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Abstract / Résumé

Abstract
This work deals with a recent within-host malaria infection model with multistrain

for the parasites and a spatial modeling of anopheles mosquito dynamics population.

In this work, we also consider models of infectious disease into the host population

structured by age. Namely, Hepatitis B virus (HBV) model and Susceptible-Infected-

Lost of sight (SIL) model for the spread of a directly transmitted infectious disease

taking into account demographic process and vertical transmission of the disease.

The work is organized into five majors chapters: 1. General introduction, 2. Biology

of Malaria and Hepatitis B Virus, 3. Hepatitis B virus and within-host malaria models,

4. Within-host malaria infection and Anopheles mosquito dynamics, 5. Population

Models Structured by Age (Hepatitis B and SIL models). The true chapters of this

work are Chapters 4 and 5.

Fundamentals tools of this work are Hille-Yosida operator, Strongly continuous semi-

group, Integrated semigroup, Invariant manifold, Bifurcation, Lyapunov stability, lin-

earized stability and Numerical analysis. For each model, we derived the existence of

a unique maximal bounded dissipative semiflow. We also performed the asymptotic

behavior of the models with respect to a specific threshold parameter.

Thematic results are provided for Within-host malaria infection, Anopheles mosquito

dynamics, HBV and HIV dynamics in age-structured population.

For example, for within-host multi-strain malaria infection dynamics, our study al-

lowed for the observation of competitive suppression, the reduction of parasites numbers

due to the presence of another parasite, and competitive release, the improved perfor-

mance of a parasite after the removal of a competitor. These studies demonstrated that

the presence of two parasites led to the reduction in density of at least one parasite.
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CONTENTS ix

Résumé
Dans cette thèse, nous étudions un récent modèle intra-hôte de paludisme à plusieurs

souches et la dynamique spatiale des anophèles moustiques. Nous étudions aussi deux

modèles épidémiques pour une population hôte structuré en âge. Plus précisément,

un modèle de l’hépatite viral B et un modèle SIL (Susceptible-Infectés-Perdus de vue)

prenant en compte la transmission verticale de la maladie.

Ce travail est organisé en cinq chapitres majeurs: 1. Introduction Générale, 2.

Biologie du Paludisme et de l’Hépatite Virale B, 3. Les modèles d’Hépatite virale B et

intra-hôte de paludisme, 4. L’infection intra-hôte de paludisme et Dynamique spatiale

des anophèles moustiques, 5. Modèles de population structurés en âge (modèles SIL et

d’hépatite B). L’essentiel de ce travail est donné par les Chapitres 4 et 5.

Les outils fondamentaux de ce travail sont les opérateurs de Hille-Yosida, les semi-

groupes fortement continus, les semi-groupes intégrés, la théorie de bifurcation, sta-

bilité au sens de Lyapunov, la stabilité linéaire et l’analyse numérique. Pour chaque

model, nous démontrons l’existence et l’unicité d’un unique flow borné, dissipatif et

régulier. Nous étudions aussi le comportement asymptotique de chaque model suivant

un paramètre seuil spécifique.

Les résultats thématiques sont donnés pour la dynamique d’infection intra-hôte multi-

souches de paludisme, la dynamique spatiale des anophèles moustiques, la dynamique

d’hépatite virale B et de VIH dans une population structurée en âge.

Par exemple, pour l’infection intra-hôte multi-souches de paludisme, notre étude dé-

montre l’élimination compétitive des souches plasmodiales, la réduction du nombre de

parasites dus à la présence d’une autre souche plasmodiale. Cette étude a démontré

que la présence de deux parasites conduit à la réduction de la densité d’au moins un

parasite.
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Chapter One

General Introduction

In this new century mankind faces ever more challenging environmental and public

health problems, such as pollution, invasion by exotic species, the emergence of new

diseases or the emergence of diseases into new regions (West Nile virus, SARS, An-

thrax, etc.), the resurgence of existing diseases (influenza, malaria, TB, HIV/AIDS,

etc.), and the antibiotic-resistant infections (malaria, etc.). Mathematical models have

been successfully used to study many biological, epidemiological and medical problems,

and nonlinear and complex dynamics have been observed in all of those contexts. Math-

ematical studies have helped us not only to better understand these problems but also

to find solutions in some cases, such as the prediction and control of SARS outbreaks,

understanding HIV infection, and the investigation of antibiotic-resistant infections in

hospitals.

This work deals with a recent within-host malaria infection model with multistrain

for the parasites and a spatial modeling of anopheles mosquito dynamics population.

In this work, we also consider models of infectious disease into the host population

structured by age. Namely, Hepatitis B virus (HBV) and Susceptible-Infected-Lost of

sight (SIL) models.

