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Résumé

Dans cette thèse, nous étudions analytiquement et numériquement les phénomènes de compression
temporelle et d'étalement spectral qui se manifestent lors de la propagation des impulsions ultra
brèves dans les guides d'ondes optiques, largement utilisés, notamment les guides d'onde à silicium,
les �bres classiques monomodes des systèmes de multiplexage en longueurs d'onde, les �bres à cristaux
photoniques, et en�n les guides d'onde modélisés par l'équation de Schrödinger non linéaire à termes
non Kerr.

Plus spéci�quement, nous analysons dans un premier temps, le mécanisme de compression tem-
porelle dans les guides optiques à silicium en utilisant l'approche variationnelle modi�ée et réaliste
qui prend en compte la fonction de dissipation de Rayleigh. Cette étude permet de montrer les e�ets
de la dispersion chromatique d'ordre 4, des coe�cients non linéaires d'absorption (absorption non
linéaire) et du chirp, non seulement sur les impulsions à pro�l compact et symétrique mais aussi
sur celles qui sont asymétriques comme les impulsions d'Airy. En e�et, en considérant le cas de la
compression linéaire, les conditions de son apparition sont déterminées. Une relation entre la disper-
sion chromatique d'ordre 4, la dispersion de vitesse de groupe et le chirp est ainsi proposée. Dans le
cas non linéaire, prenant les impulsions symétriques comme pro�l d'entrée, nous démontrons qu'une
compression périodique est induite par l'interaction entre l'auto-modulation de phase et le coe�-
cient de dispersion chromatique d'ordre 4. Ceci apparaît comme un nouveau mode de génération
du phénomène de compression. Ensuite nous montrons qu'un coe�cient d'absorption intrinsèque
aux guides d'onde à silicium, en particulier le coe�cient d'absorption à deux photons, se trouve être
un facteur néfaste pour ladite compression périodique (destruction de la périodicité). En�n, l'étude
relative aux impulsions d'Airy (impulsions asymétriques) dans cette première partie, conduit plutôt
à la réduction de la longueur de compression induite par l'auto-modulation de phase, l'absorption à
deux photons et l'absorption des porteurs libres. Ceci permet de déduire l'in�uence de l'asymétrie
de l'impulsion sur ce phénomène de compression.

Dans un deuxième temps, a�n d'apprécier certaines in�uences sur le phénomène d'étalement spec-
tral drastique en termes de génération de supercontinuum, nous nous intéressons au phénomène de
mélange à quatre ondes et à l'instabilité modulationnelle. Prenant l'exemple des �bres classiques
monomodes des systèmes multiplexés en longueur d'onde, et utilisant l'approche dite ABCJS prin-
cipalement basée sur une propagation d'ondes quasi-solitonique au voisinage du zéro de dispersion
de la �bre, nous montrons que la combinaison des ordres deux et trois de dispersion chromatique
permet de réduire les e�ets néfastes induits par le mélange à quatre ondes dans de tels systèmes
multiplexés. L'instabilité modulationnelle étudiée quant à elle dans les guides d'onde à silicium où
le chirp est décrit comme un facteur adjuvant à l'ampli�cation de l'intensité des pics principaux des
trains d'onde, conduit à une indépendance du point de vue du pro�l d'entrée. D'un autre côté, il
résulte de cette étude que les coe�cients d'absorption contrecarrent l'e�et du chirp re-créant ainsi la
dépendance au pro�l d'entrée.

Finalement, dans un troisième temps pour l'étude du supercontinuum, concernant le guide d'onde
modélisé par l'équation généralisée de Schrödinger incluant des termes non Kerr (provenant de la
nonlinéarité quintique), nous obtenons une compression spectrale. Ceci est réalisé à travers la réduc-
tion de largeur temporelle dans le cas des nonlinéarités coopératives en lieu et place des nonlinéarités
compétitives. Plus loin, avec l'impulsion d'Airy dans une �bre monomode hautement dispersive, nous
étudions la propagation sous l'in�uence du chirp initial. Nous obtenons que l'e�et du chirp initial
sur le spectre de l'impulsion d'Airy est similaire à celui de l'auto-raidissement nonlinéaire menant
à une sortie asymétrique. Néanmoins, le choc optique qui est ainsi créé dépend du signe du chirp
et présage d'interessants avantages pour la réalisation des ultra-larges spectres de supercontinuum.
Bien plus, le chirp initial agit comme la dispersion chromatique de troisième ordre produisant la
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fameuse inversion asymétrique découverte plus tôt par R. Driben et al [R. Driben, Y. Hu, Z.
Chen, B. A. Malomed, and R. Morandotti, Opt. Lett. 38, 2499 (2013).]. Dès lors, le
chirp peut être utilisé pour jouer le rôle soit de l'auto-raidissement nonlinéaire, soit de la disper-
sion chromatique d'ordre 3, ou encore pour contrôler voir annihiler leurs e�ets. Durant le processus
d'inversion, la compression d'impulsion a également lieu à travers la formation d'un pro�l Gaussien.
Nous démontrons également que l'interaction entre le chirp, la dispersion de la vitesse de groupe
et la dispersion chromatique d'ordre 4 permet l'ampli�cation d'impulsion ainsi que la stabilisation
d'impulsion sur une distance relativement longue. Comme application directe de cette étude, nous
analysons la génération du supercontinuum dans une �bre à cristaux photoniques admise comme
ayant un c÷ur rempli de liquide. Il s'agit d'une �bre microstructurée à c÷ur liquide. Dans cette
étude particulière, on se sert des impulsions d'Airy chirpées et on montre qu'elles sont meilleures que
leurs homologues compactes et symétriques en termes de largeur et cohérence de la bande passante
spectrale, sous des conditions incluant un faible coe�cient de troncation et un chirp choisi de façon
optimale dans le régime anormal de dispersion proche du zero de dispersion. Le cas des guides d'ondes
à silicium est également étudié dans une nouvelle modélisation analytique basée sur l'équation de
la propagation d'impulsion totalement unidirectionnelle qui inclut les termes de génération de la
troisième harmonique et l'e�et Kerr à fréquence négative. Les e�ets de ces termes sur la bande pas-
sante spectrale ainsi que sur le degré de cohérence spectrale sont étudiés en comparaison avec ceux de
l'absorption à deux photons. Pour des applications nécessitant d'ultra-larges spectres, on devrait ré-
duire les e�ets de l'absorption à deux photons et du terme de génération de la troisième harmonique.
On devrait plutôt exciter le terme de l'e�et Kerr à fréquence négative a�n d'obtenir des spectres
explosifs en bande passante. Néanmoins, l'absorption à deux photons améliore plus la cohérence
spectrale que le terme de génération de la troisième harmonique tandis que le terme d'e�et Kerr à
fréquence négative la réduit en comparaison avec le cas singulier de l'auto-modulation de phase seule.

Mots clés : Compression d'impulsions; Mélange à quatre ondes; Instabilité modulationnelle; Généra-
tion de supercontinuum; Dispersion chromatique d'ordre 4; Chirp; Approche variationnelle modi�ée;
Absorption à deux photons; Génération de la troisième harmonique; E�et Kerr à fréquence négative.
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Abstract

In this thesis, we study analytically and numerically the phenomena of pulse compression and spec-
tral broadening which manifest themselves during the propagation of ultra-short pulses in common
used optical waveguides, namely silicon-on-insulator (SOI) waveguides, single-mode optical �bers
(SMFs) in wavelength-division multiplexing (WDM) systems, photonic crystal �bers (PCFs) and
waveguides modelled by the generalized nonlinear Schrödinger equation (GNLSE) with non-Kerr
terms.

More explicitly, we analyze in a �rst time, the pulse compression mechanism in SOI-waveguides
using the modi�ed and realistic variational approach (MVA) that involves the Rayleigh's dissipation
function (RDF). This study allows to show the e�ects of fourth-order dispersion (FOD), the nonlinear
coe�cients of absorption (nonlinear absorption) and the chirp, not only on symmetric and compact
pulses but also on those with asymmetric pro�le as the Airy pulses. Indeed, considering the case of
linear compression, the conditions of their occurrence are obtained. A relation between the FOD,
the group-velocity dispersion (GVD) and the chirp is proposed in this way. In the nonlinear case,
using the symmetric pro�les as input pulses, we demonstrate a periodic compression induced by the
interplay between the self-phase modulation (SPM) and the FOD. This appears as a new mode to
generate the pulse compression phenomenon. Then, we show that an absorption coe�cient which
generally characterizes the SOI-waveguides, particularly the two-photon absorption (TPA), is found
to be detrimental to this periodic compression (destruction of the periodicity). Finally, the study
relating to the Airy pulses (asymmetric pulses) in this �rst part, leads rather to the reduction of
the compression length induced by the SPM, the TPA and the free-carrier absorption (FCA). This
allows to deduce the in�uence of the pulse asymmetry on this phenomenon.

In a second time, in order to appreciate some in�uences on the drastic spectral broadening in terms
of supercontinuum generation (SCG), we investigate the phenomena of the four-wave mixing (FWM)
and the modulational instability (MI). Taking for instance the SMFs in WDM systems and using an
approach named the ABCJS approach which is mainly based on a propagation of solitonlike pulses
in the vicinity of the zero-dispersion wavelength (ZDW) of the �ber, we show that the combination
of the second and the third orders of dispersion allows to reduce the crosstalk induced by the FWM
in such systems. The study of the MI being done in SOI-waveguides where the chirp is described
as bene�cial factor to the ampli�cation of the pulse trains main peaks, leads to an independence to
the input pro�le. On the other hand, it emerges from this study that the coe�cients of absorption
counteract the chirp e�ect recreating so a dependence to the input pro�le.

Finally, in a third time for the SCG, in the case of the waveguide modelled by the GNLSE that
includes non-Kerr terms (linked to the quintic nonlinearity), we obtain a spectral compression. This
is achieved through the reduction of the pulse width induced by the cooperative nonlinearities instead
of the competing ones. Furthermore, using the �nite energy Airy pulses (FEAPs) in a highly disper-
sive SMF, we study the propagation under the in�uence of initial chirp. It is found that the initial
chirp behaves as the self-steepening (SS) on the spectrum of the FEAP leading to an asymmetric
output. Nonetheless, the optical shock which is created depends on the sign of the chirp parameter
and omens interesting advantages for the achievement of FEAP-based broadband spectra in the SCG
phenomenon. Moreover, the initial chirp acts as a chromatic third-order dispersion (TOD) leading to
the asymmetric inversion (A.I) as shown earlier by R. Driben et al [R. Driben, Y. Hu, Z. Chen,
B. A. Malomed, and R. Morandotti, Opt. Lett. 38, 2499 (2013).]. Therefore, the chirp
could be used to replace the SS and TOD, or to control/cancel their e�ects. Pulse compression,
pulse ampli�cation and FEAP shape preserving under the interaction of the chirp, the GVD and the
fourth-order dispersion (FOD) are also discussed. As a direct application of this work, we analyze
the extreme spectral broadening in a PCF that is assumed to have a core �lled by a liquid. Such

Lucien M. Mandeng, PhD thesis c©-2015 9



Laboratory of Mechanics, Department of Physics, Faculty of Science, U.Y.I

�ber is called a liquid-core PCF (LCPCF). In this speci�c study using Airy pulses, we show that
they are more suitable than the common compact and symmetric pulses in terms of spectral coher-
ence and bandwidth, under the conditions including a small truncation coe�cient and a chirp value
chosen optimally in the anomalous dispersion regime close the ZDW. The case of SOI-waveguides is
also studied with a novel analytical modeling of a silicon waveguide based on the full unidirectional
pulse propagation equation (UPPE) that includes both the third-harmonic generation (THG) and
the negative-frequency Kerr (NFK) terms. The e�ects of these terms on the spectral bandwidth
(SB) and the coherence degree (CD) are discussed in comparison to those of two-photon absorption
(TPA). For applications needing wide SBs, one should reduce the TPA-THG e�ects and excite rather
the NFK term to produce explosive ultra-broadband SCG spectra. Nonetheless, the TPA is found to
enhance more the spectral coherence than the THG while the NFK e�ect reduces it compared with
the single SPM case.

Keywords: Pulse compression; Four-wave mixing; Modulational instability; Supercontinuum gener-
ation; Fourth-order dispersion; Chirp; Modi�ed variational approach; Two-photon absorption; Third-
harmonic generation; Negative-frequency Kerr e�ect.
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General introduction

In nonlinear optics, the temporal pulse compression and the spectral broadening observed in opti-
cal waveguides are known today to have several useful applications. One can quote : high-data rate
transmission in optical telecommunications, ultrafast physical processes, infrared time-resolved spec-
troscopy, sampling systems, coherent tomography, multiplex light sources for nonlinear spectroscopy,
biomedical lasers, holography, interferometry, photonics devices applications, sub-femtosecond to at-
tosecond researches,... [1-3]. Therefore, investigation of related topics is welcome to be apprehensive
about the occurrence conditions of such processes in optical waveguides.

In the theoretical aspect of research in nonlinear optics specially in studies of propagation within
nonlinear optical waveguides, many works having ended to Ph.D theses, were conducted in the
Department of Physics of the Faculty of Science (University of Yaoundé I). For instance S. I. Fewo
studied the dynamic of the propagation of solitons in systems modeled by the complex Ginzburg-
Landau equations using the collective variables (CVs) and the classical variational approaches [4]. In
this work, it was noted that a better choice of appropriate initial parameters as the initial amplitude
and pulse width of the Gaussian pulse shape is important for a stable propagation inside the �ber.
An overview of this work shows that the solitons dynamics could be suitably investigated through
the CVs approach with more insight. Even the dual-core �bers were investigated with a focus on
the interaction of solitons using the classical variational method. Bounded and unbounded elliptic
trajectories separated by transitory trajectories were observed depending on the values of the coupling
coe�cient and parameters [4].

Subsequently, J. Atangana examined the propagation of ultra-short pulses in optical �ber systems
under strongly perturbed environmental conditions [5]. This study conducted with the CVs approach,
showed that when asymmetric distortions induced by the odd order terms of linear dispersion as the
third-order dispersion (TOD) occur in the solitons propagation, the approach should be upgraded in
order to resolve the inconsistencies of the conventional one. This does not work with the third-order
nonlinear dispersion as the cubic self-steepening (SS) phenomenon, since in this case the distorted
pulse translates only when one uses another ansätze calling second-order upgraded ansätze. The
considered upper CVs approach was found to give accurate results and interpretation of distorted
pulses dynamics [5].

Later, C. G. L. Tiofack investigated the MI phenomenon and the ultra-short pulses propagation
in Erbium doped �bers modeled by GNLSE with higher order e�ects both in the linear and in the
nonlinear part [6]. For example in this study, the equation which describes propagation of an optical
soliton in an inhomogeneous Erbium doped �ber with two-level resonant atoms called the generalized
inhomogeneous coupled Hirota-Maxwell-Bloch equation was analyzed. Some multi-soliton solutions
of this system were obtained by employing the Darboux transformation while the MI in the complex
NLSE with cubic-quintic-septic nonlinearity, the Hirota complex Ginzburg-Landau equation, the
higher order NLSE with noninstantaneous nonlinear response and stochastic parameters showed
interesting features in the development of the pulse train generation (PTG) [6].

After the review of these works, it was observed that with the great interest aroused by the pulse
compression and the spectral broadband continua according to their wide applications, a research
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path oriented on their achievement was missing considering the department of Physics of the Faculty
of Science (University of Yaoundé 1). That is why, this thesis comes to be added to the previous
ones with a focus on the mentioned phenomena as a study beyond the previous analyses on the
solitons dynamics. Particularly, we focus on the e�ects of FOD and nonlinear absorption coe�cients
in the studies of the pulse compression and the MI. On the other hand, we study the TOD e�ect
on the growth of the anti-Stokes component (ASC) of the FWM in the WDM solitons systems.
Furthermore, the improvement of the SCG spectral bandwidth is analyzed considering the e�ects of
the input pro�le, chirp and the type of the optical waveguide used. Our motivation for these works
stems from the following limits :

1. a lack of a study on the linear compression in an optical system under the FOD e�ect that
highlights the relations between the dispersion lengths associated to the GVD, the chirp and
the FOD.

2. An investigation of the nonlinear compression in SOI-waveguides under FOD was still missing.
The dependence of this phenomenon to the input pro�le was not yet highlighted.

3. In order to reduce the e�ect of the crosstalk induced by the FWM in WDM systems, those in
the vicinity of ZDW have not yet been investigated using the ABCJS approach.

4. An investigation about the in�uences of the absorption coe�cients (present in SOI-waveguides),
chirp and input pro�le was missing when one considers the MI phenomenon in nonlinear optics.

5. The question of the SCG analysis in GNLSE systems with non Kerr terms stemming from
quintic nonlinearity was also opened.

6. Another question concerned the analysis of propagation using the FEAPs in a highly dispersive
SMF under the in�uence of initial chirp.

7. It remained also the analysis of the improvement of the SCG phenomenon through nanojoule
(nJ)-FEAPs under the chirp e�ect in LCPCFs �lled by the CS2.

8. A SCG study in a SOI waveguide including both the THG and the NFK terms was missing.
For the compression phenomenon, the study is conducted through a MVA that involves the RDF

instead of the CVs and the classical variational approaches as done in the previous studies. As
discussed in these studies, the CVs focus on solitons dynamics while the present study claims to go
beyond and to underline the conditions in which the compression and the SCG occur in the studied
optical waveguides taking into account the initial pulse shape which is not necessarily close to a
solitary wave. Moreover, the choice of the MVA is made on the basis of the recent works of Roy et al
[7,8]. Indeed, they were demonstrating that considering specially the silicon waveguides, the e�ects
of linear losses, TPA, and free-carriers dynamics are well analyzed within the framework of this MVA
formalism in agreement with full numerical simulations. Therefore, it has been found interesting
to use this MVA for the compression phenomenon analysis in the corresponding waveguides beyond
the previous mentioned methods. The peculiarity of the FEAPs in highly dispersive SMFs, has
highlighted a new feature in nonlinear dynamics as the A.I mechanism stemming from the interaction
between the GVD and the initial chirp similarly to the one obtained earlier by R. Driben et al [R.
Driben, Y. Hu, Z. Chen, B. A. Malomed, and R. Morandotti, Opt. Lett. 38, 2499
(2013).]. The problem of the famous complex phenomenon so-called the SCG in new modeled
systems was set as a further part of the thesis with connection with the compression phenomenon.
In addition, the introduction of speci�c studies on some underlying mechanisms as the FWM and
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the MI in the considered optical waveguides was also found necessary as a good line to investigate
the SCG. At the end of this work, we expect to have in a �rst part a good understanding of the
impact of free-carriers absorptions, high-order dispersion, chirp, Kerr and non-Kerr nonlinearities,
input pro�les, harmonic generation and negative-frequency Kerr terms on the temporal compression,
in a second part on the FWM and the MI mechanisms and �nally, on the improvement of the SCG
in the previously mentioned optical waveguides.

The presentation of the work and the results emerging from this thesis is done as follows :
• in the �rst chapter, we make a brief review of literature on the pulse compression phenomenon,
the FWM and the SCG including the MI process. It includes a short presentation of physical
descriptions, applications, the limits of these phenomena. Then, we design with concision the
motivations that have conducted our work on these phenomena. Moreover, we also make a
description of the di�erent optical waveguides studied in the thesis in the last section of the
chapter.

• In the second chapter, we present the analytical treatments of the di�erent models studied.
Particularly, we derive the NLSEs and the GNLSEs investigated and describe the methods used
to analyze the compression, the FWM, the MI and the SCG phenomena. A short presentation
of the algorithms on which the numerical simulations are based for each phenomenon is also
done.

• In the last chapter, we present the results obtained in each study with the considered discussions
and conclusions.

A general conclusion is done at the end of the thesis highlighting some perspectives for further
researches directly linked to the results presented.
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Chapter 1

Review of literature

1.1 Introduction
This chapter presents a brief overview on the physical phenomena studied in the thesis. It is

organized as follows : section 1.2 deals with the pulse compression phenomenon and section 1.3 is
devoted to the FWM process. The MI mechanism and the SCG phenomenon are presented in section
1.4 while section 1.5 concerns the description of the di�erent waveguides investigated in the thesis.
The last section concludes the chapter.

1.2 Overview on pulse compression

1.2.1 Theoretical and physical descriptions
The growing trend on high-data rate optical transmission because of the useful large bandwidth

associated, has contributed to the studies of ultrashort optical pulses. The numerous applications
of ultrashort pulses in areas such as telecommunication, ultra-fast physical processes, infrared time-
resolved spectroscopy, sampling systems, sub-femtosecond to attosecond researches ..., reveal the
indispensable role of such pulses [1]. The di�cult generation in practice of such pulses, with the
current lasers sources and ampli�ers has motivated some researches on the pulse compression mech-
anism. The basic idea behind optical pulse compression stems from chirp radar application in which
chirped pulses at microwave frequencies are compressed by passing them through a dispersive delay
line [2]. In optics, as can be seen in �gure 1.1, this phenomenon consists in the reduction of the
width of an optical pulse during its transmission through an optical waveguide. A pulse ampli�ca-
tion generally accompanies the compression mechanism. Moreover, the compression mechanism can
be classi�ed in two categories : linear and nonlinear pulse compression. Before we introduce the
physical description about these two categories, it is necessary to present the general commonly used
input pulses since they are important (in the pulse shaping approach) as discussed later.

Pulse shaping and input optical pulses
The pulse shaping consists to model an input pro�le of the propagating pulse. Practically, some

shape controller devices allow to achieve this objective. In some cases, the phenomena occurring in
optical waveguides are input shape dependent. So, it is necessary to know which kind of pro�le is
appropriate in order to improve the e�ciency of the considered phenomenon (the pulse compression
belongs to this category of phenomena). For this purpose, we brie�y present the input pro�les that
are generally used in the analysis of the propagation within an optical waveguide [3] :
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Figure 1.1: Principle of the temporal compression mechanism. PI and TI are the input normalized power and width
respectively while PO and TO correspond to the output of the optical waveguide.

• The Gaussian pro�le
It has the following analytical form

u(0, T ) =
√
P0 exp

(
− 1

2

T 2

T 2
0

)
, (1.1)

where u(0, T ), T, P0 and T0 represent the slowly varying amplitude of the electrical �eld pulse
envelope, the retarded frame of time, the peak power of the pulse, and the pulse half-width (at
the 1/e-intensity point), respectively. The full width at the half maximum (FWHM), TFWHM ,
is commonly used instead of T0. For a Gaussian pulse, it is de�ned by

TFWHM = 2(ln(2))1/2T0 ≈ 1.665T0. (1.2)
• The super-Gaussian (SG) pro�le
In some lightwave systems, pulses with steeper leading and trailing edges broadens more rapidly
with propagation due to the input wider spectrum of pulse. So, a SG pro�le models the e�ects
of the steep leading and trailing edges on the broadening. The analytical form is given as :

u(0, T ) =
√
P0 exp

[
− 1

2

( T
T0

)2m
]
. (1.3)

The quantity m represents the coe�cient which controls the degree of edge sharpness of the
SG pulse. The FWHM is de�ned as 2

(
ln(2)

)1/2m
T0. The rise time Tr de�ned as the duration

on which the intensity goes from 10 to 90% of its maximal value can be written as follows :
Tr = (ln(9))

T0

2m
≈ T0

m
. (1.4)

One generally uses this relation to calculate the parameter m.
• The raised-cosine (RC) ansätze pro�le :
The generation of Gaussian-shaped pulses suitable for high bit rate is not easier [9,10]. Indeed,
the output of the commonly used Mach-Zehnder pulse carvers is rather close to RC pro�led
pulses. A RC pro�le could be modeled analytically as :

u(0, T ) =

√
P0

2

[
1 + cos

(πT
T0

)] (1.5)
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Its FWHM is de�ned as
{

(4/π) arccos
[
(1/2)1/4

]}
T0 ≈ 0.728T0.

• The hyperbolic-secant or sech-type pro�le
In experiments, one uses always the Gaussian shape because many lasers emitted approximately
this form of input pulses. However, in the case of some mode-locked lasers and naturally in the
optical soliton context, one often reaches the hyperbolic secant of sech-type pro�le described
as :

u(0, T ) =
√
P0sech

( T
T0

)
. (1.6)

Generally, the Gaussian and the sech-type pro�les are nearly identical following their features
when undergoing the guide dispersion. One can also de�ne TFWHM as :

TFWHM = 2arccosh(
√

2)T0 = 2 ln(1 +
√

2)T0 ≈ 1.763T0. (1.7)
An illustration of these pro�les is shown on �gure 1.2.

Figure 1.2: Plot of the input pro�les : (a) Gaussian, (b) SG for m=3, (c) RC, (d) sech-type. Data : P0=1 W,
T0=50 fs.

• The Airy pro�le
Recently, a focus has been made on new optical beams known as Airy beams/pulses that
are attracting a greatest interest because of their special propagation properties [11,12]. Sure
enough, Airy beams/pulses are now known through their high stability properties in a stable
soliton-like behavior when propagating inside a linear medium. Their origin goes back to
1979, when Berry and Balazs predicted in quantum mechanics that a wavepacket probability
density propagating in free space without distortion and having a constant acceleration without
external in�uence, should have an Airy function form [13]. These beams tend to reconstruct
themselves despite the severity of perturbations that they undergo inside the medium. This
reconstruction is understood through their internal transverse power �ow [14-16]. The special
propagation properties of Airy beams/pulses : the self-healing, the dispersion resistance and
the acceleration on propagation of their dominant intensity peaks. A temporal input Airy
pro�le is described in general as [17] :

u(0, T ) = r
√
P0Ai(

T

T0

) exp(a
T

T0

), (1.8)
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where P0 is the peak power, a the truncation coe�cient and r the ratio that allows to reach
the same peak power with the usual input pulses. The function Ai(T ) represents the temporal
Airy function. The presence of the parameter a allows to ensure that for a positive quadratic
dispersion coe�cient, one shall obtain a positive dispersion [17]. The asymmetric nature of this
pulse implies that, it is not interesting to de�ne a FWHM unless one gives an interest to the
main or dominant peak. Basically in practice, as discussed in [3], an input Gaussian pro�le
propagating in a quasi-linear SMF (where the nonlinear e�ects are neglected comparatively
to the linear ones) near its ZDW around 1.31 µm (where the TOD β3 becomes important
comparatively to the GVD β2) transforms into an Airy pro�le. In [18], an input Gaussian
pulse was generated by a modelocked Ti:sapphire laser oscillator operating at 800 nm center
wavelength and 80 MHz pulse repetition frequency and a computer-controlled pulse shaper were
used to impose a cubic spectral phase onto these transform-limited Gaussian pulses leading to
the generation of an Airy pulse. So, we can suggest the design of a general set-up as illustrated
in �gure 1.3. Many other works have been devoted these last years on Airy beams/pulses in

Figure 1.3: (a) Airy pro�le, a=0.05, P0 = 1 W, r=1, T0 = 20 ps; (b) Proposed experimental set-up for obtaining an
Airy pulse.

di�erent kind of systems [19-27].

The chirping process
Generally when an optical �eld propagates within a waveguide, its phase varies across the pulse

at any distance of propagation z, and following the time T. So, it appears a di�erence δω between
propagation induced frequency shift and the central initial frequency ω0. In this case, one says that
the pulse becomes chirped [1,3]. In linear systems, the induced frequency chirp changes linearly
across the pulse ie the waveguide imposes a linear frequency chirp on the pulse depending on the
considered dispersion order term. However, in nonlinear systems, the chirp is induced by the well-
known nonlinear Kerr e�ect leading to a spectral broadening of the pulse. In fact, the SPM compresses
the pulse in the time domain, phenomenon which is more pronounced in the anomalous dispersion
regime. Consequently, in the spectral domain, it broadens the pulse [3]. The qualitative features of
these induced frequency chirps depend on the pulse shape. Often, one imposes an initial frequency
chirp on an input pro�le. This operation is modeled analytically by multiplying the initial pro�le
with the term exp

(
± iCT 2/2T 2

0

) where the parameter C is the imposed frequency chirp.
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With all these basic notions in mind, we present in the next section the speci�c physical descriptions
of the pulse compression within the two categories previously mentioned.

1.2.2 Linear pulse compression
In the linear case of the temporal compression mechanism, the basic theory discussed by Agrawal

in [1,3] indicates that the source chirp must be opposite to the group-velocity dispersion (GVD) :
β2C < 0. Therefore, positively chirped pulses require anomalous or negative GVD to be compressed
while negatively chirped pulses require normal or positive GVD. This basic concept is mainly governed
by the GVD e�ect as de�ned by the following equation [1,3] :

i
∂u

∂z
=
β2

2

∂2u

∂T 2
. (1.9)

This equation is the basic linear part of the well-known nonlinear Schrödinger equation (NLSE) where
as dispersion e�ect, one considers only the GVD term [1,3]. The theory mentioned above can be
demonstrated analytically by using a chirped Gaussian shape through the Fourier transform method
(or Marcuse formalism [28] presented for the �rst time in 1981) as :

u(z, T ) =
1

2π

∫ +∞

−∞
ũ(0, ω) exp

(
i
β2

2
ω2z − iωT

)
dω, (1.10)

where ũ(0, ω) is the Fourier transform of the input Gaussian pulse (de�ned from Eq. (1.1) with an
initial chirp C as √P0 exp

(
−0.5(1+iC)T 2/T 2

0

)). The obtained pulse amplitude ũ(z, T ) at the length
z is given by :

u(z, T ) =

(
P0

1− i zs2

LGV D
(1 + iC)

)1/2

exp

(
− (1 + iC)T 2

2T 2
0

[
1− i zs2

LGV D
(1 + iC)

])
, (1.11)

where LGV D = T 2
0 /|β2| and s2 represent the GVD length and the GVD sign, respectively. Making

the comparison between the chirped version of Eq. (1.1) with Eq. (1.11) allows to de�ne the varying
width Tp(z) at the length z as :

Tp(z) = T0

[( z

LGV D

)2
+

(
1 + s2C

z

LGV D

)2
]1/2

. (1.12)

Furthermore, the varying chirp Cp(z) at the length z leads to :

Cp(z) = C +
zs2

LGV D

(1 + C2). (1.13)

The compression factor is therefore de�ned by :

Fc =
Tp(z)

T0

. (1.14)

The compression occurs only if Fc < 1. Mathematically, this exists only if s2C < 0 as suggested by
the theory. Under this hypothesis, Eq. (1.14) shows that the speci�c distance on which one obtains
the shortest pulse width is de�ned as :

Lmin =
|C|

1 + C2
LGV D, (1.15)
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while its maximal compression factor Fmax
c is calculated as :

Fmax
c =

1√
1 + C2

. (1.16)

The maximal length of compression Lmc is generally equal to the double of Lmin. We can also de�ne
the maximal pulse compression percentage (MPCP) as :

MPCP = 100× (1− Fmax
c ). (1.17)

For complicated pulse shapes like those de�ned by m>3 for the SG pulse, it is customary to use
rather the broadening factor σ(z)/σ0 instead of the compression factor Fc [3] :

σ(z) =
[
〈T 2〉 − 〈T 〉2

]1/2
, (1.18)

with
〈T k〉 =

∫ +∞
−∞ T k|u(z, T )|2dT∫ +∞
−∞ |u(z, T )|2dT

, k ∈ N∗. (1.19)

The parameter σ0 is the root-mean-square (RMS) width of the input pulse at z = 0. Although the
broadening factor σ(z)/σ0 gives more accurate results when complex forms of input pro�le are used,
it de�nes the same concept as the compression factor Fc. So, according to the complexity of the
context, one of them is used. In �gure 1.4, we present the compression mechanism based on the
relations (1.12)-(1.14).

Figure 1.4: Example illustrating the linear compression mechanism of the chirped Gaussian pulse, data: β2 =
−0.05 ps2/m, length of the optical waveguide L=0.08 m, pulse width T0 = 50 fs, P0 = 1 W; (a) plot of the
compression/broadening factor : compression occurrence for C = −2, Lmc = 0.04 m, MPCP = 55.28 % (solid blue
line), broadening occurrence for C = 2; Gaussian pulse propagation : (b) contour plot of the case of compression, (c)
contour plot for the case of broadening.

Beyond the basic case of the GVD e�ect described by Eq. (1.9), in 1977, J. D. McMullen studied
the compression mechanism using the chirped Gaussian shape in a strong dispersive medium under
the TOD e�ect [29]. This term was shown to give asymmetric broadening of the compressed pulse
envelop (see �gure 1.5). One should note that McMullen with the help of A. A. Maradudin suggested
already at this period the Airy form of this compressed pulse under the TOD e�ect. The pulse
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Figure 1.5: Plot of the compression mechanism : in arbitrary unit (a.u) of the TOD coe�cient : β3 = 0 (solid line),
β3 = 3 (−−−), β3 = 4 (−.− .− .− .), β3 = 5 (−..− ..− ..− ..−), β3 = 10 (......). Results obtained by McMullen for
the compressed chirped Gaussian pulse under the TOD e�ect ( c©-1977 OSA, from [29]).

becomes more asymmetric following the increase of the TOD e�ect.
Later in 2002, Capmany et al [30] presented in a high-speed optical time-division multiplexed trans-
mission line under FOD near the vanished values of GVD and TOD, a Gaussian pulse compression
with a negative chirp and a positive FOD based on the Marcuse formalism. Then one year later,
they presented an analysis (in [31]) of a chirped Gaussian pulse using the combination of the Marcuse
formalism and the Amemiya's method [32]. The diagram that describes their model is illustrated
on �gure 1.6 below. The parameter t represents here the retarded frame of time. The input time-

Figure 1.6: Block diagram of the Capmany et al. model ( c©-2003 OSA, from [31]).

domain �eld to the optical waveguide is given by Ein = E(z = 0, t) = f(t)ψ0(t) where f(t) is a slowly
varying electric �eld envelope that corresponds to the modulating pulse de�ned by the width t0 and
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a high-frequency chirped optical carrier ψ0(t) de�ned as a chirped Gaussian function :

ψ0(t) = A(t) exp

[
i
(
ω0t+

Ct2

2t20

)]
. (1.20)

The function A(t) is the unmodulated source random-phase �uctuations that are linked to the
linewidth and ω0 is the optical carrier frequency. The input modulating current ii is proportional to
f 2(t) and so is the output optical power from the transmitter. Then, the transmission is understood
as an optical system with transfer function Hf (L, ω) that realizes a coupling between the input elec-
trical �eld E(0, t) to its output E(L, t). The functions e(ω) and 〈P (L, t)〉 are the Fourier transform
of E(t) and the output electric current (io). They showed that the pulse broadening and compression
arise as a result of the interaction between dispersion orders of same parity as :βkβk+2 < 0, k ≥ 2,
k being an integer. For example, the GVD having an opposite sign with the FOD leads to the com-
pression of the pump. This study assumed that the source chirp interacts only with even dispersion
terms to yield pulse broadening or compression. As can be observed on �gure 1.7, the compression is
obtained in �gure 1.7(a) by the interaction between the chirp (C=-0.5) and the positive sixth-order
dispersion parameter de�ned by D6 = 2. By contrast, the odd dispersion terms interact on �gure
1.7(b) leading to the pulse asymmetry. The normalized broadening factor is represented on �gure
1.7(c) showing the compression mechanism of �gure 1.7(a) versus D6. The �gure 1.7 con�rms that

Figure 1.7: (a) Plot of chirped Gaussian pulse compression in the Capmany et al. model : interaction between the
chirp and the sixth-order dispersion parameter. The compression occurs for C=-0.5; (b) Pulse asymmetry induced by
the odd dispersion terms; (c) plot of the broadening factor versus D6. Results obtained by Capmany et al. ( c©-2003
OSA, from [31]).

the dispersion terms of the same parity interact only between them and the odd ones a�ect only the
design of the pulse, generating the asymmetry.

1.2.3 Nonlinear pulse compression
The compression in this speci�c case is obtained with the famous solitonic properties through the

balance between the positive SPM (of the cubic nonlinear Kerr e�ect) and the anomalous dispersive
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regime of the GVD [1,3,32,33,34]. The soliton order N is de�ned by the following relation :

N =

(
LGV D

LNL

)1/2

, (1.21)

where LNL is the nonlinear length associated to the cubic Kerr nonlinearity (CKN). It is linked to
the peak power as LNL = 1/γP0 with γ being the CKN coe�cient. An input pulse that is launched
within a waveguide under the condition N=1 of the fundamental soliton (where the higher-order
nonlinear e�ects have been neglected), transforms into a solitonic form through a progressive nonlin-
ear compression process induced by the interaction between the GVD and the SPM. If the obtained
soliton form is not seriously perturbed during its propagation, it can propagate further within the
waveguide. It is this feature of solitonic robustness which creates the interest of optical solitons
in communication applications. We present the transformation of an input SG pulse (m=3) to a
fundamental soliton through the pulse compression mechanism on �gure 1.8.

Figure 1.8: Transformation of an input SG pulse (m=3) to a fundamental soliton. Data : P0 = 1 W, γ = 1 W−1m−1,
N=1, L=1 m. Result obtained from the NLSE Solver&Plotter software ( c©-2005, version 1.0 written by Nick Userchak).

The higher-order solitons (HOSs) splitting yields to the periodic compression with the well-known
soliton period z0 = (π/2)LGV D. The nonlinear periodic compression mechanism is therefore under-
stood as a fundamental property of HOSs. The HOSs undergo an initial narrowing phase at the
beginning of each period. Because of this property, an appropriate choice of the optical waveguide
length and input pulse peak power should be operated in order to compress the soliton by a factor
that depends on its order N. We present on �gure 1.9 the nonlinear compression of a third-order
soliton (N=3). The evolution of this 3-OS is periodic.

1.2.4 Applications and experimental realizations : pulse compression tech-
niques

As mentioned earlier, the pulse compression mechanism is very important in optics since it leads
to several useful applications in a wide range of domains as in optical telecommunication, ultra-
fast physical processes, infrared time-resolved spectroscopy, sampling systems, sub-femtosecond to
attosecond researches ... . So these last decades, the theories described above have been directly
experimented for practical situations. In the linear case, negatively chirped pulses were transmitted
through liquids or gases such that they experienced normal GVD [35]. For positively chirped pulses,
a grating pair was found to be most suitable for providing anomalous GVD [36]. Today, this system
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Figure 1.9: Third-order soliton evolution into a nonlinear optical waveguide. Input : sech-type pulse, P0 = 1 W,
γ = 1 W−1m−1, N=3, L=24 m. The soliton period z0 ≈ 4.71 m. Result obtained from the NLSE Solver&Plotter
software ( c©-2005, version 1.0 written by Nick Userchak).

has been introduced in �ber optics and has led on the well-known grating-�bers compressors [1].
The use of the grating-�ber compressors is e�cient in the visible and the near-infrared regions. The
�gure 1.10 shows a diagram of a grating �ber compressor. The input pulse propagates into a SMF
and then develops a positive chirp. At the output, the pulse is launched through a grating pair and
undergoes an anomalous GVD. It results a linear pulse compression. After, the optical pulse is sent
back through the grating pair to reconvert it to the original cross section [1]. The roles played by the
mirrors M1 and M2 consist for the �rst to separate the outgoing pulse from the incoming one and
for the second to de�ect the compressed pulse out of the compressor in a lossless manner.
Since the optical solitons were observed in �bers by L. F. Mollenauer et al in 1980 [37] after their
theoretical prediction in 1973 by A. Hasegawa and F. Tappert [38], the experimental work on SPM-
based or soliton-based pulse compression has led to the so-called soliton-e�ect compressors. These
kinds of compressors based on the nonlinear case, are useful in the range wavelengths exceeding
1.3 µm. The compression factor for a soliton-e�ect compressor is de�ned empirically by the relation
[39] :

Fc = 4.1N, (1.22)
and the minimal length of compression Lmin where the maximal compression occurs is linked to the
soliton period z0 as follows :

Lmin =
z0

N

(
0.32 +

1.1

N

)
. (1.23)

Several experiments have been conducted since the decades of 1980s and the compression techniques
were improved. For instance in 1981, an experiment using an optical �ber was conducted [40]. Some
5.5-ps input pulses at 587 nm, with P0 = 10 W, were propagated over a propagation about 70 m.
The experimentation reached a compression to 1.5 ps. One year later, the femtosecond domain was
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Figure 1.10: Basic diagram of a grating-�ber compressor ( c©-2008 AP, from [1]).

investigated by using a grating pair as a dispersive delay line [41]. In this experiment, with a 90-fs
pulses at 619 nm in wavelength, the compression reaches about 30 fs. With the advent of mode-
locked Ti:sapphire lasers, the pulse compression experiments leading to pulse widths under 10 fs were
initiated. Since several nonlinear e�ects arise in this domain, the experiments encountered di�cul-
ties. The HOSs properties were needed to achieve the compression in this region. For this reason,
soliton-e�ect compressors give high compression factors. Then, the main objective was to maximize
the compression factor. Since the wavelength region near 1.3 µm links the two kinds of compressors,
two-stage compression techniques were developed in later experiments yielding large compression
factors by using dispersion-shifted �bers [1]. Indeed, an experiment of the two-stage compression
technique in which a grating-�ber compressor was followed by an anomalous-GVD (β2 < 0) �ber,
was used to obtain compression factors of up to 5000 [42]. By 1996, optical pulses shorter than 8 fs
were generated directly from a Ti:sapphire laser [43]. Other experiments employed multiple cascaded
soliton-e�ect compressors for the obtention of ultra-short pulses. In 1999, a 7.5-ps optical pulse was
compressed down to 20 fs with Fc ≥3700 [44]. More recently, in 2006, 5.4-ps parabolic pulses were
compressed down to 20 fs [45]. For more details and further informations about pulse compression
experiments based on both the grating-�bers and the soliton-e�ect compressors, the reader can con-
sult the reference [1].
Beyond these two kinds of compressors, other techniques have been developed among which one �nds
�ber Bragg gratings using the cross-phase modulation (XPM) technique [1,46,47], a �ber polarization
technique [48], the use of a tapered microstructure optical �ber with four layers of holes [49], gain
switching technique [50-60], optical ampli�ers, �ber-loops mirrors [1] ... .

1.2.5 Limits of the pulse compression theoretical analysis
In the theoretical aspect of the pulse compression analysis discussed in sub-sections (1.1.2) and

(1.1.3), the researchers use some methods to investigate the mechanism. These methods belong
both to the analytical and the numerical sides [56]. It consists to solve the dynamic equation of
the optical waveguide, the so-called NLSE and so, to bring out the compression factor evolution
across the length of the waveguide. In the numerical side, usually one uses the split-step Fourier
(SSF) method or the �nite-di�erence methods [3]. Although a numerical solution is necessary for
accuracy, considerable physical insight is gained with the analytical or semi-analytical methods [3].
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Because of this, it is therefore suitable in some theoretical studies as those of the pulse compression
phenomenon to proceed through these last methods. Since in the linear case of the compression
analysis, the nonlinear part is neglected, an analytical method as the Marcuse formalism (Fourier
transform method) [28] gives good results for the low order dispersion systems as those under the
GVD e�ect. For more accuracy in complex systems, Amemiya developed a method that provides
integral expressions for the computation of the electric �eld impulse responses of an optical waveguide
due to higher-order even and odd dispersion orders [32]. After, Capmany et al. combined the two
methods leading to a form which describes the in�uences of the chirp and the linewidth [31]. They
also demonstrated that, the numerical simulation of Eq. (1.9), for example using the SSF algorithm
could not describe e�ciently the compression mechanism when the source chirp is considered in the
analysis. This result justi�es why it is customary to use analytical and semi-analytical methods
for the linear compression case. Among these methods, the famous quoted ones are the moment
method [3], the variational approach [3,62-70], the CVs approach [71-75], the self-similar analysis on
self-similar solitary waves so-called similaritons [76-78]. Considering the moment method, it can be
used for approximated studies, assuming that the pulse maintains its shape as it propagates down the
waveguide even though its characteristics change following the propagation distance z [3]. The basic
idea behind this method is to treat the optical pulse like a particle. It is suitable in linear systems
even in the nonlinear ones under certain conditions [3]. In the variational approach, the Lagrangian
density of the system is constructed and a suitable trial function for the pulse is assumed. With
the Lagrangian density, total Lagrangian of the system is constructed. Variation of the Lagrangian
with respect to various free parameters appearing in the trial function gives ordinary di�erential
equations (ODEs) for the parameters [75]. The CVs approach is based on the particle-like behavior
of the soliton. It was �rst proposed by Boesh et al. for Klein Gordon equation (KGE). The CVs
approach being equivalent to the Lagrangian variational method, is nonetheless more appropriate in
the case of soliton dynamics [71-75]. Recently in years 2011 and 2012, for time-varying media (media
with refractive index that varies with the time) a novel approach has been developed as a time-
transformation approach [79-81]. This approach maps directly the input electric �eld to the output
one, without making the slowly varying envelope approximation as done for the other methods.
Among all these semi-analytical methods, only the variational approach can be used in any system
beyond the cases of the solitons (speciality of the CVs approach), particle-like waves (speciality of
the moment method), and similaritons (speciality of the self-similar analysis). So, even though the
compression mechanism both in the linear and the nonlinear cases has been extensively studied, some
research paths remained to be explored :

• no study of the linear compression of a system under higher-order dispersion (HOD) terms as
the FOD using the variational approach were conducted. The derivation of the conditions of
its occurrence, highlighting the relations between the dispersion lengths associated to the GVD
and the FOD was missing,

• beyond the study of Capmany et al, the linear compression mechanism was known to be gen-
erated only when two even dispersion orders interact or when one of them interacts with the
chirp. It did not exist a rule that links at least two even dispersion terms with chirp in the
compression process.

• One should note that for the single GVD case, the compression mechanism was studied by Roy
et al in 2008 [8], using a MVA developed one year before [7] in promising optical waveguides
as the SOI-waveguides. Indeed, in these waveguides beyond the SPM e�ect, the absorption
coe�cients as the TPA and the FCA should be included in the dynamics (this optical waveguide
is summarily presented in section 1.5). On the other hand, the MVA involves the RDF to
take into account the nonlinear part of the NLSE. However, the investigation of the nonlinear
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compression in these waveguides under the FOD e�ect was not yet conducted. Even the
impact of absorption coe�cients including the chirp and the nature of the input pro�le on this
mechanism was missing.

• The compression process of a recent input pro�le introduced in nonlinear optics as the Airy
pulse was not yet studied in the SOI waveguide under the FOD e�ect.

Obviously, these points are not the only ones since the works presented in the present thesis are not
exhaustive. Nonetheless, they belong to those that have attracted our attention for the present study
as explained in the next sub-section.

1.2.6 Objective of the work done on the compression analysis : motiva-
tions and contributions

In the present thesis, our motivations are based on the need to bring some responses about the
shortcomings presented above. As contributions :

• we study in a linear dispersive optical medium under FOD using the variational approach, the
dynamics of the chirped pulse compression with the help of Gaussian and RC pulses in order
to highlight the phenomenon's dependence on the input pro�le. Our numerical simulations to
con�rm the observed features are based on 380-fs input pulses undergoing 0.00086 ps4/Km
value in the FOD.

• Then, we report the analysis of the compression mechanism for chirped femtosecond pulses
in SOI waveguides under the e�ect of the FOD using the MVA that involves the RDF. An
investigation of the e�ect of the absorption coe�cients is also done.

• Our last work on the compression mechanism is based on the Airy pulses in the SOI-waveguides
under FOD using the MVA. The obtained results concern the impact of the TPA, FCA and
the SPM in the presence of the FOD.

Since in the opposite side of the temporal compression process, a spectral broadening process operates
simultaneously, reaching widths of ultra-short pulses as those of the femtosecond domain allows the
obtention of spectral widths about the order of 100 THz. Such extreme spectral broadening generally
leads to the SCG phenomenon which is presented later in section 1.4. Before, we present brie�y in
the next section an overview of the FWM phenomenon which belongs generally to the whole physical
processes on which the SCG is based. The case of WDM solitons systems is specially underlined
since the FWM is well-known to be one of its deleterious factors.

1.3 Overview on FWM in WDM solitons systems

1.3.1 Theoretical and physical descriptions
In optical waveguides, there are two classes of nonlinear phenomena : those in which the waveguide

plays an active role (such as in scattering processes) and those where it is entirely passive mediating
only interaction between the di�erent propagating optical waves. The last class of nonlinear phe-
nomena are called parametric processes. They basically require a phase-matching condition and a
modulation of a medium parameter for instance, the refractive index before occurring in the waveg-
uide [3]. In this class, belongs the FWM phenomenon. It stems from the nonlinear response of bound
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electrons of a material to an optical �eld. This nonlinear response is linked to the nonlinear suscepti-
bility. Considering the third-order susceptibility χ3, one reaches the third-order parametric processes
as the FWM and the third-harmonic generation (THG) as an interaction among four optical waves
[3,82,83]. Concerning the FWM, its study was done soon after low-loss �bers were fabricated [84-93].
A basic theoretical illustration of the FWM can be understood from the third-order nonlinear polar-
ization in a scalar case [3] as :

PNL =
1

2
x̂

4∑
n=1

Pn exp[i(βnz − ωnt)] + c.c, (1.24)

where Pn (n=1 to 4), βn, ωn and c.c represent the polarization component of the (n)th optical �eld,
its propagation constant, its harmonic frequency of oscillation and the conjugated complex part of
Eq. (1.24), respectively. Considering the continuous waves (CWs) case, the total electrical �eld
including the four optical �elds linearly polarized along the x-axis and oscillating at frequencies ω1,
ω2, ω3 and ω4 can be written as :

E =
1

2
x̂

4∑
n=1

En exp[i(βnz − ωnt)] + c.c, (1.25)

Since the relation between PNL and E is de�ned as PNL = ε0χ
3...EEE, the polarization Pn is therefore

a mixing of En. The tensorial product '...' correspond to χ(3) related to the electric �eld components
EEE [3]. It is expressed with many terms involving the crossed products of three interacting �elds.
Note that, the constant ε0 is the electrical permittivity of the vacuum. Taking for instance the
component P4, one obtains :

P4 =
3ε0

4
χ3

xxxx

{[
|E4|2 + 2(|E1|2 + |E2|2 + |E2|2)

]
E4

+ 2E1E2E3 exp(iθ+) + 2E1E2E
∗
3 exp(iθ−) + ...

}
,

(1.26)

where θ+ and θ− are given by :

θ+ =(
3∑

n=1

βn − β4)z − (
3∑

n=1

ωn − ω4)t,

θ− =(β1 + β2 − β3 − β4)z − (ω1 + ω2 − ω3 − ω4)t.

(1.27)

The crossed terms in Eq. (1.26) including θ+ and θ− are those related to the FWM/THG phenomenon
while the �rst four terms are linked to the SPM and XPM.
The phase mismatch between E4 and P4 governed by Eq. (1.27) should nearly vanish and a phase
matching condition should be realized to the occurrence of the FWM/THG. From quantum mechanic
theory, FWM occurs when photons from one or more waves are annihilated and new photons are
created at di�erent frequencies such that the net energy and momentum are conserved during the
parametric interaction [3]. There are two types of the FWM process according to Eq. (1.27) (as can
be seen in �gure 1.11) : the �rst type θ+ is obtained when three light pulses transfer their energy to a
single fourth photon (the degenerate case corresponds to the THG phenomenon) and the second type
θ− is concerned when two photons are annihilated while two new other are created simultaneously.
For the case θ−, one has ω3 + ω4 = ω1 + ω2. The phase-matching condition for this process to occur
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Figure 1.11: (a) case of θ+, (b) case of θ−.

correspond to the wave-number mismatch ∆κ = 0 as :
∆κ =β1 + β2 − β3 − β4,

=(ñ1ω1 + ñ2ω2 − ñ3ω3 − ñ4ω4)/c,
(1.28)

where ñj is the e�ective mode index at the frequency ωj. Physically, it manifests as a strong pump
wave at ω1 creates two sidebands located symmetrically at frequencies ω3 and ω4 with a frequency
o�set (or frequency shift) :

Ωs = ω1 − ω3 = ω4 − ω2. (1.29)
If we assume that ω3 < ω4 and ω1 = ω2, the low-frequency sideband at ω3 refers to the Stokes
component of FWM while the high-frequency at ω4 corresponds to the anti-Stokes component of
FWM [3]. Rigorously, the mismatch of Eq. (1.28) has other contributions beyond the only material
dispersion one. There are also waveguide dispersion (∆κWD) and nonlinear e�ects (∆κNE) :

∆κ = ∆κMD + ∆κWD + ∆κNE, (1.30)
where ∆κMD is de�ned by Eq. (1.28) and the two last contributions are de�ned as :

∆κWD = [∆n3ω3 + ∆n4ω4 − (∆n1 + ∆n2)ω1]/c, (1.31)
and

∆κNE = γ(P 1
0 + P 2

0 ). (1.32)
where P 1

0 and P 2
0 are the peak pump powers. The parameter ∆nj is the change in the material index

nj induced by the waveguiding [3].
In brief, the physical principle of the FWM is the transfer of energy from the pump to new waves.
If the pump is constituted by two symmetric waves (ω1 = −ω2), the transfer of energy goes to the
two new waves upshifted in frequency (anti-Stokes component) and downshifted in frequency (Stokes
component). The general phase-matching condition in this case is given by the relation [3]:

∞∑
k=2

βk(ωp)

k!
Ωk

s + 2γP0 = 0, (1.33)

with Ωs = ωs−ωp being the frequency o�set between the signal frequency ωs and the pump frequency
ωp.

1.3.2 The FWM analysis in WDM soliton systems based on the ABCJS
approach

The WDM technic which consists to send many signals in a single optical �ber has increased
the usefulness of the transmission of data [1,3,94-98]. This has become one of the most impor-
tant techniques for high speed and high capacity requirement of optical �ber transmission systems.
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Figure 1.12: Design of the WDM principle based on SMFs. The role played by the Multiplexer and the Demultiplexer
devices, is to mix and separate the wavelength channels respectively. The pre-, post and in-line compensators serve as
signal regenerator (management of the dispersion link).

Nowadays, it is well-known that FWM creates deleterious e�ects on WDM and dense WDM com-
munication systems [1,3,99-103]. Many technics were previously investigated in order to reduce or
to quite cancel these e�ects such as dispersion management (DM) technic [103-107], an experimental
grouping wavelength method [108], the use of weak random dispersion in second term of dispersion
[109,110] and recently in frequency-division multiplexing systems [111]. The researchers Ablowitz,
Biondini, Chakravarty, Jenkins and Sauer developed in 1996 a mathematical approach that describes
the anti-Stokes component evolution of the second-type FWM in SMFs through the interaction be-
tween two fundamental soliton-like �elds in a lossy WDM systems with periodically spaced ampli�ers
[99]. This approach is named as the ABCJS approach in the next. Basically, this approach starts by
the following assumption : in a WDM solitons system involving two symmetric soliton-like pulses E1

and E2, it appears two components for the FWM as E112 (Stokes component) and E221 (anti-Stokes
component). These waves oscillate at the frequencies : Ω1, Ω2, Ω112 and Ω221 respectively. One
can de�ne Ω2 = Ω and Ω1 = −Ω2 for the symmetry. The frequency o�set Ω describes the shift
between the central frequency ω0 and the corresponding component of the main pump. So, the main
pump Epump is constituted by E1 and E2. Therefore, the total �eld propagating within the optical
waveguide is written as :

E = Epump + EFWM . (1.34)
This is the form of the �eld which is injected inside the NLSE modeling the system. For instance,
for an anomalous GVD system of [99], we have the dimensionless equation :

i
∂u

∂z
+

1

2

∂2u

∂t2
+ g(z)|u|2 = 0, (1.35)

where u is the dimensionless form of E and g(z) the ampli�cation function de�ned as :
g(z) = gmax exp

[
− 2Γ(z − nza)

]
. (1.36)

We have gmax = 2Γza/[1− exp(−2Γza)] with za the dimensionless ampli�er spacing and n the actual
ampli�er node. The parameter Γ is the dimensionless losses coe�cient. One obtains after this
operation, four dynamic equations that describe each wave. These equations includes both the SPM
and the XPM e�ects between the four interacting pulses. However, for the FWM Stokes and the
anti-Stokes components one should neglect the small terms such as those of SPM and XPM including
these components. For the anti-Stokes component (ASC), we have :

i
∂u221

∂z
+

1

2

∂2u221

∂t2
+ g(z)u2

2u
∗
1 = 0, (1.37)
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Figure 1.13: Plot of g(z) versus z : a periodical evolution with the period za, ( c©-2001, University of Colorado at
Boulder, from [103]).

where u221 represents the dimensionless form of E221. The input pulses are in the form :

uk = Aksech(Akt) exp(i
A2

k

2
z) exp

[
i(Ωkt−

Ω2
k

2
z)

]
, k = 1, 2 (1.38)

where Ak is the dimensionless amplitude of the corresponding pulse. One takes the ASC with a
rapidly varying-piece as :

u221 = H(z, t) exp
[
i(3Ωt− Ω2

2
z)

]
. (1.39)

Introducing Eq. (1.39) into Eq. (1.37) leads to an equation for the amplitude H(z, t) as :

i
∂H

∂z
+

1

2

[∂2H

∂t2
+ 6iΩ

∂H

∂t
− 2(2Ω)2H

]
= −g(z)u2

2u
∗
1 exp

[
i(−3Ωt+

Ω2

2
z)

]
. (1.40)

The study of the ASC growth in the system, consists to determine the function H(z, t) and to draw
its evolution following the propagation distance. In the reduced model of the study, one should
assume that the partial derivatives in the time domain of Eq. (1.40) are nearly equal to zero. Then,
one integrates the obtained ODE of H(z, t). It leads to :

H(z, t) = i exp
(
− i(2Ω)2z

) ∫ z

−∞
g(z′)u2

2u
∗
1 exp

[
i(−3Ωt+

Ω2

2
z′)

]
dz′. (1.41)

The phase-matching condition (PMC) on the frequency o�set Ω, for the occurrence of the maximal
FWM ASC values is obtained when one considers the harmonic mismatch of the integral in the
right-hand-side (RHS) of Eq. (1.41). One obtains [99] :

Ω =
1

2

√
2πn

za

− A2, (1.42)

with Ak = A (k=1,2). In the full model, one should consider the whole equation (1.40). The method
uses the Fourier transform before making the integration on H̃(z, ω) (the Fourier transform ofH(z, t))
to reach its spectrum in the frequency domain :

H̃(z, ω) =
iπA

2ω
exp

(−i
2
φ(ω,Ω)z − iω(Ωz − T0)

)
sech(

πω

2A
) exp(χzcoll)

×
∫ y

−∞
g(z′)I(y,

ω

A
) exp

[
i
χ

2ΩA
y
]
dy,

(1.43)
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where φ(ω,Ω) =
[
ω2 + 6ωΩ + 2(2Ω)2

], χ = 1
2

(
A2 + φ(ω,Ω)

), zcoll the position of the collision
between u1 and u2 leading to the ASC, I(x, s) =

[
cosh(x) + is sinh(x) − exp(isx)

]
/ sinh2(x) and

y = 2A(Ωz − T0). One assumes that Tk ≡ T0. �gure 1.14 shows a result of the collision between
two soliton-like launched pulses in a basic WDM soliton system under the ABCJS approach. At the
propagation distance z = zcoll, one observes the appearance of FWM components at both the two
extreme sides of the emerging waves. Beyond the system under damping and ampli�cation studied

Figure 1.14: Two-soliton collision under damping and ampli�cation described by the ABCJS approach and leading
to the generation of FWM components ( c©-1996 OSA, from [99]).

in [99], the ideal system was studied under this approach one year later [100]. Other works based on
this ABCJS approach followed describing the FWM in WDM soliton systems with methods to cancel
its crosstalk [103-105,109-110]. The study of e�ects of higher-order dispersion terms on the FWM of
the �rst type has been done by Singh et al [112] based on earlier works of Inoue et al [112,113]. They
showed that the combination of HOD terms leads to a FWM power reduction.
However, coming back to the theoretical analysis discussed in the previous sub-section, one can
consider the FWM as rather a bene�cial phenomenon. Indeed from Eq. (1.28) to Eq. (1.33),
another situation in which an idler signal at ω3 is launched with the strong pump ω1 = ω2, leads
to the ampli�cation of the initial idler signal while another one is created at ω4. Such ampli�cation
implying a parametric gain is used for several useful FWM applications.

