mentioned methods are not ideal, since they exhibit the following drawbacks: (i) they

are applicable to systems characterized by a specific phaseportrait, namely homoclinic or het-

eroclinic orbits of one or two critical saddle points; (ii) they are not exact but approximative

methods which use a small parameter; (iii) non-perturbed system should be integrable; (iv) they

enable prediction of values of the parameters associated only with the so-called homoclinic or

heteroclinic chaos ; (v) they are associated with rather complicated algebraic computations.

Case of external and parametric perturbation

The escape of the states of a dynamical system from a potential well is a significant problem

of interest in engineering and physical sciences. Under the action of periodic forces chaotic

motions will often trigger the escape. Dynamics of density perturbation in plasma is typical

example of dynamical systems having the ability to escape from a potential well. In physical
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terms escape may mean failure of the system in some sense. For example, in the case of the

density perturbation in plasma problem escape would mean the loss of confining of the density

energy. The escape of a periodically driven damped oscillator from a potential well is intimately

associated with homoclinic bifurcation, fractal basins, and a variety of chaotic bifurcations [169].

We aim in this section is to give the conditions under which homoclinic bifurcation may appears.

First, scaling µ → εµ̃, A0 → εÃ0 and h → εh̃, where ε is a small positive parameter, then

dropping the tildes, equation (52) can be rewritten as


ẋ = y,

ẏ = −x− λx2 − βx3 + ε(−µ(1 + x+ γx2)y + f1(τ)),

(67)

where f1(τ) = −hx cosΩτ + A0 cosωτ . Melnikov analysis starts with the renormalisation of the

potential given by Eq. (53) [170]. If we let x = z + x0, where x0 is the unstable fixed point

obtained by solving Eq. (53), and V1(z) = V (x)− V (x0), then,

V1(z) =
β

4
z2(z − z1)(z − z2), (68)

where

z1,2 = − 6β x0 + 2λ±
√
−18β2x20 − 12β x0 λ+ 4λ2 − 18β

3β
. (69)

Figs. 15(a) and (b) respectively shows the renormalized of the potential and it phase diagram.
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Figure 15: (a) Shape of the renormalyzed potential Eq. (19), (b) corresponding phase portrait for
β = 0.25 and λ ∈ [1.01, 1.2] , with λ2 − 4β > 0

While being interested in this phase diagram, we note that, it contains a homoclinic orbit. More-
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over, by taking in consideration the renormalisation, the equation of the movement has the fol-

lowing form:

z̈ + εµ((1 + x0 + γx20) + (1 + 2γx0)z + γz2)ż + β
{
z3 − 3

4(z1 + z2)z
2 + 1

2z1z2z
}
= εf1(τ).

(70)

The general one-dof nonlinear oscillator Eq. (70) is considered in the following form:

ż = v,

v̇ = −β
{
z3 − 3

4(z1 + z2)z
2 + 1

2(z1z2)z
}
− ε(µ((1 + x0 + γx20) + (1 + 2γx0)z + γz2)v

+h(z + x0) cosΩτ −A0 cosωτ).

(71)

Note that the unperturbed equations (ε = 0) can be obtained from the gradients of the Hamilto-

nian H0(z, v),

ż =
∂H0

∂v
, ::: v̇ = −∂H

0

∂z
, (72)

where the Hamiltonian function is defined as

H0 =
1

2
v2 +

1

4
β(z − z1)(z − z2)z

2 = cte. (73)

The non-symmetric potential plotted in Fig. 15(a) has a local peak at the point (0, 0), existence

of this point with a horizontal tangent makes homoclinic bifurcations of the system possible, i.e.

potential transition from a regular to chaotic solution. By setting the unperturbed Hamiltonian

equal to zero and after a simple integration of Eq. (73), the homoclinic orbits (Fig. 15(b)) is

obtained as

τ − τ0 =

√
−2

z1z2β
ln

∣∣∣∣∣−2z1z2 + (z1 + z2)z + 2
√
z1z2(z − z1)(z − z2)

z

∣∣∣∣∣ , (74)

where τ0 is a constant of integration. Through evaluation of above Eq. (26) after some lengthly

algebra, the following homoclinic trajectories are obtained:

z∗r =
4z1z2κ1

−(z1 − z2)2 − κ2 + 2(z1 + z2)κ1
, (75)
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v∗r =
−4z1z2

√
−βz1z2

2 κ1
(
(z1 − z2)

2 − κ2
)

(−(z1 − z2)2 − κ2 + 2(z1 + z2)κ1)
2 , (76)

z∗l =
4z1z2κ1

(z1 − z2)2 + κ2 + 2(z1 + z2)κ1
, (77)

v∗l =
−4z1z2

√
−βz1z2

2 κ1
(
κ2 − (z1 − z2)

2
)

((z1 − z2)2 + κ2 + 2(z1 + z2)κ1)
2 , (78)

where the index ”r” corresponds to the right-hand side well, and the index”l” to the left one;

with

κ1 = exp

(
(τ − τ0)

√
−βz1z2

2

)
, (79)

and

κ2 = exp

(
2(τ − τ0)

√
−βz1z2

2

)
. (80)

Now suppose that

τ0 = τ01 + τ02, (81)

where

τ01 = −

 ln(z2 − z1)√
2

−βz1z2

 , (82)

τ01 has been fixed to guarantee the proper parity (under the time transformation τ → −τ ), and

hence

zr,l(−τ) = zr,l(τ), : and : vr,l(−τ) = −vr,l(τ), (83)

τ02 is an arbitrary constant to be determined later in the minimization of the Melnikov integral

M(τ02). The distance between perturbed stable and unstable manifolds and their possible cross-

sections may be examined by means of the integral M(τ02) given by

M(τ02) =
∫ +∞
−∞ H (z∗(τ − τ01 − τ02), v

∗(τ − τ01 − τ02))

∧G (z∗(τ − τ01 − τ02), v
∗(τ − τ01 − τ02)) dτ.

(84)

Where the wedge product for two dimensional vectors is defined as

H ∧G = h1g2 − h2g1.
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Figure 16: Homoclinic orbits Γ1, and Γ2 for the renormalized bounded double well potential.

The corresponding vector H is the gradient of unperturbed Hamiltonian (73),

H =

[
β(−z∗3 + 3

4
(z1 + z2)z

∗2 − 1

2
z1z2z

∗), v∗
]
, (85)

while the vector G consists of the perturbation terms to the same Hamiltonian,

G = [−µ((1 + x0 + γx20) + (1 + 2γx0)z + γz2)v∗ − h(z + x0) cosΩτ +A0 cosωτ, 0]. (86)

Thus, shifting the time coordinate τ → τ + τ02 under the integral (84), gives

M(τ02) =
∫ +∞
−∞ v∗(τ − τ01)(−µ((1 + x0 + γx20) + (1 + 2γx0)z

∗(τ − τ01)

+ γz∗2(τ − τ01))v
∗(τ − τ01)− h(z∗(τ − τ01) + x0) cos(Ω(τ + τ02))

+ A0 cos(ω(τ + τ02)))dτ.

(87)

The above Melnikov function can be written after some algebraic manipulations as

Mr(τ02) = µI1r −A0I3r(ω) sinωτ02 + h[I2r(Ω) + x0I3r(Ω)] sinΩτ02, (88)

Ml(τ02) = µI1l −A0I3l(ω) sinωτ02 + h[I2l(Ω) + x0I3l(Ω)] sinΩτ02, (89)

where

I1(r,l) = −
∫ +∞
−∞ (1 + x0 + γx20 + (1 + 2γx0)z

∗
r,l(τ − τ01) + γz∗2r,l(τ − τ01))v

∗2
r,l(τ − τ01)dτ,

(90)

I2(r,l)(Ω) =
∫ +∞
−∞ v∗r,l(τ − τ01)z

∗
r,l(τ − τ01) sinΩτdτ, (91)
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and

I3(r,l)(ω) =
∫ +∞
−∞ v∗r,l(τ − τ01) sinωτdτ. (92)

IfM(τ02) has a simple zero then a homoclinic bifurcation occurs. In the case where the amplitude

of the parametrical excitation is equal to zero (h = 0), the transverse crossings of stable and

unstable manifolds exist if the Melnikov function (87) has simple zeros, i.e.,

A0,r >

∣∣∣∣ µI1rI3r(ω)

∣∣∣∣ , (93)

A0,l >

∣∣∣∣ µI1lI3l(ω)

∣∣∣∣ . (94)

From these relations, the threshold values of the parameters can be plotted. The plane (A0, ω) can

be divided in into three domains. We first have the zone where homoclinic intersection do not

occur; secondly we have the region where only transverse intersection of Γs1 and Γu1 (u=unstable,

s=stable; Γ1 for the unperturbed system (71) is depicted in Fig. 16 ) occur, and thirdly a region

where transverse intersection of Γs1 and Γu1 and Γs2 and Γu2 ( Γ2 for the unperturbed system (71)

is depicted in Fig. 16) occur. If one notes Ac, the smallest value between the values A0,r for the

right well and between the values A0,l for the left one; then, as mentioned above, one will have

no intersection for values of A0 lower than Ac. If we now let the amplitude of the parametri-

cal excitation acts on the system (h ̸= 0), we are interested in parameters h and A0 for which

M(τ02) has simple zero for some value of τ02; i.e. the condition of homoclinic transition to chaos

corresponding to a horseshoe type of cross-section and written as:

∀τ02, M(τ02) = 0, :
∂M(τ02)

∂τ02
̸= 0. (95)

These conditions imply transverse intersections of stable and unstable manifolds. Hence, by

using a technique proposed by [171] and [172], the Melnikov distance corresponding to the un-

perturbed system (23), changes sign at some τ0. In this case, the condition to be satisfied is

A0I3i(ω)− µI1i > 0, (96)
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where i = r, l. Moreover, as it is clear from (40) and (41), if

h | I2i(Ω) + x0I3i(Ω) |< A0I3i(ω)− µI1i, (97)

i.e.,

h ≤ | I2i(Ω) + x0I3i(Ω) |
A0I3i(ω)− µI1i

= hcr, (98)

where hcr is the critical parametric amplitude. It is easy to see from Eqs. (88) and (89), that for

some τo, the Melnikov function will change sign and the situation remains unchanged.

Case of radial electric field in L-H transition under bounded noise excitation: Random Mel-

nikov method

In any real physical system, the presence of external noise cause transitions between

previously stable attractors as well as diverse noise-induced phenomena such as multistabil-

ity, stochastic resonance, multimodality, and stochastic ratchets, to quote a few. Noise comes

from great diverse sources: quantum fluctuations in lasers, random switching of ion channels

and quasi-random release of neurotransmitter by the synapses in neurons, and finite-size effects

in chemical reactions are well-known examples. It is a common practice to apply noise exter-

nally in experiments as well as to include external noise sources in theoretical models in order

to systematically investigate the role of noise by controlling its features. It is well known that

noise-induced transitions are characterized by a qualitative change of the system’s state as the

intensity of noise acting upon it increases. This change can manifest itself in diverse forms or

mechanisms such as either stabilization or destabilization of system equilibrium states (noise-

induced multistability) and excitation of oscillations [173]. For a mathematical modelization, the

noise function ϑ (t) could be writted as

ϑ (t) = A1

∫ ∞

−∞
Sp (ω) exp (iωt) dω (99)

ϑ (t) has zero mean and oscillate within [−A1, A1] with a even fourier spectrum Sp (ω). Instances

of this generic type of noise are: gaussian noise

Sp (ω) ≡ exp

(
−ω2

A2

)
, (100)
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fractal noise

Sp (ω) ≡ 1

|ω|A3
, 0 < A3 <

3

2
, (101)

or band-limited noise

Sp (ω) ≡ |ω| exp
(
−|ω|
A4

)
(102)

ϑ (t) could also be writted as a bounded noise

ϑ (t) = A5 cos (Ω2 t+ η (W (t) + φo)) (103)

with

Sp (ω) ≡ (
A2

5 η
2

4π
) (

ω2 +Ω2
2 +

η4

4

(ω2 − Ω2
2 −

η4

4
)2 + ω2η4

). (104)

Melnikov method has shown to be an easy and effective method to detect chaotic dy-

namics in nonlinear systems. As mentioned in the preceeding section, the starting point is an

autonomous system having one or more hyperbolic fixed points and a non-degenerate ho-

moclinic (uho (t) , pho (t)) and/or heteroclinic (uhe (t) , phe (t)) orbits. Then associated to a given

smooth perturbation ϵ F
(
t, u,

.
u
)

sufficiently small, there is the so called Melnikov function

M (t0) =

∫ ∞

−∞
ph (t)F (t+ t0, u, p) dt (105)

II.2.2 Random Melnikov process

To examine the noisy nonlinear behavior of the system in a stochastic sense, generalized

stochastic Melnikov process is developed to analytically demonstrate noise-induced transitions.

Consider as in [174] an one degree-of-freedom Hamiltonian system with light nonlinear

damping under both external bounded noise and parametric perturbation.