1.3.3 FWM as a bene�cial phenomenon
The FWM has been discovered to be useful. As examples, one can quote the measurement of

the third-order nonlinear-index assuming a FWM-Based technic, FWM-Based ultrafast switches, the
measurement of the ratio of the TOD over FOD coe�cients, making parametric oscillators, ultrafast
signal processing, FWM-induced quadrature squeezing, wavelength conversion, phase conjugation,
the SCG phenomenon (which is the aim of the section 1.4)... [3,88-98]. We consider for example
one of the quoted applications above such as the case of SCG. Indeed, taking into account the
spectral aspect of the dynamics within an optical waveguide as a SMF, the FWM as discussed
earlier generate new frequencies beyond the initial launched ones leading to an extended spectral
picture. If the generation of the frequencies is done with the participation of others phenomena that
also contribute as the scattering processes one can obtain extreme broadband spectra so-called SCG
which has several applications in optics. For instance, considering the generation of new frequencies in
the FWM phenomenon in a nearly ideal WDM solitons system of the ABCJS approach one observes
nine spectral components induced by FWM from the interaction between three launched solitons (see
�gure 1.15). The extension of this frequencies generation to the SCG, can lead to spectral pictures
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Figure 1.15: Frequencies generation in the FWM process after the interaction between three soliton-like pulses. The
inset shows the location of the soliton contributions ( c©-1996 OSA, from [100]).

Figure 1.16: Frequencies generation in the SCG process after the pumping of a pulse within a highly nonlinear �ber
(this phenomenon is presented in the next section). One observes a broadband spectral picture which takes place
progressively following the propagation distance ( c©-2010 J. Dudley & R. Taylor, from [114]).
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as shown in �gure 1.16. Further details and literature about FWM applications can be found in refs.
[1,3,114].

1.3.4 Limits of the FWM analysis
As discussed in the previous sub-sections, the FWM has been extensively studied. However,

as far as the second type of the FWM process is concerned, the e�ects of HOD have not yet been
considered in WDM soliton systems of SMFs using the ABCJS approach. In fact, since it has been
shown that FWM creates new frequencies in the optical system, it is therefore a detrimental factor
for communication applications such as WDM systems. It is necessary to investigate the dynamics of
the generation of its components in order to operate their cancelation. In this point of view, WDM
solitons systems near the ZDW have not yet been investigated. We present in the next sub-section
our contribution assuming this missing investigation.

1.3.5 Objective of the work done on the FWM analysis in the WDM
solitons system : motivations and contributions

The main purpose of the work done on the FWM analysis in the WDM solitons system in this
thesis, deals with SMFs modeled by the NLSE including an additional TOD term through the ABCJS
approach. We remind that the case of the NLSE with TOD is considered when the optical system
has a vanishing GVD or uses high intensity peaks (short and ultrashort pulses) [1,3]. Analytical
treatment of the model is based on the propagation of the ASC in the case of gain/loss. We compare
the single TOD case with the combined GVD-TOD case (where a residual GVD is considered) and
bring out the di�erences linked to the PMCs and the amplitude growth of the FWM components.
The SCG being found to have the FWM as one of the numerous nonlinear e�ects that participate to
its achievement, we present an overview in the next section of this phenomenon.

1.4 Overview on SCG

1.4.1 Theoretical and physical descriptions
The SCG phenomenon is a well-known nonlinear process today since it has been observed in bulk

glasses for 200-THz light pulses [3,115]. The trend aroused has led on many works where the SCG
has been extensively studied especially with the advent of the PCFs and tapered �bers (TFs) that
overcame the limitations of the usual �bers because of their high malleable dispersive and nonlinear
properties [1,3,13,28,115-147]. The possibility of designing the dispersive and nonlinear properties of
these optical waveguides has made them as the best tools to realize the SCG process. To achieve
the SCG, highly dispersive and nonlinear waveguides are required, it allows the injected optical
pulses to excite these e�ects and therefore to undergo a large spectral broadening with the dramatic
generation of side-components due to the transfer of energy from the central part of the spectrum
to the pedestal part. Such extreme broadening can lead to a high temporal pulse compression as
discussed by Gusakov et al [122], Schenkel et al [134]... . The combination of dispersive e�ects with
a multitude of nonlinear e�ects such as SPM, XPM, FWM, stimulated Raman scattering (SRS) ...,
leads to generation of new frequencies within the pulse spectrum so that it extends over a frequency
range exceeding 100 THz. The properties of the optical waveguide in which a launched pulse is
propagating in order to lead to the SCG phenomenon are very important. Sure enough, both the
linear properties as the dispersion and the nonlinear properties as the CKN are necessary for the
SCG e�cient occurrence. We present basic descriptions of optical waveguides used for SCG.
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Highly nonlinear optical waveguides
A PCF is basically the best tool to create a good SCG process. It could be illustrated as shown in

�gure 1.17. The periodic nature of the air holes becomes important in the so-called photonic bandgap

Figure 1.17: Diagram of a PCF or microstructured �ber. The parameters d and Λ represent the hole diameter and
the pitch, respectively.

(PB) �bers in which the optical mode is con�ned to the core by periodic variations of the refractive
index within the cladding. The core of such �bers often contains air to which light is con�ned by the
PB [3]. This design allows to reach high values of nonlinearity when the air in the core is replaced
with a suitable gas or liquid. Figure 1.18 shows some experimental PCFs.
The main nonlinear mechanism of the pulse splitting achievement leading to the SCG process is the

Figure 1.18: Some PCFs : Small core extruded PCF ( c©-2004 OSA, from Ebendor�-Heidepriem et al see [114,148]),
(b) Single mode tellurite PCF with extremely large mode area ( c©-2008 OSA, from Feng et al see [114,149]), (c)
Preform structure created by drilling ( c©-2004 IEEE, from Feng et al see [114,150]), (d) a Hollow core PCF fabricated
by Blazephotonics, image realized in the FEMTO-ST institute of the university of Franche-Comté, France ( c©-2004
FEMTO-ST institute, from [151]), (e) zoomed picture of (d).

solitonic �ssion (SF) [114].

The SF mechanism
The SCG occurs as a perturbation of HOS by HOD terms and high degree of nonlinearity of the

medium. This implies that the SCG was �rstly understood as a phenomenon which accompanies
the solitons dynamics and so occurs in the anomalous dispersion regime of optical waveguide [137].
This HOS breaks into its fundamental components through the SF mechanism. Furthermore, the SF
process appears at the start of HOS propagation in the medium, when the soliton spectrum extends.
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The Raman scattering or HOD can perturb the constituent fundamental solitons of the main soliton
signal, leading them to move with di�erent group velocities, and therefore to split apart.
The SF process can be investigated, by considering the propagation characteristics of an ideal HOS
as the 3-OS drawn in �gure 1.9. In this case, the injected 3-OS evolves periodically as illustrated
in this �gure. In the femtosecond regime, HOD and Raman scattering are the two most signi�cant
e�ects that can perturb such ideal periodic evolution and induce pulse splitting through SF [137].
The dominant e�ect depends on the input pulse duration. The Raman e�ect dominates generally
for input pulses exceeding 200 fs while for pulses of duration less than 20 fs, it is the HOD which
dominates. So, for the two e�ects to operate in a balance manner in the SF process of the SCG,
durations cover usually the intermediate range. The study of the SCG phenomenon through the SF
mechanism has been extensively done this last decade [114,121,125-127,131,137,138,142,144]. Nearly,
the whole aspects on SCG driven by SF were investigated in these works. Among these aspects,
appear the emission and shedding of waves or radiations from the solitons which are themselves
initially emitted from the SF mechanism. Figure 1.19 presents an illustration of the SF mechanism

Figure 1.19: Illustration of the SF mechanism in the SCG phenomenon : results from numerical simulations showing
(a) spectral and (b) temporal evolution for Raman induced �ssion of an incident 1.25 kW launched 3-OS. Top curves
show the output pro�les after 0.5 m propagation. ( c©-2006 APS, from [137]).

obtained by Dudley et al [137]. The SF mechanism in the temporal evolution of the 3-OS leads to
a spectral broadening of the SCG. Some waves or radiations are emitted in both the time and the
spectral domains. These features are brie�y presented below.

Nonsolitonic radiation (NSR) or Cherenkov radiation, dispersive waves (DWs)
The SCG phenomenon occurring in the SF mechanism is generally accompanied by the emission

of waves such as the Raman solitons (RSs), and DWs... . The RSs are obviously the sub-pulses
stemming from the Raman induced SF while the DWs are the light shedding from the initial soliton
in the right side of the time domain picture (see �gure 1.20). The radiation assembling the DWs,
is emitted at a frequency at which its phase velocity matches that of the soliton. This radiation is
known to be the Cherenkov radiation or a NSR similarly to those emitted by charged particles in a
bulk medium [3]. These DWs are naturally due to the dispersive properties of the optical waveguide.
So, SCG-Based optical waveguides with strong chromatic dispersion pro�le (CDP) lead to strong
DWs which however occur with the satisfaction of a PMC as extensively discussed in [3,152-155] :

∞∑
k=2

βk(
k!|β2|tk−3

0

)(
ωDW − ωS

)
=

1

2
(2N − 1)2, (1.44)

where ωDW and ωS are the carrier frequencies associated with the DW and the soliton, respectively.
Another solitonic feature known as the MI has been found to conduct to the SCG phenomenon
beyond the SF mechanism.
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Figure 1.20: Illustration of the emission of DWs in a SCG process : (a) Low-amplitude pedestal in the form of
DW, (b) NSR in spectral domain under two zero-dispersion conditions where FOD is dominant. ( c©-2011 CURRENT
SCIENCE, from [155]).

The MI mechanism
It is a well-known process today for the achievement of pulse trains generation (PTG). In nonlinear

optics, it refers to the modulation of the steady state as a result of an interplay between the dispersive
and the nonlinear e�ects. In other words, it is a destabilization mechanism for plane waves in an
exponential manner. Since the earlier studies on the MI in 1960s [156-161], the investigation of the
MI mechanism in various media and systems, has been reported and summarized in several papers
and books [162-195]. Generally at a relatively low power, it leads to periodic PTG with a period of
2π/Ωopt where Ωopt refers to the OFs of the MI process [3]. The OFs are given as a phase matching
condition of the FWM related with the MI mechanism. It is described by two pump photons at
the frequency ω0, one Stokes photon at ω0 − Ω, and one anti-Stokes photon at ω0 + Ω. In this
view, it is often seen as a manifestation of a wider set of nonlinear processes described by the FWM
[114,137,144]. Recently in 2009, Tiofack et al investigated the MI mechanism in a complex generalized
Ginzburg-Landau system showing that the TOD does not intervene in the MI gain while the GVD
and the FOD play an important role in this mechanism [189]. Furthermore in 2010, Dinda and
Porsezian [190], studied the impact of the FOD on the MI spectra in a cubic nonlinear saturated
media. Con�rming the previous result of the independence to the TOD, and underlining the role
played by the FOD parameter, they found that in saturated glass �bers having a negative sign of the
GVD and a positive sign of the FOD, the two types of the MI mechanism are highly sensitive to the
FOD magnitude. One year later, investigating a highly nonlinear system, Erkintalo et al [193] used
the breather solution of Akhmediev and showed how a suitable low frequency modulation on a CW
�eld induces higher-order MI splitting with the pulse characteristics at di�erent phases of evolution
related by a simple scaling relationship. Even the birefringent mono-core and two-core �bers have
been investigated [168,169,179,191,192,194].
In the highly nonlinear media and in the high peak powers cases, the MI mechanism generally extents
beyond the PTG process leading to the SCG phenomenon [114,135,137,138,142,144,145,196]. In this
case, the MI brings out a multisoliton generation and a collision process whose added with the Raman-
induced self-frequency shift (RIFS) cause the dramatic spectral broadening and the generation of a
train of narrow high-intensity RSs. The condition in which wether the SF or the MI dominates in
the SCG phenomenon was presented by Travers [144] :

T0

TMI

=
N√
2π
, (1.45)
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Figure 1.21: Evolution of a weakly modulated cw leading to higher-order MI ( c©-2011 APS, from [193]).

where TMI = 2π/∆ωMI is the MI period and ωMI = (2γP0/|β2|)1/2 is the modulation frequency
[197]. The MI occurs if its period is su�ciently smaller than T0. When the SF occurs, the MI does
not exist. The cuto� for the SF mechanism has been found numerically by Genty et al [198] to be
closer to N ≈ 15. The MI FWHM is approximately TMI/5 [114,199]. Fig. (1.22) presents a SCG

Figure 1.22: The SCG phenomenon from the development of MI using a 20 W pure CW pump laser ( c©-2010 J.
Dudley & R. Taylor, from [114]).

picture obtained from the MI mechanism. It shows the dependence of this process on the length of
the waveguide even in the MI case. The SCG spectrum becomes broad as the distance of propagation
increases.

1.4.2 Improvement of the SCG phenomenon : spectral bandwidth en-
hancement

After the discovery of the SCG process, many works were conducted to improve its e�ciency
in nonlinear optics in two aspects : the enhancement of the spectral bandwidth obtained and the
achievement of its �atness inducing a spectral coherence.

Based on the waveguide properties
The performing of the optical waveguide for the e�cient achievement of the SCG phenomenon was

the �rst approach developed [1,3,114,137,144]. The waveguides with a high degree of nonlinearity and
strong CDP were investigated. The PCFs whose the possibility of designing the CDP and nonlinear
properties has made them as the best tools to realize the SCG process. Designing characteristics of the
PCFs as the e�ective core area, the ratio between the pitch and the hole diameter, the length ..., can
properly enhance the nonlinearity and the ability of the waveguide to lead to ultra-large broadband

Lucien M. Mandeng, PhD thesis c©-2015 54



Laboratory of Mechanics, Department of Physics, Faculty of Science, U.Y.I

Material SiO2 Tellurite Lead SiO2 Bi2O3 As2S3 As2Se3 Si

n2
(1) (×10−20 m2W−1) 2.7(2) 25(3) 41(4) 32 ∼ 300 ∼ 1100 500 ∼ 600

γ(5) (W−1m−1) 0.06 0.048 1.9 1.3 10 93.4 ∼ 100
α(6) (dB/m) 0.001 - 0.3 2 ∼ 3 5 60 25

TPA(7) - - - - yes yes yes
Table 1.1: Comparison of properties of some materials ( c©-2007 AP, from [3]; c©-2010 J. Dudley & R. Taylor, from
[114]).

spectra of SCG [3]. On the other hand, materials with large values of nonlinearity were also studied
in order to use them in the classical PCFs instead of the basic silica material. Today, some other
materials that provide large values of CKN coe�cient are known and used in the place of silica. In this
category of materials one can quote heavy-metal-doped oxide glasses, semiconductors materials as the
silicon material, semiconductor doped glasses, polydiactylene toluene sulfonate (PTS), chalcogenide
glasses (As2S3, As2Se3), tellurite glasses, �bers based on bismuth oxide ... [3,114].
However, as seen in table 1.1 some of these materials introduce other e�ects as nonlinear saturation,
higher-order nonlinear e�ects, nonlinear absorptions ... . It was therefore a challenge to manage the
advantage taken on the high degree of nonlinearity against the deleterious ones raised simultaneously
within the waveguide. In 2007 Yin and Agrawal studied the case of SOI-waveguides showing that
they can be used to create SCG spectra extending over 400 nm by launching femtosecond pulses as
HOSs through the SF mechanism [200]. The impact of absorption coe�cients as the TPA and the
FCA was highlighted. Furthermore, they showed that the TPA reduces the spectral bandwidth of
the SCG without an e�ect on its �atness. The free carriers generated during the SCG process were
found to have a negligible impact on the pulse. So, neither the SRS nor FCA plays a signi�cant role
during the SCG process in SOI waveguides. Therefore, these ones were considered as other suitable
tools to generate e�cient SCG as con�rmed by Wen et al in 2011 [201e], Castelló-Lurbe et al in 2012
[202a], and Cao et al in 2015 [201g].
On the other hand, some kinds of PCFs that replace in the central core region rather a liquid were
modeled [145,203-206]. The advantage to use a liquid material within the core region of the PCF
consists to some special properties among which one could have large nonlinearity, ultra-�attened
dispersion, broadband single-mode guidance, high birefringence, very small e�ective areas etc. Such
PCFs are called LCPCFs.

Based on the physical mechanisms
Another approach consists to improve the e�ciency of the SCG phenomenon by using the features of

the physical mechanisms on which it is based. For example, in 2002 Nikolov et al [130] demonstrated
the improving of the SCG phenomenon through the degenerate FWM. Several other works followed
this approach as discussed in [114,137,144].

Based on the pulse characteristics
1. the peak power or energy

Basically, the increase of the peak power enhances the Kerr e�ect [3,198]. So, it improves the
SCG phenomenon. However, there is a serious di�culty to use laser sources with high powers
in practice. On the other hand, they are expensive. Furthermore, the heating due to the use
of such lasers damages the waveguide. Therefore, this approach is not the best one to improve

0(1)Nonlinear refractive index, 2determined at 1.06 µm, 3determined at 1.06 µm, 4determined a 1.05 µm, 5CKN
coe�cient, 6linear loss, 7two-photon absorption
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the e�ciency of the SCG phenomenon. One should make the economy of energy. In this point
of view, this approach is often avoided when possible. Other paths are explored in this case.
The best method or approach to improve the SCG consists to do so without the need of high
energies/powers ie an e�cient achievement by reducing at the maximum the pulse energy.

2. the pumping wavelength
There is a great challenge to �nd the suitable laser source that emit light in the proper wave-
length region for the achievement of the SCG process. Since the SF mechanism drives the SCG
phenomenon, the anomalous dispersion regime which is the fundamental �eld of the solitonic
properties, is therefore more indicated for the obtaining of the broad spectra of SCG [137]. How-
ever, even the normal dispersion regime is suitable for the achievement of the SCG [207,208].
Making a proper choice of the pumping wavelength is therefore relevant to the achievement of
the SCG. In the normal dispersion regime, the interaction between the SPM and the normal
GVD dominates the dynamics in the SCG. Bringing the pumping wavelength closer to the
ZDW of the waveguide CDP transfers the energy into the anomalous GVD regime. Figure 1.23

Figure 1.23: Choice of the pumping wavelength in�uencing the spectral bandwidth of the SCG. The dashed white
line correspond to the ZDW of the waveguide. ( c©-2006 APS, from [137]).

shows the in�uence of the pumping wavelength on the SCG spectrum.
3. the pulse duration

As observed in �gure 1.24, Dudley et al [137] showed the dependence of the SCG phenomenon
to the pulse duration. Reducing the pulse duration also decreases the spectral bandwidth and
distorts its spectrum.

4. the pulse shape
Considering the pulse shaping approach in the improvement of the SCG spectra, the over-
whelming majority of prior studies utilized intense optical pulses with symmetric and compact
temporal pro�les such as Gaussian or hyperbolic secant pulses. There have been several reports
on the optimization of SCG via pulse shaping. However, the asymmetric pro�les have also been
investigated but more recently. Indeed, using the Airy pulses Ament et al [18], both experi-
mentally and numerically, studied the quality of the SCG spectrum in terms of the interaction
between the dominant peak and the oscillations tail through the soliton-dispersive-wave pairs
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Figure 1.24: In�uence of the SCG spectral bandwidth by the pulse width ( c©-2006 APS, from [137]).

features in a PCF. Moreover in 2012, Castelló-Lurbe et al [202a] suggested that the preshaping
of the input pulse with the correct skewness (in terms of asymmetry) compensates the delete-
rious e�ect of the FCA which was assumed to highly a�ect the trailing edge of the propagating
pulse in silicon waveguides. Then, the SCG phenomenon in terms of spectral broadening was
enhanced cause of this operation. More recently in 2014, the in�uence of steepness of pump
temporal pulse pro�le on spectral �atness and SCG coherence in all-solid PCFs with �attened
normal dispersion has been studied by Klimczak et al [202b].

5. the chirping process
Considering the pulse chirping process, it has been shown earlier that the positive chirp increases
the spectral bandwidth of the SCG [137,201]. This e�ect is better than the one of the negative
chirp as discussed in [201,209].

Noise and coherence of SCG spectrum
The SCG spectra are accompanied by noise induced by the multitude physical processes that

intervene [3]. The sensitivity to noise of SCG in both SMF and PCF has been reported by a number
of authors [137]. In fact achieving broadband spectra is not the only necessity, there is also the
coherence which is important. A spectrum which is enough incoherent, is not useful in practical
situations ie a spectrum which is highly distorted by noise does not serve in applications. So, it
is necessary to obtain broadband spectra but they should be also the most coherent as possible.
One can appreciate the coherence of a SCG spectrum through the observation by considering its
distortions or its �atness. Spectra which are more �attened, have a high probability to be more
coherent than those which are highly distorted and less �attened. Rigorously, the spectral coherence
of the SCG has been found by J. M. Dudley and S. Coen [129] to be measured through the modulus
of the complex degree of �rst-order coherence which is de�ned at each wavelength in the SCG by :

∣∣g(1)
12 (λ, t1 − t2)

∣∣ =

∣∣∣∣ 〈E∗
1(λ, t1)E2(λ, t2)〉

〈|E1(λ, t1)|2〉〈|E2(λ, t2)|2〉

∣∣∣∣. (1.46)

Here the angular brackets denote an ensemble average over independently generated pairs of SCG
spectra [

E1(λ, t), E2(λ, t)
] obtained from a large number of simulations, and t is the time measured

at the scale of the temporal resolution of the spectrometer used to resolve these spectra [3,129,137].
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1.4.3 Applications of the SCG
The SCG phenomenon provides light sources with broad spectral coverage. It also provides spatially

coherent radiation and can provide ultrashort pulses with large compression factors. The SCG can
lead to the spectral versatility of lamp based sources with the advantages of laser radiation, including
higher brightness for improved signal-to-noise measurements and ultrashort pulse operation. Using
the SCG allows to avoid the complexity and costs associated with tunable visible laser systems that
typically involve mode-locked lasers with second harmonic generation (SHG) or optical parametric
generation [114]. The SCG phenomenon has several applications in nonlinear optics and other �elds
using the light. These applications encompass domains like optical telecommunications, photonics,
biophotonics ... . For example, the SCG output could be used in optical telecommunications as a
multichannel telecommunications source (SCG-Based WDM sources) [1]. In a 2000 experiment, the
supercontinuum-based WDM technique was used to produce 1000 channels with 12.5-GHz channel
spacing [210]. SCG can also be useful in applications as nonlinear spectroscopy, optical coherence
tomography, optical frequency metrology, biophotonic microscopy ... [1,114]. The �gures 1.25 and
1.26 present some SCG-Based experiments in spectroscopy and in biophotonic microscopy, respec-
tively [114]. In �gure 1.26, the diagram presents a generalized schematic for multiphoton �uorescence

Figure 1.25: A SCG-Based experiment in spectroscopy : (a) Photograph and (b) experimental layout of a compact
multidimensional spectro�uorometer based around a commercially available all-�bre SCG source ( c©-2010 J. Dudley
& R. Taylor, from [114]).

microscopy with a SCG source, including an optional pulse compressor stage [114].
Further details and informations about the description of the presented experiments and other

applications of SCG can be found in [1,114].

1.4.4 Limits of the previous works on the SCG analysis
Despite the great e�ort done these last decades in the study of the MI and the SCG phenomenon

resulting on the several works, research papers, proceedings, and books, in the best of our knowledge,
it still remained several paths both in the experimental and the theoretical aspects among which one
can quote the following points :

• since the MI mechanism is a mean to reach to the SCG phenomenon, we have found necessary
to highlight a query on its occurrence for chirped femtosecond pulses propagating in a medium
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Figure 1.26: A SCG-Based experiment in biophotonic microscopy using a SCG source ( c©-2010 J. Dudley & R.
Taylor, from [114]).

as silicon waveguides. Indeed, an investigation about the in�uence of the absorption coe�cients
present in this kind of medium was missing.

• Even the investigation of SCG phenomenon in an optical waveguide modeled by the higher-
order nonlinear Schrödinger equation with non-Kerr terms using subnanojoule femtosecond
pulses.

• The question of the propagation of chirped FEAPs in highly dispersive SMFs was still opened.
• Another study that was missing, concerned the SCG through femtosecond nJ-Airy pulses in
the CS2-LCPCFs under the in�uence of the initial chirp,

• A modeling that includes the TPA, the THG and the NFK e�ects was also found to be an
interesting opened question considering the SCG analysis in SOI-waveguides.

It is worthy to notice that these paths belong to the theoretical aspect and are the only ones that
have attracted our attention in the work presented in the thesis. And so, they are not exhaustive.

1.4.5 Objectives of SCG analysis : motivations and contributions
In the thesis, our contribution can be described as follows :
• concerning the MI analysis, we investigate the SOI-waveguides under FOD. In the PTG, we
have chosen to investigate di�erent input pro�les for comparison. The e�ects of the input
pro�le, chirp and absorption coe�cients are highlighted.

• Then, we take an interest to the SCG phenomenon, using femtosecond pulses in the sub-
nanoscale of energies through the generalized nonlinear Schrödinger equation that includes
non-Kerr terms. We compare the e�ect of cooperative nonlinearities on the spectral band-
width, with the one of the competing nonlinearities.

• We also analyze the role played by the pulse's shape asymmetry and the initial chirp on the
propagation in highly dispersive SMFs. The A.I mechanism induced by the competition between
the initial chirp and the GVD, pulse ampli�cation and stabilization are examined.

• We study numerically the SCG in the CS2-LCPCFs using femtosecond Airy and sech-type
pulses in the nJ scale of energies.
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• Finally, we analyze the SCG in SOI-waveguides that includes both the THG and the NFK
terms.

In the next section, we describe brie�y the optical waveguides that are modeled in the di�erent
systems studied in the thesis.

1.5 Description of the optical waveguides studied in the thesis

1.5.1 SMFs
These optical waveguides have been described extensively in several books and research papers.

The glass waveguides are fabricated with pure silica, to get low-loss optical �bers [3]. Generally, one
illustrates the optical �bers by a central glass core surrounded by a cladding layer whose refractive
index n2 is slightly smaller than that of the core n1. The schematic illustration of the cross section
and refractive index pro�le of a step-index �ber is given in �gure 1.27. One distinguishes depending
on the index pro�le step-index �bers and the graded-index �bers (see �gure 1.28). Concerning the

Figure 1.27: Schematic illustration of the cross section and the refractive-index pro�le of a step-index �ber. ( c©-2007
AP, from [3]).

number of modes available within a �ber, the relative core- cladding index di�erence ∆ and the V
parameter respectively given by the following relations :

∆ =
n1 − n2

n2

,

V =
2πa

λ0

√
n2

1 − n2
2,

(1.47)

allow to distinguish the multimode �bers (large values of a about 25 µm and V>2.405) to the single-
mode �bers (small values of a as those inferior to 5 µm with ∆ ≈ 0.003 and V<2.405). Note that
the parameter λ0 is the wavelength of the input light. The commonly used �bers in long distances
optical applications are the SMFs. In addition, the nonlinear e�ects are mostly studied in this last
kind of �bers. Our study on the FWM mechanism is based on a SMF near the ZDW in WDM
solitons system.
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Figure 1.28: Diagram of di�erent index pro�les : (a) step-index single mode �ber, (b) step-index multimode �ber,
(c) graded-index multimode �ber.

1.5.2 SOI-waveguides
Considering the SOI-waveguides, they are based on the silicon material which is one of the

fundamental materials in the semiconductor industry. On the other hand, the interest aroused by
the SOI-waveguides is due to the advantageous properties in the mid-infrared spectral region useful
for the current photonics devices applications, even in the SCG process, and active opto-electronic
components [7,8,200,201e,201g,202a,211-216]. The widely used SOI-waveguides may take the form
of a channel waveguide, ridge waveguide, photonic-crystal waveguide, or slot waveguide, as shown in
�gure 1.29 [217]. The particularity of SOI-waveguides is the necessary inclusion of the absorption

Figure 1.29: Four con�gurations for making waveguides in silicon: (a) Channel waveguides; (b) Rib waveguides; (c)
Photonic-crystal waveguides; (d) Slot waveguides ( c©-2005 IEEE, from [217]).

coe�cients as the TPA and the FCA in the study. They are known to have an important role in the
analysis of pulse propagation within the SOI-waveguides.
The interest aroused by silicon-based (Si-based) optical devices also crosses the nanophotonics tech-
nologies and these achievements have opened up the possibility of signal performing in the �eld of
signal processing functionalities at chip scale with relatively low optical power [202a]. The Si-based
components in other hand, o�er the bene�ts of low cost and low power consumption. Typically, a
SOI-waveguide di�ers from a silica �ber in many aspects [200,218] : SOI-waveguides are generally
smaller than silica �bers (they rarely exceed 5 cm in practice) and silicon is very nonlinear. It is
about 200 times more than the silica as can be observed in table 1.1. SOI-waveguides have the
property to con�ne light within an area so small that highly enhances the nonlinear e�ects. In ad-
dition, the SOI-waveguides because of the crystalline nature of silicon, have some nonlinear e�ects
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as the stimulated-Raman-scattering which depends strongly on the waveguide geometry and mode
polarization. The SOI-waveguide studied in this thesis is a rib-like waveguide. We study the pulse
compression mechanism and the SCG phenomenon in the considered waveguide.

1.5.3 CS2-LCPCFs
The PCFs in which the central core region is �lled by a liquid instead of a solid (or the vacuum), are

the so-called LCPCFs [145,203-206a]. The nonlinear properties of such �bers are enhanced compared
with the solid/hollow core PCFs. The advantages are : a large nonlinearity, an ultra-�attened
dispersion, a broadband single-mode guidance, a very small e�ective area etc [145,203-206a]. For
instance, in the case where the liquid is the CS2, one could normally obtain a nonlinearity which
is one hundred (100) times larger than that of silica [145,206a,206b]. Such a LCPCF is called a
CS2-LCPCF [145]. We should note that, the use of the CS2-LCPCF in this work just �lls the need
of a highly nonlinear medium without setting the problem of the practical manipulation of the CS2's
liquid. Indeed, this latter is very delicate and dangerous to manipulate in practice [206c]. In addition,
as noticed in [206d], the two-photon absorption (TPA) is a relevant limiting phenomenon that should
be considered for the CS2 material however only for the short-wavelength region 420−530 nm. Thus
for the experiment, another liquid could be chosen since the results are not directly linked to the
CS2 but only on the high nonlinearity of the medium. Figure 1.30(a) shows a sketch of the LCPCF's
diagram. The fundamental propagation mode within the LCPCF is plotted in �gure 1.30(b). This

Figure 1.30: (a) Diagram of the LCPCF studied ( c©-2010 APS, from [145]), (b) Plot of the fundamental mode of
polarization within the CS2−LCPCF).

last �gure shows that the considered CS2-LCPCF has only one single axis of propagation. Thus,
there is no birefringence in the �ber.

1.6 Conclusion
In summary we have presented in this chapter, a brief overview on the pulse compression mechanism

through its physical descriptions, applications, limits in the theoretical analyses and the highlights
of our contribution in this �eld of research. The FWM phenomenon has also been presented. Its
basic physical description has been done, and some useful FWM-based applications were quoted.
The deleterious aspect of the FWM in WDM systems was highlighted. The FWM analysis in this
kind of communication systems done by Ablowitz et al in a mathematical approach that involves
two launched pulses in soliton-like form was described as o�ering interesting paths of research among
which HOD systems appear. Furthermore, a contribution in the case of TOD is presented later in
the thesis. Considering the SCG phenomenon, we have done a brief presentation, highlighting its
physical description and other features raised during its achievement. We have also presented the
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paths of our contribution on the SCG analysis. The di�erent waveguides studied in the thesis have
been described. In the next chapter, we present the di�erent methods used in our work.
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Chapter 2

Analytical and numerical treatments of

models

2.1 Introduction
This chapter presents the di�erent methods used to obtain the results of the thesis. We start

in section 2.2 by the modeling of our systems that are described in general through the NLSE. In
this section, we derive the considered NLSE from the Maxwell's equations of electromagnetism. In
section 2.3, the analytical treatments of the pulse compression phenomenon based on the MVA are
showed while the section 2.4 concerns the FWM process. We describe in section 2.5 the MI linear
analysis that allows to obtain the MI gain and PTG occurrence conditions. Section 2.6 deals with
the SCG analysis while a conclusion is done in the last section of the chapter.

2.2 Propagation modeling : the NLSE

2.2.1 Modeling of the propagation in silica �bers
Beyond the experimental study, the theoretical one consists to model rather analytically this pulse

propagation by a fundamental equation which simulates the dynamics within an optical waveguide.
This fundamental equation well-known and widely used in di�erent forms according to the study,
is the NLSE. It has been earlier derived by Hasegawa and Tappert [38] for optical �bers, from the
Maxwell's equations of electromagnetism [3] :

O · E = 0, (2.1a)
O× E = −∂B

∂t
, (2.1b)

O ·B = 0, (2.1c)
O×B =

1

c2
∂E

∂t
+ µ0

∂P

∂t
, (2.1d)

where E, B, ε0, c, µ0 and P are the electric �eld vector, the magnetic �ux density vector, the vacuum
electric permittivity, the speed of light in the vacuum, the vacuum magnetic permeability and the
induced electric polarization, respectively. In this form, these equations belong to the speci�c case
where one applies the following physical assumptions :

1. in a medium as the silica which constitutes essentially the optical �bers, there is no free charges,
so the electric charge density ρf and the current density vector J are equal to zero.
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2. This medium is nonmagnetic, therefore the induced magnetic polarization M is null.
The medium of optical �bers allows to use the relation that relates P and E far from the resonances
[3]. Combining Eq. (2.1b) and Eq. (2.1d) and eliminating B in favor of E and P we obtain

O× O× E = − 1

c2
∂2E

∂t2
− µ0

∂2P

∂t2
. (2.2)

The relation between P and E is nonlinear as written below [1,3] :

P(r, t) =ε0

( ∫ t

−∞
χ(1)(t− t′) · E(r, t′)dt′

+

∫ t

−∞
dt1

∫ t

−∞
dt2 · χ(2)(t− t1, t− t2) : E(r, t1)E(r, t2)

+

∫ t

−∞
dt1

∫ t

−∞
dt2

∫ t

−∞
dt3

× χ(3)(t− t1, t− t2, t− t3)
...E(r, t1)E(r, t2)E(r, t3) + ...

)
,

(2.3)

where χ(k) is the k-th order susceptibility. It is generally a tensor of rank k+1. The linear suscep-
tibility χ(1) representing the most important parameter of P(r, t), acts in the system through the
refractive index n and the attenuation coe�cient α mentioned earlier. Since the silica of optical �bers
is a symmetric molecule, the second-order susceptibility χ(2) generally responsible for nonlinear e�ects
as SHG and sum-frequency generation vanishes in this medium. The development of P should go
further beyond the third-order susceptibility χ(3) (presence of the suspension points in Eq. (2.3)) for
highly nonlinear media, however for convenience to reach the cubic NLSE we should stop the devel-
opment until order three. Reaching this order is necessary for analysis of short (picosecond domain)
and ultra-short pulses (femtosecond and sub-femtosecond domains) propagation including the most
nonlinear e�ects in optical �bers. The tensorial products '·', ':' and '...' correspond to χ(1), χ(2) and χ(3)

related to the electric �eld components E(r, t′), E(r, t1)E(r, t2) and E(r, t1)E(r, t2)E(r, t3), respec-
tively. The medium response being assumed to be local, usually one should emit several hypotheses
that permit to simplify the modeling :

1. the nonlinear part of P should be considered as a small perturbation,
2. in a scalar analysis of the pulse propagation, the polarization state should be maintained regular

along the �ber length,
3. the light injected should be considered almost monochromatic : this assumption is satis�ed for

short and ultra-short pulses,
4. the envelope of the electromagnetic �eld should vary slowly approximately : it is the well-known

and famous slowly varying envelope approximation (SVEA) [3].
Let us use the following form of the electrical �eld E(r, t) that models the dynamics into a glass �ber
including all kinds of optical �bers :

E(r, t) =
1

2
[E(r, t) exp(−iω0t) + c.c]x̂, (2.4)
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where E(r, t), x̂ and c.c represent the slowly varying function of time, the polarization unit vector
and the complex conjugated part of E. Similarly, one can also write the vector P :

P(r, t) =
1

2
[P (r, t) exp(−iω0t) + c.c]x̂ (2.5)

Taking into account Eqs. (2.3), (2.4) and (2.5), this vector can be re-expressed explicitly by the
susceptibility coe�cients as follows :

P(r, t) =ε0

∫ t

−∞
χ(1)

xx (t− t′)E(r, t′) exp[−iω0(t− t′)]dt′

+
3ε0

4
χ(3)

xxxxE(r, t)

∫ t

−∞
R(t− t1)E

∗(r, t1)E(r, t1)dt1,

(2.6)

where the intensity-dependent nonlinear e�ects associated to third-order susceptibility have been
included using [3,83]:

χ3(t− t1, t− t2, t− t3) = χ3R(t− t1)δ(t1 − t2)δ(t1 − t3), (2.7)
with R(t) being the nonlinear Raman response function normalized to one because it must be zero
when t1 > t with respect to the causality. The subscripts 'xx' for χ(1) and 'xxxx' for χ(3) in Eq. (2.6),
represent the single polarization following the x-axis assuming that we focus only on the scalar case
in which the modal birefringence (that includes the y-axis) has been neglected [3]. For pulse widths >
1 ps, one should make some approximations on Eq. (2.6) that eliminate the delayed Raman response
and consider the medium to have instantaneous nonlinear response. Therefore, we distinguish the
two cases :

1. the local instantaneous medium
the relation (2.6) becomes :

P(r, t) =ε0

(
χ(1)

xx +
3

4
χ(3)

xxxx|E(r, t)|2
)
E(r, t). (2.8)

Introducing Eq. (2.8) into Eq. (2.2) and taking the Fourier transform of the resulting equation
leads to the following form well-known as the Helmholtz equation satis�ed by the scalar �eld
Ẽ :

O2Ẽ + (
ω

c
)2

(
1 + χ̃(1)

xx (ω) +
3

4
χ3

xxxxF
[
|E(r, t)|2

])
Ẽ = 0, (2.9)

where F [ ] and Ẽ are the Fourier transform operator and the Fourier transform of E respec-
tively. The operator F [ ] is de�ned as :

F [u(t)] = ũ(ω) =

∫ +∞

−∞
u(t′) exp(iωt′)dt′. (2.10)

If we set that q(ω) = 1 + χ̃
(1)
xx (ω) + (3/4)χ3

xxxxF
[
|E(r, t)|2

] and introduce two parameters ñ, α̃
as q(ω) = (ñ+ iα̃c/2ω)2, we normally arrive to the nonlinear-index coe�cient n2 and the TPA
coe�cient α2 as :

n2 =
3

8n
Re(χ(3)

xxxx), α2 =
3ω0

4nc
Im(χ(3)

xxxx). (2.11)
To obtain Eq. (2.11), it is necessary to set that ñ = n + n2|E|2 and α̃ = α + α2|E|2. The
coe�cient n is the linear index and α represents the linear loss parameter. Since χ(3)

xxxx is
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complex, its real and imaginary parts are represented respectively by Re(χ(3)
xxxx) and Im(χ

(3)
xxxx).

As n2 and α2 link with χ(3)
xxxx, n and α are found to link with χ(1)

xx as following :
n = 1 +

1

2
Re(χ̃(1)

xx ), α =
ω

nc
Im(χ̃(1)

xx ). (2.12)
Generally, α2 vanishes for silica that is why it is neglected in optical �bers. However, it is
not the case for silicon waveguides and chalcogenide glasses (see table (1.1)). The Helmholtz
equation above, can be satisfactorily solved by using the method of separation of variables in
which we assume the solution of form :

Ẽ(r, ω − ω0) = F (x, y)ũ(z, ω − ω0) exp(iβ0z), (2.13)
where Ẽ(r, ω − ω0), F (x, y), ũ(z, ω − ω0), β0 and z are the Fourier transform of the optical
�eld (of an envelope pulse whose frequency components ω are de�ned around a central one ω0),
the transversal distribution function, the Fourier transform of the slowly varying amplitude
function, the wave number, the axial variable which de�nes the propagation distance of the
pulse within the waveguide.
Using Eq. (2.13) in Eq. (2.9) leads to the system :

∂2F (x, y)

∂x2
+
∂2F (x, y)

∂y2
+

[
q(ω)

ω2
0

c2
− β̃2(ω)

]
F (x, y) = 0 (2.14a)

2iβ0
∂ũ

∂z
+

(
β̃2 − β2

0

)
ũ = 0. (2.14b)

The relation (2.14a) is the eigenvalue equation of the optical waveguide modes which involves
the transversal distribution of the �eld F (x, y). Solving this equation by using for example the
�rst-order perturbation theory [219], leads to the de�nition of the modal �eld distribution [3].
For optical �bers, there are two kinds of modes : EHmn and HEmn. These modes are similar
to the transverse-electric (TE) and transverse-magnetic (TM) modes of planar waveguides such
as SOI-waveguides for m=0. The case of SMFs is described by the fundamental mode in which
m=1 and n=1. It allows to approximate the function F (x, y) by a Gaussian distribution form
as ∼ exp

[
− (x2 + y2)/w2

], where w is the width parameter de�ned in ref. [3]. The normalized
frequency V , given in Eq. (1.47) for SMFs stems from the solving of Eq. (2.14a). On the other
hand, the dielectric constant q(ω) and the wave number β̃ could be nearly identi�ed respectively
by :

q(ω) ∼ n2 + 2n∆n (2.15)
and

β̃(ω) ∼ β(ω) + ∆β(ω), (2.16)
where the perturbations ∆n and ∆β(ω) are themselves de�ned respectively as :

∆n = n2|u|2 +
icα̃

2ω0

(2.17)
and

∆β(ω) =
ω2n(ω)

c2β(ω)

∫ ∫ +∞
−∞ ∆n(ω)|F (x, y)|2dxdy∫ ∫ +∞

−∞ |F (x, y)|2dxdy
. (2.18)

Let us approximate the term β̃2−β2
0 of Eq. (2.14b) by 2β0(β̃−β0) and take the relation (2.16),

we obtain the following modi�ed form of Eq. (2.14b) :

i
∂ũ

∂z
+

(
β(ω)− β0 + ∆β0

)
ũ = 0, (2.19)
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with ∆β0 being an approximation of ∆β(ω) as its �rst term in a Taylor series. It is described
as follows :

∆β0 '
ω0n2

∫ ∫ +∞
−∞ |F (x, y)|4dxdy

c
( ∫ ∫ +∞

−∞ |F (x, y)|2dxdy
)2 |u|

2 + i
α̃

2
. (2.20)

It is observed in Eq. (2.20) the CKN γ(ω0) and the e�ective mode area Aeff parameters de�ned
respectively as :

γ(ω0) =
ω0n2

cAeff

(2.21)
and

Aeff =

( ∫ ∫ +∞
−∞ |F (x, y)|2dxdy

)2∫ ∫ +∞
−∞ |F (x, y)|4dxdy

. (2.22)

The interaction between the electromagnetic �eld and the bound electrons of a dielectric leads
generally to dependence on the optical frequency ω. This property refers to the chromatic
dispersion which manifests through the frequency dependence of the refractive index n(ω).
The CDP of an optical waveguide is usually approximated by expanding the mode-propagation
constant β(ω) in a Taylor series around the pump frequency ω0 as :

β(ω) = n(ω)
ω

c
= β0 +

∞∑
k=1

(ω − ω0)
k

k!
βk, (2.23)

where βk =
(
dkβ(ω)/dωk

)
ω=ω0

is kth order of the CDP. Physically, the orders 1, 2, 3, 4 ...
represent the group velocity, the GVD, the TOD, the FOD ... . Inserting Eqs. (2.20), (2.21),
(2.22) and (2.23) in the reciprocal Fourier transform of Eq. (2.19) yields :

i
∂u

∂z
+

M∑
k=1

(i)kβk

k!

∂ku

∂tk
+ γ(ω0)|u|2u+

iα

2
u = 0, (2.24)

where the term ω − ω0 of Eq. (2.23) has been replaced in the time-domain by the di�erential
operator i(∂/∂t) [3]. The integer M (≥ 2) represents the last order reached in the CDP of the
optical waveguide. Equation (2.24) is the so-called NLSE of a local instantaneous medium. The
nonlinear term associated to γ(ω0) corresponds to the SPM or Kerr e�ect. It is a manifestation
of intensity dependence of the refractive index in the nonlinear optical waveguide and generally
it is responsible to the spectral broadening of optical pulses. When more than one pulse is
launched within the optical waveguide as done in WDM systems, the dynamic is described
by coupled equations whose the number corresponds to the number of launched pulses. In
this speci�c case, each sub-NLSE of the system is described by a similar version of Eq. (2.24)
with additional terms linked to the coupling between the propagating waves. This nonlinear
coupling through the CKN parameter is the so-called XPM e�ect. This phenomenon does not
include an energy transfer between the interacting �elds. Physically, XPM occurs because the
e�ective refractive index seen by an optical pulse in a nonlinear optical waveguide depends not
only on the intensity of this pulse but also on the intensity of other copropagating pulses.
Making the transformation of the well-known retarded frame of time T , assuming a reference
frame moving with the pulse at 1/β1 as T = t− β1z, we obtain the following simpli�ed form of
Eq. (2.24) :

i
∂u

∂z
+

M∑
k=2

(i)kβk

k!

∂ku

∂T k
+ γ(ω0)|u|2u+

iα

2
u = 0. (2.25)
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2. The local non-instantaneous medium
In this case, we use completely Eq. (2.6). It corresponds to the higher-order nonlinear systems
since it includes the delayed response (stemming from the molecular vibrations : Raman e�ect)
of the medium which must be added when ultra-short pulses are studied. Indeed in this speci�c
case, the pulse spectra are wide (> 0.1 THz) and it leads the Raman gain to increase the
intensity of the low-frequency components of the propagating optical �eld through an energy
transfer from the high-frequency components of the same pulse : it is the description of the
intra-pulse Raman scattering (IPRS) phenomenon. Considering Eq. (2.7) with Eq. (2.6) leads
to a modi�ed form of Eq. (2.9) [3,220] :

∇2Ẽ + n2(ω)
ω2

0

c2
Ẽ = −iω0

c
− χ3

xxxx

ω2
0

c2

∫ ∫ +∞

−∞
R̃(ω1 − ω2)

× Ẽ(ω1, z)Ẽ
∗(ω2, z)Ẽ(ω − ω1 + ω2, z)dω1ω2,

(2.26)

where R̃ is the Fourier transform of R(t). From Eq. (2.10) to Eq. (2.24), a similar process
could be done in the actual case of Eq. (2.26). However a Taylor series expansion of γ(ω) as
done for β(ω) in Eq. (2.23), should be included in the development (at least until to the �rst
order of the expansion). The form of the obtained NLSE is well-known as the GNLSE [3,221]
:

i
∂u

∂z
+

M∑
k=2

(i)kβk

k!

∂ku

∂T k
+ γ

(
1 +

i

ω0

∂

∂T

)(
u(z, T )

∫ T

−∞
R(T − T ′)|u(z, T ′)|2dT ′

)
+ i

α

2
u(z, T ) = 0.

(2.27)

The term with ω0 is associated to the self-steepening (SS) e�ect. The SS phenomenon stems
from the intensity dependence of the group velocity and leads to an asymmetry in the SPM-
broadened spectra of ultrashort pulses [3]. It creates an optical shock which is similar to the
development of an acoustic shock on the leading edge of a sound wave [222]. The integral and
the function R(t) correspond to the delayed Raman response (DRR) that includes the IPRS
and the SRS. The scattering e�ects implicate that the optical �elds transfer part of their energy
to the nonlinear medium. In silica �bers and more generally, R(t) = (1 − fR)δ(t) + fRhR(t),
where the �rst term governs the nearly instantaneous electronic response and hR(t) is the
Raman response function [3,200]. The parameter fR represents the fractional contribution of
the nuclei to the total nonlinear polarization. For silica �bers, it is found to be 0.18 while for
silicon it is about 0.043 [200]. hR(t) is de�ned as [3,150-153] : hR(t) = (fa + fc)ha(t) + fbhb(t)
with ha(t) = (τ 2

1 + τ 2
2 )/(τ1τ

2
2 ) exp

(
− t/τ2

)
sin

(
t/τ1

) and hb(t) = (2τ3 − t)/(τ 2
3 ) exp

(
− t/τ3

).
The values of the coe�cients are given as fa = 0.75, fb = 0.21, and fc = 0.04 that quantify
the relative contributions of the isotropic and the anisotropic parts of the Raman response.
Considering the characteristic times τ1, τ2 and τ3, their values are generally taken as 12, 32, and
96 fs, respectively [152-155]. The Raman scattering includes optical phonons in the interaction
between the propagating �eld and the nonlinear medium. In a quantum-mechanical view, the
photon of the optical �eld is annihilated to create a photon at a lower frequency (the Stokes
component), a photon at a longer frequency (the ASC) and a phonon allowing the conservation
of the energy and the momentum. Beyond the energy transfer between the optical �eld and
the medium, their impact depends on their nature. For instance talking about the IPRS, one
observes a large temporal shift of the pulse position and a RIFS in the pulse spectrum toward
the longer wavelengths [1,3]. On the other hand, the SRS exhibiting a threshold-like behavior,
can transfer energy from one channel to the neighboring channels in a multichannel lightwave
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system like multiplexing systems. So it is an issue for these systems while in other cases it can
be useful. For example allowing the fabrication of broadband Raman ampli�ers and tunable
Raman lasers. On the other hand, for some �bers materials as chalcogenide or some liquid-
core �lled �bers the CKN coe�cient exhibits a nonlinear saturation as γ = γ0/(1 + I|u|2) with
I = 1/Ps. The saturation power Ps is the threshold power at which the CKN starts to saturate.
An approximation of this CKN leads generally to the so-called cubic-quintic NLSE and then
septic, neptic ... according to the degree of this approximation.

Both of these two cases (local instantaneous and non-instantaneous cases) are those which interest
our study in the thesis. We do not investigate the nonlocal NLSE widely used in the case of spatial
beams of planar waveguides or waveguides lattices [3]. In the next, according to the study whether
for pulse compression or for SCG analyses, we use the modi�ed forms of Eqs. (2.25) and (2.27).

2.2.2 Modeling of the propagation in a SOI-waveguide
Globally, the process/method is the same as done above for silica �bers. Nonetheless, there is

di�erence in the nonlinear part of Eqs. (2.3), (2.6), (2.9), (2.11), (2.12), (2.25) and (2.27). The
nonlinear refractive index of the silicon is higher than that of silica, that is why waveguides man-
ufactured from silicon allow a tight con�nement of optical pulses in the sub-microwavelength range
using the technology of SOI [216]. Thus, we recall that the cubic Kerr nonlinearity is hundred times
more important in SOI-waveguides than in standard silica SMFs. Subsequently, the Raman gain of
SOI-waveguides is about one thousand times the one of standard SMFs. The nonlinear interaction in
SOI-waveguides is therefore e�cient under 5 cm-length. The silicon is a semiconductor material that
includes the TPA, the FCD and free carriers as FCA. It belongs to anisotropic materials. Beyond 2.2
µm in wavelengths, there are no TPA, FCA or FCD [216]. As si-based materials exhibit a symmetry
of inversion, the less important order of nonlinear e�ects corresponds to the third-order dielectric
susceptibility χ(3). In silicon the Fourier transform of the corresponding third-order polarization is
given by [216]:

P̃
(3)
i (ωi) =

3ε0
32π3

∫ ∫
χ

(3)
ijkl(−ωi, ωj,−ωk, ωl)Ẽj(ωj)Ẽ

∗
k(ωk)Ẽl(ωl)dωjdωk,

where ωl = ωi + ωk − ωj.The parameter χ(3) encompasses two major contributions : the electronic
part χe

ijkl and the one associated to the optical phonons χR
ijkl. This latter (χR

ijkl) is the one that
has been already discussed for silica �bers above in Eq. (2.7). The main discrepancy between the
silica and silicon concerns χe

ijkl because of the semiconductor nature of the latter. The spectrum of
Raman gain in silica is greater than that of silicon. Thus for silicon, the Raman scattering is more
important at the �rst order than the Brillouin scattering which is associated to the acoustic phonons.
In comparison, Brillouin scattering is negligible in silicon contrary to silica. χe

ijkl corresponds to the
oscillations of bound electrons and is the part of χ(3) that generates the free carriers and nonlinear
absorptions as TPA, FCA and FCD when the energy of incident photon Ep is higher than the half
of bandgap energy Eg :

Ep >
Eg

2
.

In silicon, for a wavelength as 1.1 µm, one has 1.2 eV for Eg [216]. When the condition above is
satis�ed, the bound electrons can be excited and thrown in the band of conduction through the TPA
e�ect. For example it means that, two photons are absorbed by one bound electron whose energy is
now higher than that of Eg allowing its extraction from the atomic network and its free movement in
the band of conduction. This kind of free charged particles moving in the band of conduction are the

Lucien M. Mandeng, PhD thesis c©-2015 71



Laboratory of Mechanics, Department of Physics, Faculty of Science, U.Y.I

so-called free carriers. That is why this process generates FCA and FCD. It is also assisted by optical
phonons for the momentum conservation. Furthermore, It has been observed and demonstrated that
both the Kerr and TPA e�ects are nearly simultaneous in silicon [216]. Let us focus now on the
electronic part of χ(3) [83,216] :

χe
ijkl = χe

1122δijδkl + χe
1212δikδjl + χe

1221δilδkj + χe
dδijkl,

with χe
d being the coe�cient of the nonlinearity's anisotropy. Since Ep < Eg, one obtains χe

1122 =
χe

1221 = χe
1212. So :

χe
d = χe

1111 − χe
1122 − χe

1221 − χe
1212 = χe

1111 − 3χe
1122.

It yields :
χe

ijkl = χe
1111

[
ρ

3

(
δijδkl + δikδjl + δilδkj

)
+

(
1− ρ

)
δijkl

]
,

where ρ = 3
χe

1122

χe
1111

≈ 1.27 for silicon. Therefore, the anisotropy of both the Kerr and the TPA e�ects
is similar. The TPA generates free carriers (free electrons and holes) according to the incident light.
This e�ect in�uences the nature of the propagating wave in the SOI-waveguides by modifying the
refractive index in its nonlinear part. The carriers can be generated optically or electrically by the a
di�usion mechanism through the rate equation :

∂N̄ν

∂t
= Ḡ− N̄ν

τ0
,

where N̄ν , ν, Ḡ and τ0 are the number of free carriers of nature ν per volume unit (free-carrier
density), the nature of free carriers (free electrons or holes), a growth function (depending on the
intensity of the incident light and on the e�ective area of the SOI-waveguide), and the e�ective
carrier lifetime (including recombination, di�usion and drift) that depends on the geometry of the
SOI-waveguide.

After the modeling done above for silicon waveguides, the coe�cient of the cubic nonlinearity
described in Eq. (2.21) should be rewritten as :

γ′ = γ + iΓ,

with γ being the Raman contribution de�ned in Eq. (2.21) and by χR
ijkl while Γ is the electronic

contribution generating the TPA and stemming from χe
ijkl. Note that, the Raman scattering exists

only for the T.E modes not for the T.M modes. The free-carrier dispersion is given by the product
σN̄ν in which σ represents the FCA parameter. The linear absorption/losses in silicon are de�ned as
:

α′ = α+ α”,

with α” = σN̄ν being the free-carrier dispersion. Taking into account γ′ and α′ described above,
one should only modify the corresponding terms in Eqs. (2.25) and (2.27) for the NLSE of SOI-
waveguides.

2.3 The MVA that involves the RDF for the pulse compression
analysis

As discussed in sub-section (1.2.5) of the �rst chapter, considering the theoretical aspect of the
pulse compression analysis, the methods used consist to solve the dynamic equation of the optical
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waveguide and so, to bring out the compression factor evolution across the length of the waveguide.
In the numerical side, it is customary to use the SSF method or the �nite-di�erence methods [3].
However, it is suitable sometimes to proceed rather through analytical or semi-analytical methods.
In our studies on the pulse compression analysis, we have used the MVA that involves the RDF. We
present this method in this section for the di�erent systems studied.

2.3.1 In the case of linear compression of chirped femtosecond optical
pulses under FOD

The linear equation describing the propagation of optical pulses in the case of FOD stems from
the linear part of Eqs. (2.25) and (2.27) as follows [1,3,224,225]:

i
∂u

∂z
+

4∑
k=2

(i)kβk

k!

∂ku

∂T k
= 0, (2.28)

where the last order in the CDP pro�le, is the FOD. The TOD term is ignored in this study because
it is well-known that it introduces a relatively small temporal shift of the pulse center which does not
a�ect the purpose of our study as discussed in sub-section (1.2.2) [1,3,8,31]. The Lagrangian density
function corresponding to Eq. (2.28) is taken as :

Ld =
i

2
(u∗

∂u

∂z
− u

∂u∗

∂z
)−

4∑
k=2

(i)kβk

k!

∂k−1u

∂T k−1

∂u∗

∂T
. (2.29)

Since the case treated in this sub-section concerns the linear compression, the nonlinear part is
therefore neglected. This does not allow to introduce the RDF. The case using the RDF is presented
in the nonlinear case. Our study is conducted using the chirped Gaussian and RC pro�les given
respectively by [1,3,9,10,224] :

u(z, T ) = up exp
(
− 1 + iCp

2
(
T

Tp

)2 + iφp

) (2.30)

and
u(z, T ) =

up

2

[
1 + cos(

πT

Tp

)
]
exp

(
i
Cp

2
(
T

Tp

)2 + iφp

) (2.31)
where up, Tp, Cp and φp are the amplitude, the width, the chirp and the phase, respectively. The
MVA de�nes the Lagrangian function from its density described in Eq.(2.29) :

L =

∫ +∞

−∞
Ld(T

′)dT ′. (2.32)

The determination of the Lagrangian function for the chirped Gaussian pulse leads to :

LG = −u2
p

[
1

2
(
Cp

Tp

dTp

dz
− 1

2

dCp

dz
) +

dφ

dz

]√
πTp +

√
πu2

p(1 + C2
p)

4Tp

β2 +

√
πu2

pβ4

32T 3
p

(1 + C2
p)2, (2.33)

and for the RC pulse we have :

LRC =− u2
pTp

[
a1(

1

2

dCp

dz
− Cp

Tp

dTp

dz
) + a2

dφ

dz

]
+
u2

pβ2

2Tp

(
π2

2
+ a1C

2
p)

− 1

24T 3
p

(
− π4

2
+ a3C

2
p + a4C

4
)
β4u

2
p

(2.34)
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where ak with k = 1..4 are some constants de�ned as :
a1 = (−64− 2π + 8π2 + π3)/8π3

a2 = (8 + 3π)/2π

a3 = − 1

4π
(−48 + 6π2 + π3)

a4 = − 1

160π5
(15360 + 120π − 1920π2 − 20π3 + 40π4 + 3π5).

(2.35)

Performing the Euler-Lagrange equation for relevant parameters of the Gaussian and the RC pulses
as : The determination of the growth equations in the MVA may be done by setting :

∂

∂T

( ∂L
∂qz

)
− ∂L

∂q
= 0, (2.36)

where the parameter q is a characteristic of pulse and qz its derivative following the parameter of
propagation z. We obtain the dynamical equations respectively as :

dup

dz
= −up

2

{
Cp

T 2
p

[
β2 +

(1 + C2
p)

4T 2
p

β4

]}

dTp

dz
=
Cp

Tp

[
β2 +

(1 + C2
p)

4T 2
p

β4

]

dCp

dz
=

(1 + C2
p)

T 2
p

[
β2 +

(1 + C2
p)

4T 2
p

β4

]

dφp

dz
=

β2

2T 2
p

+
(1 + C2

p)(3− C2
p)

32T 4
p

β4,

(2.37)

and
dup

dz
= −up

2

{
Cp

T 2
p

[
− β2 +

β4

12a1T 2
p

(a3 + 2a4C
2)

]

dTp

dz
=
Cp

Tp

[
− β2 +

β4

12a1T 2
p

(a3 + 2a4C
2
p)

]

dCp

dz
=

1

a1T 2
p

[
− β2(

π2

2
+ C2

p) +
β4

6T 2
p

(−π
4

4
+ a3C

2
p + a4C

4
p)

]

dφp

dz
=

1

2a2T 2
p

[
π2β2 +

β4

12T 2
p

(
4π4

3
− a3C

3
p + a4C

4
p)

]
.

(2.38)
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We noted that in the absence of FOD, we obtained the previously well-known pulse characteristics
in the case of single GVD. The phase is often disregarded because of its negligible role on pulse
propagation characteristics.

Assumption of the spectral width that does not change in a linear medium
It is assumed that for the Gaussian pulse, the quantity (1+C2

p)/T 2
p is assumed to be equivalent to

the spectral width that is quasi-constant in the linear medium [3,224]. We make some simpli�cations
on Eq. (2.37). In this case, this term is simply equal to its initial value (1 + C2

0)/T 2
0 .

The same assumption applied on the RC pulse yields to set ((π2/2) + C2
p)/a1T

2
p and ((−π4/4) +

a3C
2
p + a4C

4
p)/6a1T

4
p as constants. We set the following parameters for the Gaussian pulse :

∆0 = β2 +
(1 + C2

0)

4T 2
0

β4

∆ =
(1 + C2

0)

T 2
0

∆0.

(2.39)

We set also ∆1 and ∆2 for the RC pulse as :

∆1 = −β2 +
β4

12a1T 2
0

(a3 + 2a4C
2
0)

∆2 =
1

a1T 2
0

[
− β2(

π2

2
+ C2

0) +
β4

6T 2
0

(−π
4

4
+ a3C

2
0 + a4C

4
0)

]
,

(2.40)

assuming that the parameters C0 and T0 are the initial values of the chirp Cp and width Tp respectively.
We de�ne LFOD = T 4

0 /|β4| as the FOD length. Then, we integrate the width and the chirp growth
equations above for each pulse. The analytical approximated chirp expressions are given by :

CG(z) = C0 + z∆

CRC(z) = C0 + z∆2.
(2.41)

where the subscripts G and RC correspond to the Gaussian and RC input pulses respectively. For
each corresponding dynamical equation of width, we obtained easily the analytical expressions of
widths in function of the distance z :

TG(z) = T0

[
1 + 2

∆0

T 2
0

(
C0 +

∆

2
z
)
z

] 1
2

TRC(z) = T0

[
1 + 2

∆1

T 2
0

(
C0 +

∆2

2
z
)
z

] 1
2

(2.42)

The same process can be done with the amplitude and therefore leads to :

uG(z) = u0 exp

[
− ∆0

2T 2
0

(
C0 +

∆

2
z
)
z

]
uRC(z) = u0 exp

[
− ∆1

2T 2
0

(
C0 +

∆2

2
z
)
z

]
,

(2.43)
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with u0 being the initial value of the amplitude. For the Gaussian pulse, the conditions of compression
are obtained for ∆ < 0 and C0 > 0 as :

C0 > 0, β2, β4 < 0 (2.44a)
LFOD >

1 + C2
0

4
LGV D, C0 > 0, β2 < 0, β4 > 0 (2.44b)

LFOD <
1 + C2

0

4
LGV D, C0 > 0, β2 > 0, β4 < 0, (2.44c)

For the negative value of the initial chirp C0 < 0, we have the opposite conditions :
C0 < 0, β2, β4 > 0 (2.45a)

LFOD >
1 + C2

0

4
LGV D, C0 < 0, β2 > 0, β4 < 0 (2.45b)

LFOD <
1 + C2

0

4
LGV D, C0 < 0, β2 < 0, β4 > 0. (2.45c)

The maximal pulse compression length for the Gaussian pulse is Lmc = 2C0/|∆|. In the absence of
FOD, Eqs. (2.44a), (2.44b), (2.45a) and (2.45b) are the well-known conditions for the linear pulse
compression induced by chirp in the single GVD case requiring that β2C0 < 0 [1,3]. Equations
(2.44c) and (2.45c) may lead to pulse broadening in the absence of the FOD as previously known.
Nevertheless, the FOD breaks this observation and we obtain a pulse compression when the additive
conditions on dispersion lengths are veri�ed. The obtained linear pulse compression when both the
chirp and the GVD have the same sign or both the GVD and the FOD have the same sign, is the
main feature observed, which is due to the presence of the FOD. This result encompasses the rules
mentioned in [1,3,31]. In fact, they predicted a pulse broadening when β2β4 > 0 (β2, β4 < 0 or
β2, β4 > 0 veri�ed by Eq. (2.44a) and (2.45a)) and a linear compression when β2β4 < 0 (veri�ed by
Eqs. (2.44b), (2.44c), (2.45b) and (2.45c)). The results obtained in this work include the basic theory
described in [1,3] and the rules set in [31]. This combination is possible with additional dispersion
lengths conditions as seen in Eqs. (2.44b), (2.44c), (2.45b) and (2.45c). The study demonstrates
that, it is possible to obtain a Gaussian pulse compression with the GVD having the same sign with
the FOD, by adding a chirp of opposite value to the GVD and FOD. On the other hand, it is possible
to compress a Gaussian pulse using an optical waveguide having a GVD which has the same sign
with the chirp, in this case, one should require an opposite value of FOD.
For the RC pulse, one may notice that constants a3 and a4 are negative as a3 = −|a3| and a4 = −|a4|
while a1 is positive. Therefore, with ∆1 < 0 the compression conditions are given for initial positive
chirp value by :

C0 > 0, β2, β4 > 0 (2.46a)
V ′

1 < LFOD < V ′
2 , ∆2 > 0, C0 > 0 or C0 < 0, β2 < 0, β4 > 0 (2.46b)
LFOD < V ′

1 , ∆2 < 0, C0 > 0, β2 < 0, β4 > 0 (2.46c)
LFOD > V ′

2 , ∆2 < 0, C0 > 0, β2 > 0, β4 < 0 (2.46d)
where

V ′
1 =

(π4

4
+ |a3|C2

0 + |a4|C4
0)

6(π2

2
+ C2

0)
LGV D (2.47)

and
V ′

2 =
(|a3|+ 2|a4|C2

0)

12a1

LGV D (2.48)
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Similarly to the previous Gaussian case, for ∆1 > 0 we use the opposite relations of Eq. (2.46) and
the maximal length for compression is always given by 2C0/|∆2|. The feature previously mentioned
above for the Gaussian pulse is also pointed out for the RC pulse as seen in Eqs. (2.46b), (2.46c)
and (2.46d). A new condition given by (2.46a) shows that it is possible to get the RC pulse linear
compression with the chirp, the GVD and the FOD all having the same sign. This condition contrasts
with the previous rules known in refs. [1,3,26] and those mentioned in this work on Eqs. (2.44), (2.45),
(2.46b), (2.46c) and (2.46d). It means that the linear compression conditions are greatly dependent
on the input optical pulse pro�le.

Description of the numerical simulations
For the numerical simulations, we use directly the equations (2.41), (2.42) and (2.43). The MPCP

for the Gaussian pulse is given by the relation MPCP = 100

{
1 −

[
1 − (∆0/∆)

(
(C0/T0)

)2]1/2
}

while for the RC pulse we have MPCP = 100

{
1 − 0.5

[
4 − (2∆1/∆2)

(
(C0/T0)

)2]1/2
}
. To obtain

3D propagation �gures leading to the contour plots of the pulse compression mechanism, we use a
MATLAB software code. In this code, we represent the amplitude evolution of the pulse assuming
that, at each step of z (z=0..L), the chirp and the width vary respectively following Eqs. (2.41) and
(2.42) under the derived conditions of Eqs. (2.44), (2.45) and (2.46).

2.3.2 In the case of nonlinear compression of chirped compact and sym-
metric femtosecond optical pulses in a SOI-waveguide under FOD

The propagation of optical pulses through a SOI-waveguide in the local instantaneous case, is
governed by a modi�ed form of Eq. (2.25) as described in subsection 2.2.2, including the e�ects of
TPA and FCA as [7,8,202a,225]:

i
∂u

∂z
+

2∑
k=1

(−1)kβ2k

(2k)!

∂(2k)u

∂T (2k)
+ γ|u|2u = −iα

2
u− iΓ|u|2u− i

σ

2
NCu, (2.49)

where Γ, σ and NC are the TPA coe�cient, the FCA coe�cient and the free-carrier density (FCD),
respectively. Concerning the TPA, it was �rst reported experimentally by Kaiser and Garrett [226].
Multiphoton absorption phenomenon can lead to laser damage of optical materials and be used to
write permanent refractive index structures into the interior of optical materials [1]. Therefore,
the multiphoton absorption is well-known to be a nonlinear loss phenomenon that can reduce the
e�ciency of nonlinear optical devices such as optical switches. The TPA and FCA are linked to the
FCD dynamics following the rate equation given below [7,8,215,216,218]:

∂Nc(z, T )

∂T
=
βTPA

2hν0

|u(z, T )|4

a2
eff

− Nc(z, T )

τc
, (2.50)

with βTPA = 2Γaeff the usual TPA parameter. On the other hand, the quantities h, ν0 and τc
represent the Planck constant, the pump frequency and the carrier lifetime, respectively. The e�ective
carrier lifetime includes all the e�ects of recombination, di�usion, and drift [218]. The FCA e�ect is
included through the coe�cient σ as :

αFCA = σNc. (2.51)
For silicon, the coe�cient σ is equal to 1.45×10−21m2 [218,225]. The second term in the RHS of
Eq. (2.50) is generally neglected in the case of ultra-short pulses as femtosecond pulses, since it is
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well-known that carriers do not have enough time to recombine over the pulse width at this scale [8].
Our analysis is based on the chirped Gaussian, sech-type and the RC pulses. The Gaussian and the
RC pulses being de�ned as shown in Eqs. (2.30) and (2.31), for the chirped sech-type pulse, we have
[3,8,225] :

u = upsech(
T

Tp

) exp

(
i
[
− Cp

2
(
T

Tp

)2 + φp

])
, (2.52)

As discussed above, the lagrangian density and the RDF associated to Eq. (2.49) are respectively
given as [7,8,225] :

Ld =
i

2
(u∗

∂u

∂z
− u

∂u∗

∂z
)−

2∑
k=1

(−1)kβ2k

(2k)!

∂(2k−1)u

∂T (2k−1)

∂u∗

∂T
+
γ

2
|u|4 (2.53)

and
Rd = i

[
|u|2Γ +

1

2

(
α+ σNc(t)

)]
(u∗

∂u

∂z
− u

∂u∗

∂z
) (2.54)

The determination of the Lagrangian function using Eq. (2.32) in this nonlinear case for the Gaussian
pulse leads to :

LG =− u2
p

[
1

2
(
Cp

Tp

dTp

dz
− 1

2

dCp

dz
) +

dφp

dz

]√
πTp +

√
πu2

0(1 + C2
p)

4Tp

β2 +

√
πu2

pβ4

32T 3
p

(1 + C2
p)2

+

√
π

2

γu4
pTp

2
,

(2.55)

for the sech-type pulse, we obtain the same form as in [8] with an additional term taking into account
the FOD e�ect :

Lsech =− u2
pTp

[
π2

6
(
Cp

Tp

dTp

dz
− 1

2

dCp

dz
) + 2

dφp

dz

]
+
β2u

2
p

2Tp

(
2

3
+
π2

6
C2

p) +
2

3
γu4

pTp+

1

24T 3
p

(
14

15
+ (

π2

3
− 2)C2

p +
19π2

33
C4

p)β4u
2
p

(2.56)

and for the RC pulse we have :

LRC =− u2
pTp

[
a1(

1

2

dCp

dz
− Cp

Tp

dTp

dz
) + a2

dφ

dz

]
+
u2

pβ2

2Tp

(
π2

2
+ a1C

2
p) + a5γTpu

4
p

− 1

24T 3
p

(
− π4

2
+ a3C

2
p + a4C

4
p

)
β4u

2

p

(2.57)

where ak with k = 1..4 are the same constants de�ned as in Eq. (2.35) while the constant a5

a5 =
5

48π
(21π + 64). (2.58)

The reduced form of the RDF can be derived from its density given in Eq. (2.54) as :

R =

∫ +∞

−∞
Rd(T

′)dT ′. (2.59)
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For each pulse, it yields :

RG = −
√
πu2

pTp

{[
1

2
(
Cp

Tp

dTp

dz
− 1

2

dCp

dz
) +

dφ

dz

][
u2

0√
2

(
Γ +

√
πu2

0βTPAt0
4hν0A2

eff

)
+ α

]
+

√
2

2
u2

0

∂φ

∂z
Γ

}
, (2.60)

Rsech = −2u2
pTp

{
4

3
u2

pΓ

[
1

2
(
C

Tp

dTp

dz
− 1

2

dCp

dz
)(
π2

6
− 1) +

dφ

dz

]
+

(
α+

1

3
σ
βTPAu

4
pTp

hν0A2
eff

)
×[

π2

12
(
Cp

Tp

dTp

∂z
− 1

2

dCp

dz
) +

dφ

dz

]} (2.61)

and

RRC = −u2
pTp

{
(
1

2

dCp

dz
− Cp

Tp

dTp

dz
)
[
b1u

2
pΓ + a1α

]
+
dφ

dz

[
b2u

2
pΓ + a2α

]
+

u4
pβTPATp

1536πhν0A2
eff

σ

[
b3(−

C

Tp

dTp

dz
+

1

2

dCp

dz
) + b4

dφp

dz

]} (2.62)

where bk, k = 1..4 are de�ned as :

b1 =
1

π3
(−1504

27
− 111π

32
+

20π2

3
+

35π3

48
)

b2 =
80

3
+

35π

4

b3 =
5

8π3
(−4096− 1472π + 470π2 + 232π3 + 21π4)

b4 =
5

2π
(512 + 360π + 63π2).

(2.63)

Using the modi�ed form of the Euler-Lagrange equation (2.36) for relevant parameters of the pulses
as :

∂

∂T

( ∂L
∂qz

)
− ∂L

∂q
+
∂R

∂qz
= 0. (2.64)

Therefore, inserting Eqs. (2.60), (2.61) and (2.62) in Eq. (2.64), we determine the growth equations
for each pulse :
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1. Gaussian pulse :

dup

dz
=− up

2

{
Cp

T 2
p

[
β2 +

(1 + C2
p)

4T 2
p

β4

]
+
u2

p√
2

(5

2
Γ + σ

√
π

4

u2
pβTPA

hν0A2
eff

Tp

)
+ α

}
,

dTp

dz
=
Cp

Tp

[
β2 +

(1 + C2
p)

4T 2
p

β4

]
+

√
2

4
u2

pTpΓ,

dCz

dz
=

(1 + C2
p)

T 2
p

[
β2 +

(1 + C2
p)

4T 2
p

β4

]
+
u2

p√
2

(
γ + ΓCp

)
,

dφp

dz
=
β2

2T 2
p

+
(1 + C2

p)(3− C2
p)

32T 4
p

β4 +
5u2

p

4
√

2
γ.

(2.65)

2. Sech-type pulse :

dup

dz
=− up

2

{
Cp

T 2
p

[
β2 + (

1

6
− 1

π2
+

19

33
C2

p)
β4

T 2
p

]
+ 4u2

pΓ(
1

3
+

1

π2
) + α+

2

3
σ
u4

pβTPATp

hν0A2
eff

}
,

dTp

dz
=
Cp

Tp

[
β2 + (

1

6
− 1

π2
+

19

33
C2

p)
β4

T 2
p

]
+

4u2
pTp

π2
Γ

dCp

dz
=

1

T 2
p

[
β2(

4

π2
+ C2

p) +
( 14

15π2
+ (

1

3
− 2

π2
)C2

p +
19

33
C4

p

) β4

T 2
p

]
+

4u2
p

π2
(γ + 2ΓCp)

dφp

dz
=

1

T 2
p

[
β2

3
+

β4

24T 2
p

(7

5
+ (

π2

6
− 1)C2

p −
19π2

66
C4

p

)]
+

5u2
p

6
γ.

(2.66)
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3. RC pulse :
dup

dz
=− up

2

{
Cp

T 2
p

[
− β2 +

β4

12a1T 2
p

(a3 + 2a4C
2
p)

]
+
u2

p

2

(
ΓA+ σ

u2
pβTPA

hν0A2
eff

TpB
)

+ α

}

dTp

dz
=
Cp

Tp

[
− β2 +

β4

12a1T 2
p

(a3 + 2a4C
2
p)

]
+
Tpu

2
p

2

[
ΓA′ + σ

βTPAu
2
pTp

hν0A2
eff

B′
]

dCp

dz
=

1

a1T 2
p

[
− β2(

π2

2
+ C2

p) +
β4

6T 2
p

(−π
4

4
+ a3C

2
p + a4C

4
p)

]
− a5

a1

γu2
p

+
u2

pCp

2
(ΓA′ + σ

βTPAu
2
pTp

hν0A2
eff

B′)

dφp

dz
=

1

2a2T 2
p

[
π2β2 +

β4

12T 2
p

(
4π4

3
− a3C

3
p + a4C

4
p)

]
+

5u2
p

2

a5

a2

γ

+
3

4
u2

p(CpΓA” + σ
βTPAu

2
pTp

hν0A2
eff

B”)

(2.67)

where A = (3b2/a2) − (b1/a1), B = ((3b4/a2) − (b3/a1))/1536π, A′ = (b2/a2) − (b1/a1), B′ =
((b4/a2)− (b3/a1))/1536π, A” = (b2a1 − b1a2)/a

2
2 and B” = (b4a1 − b3a2)/1536πa2

2. In the nonlinear
case, there is no physical assumption about the spectral width of the pulses as discussed in the linear
case in the previous sub-section.

Description of the numerical simulations
We take Eqs.(2.65)-(2.67), to obtain the pulse characteristics. We integrate these growth equations

by using the fourth-order Runge-Kutta integration scheme. Once the integration is done at each step
of the parameter z, the numerical value obtained for each characteristic is injected in the pulse
evolution to model so, its 3D propagation yielding contour plots.

2.3.3 In the case of nonlinear compression of chirped self-healing Airy
pulses (SHAPs) in a SOI-waveguide under FOD

In this sub-section, we apply the MVA on the asymmetric pulse previously presented in the �rst
chapter of the thesis. The medium is assumed to be the same as the nonlinear one presented in the
previous sub-section (2.2.2). The chirped input Airy pro�le can be taken as :

u = upAi(
T

Tp

) exp(a
T

Tp

) exp
(
− i

Cp

2
(
T

Tp

)2 + iφp

)
, (2.68)

The determination of the Lagrangian function leads to [227] :

L =− u2
pTp

[
55.4573(

Cp

Tp

∂Tp

∂z
− 0.5

∂Cp

∂z
) +

9

11

∂φp

∂z

]
+
u2

pβ2

2Tp

(52π

31
+ 55.4573C2

p

)

+
u2

pβ4

24T 3
p

(
78.1397 + 10034C2

p + 51918C4
p

)
+

3

28
γu4

pTp,

(2.69)
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The reduced form of the RDF function is obtained with an appropriate approximation of the FCD
which is evaluated numerically for the truncated Airy pulse and inserted in the following relation :

R =u2
pTp

[(Cp

Tp

dTp

dz
− 0.5

dCp

dz

)[
u2

p(
12

35
Γ−

3u2
ptp

236
κ)− 55.4573α

]
− dφp

dz

[
u2

p(
3

14
Γ

+
πu2

pTp

122
κ) +

9

11
α
]] (2.70)

where κ = σβTPA/hν0A
2
eff is a constant related with the FCD and the FCA. Therefore, we determine

the growth equations as follows :

dup

dz
=− up

2

{
Cp

T 2
p

[
β2 +

(45.233 + 468.1C2
p)

3T 2
p

β4

]
+ 2u2

p

(1

5
Γ +

2u2
pTp

85
κ
)

+ α

}

dTp

dz
=
Cp

Tp

[
β2 +

(45.233 + 468.1C2
p)

3T 2
p

β4

]
+ u2

pTp

(
ln(

8

7
)Γ +

u2
pTp

64
κ
)

dCp

dz
=

1

T 2
p

[
β2(

π

exp(7
2
)

+ C2
p) +

(31

22
+ 180.932C2

p + 936.2C4
p

) β4

6T 2
p

]
+ u2

p

( 1

500
γ

+ Cp(
3

11
Γ +

u2
pTp

32
κ)

)
dφp

dz
=

1

T 2
p

[572π

279
β2 −

(
1010.04 + 9043.14C2

p −
95183

12
C4

p

) β4

T 2
p

]
+ u2

p

( 55

168
γ

+ Cp(
22

105
Γ−

11u2
pTp

1416
κ)

)
.

(2.71)

As it can be seen in Eq. (2.71) beyond the dispersive e�ects, all the characteristics of the Airy pulse
are a�ected by both the TPA and the FCA.

Linear compression of SHAPs induced by FOD
In this section all the nonlinear e�ects parameters are taken equal to zero : γ = 0, Γ = 0, σ = 0

and κ = 0. For this speci�c case, we use the assumption of a spectral width which does not change
in the linear medium as discussed in sub-section (2.3.1). So, the terms (45.233 + 468.1C2

p)/3T 2
p ,

π exp(−7/2) +C2
p and (31/22) + 180.932C2

p + 936.2C4
p are constant and equal to their initial values,

so that we get a linearly varying chirp for the pulse. The analytical approximated relation of the
pulse width is given by :

Tp(z) = T0

[
1 + 2

∆1

T 2
0

(
C0 +

∆0

2
z
)
z

]1/2

, (2.72)
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We de�ne the parameters ∆0 and ∆1 respectively as follows :

∆0 =
s2(π exp(−7/2) + C2

0)

LGV D

+
s4

(
31
22

+ 180.932C2
0 + 936.2C4

0

)
6LFOD

∆1 =T 2
0

[
s2

LGV D

+
(45.233 + 468.1C2

0)s4

3LFOD

]
,

(2.73)

where s2 and s4 are the signs of the GVD and the FOD respectively. It comes that the linear
compression conditions are obtained easily by setting that the compression factor may be inferior to
1. This implies that (Note that whatever the conditions z > 0, LGV D > 0 and LFOD > 0):

− 0.5 <

[
s2

LGV D

+
(45.233 + 468.1C2

0)s4

3LFOD

](
C0 +

∆0

2
z
)
z < 0. (2.74)

So, for the compression of the SHAP to occur inside the medium under the conditions speci�ed
earlier, one must have :

s2

LGV D

+
(45.233 + 468.1C2

0)s4

3LFOD

< 0 and
(
C0 +

∆0

2
z
)
> 0

s2

LGV D

+
(45.233 + 468.1C2

0)s4

3LFOD

> 0 and
(
C0 +

∆0

2
z
)
< 0

(2.75)

The resulting conditions are de�ned as :
C0 > 0, β2, β4 < 0,

LFOD < V1LGV D, Clim < C0 β2 > 0, β4 < 0,

LFOD < V2LGV D, 0 < C0 < Clim β2 > 0, β4 < 0,

LFOD > V2LGV D, Clim < C0 β2 < 0, β4 > 0,

LFOD > V1LGV D, 0 < C0 < Clim β2 < 0, β4 > 0,

(2.76)

where

V1 =
45.233 + 468.1C2

0

3
,

V2 =
(31/22) + 180.932C2

0 + 936.2C4
0

6(π exp(−7
2

) + C2
0)

,

Clim = 2.084606293.

(2.77)

We obtain the conditions of Eq.(2.76) and the de�nitions of Eq.(2.77) by making some basic discus-
sions about the signs s2 and s4.
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Description of the numerical simulations
For the numerical simulations, the process is the same as described in the previous cases.

2.4 The analysis of the FWM ASC in the WDM solitons sys-
tem near the ZDW using the ABCJS approach

2.4.1 Analytical study of the model
We begin the analysis using the NLSE of Eq. (2.25) for the case where the TOD is considered

[228] :

i
∂u

∂z
− β2

2

∂2u

∂T 2
− i

β3

6

∂3u

∂T 3
+ γ|u|2u = −iαu. (2.78)

It is admitted that, near the ZDW one should include the e�ect of the TOD while the GVD vanishes
[3]. However, we maintain the GVD in order to make a comparison between the single TOD case
of the growth of the ASC with the combined GVD-TOD case where it still remains a residual GVD
e�ect.
We set the following dimensionless variables : ζ = z/L, τ = T/T0 , B(ζ, τ) = u(z, T )/

√
P0 where L is

the characteristic �ber length. Thus, we de�ne La = L∗/L as the dimensionless spatial ampli�cation
spacing while |β3| = T 3

0 /LTOD is the TOD average value. L∗ is the physical spatial ampli�cation
spacing. Introducing these dimensionless variables into Eq. (2.78) easily leads to the following form
:

i
∂B

∂ζ
− Lβ2

2T 2
0

∂2B

∂τ 2
− i

Lβ3

6T 3
0

∂3B

∂τ 3
+ LγP0|B|2B = −iLαB. (2.79)

Now we set the dimensionless terms βGV D = −β2LGV D/T
2
0 , βTOD = β3LTOD/T

3
0 and $ = Lα for

GVD, TOD pro�les and gain/loss parameter, respectively. Introducing these in Eq. (2.79) yields

i
∂B

∂ζ
+
βGV DL

2LGV D

∂2B

∂τ 2
− i

βTODL

6LTOD

∂3B

∂τ 3
+

L

LNL

|B|2B = −i$B. (2.80)

It is well-known that the bright soliton solution is obtained in the regime of propagation where the
dispersion length LGV D is similar to the nonlinear length LNL in the anomalous-dispersion regime.
The TOD plays a signi�cant role only if the dispersion length associated LTOD respects the condition
LTOD ≤ LGV D [1,3,33,103,228]. Furthermore, it is well-known that the solitonic properties as the
preserving shape of propagation exist in an ideal system while in realistic cases they are perturbed by
higher-order e�ects like the TOD e�ect. So, in the present system, we assume that LTOD ≈ LGV D.
One can rewrite Eq. (2.80) in a suitable form by setting B(ζ, τ) =

√
h(ζ)E(ζ, τ) where h(ζ) is a

function which will include the parameter $. The function h(ζ) is the same as the function g(z)
shown in Eq. (1.36) in the �rst chapter. It is customary to use its expansion in Fourier series as :

h(ζ) =
n=+∞∑
n=−∞

hn exp
(
− inkLaζ

)
, hn =

$La

$La − inπ
(2.81)

where kLa = 2π
La
. The representation of this function is observed in �gure 2.1. Equation (2.81) yields

i
∂E

∂ζ
+
βGV D

2

∂2E

∂τ 2
− i

βTOD

6

∂3E

∂τ 3
+ h(ζ)|E|2E = 0 (2.82)
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Figure 2.1: Function of ampli�cation in the Fourier series expansion shown in Eq. (2.81). This should be compared
with the de�nition shown in �gure 1.13.

The presence or lack of the dimensionless dispersion parameter βGV D will be represented by the values
1 and 0, respectively. In the ABCJS approach [99,100,103-105,109,110,228], we should consider a
signal including two pulses E1 and E2 such that Epulse = E1 +E2. We assume that the FWM in the
channels is taken as EFWM = E112 + E221. Then the total �eld in the system is

E(ζ, τ) = E1 + E2 + E112 + E221, (2.83)
where E1, E2, E112 and E221 evolve on frequencies Ω1, Ω2, Ω112 = 2Ω1 − Ω2 and Ω221 = 2Ω2 − Ω1,
respectively. If we take Ω1 = −Ω2 = −Ω, therefore Ω112 = −3Ω and Ω221 = 3Ω. When we introduce
Eq. (2.83) into Eq. (2.82), we obtain four (04) partial di�erential equations (PDEs) by neglecting
all nonlinear terms in E112, E221 and the XPM terms. The system can be modeled by the diagram
given in �gure 2.2 where the transmission line is represented by the SMF symbolized by the ITU-T
recommendation G. 652 [102]. Focusing on the growth of the ASC E221, we choose its equation

Figure 2.2: Diagram of the physical system studied in the FWM analysis ( c©-2013 SPRINGER EPJD, from [228]).

between the previous ones obtained after the introduction of Eq. (2.83) into Eq. (2.82). The
evolution of the ASC in the system with TOD is therefore modeled by the following equation :

i
∂E221

∂ζ
+
βGV D

2

∂2E221

∂τ 2
− i

βTOD

6

∂3E221

∂τ 3
+ h(ζ)E2

2E
∗
1 = 0 (2.84)

For simplicity, we set v = E221 in Eq. (2.84). The present model under study (Eq. (2.84)), which
includes the TOD term will be investigated in order to characterize the ASC under in�uence of this
coe�cient.
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2.4.2 Reduced model of the FWM ASC growth
Following the assumption of Horne et al [109], the evolution of the FWM is taken in the following

form including the TOD e�ect inside the exponential argument of the ASC :

v(ζ, τ) = G(ζ, τ) exp
[
i
(
3Ωτ − Ω2

2
βGV Dζ

)]
exp

[
− i

Ω3

6
βTODζ

] (2.85)

When we introduce Eq. (2.85) into Eq. (2.84) we obtain the following equation for the amplitude
G(ζ, τ) :

i
∂G

∂ζ
+
βGV D

2

(∂2G

∂τ 2
+ 6iΩ

∂G

∂τ
− 2(2Ω)2G

)
− i

βTOD

6

(∂3G

∂τ 3
+ 9iΩ

∂2G

∂τ 2
− 27Ω2∂G

∂τ

− 26iΩ3G
)

= −h(ζ)E2
20E

∗
10,

(2.86)

where

E2
20E

∗
10 = E2

2E
∗
1 exp

[
i
(
− 3Ωτ +

Ω2

2
βGV Dζ

)]
exp

[
i
(Ω2

2

βTODΩ

3
ζ
))] (2.87)

We set ∆Ω = Ω2 − Ω1 = 2Ω as the di�erence in the frequency o�set for the case where the input
pulses are well-separated, therefore in this case ∆Ω � 1. We assume the following simpli�cations
(∆Ω)2|G|, 26Ω3|G| � |∂G

∂τ
|, |∂2G

∂τ2 |, |∂
3G

∂τ3 |. Then Eq. (2.86) becomes

i
∂G

∂ζ
− (∆Ω)2

(
βGV D +

13ΩβTOD

12

)
G = −h(ζ)E2

20E
∗
10, (2.88)

which is considered as the reduced model. For simplicity, we set
φ = βGV D + 13ΩβTOD

12
,

ψ(ζ) =
(
βGV D + βTODΩ

3

)
ζ (2.89)

The input pulses are sech-type pro�led in the general form of fundamental soliton as in [3,109,228] :
Ej = Emax,jsech[Emax,j(τ − Ωjζ − Tj)] exp

[
i(E2

max,j − Ω2
j)ζ/2

]
exp

[
iΩjτ

] (2.90)
where Ω1 = −Ω2 = −Ω, Emax,1 = Emax,2 = Emax and T1 = −T2 = T0. The integration of Eq. (2.88)
gives

G(ζ, τ) = iE3
max exp

[
−i(∆Ω)2φζ

] n=+∞∑
n=−∞

hn

∫ ζ

0

sech2
[
Emax(τ − Ωζ ′ + T0)

]
× sech

[
Emax(τ + Ωζ ′ − T0)

]
exp

[
i
(
− nkLa +

E2
max − Ω2

2
+ (∆Ω)2φ

)
ζ ′

]
× exp

[
i
(Ω2

2
ψ(ζ ′)

)]
dζ ′.

(2.91)

It is important to remind that the PMC required in order to gain the maximum FWM values is
obtained by taking the argument of the imaginary exponential exp

[
i
(
− nkLaζ

′ + 0.5(E2
max − Ω2)ζ ′

)]
× exp

[
i(∆Ω)2φζ ′

]
× exp

[
0.5iΩ2ψ(ζ ′)

] equal to zero. This leads to some cases of the study in function
of the GVD and TOD pro�les.
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• In the presence of constant TOD pro�le without the GVD parameter, the PMC leads to :
9Ω3 − Ω2 + E2

max − 2nkLa = 0 (2.92)
One must solve this equation following Ω and n to obtain values leading to largest amplitude
of FWM.

• In the presence of both the GVD and TOD pro�les, we obtain from the general reduced model
the following equation :

9Ω3 + 8Ω2 + E2
max − 2nkLa = 0 (2.93)

The next section deals with the full model assuming that the amplitude of the FWM component is
very sensitive to the time variable (di�erentiated terms of G(ζ, τ) are not negligible).

2.4.3 Full model of the FWM ASC growth
Considering the Fourier transform of Eq. (2.86), we obtain :

i
∂G̃

∂ζ
− 1

2

{
βGV D

(
ω2 + 6ωΩ + 2(2Ω)2

)
+
βTOD

3

(
ω3 + 9ω2Ω + 27ωΩ2 + 26Ω3

)}
G̃

= −h(ζ)F [E2
20E

∗
10].

(2.94)

We set :
θ(ω,Ω) = βGV D

(
ω2 + 6ωΩ + 2(2Ω)2

)
+
βTOD

3

(
ω3 + 9ω2Ω + 27ωΩ2 + 26Ω3

) (2.95)

Equation (2.94) leads to the following form of G̃(z, ω):

G̃(ζ, ω) =
iπEmax

∆Ω
exp

[
− i

(1

2
θ(ω,Ω)ζ + ωδ(ζ)

)]
sech(

πω

2Emax

)

×
n=+∞∑
n=−∞

hn exp
[
iχn(ω)ζcoll

]
×

∫ 2Emaxδ(ζ)

−∞
I(y,

ω

Emax

) exp
[
− iµn(ω)y

]
dy,

(2.96)

where

χn(ω,Ω) =
[
− nkLa +

E2
max − Ω2

2
+

1

2
θ(ω,Ω) +

Ω2

2
(βGV D +

βTODΩ

3
)
] (2.97)

is related to the PMC. The function I(y, ω/Emax) is the function mentioned in sub-section (1.2.2),
δ(ζ) = Ωζ − T0, µn(ω) = −χn(ω,Ω)/∆ΩEmax and y = 2Emaxδ(ζ). The PMC for the full model is
given by taking χn(ω,Ω) = 0. The roots ωn obtained are only relevant, if we consider those which
are equal to zero because of the presence of the function sech(πω/2Emax) inside G̃(ζ, ω). Thus, Eq.
(2.97) leads to the following polynomial equation of third degree :

ax3 + bx2 + cx+ d = 0, (2.98)
where we have set x = ω, a = βTOD/3, b = βGV D + 3βTODΩ, c = 6ΩβGV D + 9Ω2βTOD and d =
9(βGV D + βTODΩ− 1/9)Ω2 + E2

max − 2nkLa. Therefore, we can consider speci�c cases :
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1. Case of the second order dispersion βGV D = 1, βTOD = 0 :

x2 + 6Ωx+ (8Ω2 + E2
max − 2nkLa) = 0, (2.99)

the two solutions are xn,± = −3Ω ±
√

Ω2 − E2
max + 2nkLa. The realistic solution is xn,+ that

must be equal to zero according to the previous hypothesis. So, we recover the single GVD
PMC shown in Eq. (1.42).

2. Case of the third order dispersion βGV D = 0, βTOD = 1 :

1

3
x3 + 3Ωx2 + 9Ω2x+ (9Ω3 − Ω2 + E2

max − 2nkLa) = 0. (2.100)
If we take three general solutions of Eq. (2.100) as (x−x1)(x−x2)(x−x3) = 0 and we assume
one of them equal to zero, we obtain the same PMC derived from the reduced model for single
TOD case given by Eq. (2.92).

3. Case of the combined GVD and TOD case βGV D = 1, βTOD = 1 :
1

3
x3 + (3Ω + 1)x2 + (9Ω2 + 6Ω)x+ (9Ω3 + 8Ω2 + E2

max − 2nkLa) = 0. (2.101)
Using the same process as in the previous case, we derive the PMC obtained in Eq. (2.96) for the
reduced model.
So, for all these cases we obtain the same PMCs of the reduced model in the full model by taking
the roots ωn of χn(ω,Ω) equal to zero.
Considering the case where ωn 6= 0, we obtain a general form of the asymptotic solution ˜G(z, ω) for
long distances :

G̃(ζ →∞, ω) ≈iπ
2Emax

∆Ω
exp

[
− i

(θ(ω,Ω)

2
ζ + ωδ(ζ)

)]
sech(

πω

2Emax

)

×
+∞∑

n=−∞

hn exp
[
iχ(ω,Ω)ζcoll

]
× µn(ω,Ω) + ω/Emax

sinh

[
π
2

(
µn(ω,Ω) + ω/Emax

)]
cosh

(πµn(ω,Ω)
2

)
(2.102)

Description of the numerical simulations
The numerical simulations of this study of the FWM ASC, one integrates Eqs. (2.91) and (2.94)

assuming physical realistic systems with ampli�cation nodes (n×La) and realizing the PMC at each
node in order to obtain the appropriate frequency o�set to the FWM occurrence. The results are
obtained by using a numerical integration scheme of trapezes between each ampli�er spacing. We
make the comparison between the single GVD case and the combined GVD-TOD case.

2.5 MI analysis of a CW in SOI-waveguides under FOD
The model equation is similar to Eq. (2.49) but including now the TOD term. In the linear

analysis of the MI mechanism, we start with the steady-state solution of the CW [3,229] :
u = u0 exp{iφNL} (2.103)
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where φNL represents the nonlinear phase shift. Introducing Eq. (2.103) into Eq. (2.49) leads to the
following de�nition of φNL :

φNL =

[
(γ + iΓ)u2

0 +
i

2
(α+ σNc)

]
z. (2.104)

We use a small perturbation of the steady-state solution by stating :
a(z, T ) = a1(z) exp{i(Kz − ΩT )}+ a2(z) exp{−i(Kz − ΩT )}, (2.105)

where K and Ω represent the wave number and the perturbation frequency respectively. Introducing
u = (u0 +a) exp(iφNL) into Eq. (2.49) allows to de�ne a couple of NLSEs following a1 and a2 (details
: see appendixes). Therefore, one obtains the relation : ∂a1

∂z

∂a2

∂z

 = M(K)

 a1

a2

 (2.106)

The obtained MI Matrix is given as follows :

M(K) =

(
D1(Ω)−K + γ1u

2
0 + Λ γ1u

2
0

γ1u
2
0 D2(Ω) +K + γ1u

2
0 + Λ

)
(2.107)

where

D1(Ω) =
4∑

k=2

Ωkβk

k!
,

D2(Ω) =
4∑

k=2

(−Ω)kβk

k!
,

γ1 = γ + iΓ,

Λ = i
(α+ σNc)

2
.

(2.108)

The wave number leads to :

K =
1

2

{
Dodd ±

[(
Deven + 2(Λ + 2γ1u

2
0)

)(
Deven + 2Λ

)]1/2}
, (2.109)

with Deven = D1 +D2 and Dodd = D1 −D2. The MI gain is well-known to be de�ned as :

G(Ω) = 2|Im(K)| ≡ 1

2

∣∣∣∣Im{((
Deven + 2(Λ + 2γ1u

2
0)

)(
Deven + 2Λ

))1/2}∣∣∣∣. (2.110)

Since γ1 and Λ are complexes, it is convenient to set that :

G(Ω) = 2

∣∣∣∣Im(√
A(Ω)

)∣∣∣∣, (2.111)
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where
A(Ω) = x(Ω) + iy(Ω) = r(Ω) exp{iθ(Ω)},
x(Ω) = Deven(Deven + 4u2

0γ)− 4|Λ|
(
2u2

0Γ + |Λ|
)
,

y(Ω) = 4Deven

(
u2

0Γ + |Λ|
)

+ 8u2
0γ|Λ|.

(2.112)

One obtains the MI gain as follows :

G(Ω) =

[
2
(
r(Ω)− x(Ω)

)]1/2

. (2.113)

The relation in Eq. (2.113), con�rms that the TOD does not intervene in the MI gain as previously
discussed in the introduction section. The optimal frequencies (OFs) are given for dG(Ω)/dΩ = 0 as
a PMC of the FWM related with the MI mechanism. It is described by two pump photons at the
frequency ω0, one Stokes photon at ω0 − Ω, and one ASC photon at ω0 + Ω [3,190]. The following
relations de�ne the obtained OFs :

Ω0 =0,

Ω1,± =±
√
−6β4β2

β4

,

Ω2,± =±

√
−6Γβ2 + 2

√
9Γ2β2

2 + 6Γβ4γ|Λ|
Γβ4

,

Ω3,± =±

√
−6γβ2 + 2

√
9γ2β2

2 − 6γβ4U2
0 Γ2 − 6Γβ4γ|Λ| − 6γ3β4U2

0

γβ4

.

(2.114)

When the TPA and the FCA vanish, the OFs in Eq. (2.114) are similar with those obtained in [190]
for glass �bers where γ was linked with the saturable nonlinearity. So, we do not focus on the role
played by the FOD since it has been extensively discussed in this reference. Our main purpose in
this section consists to study the e�ect of the absorption coe�cients on the MI gain spectrum.

Description of the numerical simulations
We use the relation (2.113) to plot the MI gain highlighting the impact of absorption coe�cients.

Then, we solve Eq. (2.25) through the SSF algorithm with the physical parameters assuming the MI
gain above to obtain the PTG for each pulse. We study the e�ect chirp and pro�le in the mechanism
varying values of chirp and comparing the results between the pulses.

2.6 SCG analysis

2.6.1 In a waveguide modeled by the GNLSE with non-Kerr terms
The optical waveguides as PCFs in the SCG numerical analysis are always modeled by the GNLSE

that links the CKN with SS and DRR e�ects as discussed previously in Eq. (2.27). Considerable
attentions are being paid theoretically and experimentally to analyze the dynamics of optical solitons
in optical waveguides. The waveguides used in the picosecond and femtosecond domains in common
nonlinear optical systems are usually of Kerr type and consequently the dynamics of light pulses are
described by nonlinear Schrödinger (NLS) family of equations with cubic nonlinear terms. In present
days applications, as the intensity of the incident light �eld becomes stronger, non-Kerr nonlinearity
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e�ect comes into play. Because of this additional e�ect, the physical features and the stability of the
NLS soliton can change. The in�uence of the non-Kerr nonlinearity on the NLS soliton propagation,
is described by the NLS family of equations with higher degree of nonlinear terms [230-232]. So
recently, both of the solitonic features and the MI process have been investigated by Choudhuri and
Porsezian in [233], highlighting the e�ects of the non-Kerr terms through the GNLSE. In fact, they
showed that the non-Kerr terms reduce the maximum value of the gain and the bandwidth, playing so
a non-negligible role over the CKN. The investigation of this model of GNLSE is interesting since it
is well-known today that, the nonlinearity arising due to �fth-order susceptibility χ5 can be obtained
in many optical materials, such as semiconductor doped glasses, polydiactylene toluene sulfonate,
chalcogenide glasses, and some transparent organic materials [230-233].
We derive the model equation through which, we numerically investigate the SCG phenomenon.
Considering rather the GNLSE with non-Kerr terms, we have [230-233]:

i
∂u

∂z
+

M∑
k=2

(i)kβk

k!

∂ku

∂T k
+ γ1|u|2u+ γ2|u|4u =− i

α

2
u+ iδ1

∂(|u|2u)
∂T

+ δ2
∂(|u|2)
∂T

u

+ iδ3
∂(|u|4u)
∂T

+ δ4
∂(|u|4)
∂T

u,

(2.115)

where γ1, γ2, α, δ1, δ2, δ3 and δ4 are the CKN coe�cient, the quintic nonlinearity coe�cient (QNC),
the parameter of linear losses, the SS parameter linked to γ1, the DRR coe�cient corresponding to
γ1, the SS parameter linked to γ2 and the DRR coe�cient corresponding to γ2, respectively. The
parameters δ3 and δ4 are the so-called non-Kerr terms because they stem from the quintic nonlinearity.
In this work, we assume the QNC as γ2 ≈ ±γ1/P0 where P0 is the peak power of the pump. The sign
of γ2 depends on the case where the system has cooperative nonlinearities (γ1γ2 > 0) or competing
nonlinearities (γ1γ2 < 0) [76-78]. The parameter δ1 is equal to −1/ω0. In an empirical point of view
in which we try to construct a model equation that should be solved in the SCG simulations, we
consider similarly to the single CKN case above that, the full case given by Eq. (2.115) could be
written di�erently as follows [234]:

i
∂u

∂z
+

M∑
k=2

(i)kβk

k!

∂ku

∂T k
=− i

α

2
u− γ1(1 + iδ1

∂

∂T
)

[
u(z, T )

∫ ∞

−∞
R(T ′)|u(z, T − T ′)|2dT ′

]
− γ2(1 + iδ3

∂

∂T
)

[
u(z, T )

∫ ∞

−∞
R(T ′)|u(z, T − T ′)|4dT ′

]
.

(2.116)

The obtained form for our simulations is given by [234]:
∂ũ′

∂z
=iωγ̄1δ1 exp(−L̂(ω)z)F

[
u(z, T )

∫ ∞

−∞
R(T ′)|u(z, T − T ′)|2dT ′

]
+ iωγ̄2δ3 exp(−L̂(ω)z)F

[
u(z, T )

∫ ∞

−∞
R(T ′)|u(z, T − T ′)|4dT ′

]
,

(2.117)

where γ̄2 = ±γ̄1/P0. The e�ects of δ2 and δ4 are assumed to be included within the corresponding
block integrals in the RHS of Eqs. (2.116) and (2.117). To approximate the HOD parameters of the
propagation constant, we have used the following relation derived from the calculated GVD at the
corresponding pumping wavelength :

βk(λp) ≈ (−1)kβ2(λp)T
k−2
0 , (2.118)
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where k is an integer from 3 to the higher-order value of dispersion. The CDP being an important
part in the SCG, we have chosen to stop up to M=10 (assuming that the orders beyond ten have a
negligible in�uence on the results). We have used a sech-type input pro�le de�ned as de�ned in Eq.
(1.6).

For the numerical simulations, we modify the trial MATLAB code provided by Travers et al in
[114] assuming Eq. (2.117) given above.

2.6.2 In the CS2-LCPCF
In this study, the GNLSE corresponds to Eq. (2.27). The subsequent form which is solved for the

SCG by the numerical code previously discussed by Travers et al in [114] is given by :
∂ũ′

∂z
= iγ̄1ωδ1 exp(−L̂(ω)z)F

[
u(z, T )

∫ ∞

−∞
R(T ′)|u(z, T − T ′)|2dT ′

]
, (2.119)

with ũ′ and L̂(ω) being the Fourier transform form of u(z, T ) and the linear operator including the
linear losses and the Taylor series expansion of the propagation constant [114]. The transformation
F[ ] is the Fourier transform of the block inside the squared brackets. L̂(ω) is de�ned as shown in
this reference. It is assumed that the CKN coe�cient γ̄1 is almost independent to the frequency as :

γ̄1 =
n2n0ω0

cneffAeff

, (2.120)
where n0 and neff are the linear refractive index used when determining n2 and the e�ective index
of the guided mode, respectively.
In the simulations, it is essential to have the values of the HODs describing the CDP of the waveguide.
It is customary the evaluate and plot the dispersion parameter D(λ) or the GVD curve of the studied
waveguide. For the considered CS2-LCPCF, the refractive index of CS2 versus the wavelength is
given by the following Sellmeier equation [145,203,206,235,236]:

n(λ) = A+
B

λ2
+
C

λ4
+
D

λ6
+
E

λ8
, (2.121)

where the wavelength λ is in µm and the parameters A=1.580826, B = 1.52389× 10−2µm2,
C=4.8578×10−4µm4, D=-8.2863×10−5µm6, E = 1.4619× 10−5µm8. To obtain the CDP, a software
as COMSOL Multiphysics could be appropriate. Using this software, we present in �gure 2.3(a), the
CDPs of the PCF and LCPCF having the same pitch (Λ = 1.8 µm), hole diameter (d=1.44 µm)
and �ve air holes. We notice in the wavelength range that, both the PCF and CS2-LCPCF have
two ZDWs. Indeed, for the PCF, one obtains the �rst ZDW at 790 nm and the second at 2370 nm.
Concerning the CS2-LCPCF, the �rst ZDW is obtained at 1610 nm and the second at 2510 nm. For
the SCG process, we show in �gure 2.3(b), the choice of the pumping wavelengths. Two wavelengths
are used in this work : for the normal dispersion regime λp = 1550 nm while for the anomalous
dispersion regime λp = 2030 nm. We have also chosen to deal with femtosecond lasers that allow 100
fs and nJ scale pulses. In a practical experiment, some laser sources as the Ho3+-doped silica �bre
lasers could deliver such light in the 2030 nm-region [237]. We draw in �gure 2.3(c), the nonlinear
index given by Eq. (2.121) of the CS2 versus the wavelength λ. As expected, the parameter nCS2

decreases while the wavelength λ increases. We notice that this liquid is su�ciently transparent
from the visible to the infra-red region of light. Using the relation of the CKN parameter γ, where
the nonlinear index n2 is given by 3χ3/(8nCS2), we have calculated its values for each pumping
wavelength. We have used for the simulations, the value of 1.2× 10−18 m2/W for n2 of the CS2 (see
[238]). This value is 100 times greater than that of the silica which are in the range of 10−20 m2/W
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Figure 2.3: (a) Comparison of the CDPs : black curve for the standard PCF and red curve for the LCPCF. Data
: Pitch Λ = 1.8 µm, hole diameter d=1.44 µm, �ve holes,(b) Choice of the pumping wavelengths in the CDP of the
LCPCF,(c) Plot of nCS2 versus λ.

[3]. For this speci�c study, we have used a chirped Airy input pro�le in the numerical simulations
as de�ned in Eq. (2.68) with a zero phase. In this work, we have also chosen to stop until the tenth
order since the values beyond have a negligible in�uence on the results using Eq. (2.118).

2.6.3 In a SOI-waveguide that includes both the THG and the NFK terms
The question of SCG analysis in a SOI-waveguides should �rstly concern the e�ects of TPA, FCA

and FCD on the spectra obtained. However as fully discussed in [200,201e,201g,202a,215,216,218],
the TPA is deleterious for the spectral bandwidth of the spectra. Indeed, the TPA causes a drastic
reduction of the bandwidth [215]. One should also note that the e�ects of FCA and FCD have
already been analyzed on the broadened spectra induced by the SCG [200,202a] and by the SPM
only [211,215]. Moreover, for ultrashort pulses as those in the sub-picosecond domain (femtosecond
pulses) for which the e�ective carrier lifetime should be neglected, Yin et al demonstrated that neither
SRS nor FCA/FCD plays a signi�cant role during the SCG in SOI-waveguides [200].

More recently, the impact on the SPM of both the THG process and a novel one dubbed as NFK
process, were studied in a Kerr medium [239]. In this study, Loures et al found that, the THG induces
additional symmetric lobes in the SPM-broadened spectrum while the amplitude of these sidebands
are importantly increased by the NFK term and the SS e�ect so-called nonlinear shock e�ect. The
NFK was �rst discussed theoretically in [240] after the pioneers experiments done in [241-243] and
that have revealed the possibility of solitons to emit such negative-frequency resonant radiation.
Furthermore, Conforti et al showed that the NFK term does not appear in the common GNLSE
based on the SVEA. Thus, they modeled subsequently a new equation known as the full UPPE
that includes the NFK in a GNLSE-like form [240]. It is well-known that, the THG necessitates a
phase-matching condition to occur in a Kerr medium [3]. This is not in general satis�ed for standard
SMFs while phase-matching is much easier to accomplish in highly nonlinear waveguides [3].

Assuming that SOI-waveguides are media that possess high values of Kerr nonlinearity, the con-
sideration of the THG e�ect could be set. If the analytical modeling of the propagation within
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SOI-waveguides is not conducted through the SVEA but rather through the novel modeling intro-
duced in [240], the NFK term could also been included. The question of such considerations has been
formulated for the �rst time in this thesis and presented in [244]. Indeed, the following interroga-
tions were still opened before the work described in this thesis : (i) is there an existing modeling of
pulse propagation within SOI-waveguides that combines SPM, SS, TPA, THG and NFK ? (ii) What
happen to the SCG when all these e�ects are investigated together ? (iii) What about its coherence
properties ?.

In this work, we conduct for the �rst time to the best of our knowledge, a modeling that combines
into a nonlinear equation the aforementioned nonlinear e�ects for a SOI-waveguide. This modeling
relies on both the one of [216] and the one of [240]. Then, we derive the corresponding equation used to
generate numerically the SCG spectra by a modi�ed adapted version of the MATLAB code provided
in [114]. Since, the single impacts of the mentioned nonlinear terms on the SPM-broadened spectra
are known [3,137,200,202a,211,239], we focus in this thesis on their in�uences upon the properties
of the SCG obtained through symmetric femtosecond pulses. A particular attention is given to the
TPA, the THG and the NFK.

For the analytical modeling, let us start with the full UPPE expressed as follows [240]:

i
∂Ẽ(z, ω)

∂z
+ β(ω)Ẽ(z, ω) +

ω

2cn(ω)
P̃NL(z, ω) = 0. (2.122)

It is a reduction of Maxwell's equations that accounts only for the forward propagating part of the
electric �eld. n(ω) is the linear refractive index. Then similarly to the SVEA done in section 2.2,
one introduces the pulse envelope as done in Eq. (2.4) that deals with frequency detuning ∆ω from
the pump frequency ω0 as ω0±∆ω. Nonetheless, contrary to what has been considered in subsection
2.2.1 where |∆ω| � ω0 (SVEA), here one considers rather supp{∆ω} = [−ω0; +∞[ so that one could
obtain negative frequencies. It is therefore a spectral extension of the SVEA. With such hypotheses,
one derives the following nonlinear polarization :

PNL(z, T ) =
3χ(3)

8

[
1

3

((
u(z, T ) exp(iθ)

)3
+

(
u∗(z, T ) exp(−iθ)

)3
)

+ |u(z, T )|2
(
u(z, T ) exp(iθ)

+ u∗(z, T ) exp(−iθ)
)]
,

(2.123)
where u(z, T ) represents now the pulse envelope as done in Eq. (2.4), θ = −ω0T+β0z,

(
u(z, T ) exp(iθ)

)3

accounts for the THG of positive frequencies, (
u∗(z, T ) exp(−iθ)

)3 accounts for the THG of negative
frequencies, |u(z, T )|2u(z, T ) exp(iθ) is for the common used positive frequencies Kerr e�ect inducing
the SPM [3], and |u(z, T )|2u∗(z, T ) exp(−iθ) corresponds to the novel process dubbed as NFK e�ect
[239,240]. Introducing Eq. (2.123) in Eq. (2.122) similarly to subsection 2.2.1, one obtains after a
cumbersome calculation the following nonlinear PDE in the retarded frame of time [239,240]:

i
∂u(z, T )

∂z
+

M∑
k=2

(i)kβk

k!