Let us consider our nonlinear Eq.66 with u = Q,
.
u = P ; and

H (Q,P ) =
1

2
P 2 +

1

2
ω2Q2 − 1

4
α3Q

4 +
1

6
α5Q

6 (106)
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with,

−c (Q,P ) = −µ− β2 P − β3Q− β4QP − β5Q
2 − β6 P

2

ϑ (t) = cos (Ω2 t+ ηW (t) + η φo+Θo)
(107)

and

g (Q,P ) = −δ1Q ; f1 (t) = cos (Ω1 t) f2 (Q,P ) = F2 (108)

It is known that the unperturbed (ϵ = 0) Hamiltonian system possesses two hyperbolic fixed

point

u±1 = ±

√
2α5

(
α3 −

√
α2
3 − 4α5ω2

)
2α5

(109)

, and three other equilibrium points

u±2 = ±

√
2α5

(
α3 +

√
α2
3 − 4α5ω2

)
2α5

, u0 = 0;
(110)

u±1 are connected themselves by two homoclinic orbits,

uho (t) = ±

√
2u1 cosh

(
T1 t

2
t

)
√
ξ + cosh (T1 t)

pho (t) = ±1

2

√
2u1 (1− ξ)T1 sinh

(
T1 t

2
t

)
(ξ + cosh (T1 t))

3/2

(111)

Also, u+1 is connected to u−1 by a heteroclinic orbit

uhe (t) = ±

√
2u1 sinh

(
T1 t

2

)
√

−ξ + cosh (T1 t)

phe (t) = ±1

2

√
2u1 (1− ξ)T1 cosh

(
T1 t

2
t

)
(−ξ + cosh (T1 t))

3/2

. (112)

The mean value of random Melnikov process for Eq. (66) can be obtained as follows:

Md = −
∫∞
−∞[P

2µ+ β2 P
3 + β3P

2Q+ β4QP
3 +β5P

2Q2 + β6 P
4 + δ1 PQ cos (Ω1 (t+ t0))

]
dt

(113)

where, P (t) = pho (t) or phe (t) andQ (t) = uho (t) or uhe (t) ; and then, for homoclinic orbits the

criterion for possible chaotic phenomenon based on the mean-square method for the stochastic
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Melnikov process [175] is

−⟨µ I1 + I⟩2 + ⟨δ1 I7 sin (Ω1t0)⟩2 + σ2zho = 0 (114)

and for heteroclinic orbits the criterion for possible chaotic phenomenon based on the mean-

square method is

−⟨µJ1 + J⟩2 + ⟨δ1J7 sin (Ω1t0)⟩2 + σ2zhe = 0 (115)

where I = I3 + I5 + I6 and J = J2 + J5 + J6; Ij (j = 1, 3, 5, 6, 7) ; Ji = (i = 1, 2, 5, 6, 7) are given

by in appendix. The above conditions could be simplified into

⟨µ I1 + I⟩2 = δ21 ⟨ I7 ⟩
2 + σ2zho (116)

for homoclinic orbits (±uho (t) ,±pho (t)) , and

⟨µJ1 + J⟩2 = δ21 ⟨J7 ⟩
2 + σ2zhe (117)

for heteroclinic orbits (±uhe (t) ,±phe (t)) . Now, let us compute the random part of random

Melnikov process with mean square criterion, and evaluate the distance measured along the

homoclinic/heteroclinic loop between the stable and unstable manifolds of the hyperbolic fixed

points of the associated Poincaré map.

Homclinic orbits

For homoclinic trajectories we have:

H1 (ω) = −j 2 u1
T1

sin(
2 ω

T1
) (118)

Hence, the random Melnikov process has simple zeros in mean-square sense if

σ2zho =
∫∞
−∞H1 (ω) (

η2

4π
) (

ω2 +Ω2
2 +

η4

4

(ω2 − Ω2
2 −

η4

4 )
2 + ω2η4

)dω. (119)
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If the amplitude of linear damping and the amplitude of density perturbation are fixed

F2 ≥

√
⟨µ I1 + I⟩2 − δ21 ⟨ I7 ⟩

2

σ2z0
(120)

with

σ2z0 =
∫∞
−∞H1 (ω) (

η2

4π
)(

ω2 +Ω2
2 +

η4

4

(ω2 − Ω2
2 −

η4

4 )
2 + ω2η4

)dω. (121)

Where the parameters Ii are given in the appendix. If the amplitude of bounded noise, the

amplitude of density perturbation and the amplitude of linear damping are fixed, we have

to resolve numerically the Eq. 116 to have η.

More precisely, this condition provides a domain on the parameter plane (F2, η) of the con-

trolling radial electric field (which can be viewed as external perturbation) on which the chaotic

behavior may be suppressed from the normalized electric field change.

Heteroclinic orbits

For heteroclinic trajectories we have:

H1 (ω) = −j 2π u1 F2

T1

ω

sinh(
π ω

T1
)

(122)

the random Melnikov process has simple zeros in mean-square sense if

σ2zhe =
∫∞
−∞H1 (ω) (

η2

4π
) (

ω2 +Ω2
2 +

η4

4

(ω2 − Ω2
2 −

η4

4 )
2 + ω2η4

)dω. (123)

If the amplitude of linear damping and the amplitude of density perturbation are fixed

F2 ≥
√

⟨µJ1+J⟩2−δ21⟨ J7 ⟩
2

σ2
z1

(124)

with

σ2z1 =
∫∞
−∞H1 (ω) ( η

2

4π ) (
ω2+Ω2

2+
η4

4

(ω2−Ω2
2−

η4

4
)2+ω2η4

)dω. (125)

Where the parameters Ji are given in the appendix. If the amplitude of bounded noise, the

amplitude of density perturbation and the amplitude of linear damping are fixed, we have

to resolve numerically the Eq. (117) to have η.
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Associated to the general melnikov method that analytically caracterise chaos, there are sev-

eral other numerical method that could be used. Bifurcation diagrams, Lyapunov exponent, cor-

relation dimension, etc., derived on the basis of chaos theory, have been used through numerical

simulations, to characterize chaos and its different routes [176].

II.2.3 Response of charge density using multiple scales method

Multiple scale method have been widely used in plasma physics; Das [177] investigated non-

linear oscillations in a hot electron plasma. Davidson [178] treated nonlinear oscillations in a

Vlasov-Maxwell plasma. Butler and Gribben [179] discussed nonlinear waves in a nonuniform

plasma. Maroli and Pozzoli [180] studied the penetration of high-frequency electromagnetic

waves into a slightly ionized plasma. Chen and Lewak [181], Chen [182], and Prasad [183]

studied parametric excitation in a plasma. In plasma stability, Frieman and Rutherford [184]

developed a kinetic theory for weakly unstable plasmas, while Albright [185] analyzed the sta-

bilization of transverse plasma instability.

Stochastic averaging: Itô-type equation and statistic moment method

Let (Ω, B, P ) denote a probability space; i.e., the set Ω is the space of ”elementary” outcomes, B

is a σ-algebra of subsets of Ω, and P is a probability measure on B [186]. Let {W (t),∞ > t ≥ 0}

denote a family of real-valued random variables defined on the space. Generally, the generic

variable ω of the set Ω will not be explicitly written. However, when there is a greater possi-

bility of ambiguity, the ω will be included. Also, W (ω, t) will denote the value of the random

variable W (t) at ω, and W (ω, ·) will denote the path corresponding to ω. The entire process

{W (t),∞ > t ≥ 0} will be denoted by W (·). The process W (·) is said to be a standard Wiener

process if it satisfies (a), (b) and (c):

(a) it is a gaussian process;

(b) it has independent, stationary, and normally distributed increments with zero mean value

(E [W (t)] = 0) and W (0) = 0.

(c) E [W1(t)W2(t)] = σ2t1 , t1 < t2 ; E [W1(t)W2(t)] = σ2t2, t2 < t1, where σ2 is a positive

constant.
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W (t) is continuos in L2, and could be writted

B (t) =
∫ t
0 dB (τ)

B1 (t1)B2 (t2) =
∫ t1
0 dB (τ1)

∫ t2
0 dB (τ2)

(126)

Quantities of interest in this subsection are given by the moments E [Xn] since these are

often easily calculated. However, probability densities must always vanish as x→ ∞, so, higher

moments tell us only about the properties of unlikely large values of X . In practice we find that

the most important quantities are related to the first and second moments. In particular, for a

single variable X , the variance defined by [187]

var (X) ≡ (σ [X])2 ≡ E
[
(X − E [X])2

]
(127)

and as is well known, the variance var (X) or its square root the standard deviation σ [X], is a

measure of the degree to which the values of X deviate from the mean value E [X].

It is possible to obtain an approximate solution for multidimensional stochastic nonlinear

system. The most frequently used approximation sheme is the equivalent linearization pro-

cedure [188]. In the special case of gaussian white noise, this procedure is equivalent to the

gaussian closure [189]. Following [190], another generalization of the gaussian closure focuses

on the properties of cumulants. Since the third and higher order cumulants of gaussian random

variable are zero, gaussian closure is equivalent to neglecting those cumulants above the sec-

ond order. A more general scheme, the cumulant neglect closure, is based on the premise that

successive improvements can be achived by retaining additionally the third, fourth, and higher

order cumulants.

The complexity of directly estimating the probability distribution of nonlinear stochastic sys-

tems with Markov transitions rapidly increases toward intractability with the magnitude of the

assumed state space. This increase in complexity is magnified in a network setting when there

are multiple nodes (compartments) and numerous intensities. The formulation of a partial dif-

ferential equation that describes the moment-generating function of such systems is immediate,

yet the solution to this is often intractable for even the simplest systems, thereby leaving the

direct estimation of the moments unattained. Moment-closure methods, however, may be used

to specify a functional relationship between the moments of the system, which thereby allows
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for the approximation of only a few moments through a closed set of approximating differential

equations. These functional relationships are achieved either through the imposition of a known

parametric probability distribution on the state space of the system or through the neglect of the

high-order cumulants [191].

The nth cumulant of a set of random variables X1, X2,...,Xn is defined as [192],

κn [X1, X2, ..., Xn] =
1

in

[
∂n

∂θ1∂θ2...∂θn
ln [MX1,X2,...,Xn (θ1, θ2, ..., θn)]

]
θ1=θ2=...=θn=0

(128)

where i =
√
−1, and MX1,X2,...,Xn (θ1, θ2, ..., θn) is the joint characteristic function of random

variables X1, X2, ..., Xn given by

MX1,X2,...,Xn (θ1, θ2, ..., θn) = E {exp [i (θ1X1 + θ2X2...+ θnXn)]}

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
PX1,X2,...,Xn (x1, x2, ..., xn)

× exp [i (θ1x1 + θ2x2...+ θnxn)] dx1dx2...dxn

(129)

and where the logarithm of the complex variable is taken to be the principal value. Eq.(129)

impliying that the natural logarithm of a characteritic function has a series expansion

ln [MX1,X2,...,Xn (θ1, θ2, ..., θn)] = iθjκ1 [Xj ] +
1

2
(iθj) (iθk)κ2 [Xj , Xk]

+
1

2
(iθj) (iθk) (iθl)κ3 [Xj , Xk, Xl] + ...

(130)

that all the cumulants involved exist, and that the series converges. The cumulants are related to

the statistical moments by [193]

E [Xj ] = κ1 [Xj ]

E [Xj , Xk] = κ2 [Xj , Xk] + κ1 [Xj ]κ1 [Xk]

E [Xj , Xk, Xl] = κ3 [Xj , Xk, Xl] + 3 {κ1 [Xj ]κ2 [Xk, Xl]}s + κ1 [Xj ]κ1 [Xk]κ1 [Xl]

(131)

where {·}s denotes a symmetrizing operation with respect to all its arguments; that is, an opera-

tion that takes the arithmetic mean of different permutted terms similar to the one within braces.

By letting X(tj) = Xj , Eq.(130) is then a series expansion of the nth-order log-characteristic func-

tion of X(t). Therefore, a random process can also be described by a complete set of cumulants

which are functions of various times. Since a cumulant function of an order higher than one

represents a measure of correlation of the random process at different times, its value tends to
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zero as the t values are separated further from each other. It is then expected that the physical

significance of a cumulant decreases as the order increases, and the most important properties

of a random process are revealed in the lower order cumulants.

If we consider a nonlinear system

dXi

dt
= fi (X) + gij (X)Wj (t) i = 1, 2..., n j = 1, 2, ...,m (132)

whereWj (t) are gaussian process. Eq. (132) is equivalent to the following set of Itô-type stochas-

tic differential equations:

dXi =

(
fi + πKlsgrs

∂gil
∂Xr

)
dt+

√
2πKlsgilgjsdBj (t) (133)

where Bj (t) are independent unit Wiener processes, and Kls are the cross-spectral density of

Wl (t) and Ws (t). Let write M (X) = Xk1
1 Xk2

2 ...Xkn
n where the superscripts k1,k2,...,kn are non-

negative integers. According to the Itô differential rule,

dM =

[(
fi + πKlsgrs

∂gil
∂Xr

)
∂M

∂Xi
+ πKlsgilgjs

∂2M

∂Xi∂Xj

]
dt+

√
2πKlsgilgjs

∂M

∂Xi
dBj (t)

(134)

It follows upon taking the ensemble average of Eq.(133) that,

dE [M ]

dt
= E

[(
fi + πKlsgrs

∂gil
∂Xr

)
∂M

∂Xi

]
+ πKlsE

[
gilgjs

∂2M
∂Xi∂Xj

]
(135)

The left hand side of Eq. (135) is the time derivative of a statistical moment of orderN , where

N = k1 + k2 + ... + kn, whereas the right-hand side depends on the functional forms of fi and

gjk.

Questions concerning the meaning of probability and its applications in physics are notori-

ously subtle. Further, although each of the interpretations of the notion of probability is usually

intended to be adequate throughout, independently of context, the various applications of the

theory of probability pull in different interpretative directions: some applications, say in deci-

sion theory, are amenable to a subjective interpretation of probability as representing an agent’s

degree of belief, while others, say in genetics, call upon an objective notion of probability that

characterizes certain biological phenomena [194].
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II.2.4 Response of density perturbation and resonances

Using the method of multiple scales, we then have a second-order nonlinear solution in the form

u (T0, T1, T2) = u0 (T0, T1, T2) = A (T1, T2) e
iT0 +A (T1, T2) e

−iT0 + ϵ u1 (T0, T1, T2)

+ϵ2u2 (T0, T1, T2)
(136)

where Tn = ϵnτ and ϵ is a small bookkeeping parameter.We express the nearness of the excitation

frequency Ω to the natural frequency by introducing a detuning parameter σ and letting

Ω = 1 + ϵ2σ. Substituting Eqs. ( 136) into Eq. (57) and equating coefficients of like powers of ϵ,

yield:

D2
0u1 + u1 = −λ

(
A2
(
eiT0

)2
+AA

)
+ cc., (137)

where Dn = ∂
∂Tn

and “cc ” represents the conjugate complex of the previous terms. Thus, the

order ϵ1 solution can be rewritten in the form

u1 (T0, T1, T2) =
1

3
λA2

(
eiT0

)2 − 2λAA+
1

3
λA

2 (
e−iT0

)2
(138)

The order ϵ2 equation becomes

D2
0u2 + u2 = A3

(
−β − 2

3
λ2 − iµ γ

)(
eiT0

)3 − (iµA+ (3β + iµ γ )A2A

−10

3
λ2A2A+ 2 i

∂A

∂T2
− 1

2
A0 e

i(σ T2+ηW (T2)+ψ))eiT0

−iµA2
(
eiT0

)2
+ cc.,

(139)

where A and Ā are undetermined complex function. Theycan be determined by imposing the

solvability conditions at the next approximation by eliminating the secular and small-divisor

terms. The terms under a bar represent the conjugate complex functions. We want to solve Eq.