∂ku(z, T )

∂T k
+γ|u|2u = −iα

2
u+

γ

3
u3 exp(−2iθ′)+

γ

3
(u∗)3 exp(2iθ′)+γ|u|2u∗ exp(2iθ′),

(2.124)
with θ′ = ω0T + ∆κz and ∆κ = β1(λ0)ω0 − β0(λ0). The full background of the computation used to
derive the PDE in a GNLSE-like form above can be found in [240]. Assuming now a spectral �ltering
that allows only the THG of positive frequencies, it yields :

i
∂u(z, T )

∂z
+

M∑
k=2

(i)kβk

k!

∂ku(z, T )

∂T k
= −iα

2
u− γu

[
|u|2 +

u2

3
exp(−2iθ′) + γ(u∗)2 exp(2iθ′)

]
+

. (2.125)

Lucien M. Mandeng, PhD thesis c©-2015 94



Laboratory of Mechanics, Department of Physics, Faculty of Science, U.Y.I

Thus, only positive frequencies for THG are considered through a spectral �ltering of the UPPE
when the subscript "+" is written [239,240]. Such operation is important when the sub-cycle pulses
are considered assuming that for them, the common SVEA is completely invalid [239].

Now for a lossless SOI-waveguide, we combine Eq. (2.125) with Eq. (2.49) to obtain the novel
equation that combines the nonlinear absorptions, THG and NFK. It yields [244] :

i
∂u(z, T )

∂z
+

k=10∑
k=2

ikβk

k!

∂ku(z, T )

∂T k
=− γ′(1 + iδshock

∂

∂T
)×

[
u(z, T )

(
|u(z, T )|2

+ aNFK(u∗(z, T ))2 exp(2iθ′)

+
aTHG

3
(u(z, T ))2 exp(−2iθ′)

)]
+

,

(2.126)

with aNFK and aTHG being the NFK coe�cient and the THG coe�cient, respectively. The parameter
of the cubic nonlinearity is de�ned as described in subsection 2.2.2. Since there is a need of phase-
matching satisfaction in this highly nonlinear medium for the THG to occur as extensively discussed in
[3,239,240], the nearly zero-phase condition θ′ ∼ 0 corresponds approximately to the maximal growth
(or the resonance) of the THG occurrence as done for the FWM [3,228]. Under this assumption,
the THG is quali�ed to be nearly resonant (It is underlined by the group-velocity mismatch [3]).
Nevertheless, when θ′ 6= 0, we have :

β1(λ0) =
1

c

[
nSi(λ0)− λ0

(dnSi(λ)

dλ

)∣∣
λ=λ0

]
,

ω0 =
2πc

λ0

,

θ′(z, T ) = ω0

[
T +

(
β1(λ0)−

β0(λ0)

ω0

)
z

]
.

(2.127)

We know that β0(λ0)/ω0 = nSi(λ0)
c

, thus it yields :

θ′(z, T ) = 2π

{
cT

λ0

− z
(dnSi(λ)

dλ

)∣∣
λ=λ0

}
, (2.128)

where nSi(λ) is the refractive index of silicon at λ. It is calculated in this work from the Sellmeier-type
equation [200,245]:

nSi(λ) =

[
1 +

c1λ
2

λ2 − λ2
1

+
c2λ

2

λ2 − λ2
2

]1/2

, (2.129)
where c1 = 9.733, c2 = 0.936, λ1 = 290.4 nm, and λ2 = 366.9 nm. It is assumed that an optical
incident signal without initial phase propagating in this medium should develop a nonlinear phase
shift θ′NL(z, T ) [3,239]. Thus, to obtain θ′NL(z, T ), we neglect in Eq. (2.126) the CDP and the shock
term in order to have :
i
∂u(z, T )

∂z
= −γ′ ×

[
u(z, T )

(
|u(z, T )|2 + aNFK(u∗(z, T ))2 exp(2iθ′) +

aTHG

3
(u(z, T ))2 exp(−2iθ′)

)]
+

.

(2.130)
Let us set that u = |u| exp

(
iθ′NL(z, T )

) and inserting this relation in Eq. (2.130) above yields two
coupled PDEs for |u| and θ′NL(z, T ) [3,239]:

∂|u|
∂z

=− γ′|u|3(aNFK −
aTHG

3
) sin

[
2
(
θ′(z, T )− θ′NL(z, T )

)]
∂θ′NL(z, T )

∂z
=γ′|u|2

{
1 + (aNFK +

aTHG

3
) cos

[
2
(
θ′(z, T )− θ′NL(z, T )

)]}
.

(2.131)
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The nonlinear phase is obtained from Eq. (2.131) using the MAPLE software. We assume that
the modulus |u| does not nearly vary following the propagation distance z as ∂|u|/∂z ∼ 0. As an
approximation, this stems from the cases aTHG = aNFK = 0 or θ′(z, T ) ∼ θ′NL(z, T ) [3,239,244]. It is
given by :

θ′NL(z, T ) = 2π

[
cT

λ0

− z
(
dnSi(λ)/dλ

)∣∣
λ=λ0

]
− arctan

{
Γ tanh

[
Γ(cte− z)

]
ρ2

}
, (2.132)

where Γ, ρ1, ∆k, ρ2 and cte are de�ned as : Γ = (ρ1ρ2)
1/2, ρ1 = γ′|u|2(1 + aNFK + aTHG/3) −∆k,

∆k = −2π
(
dnSi(λ)/dλ

)∣∣
λ=λ0

, ρ2 = γ′|u|2(−1 + aNFK + aTHG/3) + ∆k, and an integration constant
(taken here trivially to be zero), respectively. Note that the SRS and the FCA/FCD have been
neglected in the analysis because of their weak role played on the SCG in silicon waveguides as
discussed by Yin et al in [200]. The coe�cients aNFK and aTHG are two coe�cients that can take the
values 0 or 1, depending which nonlinear terms (between NFK and THG) one wishes to activate or
not [239]. Since it is well-known that linear losses of the SOI-waveguides diminish only the intensity
of the incident and propagated light [3], we do not consider them in this analysis : the system is
lossless. Considering all these assumptions, the model equation solved in the SCG numerical code is
given by :

i
∂ũ(z, ω)

∂z
= −γ̄′ exp(L̂(ω)z)F

(
ū(z, T )

(
|u(z, T )|2 + aNFK(u∗(z, T ))2 exp(2iθ′NL)

+
aTHG

3
(u(z, T ))2 exp(−2iθ′NL)

))
+

.

(2.133)

The cubic nonlinearity parameter γ̄′ is de�ned as in Eq. (2.120), nonetheless here it includes the
TPA term as described in subsection 2.2.2. We use a symmetric initial condition as the unchirped
sech-type pulse. The numerical simulations are done through a modi�ed version (see the function in
the appendixes) of the MATLAB code provided by Travers et al [114] with the following data of the
fundamental TE mode through the lossless silicon waveguide having W = 0.8 µm and H = 0.7 µm
[200]: pumping wavelength λ0 = 1550 nm, length of the waveguide L = 0.06 m, P0 = 50 W ,
t0 = 50 fs, γ̄′(λ0) = (24.322 + 2.5i) W−1m−1, β2(λ0) = −0.1701 ps2/m. The HOD terms have
calculated using Eq. (2.118): β3 = 0.0085 ps3/m, β4 = −4.2525 × 10−4 ps4/m, β5 = 2.1263 ×
10−5 ps5/m, β6 = −1.0631 × 10−6 ps6/m, β7 = 5.3156 × 108 ps7/m, β8 = −2.6578 × 10−9 ps8/m,
β9 = 1.3289× 10−10 ps9/m, β10 = −6.6445× 10−12 ps−10/m.

2.6.4 Analysis of the quality of the spectra
The coherence degree (CD) is de�ned by the parameter g(1)

12 (λ, t1 − t2) of Eq. (1.46). Normally,
we have 0 ≤ |g(1)

12 (λ, t1 − t2)| ≤ 1. If this parameter is close to zero, the spectrum is incoherent and
fundamentally noised. The opposite happens when it is rather close to 1. To numerically calculate
the CD with the MATLAB SCG code, we just run N times the same simulations with some di�erent
random noise (for instance a Gaussian white noise) added to the initial condition such as one photon
with random phase per spectral bin added to the initial pump pulse (see the appendixes "Code for
the simulation of the CD parameter"). The N results are stored for each wavelength/frequency in
order to get a 2D-plot [129].

2.7 Conclusion
In the end, the di�erent analytical and numerical models were presented. Considering the pulse

compression phenomenon, the MVA has been described analytically assuming both the linear and the
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nonlinear cases of the compression. The ABCJS approach in the case of WDM solitons system near
the ZDW has been applied on the ASC of the FWM. The PMCs were derived both in the reduced
and the full models. Furthermore, for the MI mechanism, we have presented the linear stability
analysis of the CW in the SOI-waveguide deriving the OFs from the MI gain relation.

Taking into account the SCG analyses, we have �rstly investigated the system modeled by the
GNLSE with non-Kerr terms. We have shown a novel analytical modeling of the SCG equation based
on an analogy with the well-known cubic nonlinear case. Then, we have described the modeling of
the SCG in CS2-the LCPCF drawing its CDP in which two pumping wavelengths were chosen in
order to generate continua both in the normal and the anomalous dispersion regimes. Moreover,
another novel analytical modeling was done for the SOI-waveguides including both the THG and the
NFK terms. We present in the last chapter of this thesis the numerical results obtained.
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Chapter 3

Results and discussions

3.1 Introduction
This chapter presents the main results obtained in the thesis. The second section shows those

of the linear pulse compression obtained numerically through the MVA while section 3.3 concerns
the nonlinear compression based on both the symmetric and the asymmetric shapes. In section 3.4,
we show the ASC numerical results and in section 3.5, both the MI gain and PTG are highlighted.
Section 3.6 is devoted to waveguides modelled by the GNLSE with non-Kerr terms while section 3.7
deals with the role of the input pro�le asymmetry and the chirp both in the standard propagation and
in the SCG of CS2−LCPCF. It is presented in section 3.8, the results on the SCG in SOI-waveguides
including both the THG and the NFK terms. We conclude the chapter in section 3.9.

3.2 On the linear compression of chirped femtosecond optical
pulses under FOD : the case of Gaussian and the RC pulses

The results presented in this sub-section stem from [224]. The linear pulse compression as described
by Eq. (2.44c) is numerically presented in �gure 3.1, where we have plotted the contour plots of the
Gaussian pulse propagation (see �gure 3.1(a) and �gure 3.1(b)) and the corresponding normalized
amplitudes, normalized widths, chirps and phases in function of the distance of propagation z (see
�gures 3.1(c)-3.1(f)). The case where we respect the dispersion lengths condition of Eq. (44c) leads
to pulse compression (�gure 3.1(a) :LGV D = 6LFOD/(1 + C2

0)) while the case where we ignore this
condition leads to Gaussian pulse broadening (�gure 3.1(b) :LGV D = 3.2LFOD/(1 + C2

0)). Figures
3.1(c)-3.1(f) present the corresponding pulse characteristics of the propagating optical signals : the
solid lines for the case of �gure 3.1(a) and the dashed lines for the case of �gure 3.1(b). The values
of the initial width and the FOD are the same as in [30], with positive values of the chirp and GVD.
We obtain a MPCP of 10.55% in the pulse compression of �gure 3.1(a). It is clearly seen in �gure
3.1 that when the condition on dispersion lengths is respected with the interaction between the chirp
and the GVD having the same positive sign under the in�uence of an opposite value of the FOD, the
compression is well obtained. In �gure 3.2, we represent the compression condition of Eq. (2.45a)
where both the FOD and the GVD have the same positive sign while the chirp is negative. In this
case there is no condition on dispersion lengths. Figures 3.2(b-e) present the evolution of the pulse
characteristics for this propagation.
Taking into account the case of the RC pulse, the pulse compression is obtained earlier at the

beginning of the propagation in comparison to the Gaussian case, as can be depicted in �gure 3.3.
The condition of Eq. (2.46a) corresponds to the case where the parameters GVD, FOD and chirp
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Figure 3.1: (a) Contour plot of the chirped Gaussian pulse compression of Eq. (2.44c) : assuming the dispersion
lengths condition, LGV D = 120.33 km, Lmc =186.2075 km, MPCP=10.55 % ; (b) contour plot of the chirped Gaussian
pulse broadening as expected in previous studies in the absence of veri�ed conditions on dispersion lengths, LGV D =
62.78 km. For the frames (c), (d), (e) and (f) : normalized amplitude, normalized width, chirp and phase respectively
(blue solid curves correspond to the case of �gure 3.1(a) and green dashed curves for the case of �gure 3.1(b). General
parameters β4 = −0.00086 ps4/km, LFOD = 24.24 km, T0 = 0.38 ps, Tmin = 0.3399 ps, C0 = 0.5.
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Figure 3.2: (a) Contour plot of the pulse as described by Eq. (2.45a); (b), (c), (d), (e) Evolution of the normalized
pulse parameters versus the propagation distance z with parameters β4 = 0.00086 ps4/km, LFOD = 24.24 km,
T0 = 0.38 ps, Tmin = 0.3399 ps, C0 = −0.5, β2 = 0.0023 ps2/km, Lmc = 27.5863 km.

have the same positive sign. The compression is obtained with a MPCP about 5.5767 % which is
less than those obtained with the Gaussian pulse. The maximal length for the pulse compression is
about 0.5041 km very far from the result obtained in �gure 3.1 (about 186.2075 km) and in �gure
3.2 (about 27.5863 km). Figure 3.4 presents the contour plots of the RC pulse and the evolution of
its characteristics corresponding to Eq. (2.46d). In �gure 3.4(a), the dispersion lengths condition
is veri�ed while in �gure 3.4(b) it is ignored. Figures 3.4(b-e) present the RC pulse characteristics
evolution versus z.
Recalling that the present study of dynamics of linear compression involves the GVD, the chirp
and the FOD, it is important to point out that these results could be generalized to the nth−order
even dispersion terms. Our obtained results present a general description of the interaction between
the chirp, the GVD and the FOD. The results recover and complete some aspects of results on
pulse compression previously obtained in literature. Taking into account another type of optical
light pulse, namely the raised-cosine pulse, we have obtained interesting features as concerned the
dynamical behavior of the propagating pulse which are not particularly related to the major results
obtained when dealing with the Gaussian pulse. For example, it comes that even when the interacting
dispersion parameters and the chirp have the same sign, the pulse compression is obtained. Therefore,
the description of the broadening/compression pulse is greatly dependent on the considered optical
pulse.
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Figure 3.3: (a) Contour plot of the pulse as described by Eq. (2.46a); (b), (c), (d), (e) Evolution of the normalized
pulse parameters versus the propagation distance z with parameters β4 = 0.00086 ps4/km, LFOD = 24.24 km,
T0 = 0.38 ps, Tmin = 0.3588 ps, C0 = 5, β2 = 0.0113 ps2/km, MPCP=5.5767 %, Lmc = 0.5041 km.

3.3 On the nonlinear compression in SOI-waveguides under
FOD

3.3.1 Case of compact and symmetric chirped femtosecond pulses : Gaus-
sian, sech-type and RC pulses

The results presented in this sub-section stem from [225,246].

Periodic compression of femtosecond pulses in SOI-waveguide under FOD
and SPM
In this sub-section, Taking Eqs. (2.65)-(2.67) we set γ 6= 0, Γ = 0, Λ = σNc = 0. We may integrate

these growth equations by using the fourth-order Runge-Kutta integration scheme. It is well-known
that the balanced interaction between SPM and GVD should lead to the solitonic properties of pulse
propagation inside an optical medium [1,3,33,171,172,176], the solitonic features appearance being
drawn within the soliton-order de�ned by N2 = LGV D/LNL where LNL = 1/γP0. So, normally as
well-known in silica optical �bers for the anomalous-GVD regime, each input pulse may lead to a
solitonic form of the fundamental soliton for N = 1, and higher-order solitons (HOSs) for N ≥ 2
[1,3,33,171,172,176]. However the combination of SPM e�ects and normal-GVD (β2 > 0) could be
used for pulse compression [3].
The HOSs have an interesting feature which is described as a periodic evolution following the distance
z of propagation. This property is understood within a periodic compression shaping at each times
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Figure 3.4: (a) Contour plot of the chirped RC pulse compression of Eq. (2.46d) : assuming the dispersion lengths
condition, LGV D = 5.328 km, Lmc =0.3346 km, Tmin = 0.3725 ps, MPCP=1.9798 % ; (b) contour plot of the chirped
RC pulse in the absence of the veri�ed condition on dispersion lengths, LGV D = 62.78 km. For the frames (c), (d), (e)
and (f) : normalized amplitude, normalized width, chirp and phase respectively (blue solid curves correspond to the
case of �gure 3.4(a) and green dashed curves for the case of �gure 3.4(b). General parameters : β4 = −0.00086 ps4/km,
LFOD = 24.24 km, T0 = 0.38 ps, C0 = 5.
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the solitonic pro�le [3,33]. Using a dimensionless de�nition of the propagation distance ξ = z/LGV D,
it is de�ned the soliton period [3] :

z0 =
π

2
LGV D (3.1)

For HOSs with N ≥ 2, the propagation inside the standard single-mode silica optical �bers leads gen-
erally to pulse splitting in many sub-pulses [1,3,33,171,172,176]. When N is not too large, for example
N = 3, the splitting is made between two solitonic compression by recovering the original shape at
the end of the soliton period. However, for large values of N, the propagation leads generally to pulse
train generation via the modulational instability (MI) mechanism [189]. More recently, a higher-order
MI soliton demonstrated the pulse train generation process [191]. The understanding of the peri-
odic compression of HOSs is nowadays based over an interplay between the SPM and GVD e�ects [3].

The aim of this subsection, is to evaluate the periodic compression in SOI-waveguide from the previ-
ous input pulses in the femtosecond region via the interplay between the SPM and the FOD instead
of the GVD. The regime of GVD for the achievement of this periodic compression is surprisingly
normal while the SPM coe�cient of Kerr nonlinearity is also positive. The chosen parameters that
allow the periodic compression are P0 = 4.76 W , γ = 47 W−1m−1, α = 5.06 m−1, tpulse(0) = 50 fs
and β2 = 0.56 ps2/m [8]. For the parameter N, we have N = 0.99 ≈ 1. Normally, if a single-mode
silica �ber is considered in the anomalous-GVD and the FOD e�ect ignored (β4 = 0), each input pulse
should reshape its pro�le into a fundamental soliton pro�le while propagating inside the medium even
in the presence of a small initial chirp [3,33]. Indeed, it is known that the source chirp is detrimental
for soliton formation because it may disturb the exact balance between GVD and SPM [3]. We obtain
rather with the given SOI-waveguide, the periodic compression induced by the balance between SPM
and FOD e�ects instead of GVD, for the quasi-fundamental soliton order (N ≈ 1). This interesting
feature is depicted in �gure 3.5. To see how pulses propagate under the conditions of �gure 3.5, the

Figure 3.5: Plot of pulse characteristics, solid lines for the Gaussian pulse, circle lines for the sech-type pulse and
dotted lines for the RC pulse. Parameters for each pulse Γ = 0, Λ = 0, C0 = 0, SOI-waveguide length L=1 cm. Speci�cs
results for the Gaussian pulse : β4 = −0.0051 ps4/m, �rst peak at zinit ≈ 0.0019 m, �rst maximum pulse compression
percentage (MPCP ) = 61.77 %, z0 ≈ 0.0038 m. Speci�cs results for the sech-type pulse : β4 = −0.0039 ps4/m,
�rst peak at zinit ≈ 0.0036 m, �rst MPCP = 67.03 %, z0 ≈ 0.0075 m. Speci�cs results for the RC pulse : β4 =
−0.005 ps4/m, �rst peak at zinit ≈ 3.636× 10−4m, �rst MPCP = 37.95 %, z0 ≈ 6.360× 10−4m.

illustration of their intensities and spectra propagation is done in �gure 3.6 which is obtained with
the convenient fourth-order Runge-Kutta scheme and the common split-step Fourier algorithm. The
quantities zinit and z0 represent the initial distance at which the �rst compression peak is observed
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and the compression spacing (spatial period), respectively. The losses were included and obviously
reduce the energy of the pulses following the distance of propagation. As can be seen in �gure 3.5

Figure 3.6: Contour plots of pulses propagation under the conditions presented in �gure 3.5 : at the left-side
Gaussian pro�le, at the middle sech-type pro�le and at the right-side RC pro�le. For each frame, at the top : intensity
propagation, at the bottom : spectral propagation.

and �gure 3.6, the periodic compression depends on the input pulse pro�le. The compression period
of the sech-type pulse is greater than that of the Gaussian pro�le which is greater than the one of the
RC pro�le. To explain this di�erence, we suggest that since the two �rst pro�les are close to each
other, they will behave nearly similarly despite some small discrepancies, while the RC pro�le is a
periodic function in contrast to the others. It is worthy to notice that its behavior will be far di�erent
from the others which are not periodic. It is assumed that only one period of the temporal pro�le
of this pulse is used in the dynamics. This characteristic leads the RC pro�le to behave di�erently
in comparison to the other pulses which vanish intrinsically beyond the main peak. Furthermore,
with the same pulse duration t0, both the Gaussian and the sech-type pro�les have full-widths at
the half maximum intensity (respectively tGauss

FWHM = 1.665t0 and tsechFWHM = 1.763t0) which are nearly
equal while the one of the RC pulse is approximately the half of these ones (tRC

FWHM = 0.728t0)
[3,10]. Thus, its compression period is expected to be the smallest one as can be observed on �gures
3.5 and 3.6. This result contrasts with the one previously mentioned about silica SMFs where the
periodic compression was only obtained for HOSs, induced by the interplay between GVD and SPM.
However as presented in �gure 3.5 and �gure 3.6, we observe that, the periodic compression not only
depends on input pulse pro�le, but also can be obtained through the interplay of FOD and SPM in
a normal-GVD regime.
We observe a pulse ampli�cation associated to the periodic compression mechanism, with a slight
reduction of pulse energy due to the losses : see for instance the blue curve of the Gaussian pulse
in �gure 3.5(c). Indeed, one can see that the last compression peak is smaller than the two �rsts
highlighting therefore the e�ect of the linear losses. This happens also for both the sech-type and
the RC pulse for long propagation distances. It merges therefore that, for high values of losses, the
compression peaks are more and more reduced (as concerned the amplitude) or more and more broad-
ened (as concerned the temporal width). The chirp also oscillates for each pulse and the compression
peaks of the amplitude (or the width) appear only at Cpulse(kz0) = 0, k being a nonzero integer.
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In�uence of the dispersion regime on the periodic compression : normal dispersion
regime (β2 > 0 and β4 < 0) or (β2 > 0 and β4 > 0)

Considering the �gures 3.5 and 3.6, we remind the reader that the dispersion regime is normal
according to the GVD. It corresponds to the case where we have β2 > 0 and β4 < 0. So, the
periodicity introduced by the FOD and SPM can be linked to the values of the FOD length for each
pulse following the relation LFOD = t40/|β4| (with tpulse(0) ≡ t0). For the Gaussian pulse, we have
LFOD = (4/15)LNL. For the sech-type pulse, the relation between the nonlinear length and the FOD
length is : LFOD = (16/45)LNL while for the RC pro�le we have LFOD = (13/45)LNL. One should
also notice that the periodic compression is obtained with the negative value of the FOD and the
positive value of the SPM. If the choice of a positive value of the FOD is done while we remain

Figure 3.7: Plot of pulse characteristics, solid lines for the Gaussian pulse, circle lines for the sech-type pulse and
dotted lines for the RC pulse. Parameters for each pulse Γ = 0, Λ = 0, C = 0, β2 = 0.56 ps2/m length L=1 cm.
For the Gaussian pulse : β4 = 0.0051 ps4/m. For the sech-type pulse : β4 = 0.0039 ps4/m. For the RC pulse :
β4 = 0.005 ps4/m, the normalized delay plotted is multiplied by 103 (see the red dashed curve in (a)) while the chirp
is multiplied by 104 (see the red dashed curve in (b)).

in the case of the normal dispersion regime (according to the GVD), the periodicity disappears as
expected (see �gure 3.7) [3]. It corresponds to the case where we have β2 > 0 and β4 > 0. As can be
seen in this �gure, the chirp is initially equal to zero for each pulse. With the disappearance of the
periodicity, one obtains the pulse broadening. This process is more stressed for the RC pulse (see
the red dashed lines in �gure 3.7) than that of the other pulses.

In�uence of the dispersion regime on the periodic compression : anomalous dispersion
regime (β2 < 0 and β4 < 0) or (β2 < 0 and β4 > 0)
We plot in �gure 3.8 the case where both the GVD and the FOD are negatives (β2 < 0 and β4 < 0).

As can be observed, the periodic compression also occurs under these conditions. Nevertheless, this
phenomenon is less important than that of �gures 3.5 and 3.6. Indeed the MPCP for each pulse and
the compression spatial period decrease. The illustration of this observation is presented in table 3.1
showing a comparison between the results obtained under the conditions β2 > 0, β4 < 0 (Fig.(3.5))
and β2 < 0, β4 < 0 (Fig.(3.8)). The main aspect coming from table 3.1, is the decrease of the
MPCP for each pulse from results of �gure 3.5 to those of �gure 3.8. It is a surprising result when
one considers the negatives values of the GVD and the FOD. Normally, one should expect that both
the two dispersion orders act together in a cooperative manner to improve the periodic compression
and therefore rather to increase the MPCP. Nonetheless, we observe the opposite feature. Note that
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Figure 3.8: Plot of pulse characteristics, solid lines for the Gaussian pulse, circle lines for the sech-type pulse
and dotted lines for the RC pulse. Parameters for each pulse Γ = 0, Λ = 0, C = 0, β2 = −0.56 ps2/m, length
L=1 cm. Speci�cs results for the Gaussian pulse : β4 = −0.0051 ps4/m, �rst peak at zinit ≈ 0.00175 m, �rst
maximum pulse compression percentage (MPCP ) = 48.84 %, z0 ≈ 0.0035 m. Speci�cs results for the sech-type pulse
: β4 = −0.0039 ps4/m, �rst peak at zinit ≈ 0.00325 m, �rst MPCP = 54.86 %, z0 ≈ 0.006875 m. Speci�cs results for
the RC pulse : β4 = −0.005 ps4/m, �rst peak at zinit ≈ 4.375× 10−4m, �rst MPCP = 3.91 %, z0 ≈ 8.75× 10−4m.

Item Figure 3.5 Figure 3.8
zinit/z0 of the Gaussian pro�le 0.0019 m/0.0038 m 0.00175 m/0.0035 m
zinit/z0 of the sech-type pro�le 0.0036 m/0.0075 m 0.00325 m/0.006875 m

zinit/z0 of the RC pro�le 3.636×10−4 m/6.36×10−4 m 4.375×10−4 m/8.75×10−4 m
MPCP of the Gaussian pro�le 61.77% 48.84%
MPCP of the sech-type pro�le 67.03% 54.86%

MPCP of the RC pro�le 37.95% 3.91%
Table 3.1: Comparison of results obtained in the �gures 3.5 and 3.8 for each unchirped pulse. One can read as
: the �rst item before the division symbol "/" corresponds in the same line to values before this symbol and the
same procedure is done for the item behind the same symbol. For instance, for the �rst item "Gaussian pulse", zinit

corresponds to 0.0019 m and 0.00175 m while z0 to 0.0038 m and 0.0035 m.
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the parameters zinit and z0 increase for the RC from �gure 3.5 to �gure 3.8 in contrast to what
happens to the other pulses. It is obvious that this speci�c feature is linked to the peculiarity of
the RC pulse to be periodic and to have a small FWHM. It is highlighted in �gure 3.9 where the
results obtained for the sech-type pulse are plotted in the two cases. We suggest that, comparatively

Figure 3.9: Comparison of the anomalous GVD case (red dashed curves) and the normal GVD case (blue solid
curves) for the sech-type pulse : the periodic compression is enhanced in the normal GVD case. Simulation conditions
are the same as in �gures 3.5 and 3.8.

to the �gure 3.5, the action of the anomalous GVD is in opposition with the one of the FOD, and
then leads to a reduction of the periodic compression. One notices that the RC pro�le has its zinit

and z0 which increase on contrary to what happens to the other pro�les. This feature underlines
the main di�erence between this realistic input pro�le and the others. For a parametric study, we

Figure 3.10: GVD and FOD managements to control the periodic compression : (a) MPCP versus the varying ratio
β2/β4 with a constant negative value of FOD −0.005 ps4/m, (b) MPCP versus the varying ratio β4/β2 with a constant
positive value of GVD 0.56 ps2/m.

present in �gure 3.10 how a management of the GVD and the FOD values can be done in order to
control the periodic compression. This analysis is done by calculating the MPCP in the cases where
both the GVD and the FOD vary. The range of values considered for both the GVD and the FOD
is extended in order to include the realistic conditions. In �gure 3.10(a), with a constant negative
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Item Chirp zinit z0 MPCP
Gaussian pro�le 1 / 1.5 9.09×10−4 m / 5.9×10−4 m 0.00409 m / 0.0059 m 62.24% / 63.45%

Sech-type pro�le 1 / 1.5 0.0127 m / 6.363×10−4 m 0.00754 m / 0.01467 m 67.14% / 69.38%

RC pro�le 1 / 1.5 3.63×10−4 m/3.78×10−4 m 6.363×10−4 m / 6.48×10−4 m 38.45% / 38.88%

Table 3.2: Comparison of results obtained with di�erent positive values of chirp

Item Chirp zinit z0 MPCP
Gaussian pro�le -1 / -1.5 0.003 m / 0.00527 m 0.00418 m / 0.00609 m 62.14% / 63.16%

Sech-type pro�le -1 / -1.5 0.006 m / 0.0328 m 0.00756 m / 0.033 m 66.9% / 67.95%

RC pro�le -1 / -1.5 2.727×10−4 m/2.727×10−4 m 6.363×10−4 m / 6.363×10−4 m 38.5% / 39.12%

Table 3.3: Comparison of results obtained with di�erent negative values of chirp

value of FOD generating the periodic compression, this latter decreases with the decrease of the
GVD from the normal to the anomalous dispersion regime. We notice the special behavior of the
RC pulse for the values between 3 ps2/m to 0.5 ps2/m. However, the opposite feature arises for a
constant positive value of GVD while the FOD varies. Indeed, as can observed in �gure 3.10(b), the
periodic compression phenomenon is performed by the increase of the FOD value from −0.03 ps4/m
to −5 × 10−4 ps4/m for all the pulses. Obviously, the RC pulse still has a special behavior for
the range between −10−4 ps4/m to 0. Considering these results, the best case in which we have a
highest MPCP, corresponds to the one for which a large value of FOD (−5× 10−4 ps4/m) is reached
in the normal GVD regime (0.56 ps2/m). The interaction that generates the periodic compression
corresponds to the interplay between the negative FOD and the positive SPM. The action of the
anomalous GVD is in opposition with the one of the FOD, and decreases the periodic compression
phenomenon while the normal GVD is rather bene�cial.

In�uence of the initial chirp on the periodic compression
As discussed earlier in [1,3], the chirp should disturb the nonlinear periodic compression phe-

nomenon while it could lead to linear pulse compression when it is opposite to the GVD. So, introduc-
ing a small positive value of the initial chirp (C0 = 1) associated with the conditions (β2 > 0, β4 < 0)
of �gure 3.5, leads to table 3.2. The main observation done concerns the bene�cial e�ect of the
positive value of the initial chirp on the periodic compression. In fact, both the MPCP and the
spatial period increase for all the pulses under the e�ect of the positive chirp. Therefore, the periodic
compression phenomenon is enhanced. However, using a relative high value as C0 = 2 yields the
opposite result such as the destruction of the periodicity leading rather to pulse broadening for the
sech-type and the Gaussian pro�les while the RC pulse still keeps its periodic compression (see �gure
3.11). Numerical simulation of a high value as C0 = 5, destroys the periodic compression of the
RC pro�le. This latter needs therefore large values of positive chirp under the considered dispersion
regime, for the disappearance of its periodic compression in comparison to the other input pulses.
Considering the negative values of chirp, one obtains for instance the table 3.3. As seen in this table,
the negative value of chirp also enhances the periodic compression obtained under the dispersion
regime of �gure 3.5. It also comes that large negative values of chirp destroy the periodicity. So,
one can suggest that in general the small absolute values (AVs) of chirp enhances the periodic com-
pression induced by the interplay between the FOD and the SPM while large AVs of chirp destroy
the periodicity and leads to pulse broadening. This happens when the dispersion regime is normal
following the GVD, with FOD×SPM<0. In the next subsection, we study the in�uence of nonlinear
parameters as the TPA and the FCA on the periodic compression process.
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Figure 3.11: Contour plots of pulses propagation under the conditions presented in �gure 3.5 with C0 = 2 : at the
left-side Gaussian pro�le, at the middle sech-type pro�le and at the right-side RC pro�le. For each frame, at the top
: intensity propagation, at the bottom : spectral propagation.

In�uence of absorption coe�cients on the periodic compression
In this section, the parameters are given as Γ 6= 0, Λ 6= 0, γ 6= 0. Concerning the TPA phenomenon,

it was �rst reported experimentally by Kaiser and Garrett [226]. Multiphoton absorption phenomenon
can lead to laser damage of optical materials and can be used to write permanent refractive index
structures into the interior of optical materials [83]. Therefore, the multiphoton absorption is well-
known to be a nonlinear loss phenomenon that can reduce the e�ciency of nonlinear optical devices
such as optical switches. It is known that the TPA reduces the compression factor [212].
However in the present work, we �nd that a small value of TPA (for instance 0.5 W−1m−1) destroys
progressively the periodic compression. The spatial period is increased following the propagation
distance for each pulse. As presented in �gure 3.12, the e�ect of the small value of TPA on input

Figure 3.12: Plot of pulse characteristics, solid lines for the Gaussian, dotted lines for the sech-type pulse and
dashed lines for the RC pulse. Parameters for each input pulse C0=0.8, Γ = 0.5 W−1m−1, σ = 1.45 × 10−21 m2,
SOI-waveguide length L=4 cm. The other parameters are similar to those of �gure 3.5.

pulse can be therefore understood as a destruction of the periodicity in the compression process
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induced by the interplay between FOD and SPM.
A relative high value of TPA as 6.5 W−1m−1 as taken in [8], leads to the whole periodic compression
destruction (see �gure 3.13) where the e�ect of FCA was also included. It is observed in these �gures
that the large values of TPA combined to the FCA lead to pulse broadening inside the SOI-waveguide.
Nonetheless, under the considered conditions, one notices at least one peak of ampli�cation linked

Figure 3.13: Plot of pulse characteristics, solid lines for the Gaussian, dotted lines for the sech-type pulse and dashed
lines for the RC pulse. Parameters for each input pulse C0=0.8, Γ = 6.5 w−1m−1, σ = 1.45×10−21 m2, SOI-waveguide
length L=2 cm. The other parameters are similar to those of �gure 3.5.

to a pulse compression before the broadening. This happens for the RC at a distance smaller than
that of the Gaussian pulse while the sech-type pulse is the last.

3.3.2 Case of SHAPs
The results presented in this sub-section stem from [227,247].

Linear compression
The values of the parameters used in numerical simulations are de�ned as [8] : the waveguide

length L=4 cm - 5 cm, the linear losses α = 5.06 m−1, the initial peak power P0 =4.76 W, the
TPA coe�cient Γ = 6.5 W−1m−1, the GVD β2 = 0.56 ps2m−1, the FOD β4 = −1.2843 ps4m−1, the
FCD-FCA associated coe�cient κ = 5 W−4ps−1m−1, the initial chirp C0 =0.8, the SPM coe�cient
γ = 47 W−1m−1, the pulse width t0 =50 fs
and the wavelength λ0 = 1550 nm, respectively.
We represent in �gure 3.14 the pulse compression under the third condition of Eq. (2.76). The FOD
parameter is obtained by setting that LFOD = 0.96b where b = V2LGV D. This may be obtained
from a realistic value of the FOD β4 and for the numerical simulations, we show how the obtained
compression conditions work. It is convenient to choose an approximated realistic value of the FOD
which veri�es the third compression condition of Eq. (2.76) for example. We have chosen to draw
the analytical result (see the solid line in �gure 3.14(a) and �gure 3.14(b)) with the numerical result
obtained with a fourth-order Runge-Kutta integration scheme (see the dashed line in �gure 3.14(a)
and �gure 3.14(c)). The analytical result here is based on Eq. (2.72) and the numerical result comes
from the direct integration of the growth equation of the width in Eq. (2.71). Considering the
obtained pictures, it comes that the quasi-spectral assumption that governs the analytical result can
approximately satisfy the pulse compression in the linear case because the di�erence between the two
results is not enough important for the small distances of propagation. Therefore, the assumption
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Figure 3.14: (a) Solid line for the analytical result of the width and dashed line for the numerical result versus
z, (b) contour plot of the Airy pulse propagation for the analytical result and (c) contour plot of the Airy pulse
propagation for the numerical result. The peak power P0 = 4.76 W, β2 = 0.56 ps2/m, C0 = 0.8, α = 5.06 m−1,
β4 = −1.2843× 10−5 ps4/m and SOI-waveguide length L=0.04 m.

of a spectral bandwidth approximately constant during the propagation inside the linear medium
leads to admit the compression factor given in Eq. (2.72) only for short distance. It is certainly sure
that Eq. (2.71) and Eq. (2.72) will diverge for a long distance of propagation. As noticed in �gure
3.14, the critical distance of agreement that emerges from the simulations done is about 3 cm. The
MVA being validated to be a good mean to study short pulse propagation within SOI-waveguides
[8], translates cleanly in �gure 3.14 the linear approximation of the waveguide dynamics.
Beyond this notice, the main feature observed here is the fact that this compression is obtained with
β2C0 > 0 and β2β4 < 0. As the others conditions de�ned in Eq. (2.76), these results are entirely
in agreement with those previously discussed in [31] while the fact that the chirp is similarly signed
like the GVD contrasts with the basic admitted theory of linear compression induced by chirp with
grating pairs [1,3]. The �gure 3.14(b) is the contour plot of the Airy pulse for the analytical result
of Eq. (2.72) and Fig. (3.14c) is the contour plot of the Airy pulse for the numerical simulation of
Eq. (2.71). These �gures correspond to the pulse propagation within the SOI-waveguide under the
conditions de�ned in the linear approximation and respecting the third compression condition of Eq.
(2.76). For this �gure and for the followers, the scale bar is in unit of power (W) and indicates the
power reached in the compression process following the distance of propagation.
Now it is convenient to analyze what happens when the nonlinear e�ects are considered.

Nonlinear compression of SHAP in SOI-waveguide under FOD
Let us start �rstly with the linear model that we integrate over a SOI-waveguide length about 5

cm, thus we obtain the �gure 3.15. In �gure 3.15, the parameters γ, Γ and κ (σ) are still zero. It is
observed that the pulse compression really extents until a distance of propagation about 0.0409 m,
after comes the pulse broadening. At this distance, one obtains obviously the maximal pulse power
and compression before the broadening.
The process of the temporal compression has a peculiarity in the sense that, it is accompanied with
an ampli�cation of the pulse. The power/amplitude of the pulse ampli�es during the compression
process. The maximal power reached (MPR) in the compression process occurs at a distance as seen
in �gure 3.15 and it can be observed in the scale bar to see the corresponding value. The broadening
of the Airy pulse occurs just beyond this point and is dramatically extreme as seen on the �gure.
When the CKN e�ect is taken into account, the �gure 3.16 is obtained. We can see in this picture a
similar behavior as in �gure 3.15, it means a pulse compression over a distance of propagation followed
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Figure 3.15: (a) Plot of the normalized width (solid line) and the normalized amplitude (dashed line) versus z. (b)
Contour plot of the Airy pulse propagation. The peak power P0 = 4.76 W, β2 = 0.56 ps2/m, C0 = 0.8, α = 5.06 m−1,
β4 = −1.2843× 10−5 ps4/m, γ = 0, Γ = 0 and κ = 0, SOI-waveguide length L=0.05 m.

Figure 3.16: (a) Plot of the normalized width (solid line) and the normalized amplitude (dashed line) versus z. (b)
Contour plot of the Airy pulse propagation. The peak power P0 = 4.76 W, β2 = 0.56 ps2/m, C0 = 0.8, α = 5.06 m−1,
β4 = −1.2843× 10−5 ps4/m, γ = 47 W−1m−1, Γ = 0 and κ = 0, SOI-waveguide length L=0.05 m.
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by the pulse broadening. However, the change brought by the CKN indicates a clean reduction of
the length of compression before the broadening. Indeed the pulse compression extends in this case
only over 0.0340 m. Another point that must be raised, is the MPR (in the compression mechanism)
which is also reduced due to the e�ect of γ in combination with the negative value of the FOD.
Contrary to the previous case depicted in �gure 3.15 (Pmax ≈ 90W ), the MPR Pmax here is slightly
beyond 25 W only.
The consideration of the TPA inside the dynamics studied in this sub-section as the single nonlinear

Figure 3.17: (a) Plot of the normalized width (solid line) and the normalized amplitude (dashed line) versus z. (b)
Contour plot of the Airy pulse propagation. The peak power P0 = 4.76 W, β2 = 0.56 ps2/m, C0 = 0.8, α = 5.06 m−1,
β4 = −1.2843× 10−5 ps4/m, γ = 0, Γ = 6.5 W−1m−1 and κ = 0, SOI-waveguide length L=0.05 m.

process produces an important reduction of the length of compression comparatively to the cases
above. This length is now about 0.0263 m with our data as seen in �gure 3.17. Even the MPR is
reduced about 16 W.
The FCA e�ect on the pulse compression mechanism of femtosecond Airy pulses in SOI-waveguide

Figure 3.18: (a) Plot of the normalized width (solid line) and the normalized amplitude (dashed line) versus z. (b)
Contour plot of the Airy pulse propagation. The peak power P0 = 4.76 W, β2 = 0.56 ps2/m, C0 = 0.8, α = 5.06 m−1,
β4 = −1.2843× 10−5 ps4/m, γ = 0, Γ = 0 and κ = 5 W−4(ps m)−1, SOI-waveguide length L=0.05 m.

presented in �gure 3.18 is also described as a reduction of the length of compression about 0.0383
m. However, the contrast with all the previous reductions observed with the CKN and the TPA,
concerns the MPR which is rather increased comparatively to the one of �gure 3.15 about 100 W.
Another point to be noticed, is the amplitude depression which is similar with the one of �gure 3.15.
The FCA seems to have a negligible role on this depression contrary to the TPA and the CKN.
One should notice that physically there is a dependency of free carriers to the TPA such that normally
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the FCA might not be investigated without the TPA according to the relation of βTPA (presented in
Eq. (2.50)). However, we stand on an approximated case where Γ � σNc(z, t) in order to neglect the
TPA behind the FCA-FCD. Even in a pure mathematical view, the purpose is to analyze the impact
of the FCA on the chirped truncated SHAP in the SOI-waveguide. This approach has the merit
to underline the contribution of each nonlinear parameter in the whole behavior of the pulse when
they are all considered. The same approach is done for intensity dependent nonlinear parameters in
[3] such as the SPM, the SS and the IPRS for the SMFs. Indeed, the study of the impact of each
nonlinear parameter is conducted separately to the others according to the purpose de�ned at the
beginning.
Considering the combination of all these nonlinear processes namely the CKN, the TPA and the FCA
to the linear parameters namely the normal GVD, the losses, the negative FOD and the positive initial
chirp, we obtain for the SHAPs the �gure depicted in �gure 3.19. All these results are obtained with

Figure 3.19: (a) Plot of the normalized width (solid line) and the normalized amplitude (dashed line) versus z. (b)
Contour plot of the Airy pulse propagation. The peak power P0 = 4.76 W, β2 = 0.56 ps2/m, C0 = 0.8, α = 5.06 m−1,
β4 = −1.2843 × 10−5 ps4/m, γ = 47 W−1m−1, Γ = 6.5 W−1m−1 and κ = 5 W−4(ps m)−1, SOI-waveguide length
L=0.05 m.

the interaction of the negative value of the FOD, the normal GVD and positive initial chirp under
the limit value de�ned in Eq. (2.77).
The length of compression reached is about 0.0241 m, slightly more smaller than that of �gure 3.17 for
the single TPA e�ect. All the nonlinear processes seem to cooperate in the reduction of compression
length due to the combination of the negative FOD, the normal GVD and the positive chirp. Even
the reduction of the MPR is observed but less dramatic than that of �gure 3.17.
According to the impact of each nonlinear parameter as presented in �gures 3.16-3.18, we suggest
that they normally conduct to this compression length reduction, but the stressing is imposed by
the TPA e�ect because it is the single parameter which reduces more the length of compression. If
we consider the e�ect of the CKN and the TPA on the MPR in the compression mechanism studied,
we should normally obtain a reduction more important than that of �gure 3.17 (16 W). However,
the result about 18 W indicates that the bu�ering is made by the FCA because as seen in �gure
3.18, the e�ect of the FCA on the MPR of the SHAP allows an increase of its value comparatively
to the linear case. So, while the TPA and the CKN tend to reduce this value, the FCA in�uences
this variation in the opposite direction.
The decoupling of the e�ects related to γ, Γ and σ, in a �rst approximation gives meaningfully a sense
to the analysis. Since, in the realistic SOI-waveguide dynamic which has its process of compression
via SHAPs drawn on the �gure 3.19, the contribution of each parameter is underlined as additive
e�ects that cooperate in the sense of SPM and TPA, and that compete in the sense of FCA. Sure
enough, we notice that the TPA as a nonlinear loss rather acts on the chirped truncated SHAP
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in the same sense than the SPM surprisingly while the FCA acts in the opposite sense. All these
in�uences combined give an intermediate picture between those obtained with each single parameter.
Thus, the FCA plays a bu�er role on the dramatic e�ects of the SPM and TPA induced SHAP pulse
broadening in the presence of the FOD.

3.4 On the FWM ASC growth in WDM solitons systems near
the ZDW

The results presented in this section stem from [228]. Considering the PMCs obtained in both the

Figure 3.20: Evolution of the frequency o�set of Phase-matching conditions versus the ampli�cation spacing with
βGV D = 1, βTOD = 1 (solid curve) and βGV D = 0, βTOD = 1 (dashed curve).

reduced and full models (for ωn = 0), �gure 3.20 presents the evolution of the frequency o�set where
the FWM appears to be more important in the transmission in function of the normalized parameter
of the ampli�cation distance. In the presence of both GVD and TOD, it comes a slight reduction
of the frequency o�set evolution (solid curve in �gure 3.20) in comparison to the single TOD case
(dashed curve in �gure 3.20). The addition of the GVD term is the reason of this interesting feature.
The origin is linked to the polynomial equations of PMCs obtained in Eq. (2.92) and Eq. (2.93). We
conclude that the combined dispersion terms reduce the frequency o�set window more than a single
dispersion term. Analyzing the growth function of the FWM in the reduced model, we can predict
a higher growth for the most reduced frequency window.

3.4.1 Case of the reduced model
Figures 3.21 and 3.22 present the temporal pro�le evolution of the FWM versus the normalized

distance ζ (for convenience ζ and τ are respectively represented by z and t in the �gures) in the
reduced model for the single TOD case and assuming both TOD and GVD, respectively. As can be
seen in those �gures, the FWM component appears along the transmission line near the �rst node
and its amplitude increases through the following ampli�cation nodes due to the realization of the
phase-matching conditions. We notice that, in the reduced model, the FWM is reduced slightly in
the single TOD case than in the combined GVD-TOD case. This feature is better observed in
�gure 3.23 which presents the FWM temporal pro�le at the �rst and the tenth ampli�cation nodes
for both cases (single TOD and combined GVD-TOD). Figure 3.23(a) presents identical amplitude

Lucien M. Mandeng, PhD thesis c©-2015 116



Laboratory of Mechanics, Department of Physics, Faculty of Science, U.Y.I

Figure 3.21: Propagation of FWM component in the reduced model, for the single TOD case βGV D = 0, βTOD = 1.

Figure 3.22: Propagation of FWM component in the reduced model, for the GVD-TOD case βGV D = 1, βTOD = 1.

values of the FWM at the �rst node for both cases under study. During the propagation along the
transmission line, one observes that the amplitude of the FWM temporal pro�le in the single TOD
case is slightly reduced in comparison with the amplitude assuming the combined GVD-TOD case
(see �gure 3.23(b)). Therefore, in the reduced model, the FWM grows along the transmission line
and consequently a control of the FWM growth could be achieved.

3.4.2 Case of the full model
For the full model, the growth of the spectra pro�les of the FWM versus the normalized distance

ζ in the full model are presented in �gures 3.24 and 3.25 for the single TOD and the combined
GVD-TOD cases, respectively. The TOD introduces an asymmetry in the pro�le of the FWM
component for both cases which is progressively reduced along the line when reaching the tenth
ampli�cation node. It is also found that in WDM soliton systems where input colliding channels E1

and E2 are not well-separated, the FWM is associated with slight peaks at each ampli�cation node
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Figure 3.23: Temporal pro�le of FWM in the reduced model for both single TOD (dashed curve) and combined
GVD-TOD (solid curve), at the �rst (n = 1 : curve (a)) and the tenth (n = 10 : curve (b)) nodes respectively.

Figure 3.24: Propagation of FWM component spectrum in the full model, for the single TOD case βGV D =
0, βTOD = 1.

and becomes wide when ζ is increasing. It yields that, the strength of the FWM in the single TOD
case is more important than in the combined GVD-TOD case. For both cases, the FWM becomes
more smaller along the propagation distance ζ. We present in �gure 3.26, the spectrum pro�le of the
FWM component for both cases at the �rst and tenth ampli�cation nodes. This spectrum is more
intense in the single TOD case (dotted lines in �gure 3.26(a) and �gure 3.26(b)) than in the combined
GVD-TOD case (solid line in these �gures). We can easily say that the combination of TOD term
with the GVD term reduces the FWM crosstalk in the WDM soliton systems where input channels
are closer each other (small frequency spacing). This feature is depicted by the asymptotic solution
of the FWM growth presented in �gure 3.27 for the full model. We obtain a high broadening of the
FWM spectrum in the combined GVD-TOD case (solid lines) comparatively to the FWM spectrum
in the single TOD case (dotted lines). These results show that the analytical asymptotic solution
(for larger ζ) is in good agreement with the previous obtained results.
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Figure 3.25: Propagation of FWM component spectrum in the full model, for the combined GVD-TOD case
βGV D = 1, βTOD = 1.

Figure 3.26: Spectral pro�le of FWM in the full model for both single TOD (dashed curve) and combined GVD-TOD
(solid curve), at the �rst (n = 1 : curve (a)) and the tenth (n = 10 : curve (b)) nodes respectively.

3.5 On the MI mechanism in silicon waveguides under FOD
The results presented in this section stem from [229].

3.5.1 E�ects of absorption coe�cients on the MI gain
For the numerical simulations, we have set the parameter K = σNc as the FCA parameter.

Therefore, we choose to study separately the e�ects of TPA and FCA on the MI gain spectrum by
controlling the value of K. For instance, in the case where we have Γ 6= 0, we consider that K ∼ 0
which allows us to analyze only the single e�ect of TPA. On the other hand, when rather we have
K 6= 0, we consider that Γ ∼ 0 which allows us to analyze only the FCA e�ect.
Then, we plot in �gure 3.28 the MI gain for di�erent cases highlighting the e�ect of the absorption
coe�cients. For the case where we neglect the TPA and the FCA e�ects (see �gure 3.28(a)), we have
2 bands of the MI gain at 2 OFs locations : -78.3443 and 78.3443 THz. These sidelobes are due to the
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Figure 3.27: Spectral pro�le of FWM in the full model for both single TOD (dashed curve) and combined GVD-TOD
(solid curve), asymptotic solution beyond the tenth node where the parameter z is assumed to be larger.

FOD e�ect interacting with the GVD as discussed in [189,190] and designed by the second relation of
Eq. (2.114). However, in the presence of the TPA (see �gure 3.28(b)), we have 7 remarkable values of
the MI gain at 7 OFs locations : -78.3443, -69.0857, -48.9898, 0, 48.9898, 69.0857 and 78.3443 THz.
Among these locations, three have a zero MI gain particularly those of ±69.0857 THz and 0 THz.
In the presence of the FCA (see �gure 3.28(c)), we have 3 OFs solutions where the one in the central
frequency (Ω0=0) has an increased MI gain. It means that, the FCA enhances the value of this central
MI gain point. For the full realistic case where both the TPA and the FCA e�ects are considered, we
recover the 7 locations above of the MI gain maxima with the corresponding enhanced central peak.
It is worthy to notice that, these OFs values could be directly obtained using the relations of Eq.
(2.114). The �gure 3.29 shows the MI gain spectra for the di�erent cases discussed above in �gure
3.28 versus the varying peak power P0. The features noticed in �gure 3.28 are directly observed in
the contour plots of �gure 3.29. It is observed in �gure 3.29(b), the TPA e�ect on the MI gain such
as the creation of the 4 OFs symmetric locations given by the two last relations of Eq. (2.114) in
addition to the OFs induced by FOD and GVD interaction (see �gure 3.29(a)). On the other hand,
the FCA slightly increases the value of the central MI gain (see �gures 3.29(c)-3.29(d)) comparatively
to the cases of �gures 3.29(a)-3.29(b).

3.5.2 Impact of pulse shape, chirp and absorption coe�cients on the MI
PTG

In the absence of chirp, TPA and FCA
We generate a map of PTG as shown in �gure 3.30 for each positively chirped input pulses with

the common SSF algorithm in the absence of the TPA (Γ = 0). For the sech-type and Gaussian
pro�les, the trails of the MI-PTG are observed around about 0.07 m while for the RC pulse, they
are observed around about 0.06 m. We also observe for all the pro�les with the numerical data used,
about 10 main peaks of the MI-PTG process in �gure 3.30. The maximum value of these mains peaks
for the sech-type pulse is obtained around about 0.12 m of propagation distance with approximately
the value of 9.5 W (see the colorbar in �gure 3.30(b)). Concerning the Gaussian pro�le, we reach 11
W toward 0.115 m. For the last pro�le (RC pulse), we observe rather a maximal value about 12.5
W toward 0.11 m.
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Figure 3.28: Plot of the MI gain spectrum versus Ω. (a) blue curve for TPA=0 and FCA=0, (b) green curve for
TPA 6= 0 (Γ = 6.5 W−1m−1) and FCA ∼ 0, (c) red curve for TPA ∼ 0 and FCA 6= 0 (K = 1 m−1) and (d) violet
curve for TPA 6= 0 and FCA 6= 0. Others parameters : β2 = 0.56 ps2/m, β4 = −0.0014 ps4/m, γ = 47 w−1m−1,
P0 = 3 W .

Figure 3.29: Plot of the MI gain spectrum versus P0 and Ω. (a) for TPA=0 and FCA=0, (b) TPA 6= 0 (Γ =
6.5 W−1m−1) and FCA ∼ 0, (c) for TPA ∼ 0 and FCA 6= 0 (K = 1 m−1) and (d) for TPA 6= 0 and FCA 6= 0.
Others parameters : β2 = 0.56 ps2/m, β4 = −0.0014 ps4/m, γ = 47 w−1m−1.
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Figure 3.30: Contour plot of unchirped pulses propagation. (a) Gaussian pro�le, (b) Sech-type pro�le, (c) RC
pro�le. Parameters : β2 = 0.56 ps2/m, β4 = −0.0014 ps4/m, γ = 47 w−1m−1, L=0.15 m, t0 = 50 fs, P0 = 3 W ,
Γ = 0.

Indeed, we notice that the pro�les which are close to the fundamental soliton solution (consequently
more stable) as the sech-type pulse, have their main peaks of the MI-PTG trails that occur at larger
propagation distances than those less stable as the RC pulse. In addition, the maximum value of
these main peaks are smaller than those of the less stable input pro�les. The same idea can be raised
for the Gaussian pulse in comparison to the RC pro�le, since the �rst form is more close to the
sech-type pulse than the latter.
More speci�cally, the RC pulse as a less stable input, has its main peaks of the MI-PTG trails more
strong at the short propagation distances (see �gures 3.31(b) and 3.31(c)). This pro�le is followed
by the Gaussian pro�le, which gets strong peaks at propagation distances larger than the previous
pro�le (see �gure 3.31(d)) while the sech-type is the last with strong peaks of the MI-PTG process
appearing later in the propagation (see �gure 3.31(e)). Beyond these regular main peaks for all the
pro�les, the spontaneous breakup process continues leading to a chaotic picture for the large distances
of propagation (see �gures 3.30 and 3.31(f)). Another observation that can be done in �gure 3.31,
concerns the orientation of the undulations for each pulse. Indeed, in the absence of the source chirp,
all the pulses have the same orientation in the undulations.

E�ect of chirp in the absence of TPA and FCA
Considering the initial chirping process of each pulse, we have simulated the MI-PTG process

in the absence of absorption coe�cients (see �gure 3.32). As can be observed in this �gure, the
initial chirp (C=10) leads both the sech-type and the Gaussian pro�les to behave similarly in the
development of the MI-PTG process while the RC pro�le remains di�erent. Furthermore, the chirp
does not change the number of the main peaks for each pro�le. It shifts the occurrence of the high
values of the main peaks to short propagation distances for all the input pulses (about 0.1 m). The
maximum value reached in the power is the same for both the Gaussian and the sech-type pulse
(about 15.25 W) while for the RC pro�le, one �nds rather about 15 W. So, the e�ect of chirp consists
to enhance the intensity of the MI-PTG peaks and to shift the occurrence of their maximum value
to the short propagation distances than the unchirped case.
On the other hand, when we consider the �gure 3.33 with the nonzero value of chirp, the pulses that
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Figure 3.31: Temporal pro�les of the unchirped pulses at di�erent propagation distances: (a) input at z=0, (b)
z=0.05 m, (c) z=0.1 m, (d) z=0.115, (e) z=0.121 m and (f) z=L. The parameters are the same as in �gure 3.30. Solid
blue curves for Gaussian pro�le, dashed green curves for sech-type pro�le and solid red curves for RC pro�les.

Figure 3.32: Contour plot of chirped pulses propagation. (a) Gaussian pro�le, (b) Sech-type pro�le, (c) RC pro�le.
Parameters : C=10, β2 = 0.56 ps2/m, β4 = −0.0014 ps4/m, γ = 47 w−1m−1, L=0.15 m, t0 = 50 fs, P0 = 3 W ,
Γ = 0..
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Figure 3.33: Temporal pro�les of the chirped pulses at di�erent propagation distances: (a) input at z=0, (b) z=0.05
m, (c) z=0.1 m, (d) z=0.115, (e) z=0.121 m and (f) z=L. The parameters are the same as in �gure 3.32. Solid blue
curves for Gaussian pro�le, dashed green curves for sech-type pro�le and solid red curves for RC pro�les.

are more stable (the Gaussian and the sech-type pulses), are more ampli�ed than those which are
less stable (the RC pro�le). Even the orientation of the undulation changes, since the RC pro�le
undergoes a chirp phase opposite to the one of the others. Reversing the initial chirp value of the
RC pulse so that it is now chirped with a negative value while the other pro�les are always chirped
positively, we obtain a similar behavior for all the pulses (see �gure 3.34). In this case, the chirp
creates an independence of the MI-PTG process to the input pro�le, since it is observed that all the
pulses have the same picture because of the nonzero chirp.

E�ect of absorption coe�cients
The case treated in �gure 3.35 concerns the chirped pulses undergoing the MI-PTG process in

a SOI-waveguide having a small value of TPA about 0.1 W−1m−1 with the FCA coe�cient about
1.45× 10−21m2 [218]. We observe the e�ect of these small values of TPA and FCA on the MI-PTG
picture drawn as a slight reduction of the ampli�ed intensity comparatively to the previous cases.
The chirp impact in �gure 3.35 is in agreement with the one mentioned previously in �gures 3.32
and 3.33. Increasing the value of the TPA parameter with a factor 5 (consequently the FCA also
increases), the absorption coe�cients in�uence signi�cantly the MI-PTG process. In fact, in �gure
3.36 we observe the in�uence of TPA and FCA as a real reduction of the ampli�ed intensity of
the MI-PTG peaks in which the maximum value is reached at almost the output of the considered
SOI-waveguide. On the other hand, the input pro�les do not interact similarly with the absorption
coe�cients. The RC pro�le is found to be more in�uenced by the TPA and FCA than the others,
since its maximum value does not exceed the initial peak value comparatively to the whole previous
cases. Concerning the sech-type and the Gaussian pulses, an important reduction is observed but
it exceeds at least the double of the initial input peak power. However, the combination of the
value of 6.5 W−1m−1 used previously by Roy et al [8] for the TPA e�ect and the FCA coe�cient
value of [202a], leads to the complete destruction of the MI-PTG process creating consequently an
independence to the input pro�le (see �gure 3.37). Indeed, as can be observed, all the pulses behave
similarly under these conditions. The MI-PTG is destroyed in the sense that there are no peaks or
any pulse splitting observed. The absorption coe�cients act in this case, normally as nonlinear losses
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Figure 3.34: Temporal pro�les of the chirped pulses at di�erent propagation distances with a chirp inversion for the
RC pro�le: (a) input at z=0, (b) z=0.05 m, (c) z=0.1 m, (d) z=0.115, (e) z=0.121 m and (f) z=L. The parameters
are the same as in �gure 3.32. Solid blue curves for Gaussian pro�le, dashed green curves for sech-type pro�le and
solid red curves for RC pro�les : for the RC pro�le C = −10 while for the others C=10.

Figure 3.35: Plot of chirped pulses propagation. (a) Gaussian pro�le, (b) Sech-type pro�le, (c) RC pro�le. Pa-
rameters : C=10, β2 = 0.56 ps2/m, β4 = −0.0014 ps4/m, γ = 47 w−1m−1, L=0.15 m, t0 = 50 fs, P0 = 3 W ,
Γ = 0.1 W−1m−1, σ = 1.45× 10−21m2.
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Figure 3.36: Plot of chirped pulses propagation. (a) Gaussian pro�le, (b) Sech-type pro�le, (c) RC pro�le. Pa-
rameters : C=10, β2 = 0.56 ps2/m, β4 = −0.0014 ps4/m, γ = 47 w−1m−1, L=0.15 m, t0 = 50 fs, P0 = 3 W ,
Γ = 0.5 W−1m−1, σ = 1.45× 10−21m2.

Figure 3.37: Plot of chirped pulses propagation. (a) Gaussian pro�le, (b) Sech-type pro�le, (c) RC pro�le. Pa-
rameters : C=10, β2 = 0.56 ps2/m, β4 = −0.0014 ps4/m, γ = 47 w−1m−1, L=0.15 m, t0 = 50 fs, P0 = 3 W ,
Γ = 6.5 W−1m−1, σ = 1.45× 10−21m2.
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leading the a drastic pump depletion following the propagation distance. The half of the initial peak
power is reached after a propagation of 0.04 m only. Beyond this propagation distance, the pulses
are almost annihilated by the absorption coe�cients whatever the value of the chirp which becomes
a secondary parameter. Thus, the absorption coe�cients counteract the bene�cial chirp e�ect on the
MI-PTG process.

3.6 On the SCG phenomenon through the higher-order NLSE
with non-Kerr terms

The results presented in this section stem from [234]. The general numerical data used, are given
as follows : the waveguide length L = 1 cm, the GVD β2 = −0.5 ps2m−1 (de�ning an anomalous
dispersion regime of the modeled waveguide as taken in [237]) and the pumping wavelength λ0 = 1550
nm.

3.6.1 E�ects of competing and cooperative nonlinearities
Figure 3.38 shows the pulse width with t0 = 50fs, the CKN coe�cient γ̄1 = 5 W−1m−1

and the incident pulse energy E0 = 0.1 nJ (sub-nJ pulse). As seen in this �gure, the cooperative
nonlinearities (see the solid black curve in �gure 3.38(a)) stress the spectral broadening of the SCG
spectrum as expected since these nonlinearities have the same sign and therefore cooperate in the
increase of the global nonlinearity of the media. Obviously, the opposite feature is observed for the
competing nonlinearities where the quintic nonlinearity with its negative sign counteract the e�ect of
the cubic nonlinearity in the spectral broadening of the SCG. As result of this competition, a spectral

Figure 3.38: (a) SCG output spectra. Contour plots of SCG pulse spectral propagation : (b) case of single CKN γ̄2 =
0, (c) case of cooperative nonlinearities γ̄2 = 0.05 W−2m−1, (d) case of competing nonlinearities γ̄2 = −0.05 W−2m−1.

compression is obtained (see the solid green curve in �gure 3.38(a)) in comparison to the single CKN
case (see the dashed blue curve in �gure 3.38(a)). The corresponding spectral propagation are showed
in �gures 3.38(b), 3.38(c) and 3.38(d).

Lucien M. Mandeng, PhD thesis c©-2015 127



Laboratory of Mechanics, Department of Physics, Faculty of Science, U.Y.I

3.6.2 E�ect of the pulse width reduction in the femtosecond domain :
spectral compression induced by the cooperative nonlinearities

The reduction of the pulse width in the femtosecond domain by a factor 5 leads to �gure 3.39.
For the spectra presented in this �gure, the same data as in �gure 3.39 have been used except the
pulse width, which is rather t0 = 10fs. Surprisingly, we notice that instead of enhancing the SCG

Figure 3.39: Contour plots of SCG pulse spectral propagation : (a.1), (b.1) and (c.1); SCG input and output spectra:
(a.1), (b.1) and (c.1); (a.1) and (a.2) for the case of cooperative nonlinearities, (b.1) and (b.2) for the case of competing
nonlinearities, (c.1) and (c.2) for the case of single CKN.

spectrum broadening (increase of the SCG bandwidth), the cooperative nonlinearities slightly lead
to a spectral compression in the low wavelengths region (see �gures 3.39(a1) and 3.39(a2)) while the
competing ones nearly maintain unchanged the SCG spectrum (see �gures 3.39(b1) and 3.39(b2)).
This last feature is also observed for the single CKN case in �gures. 3.39(c1) and 3.39(c2). The

Figure 3.40: SCG spectra.

e�ect of this pulse width reduction induced spectral compression of the cooperative nonlinearities is
highlighted in �gure 3.40 where the spectral pro�les of the SCG have been drawn. The three cases of
�gure 3.39 are presented in �gure 3.40(a). Both the increase of the energy in the sub-nJ scale (as done
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in �gures 3.40(c) and 3.40(d)) and the nonlinearity (as done in �gures 3.40(b), 3.40(c) and 3.40(d))
con�rm the previous feature of the spectral compression obtained in the cooperative nonlinearities
case. In these �gures, the bandwidths remain nearly unchanged from the input to the output of the
considered waveguide for the competing nonlinearities. Considering the �gure 3.41, we have drawn

Figure 3.41: SCG -20 dB bandwidths corresponding to the cases plotted in �gure 3.40 : (I) for the cases (a) input
bandwidth about 1144.57 nm, (b) input bandwidth about 1130.95 nm, (c) input bandwidth about 1195.65 nm, (II)
for the case (d) input bandwidth about 3026.58 nm.

the SCG bandwidths at -20 dB of the S.I for the cases shown in �gure 3.40. Globally, as seen on this
�gure, the bandwidth decreases when one moves from the competing nonlinearities γ̄2 < 0 to the
cooperative ones γ̄2 > 0. Indeed for the case (a) in �gure 3.41(I), the spectral compression is obtained
for the cooperative nonlinearities since one reaches about 1084.33 nm when the input was at 1144.57
nm. For the case (b), the compression is reached at 1011.90 nm for the cooperative nonlinearities
while the input is at 1130.95 nm. The same feature could be observed for the cases (c) and (d) (see
�gure 3.41(II)).

3.7 On the role of the input pro�le asymmetry and the chirp on
the propagation in highly dispersive and nonlinear �bers

The results presented in this section come from [236].

3.7.1 Part I : propagation of FEAPs in highly dispersive optical �bers
The model equation used to describe the dynamics within a highly dispersive optical �ber (HDOF)

is the basic nonlinear NLSE de�ned as [3,236,248] :

i
∂u

∂ξ
− s2

2

∂2u

∂τ 2
− is3

6

∂3u

∂τ 3
+
δ4
24

∂4u

∂τ 4
+N2|u|2u = 0, (3.2)

where u, ξ and τ are the dimensionless quantities representing the slowly varying amplitude of the
electrical �eld, the propagation distance and the retarded frame time, respectively. The coe�cients
s2, s3 (with s3 = ± LGV D/LTOD), δ4 (with δ4 = ± LGV D/LFOD).
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Initial chirp inducing changes in the spectral shape : the spectral asymmetric shape
Firstly, we consider the basic nonlinear case where the GVD, TOD and FOD are neglected compared

with the SPM [236,248]. This case is exhibited in �gure 3.42 where we show the single e�ect of the

Figure 3.42: Single e�ect of the initial chirp without GVD, TOD and FOD and a normalized length of the HDOF
ξmax = 4088. (I) and (II) for time domain intensity versus τ , (III) and (IV) for spectral intensity (S.I) versus normalized
frequency ω. Asymmetric spectral pro�les : (V) for C = 0.1, (VI) for C = −0.1, (VII) for C = 1, (VIII) for C = −1.
The truncation coe�cient a is 0.05.

initial chirp in the presence of the SPM. It is observed that, the chirp in�uences the spectral pro�le
as seen in �gures 3.42(III) and 3.42(IV), but leaves the time domain unchanged (see �gures 3.42(I)
and 3.42(II)). Furthermore, the chirp transforms the spectral pro�le into an asymmetric form with
the same location of the oscillations tail when C > 0 (oscillations tail are in the left-hand side (LHS),
see for instance the red crossed and green dashed curves of �gures 3.42(III) and 3.42(IV)) and in
the opposite side when C < 0 (oscillations tail are in the right-hand side (RHS), see for instance
the violet circle and blue dot dashed curves of �gures 3.42(III) and 3.42(IV)). In �gure 3.42(IV), the
dominant peak of C=-1 (see the violet circle curve) is ampli�ed compared with the positive case C=1
(see the green dashed curve). Obviously, as well-known, the SPM is responsible to the distortion of
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the output spectrum observed on the black solid curve of �gure 3.42(IV) [3]. The spectral asymmetric
pro�le induced chirp leads to an Airy-like form when |C| increases. A comparison between the green
dashed curves of C=1 and the red crossed curves of C = 0.1 in both �gures 3.42(III) and 3.42(IV),
con�rms this feature. The same observation could be done on the violet circle curves of C = −1 and
the blue dot dashed curves of C = −0.1 in both �gures 3.42(III) and 3.42(IV). The bottom curves
drawn in �gures 3.42(V), 3.42(VI), 3.42(VII) and 3.42(VIII) (respectively for C=0.1, C = −0.1,
C=1 and C = −1), show the dependence of the e�ect of chirp on the spectra obtained versus the
propagation distance ξ. It is observed as discussed above that, for the small value of chirp cases
(|C| = 0.1 in �gures 3.42(V) and 3.42(VI)), the spectrum seems to have only one peak which is
asymmetric because of chirp and distorts following ξ because of the SPM. With the increase of chirp
as for �gures 3.42(VII) and 3.42(VIII), the spectrum takes progressively an Airy-like form which
undergoes more the SPM e�ects when the positive chirp (C = 1) is used than the negative chirp
(C = −1) (Comparison between the violet dashed curves of both �gures 3.42(VII) and 3.42(VIII)).

It is well-known that, when a symmetric and compact pulse such as Gaussian, hyperbolic secant
or raised-cosine pro�le, undergoes only the SPM e�ect in a dispersionless SMF, the spectrum remains
symmetric as discussed in [3]. The use of an initial chirp does not change this con�guration. On the
other hand, it is a surprise to observe a symmetric spectral output from an asymmetric shape as the
one of a FEAP (see the black solid curves in �gures 3.38(III) and 3.42(IV)). Moreover it appears that
the use of the initial chirp delivers an asymmetric spectral output from the asymmetric temporal
shape.

One should also remind that, the e�ect of SS as a higher-order nonlinear e�ect yields an asymmetry
of the SPM-broadened spectrum obtained from a symmetric pulse as a Gaussian pulse [3]. This SS
e�ect was described as an optical shock, analogous to the development of an acoustic shock on the
leading edge of a sound wave [222]. In the present work, �gures 3.42(III) to 3.42(VIII) show rather
that, an asymmetry of the FEAP spectrum could be obtained through the initial chirping directly
at the input and can be preserved continuously under the �rst order SPM e�ects. It means that, the
chirp also creates an optical shock on asymmetric pulses, analogously to the SS e�ect. Nonetheless,
this optical shock induces a spectral asymmetry which depends on the sign of the imposed frequency
chirp. For the considered simulations, the positive chirp creates the optical shock in the leading edge
(blue shifted oscillations) of the spectrum leading this one to have an Airy-like form (for C=1) and
just an asymmetric pro�le as observed (for small values of chirp as 0.1). The opposite happens for
the negative chirp, in which the shock is observed on the trailing edge of the spectrum (red shifted
oscillations seen on �gures 3.42(VIII) for C=-1 and 3.42(VI) for C=-0.1). One can also refer to the
TOD e�ect on the spectrum of an unchirped Gaussian pulse discussed in [3]. Indeed, it has been
demonstrated that, a such symmetric pro�le becomes asymmetric in the spectral domain because of
the TOD e�ect even in the presence of the SPM e�ects [3,249].

Thus, the chirp e�ect is similar to the SS and TOD e�ects. Subsequently, it is assumed that
chirping the FEAP should increase signi�cantly the broadening of its spectra. This result is obtained
when we compare the extent of the unchirped spectrum (black solid curves in �gures 3.42(III) and
3.42(IV)) with those of the chirped cases (colored curves in �gures 3.42(III) and 3.42(IV)). The
idea to use chirped FEAPs to produce broadband spectra is therefore well understood. A direct
application to the SCG phenomenon resounds with these observations. In the literature, the spectral
broadening induced by chirp has been already reported, however for the only studied symmetric
pro�les previously mentioned [3,137,201].

Initial chirp inducing changes in the temporal shape : the A.I mechanism
In this subsection, we assume δ4 = 0 in Eq. (3.2) and investigate numerically the A.I mechanism.

In �gure 3.43 we illustrate this mechanism induced by the initial chirp in the anomalous GVD. In the
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basic theory of pulse compression, considering the linear case (N = 0) when only the GVD governs
the dynamics, the duration of the input pulse should be reduced in order to compress the pulse during
its propagation with β2C < 0 [3,227,236,248,250]. In the present �gure (�gure 3.43), the interaction
between the chirp and GVD, with opposite sign, in�uences deeply the temporal pro�le of the FEAP.

In order to highlight the interesting feature of the A.I mechanism obtained through the interaction
between the initial chirp and the GVD, we have chosen to present in �gure 3.43 di�erent cases :
(i) unchirped FEAP under anomalous GVD without TOD showed in (a.1) and (b.1), (ii) case of
positively chirped FEAP under anomalous GVD without TOD showed in (a.2) and (b.2), (iii) case
of positively chirped FEAP under anomalous GVD with negative TOD showed in (a.3) and (b.3),
(iv) case unchirped FEAP under anomalous GVD with positive TOD (it is the result obtained by
R. Driben et al in [251]) showed in (a.4) and (b.4), (v) case of negatively chirped FEAP under
anomalous GVD with positive TOD showed in (a.5) and (b.5).

The pictures of (a.1) and (b.1) presents the acceleration of the FEAP's oscillations tail and
dominant peak toward the trailing edge. Indeed, the FEAP freely accelerates as expected and bends
itself to the right-side [12,251]. One can see the slight shift of the dominant peak obtained in �gure
3.43(a.1) (see the green dashed curve comparatively to the input blue solid curve).

The novelty is underlined by the A.I occurring under the interplay between the positive chirp
and the anomalous GVD (see �gures 3.43(a.2) and 3.43(b.2)) instead of TOD e�ect as discussed in
[251]. The oscillations tail of the temporal FEAP pro�le that are initially and normally in the LHS
(leading edge) of the dominant peak, accelerate and collide with this last one at a certain distance of
propagation from the input ξ = 0 (This distance is similar to the tight-focusing point or focal point
discussed in [251]). This collision is found in our simulations between ξ = 600 and ξ = 900. Within
the collision area 600 ≤ ξcoll ≤ 900, the FEAP's asymmetric shape completely collapses. After ξcoll,
the FEAP self-heals with the occurrence of the A.I : both the dominant peak and the oscillations
tail regenerate themselves while in addition these last ones are recreated in the RHS (trailing edge)
of the time domain instead of the regular LHS as can be observed in �gure 3.43(a.2). Therefore,
the A.I obtained in [251] di�ers from the one induced by the interaction chirp-GVD presented here
: in [251] the tight-focusing of the FEAP is induced by TOD while in the present case, it is rather
induced by the chirp e�ect. The oscillations tail collide with the dominant peak then, induce a FEAP
collapse before its regeneration in the opposite side. As a result, it is found that the A.I mechanism
occurs only when the GVD regime is opposite to the initial chirp : chirp×GVD < 0. Under these
conditions, a compact and symmetric pro�le as Gaussian, hyperbolic secant or raised-cosine pulse
should be only compressed [3,224,227] while an asymmetric pro�le as a FEAP beyond the temporal
compression, undergoes also an A.I mechanism. This result shows again that, the chirp produces the
same e�ects as SS and TOD.

To con�rm this observation, we add in the considered positive chirp-anomalous GVD system,
a negative TOD as s3 = −1 so that the TOD and GVD cooperate. We obtain �gures 3.43(a.3)
and 3.43(b.3). The e�ect of chirp inducing the A.I mechanism, is now counteracted by the TOD
e�ect cooperating with the GVD. So, the TOD destroys the A.I mechanism induced by chirp-GVD
leading rather the FEAP to diverge. On the other hand, we do once the simulation obtained by
R. Driben et al in [251] by making that the unchirped FEAP propagates under the anomalous
GVD and positive GVD, as expected the A.I mechanism induced by GVD-TOD occurs because of
the competition between both the two dispersion orders (see �gures 3.43(a.4) and 3.43(b.4)). Adding
now a chirp having the same sign with the GVD (C = −1 with s2 = −1) and opposite to the TOD
(s3 = 2), destroys the A.I mechanism induced by GVD-TOD as can be observed in �gures 3.43(a.5)
and 3.43(b.5). From all these observations, the chirp e�ect can be de�nitely assumed as a third-order
e�ect acting in the linear aspect of propagation as a TOD (�gure 3.43) and in the nonlinear aspect
of propagation as a SS (�gure 3.42).
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Figure 3.43: Anomalous GVD with N = 1, a = 0.05 and δ4 = 0. (a.1) and (b.1) unchirped case (C = 0) with
s3 = 0; (a.2) and (b.2) C = 1 with s3 = 0 : A.I induced by the interaction chirp-GVD; (a.3) and (b.3) C = 1 with
s3 = −1; (a.4) and (b.4) unchirped case (C = 0) with s3 = 2 : A.I induced by the interaction TOD-GVD; (a.5) and
(b.5) C = −1 with s3 = 2.
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The con�rmation of this result is given in �gure 3.44 where the FEAP propagates under a negative
chirp (C = −1) and a normal GVD regime (s2 = 1). In the same �gure, beyond the A.I mechanism
occurring in the normal GVD with negative chirp symmetrically to the one occurring in the anomalous
GVD with positive chirp in �gure 3.43, the in�uence of the truncation coe�cient a is presented.

Indeed, the A.I mechanism is shown for several values of a from 0.005 to 0.9. The �rst notice done
concerns the input pro�les of blue solid curves observed in �gures 3.44(a.1)-(a.8) : both the number
of oscillations tail and the FEAP intensity decrease when a increases. Considering the decrease of
the FEAP intensity with a, it is obvious to note that, it is exactly the role played by the truncation
coe�cient to gives to the Airy pulse a �nite energy. On the other hand, as it can be observed in
�gure 3, the reduction of the number of oscillations tail leads to a symmetric shape (see for instance
�gure 3.44(a.8) for a = 0.9). Consequently, the FEAP loses its asymmetry with the increase of a and
then the A.I mechanism also disappears. The area of the FEAP's collapse in the A.I mechanism is
reduced with the increase of a (see the cases of a = 0.1 to a = 0.9 in �gure 3.44). The parameter a
does not really a�ect the distance ξcoll over which the A.I occurs.

To see what exactly happens within the focal area (or FEAP shape's collapse area), we present
in �gure 3.45 the evolution of the FEAP shape after several values of the normalized propagation
distance ξ. Here, the snapshots of (I) to (V) show how the oscillations tail collide with the dominant
peak of the FEAP, merging and transferring their energy to this latter. Thus, the dominant peak
ampli�es and the standard FEAP shape is completely collapsed while the pro�le remains left-handed
asymmetric. Then, the only emerging and dominant peak settles progressively from (VI) to (VIII)
by a broadening and transforms into a compact and symmetric shape. In the vicinity of ξ ≈ 825
(considering our conditions of simulation), the compact and symmetric shape for the only existing
peak is completely formed (see (IX) in �gure 3.45). Then, the reverse process occurs, transforming
progressively the obtained nearly symmetric output (NSO) into a right-handed asymmetric output
until the whole formation of the asymmetric shape (see (X) to (XII) in �gure 3.45). The compact
NSO obtained in (IX), can be assumed to have a Gaussian-like shape as mentioned previously by R.
Driben et al in [251].

One observes also a temporal compression of the whole pulse which is accompanied by the ampli�-
cation of the dominant peak as generally noticed in the compression process of symmetric pulses (see
the red dashed curves from (I) to (V) on �gure 3.45). Beyond the collapse's area, this compression
is followed by a broadening-like process. Therefore, the A.I mechanism for an asymmetric pulse as a
FEAP can be explained through four physical processes :

• the initial chirping gives an energy to the oscillations tail, that move faster than the dominant
peak (the group-velocity of the oscillations tail increases under the chirping) in the acceleration
phase (displacement from the leading edge to the trailing edge),

• the interaction between the chirp and the opposite GVD, compresses the whole pulse and
ampli�es the dominant peak by a fusion with the oscillations tail,

• after this initial phase, the pulse completely loses its asymmetry (in the collapse's area) and
becomes continuously symmetric,

• then, the broadening occurs with the regeneration of the oscillations tail in the opposite side.
The oscillations tail move faster than the dominant peak, cross this latter and reform in the
opposite side.

In order to analyze the dependence of the A.I mechanism to the value of chirp, we plot on
�gure 3.46 the relation between the minimal distance ξsym (over which the FEAP becomes nearly
symmetric) and the chirp C. It is found that, this distance decreases following the increase of the
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Figure 3.44: The A.I mechanism in the normal GVD regime with C = −1, N=1, s3 = 0 and δ4 = 0: variation of the
truncation coe�cient. In (a.1) to (a.8) : solid blue curves are for the inputs and dashed green curves are for outputs.
(a.1) and (b.1) for a = 0.25, (a.2) and (b.2) for a = 0.2, (a.3) and (b.3) for a = 0.15, (a.4) and (b.4) for a = 0.1, (a.5)
and (b.5) for a = 0.01, (a.6) and (b.6) for a = 0.005, (a.7) and (b.7) for a = 0.4, (a.8) and (b.8) for a = 0.9.
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Figure 3.45: Plots of |u|2 versus τ for N = 1, δ3 = 0 and δ4 = 0. FEAP shape's snapshots after several values of ξ
around the collapse area : C = 1, s2 = −1 and a = 0.05. Solid blue curves for the input and dashed red curves for the
output.
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chirp. Note that the conditions assumes an anomalous GVD without the FOD and a �rst order
solitonic state. We compare the blue solid curve obtained for this relation with the one in green

Figure 3.46: Plot of ξsym versus C with a = 0.05, s2 = −1 (anomalous GVD), s3 = 0 and δ4 = 0.

dashed curve of a function g(C) = (K1/C
2) + (K2/C) where the constants K1 and K2 are exactly

de�ned in �gure 3.46. One observes that these curves nearly matches. Therefore, we can sketch a
relation between ξsym and C as :

ξsym =
zsym

LGV D

= 2

(
415C − 3

C2

)
, C ∈

[
0.2; 1.6

]
, (3.3)

with zsym being the physical propagation distance corresponding to ξsym. For small values of C, as
those between 0.2 and 0.4, this relation is only an approximation as seen in �gure 3.46. However, for
values beyond 0.4 to 1.6, we obtain a nearly perfect match.

FOD interacting with the GVD for unchirped FEAPs : dominant peak ampli�cation
We recall that, the SMFs manufactured at (or near) the zero-TOD (s3 = 0) are the so-called

dispersion �attened �bers (DFFs) in which the GVD remains �nite. Therefore, it is necessary to in-
clude the FOD e�ect in order to describe the dynamics [3,224,225,248,252]. The chromatic dispersion
pro�le of such �ber could be seen in [252] compared to those of standard SMFs and dispersion-shifted
�bers. The peculiarity of this HDOF is described by the following assumptions s2, δ4 6= 0 and s3 = 0.
In the unchirped case (C=0), we present on �gure 3.47 the interaction between the anomalous GVD
regime with the positive values of FOD meaning that δ4 < 0. The value δ4 ≤ −0.09 leads to �gure
3.47(a). The pro�le remains nearly unchanged compared to the input even though, a slight shift
of the dominant peak is observed toward the leading edge. However, considering highly dispersive
DFFs in which the magnitude of FOD can reach ratios |δ4| ≥ 0.5, one observes an interesting feature
induced by FOD on the FEAP. Varying the ratio δ4 for example from −0.5 to −2 yields the curves
in �gures 3.47(b)-3.47(f). The oscillations tail in the LHS accelerate and collide with the dominant
peak without a collapse of the pulse (as observed during the A.I mechanism of �gures 3.43-3.45),
transferring their energy to this one. From this energy transfer, the resulted single peak, ampli�es
compared to the input dominant peak (for instance, a comparison between the dominant peaks of the
cases −0.09 and −0.5, shows this feature). For values between −0.9 and −2 (and certainly beyond)
the obtained single dominant peak is not stable and broadens once formed following the increase of

Lucien M. Mandeng, PhD thesis c©-2015 137



Laboratory of Mechanics, Department of Physics, Faculty of Science, U.Y.I

Figure 3.47: Time domain pro�les : (a) input; (b)-(f) Outputs under the anomalous GVD interacting with several
values of positive FOD, N=1 and a = 0.05. In (g), plot of δ4 versus ξ for the normalized intensity |u|2. For the function
h(ξ), the coe�cients pk are de�ned as : p1 = −3.665811447×10−13, p2 = 3.393760864×10−10, p3 = 1.22446208710−6,
p4 = −1.226215464× 10−3, p5 = 0.3968378758.
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the propagation distance (see the circle violet and the dashed green curves of �gures 3.47(b)-(f)).
Furthermore, we can see in this �gure that with the increase of |δ4|, the ampli�cation of the dominant
peak is obtained sooner (see the red crossed curves in �gures 3.47(b)-(f)). For example, one obtains
a single ampli�ed dominant peak of 0.4 in normalized intensity |u|2 at ξ = 1470 for δ4 = −0.5 while
for δ4 = −2 the normalized distance is 624. We plot in �gure 3.47(g), the relation that draws the
dominant peak ampli�cation induced by FOD versus the propagation distance. It is noticed that,
the ampli�cation appears sooner as the FOD (de�ned by δ4) increases. In an analog fashion to Eq.
(3.3), we sketch for the achievement of 0.4 in normalized intensity of an unchirped FEAP in a N=1-
anomalous GVD-positive FOD DFF system, the relation between the parameters δ4 and ξ = z/LGV D

as :

δ4 =
|β4|
|β2|T 2

0

= ln

( 5∑
k=1

pk

( z

LGV D

)5−k
)
,

p1 =− 3.665811447× 10−13,

p2 =3.393760864× 10−10,

p3 =1.22446208710−6,

p4 =− 1.226215464× 10−3,

p5 =0.3968378758,

(3.4)

where T0 is the physical pulse duration in ps unit, |β2| the absolute value of the GVD in ps2/m
and |β4| the absolute value of the FOD in ps4/m. It is worthy to notice that in the case of GVD
having the same sign as the FOD, one should obtain rather a drastic broadening : the FEAP will
diverge. It means that, the oscillations tail instead of accelerate toward the leading edge, spread
rather in the LHS while the dominant and secondary peaks spread in the RHS of the time domain
(see �gure 3.48). Figure 3.48 shows this broadening and distorted evolution (3.48(a.1) and 3.48(a.2));
The corresponding spectral evolution is depicted on �gures 3.48(b.1) and 3.48(b.2).

The FEAP shape preserving induced by the interaction between the chirp, the GVD
and the FOD

Considering the system of DFF, we use the linear chirp and we obtain the �gure 3.49. In this
�gure, we distinguish the following cases of interaction between GVD, FOD and the small value of
chirp :

• Case of FEAP shape preserving corresponds to �gure 3.49(a) (C = 0.1, s2 = 1 and δ4 = 0.9),
�gure 3.49(f) (C = −0.1, s2 = −1 and δ4 = −0.9), �gure 3.49(g) (C = −0.1, s2 = 1 and
δ4 = −0.9) and �gure 3.49(h) (C = 0.1, s2 = −1 and δ4 = 0.9).

• Case of the dominant peak ampli�cation induced by the acceleration-collision with the oscilla-
tions tail corresponds to �gures 3.49(b) (C = −0.1, s2 = 1 and δ4 = 0.9) and 3.49(c) (C = 0.1,
s2 = −1 and δ4 = −0.9). It is similar to that of the unchirped GVD-FOD cases discussed in
�gure 3.47.

• Case in which the secondary peak ampli�es instead of the dominant one. It corresponds to
�gure 3.49(d) (C = 0.1, s2 = 1 and δ4 = −0.9) and �gure 3.49(e) (C = −0.1, s2 = −1 and
δ4 = 0.9).

Comparing �gures 3.49(a), 3.49(f), 3.49(g) and 3.49(h), we notice that for the FEAP shape
preserving under the conditions of small absolute value of chirp in a highly dispersive DFF, it is
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Figure 3.48: For N = 1, anomalous GVD and negative FOD with δ4 = 0.9, C = 0 and a = 0.05 : (a.1) temporal
pro�le, (a.2) contour plot of the time domain propagation; (b.1) spectral pro�le, (b.2) contour plot of the frequency
domain propagation.

Figure 3.49: Contour plots of time domain propagation of the FEAP for N=1 and a = 0.05. It is presented the
interaction between the FOD, the GVD and the chirp : (a) C = 0.1, s2 = 1 and δ4 = 0.9; (b) C = −0.1, s2 = 1 and
δ4 = 0.9; (c) C = 0.1, s2 = −1 and δ4 = −0.9; (d) C = 0.1, s2 = 1 and δ4 = −0.9; (e) C = −0.1, s2 = −1 and δ4 = 0.9;
(f) C = −0.1, s2 = −1 and δ4 = −0.9; (g) C = −0.1, s2 = 1 and δ4 = −0.9; (h) C = 0.1, s2 = −1 and δ4 = 0.9.
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necessary to have the condition C × GVD × FOD > 0. The small value of chirp can therefore be
used to stabilize over a certain propagation distance the FEAP shape before its distortion.

For the occurrence of the ampli�cation of the dominant peak into a single peak that corresponds
to �gures 3.49(b) and 3.49(c), the condition is found to be C ×GVD < 0 and FOD > 0.

The ampli�cation of the two dominant peaks after the collision with the oscillations tail, corre-
sponds to the case where the condition C ×GVD× FOD < 0 and FOD < 0 as discussed above for
�gures 3.49(d) and 3.49(e). We present in �gure 3.50, the FEAP at di�erent propagation distances

Figure 3.50: Plots of |u|2 versus τ for N=1 and a = 0.05. The �rst row is for the dominant peak ampli�cation case
de�ned by C = 0.1, s2 = −1 and δ4 = −0.9, the second row is for the FEAP shape preserving de�ned by C = −0.1,
s2 = 1 and δ4 = −0.9 and the third row is for the secondary peak ampli�cation de�ned by C = 0.1, s2 = 1 and
δ4 = −0.9. The �rst column corresponds to the outputs at ξ = 750, the second column for ξ = 1500, the third column
for ξ = 2000 and the fourth column for ξ = ξmax = 4088.

for the three cases mentioned above. In the case of the dominant peak ampli�cation depicted in
�gures 3.50(a.1)-(a.4), once the ampli�cation is obtained (ξ = 750), the single peak broadens in an
irregular manner (ξ = 1500 to ξmax). Considering the case of the FEAP shape preserving induced by
chirp (see the blue dot-dashed curves in �gures 3.50(b.1)-(b.4)), the FEAP resists to the broadening
over a long propagation distance as ξ = 2000 (�gure 3.50(b.3)). However for very large distances
as ξmax, it undergoes distortion. We end with the case of the secondary peak ampli�cation drawn
in �gures 3.50(c.1)-(c.4). In this case, the secondary ampli�es continuously while the dominant one
splits into sub-peaks. Progressively until the end of the waveguide, the picture becomes more and
more distorted as observed in �gure 3.50(c.4). Considering the values of δ4 = −0.9 and s2 = 1, we
show in �gure 3.51 that only small values of chirp allow to stabilize the FEAP shape over a long
propagation distance as observed in �gures 3.50(b.1)-(b.4). Indeed, we plot under the same condi-
tion of C × GVD × FOD > 0, the case of C = −1 (see the red dashed curves in �gure 3.51). One
observes that, this case is less stable than the one of C = −0.1 (in black solid curves). So, �gure
3.51 con�rms that small values of chirp are only those which allow the FEAP to preserve its shape
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Figure 3.51: Plots of |u|2 versus τ for N = 1, a = 0.05 s2 = 1 and δ4 = −0.9. The black solid curves are for
C = −0.1 and the red dashed curves are for C = −1. (a) ξ = 750, (b) ξ = 1500, (c) ξ = 2000 and ξ = ξmax = 4088.

under the GVD-FOD e�ect following the condition C ×GVD × FOD > 0.

3.7.2 Part II : SCG's analysis in the CS2−LCPCF
Pumping in the normal dispersion regime

Let us consider �rst the in�uence of the initial chirp on the spectra (C 6= 0). We use an initial
energy of 18 nJ that leads to an interesting broadened spectrum for the FEAP. The data are de�ned
as : β2 = 0.0159 ps2/m and γ=2.0495 W−1m−1 for λp = 1550 nm (normal dispersion regime) and
β2 = −0.0547 ps2/m and γ=1.482 W−1m−1 for λp = 2030 nm (anomalous dispersion regime).

• Positive chirp :
We plot the spectral intensity (S.I) in dB units versus the wavelength (λ). As seen in �gure 3.52,
the initial chirp in�uences the SCG spectra for both the two pro�les. Nonetheless, this e�ect
is more important for the FEAP than for the sech-type pulse. Indeed considering the shapes,
as early introduced in [248] by Mandeng and Tchawoua (with the extension done in [236])
after by Zhang et al [250,253], the chirp transforms the FEAP spectra into an Airy pro�le. It
behaves as a SS e�ect as discussed in the present work. Then, considering the bandwidth, we
notice that the FEAP is very wider than the sech-type under the e�ect of the chirp. The width
of the FEAP's lobes increases under the chirp e�ect while the same feature can be observed for
the sech-type pulse particularly on the input spectra. The increase of the initial chirp broadens
the initial spectra of the sech-type pulse (see the dashed black curves of the left-hand side
(LHS) of �gure 3.52). Another observation done in �gure 3.52, is the generation in the LHS of
the spectrum of small oscillations tail induced by the increase of chirp (see the blue curves of
(a.4) and (b.4)). The presence of these sides lobes in addition to those of the right-hand side
(RHS), increases the bandwidth of the SCG compared with the cases of small values of chirp
depicted in (a.1)-(a.3) and (b.1)-(b.3). The width of these chirp-induced sides lobes increases
with the value of the chirp. We present in �gure 3.53, the contour plots of a 2 mm-propagation
of the pulses under the e�ect of the positive chirp. As can be observed in this �gure, the initial
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,
Figure 3.52: SCG spectra for the FEAP and the sech-type pulse with t0 = 100 fs, a = 0.05, �ber length of 1 cm and
E0 = 18 nJ : (a.1)-(a.4) are the inputs and (b.1)-(b2) are the outputs; (a.1) and (b.1) correspond to C=0.5, (a.2) and
(b.2) to C=1, (a.3) and (b.3) to C=1.5 and (a.4) and (b.4) to C=2. Solid blue curves are for the FEAP and dashed
black curves are for the sech-type pulse.

,
Figure 3.53: Contour plots with t0 = 100 fs, a = 0.05, �ber length of 2 mm and E0 = 18 nJ : (a.1) C=0.5 and (a.2)
C=2 for the FEAP; (b.1) C=0.5 and (b.2) C=2 for the sech-type pulse.
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chirp in�uences signi�cantly the spectra of the FEAP. For the value of C = 0.5 shown in �gure
3.53(a.1), the FEAP's spectrum including the side lobes of the oscillations tail, extents about
from 1400 nm to 2000 nm compared with the one of the sech-type pulse which stops only
until about 1750 nm (see �gure 3.53(b.1)). Considering the value C = 2 (see �gure 3.53(a.2)),
the FEAP's spectrum spreads about beyond 1300 nm toward the visible region to 2000 nm
toward the infra-red region. On the contrary, the sech-type's spectrum (see �gure 3.53(b.2))
after an earlier drastic spectral broadening, preserves nearly the same bandwidth. In the SCG
phenomenon, it is the dominant peak of the FEAP which broadens while the side lobes of
the oscillations tail keep nearly their width from input to the considered output (see �gures
3.53(a.1) and 3.53(a.2)) .

• Negative chirp :
When the FEAPs are chirped initially with a negative chirp, one obtains rather the �gure 3.54.

,
Figure 3.54: SCG spectra for the FEAP with t0 = 100 fs, a = 0.05 and E0 = 18 nJ : (a) and (c) are the inputs
while (b) and (d) are the outputs; (a) and (b) correspond to C = ±0.5, (c) and (d) to C=±2. Solid blue curves are for
the negative chirp and dashed black curves are for the positive chirp. The contour plots (e) and (f) are respectively
for C=-0.5 and C=-2.

The initial chirp yields the side lobes of the oscillations tail in the opposite side compared with
the positive chirp symmetrically to the dominant peak [241,243]. As seen in �gures 3.54(a)and
3.54(c) where both the cases of positive and negative values of chirp as ±0.5 and ±2 are plotted,
there is a symmetry that appears in the input spectra obtained. Considering the outputs in
�gures 3.54(b)and 3.54(d), the bandwidth of the spectra are nearly the same. The contour
plots drawn in �gures 3.54(e) for C = −0.5 and 3.54(f) for C = −2 are nearly symmetric to
those of �gures 3.53(a.1) and 3.53(a.2).

The initial chirp has an important impact on the shape of the FEAP's spectrum [248,250]. The
values considered in this work show that the spectra obtained both in the positively and negatively
chirped cases with the FEAP, are widely more broadened than those of the sech-type pulse under the
same conditions. Nonetheless, one should include the oscillations tail in the bandwidth calculation
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even if only the dominant peak remains the one which is e�ectively broadened under the SPM (and
obviously under the other processes derived from the SPM) in the considered CS2-LCPCF (see �gures
3.52-3.54). The side lobes of the oscillations tail in the FEAP spectra with their weak energy are not
really in�uenced by the SPM and therefore remain nearly unchanged from the input to the chosen
output. With the increase of the initial chirp, other oscillations tail are generated in the opposite
side of the regular ones. The SCG-induced broadening of the FEAP's dominant peak shifts the
side lobes generated by the chirp in the transversal direction and consequently, increases the spectra
obtained. The increase of the initial chirp is obviously bene�cial for the improvement of the spectral
bandwidth as discussed in previous works [137,201,209]. However, this advantage is more developed
for the FEAPs than the sech-type pulses.

We set that C=0 and show in �gure 3.55, the e�ect of the truncation coe�cient on the FEAP's
SCG spectra. It is noticed that, when small values of a are used as 0.005 and 0.01 (see the solid
gray and dark green curves of �gure 3.55, respectively), the spectra are wider than those of 0.05, 0.1,
0.5 and 0.9. Therefore, the decrease of the truncation coe�cient is found to increase the spectral
bandwidth of the FEAP. The colorless green curve plotted for the sech-type pulse propagating under

,
Figure 3.55: SCG spectra for 18-nJ pulses with 100 fs and C = 0. Spectra in the LHS are for the inputs and those
in the RHS are for the outputs at L = 1 cm. The decrease of a improves the �atness of the input FEAP's spectrum.

the same conditions, is less wide than the a = 0.005−0.01 cases of FEAP at the output. Nonetheless,
it remains wider than the a = 0.05− 0.9 cases (see the curves in the RHS of �gure 3.55). The e�ect
of the truncation coe�cient decay on the bandwidth of FEAP's spectra, can be explained through
the physical description of the parameter a. Indeed, this one has been introduced earlier [11,12]
to generate Airy waves with �nite energy by contrast to the in�nite ones de�ned by Berry and
Balazs [13]. The role played by a is to truncate the in�nite energy of an Airy wave. Thus, more a
is high, more the Airy wave is truncated and has a weak energy. With a large value of a, a FEAP
has a smaller energy than the case of a small value of a. Decreasing a improves the FEAP's energy
and consequently its spectral interaction with the SPM leading to broadband SCG's spectra. This
justi�es the result obtained in �gure 3.55. However, as also observed in this �gure, one should manage
optimally the value of a to obtain a FEAP's spectrum which is wider than the one of a sech-type
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pulse taken under the same conditions. The values used in this work for this purpose are 0.01 and
0.005.

Pumping in the anomalous dispersion regime
Considering the anomalous GVD regime, the output spectra obtained are depicted in �gure 3.56.

Both the unchirped case (see �gure 3.56(a)) and the chirped case (see �gure 3.56(b)) show that with

,
Figure 3.56: SCG's spectra at L = 1 cm obtained in the anomalous GVD regime with a pumping at λp = 2030 nm.
Parameters : a = 0.005 for the FEAP, t0 = 60 fs, E0 = 18 nJ. (a) C = 0, (b) C = 2.

the considered parameters, the FEAP has a spectrum very wide than that of the sech-type pulse.
The bandwidths of both the two pulses are larger than those of the normal GVD regime above (in
�gures 3.52-3.55). For instance, in the unchirped case depicted in �gure 3.56(a), the FEAP's spectral
bandwidth oversteps about 1200 nm at the 20-dB in S.I while the sech-type pulse reaches about
1000 nm. It is very signi�cant in comparison to the bandwidths obtained for the normal dispersion
regime. It is obvious to note that this is in agreement to the literature of the SCG phenomenon
[114,137,144] : the pumping in the anomalous GVD regime is generally better than the normal one
considering both the SF and the MI mechanisms. The key result of this simulation is not only the
octave-spanning spectra better than the normal GVD regime but also the fact that, we still have the
FEAP's spectra wider than those of the sech-type pulse.

A logical interpretation of the observations done both in the normal and the anomalous GVD
regimes consists to focus on the main di�erence between the two input pulses : the FEAP has
an asymmetry while the sech-type pulse is symmetric. The asymmetry of the shape plays so, a non
negligible role on the spectral bandwidth of the drastic broadening obtained in the SCG phenomenon.
This conclusion makes sense according to the results obtained by Castelló-Lurbe et al in [202a]
(they model an input pulse to get a suitable skewness that enhances the SCG in silicon waveguides)
and those of Klimczak et al in [202b] (they choose a steepness of the input pulse as a super-
Gaussian pulse to improve the bandwidth and the CD of the SCG's spectra in all-solid PCFs with
�attened normal dispersion). Following both these two works, the skewness and the steepness creates
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an asymmetry on the input shape from which it can be deduced the SCG's improvement. In our
work, we directly use an asymmetric pulse (FEAP) as suggested earlier byMandeng and Tchawoua
[248], and con�rm the bene�cial role played the asymmetry on the drastic spectral broadening.

Spectral coherence
We plot in �gure 3.57, the CDs of the SCG's spectra obtained for both the FEAP and the sech-type

pulse in the anomalous GVD regime (with the previous parameters). For (a), (b) and (c), we present
what happens with the values C=0, 2 and 4, respectively. The direct comparison between the CDs

,
Figure 3.57: CD of the spectra obtained in the anomalous GVD regime with a pumping at λp = 2030 nm. Parameters
: a = 0.005 for the FEAP, t0 = 60 fs, E0 = 18 nJ. (a) Unchirped case C = 0, (b) chirped case C = 2, (c) chirped case
C = 4. The input pro�le asymmetry enhances the CD of the SCG's spectra.

obtained for the asymmetric shape and the symmetric one leads to the following result: the spectra
of the FEAP are more coherent than those of the sech-type pulse since FEAP's CDs are nearly closer
to 1 over the whole range of wavelengths from 1600 nm to 3200 nm than those of the sech-type pulse.

Physically, this can be explained through the SF/MI mechanisms inducing the SCG. Indeed, since
these phenomena result in shedding of solitons from the propagating pulses, it is well-known that
more the solitons emission is large more the CD decreases [3]. Thus, the CD is inversely related to the
number of soliton emitted through the SCG. The SF is even known to be inherently noisy [3] while the
MI itself is known to have weak CDs than the former mechanism (NSF � NMI ⇒ CDSF > CDMI)
[144,145]. According to [18,27], FEAP sheds solitons as well as well-known for the HS (or sech-type)
pulse. The soliton shedding from FEAPs depends strongly on its parameters as the peak power and
the truncation coe�cient [27]. Nonetheless, since the FEAP energy loss due to the shed soliton is not
total, the remaining energy contributes to the persistence of the FEAP. It is obvious to note that this
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characteristic contrasts with the soliton shedding from symmetric pulses as sech-type pulses (which
is total) and consequently limits the number of emitted sub-solitons when N =

(
P0γt

2
0/|β2|

)1/2 is
large as in the case of the SCG phenomenon. Thus, the FEAP emits less solitons than the symmetric
pulses and consequently its CDs should be better.

Considering the e�ect of chirp, the result obtained on �gure 3.58, is in agreement to those of the
existing works [209]. Indeed, as can be seen in this picture, the increase of the initial chirp improves

,
Figure 3.58: CD of the spectra obtained in the anomalous GVD regime with a pumping at λp = 2030 nm. Parameters
: a = 0.005 for the FEAP, t0 = 60 fs, E0 = 18 nJ. (a) FEAP's CD, (b) sech-type's CD. The increase of the initial
chirp leads to an improvement of the SCG's spectra CD.

the CD of the spectra. As well-known in the literature [3], the initial chirp does not favor the soliton
formation (or emission). Thus as discussed above, it increases so the CD of SCG's spectra. The
result obtained with the FEAP (see �gure 3.58(a)) is better than the one of the sech-type pulse (see
�gure 3.58(b)).

Assuming the �gures 3.57 and 3.58, one can conclude that the chirped asymmetric shapes as
FEAPs have the best coherent spectra in the SCG. The whole results demonstrate the important
role played by the input pro�le asymmetry and the initial chirp on the drastic spectral broadening
of the SCG in the considered nJ's scale of energies.

3.8 On the SCG in a SOI-waveguide including both the THG
and NFK terms

The results showed in this section stem from [244]. We present in Fig. 3.59 the contour plots of
the time and spectral domains in the waveguide under the in�uence of the di�erent parameters. The
�rst novelty highlighted in this letter concerns the e�ect of the THG (aNFK = 0, aTHG = 1, φNL = 0)
: as can be noticed in Fig. 3.59(a.1), the incident pulse di�uses dispersive waves (DWs) weakly
intense and therefore leads to a spectral propagation in which after an initial increase, the SB is
nearly preserved until the end of the waveguide (see Fig. 3.59(b.1)). Considering the NFK e�ect
(aNFK = 1, aTHG = 0, φNL = 0), we observe rather the opposite feature. Indeed, it yields to intense
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DWs emission (see Fig. 3.59(a.2)) and then leads to a spectral propagation in which the SB increases
continuously following the propagation distance. Assuming that the NFK in our simulation has
been included at 22% only, it comes that the NFK enhances importantly the SB. A full inclusion of
NFK under the mentioned conditions should lead to an explosive SCG. To observe how the THG
counteracts the NFK e�ect, we show in Figs. 3.59(a.3) and 3.59(b.3) their interaction. We notice
that, the DWs emission of 3.59(a.3) is more intense than 3.59(a.1) and less than 3.59(a.2). The same
comparison can be done between 3.59(b.1), 3.59(b.2) and 3.59(b.3). The single impact of the TPA
as a deleterious factor for the SCG phenomenon, is highlighted in Figs. 3.59(a.4) and 3.59(b.4) in
agreement with the results obtained in [200,202a,215,216]. To con�rm the observations done in Fig.

Figure 3.59: Contour plots of the pulse propagation yielding the SCG (φNL = 0) : (a.1-a.4) time domain propagation,
(b.1-b.4) spectral propagation. The NFK has been included at 22% of the spectral intensity (S.I).

3.59, we plot in Fig. 3.60 the 2D-plots of the output spectral pro�les in the di�erent cases. It is found
that the THG reduces the SB (see the dotted-dashed green curve of Fig. 3.60(a)) compared with the
single SPM case (see the dashed violet curve of Fig. 3.60(a)) while the NFK drastically enhances it
(see the solid bright green curve of Fig. 3.60(a)). However, the reduction induced by TPA is greater
than that of THG (see the dotted blue curve of Fig. 3.60(a)). Furthermore, when we compare the -20
dB-SB of Fig. 3.60(a), we obtain approximately the following result : input (183 nm, see the black
solid curve)< SPM+TPA (234 nm, see the dotted blue curve)< Full (277 nm, see the dotted red
curve)< SPM+THG (303 nm, see the dotted-dashed green curve) < SPM+THG+NFK at 22% (310
nm, see the dashed yellow curve)< single SPM (360 nm, see the dashed violet curve)< SPM+NFK at
22% (469 nm, see the solid bright green curve). Moreover, as can be observed in Figs. 3.60(b.1-6), the
CD parameter g(1)

12 evaluated here under the condition 0.9 ≤ g
(1)
12 ≤ 1 allows the following comparison

: CDSPM+TPA (see Fig. 3.60(b.2)) ≥ CDFull (see Fig. 3.60(b.6)) ≥ CDSPM+THG (see Fig. 3.60(b.3))
≥ CDsingle SPM (see Fig. 3.60(b.1)) ≥ CDSPM+THG+NFK (see Fig. 3.60(b.5)) ≥ CDSPM+NFK (see
Fig. 3.60(b.4)). The consideration of the nonlinear phase φNL 6= 0 contributes to the improvement
of the SB for both the resonant THG and NFK. It is worthy to notice that comparatively to what
happens in Fig. 3.59, the nonlinear phase changes qualitatively and quantitatively the SCG in Fig.
3.61. The pulse di�uses DWs more intensively than in Fig. 3.59. The e�ect of φNL is evident when
we compare the -20 dB-SB of Figs. 3.62(a.1,2) : Full (283 nm, see the solid bright green curve)<
SPM+THG+NFK at 10% (327 nm, see the dotted-dashed green curve)< SPM+THG (360 nm, see
the dashed violet curve) ' single SPM (360 nm, see the solid black curve)< SPM+NFK at 10%
(436 nm, see the dotted blue curve). Compared with the single SPM (see the solid black curve of
Fig. 3.62(a.1)), the THG with φNL 6= 0 does not really change the SB but only shifts slightly the
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Figure 3.60: Two-dimensional (2D) plots corresponding to Fig. 1 (φNL = 0) : (a) S.I in dB unit versus λ, (b.1-b.6)
CD parameter g

(1)
12 versus λ. The full case corresponds to SPM+TPA+THG+NFK.

Figure 3.61: Contour plots of the pulse propagation yielding the SCG (φNL 6= 0). The NFK has been included at
10% of the S.I.
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spectrum towards the long wavelengths (see the dashed violet curve of Fig. 3.62(a.1)). Without
the nonlinear phase, the THG is deleterious for the SCG while the NFK is found to be bene�cial
for the SB of the SCG in both the zero and the nonzero phase cases (Without φNL, the SB under
NFK at 10% gives 375 nm compared with nonzero case in which the SB is about 436 nm while
the single SPM is about 360 nm). Considering the CD of the spectra with φNL 6= 0 observed in

Figure 3.62: Two-dimensional (2D) plots corresponding to Fig. 3 (φNL 6= 0).

Figs. 3.62(b.1-4), we obtain the same result as in Fig. 3.60. A comparison of the CD parameter
under the condition 0.9 < g

(1)
12 < 1 yields : CDSPM+THG (see Fig. 3.62(b.1)) ≥ CDFull (see Fig.

3.62(b.4)) ≥ CDSPM+THG+NFK (see Fig. 3.62(b.3)) ≥ CDSPM+NFK (see Fig. 3.62(b.2)). Thus, the
THG improves the spectral coherence while the NFK reduces it. In the full case in which the TPA
is included, even though the NFK reduces the CD as done in the THG-NFK case, the TPA e�ect
allows the spectrum to be however more coherent than this latter. It means that the TPA enhances
importantly the CD than the THG. Physically, this can be explained through the SF mechanism.
Indeed as discussed in [3], the SF in the SCG phenomenon is inherently noisy. In addition, more the
sub-solitons are emitted through the SF mechanism more the SB is wide [3,114,137]. Nonetheless, as
the intensive SF mechanism improves the SB, it rather reduces the CD of spectra [3,129,137]. The
TPA and THG (in φNL = 0) reducing the SB of the SCG consequently limit the SF mechanism and
then improves the CD of spectra while the opposite happens to the NFK e�ect. Thus, the TPA
enhances the CD in agreement to [200] where it was found to have nearly no destructive e�ect on
the �atness of SCG spectra. The e�ects of the di�erent studied nonlinear terms are resumed in the
following table :

Item TPA THG NFK
SB (φNL = 0) ↓ ↓ (< TPA) ↑
SB (φNL 6= 0) Idem Shift to � λ ↑ enhanced
CD (φNL = 0) ↑ ↑ (< TPA) ↓
CD (φNL 6= 0) ↑ ↑ (< TPA) ↓ (> φ = 0)

Table 3.4: E�ects of the di�erent terms compared with the single SPM case. Meaning of symbols: ↓ 'reduction',
↑ 'increase', � 'long', λ 'wavelengths', < 'less than', > 'more than'.
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3.9 Conclusion

In summary, using the MVA with chirped Gaussian and RC pulses, we have demonstrated that
optical pulse compression induced by chirp can be successfully achieved in a linear medium under
GVD and FOD parameters having the same sign. The chirp parameter being of opposite sign for
the case of the Gaussian pulse. The pulse compression being dependent on the input pro�le, for
the RC pulse, new broadening/compression conditions are obtained which are quite di�erent to the
established rules on compression e�ect using the Gaussian pulse. These results are welcome and may
complete the basic linear optical pulse compression theory induced by chirp.

In the nonlinear case of the pulse compression, the growth equations of the studied pro�les show
that both the sech-type and the Gaussian pulses are nearly in�uenced similarly by the nonlinear
parameters. The characteristics of the RC pulse are more in�uenced by the TPA and the FCA. We
have demonstrated the occurrence of a periodic compression of each pulse induced by the interplay
between the SPM and the FOD instead of the GVD, in a regime of propagation that assumes a
normal-GVD and a �rst order solitonic state. We have also shown that the anomalous GVD re-
duces this periodic compression phenomenon. A parametric study has been done using the MPCP
parameter. We have shown that when the GVD decreases from the normal to the anomalous regime,
the periodic compression phenomenon decreases. When the negative FOD increases until a maximal
value for the considered conditions of simulation, the periodic compression is also performed in the
presence of the constant normal GVD. The small AVs of chirp have been found to be bene�cial for
the periodic compression while the large ones, and whole positive dispersion orders were found to
be detrimental for the studied phenomenon. Moreover, under a small value of TPA as 0.5 W−1m−1,
we have shown that the periodicity is progressively destroyed with the increase of the spatial period
while large values of this absorption coe�cient (as 6.5 W−1m−1) combined with the FCA lead to
pulse broadening. Nevertheless, we have observed one compression peak for the compression mecha-
nism before the broadening for each pulse.