(57) of the original manuscript, using perturbation theory, treating all the terms multiplied by

ϵ as the perturbation. However, the simple iterative method, taking the first order solution plus

perturbation terms, fails: secular terms appear and cause the perturbative corrections to grow

linearly in time, this violates the assumption that the perturbation terms give small corrections.

In the method of multiple scales, the amplitude is allowed to vary slowly, which makes it pos-

sible to eliminate the secular terms that cause unbounded perturbations. A(T2) is a function of

slow time T2, it is treated as constant with respect to the fast oscillations, on the time scale
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τ ; ϵ2 is the parameter measuring the proximity to the bifurcation. By deriving equations on

the slow T2 scale for the amplitude u or envelope described by A(T2), on gets an asymp-

totic approximation for the process near the bifurcation, that is for ϵ2 <<< 1. Depending on the

functionA(T2), every particular solution of Eq. (139) contains term proportional to T0 eiT0 , the

so called secular term. Thus ϵ2u2 can dominate u0 for large τ , resulting in abnormal expansion.

Notice that the right side of Eq. (139) contains a term proportional to eiT0 which acts like

a forcing at the resonant frequency of the oscillator. We choose the function A, so that secular

terms are eliminated from u0 and thereby obtain a uniformly valid expansion, by eliminating

resonant forcing of Eq. (139). Eliminating the terms that produce secular terms in the solution

yields

iµA+ (3β + iµ γ − 10

3
λ2)A2A+ 2 i

∂A

∂T2
− 1

2
A0 e

i(σ T2+ηW (T2)+ψ) = 0 (140)

To construct the modulation equations, we introduce the polar transformationA (T2) = a (T2) e
iφ(T2),

A (T2) = a (T2) e
−iφ(T2) and substitute it into Eq. (140), then we separate the real and imaginary

parts of the outcome to obtain

2
da

dT2
+ µa+ µγ a3 − 1

2
A0 sin (θ) = 0

−2 a
dφ

dT2
+ (3β − 10

3
λ2)a3 − 1

2
A0 cos (θ) = 0

(141)

where θ = σ T2 + ηW (T2) + ψ − φ.

Noise-free case

In the noise-free case, we have η = 0 ; ψ = 0; then the following system is obtained

2
da

dT2
+ µa+ µγ a3 +

1

2
A0 sin (−σ T2 + φ) = 0

−2 a
dφ

dT2
+ 3β a3 − 10

3
a3λ2 − 1

2
A0 cos (σ T2 − φ) = 0

(142)

By letting φ (T2) = σ T2 − χ (T2) , we obtain

2
da

dT2
+ µa+ µγa3 =

1

2
A0 sin (χ)

2 a

(
dχ

dT2
− σ

)
+ 3βa3 − 10

3
a3λ2 =

1

2
A0 cos (χ)

(143)
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For the steady-state response,
da

dT2
= 0,

dφ

dT2
= 0. It follows from Eq. (143 ) that

n1a
6
0 + n2a

4
0 + n3a

2
0 +

1

4
A2

0 = 0 (144)

where a0 is the steady-state amplitude and phase of the response and,

−µ2γ 2 + (3β − 10

3
λ2)2 = n1; −2µ2γ − 4σ (3β − 10

3
λ2) = n2; −µ2 + 4σ2 = n3 (145)

Thus, the approximation periodic solution can be rewritten in the form

u (T0, T2) = a ei(σ T2−χ)eiT0 +
1

3
λ a2

(
ei(σ T2−χ)

)2 (
eiT0

)2
+

1

12
a3
(
ei(σ T2−χ)

)3
λ2

+
1

3
λa2

(
e−i(σ T2−χ)

)2 (
e−iT0

)2
+ (

1

8
β a3

(
ei(σ T2−χ)

)3
− 2λa2

+
1

8
iµγ a3

(
ei(σ T2−χ)

)3
)
(
eiT0

)3
+

1

3
iµ a2

(
ei(σ T2−χ)

)2 (
eiT0

)2
+ cc.

(146)

Noisy case

In the noisy case, we have η ̸= 0;ψ ̸= 0. By letting

φ (T2) = ηW (T2) + ψ + σ T2− χ (T2) (147)

we obtain [145] the following equations

2da = (−µa− µγ a3 +
1

2
A0 sin (χ))dT2

2 adχ = (
10

3
a3λ2 + 2 aσ − 3β a3 +

1

2
A0 cos (χ))dT2 + 2 aη dW (148)

To study the process stability, we assume that each equilibrium state is submitted to a small

perturbation as follows: a (T2) = a0 + a1 (T2) and χ (T2) = χ0 + χ1 (T2) , then, the following set

of Ito-type stochastic differential equations:

da1 =

((
−a0 σ +

3

2
β a30 −

5

3
a30λ

2

)
χ1 + (−3

2
µγ a20 −1

2
µ)a1

)
dT2

dχ1 =

((
−1

2
µ γ a20 −

1

2
µ

)
χ1 + (

σ

a0
+ 5 a0 λ

2 −9

2
a0 β)a1

)
dT2 + η dW.

(149)
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Assuming a1 = X1;χ1 = X2, Eq. (149) becomes

dX1 =

((
−a0 σ +

3

2
β a30 −

5

3
a30λ

2

)
X1 +

(
−3

2
µγ a20 −

1

2
µ

)
X2

)
dT2

dX2 =

((
−1

2
µ γ a20 −

1

2
µ

)
X1 +

(
σ

a0
− 9

2
a0 β + 5 a0 λ

2

)
X2

)
dT2 + η dW

(150)

The first order and second order moments can be obtained by moment method [145]. Let ρςτ =

E(Xς
1X

τ
2 ) where the superscripts ζ, τ are nonnegative integers; according to Ito differential rule,

it follows upon taking the ensemble average.

dρςτ (T2)

dT2
= E

(((
−a0 σ +

3

2
β a30 −

5

3
a30λ

2

)
X1 +

(
−3

2
µγ a20 −

1

2
µ

)
X2

)
Xς−1

1 ς Xτ
2

)
+E

(((
−1

2
µ γ a20 −

1

2
µ

)
X1 +

(
σ

a0
− 9

2
a0 β + 5 a0 λ

2

)
X2

)
τXς

1X
τ−1
2

)
(151)

The left-hand side of (151) is the time derivative of the statistical moment of order ϑ, ϑ = ζ + τ ,

whereas the right-hand side depends on the functional form of f1, f2, g, given by

f1 =
(
−a0 σ + 3

2 β a
3
0 − 5

3 a
3
0λ

2
)
X1 +

(
−3

2µγ a
2
0 − 1

2µ
)
X2;

f2 =
(
−1

2 µ γ a
2
0 − 1

2µ
)
X1 +

(
σ
a0

− 9
2a0 β + 5 a0 λ

2
)
X2; g = η

(152)

As f1, f2, g are linear the right-hand side of Eq. (151) contains only the ϑth and lower order sta-

tistical moments. We then obtain the following differential equations for the statistical moments:

dρ10
dT2

=

(
−a0 σ +

3

2
β a30 −

5

3
a30λ

2

)
ρ01 +

(
−3

2
µγ a20 −

1

2
µ

)
ρ10

dρ01
dT2

=

(
−1

2
µ γ a20 −

1

2
µ

)
ρ01 +

(
σ

a0
− 9

2
a0 β + 5 a0 λ

2

)
ρ10

(153)

the second order steady state moments ρ20, ρ11 and ρ02 satisfy the following equations

dρ20
dT2

= 2Γ1 ρ11 + 2Γ2 ρ20

dρ11
dT2

= Γ3 ρ02 + Γ4ρ11 + Γ5ρ20

dρ02
dT2

= Γ6 ρ02 + Γ7 ρ11 + 2πK22 η
2

(154)

where,

Γ1 = −a0 σ +
3

2
β a30 −

5

3
a30λ

2; Γ2 = −3

2
µγ a20 −

1

2
µ; Γ3 = −a0 σ +

3

2
β a30 −

5

3
a30λ

2 (155)
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Γ4 = −2µγ a20 − µ; Γ5 =
σ

a0
− 9

2
a0 β + 5 a0 λ

2

Γ6 = 2− 1

2
µ γ a20 −

1

2
µ; Γ7 = 2

σ

a0
− 9

2
a0 β + 5 a0 λ

2
(156)

and K22 is the cross-spectral density of W and itself. For stationary solutions, the statistical

moments are constant, and their time derivatives are equal to zero. Eqs. (153), (154) then reduce

to algebraic equations. Furthermore, it is obvious that ρ10 = 0. We then have by substitution the

following results

ρ11 = −2
πK22 η

2Γ2 Γ3

−Γ6Γ4 Γ2 + Γ6 Γ5 Γ1 + Γ7 Γ2 Γ3
(157)

ρ02 = −2
π K22 η

2 (−Γ4 Γ2 + Γ5 Γ1)

−Γ6Γ4 Γ2 + Γ6 Γ5 Γ1 + Γ7 Γ2 Γ3
(158)

ρ20 = 2
πK22 η

2Γ3 Γ1

−Γ6Γ4 Γ2 + Γ6 Γ5 Γ1 + Γ7 Γ2 Γ3
(159)

The necessary conditions for the existence of the second order moments of the response are

ρ02 > 0 and ρ20 > 0.

II.2.5 Stability of equilibrium states and statistic moments

To assess the stability of the resulting solutions, we sketch a (T2) = a0 + a1 (T2) and χ (T2) =

χ0 + χ1 (T2) where a1 (T2) and χ1 (T2) are slight variations. Inserting these equations into Eq.

(143), and canceling nonlinear terms enables us to obtain

da1
dT2

+
µ

2
a1 +

3

2
µγa1a

2
0 −

3

2
a30χ1β +

5

3
a30χ1λ

2 + a0 χ1σ = 0

2a0
dχ1

dT2
+ 9βa1a

2
0 − 10λ2a1a

2
0 − 2 a1σ + µa0 χ1 + µa30χ1γ = 0

(160)

Using a1 (T2) = c1 e
ξT2 and χ1 (T2) = c2 e

ξT2 we obtain the following system

a0

(
10

3
a20λ

2 + 2σ − 3β a20

)
c2 +

(
2 ξ + µ+ 3µγ a20

)
c1 = 0

a0
(
µ+ µγ a20 + 2ξ

)
c2 +

(
−2σ + 9β a20 − 10λ2a20

)
c1 = 0

(161)
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The stability process depends on the sign of eigenvalues of Eq. (160), which are given through

the following characteristic equation:

ξ2 + µ
(
1 + 2γa20

)
ξ +

µ2

4

(
1 + γa20

)
(1 + 3γa0)

−
(
(
10

3
λ2 − 3β) a20 + 2σ

)(
− σ

2
+ (

9

4
β − 5

2
λ2)a20

)
= 0

(162)

Solving this equation might not be difficult, but for the stability, we only need the sign of the

eigenvalues. We know that a steady point is stable if the real part of ξ is < 0 for all ξ. Impor-

tant criteria that gives necessary and sufficient conditions for all the roots of the characteristic

polynomial (162) (with real coefficients) to lie in the left half of the complex plane are known as

the Routh-Hurwitz criteria. The stability condition could then be established by these criteria.

Applying it, the necessary conditions for the steady states of the response to be stable are:

µ
(
1 + 2γa20

)
> 0 (163)

−1

4

(
10

3
a20λ

2 + 2σ − 3β a20

)(
−2σ + 9β a20 − 10λ2a20

)
+
µ2

4

(
1 + γa20

)
(1 + 3γa0) > 0 (164)

The preceding discussion aims at demonstrating that the systems can exhibit primary resonances

at a large number of frequencies. Depending on parameters values, these resonances may occur

at frequencies that are near the natural frequency. To study the stability of equilibrium state, we

let ρ20 (T2) = c1 e
ξ T2 , ρ11 (T2) = c2 e

ξ T2 , ρ02 (T2) = c3 e
ξ T2 ; we then obtain,

M


c1

c2

c3

 =


0

0

0

 (165)

where

M =


2Γ2 − ξ 2Γ1 0

Γ5 Γ4 − ξ Γ3

0 Γ7 Γ6 − ξ
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The characteristic equation for our system, can be easily obtained:

∆(ξ) = ξ3 + (−2 Γ2 − Γ4 − Γ6) ξ
2 + (2 Γ4 Γ2 −2 Γ5 Γ1 + Γ4 Γ6 + 2 Γ2 Γ6 − Γ3 Γ7) ξ

−2 Γ6 Γ4 Γ2 + 2 Γ6 Γ5 Γ1 + 2 Γ7 Γ2 Γ3

(166)

The necessary and sufficient condition for the second order moments of the response to be stable

is that the coefficient matrix M must be negative definite. Applying Routh-Hurwitz criterion,

the necessary conditions for the second order moments of the response to be stable are:

−2 Γ2 − Γ4 − Γ6 > 0; 2 Γ4 Γ2 − 2 Γ5 Γ1 + Γ4 Γ6 + 2 Γ2 Γ6 − Γ3 Γ7 > 0 (167)

−2 Γ6 Γ4 Γ2 + 2 Γ6 Γ5 Γ1 + 2 Γ7 Γ2 Γ3 > 0 (168)

−2 Γ6 Γ4 Γ2 + 2 Γ6 Γ5 Γ1 + 2 Γ7 Γ2 Γ3 < (−2 Γ2 − Γ4 − Γ6)(2 Γ4 Γ2 − 2 Γ5 Γ1

+Γ4 Γ6 + 2 Γ2 Γ6 − Γ3 Γ7)
(169)

We then obtain the total statistic moments by combining the steady state of the statistical mo-

ments given by Eqs. (153) with Eq.(159) as follows

ρa = a20 +
η2Γ3 Γ1

−Γ6Γ4 Γ2 + Γ6 Γ5 Γ1 + Γ7 Γ2 Γ3

(170)

Probabilistic analysis has many major benefits in understanding the practical behavior of a

structure, the influence of parameters on the structure behavior, and the estimation of the struc-

tural reliability [195]. There is a plethora evidence from simulation and experiment that plasma

turbulence is highly intermittent, and that turbulent transport has a fundamentally ”bursty”

character. it is thus necessary to develop a probabilistic theory of plasma transport [196, 197].