Considering the compression of the SHAPs, the derivation of the growth equations have showed
that all the pulse characteristics are under the in�uence of the TPA and the FCA contrary to the other
pulses. A comparison between the analytical relation of the compression factor and the numerical
result shows a good agreement for small distances of propagation. In the nonlinear case, it has been
found that the nonlinear parameters namely the CKN, the TPA and the FCA reduce the length
of compression in a SOI-waveguide with normal GVD, positive chirp and a negative value of FOD.
However, this reduction is more pronounced for the single TPA presence than the one obtained with
the CKN only while for the FCA, it is smaller than the two �rst ones. We have also found that the
TPA reduces the MPR in the compression mechanism than the CKN while the FCA rather increases
its value comparatively to the linear case. The FCA plays therefore a bu�er role on the dramatic
e�ects of the SPM and TPA induced SHAP pulse broadening in the presence of the FOD.

For the FWM process, it comes out that the frequency o�set is more important in the single
TOD case than in the combined GVD-TOD case. In the case of the reduced model, the combined
e�ect of GVD and TOD leads to a growth of the FWM in the system. We have recovered the
previous mentioned results of [109] where the FWM grows along the transmission line and therefore
is eliminated by the use of a weak random or DM technic for the reduced model. In addition, it has
appeared that a residual GVD combined to the TOD allows a strong growth than a single TOD case.
This can be seen as an interesting feature for WDM soliton systems near the ZDWs. Because of the
large frequency o�set di�erence between the two input pulses, assuming that they interact weakly,
the FWM crosstalk gain in power, rising inside the line after crossing each ampli�cation node. This
feature being enhanced by the combination of dispersion terms. However, for the full model where
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squeezed up channels are considered, the FWM component appears quickly along the transmission
line with a high spectrum amplitude value and decreases more in the combined GVD-TOD case than
in the single TOD case. This result is similar to those obtained by Singh et al [112,113] on the
e�ect of HOD terms on the FWM of type I. However, these authors dealt with input powers of three
pulses and made a conclusion that under the combined e�ect of second, third, fourth and �fth-order
dispersion parameters, the crosstalk introduced by the FWM is reduced [112]. A relevant result
obtained in the present work is that dealing with two input pulses, we have reached a reduction of
the crosstalk introduced by the FWM and the frequency o�set window in the case of the full model
in comparison to the FWM generated by three pulses as obtained by Singh et al [112]. The weak
value of the frequency o�set di�erence between the two input pulses, lead to a great interaction.
Consequently, even if the FWM crosstalk appears more quickly than in the reduced model inside
the transmission line, the strong interaction between the pairwise input pulses leads them to recover
their power and it follows the decreasing of the FWM power.

In the MI analysis, four symmetric OFs were created because of the TPA e�ect in addition to those
induced by the single interaction between the FOD and the GVD. The FCA enhances the value of the
central MI gain point. Considering the MI-PTG process in the unchirped case, we have demonstrated
that the input pulse which is less stable such as the RC pulse, has main peaks of the MI-PTG trails
more strong than the other input pro�les at short propagation distances. The chirp e�ect consists
to amplify the intensity of the main MI-PTG peaks for each pro�le, making the input pulses to
behave similarly while it shifts the occurrence of these peaks at short distances of propagation than
the unchirped case. We have �nally shown that the absorption coe�cients counteract the bene�cial
impact of the chirp as nonlinear losses, by breaking the similarity (when small values of TPA are
considered), destroying drastically the MI-PTG process and leading to pump depletion when great
values of TPA are reached.

The spectral compression in the SCG phenomenon through the GNLSE with non-Kerr terms using
a femtosecond sech-type pulse in the sub-nJ scale of energies have been studied. Once the derivation
of the SCG model equation has been done, we have investigated the analysis of the spectra obtained.
The results with 50 fs-pulses in the anomalous dispersion regime have shown that, in comparison
to the single CKN case, the cooperative nonlinearities improve the spectral broadening while the
competing ones reduce the spectral SCG bandwidth. Surprisingly, we have obtained the opposite
feature when the reduction of the pulse width was considered. In this last case, the cooperative
nonlinearities induce a spectral compression when the competing ones nearly maintain constant the
SCG bandwidth from the input to the output of the considered waveguide. The increase of both the
energy and the nonlinearity have con�rmed this feature showing that the spectral compression is also
obtained in the single CKN case but less than the case of cooperative nonlinearities.

We have also shown in this chapter that the chirp behaves both as TOD and SS. As SS, it acts
as a nonlinear dispersion on the spectrum of the FEAP leading to an asymmetric output whose
the orientation depends on the sign of the chirp. The optical shock obtained through the chirping,
suggests interesting advantages for the achievement of FEAP-based broadband spectra as in the
SCG phenomenon. As TOD, the initial chirp leads to the A.I mechanism previously reported in
[251]. Nonetheless, instead of TOD, the actual A.I mechanism is rather induced by the competition
between the GVD and the initial chirp following when chirp × GVD < 0. Beyond the numerical
results presented in [248] by Mandeng and Tchawoua and in [250,253] by Zhang et al, the A.I
is explained here through four physical processes including the increase of the group-velocity of the
oscillations tail that merge with the dominant peak within the collapse area achieving both the whole
pulse compression and ampli�cation into a single peak. Then, the oscillations tail are recreated in the
opposite side de�ned as the trailing edge of the time domain. The FEAP loses its asymmetry within
the collapse area. We have found that the minimal distance ξsym over which this happens decreases
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with the increase of the chirp C following the rule ξsym = (K1/C
2) + (K2/C) where K1 and K2

have been de�ned in a �rst order solitonic state system. The reduction of the truncation coe�cient
has been found to increase the number of the oscillations tail, the pulse energy and the area of the
FEAP's collapse during the A.I mechanism and then to improve its occurrence. In addition, in the
DFFs, we have demonstrated the dominant peak ampli�cation induced by the competition between
the GVD and the FOD. This ampli�cation is produced through the acceleration of the oscillations
tail that collide and merge with the dominant peak. We have obtained a relation which shows that,
this ampli�cation appears sooner as the FOD increases in the unchirped case. The cooperating GVD
and FOD were found to lead to a diverging FEAP. Considering a small value of chirp in the DFFs, has
led to de�ne a condition under which, the FEAP nearly preserves its shape over a long propagation
distance with weak distortion as chirp × GVD × FOD > 0. We have also de�ned a condition in
which the dominant peak is ampli�ed with a small value of chirp as C × GVD < 0 and FOD > 0.
However, we have seen that the single ampli�ed peak is not stable over a long propagation distance.

As a direct application of the study above, we have shown that the initial chirp behaving as a
SS e�ect on FEAP's spectra, improves the bandwidth of the FEAP-based SCG more than the sech-
type pulse both in the normal and the anomalous GVD regimes of the considered CS2−LCPCF. The
decrease of the FEAP truncation coe�cient has been found to enhance the spectral bandwidth. With
values of 0.01 to 0.005, the bandwidths were wider than those of the sech-type pulse. Considering
the quality of spectra obtained, the CDs of the FEAPs were higher over the whole range of the
wavelengths than those of the sech-type pulses. This is so because the FEAP emits less solitons than
the symmetric pulses, owing to its asymmetry and its time-domain acceleration. All, these results
demonstrate the important role played by the input pro�le asymmetry and the initial chirp on the
drastic spectral broadening of the SCG in the considered nJ's scale of energies. Therefore, the choice
of a FEAP with a weak truncation coe�cient, a convenient high energy and initial chirp under the
anomalous GVD regime, is more appropriate in a highly nonlinear medium to generate coherent and
ultra-broadband SCG's spectra, instead of the common compact and symmetric pro�les such as the
sech-type pulses.

Finally, considering the case of SCG in SOI-waveguides that includes both the THG and the NFK
terms, we have shown that the spectra have explosive SB under the NFK term despite their weak CD.
The THG term has opposite features but less than the TPA. Therefore, for applications needing wide
SBs, one should reduce the TPA-THG e�ects and excite rather the NFK term to produce explosive
ultra-broadband SCG spectra.
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General conclusion and perspectives

In this thesis, we have studied the pulse compression mechanism and the SCG phenomenon for
femtosecond pulses in some optical waveguides such as a SMF, SOI-waveguides, a CS2-LCPCF and
waveguides modeled by the GNLSE with non-Kerr terms.

As presented in the �rst chapter, these processes are very useful in nonlinear optics allowing so
several applications. In the review of literature, a brief overview on the pulse compression, the FWM,
the MI and the SCG phenomena has been done. In addition, the di�erent waveguides studied in the
thesis were described.

To achieve the purpose of the study, we have presented in the second chapter the di�erent models
with the analytical and numerical methods used for the di�erent studied phenomena. For instance,
considering the pulse compression phenomenon, the MVA has been described analytically assuming
both the linear and the nonlinear cases of the compression. The ABCJS approach in the case of
WDM solitons system near the ZDW has been applied on the ASC of the FWM. In the case of the
MI mechanism, we have presented the linear stability analysis of the CW in the SOI-waveguide. For
the SCG analyses, the di�erent systems were also described including a relation (Eq. 118) giving
their higher-order CDP.

In the last chapter, we have shown the analytical and numerical results obtained. Speci�cally, for
the temporal compression process for both symmetric and asymmetric input pulses, the studies have
highlighted the e�ects of the FOD, free-carriers absorptions and the chirp. Assuming the linear case
of compression, conditions that link the FOD, the GVD and the chirp have been obtained. Based
on the previous mentioned results, a possible experimental set-up could be suggested using a quasi-
linear dispersion-�attened �ber, in which the pulse would experience normal/anormalous dispersion
to obtain respective sign of the chirp [1,3], and get compressed when passing through a grating pair
with dispersion of same sign. In the nonlinear case, using compact and symmetric input pro�les, we
have demonstrated that a periodic compression could be generated by the interplay between the SPM
and the FOD. We have also showed that this dynamical process is destroyed by the presence of large
AVs of chirp and absorption coe�cients in the nonlinear medium. In other side, an asymmetric pulse
as the Airy pulse, was shown to undergo a reduction of its compression length induced by the SPM,
the TPA and the FCA. The combination of all these nonlinear parameters with the linear dispersion
terms in a realistic SOI-waveguide, con�rms these results that allow to characterize the peculiarity
of the Airy input pulses comparatively to the symmetric and compact commonly used pro�les.

The path leading to the study of the SCG phenomenon in this thesis crossing the ones of some
processes as the FWM and the MI, these latter have been investigated �rstly. The study concerning
the FWM has been done in WDM systems using SMFs near the ZDW. The related analysis through
the ABCJS approach has proved that the combination of the GVD and the TOD reduce the dele-
terious crosstalk induced by the FWM in such WDM systems. We can mention that if one purpose
in WDM soliton systems near the ZDW is to reduce the impact of the FWM crosstalk, therefore
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the choice of squeezed up input pulses under a combination of GVD-TOD is suitable to quite cancel
the FWM crosstalk. Thus, the propagation of signals could be optimized in WDM soliton systems
near the ZDW when the growth of the FWM could be well controlled. Moreover, in the MI study,
we have found that the chirp ampli�es the intensity of the main pulse trains peaks, leading to the
input pro�le independence while the absorption coe�cients counteract its e�ect recreating rather a
dependence to the input pro�le. For an e�cient process of the MI-PTG in a SOI-waveguides under
the FOD, a good control of the values of absorption coe�cients, dispersive e�ects and source chirp
of more stable input pro�les, should be operated.

The thesis has also encompassed the study of the SCG in the case of the waveguides modeled by
the GNLSE with non-Kerr terms. Indeed, in this speci�c part of the work done in thesis, we have
obtained a spectral compression induced by the cooperative nonlinearities instead of the competing
ones. Assuming that this modi�ed GNLSE with non-Kerr terms linked to the quintic nonlinearity
could model a highly nonlinear optical waveguide for the achievement of the SCG phenomenon, the
values of the energy and the pulse width should be chosen taking into account the conditions where
the spectral compression occurs.

Using chirped FEAPs in HDOFs, we have shown in this thesis that the chirp behaves both as
TOD and SS. As SS, it acts as a nonlinear dispersion on the spectrum of the FEAP leading to an
asymmetric output interesting for the achievement of the SCG phenomenon. As TOD, the initial chirp
leads to the A.I mechanism previously reported by R. Driben et al in [244]. This feature has been
completely characterized as well as the e�ects of FOD interacting with the GVD and chirp in DFFs.
In this last case, we have demonstrated the dominant peak ampli�cation induced by the competition
between the GVD and the FOD. A shape preserving was also observed in the DFFs for the weakly
chirped FEAP over a long propagation distance under the condition chirp×GVD × FOD > 0.

Finally, we investigated the SCG phenomenon in CS2-LCPCFs and in waveguides modeled by
GNLSE with non-Kerr terms. Considering the CS2-LCPCFs, we have shown that the initial chirp
behaving as a SS e�ect on FEAP's spectra, improves the bandwidth of the FEAP-based SCG more
than the sech-type pulse both in the normal and the anomalous GVD regimes. The decrease of the
FEAP truncation coe�cient has been found to enhance the spectral bandwidth. With values of 0.01
to 0.005, the bandwidths were wider than those of the sech-type pulse. Considering the quality of
spectra obtained, the CDs of the FEAPs were higher over the whole range of the wavelengths than
those of the sech-type pulses. Therefore, the choice of a FEAP with a weak truncation coe�cient,
a convenient high energy and initial chirp under the anomalous GVD regime, was found to be
more appropriate in a highly nonlinear medium to generate coherent and ultra-broadband SCG's
spectra, instead of the common compact and symmetric pro�les such as the sech-type pulses. In
SOI-waveguides that includes both the THG and the NFK terms, the resonant THG was found to
be deleterious for the SCG by a reduction of the SB. Its reduction being weaker than that of TPA,
it has been shown surprisingly that the TPA rather enhances the CD of the SCG spectra more
than the THG term. Through the nonlinear phase, the THG term just shifts slightly the spectrum
toward the long wavelengths while the e�ect of the NFK term is rather bene�cial for the SCG in
both the zero and the nonzero phase cases leading to explosive but less coherent spectra. Thus, for
applications needing wide SBs, one should reduce the TPA-THG e�ects and excite rather the NFK
term to produce explosive ultra-broadband SCG spectra.

At the end of this work, we expect that we have got a good understanding of the impact of
free-carriers absorptions, HOD, chirp, Kerr and non-Kerr nonlinear e�ects, input pro�les, in a �rst
part on the temporal compression, in a second part on the FWM and the MI, and �nally on the
spectral bandwidth enhancement of the SCG in the studied optical waveguides.

As perspectives, we should in future works conduct the experimental part of the theoretical and
numerical studies presented in this thesis for practical con�rmations. Furthermore, several paths
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of research raise from the thesis among which one can quote the investigation of birefringent (or
polarized) optical waveguides, a nonlinear scattering process as the stimulated Brillouin scattering in
the case of mechanisms and phenomena studied in the thesis, the investigation of actual promising
waveguides as those based on chalcogenide glasses, the study of metamaterials. Future researches
should also focus both theoretically and experimentally on production of explosive and coherent
SB of SCG under the NFK term in SOI-waveguides. The in�uence of NFK and THG e�ects on
propagation of symmetric and asymmetric pulses interacting with the other nonlinear phenomena
will also be considered as well as the quanti�cation of the whole systems studied in the thesis etc.
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Appendixes

Some integrals used in the MVA analysis of subsection 2.3.2
1. ∫ +∞

−∞

(
xsech(x)tanh(x)

)2

dx = −2

3

{
sech3(x)

8

[
ex(3x2 + 4x+ 2)

+ 2e−x(x+ 1) + e−3x(x2 + 1)
]
+ xln(2cosh(x))− 1

2

∫ +∞

0

t

1− et−2x
dt

}∣∣∣∣+∞
−∞

≈ 1.215 =
2

3
+
π2

18

2. ∫ +∞

−∞

(
xsech(x)

)2
[
tanh2(x)− sech2(x)

]
dx = −2

3

{
sech3(x)

8

[
ex(3x2 + 4x+ 2)

+ e−x(−6x2 + 4x+ 4) + e−3x(−x2 + 2)
]
− xln

(
cosh(x)

)
− 1

2

∫ +∞

0

t

1− et−2x
dt

}∣∣∣∣+∞
−∞

≈ 0.7850 =
4

3
− π2

18

3. ∫ +∞

−∞
x4sech2(x)dx =

{
− x3

[
x
(
exsech(x) + 2

)
+ 4ln

(
2cosh(x)

)]
− 6x2

∫ +∞

0

t

1− et−2x
dt+ 3x

∫ +∞

0

t2

1− et−2x
dt− 1

2

∫ +∞

0

t3

1− et−2x
dt

}∣∣∣∣+∞
−∞

≈ 5.6822

Derivation of the couple NLSEs in the MI analysis of section
2.5
We start with the GNLSE given in Eq. (2.49) taking into account the parameters de�ned in Eq.
(2.108) and the TOD term as :

i
∂u

∂z
− β2

2

∂2u

∂T 2
− iβ3

6

∂3u

∂T 3
+
β4

24

∂4u

∂T 4
+ γ1|u|2u = −Λu.

Using the de�nition of a perturbed CW as :
u(z, T ) =

(
u0 + a(z, T )

)
exp(iφNL),
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with φNL and a(z, T ) de�ned by Eqs. (2.104) and (2.105), respectively, we obtain in the linear
analysis of a(z, T ) :

−∂φNL

∂z
+ i

∂a

∂z
− β2

2

∂2a

∂T 2
− iβ3

6

∂3a

∂T 3
+
β4

24

∂4u

∂T 4
+ γ1u

3
0 + γ1u

2
0(a+ a∗) = −Λ(u0 + a).

Obviously, the condition a � u0 was used. The simpli�cation of this equation above assuming Eq.
(2.104) leads to :

i
∂a

∂z
− β2

2

∂2a

∂T 2
− iβ3

6

∂3a

∂T 3
+
β4

24

∂4u

∂T 4
+ γ1u

2
0(a+ a∗) = −Λa.

Introducing Eq. (2.105) inside this equation of a(z, T ) yields :[
i
∂a1

∂z
−Ka1 +

β2Ω
2

2
a1 +

β3Ω
3

6
a1 +

β4Ω
4

24
a1 + γ1u

2
0(a1 + a2) + Λa1

]
exp(iϕ)

+

[
i
∂a2

∂z
+Ka2 +

β2Ω
2

2
a2 −

β3Ω
3

6
a2 +

β4Ω
4

24
a2 + γ1u

2
0(a1 + a2) + Λa2

]
exp(−iϕ) = 0,

where ϕ = Kz − Ωt. To solve this equation, we should set that the terms in exp(iϕ) and exp(−iϕ)
are equal to zero separately as :

i
∂a1

∂z
−Ka1 +

β2Ω
2

2
a1 +

β3Ω
3

6
a1 +

β4Ω
4

24
a1 + γ1u

2
0(a1 + a2) + Λa1 = 0,

i
∂a2

∂z
+Ka2 +

β2Ω
2

2
a2 −

β3Ω
3

6
a2 +

β4Ω
4

24
a2 + γ1u

2
0(a1 + a2) + Λa2 = 0.

These NLSEs are the couple of equations used in Eq. (2.106).

NLSE numerical simulation
To solve the NLSE given by the following NLSE :

∂u

∂z
= −iβ2

2

∂2u

∂T 2
+
β3

6

∂3u

∂T 3
− α

2
u+ iγ1

[
|u|2u+

i

ω0

∂(|u|2u)
∂T

− TR
∂(|u|2)
∂T

u

]
.

One can use the program developed by Nick Usechak c©-2005 (The reader can consult the web site of
Rochester university, web page of the Professor Agrawal's team of research). TR provides an approx-
imate way of incorporating the Raman response. This treatment is valid for many TelCom based
pulse propagation simulations, however, fails in the case of SCG. s = 1/ω0 provides an approximate
way to incorporate the e�ect of SS. "s" is the parameter the user supplies in the program's interface.
This program is called "NLSE Solver". One obtains �gures as those presented in the �rst chapter
of this thesis (see �gures 1.8 and 1.9). A trial MATLAB code is also given by G. P. Agrawal on pages
516-518 of [3].

Trial MATLAB numerical code of the SCG simulation
The reader can consult the following link kindly provided by J. C. Travers, M. H. Frosz and J. M.
Dudley [114] for the updates of the SCG numerical code : www.scgbook.info.
Please cite these authors in the corresponding reference in any publication using this code. The full
code is also given by these authors on pages 46-49 in [114].
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A trial MATLAB numerical code for the MI analysis
We give in the next a full version of the MATLAB numerical code for the MI analysis in a SOI
waveguide as discussed in sections 2.5 and 3.5.2. Please cite this thesis in any publication using this
code as : L. M. Mandeng, (Ph.D thesis, Laboratory of Mechanics, Department of Physics, Faculty
of Science, University of Yaoundé I, Cameroon, 2015).
%MATLAB Numerical code for the achievement of the MI PTG in a SOI waveguide

%for three profiles as Gaussian, sech-type and the RC shapes.

%Please cite this thesis in any publication using this code as : L. M. Mandeng,

%(PhD thesis, Laboratory of Mechanics, Department of Physics,

%Faculty of Science, University of Yaoundé I, Cameroon, 2015).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all; %clean the database allowed to the code

beta2=0.56; %GVD in ps^2/m

t0=50e-3; % pulse width in ps

beta4=-beta2*(t0^2); %FOD coefficient in ps^4/m

nt=400; %number of points in time

dt=(t0/nt); % stepsize in time in ps

t=(-nt/2:(nt/2)-1)*dt; %time window in ps

w=(pi/t0)*[(0:(nt/2)-1) (-nt/2:-1)]; %frequency window in 1/ps

gamma=47; %CKN coefficient in 1/(W.m)

G=0; %G=6.5; TPA coefficient 1/(W.m)

sigma=1.45e-21; %FCA coefficient in m^2

alpha=0.2/4.343; %linear loss coefficient in 1/m

h=(6.62e-34)*(1e24); %planck constant in J.ps

Aeff=(1e-6)^2; %effective mode area

c=3e8/(1e12); %light in m/ps

lambda0=1.55e-6; %wavelength in m

nu0=c/lambda0; % pump frequency in 1/ps

P0=3; % peak power in W

C=10; % chirp

ug=sqrt(P0)*exp(-(t.^2)).*exp(-1i*C*(t.^2)/2); %initial temporal Gaussian shape

us=sqrt(P0)*sech(t).*exp(-1i*C*(t.^2)/2); % temporal sech-type shape

uRC=sqrt(P0)*(1+cos(pi*t)).*exp(1i*C*(t.^2)/2)/2; % temporal RC shape

betaTPA=2*G*Aeff; % TPA parameter

Ng=sqrt(pi/2)*((P0^2)*betaTPA*t0/(4*h*nu0*(Aeff^2)))*(1+erf(sqrt(2)*t)); %FCD

%coefficient of the Gaussian pulse

terme0=1-(((tanh(t)).^2)/3);

Ns=(betaTPA*(P0^2)*t0/(h*nu0*(Aeff^2)))*((2/3)+(tanh(t).*terme0)); %FCD coefficient

%of the sech-type pulse

terme=2*sin(pi*t).*(160+(81*cos(pi*t))+(32*((cos(pi*t)).^2))+(6*((cos(pi*t)).^3)));

NRC=((P0^2)*betaTPA*t0/(1536*pi*h*nu0*(Aeff^2)))*(320+(105*pi)+(210*t/t0)+terme);

%FCD coefficient of the RC pulse

tabug=[];% initializing the data table that registers the time-domain intensity

%of the Gaussian pulse

tabus=[];% initializing the data table that registers the time-domain intensity

%of the sech-type pulse

tabuRC=[];% initializing the data table that registers the time-domain intensity
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%of the RC pulse

tabvg=[];% initializing the data table that registers the spectral-domain intensity

%of the Gaussian pulse

tabvs=[];% initializing the data table that registers the spectral-domain intensity

%of the sech-type pulse

tabvRC=[];% initializing the data table that registers the spectral-domain intensity

%of the RC pulse

tabz=[]; % initializing the data table that registers the propagation distance z

L=0.15; % length of the SOI waveguide in m

nz=nt; % number of points in the space (following the parameter z)

dz=L/nz; %stepsize following z in m

vg=fft(ug); %initial spectral Gaussian

vs=fft(us); %initial spectral sech-type shape

vRC=fft(uRC); %initial spectral RC shape

for z=0:dz:L %start of the propagation

tabug=[tabug;abs(ug).^2]; %Registration of the time-domain intensity

%of the Gaussian pulse

tabus=[tabus;abs(us).^2]; tabuRC=[tabuRC;abs(uRC).^2];

tabvg=[tabvg;abs(vg).^2]; tabvs=[tabvs;abs(vs).^2];

tabvRC=[tabvRC;abs(vRC).^2]; Pg=abs(ug).^2; Ps=abs(us).^2;

PRC=abs(uRC).^2;

NLg=(1i*gamma*Pg)-(sigma*Ng/2)-(G*Pg);%Nonlinear operator in the SSF for

%the Gaussian pulse

NLs=(1i*gamma*Ps)-(sigma*Ns/2)-(G*Ps);%Nonlinear operator in the SSF for

%the sech-type

%pulse

NLRC=(1i*gamma*PRC)-(sigma*NRC/2)-(G*PRC);%Nonlinear operator in the SSF for

%the RC pulse

D=(1i*(w.^2)*0.5.*(beta2+(beta4*(w.^2)/12)))-(alpha/2);%Linear operator

%in the SSF

%start of the SSF code

vg=fft(exp(NLg*dz).*ug); vs=fft(exp(NLs*dz).*us);

vRC=fft(exp(NLRC*dz).*uRC);

vg=exp(D*dz).*vg;%spectral-domain intensity at z for the Gaussian pulse

vs=exp(D*dz).*vs;%spectral-domain intensity at z for the sech-type pulse

vRC=exp(D*dz).*vRC;%spectral-domain intensity at z for the RC pulse

ug=ifft(vg);%time-domain intensity at z for the Gaussian pulse

us=ifft(vs);%time-domain intensity at z for the sech-type pulse

uRC=ifft(vRC);%time-domain intensity at z for the RC pulse

tabz=[tabz;ones(1,nt)*z]; %table of z values

fprintf('%05.1f %% complete\n', (z/L)*100);%percentage of progression of

%the code execution

end

subplot(1,3,1),pcolor(t,tabz,tabug);shading interp;%Contour plot

%of the Gaussian pulse

%propagation in the time domain

xlabel('t (ps)'); ylabel('z (m)'); title('Gaussian pulse');

subplot(1,3,2),pcolor(t,tabz,tabus);shading interp; %Contour plot
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%of the sech-type pulse

%propagation in the time domain

xlabel('t (ps)'); ylabel('z (m)'); title('sech-type pulse');

subplot(1,3,3),pcolor(t,tabz,tabuRC);shading interp; %Contour plot

%of the RC pulse

%propagation in the time domain

xlabel('t (ps)'); ylabel('z (m)'); title('RC pulse');

Code for the simulation of the CD parameter
We give below a piece of MATLAB code for the simulation of the CD parameter in the SCG's
analysis.

for n1=1:NBRE % NBRE is the number of loops for the simulation of the SCG based

%on the pair of photons

% one photon is a normal signal and the other is the one with random/noised

% phase

g_numerator(n1)=0; %initialization of the term characterizing the numerator

% of the

% RHS of Eq. (1.46)

g_TE1sq(n1)=0; %initialization of the term characterizing the first factor

% of the

% RHS's denominator of Eq. (1.46)

g_TE2sq(n1)=0; %initialization of the term characterizing the second factor

% of the

% RHS's denominator of Eq. (1.46)

end

for n1=1:NBRE

for k=1:N

for l=1:N

E1=tabE(k,n1); %tabE is the array in which the intensities of the photons

% pair have been registered NBRE times

E2=tabE(l,n1);

TE1=fft(E1);

TE2=fft(E2);

g_numerator(n1) = g_numerator(n1) + conj(TE1).*TE2;

g_TE1sq(n1) = g_TE1sq(n1) + abs(TE1).^2;

g_TE2sq(n1) = g_TE2sq(n1) + abs(TE2).^2;

end

end

g12(n1)=abs(g_numerator(n1)./sqrt(g_TE1sq(n1).*g_TE2sq(n1))); %Calculation

%of the CD given by Eq. (1.46)

end

figure();

plot(WL(iis),g12); %Plot of the CD parameter versus the wavelength
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Abstract. The growth of the four-wave mixing (FWM) near the zero-dispersion wavelength (ZDWL) is
analyzed in wavelength-division multiplexing (WDM) solitons systems. The phase-matching conditions
lead to a slight reduction of the frequency offset. Numerical analysis of the reduced model predicts a
variation of appearance of the FWM along the transmission line, and comparison of the FWM crosstalk
is presented in the case of well-separated input channels approximation. Considering the full model, the
FWM decreases along the transmission line. For long distances, an analytical asymptotic solution of the
FWM is used and confirms this feature beyond the tenth amplification node.

1 Introduction

The wavelength-division multiplexing technic which con-
sists to send many signals in a single optical fiber has
increased the usefulness of the transmission of data [1,2].
This has become one of the most important technics for
high speed and high capacity requirement of optical fiber
transmission systems [1,2]. However, it is well-known that
interactions between the propagating fields leads to new
waves under appropriate conditions through several non-
linear phenomena such as harmonic generation, stimulated
Raman scattering (SRS), stimulated Brillouin scattering
(SBS) and parametric processes as four-wave mixing and
third-harmonic generation [2–6]. The origin of FWM is
linked to the nonlinear response of bound electrons of a
material to an electromagnetic field [2–6]. There are two
types of the FWM process: the first type is obtained when
three light pulses transfer their energy to a single fourth
photon (for a degenerate case, the phenomenon is called
third harmonic generation) and the second type is con-
cerned when two photons are annihilated while two new
other are created simultaneously [2]. Analytical treatment
of the FWM process inside a single mode line leads to
a phase-matching condition in order to gain the maxi-
mum FWM values. Some works have been devoted to
the study of the second type of the FWM. Particularly,
Ablowitz et al. introduced an analytical model that ex-
plained the growth of the FWM in soliton systems with
damping and amplification [7]. Also, they derived analyt-
ical expressions for the FWM in an ideal, lossless WDM
soliton systems [8]. Their approach consisted to launch two
continuous waves (CW) that interact together leading to
the FWM occurrence in the system.

a e-mail: sergefewo@yahoo.fr

Nowadays, it is well-known that the FWM creates dele-
terious effects on WDM and dense WDM communication
systems [2,7–11]. Many technics were previously investi-
gated in order to reduce or to quite cancel these effects
such as dispersion management technic [11–15], an exper-
imental grouping wavelength method [16], the use of weak
random dispersion in second term of dispersion [17,18] and
recently in frequency-division multiplexing systems [19].
However, the FWM has been discovered to be also use-
ful [20], for example when looking for the values of the
third-order nonlinear-index assuming a FWM-Based tech-
nic [2]. In addition, the FWM has also been important
when looking for the ratio of the third over fourth or-
der dispersion coefficients [21], making parametric oscil-
lators, ultrafast signal processing, FWM-induced quadra-
ture squeezing [1,20,22] and other applications [23,24].

The study of effects of higher-order dispersion terms
on the FWM of the first type has been done by Singh
et al. [25] based on earlier works of Inoue et al. [25,26].
They showed that the combination of higher order disper-
sion terms leads to a FWM power reduction.

As far as the second type of the FWM process is con-
cerned, the effects of higher-order dispersion have not been
considered in WDM soliton systems to our knowledge.
Therefore, the main purpose of the present work deals
with the study of the growth of the FWM in this kind of
systems modeled by the nonlinear Schrödinger equation
with an additional TOD using a similar approach with
the one done by Ablowitz et al. [7]. We remind that this
case is considered when the optical system has a vanish-
ing group-velocity dispersion (GVD) or uses high intensity
peaks (short and ultrashort pulses) [1–6,27]. Analytical
treatment of the model is based on the propagation of the
anti-stokes component in the case of gain/loss. We com-
pare the single TOD case with the combined GVD-TOD
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case (where a residual GVD is considered) and bring out
the differences as concerned the phase-matching condi-
tions and amplitude growth of the FWM components.

The paper is organized as follows: in Section 2, a par-
tial differential equation (PDE) for the evolution of the
FWM anti-stokes component is derived. In Section 3,
considering a reduced model of the FWM component
assuming the third order dispersion, the associated phase-
matching condition is derived. It follows a numerical in-
tegration of the equation of the FWM component. Sec-
tion 4 is devoted to investigation of the full model where
a generalized relation of the FWM component spectrum
is obtained. Numerical analysis is presented in Section 5.
The last section concludes the paper.

2 Analytical study of the model

We begin the analysis using the following nonlinear
Schrödinger (NLS) equation for the slowly varying pulse
envelope of the electrical field in the case of short
pulses [1–6,27], which reads

i
∂A

∂z
− β2

2
∂2A

∂ T 2
− i

β3

6
∂3A

∂ T 3
+ γ|A|2A = −iαA, (1)

where A(Z, T ) is the optical soliton envelope of the elec-
trical field, Z is the spatial propagation variable and T
is the retarded time variable. The parameter β2 is the
second-order dispersion profile where β3 is the third-order
dispersion. The parameters γ and α are the nonlinear and
damping/amplification coefficients respectively, we set the
following dimensionless variables: ζ = Z/L, τ = T/T0,
B(ζ, τ) = A(Z, T )/

√
P0 where L and T0 are the charac-

teristic fiber length, and the characteristic time window of
the pulse, respectively. Thus, P0 is the input peak power
and we define LGV D as the length scale associated to the
second-order dispersion term, LNL is the length scale as-
sociated to the third-order nonlinear term. We also de-
fine La = L∗/L as the dimensionless spatial amplification
spacing while |β2| = T 2

0 /LGV D and |β3| = T 3
0 /LTOD are

the group-velocity dispersion (GVD) and the third-order
dispersion (TOD) values, respectively. L∗ is the physical
spatial amplification spacing. Introducing these dimen-
sionless variables into equation (1) easily leads to the fol-
lowing form:

i
∂B

∂ζ
− Lβ2

2T 2
0

∂2B

∂τ2
− i

Lβ3

6T 3
0

∂3B

∂τ3
+ LγP0|B|2B = −iLαB.

(2)
Now we set the dimensionless terms βGV D =
−β2LGV D/T

2
0 , βTOD = β3LTOD/T

3
0 and Γ = Lα for

GVD, TOD profiles and gain/loss parameter, respectively.
Introducing these in equation (2) yields

i
∂B

∂ζ
+
βGV DL

2LGV D

∂2B

∂τ2
−iβTODL

6LTOD

∂3B

∂τ3
+

L

LNL
|B|2B = −iΓB.

(3)
It is well-known that the bright soliton solution is ob-
tained in the regime of propagation where the dispersion

length LGV D is similar to the nonlinear length LNL in
the anormalous-dispersion regime. The TOD plays a sig-
nificant role only if the dispersion length associated LTOD

respects the condition LTOD ≤ LGV D [2,28–30]. Further-
more, it is well-known that the solitonic properties as the
preserving shape of propagation exist in an ideal system
while in realistic cases they are perturbed by higher-order
effects like the TOD effect. So, in the present system, we
assume that LTOD ≈ LGV D. One can rewrite equation (3)
in a suitable form by setting B(ζ, τ) =

√
h(ζ)E(ζ, τ)

where h(ζ) is a function which will include the param-
eter Γ . The function h(ζ) being a periodic function ex-
panded in Fourier series:

h(ζ) =
n=+∞∑
n=−∞

hne
−inkLa ζ , hn =

ΓLa

ΓLa − inπ
, (4)

where kLa = 2π
La

. Equation (4) yields

i
∂E

∂ζ
+
βGV D

2
∂2E

∂τ2
− i

βTOD

6
∂3E

∂τ3
+ h(ζ)|E|2E = 0. (5)

For a real physical system, we take the following param-
eter values: L = 100 Km, β3 = 1 ps3/Km. This leads to
T0 = 4.64 ps and β2 = −0.21 ps2/Km for the case where
we consider the addition of the residual constant GVD.
We also have L∗ = 10 Km, n = 1 . . . 10, P0 = 2 mW and
α = 0.0921 Km−1. The obtained values of parameters γ
and Γ are 5 W−1/Km and 9.21 respectively. The initial
frequency offset of the pulses is given by Ω = 2.4392 lead-
ing to the channel spacing Δλ = 1.5032 nm for a single
mode fiber at λ ≈ 1.32 μm. The presence or lack of the
dimensionless dispersion parameter βGV D will be repre-
sented by the values 1 and 0, respectively.

The evolution of the FWM in the model is investi-
gated through the anti-stokes component using a similar
approach developed by Ablowitz et al. [7]. Therefore, we
consider a signal including two pulses E1 and E2 such that
Epulse = E1 +E2. We assume that the FWM in the chan-
nels is taken as EFWM = E112 + E221. Then, the total
field in the system is

E(ζ, τ) = E1 + E2 + E112 + E221, (6)

where E1, E2, E112 and E221 evolve on frequencies Ω1,
Ω2, Ω112 = 2Ω1 − Ω2 and Ω221 = 2Ω2 − Ω1, respectively.
If we take Ω1 = −Ω2 = −Ω, therefore Ω112 = −3Ω and
Ω221 = 3Ω. The components of FWM E112 and E221 are
the so-called stokes and anti-stokes components, respec-
tively. When we introduce equation (6) into equation (5),
we obtain a PDE by neglecting all nonlinear terms in E112,
E221 and the cross-phase modulation (XPM) terms. The
system can be modeled by the diagram given in Figure 1
where the transmission line is represented by the single
mode optical fiber (SMF) symbolized by the ITU-T rec-
ommendation G.652 [9]. The evolution of the anti-stokes
FWM in the system with TOD is therefore modeled by
the following equation:

i
∂E221

∂ζ
+
βGV D

2
∂2E221

∂τ2
− iβTOD

6
∂3E221

∂τ3
+h(ζ)E2

2E
∗
1 = 0.

(7)
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Fig. 1. Diagram of the physical model under study.

For simplicity, we set v = E221 in equation (7). Many
works dealing with the evolution of the FWM have been
done in systems assuming only the second order dispersion
term [7,8,11–13,17,18]. The present model under study
(Eq. (7)), which includes the TOD term will be inves-
tigated in order to characterize the FWM under influence
of this coefficient.

3 Reduced model of the FWM
component growth

Following the assumption of Horne et al. [18], the evolu-
tion of the FWM is taken in the following form including
the TOD effect inside the exponential argument of the
anti-stokes component:

v(ζ, τ) = G(ζ, τ) exp
[
i

(
3Ωτ − Ω2

2
βGV Dζ

)]

× exp
[
− i

Ω3

6
βTODζ

]
. (8)

When we introduce equation (8) into equation (7) we ob-
tain the following equation for the amplitude G(ζ, τ):

i
∂G

∂ζ
+
βGV D

2

(
∂2G

∂τ2
+ 6iΩ

∂G

∂τ
− 2(2Ω)2G

)
− i

βTOD

6

×
(
∂3G

∂τ3
+9iΩ

∂2G

∂τ2
−27Ω2∂G

∂τ
−26iΩ3G

)
= −h(ζ)E2

20E
∗
10,

(9)

where

E2
20E

∗
10 = E2

2E
∗
1 exp

[
i

(
− 3Ωτ +

Ω2

2
βGV Dζ

)]

× exp
[
i

(
Ω2

2
βTODΩ

3
ζ

)]
. (10)

We set ΔΩ = Ω2 − Ω1 = 2Ω as the difference in the
frequency offset for the case where the input pulses are
well-separated, therefore in this case ΔΩ � 1. We assume
the following simplifications (ΔΩ)2|G|, 26Ω3|G| � |∂G

∂τ |,
|∂2G

∂τ2 |, |∂3G
∂τ3 |. Then equation (9) becomes

i
∂G

∂ζ
− (ΔΩ)2

(
βGV D +

13ΩβTOD

12

)
G = −h(ζ)E2

20E
∗
10,

(11)

which is considered as the reduced model. For simplicity,
we set

φ = βGV D +
13ΩβTOD

12
,

ψ(ζ) =
(
βGV D +

βTODΩ
3

)
ζ. (12)

The input pulses are sech-type profiled in the general form
of fundamental soliton as in [2,17]:

Ej = Emax,j sech[Emax,j(τ − Ωjζ − Tj)]

× exp
[
i(E2

max,j − Ω2
j)ζ/2

]
exp

[
iΩjτ

]
(13)

where Ω1 = −Ω2 = −Ω, Emax,1 = Emax,2 = Emax and
T1 = −T2 = T∗. The integration of equation (11) gives

G(ζ, τ) = iE3
max exp

[
−i(ΔΩ)2φζ

]

×
n=+∞∑
n=−∞

hn

∫ ζ

0

sech2

[
Emax(τ − Ωζ′ + T∗)

]

× sech
[
Emax(τ + Ωζ′ − T∗)

]
exp

[
i

(
− nkLaζ

′

+
E2

max − Ω2

2
ζ′ + (ΔΩ)2φζ′

)]

× exp
[
i

(
Ω2

2
ψ(ζ′)

)]
dζ′. (14)

It is important to remind that the phase-matching con-
dition required in order to gain the maximum FWM val-
ues is obtained by taking the argument of the imaginary
exponential

exp
[
i

(
− nkLaζ

′ + 0.5(E2
max − Ω2)ζ′ + (ΔΩ)2φζ′

)]

× exp
[
0.5iΩ2ψ(ζ′)

]

equal to zero. This leads to some cases of the study in
function of the GVD and TOD profiles.

– In the presence of constant TOD profile without
the GVD parameter, the phase-matching condition
leads to:

9Ω3 − Ω2 + E2
max − 2nkLa = 0. (15)

One must solve this equation following Ω and n to
obtain values leading to largest amplitude of FWM.

– In the presence of both the GVD and TOD profiles, we
obtain from the general reduced model the following
equation:

9Ω3 + 8Ω2 + E2
max − 2nkLa = 0. (16)

The next section deals with the full model assuming that
the amplitude of the FWM component is very sensitive to
the time variable (differentiated terms of G(ζ, τ) are not
negligible).
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4 Full model of the FWM component growth

Considering the Fourier transform of equation (9), we
obtain:

i
∂G̃

∂ζ
− 1

2

{
βGV D

(
ω2 + 6ωΩ + 2(2Ω)2

)
+
βTOD

3

×
(
ω3 + 9ω2Ω + 27ωΩ2 + 26Ω3

)}
G̃

= −h(ζ)F [E2
20E

∗
10]. (17)

We set:

θ(ω,Ω) = βGV D

(
ω2 + 6ωΩ + 2(2Ω)2

)

+
βTOD

3

(
ω3 + 9ω2Ω + 27ωΩ2 + 26Ω3

)
. (18)

Equation (17) leads to the following form of G̃(z, ω):

G̃(ζ, ω) =
iπEmax

ΔΩ
exp

[
− i

(
1
2
θ(ω,Ω)ζ + ωδ(ζ)

)]

× sech
(

πω

2Emax

) n=+∞∑
n=−∞

hn exp
[
iχn(ω)ζcoll

]

×
∫ 2Emaxδ(ζ)

−∞
I

(
y,

ω

Emax

)
exp

[
− iμn(ω)y

]
dy,

(19)

where

χn(ω,Ω) =
[
− nkLa +

E2
max − Ω2

2
+

1
2
θ(ω,Ω)

+
Ω2

2

(
βGV D +

βTODΩ
3

) ]
, (20)

is related to the phase-matching condition. The function
I(y, ω/Emax) is a well-known function (see Refs. [7,8]),
δ(ζ) = Ωζ − T∗, μn(ω) = −χn(ω,Ω)/ΔΩEmax and
y = 2Emaxδ(ζ). The phase-matching condition for the
full model is given by taking χn(ω,Ω) = 0. The roots
ωn obtained are only relevant, if we consider those which
are equal to zero because of the presence of the function
sech(πω/2Emax) inside G̃(ζ, ω). Thus, equation (20) leads
to the following polynomial equation of third degree:

ax3 + bx2 + cx+ d = 0, (21)

where we have set x = ω, a = βTOD/3, b = βGV D +
3βTODΩ, c = 6ΩβGV D + 9Ω2βTOD and d = 9(βGV D +
βTODΩ− 1/9)Ω2 +E2

max − 2nkLa. Therefore, we can con-
sider specific cases:

1. Case of the second order dispersion βGV D = 1,
βTOD = 0:

x2 + 6Ωx+
(
8Ω2 + E2

max − 2nkLa

)
= 0, (22)

the two solutions are

xn,± = −3Ω ±
√

Ω2 − E2
max + 2nkLa.

The realistic solution is xn,+ that must be equal to zero
according to the previous hypothesis. So, we recover the
single GVD phase-matching condition as obtained by
Ablowitz et al. [7,8]:

Ω =
1
2

√
nkLa − E2

max

2
. (23)

2. Case of the third order dispersion βGV D = 0,
βTOD = 1:

1
3
x3 + 3Ωx2 +9Ω2x+ (9Ω3 −Ω2 +E2

max − 2nkLa) = 0.

(24)
If we take three general solutions of equation (24) as
(x − x1)(x − x2)(x − x3) = 0 and we assume one of
them equal to zero, we obtain the same phase-matching
condition derived from the reduced model for single
TOD case given by equation (15).

3. Case of the combined GVD and TOD case βGV D = 1,
βTOD = 1:

1
3
x3 + (3Ω + 1)x2 + (9Ω2 + 6Ω)x

+ (9Ω3 + 8Ω2 + E2
max − 2nkLa) = 0. (25)

Using the same process as in the previous case, we derive
the phase-matching condition obtained in equation (16)
for the reduced model.

So, for all these cases we obtain the same phase-
matching conditions of the reduced model in the full model
by taking the roots ωn of χn(ω,Ω) equal to zero.

Considering the case where ωn �= 0, we obtain a general
form of the asymptotic solution ˜G(z, ω) for long distances:

G̃(ζ → ∞, ω) ≈ iπ2Emax

ΔΩ
exp

[
− i

(
θ(ω,Ω)

2
ζ + ωδ(ζ)

)]

× sech
(

πω

2Emax

) +∞∑
n=−∞

hn exp
[
iχ(ω,Ω)ζcoll

]

× μn(ω,Ω) + ω/Emax

sinh
[

π
2

(
μn(ω,Ω) + ω/Emax

)]
cosh

(
πμn(ω,Ω)

2

) ·

(26)

In the next section, we present the numerical results of
the previous analytical studies.

5 Numerical investigations

In this section we present numerical results of the study
of the FWM in the case of nonlinear Schrödinger equa-
tion assuming TOD with gain/loss. As mentioned earlier,
we have worked with normalized dimensionless quantities
that can be easily linked to the physical corresponding pa-
rameters. Considering the phase-matching conditions ob-
tained in both cases for the reduced and full models (for
ωn = 0), Figure 2 presents the evolution of the frequency



Eur. Phys. J. D (2013) 67: 10 Page 5 of 8

Fig. 2. (Color online) Evolution of the frequency offset of
Phase-matching conditions versus the amplification spacing
with βGV D = 1, βTOD = 1 (solid curve) and βGV D = 0,
βTOD = 1 (dashed curve).

offset where the FWM appears to be more important in
the transmission in function of the normalized parameter
of the amplification distance. In the presence of both GVD
and TOD, it comes a slight reduction of the frequency off-
set evolution (solid curve in Fig. 2) in comparison to the
single TOD case (dashed curve in Fig. 2). The addition
of the GVD term is the reason of this interesting feature.
The origin is linked to the polynomial equations of phase-
matching conditions obtained in equations (15) and (16).
We conclude that the combined dispersion terms reduce
the frequency offset window more than a single dispersion
term. Analyzing the growth function of the FWM in the
reduced model, we can predict a higher growth for the
most reduced frequency window.

Figures 3 and 4 present the temporal profile evolution
of the FWM versus the normalized distance ζ (for conve-
nience ζ and τ are respectively represented by z and t in
the figures) in the reduced model for the single TOD case
and assuming both TOD and GVD, respectively. One in-
tegrates equation (14) assuming physical realistic systems
with amplification nodes (n × La) and realizing phase-
matching condition at each node in order to obtain the ap-
propriate frequency offset to the FWM occurrence. These
figures are obtained by using a trapezoidal numerical in-
tegration scheme on equation (14) between each amplifier
spacing and by realizing the phase-matching conditions of
equations (15) and (16). As can be seen in those figures,
the FWM component appears along the transmission line
near the first node and its amplitude increases through the
following amplification nodes due to the realization of the
phase-matching conditions. We notice that, in the reduced
model, the FWM is reduced slightly in the single TOD
case than in the combined GVD-TOD case. This feature is
better observed in Figure 5 which presents the FWM tem-
poral profile at the first and the tenth amplification nodes

for both cases (single TOD and combined GVD-TOD).
Figure 5a presents identical amplitude values of the FWM
at the first node for both cases under study. During the
propagation along the transmission line, one observes that
the amplitude of the FWM temporal profile in the sin-
gle TOD case is slightly reduced in comparison with the
amplitude assuming the combined GVD-TOD case (see
Fig. 5b). Therefore, in the reduced model, the FWM grows
along the transmission line and consequently a control of
the FWM growth could be achieved.

For the full model, we have also integrated equa-
tion (19) using the same numerical scheme between each
amplifier spacing and by realizing once more the phase-
matching condition of the FWM on the amplifier nodes.
The growth of the spectra profiles of the FWM versus the
normalized distance ζ in the full model are presented in
Figures 6 and 7 for the single TOD and the combined
GVD-TOD cases, respectively. The TOD introduces an
asymmetry in the profile of the FWM component for both
cases which is progressively reduced along the line when
reaching the tenth amplification node. It is also found
that in WDM soliton systems where input colliding chan-
nels E1 and E2 are not well-separated, the FWM is asso-
ciated with slight peaks at each amplification node and
becomes wide when ζ is increasing. It yields that, the
strength of the FWM in the single TOD case is more im-
portant than in the combined GVD-TOD case. For both
cases, the FWM becomes more smaller along the propaga-
tion distance ζ. We present in Figure 8, the spectrum pro-
file of the FWM component for both cases at the first and
tenth amplification nodes. This spectrum is more intense
in the single TOD case (dotted lines in Figs. 8a and 8b)
than in the combined GVD-TOD case (solid line in these
figures). We can easily say that the combination of TOD
term with the GVD term reduces the FWM crosstalk in
the WDM soliton systems where input channels are closer
each other (small frequency spacing). This feature is de-
picted by the asymptotic solution of the FWM growth
presented in Figure 9 for the full model. We obtain a high
broadening of the FWM spectrum in the combined GVD-
TOD case (solid lines) comparatively to the FWM spec-
trum in the single TOD case (dotted lines). These results
show that the analytical asymptotic solution (for larger ζ)
is in good agreement with the previous obtained results.

6 Conclusion

Using the NLS equation for an optical WDM solitons sys-
tem near the ZDWL, we have obtained the model equa-
tion for the anti-stokes component of the FWM. Then,
after some simplifications, we have obtained the so-called
reduced model from which has been derived the phase-
matching conditions that lead to the FWM high values
occurrence. The full model has also been considered for
the study in the single TOD case and the combined GVD-
TOD case. It comes that the frequency offset is more im-
portant in the single TOD case than in the combined
GVD-TOD case. In the case of the reduced model, the
combined effect of GVD and TOD leads to a growth of
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Fig. 3. (Color online) Propagation of FWM component in the reduced model, for the single TOD case βGV D = 0, βTOD = 1.

Fig. 4. (Color online) Propagation of FWM component in the reduced model, for the GVD-TOD case βGV D = 1, βTOD = 1.

Fig. 5. (Color online) Temporal profile of FWM in the reduced model for both single TOD (dashed curve) and combined
GVD-TOD (solid curve), at the first (n = 1: curve (a)) and the tenth (n = 10: curve (b)) nodes respectively.

Fig. 6. (Color online) Propagation of FWM component spectrum in the full model, for the single TOD case βGV D = 0,
βTOD = 1.
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Fig. 7. (Color online) Propagation of FWM component spectrum in the full model, for the combined GVD-TOD case βGV D = 1,
βTOD = 1.

Fig. 8. (Color online) Spectral profile of FWM in the full model for both single TOD (dashed curve) and combined GVD-TOD
(solid curve), at the first (n = 1: curve (a)) and the tenth (n = 10: curve (b)) nodes respectively.

Fig. 9. (Color online) Spectral profile of FWM in the full
model for both single TOD (dashed curve) and combined
GVD-TOD (solid curve), asymptotic solution beyond the tenth
node where the parameter z is assumed to be larger.

the FWM in the system. We have recovered the previous
mentioned results of reference [17] where the FWM grows
along the transmission line and therefore is eliminated by
the use of a weak random or DM technic for the reduced
model. In addition, it has appeared that a residual GVD
combined to the TOD allows a strong growth than a sin-
gle TOD case. This can be seen as an interesting feature
for WDM soliton systems near the ZDWL. Because of
the large frequency offset difference between the two in-
put pulses, assuming that they interact weakly, the FWM

crosstalk gain in power, rising inside the line after crossing
each amplification node. This feature being enhanced by
the combination of dispersion terms.

However, for the full model where squeezed up chan-
nels are considered, the FWM component appears quickly
along the transmission line with a high spectrum ampli-
tude value and decreases more in the combined GVD-TOD
case than in the single TOD case. This result is similar
to those obtained by Singh et al. [25,26] on the effect of
higher-order dispersion terms on the FWM of type I. How-
ever, these authors dealt with input powers of three pulses
and made a conclusion that under the combined effect of
second, third, fourth and fifth-order dispersion parame-
ters, the crosstalk introduced by the FWM is reduced [25].
A relevant result obtained in the present work is that deal-
ing with two input pulses, we have reached a reduction of
the crosstalk introduced by the FWM and the frequency
offset window in the case of the full model in comparison to
the FWM generated by three pulses as obtained by Singh
et al. [25]. The weak value of the frequency offset difference
between the two input pulses, lead to a great interaction.
Consequently, even if the FWM crosstalk appears more
quickly than in the reduced model inside the transmis-
sion line, the strong interaction between the pairwise in-
put pulses leads them to recover their power and it follows
the decreasing of the FWM power. We can mention that
if one purpose in WDM soliton systems near the ZDWL is
to reduce the impact of the FWM crosstalk, therefore the
choice of squeezed up input pulses under a combination of
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GVD-TOD is suitable to quite cancel the FWM crosstalk.
In summary, the present work demonstrates clearly the
evolution of the FWM in the system under the interaction
of TOD and GVD parameters. Thus, the propagation of
signals could be optimized in WDM soliton systems near
the ZDWL when the growth of the FWM could be well
controlled.

This work has been done in the Laboratory of Mechanics, De-
partment of Physics of the Faculty of Science of the University
of Yaounde I, Cameroon. We sincerely thank Pr. T.C. Kofane,
Head of the laboratory.
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Chirped self-healing Airy pulses compression in silicon waveguides under fourth-order
dispersion

Lucien Mandeng Mandeng and Clément Tchawoua∗

Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon

(Received 15 November 2012; final version received 11 February 2013)

We present the compression of Airy pulses in silicon-on-insulator (SOI) waveguides under the fourth-order dispersion
(FOD) using the variational approach that involves Rayleigh’s dissipation function (RDF). All the pulse characteristics
are under the influence of the two-photon and the frequency-carrier absorptions. In a quasi-linear approximation, the
pulse compression conditions induced by the interaction of the group-velocity dispersion (GVD), the chirp and the FOD
are derived. In the nonlinear case, the self-phase modulation (SPM), the two-photon absorption (TPA) and the free-carrier
absorption (FCA) reduce the length of compression in a propagation regime of normal GVD, positive chirp and a negative
value of FOD. The TPA reduces the maximal power reached than the SPM while the FCA rather increases its value. These
results are confirmed in the general case where they all interact with the linear dispersion terms of the SOI waveguide.

Keywords: pulse compression; chirp; fourth-order dispersion; temporal Airy pulse; variational approach; Rayleigh
dissipation function

1. Introduction

The introduction in nonlinear optics of a new family of
input optical profile, namely the Airy pulses, has recently
attracted more attention [1–8]. Some phenomena around
this profile have been investigated such as supercontinuum
generation (SCG) which has revealed some interesting fea-
tures confirming the particular place that the Airy pulses are
taking in the pulse shaping approach [9]. The interest inAiry
pulses stems from their special properties of self-healing,
dispersion resistance and acceleration on propagation of
their dominant intensity peaks [1–9].

Pulse compression is a famous method to obtain short
pulses on scales that are more and more reduced with a very
large spectral bandwidth (useful in data transmission and
others applications) [10,11]. It consists of obtaining, from
the propagation of a wider input pump, a smaller one after
its propagation within the waveguide over a distance called
the length of compression. Nowadays, this mechanism is
classified as two types: linear and nonlinear compression.
In the linear case, the source chirp must be opposite to
the GVD: β2C < 0 [11,12]. Furthermore, with an anal-
ysis based on the Marcuse formalism Fourier transform
method [13] and the Gaussian profile, Capmany et al. [14]
showed that the linear compression could be obtained with
the interaction of dispersion terms having the same parity
as: βkβk+2 < 0, k ≥ 2, k being an integer. For example,
the GVD having an opposite sign with the FOD may lead
to the compression of the pump. In the nonlinear case, the

*Corresponding author. Email: ctchawa@yahoo.fr

compression is obtained with the famous solitonic proper-
ties through the balance between the positive SPM and the
anomalous dispersive regime [11,12,15–17]. The higher-
order soliton (HOS) splitting yields to the periodic com-
pression with the well-known soliton period (π/2)LGVD,
where the parameter LGVD is the GVD length [12].