Probabilitic theory have already been employed for data analysis in steady-state fusion devices,

such as Wendelstein 7-X [198]. A statistical theory of Vlasov turbulence was contructed by Dia-

mond et al. in [199].

A numerical package (following others algorithms [200]), ”Moment Closure” was proposed

[201] to provide an efficient mechanism to generate the closure differential equations and closure

approximations of the cumulants of a stochastic Markov system, by neglecting those cumulants

that exceed a user-defined level.

Sanae-I. Itoh et al. [202] have analyzed a statistical model for the bifurcation of the radial
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electric field Er in view of describing L-H transitions of tokamak plasmas. Noise in microfluctu-

ations was shown to lead to random changes of Er if a deterministic approach allows for more

than one solution. They also obtain the probability density function for and the ensemble aver-

age of Er. The L-to-H and the H-to-L transition probabilities were calculated, and the effective

phase limit which deviate from Maxwell’s rule was derived.

If system (135) is asymptotically stable, then the motion tends to statistical stationarity. At

the same stationary state, the statistical moment are independent of time, and Eq. (135) reduces

to an algebraic equation.

For numerical simulation, we use the pseudorandom signal given by Shinozuka [203]. The

essential feature of Shinozuka’s approach is that a random process can be simulated by a series

of cosine functions with random frequency. The density function (or joint density function) of the

random frequency is derived from the specified cross-spectral density matrix for multivariate

process or from the specified spectral density function for multidimensional process [204]. Each

physical realization of noise represented by W (τ) + ψ = ϑb(τ) can be approximated by

ϑb(τ) = A
N∑
k=1

cos(ωkτ + φk) (171)

where A =
√

4 ω0S0
N , ωk (k = 1, 2, ..N) are independent and nonnegative random variables

over the interval [ωl, ωr], ∆ω = 2/N is the frequency increment, φk (k = 1, 2, ..N) are identically

uniformly distributed over the interval [0, 2π) and N is a fixed positive integer. For a large pos-

itive integer N , the physical realization generated by Eq. (171) is almost ergodic, and numerical

results show that the influence of this large integer can be neglected [204]. The duration of time

is not concerned with the sum in Eq. (171)

II.3 Conclusion

In this chapter, we have described the mathematical modeling of the dynamics of plasma

density and electric field in L-H transition, based on the Vlasov formulation and quasineutrality.

We have also sketched some analytical and numerical methods used. These methods are used to

obtain the results presented in chapter III.
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CHAPTER III

RESULTS AND DISCUSSION

In this chapter we present and discuss the main results of our work, using numerical simu-

lations. The first section deals with transition to chaos in plasma density with asymetric double-

well potential for parametric and external harmonic oscillations, the second section deals with

the effect of external bounded noise on nonlinear dynamics of plasma density and the third sec-

tion is reserved to the global bifurcation of mean electric field in plasma L-H transition under

external bounded noise excitation.

III.1 Transition to chaos in plasma density with asymetric double-

well potential for parametric and external harmonic oscillations

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.1

0

0.1

0.2

0.3

0.4

ω

A
c

 h=0.0
 h=0.05
 h=0.1

Figure 17: Critical amplitude versus the frequency ω of the right well for µ = 1.0, γ = 5.0,
β = 0.25, λ = 1.15, Ω = 0.66114; and h = 0.0(red); h = 0.05(black); h = 0.1(blue).

The results of Eq. (98) indicate that the system dynamics undergo an homoclinic bifurcation

at h = hcr, resulting in the loss of energy density confining in plasma device. In order to see
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Figure 18: Critical amplitude versus the frequency ω the left well for µ = 1.0, γ = 5.0, β = 0.25,
λ = 1.15, Ω = 0.66114; and h = 0.1(black), h = 0.2(red), h = 0.3(blue).

clearly the dependence of the chaotic regions on the system parameters, starting from Eq. (98 ),

we plot the semi-analytically critical force Ac versus the frequency ω for the right well in Fig. 17,

and for the left well in Fig. 18. As shown in Fig. 17, when the modulation depth h is very low, the

system could exhibit a chaotic behavior for very low values of A0. If h is increased the critical

value Ac of A0 also increase. From Fig. 18, the system will have a chaotic set, which may or

may not be an attractor for low value of A0. In Fig. 18, if we select a value of h, the areas above

the curves correspond to Melnikov chaotic regions in which the evolution of the density has

the properties of Smale-horseshoe chaos; those below denote regions of regular motion. From

Fig. 18, we observe that for low modulation depth h = 0.1, the threshold value of the external

force intensity is approximately obtained as Ac ≈ 1.181 when µ = 1.0; this implies that, for low

modulation depth the criterion (98) can indeed be satisfied. If the modulation depth is increased

to about 0.2 or 0.3, from Eq. (98), the critical value becomesAc ≈ 0.958 orAc ≈ 0.5315 respectivly.

If γ becomes too large, the threshold may become very large and so, the perturbational treatment

becomes invalid. On the other hand, from Fig. 18, we find that a larger h value is associated with

a lower Ac value, but not linearly.
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Bifurcations diagram and maximum lyapounov exponent

We now use the numerical simulations including bifurcation diagrams and Lyapunov exponents

to examine the consistence with the theoretical analysis and finding new complicated behaviors

of Eq. (71). As mentioned before, the maximum Lyapunov exponents characterize quantita-

tively the dynamics of a system representing the asymptotic rate of exponential convergence or

divergence of nearby orbits in phase space. Exponential divergence of nearby orbits implies that

the dynamical behavior is sensitive to initial conditions. A positive maximum Lyapunov expo-

nent for certain situations can be considered as a sign of chaos [205]. In fact, positive largest

Lyapunov exponent doesn’t, in general, indicate chaos [206]. The fourth order Runge-Kutta al-

gorithm is used to check the threshold of harmonic excitation amplitude for onset of possible

chaos obtained for system (71). Results have been made and are displayed in Figs. 19 and 20.

Meanwhile, the thresholds of excitation amplitude for onset of chaos are obtained by letting the

maximum Lyapunov exponents vanish. It is important to determine what type of chaos occurs.

Transient (temporary) chaos, attracting (sustained) chaos, or both could exist. Both attracting

and transient chaos are found; but due to its impact in practical experimental design and appli-

cations, sustained chaos is the main interest.

Holding ω = 1.33, a series of bifurcation diagrams with their corresponding maximum Lya-

punov exponent are displayed in Figs. 19 and 20, showing the dependance of chaos occurrence

on A0, for 0.1 ≤ h ≤ 0.4. With ω = 1.332, a series of bifurcation diagrams and corresponding

lyapunov exponent (see Fig. 21), with initial conditions taken in the right well, are depicted to

examine the influence of the modulation depth h. We wish to find other bifurcation structures of

the system (71). With parameter chosen as above and initial conditions taken in the right well,

for h = 0.0, numerical bifurcation analysis with ω treated as the bifurcation parameter reveals

transitions between periodic and chaotic states. When increasing ω for a sufficient amount of

time up to transients, Fig. 23 is depicted. Due to the initial conditions (A0 = 0.0−2.0), there is no

coexisting attractors when there is a very large difference between the external force amplitude

values.

Poincaré maps

The poincaré bifurcation is a common non linear process through which a system changes from

a fixed point to a limit cycle state. Equation (70) is integrated numerically under the initial
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Figure 19: Bifurcation diagrams of the system (71) for different values of h, with initial condition
taken in the left well; ω = 1.33 and Ω = 0.66114. Other parameters are those of Fig. 4.
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Figure 20: Corresponding maximum Lyapunov curves of the bifurcation diagrams (Fig.(19)).
Other parameters are those of Fig. 4.
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Figure 21: Bifurcation diagrams of the system (71) and the corresponding maximum Lyapunov
exponent calculate for h varying, with initial condition taken in the right well, Ω = 0.66114 and
ω = 1.33 for (a) A0 = 0.224, (b) A0 = 0.9, (c) A0 = 1.3 and (d) A0 = 1.485. Other parameters are
those of Fig. 4.
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Figure 22: Bifurcation diagrams of the nonlinear system (71) with initial condition taken in the
right well for Ω = 0.66114, ω = 1.33. System parameters as for Figure 4.
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Figure 23: Bifurcation diagrams of the nonlinear system (71) with initial condition taken in the
right well for Ω = 0.66114, h = 0.0, ω = 1.33. System parameters as for Figure 4.
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condition taken in the right well by using four-order-fixed step Runge-Kutta method. In order to

gain better insights into chaos features, various kinds of attractors and strange attractors which

are generated by sampling the system stroboscopically with a period T = 2π/ω are depicted.

The poincaré maps for different values of the external excitation amplitude in ( z, v) plane for
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Figure 24: Influence of the external amplitude on the Poincaré maps of the system (a) a non
chaotic states for A0 = 1.40 (b) chaotic attractor for A0 = 1.480. System parameters as for Figure
4.

initial condition taken in the right well are depicted in Fig. 24.

Bassin of attraction

A basin of attraction is defined as initial conditions, which are attracted to a fixed point or an

given set. We want to study the effect of the modulation depth, and how the basins of attraction

are affected as the amplitude of excitation A0 is increased. To numerically generate basins we

take initial conditions in a plane element (z, v) = (−6..4 × − 4..4). We first consider the damp-

ing oscillation µ = 1.0 with the focused set chosen in the left well, when time increases from the

initial conditions z0 and v0. If the trajectory is attracted out of that well, the lattice element of the

initial condition is drawn in white, otherwise in blue(online) for Fig. 25. The boundary of the

color specified the boundary of the attractor.

III.1.1 Discussion

From Fig. 19, when h = 0.1, with initials conditions taken in the left well, for values of A0 ≤

1.208 one observes a period doubling bifurcation as A0 is increased from zero with a disruption

followed by an period multiplication. It is also shown that the transition to chaotic state occurs
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Figure 25: Basin of attraction for strong external forcing. ..
z = −0.25

{
z3 − 3

4 (z1 + z2)z
2 + 1

2 (z1z2)z
}

+0.015(−((1+x0 +5.0x20)+(1+2× 5.0×x0)z+(5.0)z2)v )−h(z+x0) cosΩτ+A0 cos(1.33τ), for A0 = 1.30 :
(a) h = 0.1 (b) h = 0.115, (c) h = 0.29695, (d) h = 0.2980 with Ω = 0.66114.
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Figure 26: Basin of attraction for strong external forcing. ..
z = −0.25

{
z3 − 3

4 (z1 + z2)z
2+ 1

2 (z1z2)z
}

+0.015(−((1 + x0 + 5.0x20)+(1 + 2 × 5.0 × x0)z+(5.0)z2)v ) − 0.3(z + x0)) cosΩτ+A0 cos(1.33τ), with Ω =
0.66114: (a) A0 = 0.81; (b) A0 = 0.9; (c) A0 = 1.0; (d) A0 = 1.1.
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around A0 ≈ 1.208. The corresponding maximum lyapunov exponent confirm the existence of

the chaotic regions and periodic orbits. When h = 0.2, as shown in Fig. 19 we observe that the

first periodic band is reduced, with a light increasing of the width of the first period 4T window;

as shown in Fig. 20 transition to chaotic state occurs around A0 ≈ 1.092. For h = 0.3 a very

thick banded chaotic domain reside for A0 ≈ 0.444. It can also be observed that the system do

not enters chaotic motions sometimes through a sequence of period doubling bifurcations, but

with a jump. For low A0 (A0 = 0.224), as shown in Fig. 21(a) there is an transient chaos for

very low h. For A0 = 0.9 (see Fig. 21(b)) there is an period-one orbit for h closed to zero, and a

period doubling bifurcation of period-one. In Fig. 21(c), plotted for A0 = 1.3 there is a sudden

jump in the size of the chaotic attractor after a period two orbit as in Fig. 21(d). But in Fig.

21(d), plotted for A0 = 1.485, the period two comes from a chaotic attractor, which exist for h

closed to zero. The existence of this attractor is associated with the transverse intersection of

the stable and unstable manifold of the perturbed saddle. As shown in Fig. 22 the hight values

of h is associated with low values of the threshold A0. Fig. 23 shows that there is an transient

chaos at around ω ≈ 1.33 for A0 up to ≈ 1.40. For ω ≥ 2.4 there is a periodic attractors with

roughly the same period that of the forcing. There is an abrupt transition to a chaotic state for

A0 ≥ 1.25 when increasing ω from around ω ≈ 0.8. Within this chaotic region lie ω ≈ 1.332,

which is consistent with the other above observations. The value of ω for which we have chaotic

behavior globally increase when increasing A0; then if an experimental study is conducted,

chaotic behavior should be relatively easy to avoid by adjusting system’s parameters. For A0 =

1.40 (See Fig. 24(a)) the portrait on poincaré map is a set of points (two-point represented by two

cross in figure) and the corresponding maximum lyapunov exponent is negative. The system

motion is quasi periodic. when A0 is around 1.480, the portrait on poincaré map is no more

a countable number of points, the quasi-periodic ring is broken-up; the poincaré section is a

strange attractor. The chaotic attractors in poincaré map of system (70), are shown in Fig. 24(b)

The variation of basin of attraction is depicted in Fig. 25. Taking the parameters specified in the

specified equation of motion, the basin of attraction subjected to the action of the strong external

forcing exhibit an complicated behavior. From Fig. 25(c), the boundary of the targeted area is

not regular when A0 = 1.0 and h = 0.29695. At the same time, the escaping phenomenon of

the targeted domain occurs. The relative number of initial conditions, belonging to these boxes

are uncertain in the sense that a small deviation in the boundaries would render the evolution to
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be towards a different attractor from the original initial condition. Holding the external forcing,

when slightly increasing h to h = 0.2980, the fractal boundaries of the basin of attraction as

shown in Fig. 25(d) is modified, the boundaries become more fractal. See from Fig. 25(a),

if the external forcing is again increased to A0 = 1.30 with h = 0.1 the smoothness of the basin

boundaries tend to be reconstructed. But, if the modulation depth amplitude is slightly increased

to h = 0.115, the smoothness of the boundaries tend to vanish, the boundaries become more

fractal (see Fig. 25(b)). Holding the modulation depth at h = 0.3, the basin of attraction is

depicted in Figs. 26(a) and (b) for. If the trajectory is attracted out of the left well, the lattice

element of the initial condition is drawn in white, otherwise in red (online). For A0 = 0.81, the

basin of attraction exhibit light fractal boundaries (see Fig. 26(a)), the escaping phenomenon

of the targeted domain also occurs. When increasing A0 at A0 = 0.9, Fig. 26(b) shows that

the safe area inside the well is more destructed, and the erosion of the basin increase notably.