Beyond the Marcuse formalism/Fourier transform used
in the linear approximation on a temporal input profile, there
are also the semi-analytical methods, such as the
moment method [12], the classical variational approach
[18–28], the collective variables approach [29–32], the
self-similar analysis [33–35] (on self-similar solitons, the
so-called similaritons), etc. More recently, Roy and Bhadra
[36] showed a modified variational approach (MVA) which
involves the RDF to model an optical waveguide under non-
linear absorption effects such as TPA and FCA. The RDF is
incorporated in order to take account of the dissipative part,
with an analogy to the non-conservative frictional problem
in classical mechanics [36]. The analysis based on this MVA
has been found to describe successfully the propagation of
ultrashort optical pulses within SOI waveguides [37].

On the other hand, the interest aroused by the SOI
waveguides is due to their advantageous properties in the
mid-infrared spectral region, useful for current photonics
devices applications [37–40], even in the SCG process
[41,42].

A review of the literature shows that only the common
symmetric and compact profiles, such as the sech-type pulse,

© 2013 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

L
uc

ie
n 

M
an

de
ng

 M
an

de
ng

] 
at

 1
1:

23
 0

3 
A

pr
il 

20
13

 



2 L.M. Mandeng and C. Tchawoua

Gaussian pulse (or super-Gaussian pulse) or raised-cosine
ansätze pulse, are used in general for the compression mech-
anism analysis in optical waveguides [11–14]. Recently in a
SOI waveguide, the sech-type profile has been studied [37].
The effect of TPA has been investigated on these symmetric
profiles [36,37,43].

However, the problem of compression of Airy pulses in
the SOI waveguide, still being opened to the best of our
knowledge, is therefore investigated in this paper. Further-
more, using the MVA analysis of chirped femtosecond Airy
pulses in SOI waveguides, we investigate the compression
mechanism both in the linear and the nonlinear cases. The
effects of the FOD and the nonlinear parameters are high-
lighted. The paper is designed as follows: Section 2 presents
the theoretical analysis while in Section 3, we show the
linear compression induced by the FOD. Section 4 presents
the influence of the nonlinear parameters on the compres-
sion mechanism induced by the FOD and a conclusion is
presented in the last section.

2. The model and the growth equations

The propagation of an optical signal inside a SOI waveguide
under the FOD effect can be modeled by the lossy nonlinear
Schrödinger equation (NLS) including the TPAand the FCA
effects as:

i
∂u

∂z
− β2

2

∂2u

∂t2
+ β4

24

∂4u

∂t4
+ γ |u|2u

= −iαu − iΓ |u|2u − iσ Nc(t)u, (1)

where u, β2, β4, γ , α, Γ , σ and Nc(t) represent the slowly
varying amplitude of the electrical field, the GVD
coefficient, the FOD parameter, the cubic Kerr nonlinearity
coefficient, the linear losses, the TPA coefficient, the FCA
coefficient and the free-carrier density (FCD), respectively
[37]. We have neglected the effect of the third-order disper-
sion (TOD) β3 because it is well-known today that it intro-
duces a relatively small temporal shift of the pulse center
which is ignored here [12]. For instance, in classical non-
linear silica glass fibers, near the zero-dispersion point, one
should include the effect of the TOD [12,17]. One should
also note that some fibers, so-called dispersion-flattened
fibers, admit rather a zero-dispersion point for the TOD, so
that the whole dispersion is defined only by the GVD and
the FOD which is added for ultra-short pulses [12,17]. More
generally, it has been shown by Capmany et al. with the
Gaussian pulse [14] that the odd order dispersion terms (β3,
β5,β7, etc.) introduce some oscillating tails in one side of the
central part of the pulse temporal profile, in addition to the
asymmetric displacement of the pulse center. Furthermore,
Capmany et al. showed that the source chirp of the pulse
interacts only with the even dispersion terms. This inter-
esting feature was highlighted on the pulse compression
conditions mentioned earlier in the introduction.All of these
physical assumptions, lead to assume for the compression

mechanism analysis, that the interaction between the GVD,
the FOD and the chirp are only as described by Equation (1).
The FCD is given by the following equation [37,44]:

Nc(z, t) = Γ

2hν0 Aeff

∫ t

−∞
(|u(z, t ′)|4) dt ′. (2)

The relation of Equation (2) above is approximated from
the one given in [37] for the short optical pulses, because
we have neglected the parameter τC (the carrier lifetime).
It is assumed that h, ν0 and Aeff are the Planck constant,
the pump frequency and the SOI waveguide effective core
section size. The parameter tp represents the pulse width.
The Lagrangian density and the RDF of the MVAare defined
as [36,37]:

Ld = i

2

(
u∗ ∂u

∂z
− u

∂u∗

∂z

)

−
2∑

k=1

(−1)kβ2k

(2k)!
∂(2k−1)u

∂t (2k−1)

∂u∗

∂t
+ γ

2
|u|4, (3)

and

Rd = i

[
|u|2Γ + 1

2

(
α + σ Nc(z, t)

)](
u∗ ∂u

∂z
− u

∂u∗

∂z

)
.

(4)

One should note that the FCD intervenes within the RDF,
so it may be calculated using Equation (2) before its intro-
duction into Equation (4). The chirped input Airy profile
can be taken as [8]:

u = up Ai

(
t

tp

)
exp

(
a

t

tp

)
exp

(
−i

Cp

2

(
t

tp

)2

+ iφp

)
,

(5)

with up, Cp and φp being the Airy pulse characteristics
namely the amplitude, the chirp and the phase, respectively.
The parameter a is the truncation coefficient equal to 0.05
in this work. Its presence allows one to ensure that for a
positive quadratic dispersion coefficient, one will obtain a
positive dispersion [8]. One should note that the Airy pulses
are not known to be a solution of the propagation equation
within the SOI waveguides. In a classical nonlinear silica
optical fiber at the zero-dispersion point, a chirped Gaus-
sian pulse transforms to an Airy pulse which propagates
normally into this form inside the considered media [12,45].

The MVA defines the Lagrangian and the RDF func-
tions from their densities described in Equations (3) and (4)
respectively by the following relations [12,17,36,37]:

L =
∫ +∞

−∞
Ld(t ′) dt ′,

R =
∫ +∞

−∞
Rd(t ′) dt ′.

(6)
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The determination of the Lagrangian function leads to:

L = −u2
ptp

[
55.4573

(
Cp

tp

∂tp
∂z

− 0.5
∂Cp

∂z

)
+ 9

11

∂φp

∂z

]

+u2
pβ2

2tp

(
52π

31
+ 55.4573C2

p

)

+u2
pβ4

24t3
p

(
78.1397 + 10034C2

p + 51918C4
p

)
+ 3

28
γ u4

ptp. (7)

The reduced form of the RDF function is obtained with an
appropriate approximation of the FCD (see Equation (2))
which is evaluated numerically for the apodized (truncated)
Airy pulse and inserted in the following relation:

R = u2
ptp

[(
Cp

tp

∂tp
∂z

− 0.5
∂Cp

∂z

)

×
[

u2
p

(
12

35
Γ − 3u2

ptp

236
κ

)
− 55.4573α

]

− ∂φp

∂z

[
u2

p

(
3

14
Γ + πu2

ptp

122
κ

)
+ 9

11
α

]]
, (8)

where κ = σβTPA/hν0 A2
eff is a constant related to the

FCD and the FCA. The parameter βTPA = 2Γ Aeff is the
usual TPA parameter [37]. The determination of the growth
equations in the MVA may be done by setting:

∂

∂t

(
∂L

∂qz

)
− ∂L

∂q
+ ∂L

∂qz
= 0, (9)

where the parameter q is a characteristic of the pulse and
qz its derivative following the parameter of propagation
z [12,18–21,36,37]. Therefore, we determine the growth
equations as follows:

∂up

∂z
= −up

2

{
Cp

t2
p

[
β2 + (45.233 + 468.1C2

p)

3t2
p

β4

]

+ 2u2
p

(
1

5
Γ + 2u2

ptp

85
κ

)
+ α

}
,

∂tp
∂z

= Cp

tp

[
β2 + (45.233 + 468.1C2

p)

3t2
p

β4

]

+u2
ptp

(
ln

(
8

7

)
Γ + u2

ptp

64
κ

)
,

∂Cp

∂z
= 1

t2
p

[
β2

(
π

exp( 7
2 )

+ C2
p

)

+
(

31

22
+ 180.932C2

p + 936.2C4
p

)
β4

6t2
p

]

+u2
p

(
1

500
γ + Cp

(
3

11
Γ + u2

ptp

32
κ

))
, (10)

∂φp

∂z
= 1

t2
p

[
572π

279
β2

−
(

1010.04 + 9043.14C2
p − 95183

12
C4

p

)
β4

t2
p

]

+u2
p

(
55

168
γ + Cp

(
22

105
Γ − 11u2

ptp

1416
κ

))
.

As can be seen in Equation (10) beyond the dispersive
effects, all the characteristics of the Airy pulse are affected
by both the TPAand the FCA. The specificity is related to the
losses and the SPM. However, the FOD impact appearing
in all growth equations above suggests a non-negligible
role in the linear compression induced by chirp which is
investigated in the next section.

3. Linear temporal compression induced by FOD

In this section all the nonlinear effects parameters are taken
equal to zero: γ = 0, Γ = 0, σ = 0 and κ = 0. For
this specific case, we assume that the terms (45.233 +
468.1C2

p)/3t2
p , π exp(−7/2) + C2

p and (31/22) +
180.932C2

p +936.2C4
p are constant and equal to their initial

values, so that we get a linearly varying chirp for the pulse.
This hypothesis is set similarly to the constant spectral
width of the Gaussian profile as done in [12]. The analytical
approximated relation of the pulse compression factor is
given by:

FC =
[

1 + 2

1

t2
p (0)

(
Cp(0) + 
0

2
z
)
z

]1/2

, (11)

where FC = tp(z)/tp(0). We define the parameters 
0 and

1, respectively, as follows:


0 = s2(π exp(−7/2) + C2
p(0))

LGVD

+ s4
( 31

22 + 180.932C2
p(0) + 936.2C4

p(0)
)

6LFOD
,


1 = t2
p (0)

[
s2

LGVD
+ (45.233 + 468.1C2

p(0))s4

3LFOD

]
,

(12)

where s2 and s4 are the signs of the GVD and the FOD,
respectively. The length parameter associated with the FOD
is defined as LFOD = t4

0 /|β4| while the GVD length is
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4 L.M. Mandeng and C. Tchawoua

Figure 1. (a) Solid line for the analytical result of the width and dashed line for the numerical result versus z. (b) Contour plot of the
Airy pulse propagation for the analytical result and (c) contour plot of the Airy pulse propagation for the numerical result. The peak power
P0 = 4.76 W, β2 = 0.56 ps2 m−1, C0 = 0.8, α = 5.06 m−1, β4 = −1.2843 × 10−5 ps4 m−1 and SOI waveguide length L = 0.04 m.
(The color version of this figure is included in the online version of the journal.)

commonly equal to t2
0 /|β2|. It comes about that, the linear

compression conditions are obtained easily by setting the
compression factor inferior to 1. This implies that (note that
whatever the conditions z > 0, LGVD > 0 and LFOD > 0):

− 0.5 <

[
s2

LGVD
+ (45.233 + 468.1C2

p(0))s4

3LFOD

]

×
(

Cp(0) + 
0

2
z

)
z < 0. (13)

So, for the compression of the self-healing Airy pulse
(SHAP) to occur inside the medium under the conditions
specified earlier, one must have:

s2

LGVD
+ (45.233 + 468.1C2

p(0))s4

3LFOD
< 0

and

(
Cp(0) + 
0

2
z

)
z > 0,

s2

LGVD
+ (45.233 + 468.1C2

p(0))s4

3LFOD
> 0

and

(
Cp(0) + 
0

2
z

)
z < 0. (14)

The resulting conditions are defined as:

C0 > 0, β2, β4 < 0,

LFOD < V1LGVD, Clim < C0 β2 > 0, β4 < 0,

LFOD < V2LGVD, 0<C0 <Clim β2 >0, β4 <0,

LFOD > V2LGVD, Clim < C0 β2 < 0, β4 > 0,

LFOD > V1LGVD, 0 < C0 < Clim β2 < 0, β4 > 0,

(15)

where

V1 = 45.233 + 468.1C2
0

3
,

V2 =
31
22 + 180.932C2

0 + 936.2C4
0

6(π exp(−7
2 ) + C2

0)
,

Clim = 2.084606293. (16)

We obtain the conditions of Equation (15) and the defi-
nitions of Equation (16) by making some basic discussions
about the signs s2 and s4. The parameters C0 ≡ Cp(0) and
t0 ≡ tp(0) are the initial values of the chirp and the width,
respectively.

The values of the parameters used in numerical simu-
lations are defined as [37]: the waveguide length L = 4–
5 cm, the linear losses α = 5.06 m−1, the initial peak power
P0 = 4.76 W, the TPA coefficient Γ = 6.5 W−1 m−1, the
GVD β2 = 0.56 ps2 m−1, the FOD β4 = −1.2843 ×
10−4 ps4 m−1, the FCD-FCA associated coefficient κ =
5 W−4 ps−1 m−1, the initial chirp C0 = 0.8, the SPM co-
efficient γ = 47 W−1 m−1, the pulse width t0 = 50 fs and
the wavelength λ0 = 1550 nm, respectively.

We represent in Figure 1 the pulse compression under
the third condition of Equation (15). The FOD parameter
is obtained by setting LFOD = 0.96b, where b = V2LGVD.
This may be obtained from a realistic value of the FOD
β4 and for the numerical simulations, we show how the
obtained compression conditions work. It is convenient to
choose an approximate realistic value of the FOD which
verifies the third compression condition of Equation (15)
for example. We have chosen to draw the analytical result
(see the solid line in Figure 1(a) and (b)) with the numerical
result obtained with a fourth-order Runge–Kutta integration
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Journal of Modern Optics 5

Figure 2. (a) Plot of the normalized width (solid line) and the normalized amplitude (dashed line) versus z. (b) Contour plot of the Airy
pulse propagation. The peak power P0 = 4.76 W, β2 = 0.56 ps2 m−1, C0 = 0.8, α = 5.06 m−1, β4 = −1.2843 × 10−5 ps4 m−1, γ = 0,
Γ = 0 and κ = 0, SOI waveguide length L = 0.05 m. (The color version of this figure is included in the online version of the journal.)

scheme (see the dashed line in Figure 1(a) and (c)). The
analytical result here is based on Equation (11) and the
numerical result comes from the direct integration of the
growth equation of the width in Equation (10). Consider-
ing the obtained pictures, it happens that the quasi-spectral
assumption that governs the analytical result can approxi-
mately satisfy the pulse compression in the linear case be-
cause the difference between the two results is not important
enough for the small distances of propagation. As stated at
the beginning of the section, the assumption of a spectral
bandwidth approximately constant during the propagation
inside the linear medium leads to admit the compression
factor given in Equation (11) only for a short distance. It is
certain that Equations (10) and (11) will diverge for propa-
gation distances. As shown in Figure 1, the critical distance
of agreement that emerges from the simulations performed,
is about 3 cm. The MVA being validated to be a good mean
to study short pulse propagation within SOI waveguides
[37], translates in Figure 1 the linear approximation of the
waveguide dynamics.

Beyond this, notice that the main feature observed here
is the compression which is obtained with β2C0 > 0 and
β2β4 < 0. With the other conditions defined in Equa-
tion (15), these results are entirely in agreement with those
previously discussed in [14], while the fact that the chirp
is similarly signed to the GVD, contrasts with the basic
admitted theory of linear compression induced by chirp
with grating pairs [11]. Figure 1(b) is the contour plot of
the Airy pulse for the analytical result of Equation (11)
and Figure 1(c) is the contour plot of the Airy pulse for
the numerical simulation of Equation (10). These figures
correspond to the pulse propagation within the SOI un-
der the conditions defined in the linear approximation and
respecting the third compression condition of Equation (15).

For this figure and for the following, the scale bar is in the
unit of power (W) and indicates the power reached in the
compression process following the distance of propagation.

Now it is convenient to analyze what happens when the
nonlinear effects are considered.

4. Nonlinear compression of SHAP in SOI waveguide
under FOD

Let us start first with the linear model that we integrate
over a SOI waveguide length of about 5 cm, thus we obtain
Figure 2. In Figure 2, the parameters γ , Γ and κ (σ ) are still
zero. It is observed that the pulse compression really extends
to a distance of propagation of about 0.0409 m, after which
comes the pulse broadening. At this distance, obviously one
obtains the maximal pulse power and compression before
the broadening.

The process of the temporal compression has a particu-
larity in the sense that it is accompanied by an amplification
of the pulse [11,12,43]. The power/amplitude of the pulse
amplifies during the compression process. The maximal
power reached (MPR) in the compression process occurs
at a distance as seen in Figure 2 and it can be referenced in
the scale bar to see the corresponding value. The broaden-
ing of the Airy pulse occurs just beyond this point and is
dramatically extreme as seen on the figure.

When the cubic Kerr nonlinear effect is taken into ac-
count, Figure 3 is obtained. We can see in this picture a
similar behavior as in Figure 2, it means a pulse compres-
sion over a distance of propagation followed by the pulse
broadening. However, the change brought by the cubic
Kerr nonlinearity indicates a clean reduction of the length
of compression before the broadening. Indeed the pulse
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6 L.M. Mandeng and C. Tchawoua

Figure 3. (a) Plot of the normalized width (solid line) and the normalized amplitude (dashed line) versus z. (b) Contour plot of the Airy
pulse propagation. The peak power P0 = 4.76 W, β2 = 0.56 ps2 m−1, C0 = 0.8, α = 5.06 m−1, β4 = −1.2843 × 10−5 ps4 m−1,
γ = 47 W−1 m−1, Γ = 0 and κ = 0, SOI waveguide length L = 0.05 m. (The color version of this figure is included in the online version
of the journal.)

Figure 4. (a) Plot of the normalized width (solid line) and the normalized amplitude (dashed line) versus z. (b) Contour plot of the Airy
pulse propagation. The peak power P0 = 4.76 W, β2 = 0.56 ps2 m−1, C0 = 0.8, α = 5.06 m−1, β4 = −1.2843 × 10−5 ps4 m−1, γ = 0,
Γ = 6.5 W−1 m−1 and κ = 0, SOI waveguide length L = 0.05 m. (The color version of this figure is included in the online version of
the journal.)

compression extends in this case only over 0.0340 m.
Another point that must be raised, is the maximal pulse
power reached (in the compression mechanism) which is
also reduced due to the effect of γ in combination with
the negative value of the FOD. Contrarily to the previ-
ous case depicted in Figure 2 (Pmax ≈ 90 W), the max-
imal pulse power Pmax reached here is slightly beyond
25 W only.

The TPA has been extensively studied by others [10,36–
41,43,44]. It was first reported experimentally by Kaiser
and Garrett [46]. The multiphoton absorption phenomenon
can lead to laser damage of optical materials and be used to
write permanent refractive index structures into the interior
of optical materials [10]. Therefore, the multiphoton absorp-
tion is well known to be a nonlinear loss phenomenon that
can reduce the efficiency of nonlinear optical devices such
as optical switches. Its consideration, inside the dynamics

studied in this section as the single nonlinear process, pro-
duces an important reduction of the length of compression
comparatively to the cases above. This length is now about
0.0263 m with our data as seen in Figure 4. Even the MPR
is reduced by about 16 W.

The FCA effect on the pulse compression mechanism
of femtosecond Airy pulses in SOI waveguide presented
in Figure 5 is also described as a reduction of the length
of compression by about 0.0383 m. However, the contrast
with all the previous reductions observed with the cubic
Kerr nonlinearity and the TPA, concerns the maximal pulse
power which is rather increased comparatively to the one
of Figure 2 which is about 100 W. Another point to be
noticed is the amplitude depression which is similar to the
one of Figure 2. It seems likely the FCA does not affect
this depression contrarily to the TPA and the cubic Kerr
nonlinearity.
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Figure 5. (a) Plot of the normalized width (solid line) and the normalized amplitude (dashed line) versus z. (b) Contour plot of the Airy
pulse propagation. The peak power P0 = 4.76 W, β2 = 0.56 ps2 m−1, C0 = 0.8, α = 5.06 m−1, β4 = −1.2843 × 10−5 ps4 m−1, γ = 0,
Γ = 0 and κ = 5 W−4(ps m)−1, SOI waveguide length L = 0.05 m. (The color version of this figure is included in the online version of
the journal.)

One should notice that physically there is a dependency
of free carriers to the TPA such that normally the FCA
might not be investigated without the TPA according to the
relation of βTPA given in Section 2. However, we stand on an
approximated case where Γ � σ Nc(z, t) such that we
neglect the TPA behind the FCA-FCD. Even from a pure
mathematical view, the purpose is to analyze the impact
of the FCA on the chirped apodized SHAP in the SOI
waveguide. This approach has the merit of underlining the
contribution of each nonlinear parameter in the whole be-
haviour of the pulse when they are all considered. The same
approach is performed for intensity dependent nonlinear pa-
rameters in [12] such as the SPM, the self-steepening and the
intra-Raman scattering for classical silica glass fibers. In-
deed, the study of the impact of each nonlinear
parameter is conducted separately to the others according
to the purpose defined at the beginning.

Considering the combination of all these nonlinear
processes namely the cubic Kerr nonlinearity, the TPA and
the FCA to the linear parameters namely the normal GVD,
the losses, the negative FOD and the positive initial chirp,
we obtain for the SHAPs the figure depicted in Figure 6.
All these results are obtained with the interaction of the
negative value of the FOD, the normal GVD and positive
initial chirp under the limit value defined in Equation (16).

The length of compression reached is about 0.0241 m,
slightly more smaller than that of Figure 4 for the single
TPA effect. It seems like all the nonlinear processes
cooperate to reduce the length of compression due to the
combination of the negative FOD, the normal GVD and the
positive chirp.Even the reduction of the MPR is observed

but less dramatic than that of Figure 4.
According to the impact of each nonlinear parameter as

presented in Figures 3–5, we suggest that they normally
conduct to this length of compression reduction, but the
stressing is imposed by the TPAeffect because it is the single
parameter which reduces more the length of compression.
If we consider the effect of the cubic Kerr nonlinearity
and the TPA on the MPR in the compression mechanism
studied, we should normally obtain a reduction greater than
that of Figure 4 16 W, however the result of about 18 W
indicates that the buffering is made by the FCA because,
as seen in Figure 5, the effect of the FCA on the MPR of
the SHAP allows an increase of its value comparatively
to the linear case. So, while the TPA and the cubic Kerr
nonlinearity tends to decrease this value, the FCAinfluences
this variation in the opposite direction.

The decoupling of the effects related to γ , Γ and σ , to
a first approximation, gives meaningfully a sense to the
analysis. Since, in the realistic SOI waveguide dynamics
which has its process of compression via SHAPs as drawn
on Figure 6, the contribution of each parameter is underlined
as additive effects that cooperate in the sense of SPM and
TPA, and that compete in the sense of FCA. Sure enough,
we notice that the TPA as a nonlinear loss rather acts on
the chirped apodized SHAP in the same sense as the SPM
surprisingly, while the FCA acts in the opposite sense. All
these influences combined give an intermediary picture
between those obtained with each parameter alone. Thus,
the FCA plays a buffer role on the dramatic effects of the
SPM and TPA induced SHAP pulse broadening in the
presence of the FOD.
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Figure 6. (a) Plot of the normalized width (solid line) and the normalized amplitude (dashed line) versus z. (b) Contour plot of the Airy
pulse propagation. The peak power P0 = 4.76 W, β2 = 0.56 ps2 m−1, C0 = 0.8, α = 5.06 m−1, β4 = −1.2843 × 10−5 ps4 m−1,
γ = 47 W−1 m−1, Γ = 6.5 W−1 m−1 and κ = 5 W−4(ps m)−1, SOI waveguide length L = 0.05 m. (The color version of this figure is
included in the online version of the journal.)

5. Conclusion

In summary, in this paper we have presented the compress-
ion mechanism analysis of femtosecond chirped self-healing
Airy pulses using the modified variational approach that in-
volves Rayleigh’s dissipation function in a SOI waveguide
under fourth-order dispersion. The derivation of the growth
equations shows that all the pulse characteristics are under
the influence of the TPA and the FCA contrarily to the sech-
type input profile analysis previously presented by Roy et
al. [37]. In a quasi-linear approximation of the medium,
the constant spectral width assumption leads to pulse com-
pression conditions induced by the interaction of the GVD,
the chirp and the FOD which are in good agreement with
previous results obtained by Capmany et al. for the Gaussian
input profile [14]. A comparison between the analytical
relation of the compression factor and the numerical result
shows good agreement for small distances of propagation.
In the nonlinear case, it has been found that the nonlinear
parameters, namely the cubic Kerr nonlinearity, the TPA
and the FCA, reduce the length of compression in a SOI
waveguide with normal GVD, positive chirp and a negative
value of FOD. However, this reduction is more pronounced
for the single TPA presence than for the one obtained with
the cubic Kerr nonlinearity only, while for the FCA, it is
smaller than the two first ones. We have also found that the
TPAreduces the maximal power reached in the compression
mechanism than the cubic Kerr nonlinearity, while for the
FCA it increases its value comparatively to the linear case.
Therefore, the FCA plays a buffer role on the dramatic ef-
fects of the SPM and TPA induced SHAP pulse broadening
in the presence of the FOD. The combination of all these
nonlinear parameters with the linear dispersion terms in a

realistic SOI waveguide, confirms these results which allow
one to characterize the specificity of the Airy input pulses
comparatively to the symmetric and compact commonly
used profiles.
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We report the modulational instability (MI) analysis in silicon-on-insulator waveguides under fourth-order
dispersion. The two-photon absorption (TPA) generates four symmetric optimum frequencies in the MI gain spec-
trum. The free-carrier absorption is found to enhance the value of the central MI gain. The chirp amplifies the
intensity of the main pulse train peaks, leading to input profile independence. It shifts the occurrence of these
peaks at short propagation distances. The absorption coefficients counteract the chirp, creating a pump depend-
ence, and the high values of TPA destroy drastically the spontaneous breakup mechanism, leading to pump
depletion. © 2013 Optical Society of America
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(190.4180) Multiphoton processes.
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1. INTRODUCTION
Modulational instability (MI) is a well-known process today
for obtaining pulse train generation (PTG). In nonlinear op-
tics, it refers to the modulation of the steady state as a result
of an interplay between the dispersive and the nonlinear ef-
fects. In other words, it is a destabilization mechanism for
plane waves. Since the earlier studies on MI [1–6], the inves-
tigation of the MI mechanism in various media and systems
has been reported and summarized in several papers and
books [7–45]. Generally at a relatively low power, it leads
to periodic PTG with a period of 2π∕Ωopt where Ωopt refers
to the optimum frequencies (OFs) of the MI process [32].
In a recent study, Tiofack et al. investigated the MI mechanism
in a complex generalized Ginzburg–Landau system showing
that the third-order dispersion (TOD) does not intervene in
the MI gain while the group-velocity dispersion (GVD) and
the fourth-order dispersion (FOD) play an important role in
this mechanism [38]. Furthermore, Dinda and Porsezian [39],
studied the impact of the FOD on the MI spectra in a cubic
nonlinear saturated media. Confirming the previous result of
the independence to the TOD, and underlining the role played
by the FOD parameter, they found that in saturated glass
fibers having a negative sign of the GVD and a positive sign
of the FOD, the two types of the MI mechanism are highly sen-
sitive to the FOD magnitude. One year later, investigating a
highly nonlinear system, Erkintalo et al. used the breather sol-
ution of Akhmediev and showed how a suitable low frequency
modulation on a continuous wave (CW) field induces higher-
order MI splitting with the pulse characteristics at different
phases of evolution related by a simple scaling relationship
[43]. Even the birefringent two-core fibers have been investi-
gated [13,24,42,44]. In the highly nonlinear media and in the

high peak powers cases, the MI mechanism generally extends
beyond the PTG process, leading to the supercontinuum gen-
eration (SCG) phenomenon [28,40,46–48].

On the other hand, the high cubic Kerr nonlinearity (CKN)
values of some devices, such as nonsilica fibers and silicon-
on-insulator (SOI) waveguides [49–54] could lead to interest-
ing spontaneous breakup of pulses. Indeed, in a recent work
done by Wen et al., the SCG process has been obtained in an
SOI waveguide following the solitonic fission mechanism [55].
They have demonstrated that good control of the initial pos-
itive chirp of pulses enhances the flatness of the SCG spectra
at the communication wavelength 1.5 μm. The recent attrac-
tion to the SOI waveguides is due to their wide applications,
such as the production of broadband amplifiers; tunable la-
sers; photonics devices in the mid-infrared region, namely
the optical switching devices [49,50]; optoelectronic integra-
tion to biosensing [51–54]; and broadband optical sources
through the nonlinear spectral broadening processes [55,56].
The particularity of SOI waveguides is the necessary inclusion
of the absorption coefficients, such as the two-photon absorp-
tion (TPA) and the free-carrier absorption (FCA) in the study.
They are known to have an important role in the analysis of
pulse propagation within the SOI waveguides.

The interest aroused by silicon-based (Si-based) optical de-
vices also crosses into nanophotonics technologies and these
achievements have opened up the possibility of signal per-
forming in the field of signal processing functionalities at chip
scale with relatively low optical power [56]. The Si-based com-
ponents, on other hand, offer the benefits of low cost and low
power consumption. Typically, a SOI waveguide differs from a
silica fiber in many aspects [57]: SOI waveguides are generally
smaller than silica fibers (they rarely exceed 5 cm in
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practice) and silicon is very nonlinear with respect to the CKN
(about 200 times more than the silica). SOI waveguides have
the property of confining light within an area so small that
it highly enhances the nonlinear effects. In addition, the
SOI waveguides, because of the crystalline nature of silicon,
have some nonlinear effects, such as the stimulated-Raman-
scattering, which depends strongly on the waveguide geom-
etry and mode polarization. The structures of SOI waveguides
commonly used in practice are channel waveguides, rib wave-
guides, photonic-crystal waveguides, and slot waveguides,
whose the pictures can be found in [58].

However, among all the studies of the MI process in non-
linear optics, the question of MI analysis in highly dispersive
SOI waveguides has not yet been investigated, to the best of
our knowledge. Furthermore, the impact of the input profile,
chirp, and absorption coefficients has not yet been conducted
in this kind of waveguide. It is, therefore, the focus of this pa-
per. The study is conducted using different input profiles as
the Gaussian, the sech-type and the RC Ansätze pulses. The
impact of the pulse shape is, therefore, highlighted, even those
of the chirp and the absorption coefficients. The paper is de-
signed as follows: the next section presents the model equa-
tion while in the Section 3, we do the linear MI analysis of a cw
propagating within the studied waveguide. Then, we present
in Section 4 the MI pulse splitting in the sense of the MI-PTG
process for each input profile and the last section concludes
the paper.

2. THE MODEL EQUATION
The propagation of the optical pulses through an SOI wave-
guide under the FOD effect is governed by the extended non-
linear Schrödinger equation, including the effect of the TPA
and the FCA as [50,54,56]

i
∂U
∂z

�
X4
k�2

�i�kβk
�k�!

∂kU
∂tk

� γjUj2U � −i
α

2
U − iΓjUj2U − i

σ

2
NCU;

(1)

where U , βk, γ, α, Γ, σ, and NC represent the slowly varying
amplitude of the electrical field, the �k�th order term of
dispersion, the nonlinear Kerr coefficient, the linear loss co-
efficient, the TPA coefficient, the FCA coefficient, and the
free-carrier density (FCD), respectively. To obtain the FCD,
we may use the following relation [49,50,54,56]:

Nc�z; t� � Γ
2hν0Aeff

Z
t

−∞
jU�z; t0�j4dt0; (2)

where we have neglected the term relative to the carrier life
time τC because we are dealing with the ultrashort pulses
(femtosecond domain) [50]. It is, therefore, an approximated
relation of equation 2 given in [56]. Our analysis is based on
the Gaussian, sech-type and RC Ansätze trial functions,
respectively defined as follows [32,59,60]:
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�
2

�ϕ

i
; (5)

where U0 is the amplitude of the pulse linked with the peak
input power P0 as U0 �

������
P0

p
. The parameters C, t0, and ϕ are

the chirp, the width, and the phase, respectively. The FCD of
the Gaussian and the RC pulses are given, respectively, as

NcG �
���
π

2
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U4

0βTPA
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��
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2
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; (6)

and
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(7)

where βTPA is the usual TPA parameter [50,56] and erf the er-
ror function [61]. The parameters h, ν0, and Aeff are the Planck
constant, the pump frequency, and the effective core area of
the SOI waveguide, respectively.

3. THE LINEAR MI ANALYSIS
The MI analysis of a cw is conducted in this section with the
physical quantities of the SOI waveguide defined by Roy et al.
[50]. We start with the steady-state solution of the cw [32]:

U � U0eiϕNL ; (8)

where ϕNL represents the nonlinear phase shift defined as
follows:

ϕNL �
�
�γ � iΓ�U2

0 �
i
2
�α� σNc�

�
z: (9)

We use a small perturbation of the steady-state solution by
stating

a�z; t� � u�z�ei�Kz−Ωt� � v�z�e−i�Kz−Ωt�; (10)

where K and Ω represent the wave number and the perturba-
tion frequency, respectively. The obtained MI matrix is given
as follows:

M�K� �
"
D1�Ω� − K � γ1U2

0 �Λ γ1U2
0

γ1U2
0 D2�Ω� � K � γ1U2

0 �Λ

#
;

(11)

where
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D1�Ω� �
X4
k�2

Ωkβk
k!

;

D2�Ω� �
X4
k�2

�−Ω�kβk
k!

;

γ1 � γ � iΓ;

Λ � i
�α� σNc�

2
: (12)

The wave number leads to

K � 1
2

n
Dodd � ��Deven � 2�Λ� 2γ1U2

0���Deven � 2Λ��1∕2
o
;

(13)

with Deven � D1 � D2 and Dodd � D1 − D2. The MI gain is well
known to be defined as

G�Ω� � 2jIm�K�j

≡

1
2



Imf��Deven � 2�Λ� 2γ1U2
0���Deven � 2Λ��1∕2g



: (14)

Since γ1 and Λ are complexes, it is convenient to set that

G�Ω� � 2


Im� �����������

A�Ω�
p �

; (15)

where

A�Ω� � x�Ω� � iy�Ω� � r�Ω�eiθ�Ω�;
x�Ω� � Deven�Deven � 4U2

0γ� − 4jΛj�2U2
0Γ� jΛj�;

y�Ω� � 4Deven�U2
0Γ� jΛj� � 8U2

0γjΛj: (16)

One obtains the MI gain as follows:

G�Ω� � �2�r�Ω� − x�Ω���1∕2: (17)

The relation in Eq. (17) confirms that the TOD does not
intervene in the MI gain as previously discussed in the intro-
duction section. The OFs are given for dG�Ω�∕dΩ � 0 as a

phase-matching condition of the four-wave mixing related
with the MI mechanism. It is described by two pump photons
at the frequency ω0, one Stokes photon at ω0 −Ω, and one
anti-Stokes photon at ω0 � Ω [32,39]. The following relations
define the obtained OFs:

Ω0 � 0;

Ω1;� ��
���������������
−6β4β2

p

β4
;

Ω2;� ��

���������������������������������������������������������������
−6Γβ2�2

��������������������������������������
9Γ2β22�6Γβ4γjΛj

q
Γβ4

vuut
;

Ω3;� ��

������������������������������������������������������������������������������������������������������������
−

6γβ2�2
����������������������������������������������������������������������������������
9γ2β22 −6γβ4U

2
0Γ2

−6Γβ4γjΛj−6γ3β4U2
0

q
γβ4

vuut
:

(18)

When the TPA and the FCA vanish, the OFs in Eq. (18) are
similar to those obtained in [39] for glass fibers where γ
was linked with the saturable nonlinearity. So, we do not fo-
cus on the role played by the FOD since it has been exten-
sively discussed in this reference. Our main purpose in this
section consists to study the effect of the absorption coeffi-
cients on the MI gain spectrum.

For the numerical simulations, we have set the parameter
K � σNc as the FCA parameter. Therefore, we choose to
study separately the effects of TPA and FCA on the MI gain
spectrum by controlling the value of K . For instance, in the
case where we have Γ ≠ 0, we consider that K ∼ 0, which al-
lows us to analyze only the single effect of TPA. On the other
hand, when rather we have K ≠ 0, we consider that Γ ∼ 0,
which allows us to analyze only the FCA effect.

Then, we plot in Fig. 1 the MI gain for different cases high-
lighting the effect of the absorption coefficients. For the case
where we neglect the TPA and the FCA effects [see Fig. 1(a)],
we have two bands of the MI gain at two OFs locations:
−78.3443 and 78.3443 Thz. These sidelobes are due to the
FOD effect interacting with the GVD as discussed in [38,39]
and defined by the second relation of Eq. (18). However,
in the presence of the TPA [see Fig. 1(b)], we have seven

Fig. 1. Plot of the MI gain spectrum versus Ω. (a) Blue curve for TPA � 0 and FCA � 0, (b) green curve for TPA ≠ 0 (Γ � 6.5 W−1 m−1) and
FCA ∼ 0, (c) red curve for TPA ∼ 0 and FCA ≠ 0 (K � 1 m−1), and (d) violet curve for TPA ≠ 0 and FCA ≠ 0. Other parameters:
β2 � 0.56 ps2∕m, β4 � −0.0014 ps4∕m, γ � 47 w−1 m−1, P0 � 3 W.
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remarkable values of the MI gain at seven OF locations:
−78.3443, −69.0857, −48.9898, 0, 48.9898, 69.0857, and
78.3443 Thz. Among these locations, three have a zero MI gain,
particularly those of �69.0857 Thz and 0 Thz. In the presence
of theFCA [seeFig. 1(c)],wehave threeOFsolutionswhere the
one in the central detuning frequency (Ω0 � 0) has an in-
creased MI gain. It means that the FCA enhances the value
of this central MI gain point. For the full realistic case where
both the TPA and the FCA effects are considered, we recover
the seven locations above of the MI gain maxima with the cor-
responding enhanced central peak. It is worthy to notice

that, these OF values could be directly obtained using the re-
lations of Eq. (18). Figure 2 shows the MI gain spectra for the
different cases discussed above in Fig. 1 versus the varying
peak power P0. The features noticed in Fig. 1 are directly ob-
served in the contour plots of Fig. 2. It is observed in Fig. 2(b)
the TPA effect on the MI gain, such as the creation of the four
OF symmetric locations given by the two last relations of
Eq. (18) in addition to the OFs induced by FOD and GVD inter-
action [see Fig. 2(a)]. On the other hand, the FCA slightly in-
creases the value of the central MI gain [see Figs. 2(c)
and 2(d) comparatively to the cases of Figs. 2(a) and 2(b)].

Fig. 2. Plot of the MI gain spectrum versus P0 and Ω. (a) for TPA � 0 and FCA � 0, (b) TPA ≠ 0 (Γ � 6.5 W−1 m−1) and FCA ∼ 0, (c) for TPA ∼ 0
and FCA ≠ 0 (K � 1 m−1), and (d) for TPA ≠ 0 and FCA ≠ 0. Other parameters: β2 � 0.56 ps2∕m, β4 � −0.0014 ps4∕m, γ � 47 w−1 m−1.

Fig. 3. Contour plot of unchirped pulses propagation. (a) Gaussian profile, (b) sech-type profile, (c) RC profile. Parameters: β2 � 0.56 ps2∕m,
β4 � −0.0014 ps4∕m, γ � 47 w−1 m−1, L � 0.15 m, t0 � 50 fs, P0 � 3 W, Γ � 0.
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4. PTG IN SOI WAVEGUIDES: IMPACT OF
PULSE SHAPE, CHIRP, AND ABSORPTION
COEFFICIENTS
A. In the Absence of Chirp, TPA, and FCA
We generate a map of PTG as shown in Fig. 3 for each un-
chirped input pulse with the common split-Fourier algorithm
in the absence of the TPA (Γ � 0). For the sech-type and Gaus-
sian profiles, the trails of the MI-PTG are observed around
about 0.07 m while for the RC pulse, they are observed around
about 0.06 m. We also observe for all the profiles with the
numerical data used about 10 main peaks of the MI-PTG proc-
ess in Fig. 3. The maximum value of these mains peaks for the
sech-type pulse is obtained around about 0.12mof propagation
distance with approximately the value of 9.5 W [see the color-
bar in Fig. 3(b)]. Concerning the Gaussian profile, we reach

11 W toward 0.115 m. For the last profile (RC pulse), we ob-
serve rather a maximal value about 12.5 W toward 0.11 m.

Indeed, we notice that for the profiles that are close to the
fundamental soliton solution (consequently, more stable),
such as the sech-type pulse, the main peaks of the MI-PTG
trails occur at larger propagation distances than those less sta-
ble, such as the RC pulse. In addition, the maximum values of
these main peaks are smaller than those of the less stable in-
put profiles. The same idea can be raised for the Gaussian
pulse in comparison to the RC profile since the first form
is closer to the sech-type pulse than the latter.

More specifically, the RC pulse as a less stable input has
stronger main peaks of the MI-PTG trails at short propagation
distances [see Figs. 4(b) and 4(c)]. This profile is followed
by the Gaussian profile, which shows strong peaks at

Fig. 4. Temporal profiles of the unchirped pulses at different propagation distances: (a) input at z � 0, (b) z � 0.05 m, (c) z � 0.1 m,
(d) z � 0.115, (e) z � 0.121 m, and (f) z � L. The parameters are the same as in Fig. 3. Solid blue curves for Gaussian profile, dashed green curves
for sech-type profile, and solid red curves for RC profiles.

Fig. 5. Contour plot of chirped pulses propagation. (a) Gaussian profile, (b) sech-type profile, (c) RC profile. Parameters: C � 10,
β2 � 0.56 ps2∕m, β4 � −0.0014 ps4∕m, γ � 47 w−1 m−1, L � 0.15 m, t0 � 50 fs, P0 � 3 W, Γ � 0.
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propagation distances larger than those of the previous profile
[see Fig. 4(d)], while the sech-type is the last, with strong
peaks of the MI-PTG process appearing later in the propaga-
tion [see Fig. 4(e)]. Beyond these regular main peaks for all
the profiles, the spontaneous breakup process continues,
leading to a chaotic picture for large propagation distances
[see Figs. 3 and 4(f)]. Another observation from Fig. 4 con-
cerns the orientation of the undulations for each pulse. In-
deed, in the absence of the source chirp, all the pulses
have the same orientation in the undulations.

B. Effect of Chirp in the Absence of TPA and FCA
Considering the initial chirping process of each pulse, we have
simulated the MI-PTG process in the absence of absorption

coefficients (see Fig. 5). As can be observed in this figure,
the initial chirp (C � 10) leads both the sech-type and the
Gaussian profiles to behave similarly in the development of
the MI-PTG process while the RC profile remains different.
Furthermore, the chirp does not change the number of the
main peaks for each profile. It shifts the occurrence of the
high values of the main peaks to short propagation distances
for all the input pulses (about 0.1 m). The maximum value
reached in the power is the same for both the Gaussian
and the sech-type pulse (about 14.8 W) while for the RC
profile, one finds rather about 12.8 W. So, the effect of chirp
is to enhance the intensity of the MI-PTG peaks and to shift the
occurrence of their maximum value to shorter propagation
distances than the unchirped case.

Fig. 6. Temporal profiles of the chirped pulses at different propagation distances: (a) input at z � 0, (b) z � 0.05 m, (c) z � 0.1 m, (d) z � 0.115,
(e) z � 0.121 m, and (f) z � L. The parameters are the same as in Fig. 4. Solid blue curves for Gaussian profile, dashed green curves for sech-type
profile, and solid red curves for RC profiles.

Fig. 7. Temporal profiles of the chirped pulses at different propagation distances with an chirp inversion for the RC profile: (a) input at z � 0,
(b) z � 0.05 m, (c) z � 0.1 m, (d) z � 0.115, (e) z � 0.121 m, and (f) z � L. The parameters are the same as in Fig. 3. Solid blue curves for Gaussian
profile, dashed green curves for sech-type profile, and solid red curves for RC profiles: for the RC profile C � −10 while for the others C � 10.
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On the other hand, when we consider the Fig. 6 with the
nonzero value of chirp, the pulses that are more stable (the
Gaussian and the sech-type pulses) are more amplified than
those which are less stable (the RC profile). Even the orien-
tation of the undulation changes since the RC profile under-
goes a chirp phase opposite to that of the others. Reversing
the initial chirp value of the RC pulse so that it is now chirped
with a negative value while the other profiles are always
chirped positively, we obtain a similar behavior for all the
pulses (see Fig. 7). In this case, the chirp creates an independ-
ence of the MI-PTG process to the input profile since it is
observed that all the pulses have the same picture because
of the nonzero chirp.

C. Effect of Absorption Coefficients on the MI-PTG in
the SOI Waveguides
The case treated in Fig. 8 concerns the chirped pulses under-
going the MI-PTG process in an SOI waveguide having a small
value of TPA about 0.1 W−1 m−1 with the FCA coefficient
about 1.45 × 10−21 m2 [56]. We observe the effect of these

small values of TPA and FCA on the MI-PTG picture drawn
as a slight reduction of the amplified intensity comparatively
to the previous cases. The chirp impact in Fig. 8 is in agree-
ment with the one mentioned previously in Figs. 5 and 6.
Increasing the value of the TPA parameter with a factor 5
(consequently, the FCA also increases), the absorption coef-
ficients influence significantly the MI-PTG process. In fact, in
Fig. 9 we observe the influence of TPA and FCA as a real
reduction of the amplified intensity of the MI-PTG peaks in
which the maximum value is reached at almost the output of
the considered SOI waveguide. On the other hand, the input
profiles do not interact similarly with the absorption coeffi-
cients. The RC profile is found to be more influenced by the
TPA and FCA than the others since its maximum value does
not exceed the initial peak value comparatively to the all pre-
vious cases. Concerning the sech-type and the Gaussian
pulses, an important reduction is observed but it exceeds
at least the double of the initial input peak power. However,
the combination of the value of 6.5 W−1 m−1 used previously
by Roy et al. [50] for the TPA effect and the FCA coefficient

Fig. 8. Plot of chirped pulses propagation. (a) Gaussian profile, (b) sech-type profile, (c) RC profile. Parameters: C � 10, β2 � 0.56 ps2∕m,
β4 � −0.0014 ps4∕m, γ � 47 w−1 m−1, L � 0.15 m, t0 � 50 fs, P0 � 3 W, Γ � 0.1 W−1 m−1, σ � 1.45 × 10−21 m2.

Fig. 9. Plot of chirped pulses propagation. (a) Gaussian profile, (b) sech-type profile, (c) RC profile. Parameters: C � 10, β2 � 0.56 ps2∕m,
β4 � −0.0014 ps4∕m, γ � 47 w−1 m−1, L � 0.15 m, t0 � 50 fs, P0 � 3 W, Γ � 0.5 W−1 m−1, σ � 1.45 × 10−21 m2.
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value of [56] leads to the complete destruction of the MI-PTG
process, creating, consequently, an independence to the input
profile (see Fig. 10). Indeed, as can be observed, all the pulses
behave similarly under these conditions. The MI-PTG is de-
stroyed in the sense that there are no peaks or any pulse split-
ting observed. The absorption coefficients act in this case,
normally, as nonlinear losses leading the a drastic pump
depletion following the propagation distance. The half of the
initial peak power is reached after a propagation of 0.04 m
only. Beyond this propagation distance, the pulses are almost
annihilated by the absorption coefficients whatever the value
of the chirp, which becomes a secondary parameter. Thus, the
absorption coefficients counteract the beneficial chirp effect
on the MI-PTG process.

5. CONCLUSION
In summary, we have shown in this paper the MI analysis lead-
ing to PTG in SOI waveguides under the FOD using different
chirped input femtosecond pulses. With the sech-type, the
Gaussian and the RC pulses, we have predicted through the
FCD, an almost similar behavior in the MI-PTG process be-
tween the two firsts profiles and a different one for the latter.
It means that, the Gaussian and the sech-type pulses under-
going the same propagation conditions inside the SOI wave-
guide, lead to the MI-PTG process in a slightly similar form. In
the linear analysis of the model under FOD, we have con-
firmed the independence of the MI gain to the TOD effect,
such as any odd order of dispersion. When both the TPA
and the FCA vanish, the obtained OFs encompass those of
previous studies done rather on glass fibers with saturable
nonlinearity. It has been shown in this work that, four sym-
metric OFs were created because of the TPA effect in addition
to those induced by the single interaction between the FOD
and the GVD. The FCA enhances the value of the central MI
gain point. Considering the MI-PTG process in the unchirped
case, we have demonstrated that the input pulse, which is less
stable, such as the RC pulse, has main peaks of the MI-PTG
trails more strong than the other input profiles at short propa-
gation distances. The chirp effect amplifies the intensity of the
main MI-PTG peaks for each profile, making the input pulses

behave similarly while it shifts the occurrence of these peaks
at shorter distances of propagation than the unchirped case.
We have finally shown that the absorption coefficients
counteract the beneficial impact of the chirp as nonlinear
losses by breaking the similarity (when small values of TPA
are considered), destroying drastically the MI-PTG process
and leading to pump depletion when great values of TPA
are reached.

For an efficient process of the MI-PTG in an SOI wave-
guides under the FOD, a good control of the values of absorp-
tion coefficients, dispersive effects, and source chirp of more
stable input profiles should be operated.
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We investigate numerically the supercontinuum generation (SCG) phenomenon, using femtosecond pulses in the
subnanoscale of energies through the generalized nonlinear Schrödinger equation that includes non-Kerr terms.
Our results with 50 fs pulses in the anomalous dispersion regime show that, in comparison to the single cubic Kerr
nonlinearity (CKN) case, the cooperative nonlinearities improve the spectral broadening, while the competing
ones compress the spectral SCG bandwidth. Surprisingly, with the reduction of the pulse width, the cooperative
nonlinearities induce a spectral compression while the competing ones keep the SCG bandwidth nearly constant
from the input to the output of the considered waveguide. The increase of both the energy and the nonlinearity
confirms this feature, showing that spectral compression is also obtained in the single CKN case, but less than in
the case of cooperative nonlinearities. © 2013 Optical Society of America

OCIS codes: (320.6629) Supercontinuum generation; (060.5530) Pulse propagation and temporal solitons.
http://dx.doi.org/10.1364/JOSAB.30.002555

1. INTRODUCTION
The dramatic and extreme pulse spectral broadening induced
in an optical waveguide by the combination of dispersive
effects and nonlinear effects, such as self-phase modulation,
cross-phase modulation, four-wave mixing, and stimulated
Raman scattering, so-called supercontinuum generation
(SCG), is well known today to be a very useful nonlinear
phenomenon [1–6]. Indeed, the SCG has been extensively
studied in different kinds of optical systems and has led to
such applications as multichannel telecommunication sources
(SCG-based wavelength-division multiplexing sources), non-
linear spectroscopy, optical coherence tomography, and
optical frequency metrology [4,5,7]. One should note that, to
achieve SCG, highly dispersive and nonlinear waveguides
are required; these allow the injected optical pulses to excite
these effects and therefore to undergo a large spectral broad-
ening. The latter is accompanied by a dramatic generation of
side components due to the transfer of energy from the central
part of the pulse spectrum to the pedestal part. SCG does not
necessarily need to use high power; even low energies could
be used with microstructured fibers, such as photonic crystals
fibers, tapered fibers, and other highly nonlinear fibers [3].
These optical waveguides in the SCG numerical analysis
are always modeled by the generalized nonlinear Schrödinger
equation (GNLSE) that links the cubic Kerr nonlinearity
(CKN) with self-steepening (SS) and delayed Raman response
(DRR) effects [2–6]. Considerable attention is being paid

theoretically and experimentally to analyzing the dynamics
of optical solitons in optical waveguides. The waveguides
used in the picosecond and femtosecond domains in common
nonlinear optical systems are usually of the Kerr-type, and
consequently the dynamics of light pulses are described by
the nonlinear Schrödinger (NLS) family of equations with
cubic nonlinear terms. In present day applications, as the
intensity of the incident light field becomes stronger, the
non-Kerr nonlinearity effect comes into play. Because of this
additional effect, the physical features and the stability of
the NLS soliton can change. The influence of the non-Kerr
nonlinearity on NLS soliton propagation is described by the
NLS family of equations with a higher degree of nonlinear
terms [8–10]. So, recently, both the solitonic features and the
modulational instability mechanism were investigated by
Choudhuri and Porsezian in [11], highlighting the effects of
the non-Kerr terms through the GNLSE. In fact, they showed
that the non-Kerr terms reduce the maximum value of the gain
and the bandwidth, thus playing a non-negligible role relative
to the CKN. The investigation of this model of the GNLSE
is interesting, since it is well known today that the nonlinearity
arising due to the fifth-order susceptibility χ5 can be obtained in
many optical materials, such as semiconductor-doped glasses,
polydiactylene toluene sulfonate, chalcogenide glasses, and
some transparent organic materials [8–11].

In the present work, we investigate the SCG phenomenon
through the GNLSE with non-Kerr terms, studying the effect

Mandeng et al. Vol. 30, No. 9 / September 2013 / J. Opt. Soc. Am. B 2555

0740-3224/13/092555-05$15.00/0 © 2013 Optical Society of America

http://dx.doi.org/10.1364/JOSAB.30.002555


of the cubic–quintic nonlinearity on the SCG spectral band-
width in the cooperative and the competing cases. Further-
more, we show that with the reduction of the pulse width,
the cooperative nonlinearities induce a spectral compression
of the SCG bandwidth, while the competing nonlinearities
keep the input bandwidth nearly constant during the pulse
propagation. A spectral compression is also obtained in the
single CKN case when both the energy and the nonlinearity
are increased. However, that happens with a magnitude that
is less important than that in the case of cooperative nonli-
nearities. The presentation of this work is designed as follows:
in the next section we derive the model equation through
which we numerically investigate the SCG phenomenon. In
Section 3, we present the results obtained, and a conclusion
is stated in the last section of the paper.

2. DERIVATION OF SUPERCONTINUUM
GENERATION MODEL EQUATION
The GNLSE for the SCG analysis in the single CKN case is
commonly written as

i
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�i�kβk
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� −i
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2
u; (1)

where u�z; T�, z, T , βk, γ, and ω0 are the slowly varying
amplitude of the optical field, the propagation distance, the
retarded frame of time, the dispersion coefficient of the kth
order, the CKN coefficient, and the pump frequency, respec-
tively. The parameter M represents the final order reached in
the chromatic dispersion profile of the system. The term 1∕ω0

is well known to refer to the SS effect, while the integral and
the function R�t� correspond to the DRR. The corresponding
form of Eq. (1), which is solved for the SCG by the numerical
code previously discussed by Travers in [6], is given by

∂ ~u0

∂z
� iγ̄1ωδ1 exp�−L̂�ω�z�F

�
u�z;T�

Z
∞
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R�T 0�ju�z;T −T 0�j2dT 0
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(2)

with ~u0 and L̂�ω� being the Fourier transform form of u�z; T�
and the linear operator, respectively. It is assumed that L̂�ω�
includes the linear losses and the Taylor series expansion of
the propagation constant [5]. The transformation F � � is the
Fourier transform of the block within the squared brackets.
L̂�ω� is defined as shown in [5]. It is assumed that the CKN
coefficient γ̄1 is nearly nondependent on the frequency, as

γ̄1 �
n2n0ω0

cneffAeff
; (3)

where n2, n0, neff , c, andAeff are the nonlinear index, the linear
refractive index used when determining n2, the effective index
of the guided mode, the light speed in vacuum, and the effec-
tive core area of the modeled waveguide, respectively.

Considering rather the GNLSE with non-Kerr terms, we
have [8–11]
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where γ1, γ2, α, δ1, δ2, δ3, and δ4 are the CKN coefficient, the
quintic nonlinearity coefficient, the parameter of linear losses,
the SS parameter linked to γ1, the DRR coefficient corre-
sponding to γ1, the SS parameter linked to γ2, and the DRR
coefficient corresponding to γ2, respectively. The parameters
δ3 and δ4 are the so-called non-Kerr terms because they stem
from the quintic nonlinearity. In this work, we assume the
quintic nonlinearity coefficient to be γ2 ≈�γ1∕P0, where P0

is the peak power of the pump. The sign of γ2 depends on
the case where the system has cooperative nonlinearities
(γ1γ2 > 0) or competing nonlinearities (γ1γ2 < 0) [12]. The
parameter δ1 is equal to −1∕ω0. In the empirical point-of-view
from which we try to construct a model equation that should
be solved in the SCG simulations, we assume that, similar to in
the single CKN case above, the full case given by Eq. (4) could
be written differently as follows:
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The form obtained for our simulations is given by
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where γ̄2 � �γ̄1∕P0. The effects of δ2 and δ4 are assumed to
be included within the corresponding block integrals in the
right-hand sides of Eqs. (5) and (6). The chromatic dispersion
profile being an important part in the SCG, we have chosen to
stop at M � 10 (assuming that the orders beyond ten have a
negligible influence on the results). We have also defined
the higher-order dispersion coefficients (k > 2) through the
approximated relation derived from the group-velocity
dispersion value at the pumping wavelength λ0:

βk�λ0� ≈ �−1�kβ2�λ0�tk−20 ; (7)

where k is an integer from 3 to 10, t0 is the pulse width, and
β2 is the group-velocity dispersion coefficient. We use a sech-
type input profile defined as
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u�z; T� �
������
P0

p
sech�T∕t0�: (8)

The general numerical data used are given as follows: the
waveguide length is L � 1 cm, the group-velocity dispersion is
β2 � −0.5 ps2 m−1 (defining an anomalous dispersion regime
of the modeled waveguide as taken in [11]), and the pumping
wavelength is λ0 � 1550 nm. The numerical results have been
obtained by using a modified version of the MATLAB numeri-
cal code provided in [13].

3. NUMERICAL RESULTS AND DISCUSSION
Figure 1 has been plotted with the specific parameters of
pulse width t0 � 50 fs, the CKN coefficient γ̄1 � 5 W−1 m−1,
and the incident pulse energy E0 � 0.1 nJ (subnanojoule
pulse). As is seen in this figure, the cooperative nonlinearities
[see the solid black curve in Fig. 1(a)] improve the spectral

broadening of the SCG spectrum (see the spectral intensity,
S.I) as expected. Indeed, these nonlinearities have the same
sign and therefore cooperate in order to increase the non-
linearity of the medium. Obviously, the opposite feature is
observed for the competing nonlinearities, where the quintic
nonlinearity with a negative sign counteracts the effect of
the cubic nonlinearity in the spectral broadening of the SCG.
As result of this competition, a spectral compression is ob-
tained [see the solid green curve in Fig. 1(a)] in comparison
to the CKN case [see the dashed blue curve in Fig. 1(a)].
Figures 1(b)–1(d) show the corresponding spectral power
propagation. The reduction of the pulse width in the femtosec-
ond domain by a factor of 5 is depicted in Fig. 2. The spectra
presented in this figure were obtained with the same data of
Fig. 1, except for the pulse width, which is now t0 � 10 fs.
Surprisingly, we notice that instead of enhancing the SCG
spectrum broadening (increasing the SCG bandwidth), the
cooperative nonlinearities slightly lead to a spectral

Fig. 1. (a) SCG output spectra. Contour plots of SCG pulse spectral propagation: (b) case of single CKN γ̄2 � 0, (c) case of cooperative
nonlinearities γ̄2 � 0.05 W−2 m−1, and (d) case of competing nonlinearities γ̄2 � −0.05 W−2 m−1.

Fig. 2. Row 2, contour plots of SCG pulse spectral propagation and Row 1, SCG input and output spectra: (a.1), (a.2) for the case of cooperative
nonlinearities; (b.1), (b.2) for the case of competing nonlinearities; (c.1), (c.2) for the case of single CKN.
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compression in the low wavelengths region [see Figs. 2(a.1)
and 2(a.2)] while the competing ones keep the SCG spectrum
nearly constant [see Figs. 2(b.1) and 2(b.2)]. This last feature
is also observed for the CKN case in Figs. 2(c.1) and 2(c.2).
Figure 3 shows the spectral compression profile of the SCG.
One sees that the cooperative nonlinearities induce the reduc-
tion of the pulse width. The three cases of Fig. 2 are presented
in Fig. 3(a). Both the increase of the energy on the subnano-
joule scale [as in Figs. 3(c) and 3(d)] and the nonlinearity
[as in Figs. 3(b)–3(d)] confirm the previous features of the
spectral compression obtained for the cooperative nonlinear-
ities. In these figures, the bandwidths remain nearly constant
from the input to the output of the considered waveguide
for the competing nonlinearities. Figure 4 depicts the SCG

bandwidths at −20 dB of the spectral intensity for the cases
shown in Fig. 3. Globally, as seen in this figure, the bandwidth
decreases when one moves from the competing nonlinearities
γ̄2 < 0 to the cooperative ones γ̄2 > 0. Figure 4(I) shows the
spectral compression obtained for the cooperative nonlinear-
ities. For case (a), one obtains 1084.33 nm when the input
bandwidth is 1144.57 nm. But for case (b), the compression
is observed with an output bandwidth 1011.90 nm for the
cooperative nonlinearities when the input bandwidth is
1130.95 nm. The same feature could be observed for case
(c) [see the red curve in Fig. 4(I)] with an input bandwidth
of 1144.57 nm. For case (b), the compression is observed
with an output bandwidth 1011.90 nm for the cooperative
nonlinearities when the input bandwidth is 1130.95 nm. The

Fig. 3. SCG spectra.

Fig. 4. SCG −20 dB bandwidths corresponding to the cases plotted in Fig. 3. (I) For input bandwidths of approximately, case (a), 1144.57 nm; case
(b), 1130.95 nm; and case (c), 1195.65 nm. (II) For case (d), input bandwidth of approximately 3026.58 nm.
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same feature could be observed for cases (c) [see the red
curve in Fig. 4(I)] and (d) [see Fig. 4(II)].

4. CONCLUSION
In summary, we have studied the spectral compression in the
SCG phenomenon through the GNLSE with non-Kerr terms
using a femtosecond sech-type pulse on the subnanojoule
scale of energies. Once the SCG model equation was derived,
we investigated the analysis of the spectra obtained. The
results with 50 fs pulses in the anomalous dispersion regime
have shown that, in comparison to the single CKN case, the
cooperative nonlinearities improve the spectral broadening,
while the competing ones reduce the spectral SCG bandwidth.
Surprisingly, we have obtained the opposite feature when re-
duction of the pulse width was considered. In this last case,
the cooperative nonlinearities induce a spectral compression
when the competing ones keep the SCG bandwidth nearly
constant from the input to the output of the considered wave-
guide. Increases of both the energy and the nonlinearity have
confirmed this feature, showing that the spectral compression
is also obtained in the single CKN case but less so than in the
case of cooperative nonlinearities. Assuming that this modified
GNLSE with non-Kerr terms linked to the quintic nonlinearity
could model a highly nonlinear optical waveguide for the
achievement of the SCG phenomenon, the values of the energy
and the pulse width should be chosen taking into account the
conditions where the spectral compression occurs.
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In a linear dispersive optical medium under fourth-order dispersion (FOD), we study the dynamics of the chirped
pulse compression with the help of trial Gaussian and raised-cosine (RC) ansätze pulses. The analysis based on
the variational approach leads to the occurrence of compression conditions, highlighting the cases where both the
group-velocity dispersion (GVD) and the chirp could have the same sign or the case where both the FOD and the GVD
have the same sign. Furthermore, we show that the compression process is dependent on the considered input profile.
Particularly, a condition supposing that the GVD, the FOD and the chirp have the same sign leads to a compression only
for the RC pulse in comparison to the previous results obtained for the Gaussian pulse. Numerical simulations, which
confirm these features, are presented for the 380-fs input pulses undergoing 0.00086 ps4/Km value in the FOD.

Keywords: chirped pulses; pulse compression; group-velocity dispersion; fourth-order dispersion; variational approach

1. Introduction

The growing trend on high-data-rate optical transmission
because of the useful large bandwidth associated has con-
tributed to the studies of ultrashort optical pulses. The nu-
merous applications of ultrashort pulses in areas such as
telecommunication, ultrafast physical process, infrared
time-resolved spectroscopy, sampling systems, etc., reveal
the indispensable role of such pulses [1–4]. The difficult
generation in practice of such pulses with the current laser
sources and amplifiers [4] has motivated some researches on
pulse compression mechanism. This phenomenon in optical
fibers consists in the reduction of the width of an optical
pulse during its transmission. It can be classified into two
categories : linear and nonlinear pulse compression. In the
linear compression, the input pulse chirped positively or
negatively, experiences a group-velocity dispersion (GVD)
of opposite sign with the chirp parameter and then get com-
pressed. The dispersive delay line or grating-pair compres-
sors allow realizing this linear compression [3,4]. In the
nonlinear pulse compression with the interaction between
the nonlinearity as self-phase modulation and the GVD,
optical pulses get compressed in the sense of the soliton
feature or adiabatic effect [1,3–5]. It has been experimen-
tally conducted for the soliton-effect compressors [1,3].
From these basic concepts both in linear and nonlinear
cases, some optical pulse compression techniques have been

∗Corresponding author. Email: sergefewo@yahoo.fr

developed such as the cross-phase modulation technique
[3,6,7], the fiber polarization technique [8], the use of a
tapered microstructure optical fiber with four layers of holes
[9], etc. Focusing on the linear case, Capmany et al. [10]
presented in a high-speed optical time-division multiplexed
transmission line under fourth-order dispersion (FOD) near
the vanished values of GVD and third-order dispersion
(TOD), a Gaussian pulse compression with a negative chirp
and a positive FOD. In a following work [11], they presented
an analysis of a chirped Gaussian pulse using a combination
of Marcuse’s formalism [12] and Amemiya’s method [13],
and showed that pulse broadening and compression arise as
a result of the interaction between dispersion orders of same
parity. More specifically, they demonstrated that, when dis-
persion orders of same parity interact, one obtains pulse
compression if they are signed oppositely; otherwise pulse
broadening is obtained. This is by assuming that the source
chirp interacts only with even dispersion terms to yield pulse
broadening or compression. In the present work, we present
the dynamics of pulse compression and demonstrate the
possibility to get a linear optical pulse compression for a
pulse chirp having the same sign with the GVD, this being
obtained in the presence of the FOD parameter of the same
sign. This result, therefore, contrasts with the previous rule
described in [11], and underlines an important feature on
the impact of the FOD parameter. It emerges from this

© 2014 Taylor & Francis
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2 L. Mandeng Mandeng et al.

analysis that the conditions where linear chirped optical
pulse compression based on trial function profiles occur are
more extended than those previously reported
[2–4,10,11]. Furthermore, our analysis presents analytical
relations between the dispersion lengths associated with the
broadening/compression occurrence conditions. The
obtained results recover and complete some aspects of pulse
compression of very recent works as presented by Agrawal
[2,3] for the case of a chirped Gaussian pulse. The study re-
lated to the raised-cosine (RC) pulse has never been reported
earlier to our knowledge. This feature is interesting and
this is the first time that it is presented. The demonstration
is conducted globally through the well-known Lagrangian
variational approach (LVA) [2,14] on the chirped Gaussian
and RC profiles. The LVA has been shown to be very useful
when laser beams self-focusing were investigated [14]. In
addition, Anderson showed that the determination of pulse
propagation characteristics, such as width, energy, chirp and
phase, could be done with this method. However, some
shortcomings of the LVA exist. Sure enough, the use of
trial functions through the LVA leads to forgetting of the
changes in the pulse shape during the propagation even if
its main parameters vary with the length parameter [14].
Furthermore, in a nonlinear pulse propagation inside an
optical fiber, some effects such as higher order solitons
splitting are unreachable with the LVA.

The LVA has made its proofs in the description of pulse
compression mechanism and other interesting features
[2,3,14]. The paper is designed as follows: in Section 2,
we present the model and analytical studies while Section
3 is devoted to numerical results and discussion. The last
section concludes the paper.

2. Analytical treatment of the model

Near the zero-dispersion wavelength of a single-mode fiber
(SMF), the GVD nearly vanishes and one should take into
account the effect of the odd order of dispersion as the third-
order dispersion (TOD) [2]. On the other hand, as discussed
in [2,15], in WDM systems special fibers have been devel-
oped, the so-called “dispersion-flattened fibers” in which
the TOD is nearly equal to zero while the GVD remains
finite and one should include the FOD effect to describe
the dynamics inside the fiber. The chromatic dispersion
profile of such fiber could be seen in [15] in comparison
to those of standard SMFs and dispersion-shifted fibers. It
is observed that the slope of the dispersion parameter or
GVD around the communication wavelength of 1550 nm
is nearly equal to zero. This shows consequently that the
TOD effect vanishes in such fibers as mentioned above. We
consider a fiber of this kind being manufactured to such an
extent that the system is nearly linear. The linear equation
describing the propagation of optical pulses in such case is
the following [1–3]:

i
∂u

∂z
+

4∑
k=2

(i)kβk

k!
∂ku

∂T k
= 0, (1)

where u and βk represent the dimensionless pulse ampli-
tude, the dispersion term of the kth order. One should also
note that odd-order dispersions such as TOD do not com-
press the pulse but they add rather asymmetric oscillating
tails in the pulse profile [2,11,16]. So, they are not really
important when one studies the variation of the pulse width
in terms of compression or broadening. The Lagrangian
density function corresponding to Equation (1) is given
as:

Ld = i

2

(
u∗ ∂u

∂z
− u

∂u∗

∂z

)
−

4∑
k=2

(i)kβk

k!
∂k−1u

∂T k−1

∂u∗

∂T
,

(2)

Our study is conducted using the chirped Gaussian and RC
profiles given, respectively, by [2,17,18]:

u(z, T ) = A∗ exp

(
−1 + iC∗

2

(
T

T∗

)2

+ iφ∗

)
(3)

and

u(z, T )

= A∗
2

[
1 + cos

(
πT

T∗

)]
exp

(
i
C∗
2

(
T

T∗

)2

+ iφ∗

)
(4)

where A∗, T∗, C∗ and φ∗ are the amplitude, the width,
the chirp and the phase, respectively. The parameters T
and z are the retarded time and the propagation length,
respectively. The use of the RC profile in this study stems
from the difficulty that one often has to generate Gaussian-
shaped pulses suitable for high bit rate. Indeed, the output of
the commonly used Mach–Zehnder pulse carvers is rather
close to RC-profiled pulses [17,18]. So, the RC pulse could
model a rather realistic case in an experiment related to the
analysis presented in this work. We plot these two profiles
in Figure 1. Performing the Euler–Lagrange equation for
relevant parameters of the Gaussian and the RC pulses, we
obtain the dynamical equations, respectively, as:

d A∗
dz

= − A∗
2

{
C∗
T 2∗

[
β2 + (1 + C2∗)

4T 2∗
β4

]}
dT∗
dz

= C∗
T∗

[
β2 + (1 + C2∗)

4T 2∗
β4

]
dC∗
dz

= (1 + C2∗)

T 2∗

[
β2 + (1 + C2∗)

4T 2∗
β4

]
dφ∗
dz

= β2

2T 2∗
+ (1 + C2∗)(3 − C2∗)

32T 4∗
β4

(5)
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Figure 1. Illustration of the two input profiles: T0 = 0.38 ps. (The colour version of this figure is included in the online version of the
journal.)

and

d A∗
dz

= − A∗
2

{
C∗
T 2∗

[
− β2 + β4

12a1T 2∗
(a3 + 2a4C2)

]}
dT∗
dz

= C∗
T∗

[
− β2 + β4

12a1T 2∗

(
a3 + 2a4C2∗

) ]
dC∗
dz

= 1

a1T 2∗

[
−β2

(
π2

2
+ C2∗

)

+ β4

6T 2∗

(
−π4

4
+ a3C2 + a4C4

)]

dφ∗
dz

= 1

2a2T 2∗

[
π2β2 + β4

12T 2∗

(
4π4

3
− a3C3∗ + a4C4∗

)]
(6)

where ak with k = 1, 2, . . . 4 are constants defined as:

a1 = (−64 − 2π + 8π2 + π3)/8π3

a2 = (8 + 3π)/2π

a3 = − 1

4π
(−48 + 6π2 + π3)

a4 = − 1

160π5 (15360 + 120π − 1920π2 − 20π3

+ 40π4 + 3π5)

(7)

We noted that in the absence of FOD, we obtained the previ-
ously well-known pulse characteristics in the case of single
GVD. The phase is often disregarded because of its negligi-
ble role in pulse propagation characteristics. The system be-
ing linear, the propagation of the input pulse is only affected
by the dispersive properties of the waveguide interacting
with the intrinsic characteristics of the considered pulse.
When the chosen pulses are different, the obtained growth
equations are quite different also and then the related results
arise from the compression process. Equations (5)–(6) are
first-order differential equations of the relevant parameters
(amplitude, width, chirp and phase) of the Gaussian and
RC pulses. These equations allow obtaining the evolution
of these parameters as the pulse is propagating inside the
medium in function of the distance z.

Recalling that for the Gaussian pulse, the quantity (1 +
C2∗)/T 2∗ is assumed to be equivalent to the spectral width
that is quasi-constant in the linear medium [2,3], we make
some simplifications on Equation (5). The same assumption
applied on the RC pulse yields to set ((π2/2) + C2∗)/a1T 2∗
and ((−π4/4)+a3C2∗ +a4C4∗)/6a1T 4∗ as constants. We set
the following parameters for the Gaussian pulse:

�0 = β2 + (1 + C2
0)

4T 2
0

β4

� = (1 + C2
0)

T 2
0

�0. (8)

We set also �1 and �2 for the RC pulse as:

�1 = −β2 + β4

12a1T 2
0

(
a3 + 2a4C2

0

)
�2 = 1

a1T 2
0

[
− β2

(
π2

2 + C2
0

)
+ β4

6T 2
0

(
−π4

4 + a3C2
0 + a4C4

0

) ]
,

(9)

assuming that the parameters C0 and T0 are the initial val-
ues of the chirp C∗ and width T∗, respectively. We define
LGV D = T 2

0 /|β2| and L F O D = T 4
0 /|β4| as the GVD and

the FOD lengths, respectively. Then, we integrate the width
and the chirp growth equation above for each pulse. The
analytically approximated chirp expressions are given by:

CG(z) = C0 + z�

CRC(z) = C0 + z�2. (10)

where the subscripts G and RC correspond to the
Gaussian and RC input pulses, respectively. For each
corresponding dynamical equation of width, we obtained
easily the analytical expressions of widths in function of the
distance z:
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4 L. Mandeng Mandeng et al.

TG(z) = T0

[
1 + 2

�0

T 2
0

(
C0 + �

2
z

)
z

] 1
2

TRC(z) = T0

[
1 + 2

�1

T 2
0

(
C0 + �2

2
z

)
z

] 1
2

(11)

The same process can be done with the amplitude, and
therefore leads to:

AG(z) = A0 exp

[
− �0

2T 2
0

(
C0 + �

2
z

)
z

]

ARC(z) = A0 exp

[
− �1

2T 2
0

(
C0 + �2

2
z

)
z

]
,

(12)

with A0 is the initial value of the amplitude. For the
Gaussian pulse, the conditions of compression are obtained
for � < 0 and C0 > 0 as:

C0 > 0, β2, β4 < 0 (13a)

LFOD >
1 + C2

0

4
LGVD, C0 > 0, β2 < 0, β4 > 0 (13b)

LFOD <
1 + C2

0

4
LGVD, C0 > 0, β2 > 0, β4 < 0, (13c)

For the negative value of the initial chirp C0 < 0, we have
the opposite conditions:

C0 < 0, β2, β4 > 0 (14a)

LFOD >
1 + C2

0

4
LGVD, C0 < 0, β2 > 0, β4 < 0 (14b)

LFOD <
1 + C2

0

4
LGVD, C0 < 0, β2 < 0, β4 > 0. (14c)

The maximal pulse compression length for the Gaussian
pulse is Lmc = 2C0/|�| [2,3]. It is also important to remind
that the basic idea behind optical pulse compression is bor-
rowed from chirp radar, where chirped pulses at microwave
frequencies are compressed by passing them through a dis-
persive delay line [19].

In the absence of FOD, Equations (13a), (13b), (14a) and
(14b) are the well-known conditions for the linear pulse
compression induced by chirp in the single GVD case re-
quiring that β2C0 < 0 [2,3]. Equations (13c) and (14c)
may lead to pulse broadening in the absence of FOD as
previously known. Nevertheless, the FOD breaks this obser-
vation and we obtain a pulse compression when the additive
conditions on dispersion lengths are verified. The obtained
linear pulse compression when both the chirp and the GVD
have the same sign or both the GVD and the FOD have
the same sign is the main feature observed, which is due
to the presence of FOD. This result encompasses the rules
mentioned in [2,3,11]. In fact, they predicted a pulse broad-
ening when β2β4 > 0 (β2, β4 < 0 or β2, β4 > 0 verified
by Equations (13a) and (14a)) and a linear compression
when β2β4 < 0 (verified by Equations (13b), (13c), (14b)
and (14c)). The results obtained in this work include the
basic theory described in [2,3] and the rules set in [11]. This
combination is possible with additional dispersion lengths
conditions as seen in Equations (13b), (13c), (14b) and

(14c). The study demonstrates that it is possible to obtain
a Gaussian pulse compression with the GVD having the
same sign with FOD, by adding a chirp of opposite value
to the GVD and FOD. On the other hand, it is possible
to compress a Gaussian pulse using an optical waveguide
having a GVD which has the same sign as the chirp; in this
case, one requires an opposite value of FOD.

For the RC pulse, one may notice that constants a3 and
a4 are negative as a3 = −|a3| and a4 = −|a4| while
a1 is positive. Therefore, with �1 < 0 the compression
conditions are given for initial positive chirp value by:

C0 > 0, β2, β4 > 0 (15a)

V ′
1 < LFOD < V ′

2, �2 > 0, C0 > 0 or C0 < 0, β2 < 0, β4 > 0

(15b)

LFOD < V ′
1, �2 < 0, C0 > 0, β2 < 0, β4 > 0 (15c)

LFOD > V ′
2, �2 < 0, C0 > 0, β2 > 0, β4 < 0 (15d)

where

V ′
1 =

(
π4

4 + |a3|C2
0 + |a4|C4

0

)
6
(

π2

2 + C2
0

) LGVD (16)

and

V ′
2 =

(|a3| + 2|a4|C2
0

)
12a1

LGVD (17)

Similarly to the previous Gaussian case, for �1 > 0 we
use the opposite relations of Equation (15) and the maximal
length for compression is always given by 2C0/|�2|. The
feature previously mentioned above for the Gaussian pulse
is also pointed out for the RC pulse as seen in Equations
(15b), (15c) and (15d). A new condition given by (15a)
shows that it is possible to get the RC pulse linear com-
pression with the chirp, the GVD and the FOD all having
the same sign. This condition contrasts with the previous
rules known in [2,3,11] and those mentioned in this work
on Equations (13), (14), (15b), (15c) and (15d). This means
that the linear compression conditions are greatly dependent
on the input optical pulse profile.

Using rather the Fourier transform method of Marcuse
[12], one should obtain the pulse amplitude at the distance
z as:

u(z, T )

= T0√
2π

×
∫ +∞
−∞

exp

{
ω2

2

[
−T 2

0 + i z(β2 + β4

12
ω2)

]
− iωT

}
dω.

(18)

It yields a special complex integral in the form of:∫ +∞

−∞
exp(ax4 + bx2 + cx)dx, (19)

where a = iβ4z/24, b = (iβ2z/2) − (T 2
0 /2) and c =

−iT . As this primitive analytical function from this inte-
gral is not easily reachable, one should use some special
mathematical assumptions to solve it as done by Amemiya
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Journal of Modern Optics 5

Figure 2. (a) contour plot of the chirped Gaussian pulse compression of Equation (13c): assuming the dispersion lengths condition,
LGV D = 120.33 km, Lmc = 186.2075 km, MPCP = 10.55%; (b) contour plot of the chirped Gaussian pulse broadening as expected
in previous studies in the absence of verified conditions on dispersion lengths, LGV D = 62.78 km. For the frames (c), (d), (e) and (f):
normalized amplitude, normalized width, chirp and phase respectively (blue solid curves correspond to the case of Figure (2(a)) and
green dashed curves for the case of Figure (2(b)). General parameters β4 = −0.00086 ps4/km, L F O D = 24.24 km, T0 = 0.38 ps,
T min = 0.3399 ps, C0 = 0.5. (The colour version of this figure is included in the online version of the journal.)

or Capmany et al. [11,13]. After that, one brings out the
analytical varying width as done for the single GVD case
to obtain a similar relation of Equation (11). This work
has been already done in these references. The variational
approach being also validated as a real and efficient means
to study the pulse compression mechanism as discussed by
Anderson [14], Agrawal [2], Konar and Biswas [20], Roy
et al. [21] and recently by Mandeng and Tchawoua [22,23],
there is no question of using it in the considered model.
In brief, after Equations (5)–(17), we find, therefore, the

same results as discussed by Capmany et al. [11]: the even-
order dispersion terms as the GVD and FOD interact to
conduct the compression or broadening of the pulse. The
variation allows generalizing these results highlighting the
dependence of the dispersion lengths LGVD and LFOD on
these compression conditions.

On the other hand, it is well known today that, in the case
of dispersive lossless linear medium, the pulse changes only
following its characteristics, but the initial shape remains the
same [2,3,24]. This physical statement corresponds directly
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6 L. Mandeng Mandeng et al.

Figure 3. (a) Contour plot of the pulse as described by Equations (14a); (b), (c), (d), (e) Evolution of the normalized pulse parameters versus
the propagation distance z with parameters β4 = 0.00086 ps4/km, LFOD = 24.24 km, T0 = 0.38 ps, T min = 0.3399 ps, C0 = −0.5,
β2 = 0.0023 ps2/km, Lmc = 27.5863 km. (The colour version of this figure is included in the online version of the journal.)

to the LVA. Therefore, if the initial shape is Gaussian, the
output will be a Gaussian form but with characteristics
changed according to the dispersive effects of the medium.
The same thing happens for the RC profile.

3. Numerical results and discussion

The linear pulse compression as described by Equation (13c)
is numerically presented in Figure 2, where we have plot-
ted the contour plots of the Gaussian pulse propagation
(see Figure 2(a) and (b)) and the corresponding normalized
amplitudes, normalized widths, chirps and phases in func-
tion of the distance of propagation z (see Figure 2(c)–( f )).
The phase term on the dynamics does not have a real impact.
Its representation on Figure 2 is done as a pulse character-
istic even if it does not affect really the pulse energy propa-
gation. The case where we respect the dispersion lengths

condition of Equation (13c) leads to pulse compression
(Figure 2(a): LGV D = 6L F O D/(1 + C2

0)) while the case
where we ignore this condition leads to Gaussian pulse
broadening (Figure 2(b): LGV D = 3.2L F O D/(1 + C2

0)).
Figures 2(c)–(f) present the corresponding pulse character-
istics of the propagating optical signals: solid lines for the
case of Figure 2(a) and dashed lines for the case of Figure
2(b). The values of the initial width and the FOD are the
same as in [10], with positive values of the chirp and GVD.
The maximal pulse compression percentage (MPCP) for the
Gaussian pulse is given by the relation:

MPCP = 100

⎧⎨
⎩1 −

[
1 − �0

�

(
C0

T0

)2
]1/2

⎫⎬
⎭ (20)

We obtain a MPCP of 10.55% in the pulse compression
of Figure 2(a). It is clearly seen in Figure 2 that when

D
ow

nl
oa

de
d 

by
 [

L
uc

ie
n 

M
an

de
ng

 M
an

de
ng

] 
at

 0
8:

39
 2

4 
A

pr
il 

20
14

 



Journal of Modern Optics 7

Figure 4. (a) Contour plot of the pulse as described by Equations (15a); (b), (c), (d), (e) Evolution of the normalized pulse parameters
versus the propagation distance z with parameters β4 = 0.00086ps4/km, LFOD = 24.24 km, T0 = 0.38 ps, T min = 0.3588 ps, C0 = 5,
β2 = 0.0113 ps2/km, MPCP = 5.5767%, Lmc = 0.5041 km. (The colour version of this figure is included in the online version of the
journal.)

the condition on dispersion lengths is respected with the
interaction between the chirp and the GVD having the same
positive sign under the influence of an opposite value of
the FOD, the compression is well obtained. In Figure 3,
we represent the compression condition of Equation (14a)
where both the FOD and the GVD have the same positive
sign while the chirp is negative. In this case, there is no
condition on dispersion lengths. Figure 3(b)–(e) present the
evolution of the pulse characteristics for this propagation.

Taking into account the case of the RC pulse, the pulse
compression is obtained earlier at the beginning of the prop-
agation in comparison to the Gaussian case, as is depicted
in Figure 4.

The chirped RC pulse MPCP is given by the relation:

MPCP = 100

⎧⎨
⎩1 − 1

2

[
4 − 2�1

�2

(
C0

T0

)2
]1/2

⎫⎬
⎭ (21)

The condition of Equation (15a) corresponds to the case
where the parameters GVD, FOD and chirp have the same
positive sign. The compression is obtained with an MPCP
of about 5.5767%, which is less than those obtained with the
Gaussian pulse. The maximal length for the pulse compres-
sion is about 0.5041 km, which is very far from the result
obtained in Figure 2 (about 186.2075 km) and in Figure 3
(about 27.5863 km). Figure 4 presents the contour plots of
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8 L. Mandeng Mandeng et al.

Figure 5. (a) contour plot of the chirped RC pulse compression of Equation (15d): assuming the dispersion lengths condition,
LGVD = 5.328 km, Lmc = 0.3346 km, T min = 0.3725 ps, MPCP = 1.9798%; (b) contour plot of the chirped RC pulse in the absence of
the verified condition on dispersion lengths, LGVD = 62.78 km. For the frames (c), (d), (e) and ( f ): normalized amplitude, normalized
width, chirp and phase respectively (blue solid curves correspond to the case of Figure 5(a) and green dashed curves for the case of Figure
5(b)). General parameters: β4 = −0.00086 ps4/km, LFOD = 24.24 km, T0 = 0.38 ps, C0 = 5. (The colour version of this figure is
included in the online version of the journal.)

the RC pulse and the evolution of its characteristics corre-
sponding to Equation (15d). In Figure 5(a), the dispersion
lengths condition is verified while in Figure 5(b) it is ig-
nored. Figure 5(b)–(e) present the RC pulse characteristics
evolution versus z.

Recalling that the present study of dynamics of linear
compression involves the GVD, the chirp and the FOD, it is
important to point out that these results could be generalized
to the nth-order even dispersion terms. Our obtained results
present a general description of the interaction between
the chirp, the GVD and the FOD. The results recover and

complete some aspects of the results on pulse compres-
sion previously obtained in literature. Taking into account
another type of optical light pulse, namely the RC pulse,
we have obtained interesting features as concerning the
dynamical behavior of the propagating pulse which are
not particularly related to the major results obtained when
dealing with the Gaussian pulse. For example, even when
the interacting dispersion parameters and the chirp have
the same sign, pulse compression can be obtained. There-
fore, the description of the broadening/compression pulse
is greatly dependent on the considered optical pulse.
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4. Conclusion

In summary, using the LVA with chirped Gaussian and RC
pulses, we have demonstrated that optical pulse compres-
sion induced by chirp can be successfully achieved in a
linear medium under GVD and FOD parameters having the
same sign. The chirp parameter is of opposite sign for the
case of the Gaussian pulse. The pulse compression being
dependent on the input profile, for the RC pulse, new broad-
ening/compression conditions are obtained which are quite
different from the established rules on compression effect
using the Gaussian pulse. These results are welcome and
may complete the basic linear optical pulse compression
theory induced by chirp.

Based on the previous mentioned results, a possible
experimental setup could be suggested using a quasi-linear
dispersion-flattened fiber, in which the pulse would experi-
ence normal/anomalous dispersion to obtain the respective
sign of the chirp [3], and get compressed when passing
through a grating pair with dispersion of same sign.
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Abstract
We report the analysis of the compression mechanism for chirped femtosecond pulses in silicon-
on-insulator waveguides under the effect of fourth-order dispersion (FOD) using the modified
variational approach that involves Rayleighʼs dissipation function (RDF). Our results show that
the nonlinear compression in these waveguides is input pulse dependent. Moreover, this study
leads to a nearly periodic-like dynamic induced by the interplay between self-phase modulation
and FOD in a normal group-velocity dispersion. In addition, when large values of the initial
chirp and absorption coefficients present in these waveguides are considered, the compression
mechanism is completely destroyed, with the observation of at least one pulse amplification over
a short distance of propagation prior to pulse broadening.

Keywords: pulse compression, variational approach, fourth-order dispersion

(Some figures may appear in colour only in the online journal)

1. Introduction

In nonlinear optics, the pulse compression mechanism is one
of the most important technologies for creating optical sour-
ces with large spectral bandwidth [1–3]. It consists of a
temporal reduction of the input pulse width during its pro-
pagation inside the optical media. It is well known that there
are two important ways to achieve pulse compression: linear
and nonlinear. In the nonlinear case, the solitonic properties
make it possible to achieve pulse compression, even adiaba-
tically [2–7]. Recently, with analysis applied to solitary waves
known as similaritons, Senthilnathan et al [8–10] showed
pedestal-free pulse compression in optical fibers. In actual
fact, many compressors, both linear and nonlinear, have been
developed from these basic concepts, such as those using
cross-phase modulation technology [3, 11, 12], fiber polar-
ization technology [13], and a tapered-microstructure optical

fiber with four layers of holes [14]. In addition to silica fibers,
pulse compression has also been investigated in silicon-on-
insulator (SOI) waveguides [15]. The high values of the Kerr
nonlinearity coefficient of these media have attracted more
and more attention over approximately the last decade
[15–20]. Indeed, several applications use SOI waveguides as
broadband amplifiers, tunable lasers, optical switching devi-
ces, and biosensors. SOI waveguides and silica fibers differ in
some respects: SOI waveguides are generally smaller than
silica fibers, and silicon is very nonlinear—about 200 times
more so than silica. The silicon material makes it possible to
confine light within an area so small that the nonlinear effects
are greatly enhanced. The crystalline nature of silicon causes
the Raman effect to depend strongly on the waveguide geo-
metry and mode polarization. On the other hand, the
dynamics inside SOI waveguides include two-photon
absorption (TPA) and free-carrier absorption (FCA) [15–24].
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Their impact on the pulse compression mechanism inside SOI
waveguides under the influence of FOD have not yet been
investigated to our knowledge.

The present work is devoted to studying the compression
of chirped pulses induced by FOD in the nonlinear case,
highlighting the impact of absorption coefficients. This study
is conducted through the recently employed variational
approach that involves Rayleigh’s dissipation function (RDF)
[15, 20]. RDF is associated with variational analysis to take
into account the dissipative part of the system [20]. It so
happens that an modified variational approach (MVA) has
been found to have advantages in studies of femtosecond
pulse propagation inside SOI waveguides, even in a soliton-
like regime [15]. Three input pulses with Gaussian, sech-type,
and raised-cosine (RC) ansätze profiles are considered for the
study of this compression mechanism in order to demonstrate
that this periodic compression is sensitive to an input pulse. In
fact, this work is an extension of the work presented in [25].

This paper is therefore organized as follows: the next
section presents the theoretical analysis of the model, whereas
section 3 describes the periodic compression in the model.
Sections 4 and 5 are devoted to the effects of both the dis-
persion regime and chirp, respectively, on periodic com-
pression. The influence of absorption coefficients is presented
in section 6. The last section concludes the paper.

2. Analysis of the model

The propagation of optical pulses through an SOI waveguide
is governed by a generalized nonlinear Schrödinger equation
that includes the effects of TPA and FCA, as in [15, 19–23]:
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where u, β2k, γ, α, Γ, σ, and NC are the slowly varying
amplitude of the electrical field, the k(2 )th order term of dis-
persion, the nonlinear Kerr coefficient, the linear loss coeffi-
cient, the TPA coefficient, the FCA coefficient, and the free-
carrier density (FCD) respectively. The third-order dispersion
(TOD) term is ignored in this study because it is well known
that it introduces a relatively small temporal shift of the pulse
center, which has no bearing on our study [2, 3, 15]. For
instance, in classical nonlinear silica fibers, near the zero-
dispersion wavelength (ZDW) of the group-velocity disper-
sion (GVD), one should include the effect of the TOD [3].
One should also note that some fibers—so-called dispersion-
flattened fibers—account for a zero-dispersion point for the
TOD, and so the whole dispersion is defined only by the
GVD and the FOD, which is added for ultra-short pulses.
More generally, Capmany et al [26] have shown, with respect
to the Gaussian pulse, that the odd-order dispersion terms (β3,
β5, ...) introduce some oscillating tails in one side of the
central part of the pulse temporal profile in addition to the
asymmetric displacement of the pulse center. Indeed, the

pulse becomes an Airy-like pulse under the TOD effect
[2, 27]. Furthermore, Capmany et al have shown that the
source chirp of the pulse interacts only with even dispersion
terms. TPA and FCA are linked to the FCD dynamics fol-
lowing the rate equation given below [15, 27, 28]:
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where β Γ= a2TPA eff is the usual TPA parameter. On the
other hand, the quantities h, ν0, and τc represent the Planck
constant, the pump frequency, and the carrier lifetime,
respectively. The effective carrier lifetime includes all the
effects of recombination, diffusion, and drift [15]. Our ana-
lysis is based on the Gaussian, sech-type, and RC pulses,
given respectively as [2, 3, 29–31]:
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where u0 is the amplitude of the pulse, related to the peak
input power P0 as =u P0 0 . The parameters C, t0, and ϕ
represent the chirp, the width, and the phase respectively. The
reader should notice that the generation of Gaussian-shaped
pulses suitable for a high bit rate is not easier [29–31]. Indeed,
the output of the commonly used Mach-Zehnder pulse carvers
is rather close to RC-profile pulses. On the other hand, this
pulse has a periodic profile (due to the cosine function),
contrary to the other pulses. Its full width at half maximum
(FWHM) is smaller than that of the other pulses.

The Lagrangian density and RDF associated with
equation (1) are given respectively as [15, 20]:
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The determination of the Lagrangian function for the
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Gaussian pulse leads to:
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For the sech-type pulse, we obtain the same form as in [15],
with an additional term taking into account the FOD effect:
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and for the RC pulse we have:
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where ak with =k 1 .. 5 are some constants defined as:
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We also derive the reduced forms of the RDF function for
each pulse:
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One should note that the TPA and FCA are linked to the FCD
dynamics following the rate equation in which the parameter
β Γ= A2TPA eff is the usual TPA parameter, whereas Aeff is the
the effective core area of the SOI waveguide
[2, 3, 15, 19, 20]. The effective carrier lifetime has been
neglected in this work because we are dealing with femto-
second pulses [15]. Using the Euler-Lagrange equations, we
determine the growth equations for each pulse [31]:
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(ii) Sech-type pulse:
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(iii) RC pulse:
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where = −A b a b a(3 / ) ( / )2 2 1 1 ,
π= −B b a b a((3 / ) ( / ))/15364 2 3 1 , ′ = −A b a b a( / ) ( / )2 2 1 1 ,
π′ = −( )B b a b a( / ) ( / ) /15364 2 3 1 , ″ = −( )A b a b a a/2 1 1 2 2

2,
and π″ = −B b a b a a( )/15364 1 3 2 2

2. The next section deals
with the nonlinear effects on pulse compression in SOI
waveguides.

3. Periodic compression of femtosecond pulses in
an SOI waveguide under FOD and SPM

In this section, γ Γ Λ σβ ν≠ = = h A0, 0, /( )TPA eff0
2 . We

employ equations (16)–(18) to obtain the pulse characteristics.
We can integrate these growth equations by using the fourth-
order Runge-Kutta integration scheme. It is well known that
the balanced interaction between self-phase modulation (SPM)
and GVD should lead to the solitonic properties of pulse pro-
pagation inside an optical media [2–7], the appearance of the
solitonic features being drawn within the soliton order defined
by =N L L/GVD NL

2 , where γ=L P1/NL 0. So normally, as is
well known in silica optical fibers for the anomalous-GVD
regime, each input pulse may lead to a solitonic form of the
fundamental soliton for N = 1 and to higher-order solitons
(HOSs) for ⩾N 2 [2–7]. However, the combination of SPM
effects and normal GVD (β > 02 ) could be used for pulse
compression [2].

HOSs have an interesting feature that is described as a
periodic evolution following the distance z of propagation.
This property is understood within a compression shaping of
the solitonic profile in a periodic way [2, 7]. Using a
dimensionless definition of the propagation distance
ξ = z L/ GVD, the soliton period is defined [2]:

π=z L
2

(19)GVD0

For HOSs with ⩾N 2, the propagation inside the standard
single-mode silica optical fibers leads generally to pulse
splitting into many sub-pulses [2–7]. When N is not too large,
for example N = 3, the splitting is effected between two
solitonic compressions by recovering the original shape at the
end of the soliton period. However, for large values of N, the
propagation leads generally to pulse train generation via the
modulational instability (MI) mechanism [23, 32]. More
recently, a higher-order MI soliton demonstrated the pulse
train generation process [33]. The understanding of the peri-
odic compression of HOSs is based nowadays on an interplay
between the SPM and GVD effects [2].

The aim of this section is to evaluate the periodic com-
pression in an SOI waveguide from the previous input pulses
in the femtosecond region via the interplay between the SPM
and the FOD instead of the GVD. The regime of GVD for the
achievement of this periodic compression is surprisingly
normal, whereas the SPM coefficient of Kerr nonlinearity is
also positive. The chosen parameters that allow the periodic
compression are =P 4.76 W0 , γ = − −47 W m1 1, α = −5.06 m ,1

=t (0) 50 fspulse , and β = −0.56 ps m2
2 1 [15]. For the para-

meter N, we have = ≈N 0.99 1. Normally, if a single-mode
silica fiber is considered in the anomalous GVD and the FOD
effect is ignored (β = 04 ), each input pulse should reshape its
profile into a fundamental soliton profile while propagating
inside the media, even in the presence of a small initial chirp
[2, 7]. Indeed, it is known that the source chirp is detrimental
to soliton formation because it may disturb the exact balance
between GVD and SPM [2]. Instead, we obtain, with the
given SOI waveguide, the periodic compression induced by
the balance between SPM and FOD effects instead of by

4
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GVD for the quasi-fundamental soliton order ( ≈N 1). This
interesting feature is depicted in figure 1. To see how pulses
propagate under the conditions of figure 1, their intensities
and spectra propagation are illustrated in figure 2 and are
obtained by employing the convenient fourth-order Runge-
Kutta scheme and the common split-step Fourier algorithm.

The quantities zinit and z0 represent the initial distance at
which the first compression peak is observed and the com-
pression spacing (spatial period), respectively. The losses are
included and obviously reduce the energy of the pulses in
accordance with the distance of propagation. As can be seen
in figures 1 and 2, the periodic compression depends on the

Figure 1. Plot of pulse characteristics: solid lines for the Gaussian pulse, circle lines for the sech-type pulse, and dashed lines for the RC
pulse. Parameters for each pulse: Γ = 0, Λ = 0, =C 00 , and SOI waveguide length L = 1 cm. Specific results for the Gaussian pulse:
β = − −0.0051 ps m ,4

4 1
first peak at ≈z 0.0019 minit , first maximum pulse compression percentage ( =MPCP) 61.77%, ≈z 0.0038 m0 .

Specific results for the sech-type pulse: β = − −0.0039 ps m4
4 1, first peak at ≈z m0.0036init , first =MPCP 67.03%, ≈z 0.0075 m0 . Specific

results for the RC pulse: β = − 0.005 ps m4
4 , first peak at ≈ × −z 3.636 10 minit

4 , first =MPCP 37.95%, ≈ × −z 6.360 10 m0
4 .

Figure 2. Contour plots of pulse propagation under the conditions presented in figure 1: for the left-side Gaussian profile, for the middle sech-
type profile, and for the right-side RC profile. For each frame, at the top: intensity propagation; at the bottom: spectral propagation.

5
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input pulse profile. The compression period of the sech-type
pulse is greater than that of the Gaussian profile, which is
greater than that of the RC profile. To explain this difference,
we suggest that because the first two profiles are close to each
other, they will behave almost the same despite some small

discrepancies, whereas the RC profile is a periodic function,
in contrast with the others. Note that the behavior of this
profile will be much different from that of the others, which
are not periodic. It is assumed that only one period of the
temporal profile of this pulse is used in the dynamics. This

Figure 3. Plot of pulse characteristics: solid lines for the Gaussian pulse, circle lines for the sech-type pulse, and dashed lines for the RC
pulse. Parameters for each pulse: Γ = 0, Λ = 0, C = 0, β = −0.56 ps m2

2 1, and length L = 1 cm. For the Gaussian pulse: β = −0.0051 ps m4
4 1

. For the sech-type pulse: β = −0.0039 ps m4
4 1. For the RC pulse: β = −0.005 ps m4

4 1; the normalized delay plotted is multiplied by 103 (see
the red dashed curve in (a)), whereas the chirp is multiplied by 104 (see the red dashed curve in (b)).

Figure 4. Plot of pulse characteristics: solid lines for the Gaussian pulse, circle lines for the sech-type pulse, and dashed lines for the RC
pulse. Parameters for each pulse: Γ = 0, Λ = 0, C = 0, β = − −0.56 ps m2

2 1, and length L = 1 cm. Specific results for the Gaussian pulse:
β = − −0.0051 ps m4

4 1, first peak at ≈z 0.00175 minit , first maximum pulse compression percentage ( =MPCP) 48.84%, ≈z 0.0035 m0 .
Specific results for the sech-type pulse: β = − −0.0039 ps m4

4 1, first peak at ≈z 0.00325 minit , first =MPCP 54.86%, ≈z 0.006875 m0 .
Specific results for the RC pulse: β = − −0.005 ps m4

4 1, first peak at ≈ × −z 4.375 10 minit
4 , first =MPCP 3.91%, ≈ × −z 8.75 10 m0

4 .

6
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characteristic leads the RC profile to behave differently in
comparison with the other pulses, which vanish intrinsically
beyond the main peak. Furthermore, with the same pulse
duration t0, both the Gaussian and the sech-type profiles have
f at half maximum intensity (respectively, =t t1.665FWHM

Gauss
0

and =t t1.763FWHM
sech

0), which are nearly equal; whereas the
profile of the RC pulse is approximately half that of the other
profiles ( =t t0.728FWHM

RC
0) [2, 29]. Thus, its compression

period is expected to be the smallest, as can be observed in
figures 1 and 2. This result contrasts with the one previously
mentioned regarding silica single-mode optical fibers, where
the periodic compression was only obtained for HOSs,
induced by the interplay between GVD and SPM. However,
as presented in figures 1 and 2, we observe that the periodic
compression not only depends on the input pulse profile but
also can be obtained through the interplay of FOD and SPM
in a normal-GVD regime.

We observe a pulse amplification associated with the
periodic compression mechanism, with a slight reduction in
pulse energy due to the losses: see, for instance, the blue
curve of the Gaussian pulse in figure 1(c). Indeed, one can see
that the last compression peak is smaller than the first two,
thus highlighting the effect of the linear losses. This happens
also for both the sech-type and the RC pulse for long pro-
pagation distances. It follows therefore that, for high values of
losses, the compression peaks are more and more reduced
(with respect to amplitude) or more and more broadened (with
respect to temporal width). The chirp also oscillates for each
pulse, and the compression peaks of the amplitude (or the
width) appear only at =C kz( ) 0pulse 0 , k being a nonzero
integer. In the next section, we study the influence of such
nonlinear parameters as TPA and FCA on the periodic
compression process.

4. Influence of the dispersion regime on periodic
compression

4.1. Normal dispersion regime: (β2 > 0 and β4 < 0) or (β2 > 0
and β4 > 0)

Considering figures 1 and 2, we remind the reader that the
dispersion regime is normal according to the GVD. It corre-
sponds to the case where we have β > 02 and β < 04 . So the
periodicity introduced by the FOD and SPM can be linked to
the values of the FOD length for each pulse in accordance with
the relation β= | |L t /FOD 0

4
4 (with ≡t t(0)pulse 0). For the

Gaussian pulse, we have =L L(4/15) .FOD NL For the sech-type
pulse, the relation between the nonlinear length and the FOD
length is =L L(16/45)FOD NL, whereas for the RC profile we
have =L L(13/45)FOD NL. Also note that the periodic com-
pression is obtained with the negative value of the FOD and the
positive value of the SPM. If the choice of a positive value of
the FOD is made while we remain in the normal dispersion
regime (according to the GVD), the periodicity disappears as
expected (see figure 3) [2]. This corresponds to the case where
we have β > 02 and β > 04 . As can be seen in this figure, the
chirp is initially equal to zero for each pulse. With the dis-
appearance of the periodicity, one obtains pulse broadening.
This process is more stressed for the RC pulse (see the red
dashed lines in figure 3) than for the other pulses.

4.2. Anomalous dispersion regime: (β2 < 0 and β4 < 0) or
(β2 < 0 and β4 > 0)

We plot in figure 4 the case where both the GVD and the
FOD are negative (β < 02 and β < 04 ). As can be observed,
periodic compression also occurs under these conditions.
Nevertheless, this phenomenon is less important than that of
figures 1 and 2. Indeed, the MPCP for each pulse and the
compression spatial period decrease. The illustration of this
observation is presented in table 1, showing a comparison
between the results obtained under the conditions
β β> <0, 02 4 (figure 1) and β β< <0, 02 4 (figure 4). The
main aspect coming from table 1 is the decrease in the MPCP
for each pulse from the results of figure 1 to those of figure 4.
It is a surprising result when one considers the negative values
of the GVD and the FOD. Normally, one would expect that
both dispersion orders act together in a cooperative manner to
improve the periodic compression and therefore to increase
the MPCP. Nonetheless, we observe the opposite behavior.
Note that the parameters zinit and z0 increase for the RC from
figure 1 to figure 4 in contrast with what happens to the other
pulses. It is obvious that this specific feature is linked to the
peculiarity of the RC pulse in that it is periodic and h a small
FWHM. This is highlighted in figure 5, where the results
obtained for the sech-type pulse are plotted for both cases. We
suggest that, comparing with figure 1, the action of the
anomalous GVD is in opposition to the action of the FOD,
and this leads to a reduction of the periodic compression.
Note that for the RC profile, zinit and z0 increase, contrary to
what happens with the other profiles. This characteristic
underlines the main difference between this realistic input

Table 1. Comparison of results obtained in figures 1 and 4 for each
unchirped pulse. One can read these as follows as: the first item
before the division symbol (/) corresponds in the same line to values
before the symbol, and the same procedure is observed for the item
following the same symbol. For instance, for the first item (Gaussian
pulse), zinit corresponds to 0.0019 m and 0.00175 m, whereas z0
corresponds to 0.0038 m and 0.0035 m.

Item figure 1 figure 4

z z/init 0 of the Gaus-
sian profile

0.0019 m/0.0038 m 0.00175 m/0.0035 m

z z/init 0 of the sech-
type profile

0.0036 m/0.0075 m 0.00325 m/
0.006875 m

z z/init 0 of the RC
profile

3.636 × 10−4 m/
6.36 × 10−4 m

4.375 × 10−4 m/
8.75 × 10−4 m

MPCP of the Gaus-
sian profile

61.77% 48.84%

MPCP of the sech-
type profile

67.03% 54.86%

MPCP of the RC
profile

37.95% 3.91%
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profile and the others. For a parametric study, we present in
figure 6 how the GVD and FOD values can be managed to
control periodic compression. This analysis is done by cal-
culating the MPCP in the cases where both the GVD and the
FOD vary. The range of values considered for both the GVD
and the FOD is extended to include realistic conditions. In
figure 6(a), with a constant negative value of FOD generating
the periodic compression, the latter decreases with the

decrease in the GVD from the normal to the anomalous dis-
persion regime. We notice the special behavior of the RC
pulse for the values between −3 ps m2 1 and −0.5 ps m2 1.
However, the opposite occurs for a constant positive value of
GVD while the FOD varies. Indeed, as can be observed in
figure 6(b), the periodic compression phenomenon is per-
formed by increasing the FOD value from − −0.03 ps m4 1 to
− × − −5 10 ps m4 4 1 for all pulses. Obviously, the RC pulse

Figure 5. Comparison of the anomalous-GVD case (red dashed curves) and the normal-GVD case (blue solid curves) for the sech-type pulse;
the periodic compression is enhanced in the case. The simulation conditions are the same as in figures 1 and 4.

Figure 6. GVD and FOD management to control periodic compression: (a) MPCP versus the varying ratio β β/2 4 with a constant negative
value of FOD − −0.005 ps m4 1 ; (b) MPCP versus the varying ratio β β/4 2 with a constant positive value of GVD −0.56 ps m2 1.

8
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still exhibits special behavior for the range between
− − −10 ps m4 4 1 and 0. Considering these results, the best case
in which we have the highest MPCP corresponds to the one
for which a large value of FOD (− × − −5 10 ps m4 4 1) is
reached in the normal-GVD regime ( −0.56 ps m2 1). The
interaction that generates the periodic compression corre-
sponds to the interplay between the negative FOD and the
positive SPM. The action of the anomalous GVD is in
opposition to the action of the FOD and decreases the peri-
odic compression phenomenon, whereas the normal GVD is
rather beneficial.

5. Influence of the initial chirp on periodic
compression

As discussed earlier in [2, 3], the chirp should disturb the
nonlinear periodic compression phenomenon, whereas it could

lead to linear pulse compression when it is opposite to the
GVD. So introducing a small positive value of the initial chirp

=C( 10 ) associated with the conditions (β β> <0, 02 4 ) of
figure 1 leads to table 2. The main observation concerns the
beneficial effect of the positive value of the initial chirp on the
periodic compression. In fact, both the MPCP and the spatial
period increase for all the pulses under the effect of the positive
chirp. Therefore, the periodic compression phenomenon is
enhanced. However, using a relatively high value such as

=C 20 yields the opposite result, such as the destruction of
periodicity, leading instead to pulse broadening for the sech-
type and Gaussian profiles, whereas the RC pulse still keeps its
periodic compression (see figure 7). Numerical simulation of a
high value such as =C 50 destroys the periodic compression of
the RC profile. The latter therefore needs large values of
positive chirp under the considered dispersion regime in
comparison with the other input pulses for its periodic com-
pression to disappear.

Figure 7. Contour plots of pulse propagation under the conditions presented in figure 1 with =C 20 : for the left-side Gaussian profile, for the
middle sech-type profile, and for the right-side RC profile. For each frame, at the top: intensity propagation; at the bottom: spectral
propagation.

Table 2. Comparison of results obtained with different positive values of chirp

Item Chirp zinit z0 MPCP

Gaussian profile 1 / 1.5 9.09 × 10−4 m / 5.9 × 10−4 m 0.00409 m / 0.0059 m 62.24% / 63.45%
Sech-type profile 1 / 1.5 0.0127 m / 6.363 × 10−4 m 0.00754 m / 0.01467 m 67.14% / 69.38%
RC profile 1 / 1.5 3.63 × 10−4 m/3.78 × 10−4 m 6.363 × 10−4 m / 6.48 × 10−4 m 38.45% / 38.88%

Table 3. Comparison of results obtained with different negative values of chirp

Item Chirp zinit z0 MPCP

Gaussian profile −1 / −1.5 0.003 m / 0.00527 m 0.00418 m / 0.00609 m 62.14% / 63.16%
Sech-type profile −1 / −1.5 0.006 m / 0.0328 m 0.00756 m / 0.033 m 66.9% / 67.95%
RC profile −1 / −1.5 2.727 × 10−4 m/2.727 × 10−4 m 6.363 × 10−4 m / 6.363 × 10−4 m 38.5% / 39.12%
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Considering the negative values of chirp, one obtains, for
instance, table 3. As seen in this table, the negative value of
chirp also enhances the periodic compression obtained under
the dispersion regime of figure 1. It also follows that large
negative values of chirp destroy the periodicity. So one can
suggest that in general small absolute values (AVs) of chirp

enhance the periodic compression induced by the interplay
between the FOD and the SPM, whereas large AVs of chirp
destroy periodicity and lead to pulse broadening. This hap-
pens when the dispersion regime is normal following the
GVD, with × <FOD SPM 0.

Figure 8. Plot of pulse characteristics: solid lines for the Gaussian, dotted lines for the sech-type pulse, and dashed lines for the RC pulse.
Parameters for each input pulse: C0 = 0.8, Γ = − −0.5 W m1 1, σ = × −1.45 10 m21 2, SOI waveguide length L = 4 cm. The other parameters are
similar to those in figure 1.

Figure 9. Plot of pulse characteristics: solid lines for the Gaussian, dotted lines for the sech-type pulse, and dashed lines for the RC pulse.
Parameters for each input pulse: C0 = 0.8, Γ = − −6.5 w m1 1, σ = × −1.45 10 m21 2, SOI waveguide length L = 2 cm. The other parameters are
similar to those of figure 1.
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6. Influence of absorption coefficients on periodic
compression

In this section, the parameters are given as Γ ≠ 0, Λ ≠ 0,
γ ≠ 0. The TPA phenomenon was first reported experimen-
tally by Kaiser and Garrett [34]. The multiphoton absorption
phenomenon can lead to laser damage of optical materials and
can be used to write permanent refractive index structures into
the interior of optical materials [1]. Therefore, multiphoton
absorption is well known to be a nonlinear loss phenomenon
that can reduce the efficiency of nonlinear optical devices
such as optical switches. It is known that TPA reduces the
compression factor [22].

However, in the present work, we find that a small value
of TPA (for instance, − −0.5 W m1 1) progressively destroys
periodic compression. The spatial period is increased fol-
lowing the propagation distance for each pulse. As presented
in figure 8, the effect of a small value of TPA on an input
pulse can therefore be understood as destruction of the peri-
odicity in the compression process induced by the interplay
between FOD and SPM.

A relatively high value of TPA, such as − −6.5 W m1 1, as
assumed in [15], leads to total periodic compression
destruction (see figure 9) where the effect of FCA is also
included. It is observed in these figures that large values of
TPA combined with FCA lead to pulse broadening inside the
SOI waveguide. Nonetheless, under the considered condi-
tions, one notices at least one peak of amplification linked to a
pulse compression prior to broadening. This happens for the
RC at a distance shorter than that of the Gaussian pulse,
whereas the sech-type pulse broadens last.

7. Conclusion

To summarize, we presented in this paper the analysis of the
compression mechanism for low-power chirped femtosecond
input pulses in an SOI waveguide under the effect of FOD
using the MVA, which involves the RDF. The growth
equations of the studied profiles show that the sech-type and
Gaussian pulses are influenced almost the same by nonlinear
parameters. The characteristics of the RC pulse are influenced
more by TPA and FCA. In nonlinear compression, we
demonstrated the occurrence of a periodic compression of
each pulse induced by the interplay between SPM and FOD
instead of GVD, in a regime of propagation that assumes a
normal GVD and a first-order solitonic state. A spatial com-
pression period greater for the sech-type pulse than for the
two other pulses was observed. We also showed that the
anomalous GVD reduces this periodic compression phe-
nomenon. A parametric study was done using the MPCP
parameter. We showed that when the GVD decreases from
the normal to the anomalous regime, the periodic compres-
sion phenomenon decreases. When the negative FOD
increases to a maximal value for the considered conditions of
simulation, the periodic compression is also performed in the
presence of the constant normal GVD. Small AVs of chirp
were found to be beneficial for periodic compression, whereas

large ones and whole positive dispersion orders were found to
be detrimental for the studied phenomenon. Moreover, under
a small value of TPA, such as − −W m0.5 1 1, we showed that
periodicity is progressively destroyed with the increase in
spatial period, whereas large values of this absorption coef-
ficient (such as − −6.5 W m1 1) combined with FCA lead to
pulse broadening. Nevertheless, we observed one compres-
sion peak for the compression mechanism prior to broadening
for each pulse.

Finally, this study showed that nonlinear compression in
silicon waveguides is not only input pulse dependent but is
also characterized by several dynamical processes, such as the
periodicity induced by the interaction of SPM and FOD,
whereas it is destroyed by the presence of absorption coeffi-
cients in the nonlinear medium.
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