When A0 = 1.0 the smoothness of the boundaries tend to vanish completely as shown in Fig.

26(c). If the external forcing is again increased to A0 = 1.1 the escaping phenomenon is strongly

increased.

A series of experiments on temporal control of plasma instabilities have already been carried

out [207, 208]. Control of chaos is a first approach, where unstable periodic states are stabilized

by tiny adjustments of one or more accessible parameters.

Experiments have been carried out in the linear section of the low plasma device (MIRABELLE)

[207]. In this experiment, plasma is produced by a thermoionic discharge in one of the two source

chambers; the other one staying unoperated in the experiments. Confinement is ensured in the

central section by 24 coils, which create a uniform magnetic field whose strength can be varied

up to 120mT . Compensation coils, installed on each source chamber,allow null axial B field in

front of the cathodes, which avoids filamentary plasma. The base pressure inside the device is

of the order of 5− 10mbar and the working pressure in argon is typically 1− 2, 4− 10mbar. A

high transparency grid is located at the entrance of the column. Its biasing influences the axial

drift of the particles and the radial profiles of density and potential, allowing a dynamic control

of the plasma regime. Discharge current, magnetic field strength, pressure, and biasing of an in-

ternal tube inside the central section determine the plasma regime as well. Without any limiter,

only drift waves due to the radial density gradient can be excited in the plasma column. Thus, in

order to increase transverse gradients, a metallic diaphragm is inserted at the entrance of the col-
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umn. The plasma rotation due to the increased radial electric field can then trigger flute modes,

especially at low B field, when the drift dispersion scale is large, or of the same order as the

transverse length scale spatiotemporal control is achieved with an eight-plates exciter located in

the first part of the column.

In another experiment [208], nonlinear drift waves are experimentally studied in a cylindrical

magnetized laboratory plasma. The transition from spontaneous regular regimes to chaotic and

turbulent regimes is obtained by changing the plasma parameters.The scenario starts with a

state where the density fluctuations are periodic in time. Then, changing the control parameter

(azimuthal velocity of the plasma column), a bifurcation occurs leading to a mode-locked state.

Next, increasing the control parameter lead to the gradual dissolution of the mode locked state.

The periodic regime disappears and a chaotic regime is obtained. The spontaneous excitation of

drift waves is obtained by applying a potential difference between the anode and the grid. For

the study of the transition from a regular regime to a turbulent one, the bias of the tube is taken as

the control parameter determining the dynamical state of the plasma. Biased Langmuir probes

located at the radial position of the maximum density gradient are used for the measurement of

density fluctuations in order to investigate experimentally the temporal and the spatio-temporal

drift wave dynamics.

III.2 Effect of external bounded noise on nonlinear dynamics of plasma

density
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Figure 27: Stability map of the equilibrium solutions of equation (143) for γ = 5.0, µ = 0.9.
Shaded regions represent asymptotically stable equilibria.
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Figure 28: Frequency response of system (57) in the (ρa, a0)−plane, for µ = 1.1, γ = 5.0, σ =
−1.5; and η = 0.5(blue), η = 1.5(black), η = 3.5(red), η = 5.5(green).
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Figure 29: Frequency response of system (57) in the (σ, ρa)−plane, for µ = 1.1, γ = 5.0, a0 = 0.3;
and η = 0.5(blue), η = 1.5(black), η = 3.5(red), η = 5.5(green).
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Figure 30: Frequency response of system (57) in the (σ, ρa)−plane, for µ = 1.1, γ = 5.0, a0 = 0.6;
and η = 0.5(blue), η = 1.5(black), η = 3.5(red), η = 5.5(green).
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Figure 31: Regions of the existence of the statistic moment ρ20 in the (σ, γ)− plane, for a0 = 0.8;
µ = 1.1; A0 = 0.2 . There is no solution in the white region.
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Figure 32: 3-D resonance region plotted in the space (a0, σ, ρa), for µ = 1.1, γ = 5.0, η = 1.8.
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Figure 33: Frequency response of system (57) in the (σ, a0)−plane, for different values of gaus-
sian noise intensity η, for µ = 1.1, γ = 6.0, A0 = 0.2, ρa = 1.2; and η = 4.8(blue), η = 8.8(red),
η = 12.8(green), η = 16.8(black).
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Figure 34: Resonance curves measured at successively values of complete statistic moment ρa,
with: (a) η = 6.8, (b) η = 5.8; ρa = 0.2(blue), ρa = 0.4(yellow), ρa = 0.6(green), ρa = 0.8(red),
ρa = 1.0(black). Arrows on the highest pair of curves indicate sweep direction. All lower curves
are not similar. Note sharp peak and reinforcement of asymmetry and hysteresis phenomena at
the highest moment.
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Figure 35: Effect of varying parameter µ on the frequency response curves and on the stability of
solutions; for A0 = 1.2, γ = 5.0.
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Figure 36: Effect of varying the external excitation magnitude A0 on the frequency response
curves; for µ = 1.1, γ = 5.0; and A0 = 0.2(black), A0 = 0.5(blue), A0 = 1.4(red), A0 = 2.2(green).
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Figure 37: Forced response of density perturbation in the case of the fundamental parametric
resonance, for different values of detuning frequency σ; µ = 1.1, γ = 5.0; and σ = −1.4(black),
σ = −1.0(blue), σ = −0.6(red), σ = −0.2(green).
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Figure 38: Effect of varying parameter γ on the frequency response curves; for µ = 1.1, A0 = 1.2;
and γ = 12.0(black), γ = 8.0(blue), γ = 4.0(red), γ = 1.0(green).
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III.2.1 Numerical simulation of nonlinear response

Case η = 0

In this section, the frequency response curves of density perturbation in plasma are obtained by

solving Eq. (144), a nonlinear algebraic equation, which is solved numerically using Newton-

Raphson’s method. The numerical results are shown in Figs. 35, 36, 38 as the amplitude a0

against the detuning parameter σ; in Figs. 37, 39 as the amplitude a0 against the external exci-

tation magnitude A0 , for different values of parameters. In Fig. 35 the frequency response is

combined with the stability region plotted by using Eqs. (163)-(164). Fig. 35 shows the response

intensity of density perturbation as a function of the frequency σ for fixed values of µ. The in-

stability tongue widened when µ decreases. The greatest value of σ for which one has solutions

decreases when µ decreases. The largest amplitude required for having an instability decrease

when µ decreases. From Fig. 36 we see that when A0 increases the lowest value of the amplitude

decreases when A0 increases. Fig. 37 shows that when σ decreases, the largest amplitude of so-

lutions also decreases. As shown in Fig. 38, the minimal values of the amplitude concentrate

around a0 = 0.5, and there is a value of γ ∈ ]8.0, 12.0[ from which one has only one value of
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a0 for a value of σ. For γ varying (see Fig. 39), the steady state amplitudes increases when γ

increases for the upper branch, and decreases when γ increases for the lower branch, For a fixed
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Figure 42: Regions of stability of the statistic moment ρ20 in the (σ, a0)− plane, from Eqs. (167)-
(170), for different values of parameter: (a)-µ for γ = 4.1; A0 = 0.2 ,(b)-γ for µ = 1.1; A0 = 0.2 .
The solutions are stable in the white region.

detuning parameter, the stability region is plotted for µ = 0.9 and γ = 5.0. The crossed area

corresponds to stable solutions.

Case η ̸= 0

As a function of a0, Eq. (170) is a nonlinear equation; it is solved numerically as shown in Figs.

28 - 41. From Fig. 28, the results are presented as steady-state amplitudes a0 against statistic
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Figure 45: Influence of parameter γ on the Poincaré maps of (57) for η = 0 and µ = 1.1; β = 0.15;
λ = 1.9; A0 = 2.2.

moment ρa for primary resonance, and different values of noise intensity η. From Fig. 28,

it is observed that the steady-state amplitudes increase when η decreases. But the steady-state

amplitudes have multivalued solutions where the jump phenomenon exists due to hysteresis

phenomena. The phenomenon of hysteresis disappears for a value of η ∈ ]0.5, 1.5[ . As shown in

Fig. 9, the smaller η is, the more the curve flattened; like what, η induces a form of multiplication

of solutions. The value of the statistic moment ρa (see Fig. 30) for the smallest value of σ in-

creases when η increases. The regions of the existence of statistic moment are shown in Fig. 31 in

the (σ, γ) plane. From Fig. 31 we see that the existence zone (the colored one) enlarges when the

resonant amplitude a0 increases. The steady-state amplitude a0 is depicted in Fig. 33 for σ vary-

ing. Increasing η shrinks the basis of the curve. The 3-D resonance map is shown in Fig. 32 and

a contour plot in Fig. 34 for (a) η = 6.8, (b) η = 5.8 and γ = 7.0. From these figures, the frequency

response curves in the plane (σ, a0) are bent to the left and they have multivalued solutions

where the jump phenomenon exists, see Figs. 34(a) and (b). We also see that as ρ increases the

summit of the peak is destroyed, and the hysteretic behavior is comforted. When η decreases the

region of σ where we observe hysteretic phenomena shrink. This shows the influence of Gaus-

sian noise amplitude on the resonant frequency response curves. The response curves posses a

softening-spring-type. In Fig. 34(a) and (b), the bending of the curves indicates softening-type

nonlinearity; it also illustrates the influence of the stochastic moment on the resonant frequency
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Figure 46: Influence of the gaussian noise intensity η on the limit cycles maps of (57) for µ = 1.1;
β = 0.15; λ = 1.9; A0 = 2.2; γ = 8.5.

−2 −1 0 1
−1

0

1

du
\d

t

u

 η=0.1

300 400 500 600
−1

−0.5
0

0.5

u

t

−2 −1 0 1
−1

0

1

du
\d

t

u

 η=0.5

300 400 500 600
−1

−0.5
0

0.5

u

t

−2 −1 0 1
−1

0

1

du
\d

t

u

 η=2.5

300 400 500 600

−1

−0.5

0

0.5

u

t

Figure 47: Influence of the gaussian noise intensity η on the limit cycles maps of (57) for µ = 1.1;
β = 0.15; λ = 1.9; A0 = 2.2; γ = 6.85.

Ph.D. Thesis of B. C. Nono Dueyou Laboratory of mechanics



III.2 Effect of external bounded noise on nonlinear dynamics of plasma density 108

response curves. The 3-D basin of resonance map is depicted in Fig. 40 and a contour plot in

Fig. 41. Here, the peaks are not really sharp. When the stochastic moment increases, the peaks

are enlarged. These figures indicate that there are multiple solutions and, that jumping phenom-

ena are also multiplied when the stochastic moment takes a value ρas = ]0.2, 0.4[. The response

curve posses both softening-spring type and hardening-spring type when ρa > ρas. The curves

are bent to the right and left, which indicates a hardening and softening-type nonlinearity. In-

creasing the stochastic moment ρa also increase the amplitude of the resonant response a0. The

stability regions of the statistical moment are shown in Fig. 42 for µ and γ varying. From Fig. 42

we see that the stability zone (the colored one) becomes narrow when µ increases and enlarges

when γ increases.

III.2.2 Numerical simulations

Simulation of bounded noise

As mentioed in the preceding chapter, for numerical simulation, we use the pseudorandom sig-

nal given by Shinozuka [203]. Since the duration of time is not concerned with the sum in the

noise approximation, a specific Poincaré map can then be set up as in [209].

Noise effect on limit cycle

Bifurcation diagram for A0 varying is depicted in Fig. 43(a). We see that for A0 less than a value

≈ 1.86, we have only period one oscillation, we can observe clearly chaotic regions with a few

number of complex period windows. It can also be observed that the system enters chaotic

motions usually through a sequence of period-doubling bifurcations, while period-doubling is

at present the most commonly known route to chaos. As A0 increases from 1.4 the system starts

entering period-2 and period-4 bifurcations and is brought into chaos via a period doubling

cascade. In the largest period window of Fig. 43(a) bifurcations occur at, A0 ≈ 1.867; 2.10; 2.15

(approximately), etc., until just beyond 2.172, where the system is chaotic. However, the system

is not chaotic for all values of A0 lower than ≈ 2.17. The behavior of a non-autonomous two-

dimensional system such as system (57) can be depicted by using Poincaré map, which is defined

as

P :
∑

→
∑
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= {u, du/dt |θ = 2πn/Ω n = 1, 2, 3....} ∈ R2

Considering the primary resonance; The Poincaré maps for system (57) with externally exci-

tation f(τ) with η = 0 are depicted. Equation (57) is integrated numerically under the initial

condition
(
u,

.
u
)
= (1.41, 0.1) by using four-order fixed step Runge-Kutta method. The results are

presented on Poincarré maps, which are generated by sampling the system stroscopically with

a fixed period as mentioned before (the effect of transitional course is renowned). The poincaré

maps for different value of parameter γ are shown in Fig. 45. It is seen from these figures that

the motion of the system is periodic when γ = 8.5 and chaotic when γ = 6.5.

III.2.3 Discussion

The bifurcation diagram depicted in Fig. 43(b) nicely shows the reverse forking of the possible

periods of stable orbits from chaotic to 5 to 3 to 1. All the bifurcation points are not period-

doubling bifurcation. If the system as shown in Fig. 43(b) is subject to slowly varying frequency

(by varying σ), jump phenomena can be observed. As σ is decreased Let us fix the amplitudeA0,

the detuning parameter σ and change only the varying parameter to γ. Increasing the parameter

γ leads to the increase of damping. As a result, when γ is varying, the sequential stabilization of

orbits of the period-doubling cascade occurs in the reverse order (see Fig. 44(b)). Around γ ≈ 8.1,

the coexisting orbits, multiple of period 2 appear. They can be eliminated by slow modulation

either µ or γ. Similar effect of the reverse period-doubling is reached at decreasing γ. However,

suppressing the oscillation (when the trajectory remains in small vicinity of 1 or −1) occurs only

at low γ; hereupon, system dynamics becomes. In addition, the perturbations with A0 = 1.53

effectively suppress the oscillations when γ remains relatively small (γ = 5.0) (see Fig. 44(a)).

Note, the jump around σ ≈ −2.7 (see Fig.44(a)), the system trajectory suddenly evolves from

period-2 to period-1 bifurcation. Notice that at several values of σ greater than −2.07, a small

number of σ values is visited. These regions produce the ’white space’ in the diagram. Look

closely at σ ≈ −1.92 there is a three-point attractor. In fact, between σ ≈ −2.07 and σ ≈ −1.70

there is a rich interleaving of chaos and order. A small change in σ can make a stable system

chaotic, and vice versa. Explicitly it may be seen from Fig. 45 that: (1) When γ = 8.5, the portrait

on poincaré map is closed curved and as shown in Fig. 44, the system’s motion is quasi-periodic.

(2) When γ = 7.5, the portrait on poincaré map is still a closed curve, but the curve twists itself

into a circle, and as shown in Fig. 44, the system shows a two-frequency quasi-periodic motion.
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(3) When γ = 6.85, the portrait on poincaré map is also closed curved, but its shape is much

more complicate and twisty, and as shown in Fig. 44, a four-frequency quasi-periodic motion

occurred in the system. (4) When γ = 6.5, relatively to Fig. 44 , the portrait on poincaré map is a

strange attractor, and the chaotic motion takes place in the system. Next is to determine the noise

effect on the response of system (57). When S0 = 1.0, for the initial values
(
u,

.
u
)
= (1.41, 0.1).

Figs. 46, 47 show that in some parameter area of η, the stationary variances of the displacement

response of system (57) may be different for different values of γ. The random noise ϑb(t) will

change the steady-state response of system (57) from a limit cycle to a diffused limit cycle. With

the same initial values, As in [210], further numerical simulation shows that when the random

noise intensity η increases, the width of the diffused limit cycle also increases also. From Figs.

46 and 47, when the noise is present in the system, one can see that for larger noise intensity,

the Poincaré maps diffuse larger in phase plane. And then increasing the noise amplitude η, the

Poincaré maps diffuse to a large area. In short, the chaotic attractors diffuse by increasing the

bounded noise. All these figures show how the motion of system (57) goes from random to ran-

dom chaos as η increases. It should be noted that the transition of the motion of the system from

random to random chaos is gradual. These parameters, depending on the physical mechanism

of the species instabilities could be used to sketch an appropriate control strategy, that should be

applied to the plasma device to reduce the effect of chaotic motion resulting from noise [211] or

stabilize the chaotic state. Our results indicate that the density perturbation in the plasma, is sta-

ble (see Fig.35) in some parameters ranges. In this case, the particle density perturbation cannot

cause the catastrophe of the amplitude for the normalized density perturbation in plasma de-

vice. Since a pre-condition for the realization of high-performance plasma regimes with superior

energy confinement is its operation in a stable quasi-steady state [212]; parameters A0, µ and γ

(see Figs. 35 - 39), could be used to realize a specific stable state, that is helpful [213, 214] for con-

finement in plasma devices. From the aforementioned analysis, it is shown for example that (see

Figs.44(b) and 45) when tuning the parameter γ a limit cycle could arise, it corresponds to a sta-

ble controlled density in plasma device. We also show that when the noise intensity is increased,

the density perturbation become more chaotic, which results in the increase of instability that is

harmful for plasma device. Monitoring the parameter γ (see Figs.45 - 47) could slightly reduce

the noise effect. It is illustrated that in the case of choosing suitable parameters the density per-

turbation in the plasma device is stable. Using the physical correspondents of these parameters,
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it is possible to establish periodic operation of plasma devices in regimes where usually chaotic

oscillations occur.

In many plasma experiments chaotic dynamics and turbulence are considered as an unde-

sired situation and there is a particular interest to influence the plasma system in order to achieve

a stationary state (fixed point in the phase space) or a state of regular motion (limit cycle in the

phase space). The most straightforward approach would be to change the set of discharge pa-

rameters to establish a new non–chaotic state. This, of course, may be cumbersome or even

impossible. Recent results have demonstrated the efficiency of chaos control in laboratory plas-

mas. Moreover, recent computational studies of chaos control strategies offer the possibility of

applications in fusion plasmas. In a thrird experiment [215], the change of chaotic dynamics

into periodic dynamics induced by random noise in a system of two coupled perturbed van der

Pol oscillators and comparison with the experimentally observed behavior of a double discharge

plasma that it models have been presented. Methods specific to nonlinear analysis such as phase

portraits, Lyapunov exponents, and Fourier spectra was used to demonstrate the changeover

from chaotic to regular dynamics induced by random noise. The experimental setup consists of

a system allowing simultaneous functioning of two electrical discharges sustained by separate

voltage sources. They are running in the same discharge tube filled with argon at low pressure.

The anodes of the two discharges are situated facing each other at a distance of a few centimeters.

They are biased one against the other by a continuous voltage source whose voltage is consid-

ered as the experimental control parameter. An additional coupling is possible by connecting

in series with the biasing source a sinusoidal voltage. Without this forcing the discharge shows

periodic dynamics that slowly changes with changing of the control parameter. Chaos in the

system described by a one-dimensional nonlinear drift-wave equation is controlled by directly

adding a periodic force with appropriately chosen frequencies [150].

As mentioned in the preceding chapter, there is a possibility to model the phenomena de-

scribed in large plasma machines, using equations that model them directly, without passing

through the fluid equations; allowing the investigation of the behavior of some plasma parame-

ters, such as radial electric field, which has already been reported in fluid modeling as playing

a major role in the transition to the high level of energy, that one seek to achieve in fusion plas-

mas. In the following section, we sketch the obtained result with an incidence on the instabilities

control.
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III.3 Global bifurcation of mean electric field in plasma L-H transition

under external bounded noise excitation

Result for homclinic orbits

For homoclinic trajectories we have: More precisely, this condition provides a domain on the
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Figure 48: 3D upper threshold bound in (Ω2, η) plane with the associated threshold amplitude
F2 versus noise intensity η for homoclinic bifurcation; analytic results for differents values of Ω2.

parameter plane (F2, η) of the controlling radial electric field (which can be viewed as external

perturbation) on which the chaotic behavior may be suppressed from the normalized electric

field change. In Fig. 48(a) we illustrate the 3 −D regions in the space (F2, η,Ω2) of suppression

of chaos. The region under the surface corresponds to a regular motion for which the condition

(120) is not satisfied and in the region over the surface will exhibits chaotic behavior. From

Fig. 48(b) we observe that for low noise intensity η, the threshold value of the external forcing

intensity is approximately obtained as F2 ≈ 1.3 when η ≈ 0.18; this implies for low modulation

depth the criterion (120) can indeed be satisfied. If the noise intensity become extremely large,

the threshold may become very large and so the perturbational treatment becomes invalid. From

Fig. 48(a), for low value of Ω2 we observe a small quasi-periodicity.

Result for heteroclinic orbits

For heteroclinic trajectories we have: If one notes F2(critical), the value of F2 corresponding to η
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Figure 49: 3D inverse upper threshold bound in (Ω2, η) plane with the associated threshold
amplitude F2 versus noise intensity η for homoclinic bifurcation; analytic results for differents
values of Ω2.

depicted as shown in Fig. 49(b), when the noise intensity is very low (F2(critical) ≈ 6.1, η = 0.1),

the mean electric field change could exhibit a chaotic behavior for Ω2 = 1.5. If η is increased the

critical value F2(critical) of F2 in contrary decrease until reached η ≈ 1.5, and begin to increase.

From Fig. 49(b), the system will have a chaotic set, which may or may not be an attractor for low

value of η. In Fig. 49(a), the areas above the surface correspond to Melnikov chaotic regions in

which the evolution of the mean electric field has the properties of Smale-horseshoe chaos; those

below denote regions of regular motion. In particular, Fig. (49) demonstrated that, in general,

a controlling excitation can reliably play an enhancer or inhibitor role solely from adjusting its

initial phase or intensity. Here also, if the noise intensity become extremely large, the threshold

may become very large and so the perturbational treatment becomes invalid.

III.3.1 Numerical simulations

0-1 test for chaos

The final value of Kc is obtained by searching the median value of all the values obtained

from different values of c. The median rather than the mean is used, since the median gives less

weight to the strong outliers stemming from resonances. In Figs. 51-53, 55-56, we show the

mean square displacement with the corresponding asymptotic growth rate for homoclinic and

heteroclinic orbits respectively, clearly showing bounded behavior for regular dynamics, and

linear growth for chaotic dynamics. In practice, to ensure n << N we take n ≤ N1, N1 = N
10
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dynamics.
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in the definition of M(n). The asymptotic growth rate Kc of the mean square displacement is

determined by the before mentioned formula. This has the advantage compared to a least square

fit that outliers are weighted less [216] which is desirable as the linear behavior of M(n) is only

valid for n >> 1 and can deviate strongly for small n. In Figs. 51-53, 55-56, we also plot Kc as a

function of c where c is sampled uniformly as mentioned before. The figure shows that the test

is essentially independent of the specific choice of c and that we are justified in taking randomly

chosen values of c. Only exceptional resonant values of c yield values of Kc which do not fit the

picture of Kc = 0 for regular dynamics and Kc = 1 for chaotic dynamics. Resonances with a

corresponding value of Kc ̸= 0 or 1 occur if the frequency c is commensurate with a nonlinear

frequency of the dynamical equation (66). To partially avoid that these resonances distort the

“true” value of Kc, we take the median value of Kc .
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Figure 54: Asymptotic growth rate Kc versus F2 for Eq.(66); heteroclinic orbits.

Kc is estimated in the interval c =
[
π
5 ,

3π
5

]
. Predictions of F2 from Eq. (66) through Kc

could be used for comparison with the one obtain from Eqs. (120), (124). From Figs. 51-53, we

observe a smooth variation of Kc when switching from F2 = 1.31, η = 0.18 to F2 = 1.31, η = 1.0,

allowing a suspected reduction of the attractor size by noise. The before mentioned method was
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Figure 55: Plot of asymptotic growth rate Kc versus c for system (66) with the associated mean
square displacement M(n) as a function of n. We used here N = 20000 data points, and 100
equally spaced values for c. F2 ≈ 5.0; η = 1.0 corresponding to noisy regular dynamics.
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Figure 56: Plot of asymptotic growth rate Kc versus c for system (66) with the associated mean
square displacement M(n) as a function of n. We used here N = 20000 data points, and 100
equally spaced values for c. F2 ≈ 6.1; η = 10.0 corresponding to noise induced chaotic dynamics.
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used to determine the threshold results shown in tables (172, 173)

F2 η Median−Kc

1.2 0.0 0.0012

1.2 1.0 0.0531

1.2 5.0 0.9126

1.31 0.18 0.9781

1.31 1.0 0.7902

1.31 10.0 0.9719

homoclinic orbits

(172)

F2 η Median−Kc

5.0 1.0 −0.0079

5.0 5.0 0.0899

6.1 0.1 0.9405

6.1 5.0 0.7642

6.1 10.0 0.97

6.2 0.0 0.99

heteroclinic orbit

(173)

for low noise range the numerical results are found to be in agreement (as shown in Figs. 50 and

54)with predictions from Eqs. (120), (124), instead of the variation of Kc for large noise intensity

when dealing with homoclinic orbits.

Autocorrelation function and fast fourrier transform

For the homoclinic orbits the autocorrelation function are plotted in Figs. 57-58. The autocorrela-

tion function (ACF) for Eq. 66 time series, shown in Fig. 57, with a lag time of about l ∈ [0..N−1],

reveal that when the noise intensity is increased from zero, the ACF become irregular. However,

it is important to underline that absence of an initial abrupt fall of the ACF may be an indication

of a non-complex behavior.

We now analyze the case of heteroclinic orbit (see Figs. 59- 62). Under the threshold F2, when

the noise intensity is increased to η = 5.0 (see Fig. 59), the discrepancy of frequency growth up
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Figure 57: Time history with the associated autocorrelation functions and fast Fourier transform
for time series data from system (66): F2 ≈ 1.0; η = 5.0 corresponding to noisy motion.
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Figure 58: Percentage of false nearest neighbor for time series data from system (66), with em-
bbeding dimension m in [0..10]: F2 ≈ 1.31; η = 0.18 corresponding to chaotic motion.
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Figure 59: Time history with the associated autocorrelation functions and fast Fourier transform
for time series data from system (66)-(heteroclinic orbit): F2 ≈ 5.0; η = 5.0 corresponding to
noise-induced chaotic motion.
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Figure 60: Time history with the associated autocorrelation functions and fast Fourier transform
for time series data from system (66)-(heteroclinic orbit): F2 ≈ 6.1; η = 0.1 corresponding to
chaotic motion.
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Figure 61: Time history with the associated autocorrelation functions and fast Fourier transform
for time series data from system (66)-(heteroclinic orbit): F2 ≈ 6.1; η = 1.0.
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Figure 62: Time history with the associated autocorrelation functions and fast Fourier transform
for time series data from system (66)-(heteroclinic orbit): F2 ≈ 6.1; η = 5.0.
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and the apparent 3− period of the ACF give place to irregular motion associated to high rate of

decay, indicating a medium noise-induced chaotic motion.

Poincaré maps

We use the same modelization of noise as in the preceding section for numerical simulations.
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Figure 63: Poincaré map for homoclinic orbits with the associated phase portrait and time his-
tory (noise-free system, under the critical threshold): F2 = 1.1; η = 0.0.

Noise can indeed induce chaos. However, this is not associated with the main 2k cascade(see Fig.

65). One could identify three basic conditions for noise to induce chaos: (1) the noise level has

to fall within a certain narrow range, below this range it would not be sufficient to induce chaos,

whereas noise above this range would destroy the induced chaos, if chaos can indeed be induced.

(2) when subject to a noise source of strength within this range, the adjacent chaotic states should

still behave chaotically on certain finite scales. (3) and most important, the periodic state itself,

when subject to weak noise, should undergo a process that is much more diffusive than the

Brownian motion [217]. When noise induces chaos the complete period-doubling cascade is

inhibited, otherwise the cascade is simply masked by noise. In a continuous-time dynamical

system, a nonchaotic attractor coexists with a nonattracting chaotic saddle. Under the influence

of noise, chaos can arise. The topology of the flow is fundamentally disturbed after the onset

of noisy chaos; such a disturbance is due to changes in the number of unstable eigendirections

along a continuous trajectory under the influence of noise.
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Figure 64: Poincaré map for homoclinic orbits with different noise amplitude: F2 ≈ 1.3 (first
row) η = 0.18; (second row) η = 1.0; (third row) η = 5.0.

The Poincaré maps for Eq. 66 for heteroclinic orbits, subject to external bounded noise are

shown in Figs. 66-68.

Scaled power spectrum densities

Again we postpone a detailed description of the influence of noise. Since the structure of the

periodic orbit must acquire finer structure, it is clear that even very small noise will eventually

play a role. The power spectrum (Figs. 70-72) for Eq. 66, with different value of noise level

and F2; computed using a standard algorithm along an orbit of 20000 iterates are depicted for

homoclinic orbit.

The heteroclinic orbit seem to be more sensitive to noise than the homoclinic ones. The power

spectrum of the bounded noise excited system (Eq. (66)) for different value of F2 are plotted in

Figs. 71-72. Results are plotted in Fig. 71 for noise-free system with F2 ≈ 5.9, η ≈ 0.0.

III.3.2 Discussion

The ACF for Eq. (66) time series, shown in Fig. 58, indicates an exponential decay. Such an

exponential decay of the ACF may be an indication of the chaotic behavior of the process. On

the other hand, the irregular behavior of the ACF may be an indication that one is dealing with

a process, which is not completely deterministic but has a very low stochasticity. The above
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Figure 65: Noisy bifurcation diagram for heteroclinic orbits with the associated zoom for F2 ∈
[0..4.5] (noisy system, under the critical threshold): η = 0.18.

observation is confirmed by the rapid decay to zero [218], of the associated percentage of false

nearest neighbor.

When the critical threshold (F2 ≈ 6.1; η ≈ 0.18) is reached as shown in Fig. 60, the ACF for the

same sets of data is depicted. The ”grassy appearance” of the Fourier transform(FFT) in Fig. 60

and the aperiodicity and complexity of the autocorrelation function are characteristic of a chaotic

signal, the exponential decay shows a loss of memory and confirms the presence of chaotic dy-

namics. We integrate Eq. (66), with different noise amplitudes. From the threshold, when the

noise amplitude is increased (see Figs. 61, 62) the complex behavior of ACF give place to: appar-

ent regular motion for η ≈ 1.0 and irregular motion for η ≈ 5.0. Therefore, hyperbolic coherent

chaos exhibits some properties of nonhyperbolic chaos; ”dynamical stochasticity” proves to be

stronger than the ”chaoticity”. Then, noise has a great effect on the ACF of the quasihyperbolic

attractor. However, in the regime of the nonhyperbolic attractor, the FFT has less peaks with the

presence of same level of noise (see the curves in Fig. 59). Noise also reduce the amplitude of

oscillations. The results reported in Figs. 61, 62 show that for both small and large noise ampli-

tudes, the noise-excited oscillations appear to be rather irregular, while for low noise relatively

coherent oscillations are observed. This phenomenon, which is call coherence resonance [219],

resembles the well-known stochastic resonance. The stochastic resonance appears if both peri-

odic and noisy forces drive a nonlinear system, with the periodic response having a maximum

at some noise amplitude. One can see that the correlations decay rate is indeed much more pro-

nounced for the large noise. The dynamical regimes appearing in this bounded noise-driven
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Figure 66: Poincaré map for heteroclinic orbits with the associated phase portrait and time
history (noise-free system, under the critical threshold): F2 = 5.9; η = 0.0.
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Figure 67: Poincaré map for heteroclinic orbits with the associated phase portrait and time
history (noisy system, F2 under the critical threshold): F2 = 5.9; η = 5.0.
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Figure 68: (a)-Poincaré map for heteroclinic orbits (noisy system, F2 at the critical threshold):
F2 = 6.1; η = 0.1; (b)-Poincaré map for heteroclinic orbits (noisy system, F2 at the critical thresh-
old): F2 = 6.1; η = 1.0.
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Figure 69: (a)-Poincaré map for heteroclinic orbits: F2 = 8.0; η = 0.0. ; (b)-Poincaré map for
heteroclinic orbits: F2 = 8.0; η = 1.0.
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Figure 70: Scaled power spectrum of u(t) oscillations in system (66) -(homoclinic orbits) for:
F2 = 1.0 and noise intensity η = 5.0.
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Figure 71: (a)-Scaled power spectrum of u(t) oscillations in system(66) -(homoclinic orbits) for:
F2 ≈ 1.3 and noise intensity η = 0.18. ; (b)-Scaled power spectrum of u(t) oscillations in
system(66) -(heteroclinic orbits) for: F2 = 5.9 and noise intensity η = 0.0.
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Figure 72: (a)-Scaled power spectrum of u(t) oscillations in system(66) -(heteroclinic orbits)
for: F2 = 6.1 and noise intensity η = 0.1. ; (b)-Scaled power spectrum of u(t) oscillations in
system(66) -(heteroclinic orbits) for: F2 = 6.1 and noise intensity η = 5.0.
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excitable system can be rather nontrivial. For the selected values of parameters mentioned be-

fore and on figures captions, the oscillator exhibit a chaotic motion developing onto an attractor

which does not display a unique center of rotation (see Fig. 64). It is seen from Fig. 64 that

for larger noise intensity the map occupies small area in phase plane. Without noise, under the

threshold, the steady-state Poincaré map of periodic motion is one points (see Fig. 63). When

bounded noise is present in the system, the Poincaré maps are not diffused but reduced into

one smaller area in phase plane. It can be observed from Figs. 66-67 that under the threshold,

the motion of Eq. (66) goes from periodic to random as η increases from zero and diffuses in

a smaller and smaller domain of phase plane as η further increases. From Fig. 68 we can see

that the strange attractors for two different noise level are different when reached the threshold.

One can see that as noise increase, the Poincaré map diffuse in the phase plane; for larger noise

intensity, the Poincaré maps diffuse and accumulate around the point (x, y) ≈ (−0.782, 0.272)

in phase plane. All these figures show how the motion of Eq. (66) goes:- from periodic to ran-

dom chaos as η increases,-from noise induced chaos to completely random chaos, and confirm

both the threshold amplitudes obtained by the Melnikov and 0 − 1test methods. It should be

noted that the transition of the motion of the system from noise induced chaos to random chaos

is gradual and the threshold amplitude F2 for the onset of chaos should be in a range F2 ± δF2.

Thus, it can be concluded that over some range of η both the random Melnikov process with

meansquare criterion and 0 − 1test can correctly predict the threshold amplitude for the onset

of chaos for Eq. (66) under external bounded noise excitation. For F2 ≈ 8.0, the Poincaré section

consists of three points (see Fig. 69(a), the motion is periodic with the period 3T ; for F2 ≈ 7.5,

the Poincaré section does not consist of identifiable finite number of discrete points, the motion

is aperiodic, it may be chaotic as shown by the attractor obtained. Similarly, when we are over

the critical threshold F2, the motion of Eq.66 goes from: - chaos to random chaos as η increases

from zero to η = 1.0 and becomes more random and less chaotic for F2 ≈ 7.5; - 3 − period limit

cycle to random chaos suddenly (see Figs. 69(a,b)) for F2 ≈ 8.0. It should then be noted that

the random chaos obtained at the threshold is transient. The difference in threshold amplitude

obtained by random Melnikov process with meansquare criterion and by the 0 − 1test is larger

for large noise intensity. For small η the PSD has only one maximum. With the increase of η

as shown in Fig. 70 however, there appears a second low maximum at a different frequency

≈ 0.47, and many other low amplitudes around them, which corresponds to the diffusion of the
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trajectory on a diffused limit cycle. Fig. 71(a) shows, the power spectrum of the same signal at

the threshold amplitude F2 ≈ 1.31. Although in the presence of a chaotic attractor all trajectories

converge toward a subset of the phase space, inside the attractor, two neighboring trajectories

may diverge (see the before explained corresponding Poincaré map). This fact reflects the ex-

treme sensitivity of chaotic dynamics to the initial conditions. In this case the power spectrum

has a continuous broadband character. The broadness of the peaks in Fig. 71(a) together with

the time domain behavior displayed within show that the processes are not deterministic limit

cycles. The broad-band nature of the power spectrum is another aspect of chaotic systems. Spec-

tral analysis confirms the visual impression from the time history that the processes represent

a nonlinear oscillation that is strictly chaotic. There exist estimates on the relation between the

noise level and the maximal period which can be observed. This result, which is somewhat

counterintuitive, will be explained. This is of course related to the power spectrum described

above. In effect, as demonstrated in the above paragraphs the chaos of the scenario is not so

strong, order can be accidentally established by small noise terms, much like a very attracting

fixed point could be locally and dramatically altered by noise, and globally there is at most a

great probability to change stochastically from one basin of attraction to another. It is seen from

Fig. 71(b) that the spectrum of periodic motion consists of three discrete peaks; there are spikes

at the frequencies which are multiples of the excitation frequency and/or inverse multiple of

the excitation frequency. as the noise intensity becomes larger, the power spectrum is not only

composed of discrete peaks, but also of continuous, broadband nature. Also, as the noise inten-

sity becomes larger, the are several harmonic peaks that appears, and the system becomes more

chaotic. Figs. 72(a,b) shows,respectively, the power spectrum of the same signal, but at the criti-

cal threshold. The broadband nature of the power spectrum is another aspect of chaotic systems.

A transition from multifrequency regular oscillations to complex oscillations with a continuous

spectrum are observed in the medium at any spatial point. It should be noted the band into

which the power spread is reduced when increasing the noise intensity. The analysis of the local

slopes of the correlation function, Poincaré sections and power spectral density give evidence for

deterministic dynamics, chaos slightly affected by noise; and noise induced chaos, for some pa-

rameters ranges. Some times the analysis of the local divergence of nearby trajectories suggests

a stochastic dynamics.

Tokamaks as high order, distributed parameter, nonlinear systems with a large number of
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instabilities, give rise to many extremely challenging mathematical modelling and control prob-

lems, that need to be solved; this is especially true for a fusion power reactor. The tokamak

control problems can be separated into two major classes: electromagnetic control and plasma

kinetic control.

Plasma kinetic control refers to controlling particle feed rates and heating to modify the

plasma density, temperature, pressure, and current density. Due to the distributed parameter

nature of tokamaks, it is important to control not only spatially averaged values of these phys-

ical variables but also their spatial profiles. Energy confinement, stability properties, and the

fraction of noninductive current, which is fundamental for steady-state operation, can be im-

proved through control of internal pressure and current profiles. In addition, electromagnetic

and kinetic control, including internal profile control, must be well coordinated with control ac-

tion to avoid or stabilize instabilities. Optimization of the plasma shape and internal profiles can

reduce the strength of these instabilities, or in some cases prevent them.

A approximation of plasma behavior in tokamaks have been made by Schröder and Klinger

[220], where the magnetized plasma column is immersed in a stainless-steel tube, which is pos-

itively biased to predefine the potential at the azimuthal boundary. Drift waves propagate az-

imuthally in the magnetized plasma column due to fluctuation-induced E ∧B drift in the pres-

ence of a radial density gradient. Control parameters for drift wave dynamics are the grid bias

and the tube bias . Both biases superimpose a radial electric field across the plasma column

and thereby an E ∧B rotation,which destabilize drift waves. Increasing either grid bias or tube

bias leads to a transition scenario from a stable plasma state to drift wave turbulence . The spa-

tiotemporal drift wave dynamics is observed using a circular array of 32 equally spaced cylin-

drical Langmuir probes, operated in the electron saturation current regime to measure density

fluctuations.

Tokamak reactors are pulsed machines [221], in each pulse the plasma is created (“start-up”

phase), then its current is ramped up to a reference constant value, called the “flat-top” current,

which is maintained in a burning state along the main phase of the discharge, and eventually the

current is ramped down and the plasma is terminated. The time trajectories of the poloidal field

(PF ) and toroidal field (TF ) coil currents and of the main plasma parameters that guarantee this

sequence define a “scenario”.To initiate the discharge, hydrogen gas is puffed into the tokamak

vacuum vessel and the toroidal field coil current is increased to create a steady-state magnetic
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field to contain the plasma when initially created. Then a large electric field is produced within

the torus using the CS (ohmic heating) coils. This electric field rips apart the neutral gas atoms

and produces the plasma. The plasma current in the plasma is built up by transformer action.

The collisions of the ions in the plasma make the plasma resistive. It is this resistance that heats

up the plasma (thus the origin of the term “ohmic heating”). When the temperature increases, the

resistance decreases and the ohmic heating loses effectiveness. To significantly increase fusion

reactions, the temperature must be increased to over 100 million degrees, which is six times the

temperature at the centre of the sun. This heating is accomplished by particle beams (injecting

energetic ions) or by radio frequency or microwaves (heating ions or electrons). Shortly after

the discharge starts, additional gas is puffed into the chamber to increase the density and/or

pressure to the desired levels.

Electromagnetic control refers to controlling the magnetic and electric fields, which maintain

or change the plasma position, shape and current. As was previously explained, this task is per-

formed by the poloidal coils distributed around the vessel that contains the plasma. Voltages are

applied to these coils, which drive currents that generate the magnetic fields [222]. The magnetic

fields, regulated by feedback control, induce plasma current, change the plasma shape, and sta-

bilize the intrinsically unstable plasma vertical position. AT plasma regimes require production

and regulation of extreme plasma shapes that allow operation at high plasma pressure.

The plasma magnetic control action varies the current in the PF coils [223]; these currents

generate magnetic fields which interact with the plasma, modifying its current (plasma current

control), position, and shape (plasma shape control). The PF coil currents are then decomposed

into the sum of two terms: a preprogrammed nominal (feedforward) part, that is decided before

the discharge in order to have the desired plasma parameters along the prescribed trajectories

corresponding to given scenarios, plus a component used for feedback control, that is needed to

counteract the effect of disturbances, model inaccuracies, etc.

In many magnetically confined fusion experiments, plasmas may undergo a spontaneous

transition to a turbulence suppressed regime, which is known as the before mentioned L-H

transition [119]. Chaos and turbulence are often considered as troublesome features of plasma

devices, but they can also lead to other desirable phenomena as the generation of global struc-

tures, such as dynamo magnetic field, zonal flows, transport barriers, enhanced transport and

quenching transport [117]. In the general framework of nonlinear dynamical systems, a number
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of strategies applied to plasma instabilities have been developed to achieve active control over

complex temporal or spatio-temporal behavior [107]. In the presence of electric field fluctuations

and gradients, a class of low-frequency electrostatic instabilities, the drift waves caused by the

E ∧B motion of particles, arise in magnetized confined plasmas; this drif waves can be respon-

sible for anomalous transport in magnetically confined high-temperature plasmas [114]. Zonal

flows, that play a crucial role in regulating turbulence could be nonlinearly generated by a finite

amplitude monochromatic drift wave [116]. In 2008 Yamada et al. [117] have made the first ex-

perimental identification of a streamer (state of bunching of drift waves ) that should degrade

the quality of plasmas for magnetic confinement fusion.

The modeling of the H-mode have been developed focusing on the role of radial electric

field which either give rise to bifurcations in confinement state [118] or suppresses instabilities

thus reducing the anomalous transport. Therefore, controlling the electric field dynamics is of

great interest. Maximizing the fusion power production in toroidally symmetric magnetic con-

finement devices (tokamaks [224]) requires high-confinement (H−mode) plasma conditions that

have high edge plasma pressures. One of the critical issue for fusion plasma research is the ero-

sion of the first wall of the experimental device due to impulsive heating from repetitive edge

magneto-hydrodynamic instabilities known as “edge-localized modes”. This repetitive instabil-

ities (ELMs) release a significant fraction of the thermal energy of the plasma to the first wall

of the device. Burning plasmas require high electron pedestal temperatures at relatively high

electron pedestal densities to achieve significant fusion power gain factors. If allowed to reach

plasma-facing wall components, energy impulses of the required magnitude will cause increased

erosion of plasma facing components and significantly reduce their lifetime [225]. Thus, control-

ling ELMs by replacing the energy impulses with an equivalent but more continuous transport

process is a high priority issue for tokamak fusion research [226]. It had been showed that the

addition of small resonant magnetic field perturbations (A particularly appealing ELM control

approach in low beta plasmas is based on the concept of using an edge stochastic magnetic field

to increase the electron thermal diffusivity [227]) completely eliminates ELMs while maintain-

ing a steady-state high confinement (H −mode) plasma. Stochastic layers are created by adding

small resonant magnetic perturbations (RMPs) to the equilibrium magnetic field using external

coils.These perturbations induce a chaotic behaviour in the magnetic field lines, which reduces

the edge pressure gradient below the ELM instability threshold. The pressure gradient reduction
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results from a reduction in particle content of the plasma, rather than an increase in the electron

thermal transport. These results provide a first experimental test of stochastic transport theory

in a highly rotating, hot, plasma and demonstrate a promising solution to the critical issue of

controlling edge instabilities in fusion plasma devices [228].

The various dynamical regimes of collisional drift waves that are related with strong modu-

lations of the ion and electron density in a magnetized plasma have been experimentally studied

[208], with the rotating plasma column as the control parameter of the dynamics; regular, chaotic

and turbulent regimes where obtained. A transition to a quiescentH-mode is related to the com-

pletely damped out of drift waves [229], that could then be related to a coherent or regular

behavior of the electric field Er. As showed in the previous section, it is possible to control the

irregular fluctuations of the radial electric field that leads to the generation of drift waves, by

looking for F2 ≡ F (b4,Ω2) ≡ F (f2,Ω2) that depend to the controlling external electric field. This

amplitude can be used to minimize the effects of noise in the system.

The dynamical scenario described in our work, could reflects a situation of chaotic regime

that is close to the well-developed turbulent regimes found in plasmas, where one expects a

huge number of modes to become actively involved in the dynamics. Nevertheless, we believe

the dynamical systems approach discussed in this work may be helpful to understand more

complex cases.

As a matter of fact, in the control of plasma position, current and shape, the use of feed-

back control is mandatory, not just a choice. Indeed, in order to maximize performance-to-cost

ratio, it is necessary to use plasmas with vertically elongated (i.e., egg-shaped) cross-sections;

unfortunately this elongation, leads to instability of the plasma vertical movements [230]. As a

consequence, at least for vertical position stabilization, feedback control needs to be adopted for

vertically elongated plasmas. In addition, a strong motivation for improving plasma control in

next generation tokamaks is that the plasma boundary must be maintained as close as possible

to nearby components. This objective guarantees the best use of the available volume. Currents

in the neighboring metallic structures; these currents, generate a magnetic field that opposes

plasma movement and therefore ensures a sort of passive stabilization. Hence the ability to con-

trol the shape of the plasma, while ensuring good clearance, is an essential feature of plasma

control systems.
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Main results

We have studied different bifurcation phenomena, resonance and chaos in two models

of plasma: Two fluid model of plasma, firstly without noise and secondly with an as-

sociated bounded noise; the nonlinear model of radial electric field dynamics in plasma

L-H transition observed in tokamaks.

• We have derived a modified nonlinear forced van der-Pol-Duffing-Mathieu evolu-

tion equation (57) with asymmetric potential for density perturbation in plasma,

by considering an appropriate source term in the two fluid model equation. The

model has been analyzed under chaotic and regular considerations. Note, chaotic

vibrations have a noise-like frequency spectrum of a wide range which are very

harmful for surface plasma confinements. Introducing a parametric excitation in

the internal frequency of the system, we use the analytical Melnikov theory and

predict the lowest critical amplitude where the system may transit to a chaotic mo-

tion. This prediction has been confirmed numerically. It must be underlined that

for fixed value of the external force amplitude, an increase of the parametric exci-

tation amplitude decreases the threshold of the appearance of chaotic motion. The

prediction is also valid for fixed value of the parametric force amplitude and vary-

ing external perturbation amplitude. Numerical calculation of the maximum Lya-

punov exponents of the original system also validates that the threshold amplitude

A0 for onset of chaos will globally decrease as the parametric excitation intensity in-

creases. However, for very low values of the external excitation, large parametric

excitation intensity, and high values of γ, further investigation is needed to clar-

ify the inconsistency between the two kinds of thresholds given by the Melnikov

method, and by the Poincaré maps or the numerical simulation of the maximum
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Lyapunov exponents. These results provide some insight into the dynamics and

control of instabilities occurring in double plasma device, that could be helpful for

experimental studies design.

• We addressed analytically and numerically the effect of bounded noise excitation

on the dynamic response of density perturbation in plasma. Analytically solutions

are obtained firstly by multiple scale method. In order to have an approximate so-

lution for our nonlinear system with noise, the cumulant-neglect closure is applied

to bounded noise excited density perturbation. We use it to compute the statistical

moments of the stationary response to noise excitation for which the moment equa-

tions to be solved are algebraic. The result shows the effect of variations induced

by different system parameters such as damping component and bounded noise

parameters on the amplitude response of the system when it undergoes a principal

parametric resonance condition. It was found that the steady-state response is a

monotonic increasing function in the nonlinear terms γ, and detuning parameter

σ. For the steady- state response with noise, it is a monotonic increasing function

in the statistical moments which multiplies the jump phenomena and increases

the hysteresis one. The bounded noise through η also affects the behavior of the

system. Numerically simulated results showed the influence of bounded noise on

the time evolution, and on the poincaré map of the system. Generally speaking,

good qualitative agreement between analytical and numerically simulated result

was achieved in terms of noise effect on the system. Our work could be helpfull

to establish periodic operation of plasma devices in regimes where usually chaotic

oscillations occur. Our future studies could be focused on the calculation of the

joint probability density for the same or different kind of noise excitation consid-

ered in our system.

• After discussing mean electric field change modeling in which we introduce a noise

component which was absent in previous treatments [159], Melnikov’s method

was used to analytically predict the existence of chaos in the normalized radial

electric field change, near plasma edge in Tokamak L-H transition; which is gov-

erned by a nonlinear Vander Pol ϕ6-equation perturbed by a bounded noise. The
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criteria resulting from this analysis are inequalities that are useful for designing an

oscillator’s parameters so that chaos either occurs or does not occur as desired.

The results indicate that the presence of larger noise enhances the threshold ampli-

tude F2 and reduces the possible chaotic domain in parameter space. For numerical

calculation test for chaos, we use the asymptotic growth rate. The results also val-

idates for some cases that the threshold amplitude F2 for onset of chaos will move

upwards as the noise intensity increases for smaller noise intensity. It must be

underlined that, for larger noise intensity, further investigation is needed to clar-

ify the inconsistency between the two kinds of thresholds given by the random

Melnikov method with the associated mean-square criterion and by the numerical

simulation of the asymptotic growth rate. The effect of bounded noise on the sys-

tem response is also investigated through its Poincaré maps and the results reveal

that for smaller noise intensity, the chaotic attractor is slightly diffused by bounded

noise, and larger noise intensity results in the reduction of the attractor size. In this

paper we have also obtained results on the analytic and nonvanishing nature of

broadband power spectra characteristic of deterministic chaos. The criterion from

Melnikov’s method could be a valid tool for predicting harmful parameters values

involved in experiment. Using the before mentioned criteria, experiment could

be set up to find non chaotic or chaotic radial electric field change, that could be

helpful in Tokamak L-H transition understanding or confinement projects.

Perspectives

The further works that could be based on this thesis are:

-Experimental applications in order to verify some theoretical results obtained in this work.

-Large Fusion devices are too expensive to the point that new research programs (as ITER)

are international, these don’t let any place for African countries who are limited by the modesty

of their financial resources. As Africans , our gain could therefore to orient ourselves toward

uses of small scale plasma; new models could be constructed, being based on small size plasma

device, as those used in the computer industry. Taking in account the new parameters related to

this field, we will be able to sketch more sophisticated models, but directly feasible.
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of drift waves in a magnetized laboratory plasma, Eur. Phys. J. D 8, 451-457, (2000).

[149] Void E. L., Najmabadi F., and Conn R. W., Fluid model equations for the tokamak plasma edge,

Phys. Fluids B 3, (11), 3132-3152, (1991).

[150] Kaifen H. and Salat A., Hysteresis and onset of chaos in periodically driven nonlinear drift waves

, Plasma Phys. Controlled Fusion 31, 123-141, (1989).

[151] LaBombard B., Grossman A., and Corm R. W., A phenomenological model for cross-field plasma

transport in non-ambipolar scrape-off layers, J. Nucl. Mater., 548, 176-177, (1990).

[152] Shaing K. C., Phys. Fluids B 2,764-, (1990).

[153] Itoh S. I. and Itoh K., Model of L to H-Mode Transition in Tokamak, Phys. Rev. Lett 60, 2276-

2279, (1988).

[154] Groebner R. J., Burrel K. H. and Seraydarian R. P., Role of edge electric field and poloidal

rotation in the L-H transition, Phys. Rev. Lett. 64, 3015-3018, (1990).

[155] Doyle E. et al. , Plasma confinement and transport in : Progress in the ITER physics basis,

Nuclear Fusion 47(2), 18, (2007). doi:10.1088/0029-5515/47/6/S02

Ph.D. Thesis of B. C. Nono Dueyou Laboratory of mechanics



Bibliography 157

[156] Novakovskii S. V., Liu C. S., Sagdeev R. Z. and Rosenbluth M. N., The radial electric field

dynamics in the neoclassical plasmas, Phys. Plasmas, 4 (12),4272-4282, (1997).

[157] Burrell K. H., Effects of E ×B velocity shear and magnetic shear on turbulence and transport in

magnetic confinement devices, Phys. Plasmas 4(5), 1499-1518, (1997).

[158] Itoh S. I., Itoh K. and Fukuyama A., in: IAEA proceedings of the fourteenth international con-

ference on plasma physics and controlled nuclear fusion research, Vienna,Volume 2 (IAEA-CN-

56/D-4-19), 359-365, (1993).

[159] Zhang W., Cao D., Chaos, Local and global bifurcations of L-mode to H-mode transition near

plasma edge in Tokamak, Solitons & Fractals 29(1), 223-232, (2006).

[160] Kapitaniak T., Controlling Chaos, Theoretical and Practical Methods in Nonlinear Dynamics,

Academic Press, (1996).

[161] Crauel H., Gundlach M., Stochastic Dynamics, Springer-Verlag, New York, inc.(1999).

[162] K. Itoh, S.-I. Itoh, M. Yagi,and A. Fukuyama, Solitary radial electric field structure in tokamak

plasmas, Physics of plasmas 5(12),4121-4123, (1998).

[163] Shunjiro Shinohara and Shoichiro Matsuyama, Observation of bistable density transitions in

magnetized plasma by voltage-biased electrode, Physics of plasmas 9(11), 4540-4550, (2002).

[164] K. Itoh, S. Toda, A. Fujisawa, S.-I. Itoh , M. Yagi, A. Fukuyama, P. H. Diamond, K.

Ida, Physics of internal transport barrier of toroidal helical plasmas, Physics of plasmas 14(2),

020702(1-4), (2007).

[165] S.-I. Itoh, Project Review: Research on Structural Formation and Selection Rules in Turbulent

Plasmas, J. Plasma Fusion Res. 83(3), 241, (2007).

[166] Sanae-I. ITOH, Structure Formation in Turbulent Plasmas, Plasma and Fusion Research: Re-

view Articles, Volume 4, 038(1-12), (2009).

[167] Gruendler J., The existence of homoclinic orbits and the method of Melnikov for systems in Rn,

SIAM J. Math. Anal. 16, 907–931, (1985).

[168] Melnikov V. K., On the stability of the center for time-periodic perturbations, Trans. Moscow

Math. Soc. 12, 1-57, (1963).

Ph.D. Thesis of B. C. Nono Dueyou Laboratory of mechanics



Bibliography 158

[169] Thomas, B., Jorge, A. L., Ricardo, E. F. & Jason, A. C. G., Observation of deterministic chaos in

electrical discharges in gases, Phys. Rev. Lett. 59, 613-616, (1987).

[170] Litak G., Borowiec M., Friswell, M. I. & Przystupa W., Chaotic response of a quarter car model

forced by a road profile with a stochastic component,Chaos, Solitons and Fractals 39, 2448-2456,

(2009).
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