1.1 Type of diseases.

The Oxford English Dictionary defines a disease as "a condition of the body, or of

some part or organ of the body, in which its functions are disturbed or deranged; a

morbid physical condition; a departure from the state of health, especially when caused

by structural change." The fine-scale classification of diseases varies drastically between

different scientific disciplines. Medical doctors and veterinary clinicians, for example,

are primarily interested in treating human patients or animals and, as such, are most

concerned about the infection’s pathophysiology (affecting, for example, the central
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1.1 Type of diseases. 2

nervous system) or clinical symptoms (for example, secretory diarrhea). Microbiologists,

on the other hand, focus on the natural history of the causative organism: What is the

etiological agent (a virus, bacterium, protozoan, fungus, or prion)? and what are the

ideal conditions for its growth? Finally, epidemiologists are most interested in features

that determine patterns of disease and its transmission.

Diseases can be either infectious or noninfectious. Infectious diseases (such as in-

fluenza) can be passed between individuals, whereas noninfectious diseases (such as

arthritis) develop over an individual’s lifespan. The epidemiology of noninfectious dis-

eases is primarily a study of risk factors associated with the chance of developing the

disease (for example, the increased risk of lung cancer attributable to smoking). In

contrast, the primary risk factor for catching an infectious disease is the presence of

infectious cases in the local population.

Infectious diseases (both macro- and microparasitic) can be subdivided into two fur-

ther categories, depending on whether transmission of infection is direct or indirect.

Direct transmission is when infection is caught by close contact with an infectious in-

dividual. The great majority of microparasitic diseases, such as influenza, measles, and

HIV, are directly transmitted, although there are exceptions such as cholera, which is

waterborne. Generally, directly transmitted pathogens do not survive for long outside

the host organism. In contrast, indirectly transmitted parasites are passed between hosts

via the environment; most macroparasitic diseases, such as those caused by helminths

and schistosomes, are indirectly transmitted, spending part of their life cycle outside of

their hosts.

Worldwide there are about 1,415 known human pathogens of which 217 (15%) are

viruses or prions and 518 (38%) are bacteria or rickettsia; hence around 53% are mi-

croparasites (Cleaveland et al. 2001[34]). Of these pathogens, 868 (61%) are zoonotic

and can therefore be transmitted from animals to humans. Around 616 pathogens of

domestic livestock are known, of which around 18% are viral and 25% bacterial. How-

ever, if we restrict our attention to the 70 pathogens listed by the Office International

des Epizooties (which contain the most prominent and infectious livestock diseases), we

find that 77% are microparasites (Cleaveland et al. 2001[34]). The lower number of

known livestock pathogens compared to human pathogens probably reflects to some de-

gree our natural anthropocentric bias. Similarly, very few infectious diseases of wildlife
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1.2 Characterization of diseases. 3

are known or studied in any detail, and yet wildlife reservoirs may be important sources

of novel emerging human infections. It is therefore clear that the study of microparasitic

infectious diseases encompasses a huge variety of hosts and diseases.

1.2 Characterization of diseases.

The progress of an infectious microparasitic disease is defined qualitatively in terms of

the level of pathogen within the host, which in turn is determined by the growth rate of

the pathogen and the interaction between the pathogen and the host’s immune response.

Figure 1.1 shows a much simplified infection profile. Initially, the host is susceptible to

infection: No pathogen is present; just a low-level nonspecific immunity within the host.

At time 0, the host encounters an infectious individual and becomes infected with a

microparasite; the abundance of the parasite grows over time. During this early phase

the individual may exhibit no obvious signs of infection and the abundance of pathogen

may be too low to allow further transmission–individuals in this phase are said to be

in the exposed class. Once the level of parasite is sufficiently large within the host, the

potential exists to transmit the infection to other susceptible individuals; the host is

infectious. Finally, once the individual’s immune system has cleared the parasite and

the host is therefore no longer infectious, they are referred to as recovered. [120].

This fundamental classification (as susceptible, exposed, infectious, or recovered)

solely depends on the host’s ability to transmit the pathogen. This has two implica-

tions. First, the disease status of the host is irrelevant–it is not important whether the

individual is showing symptoms; an individual who feels perfectly healthy can be excret-

ing large amounts of pathogen (Figure 1.1). Second, the boundaries between exposed

and infectious (and infectious and recovered) are somewhat fuzzy because the ability to

transmit does not simply switch on and off. This uncertainty is further complicated by

the variability in responses between different individuals and the variability in pathogen

levels over the infectious period; it is only with the recent advances in molecular tech-

niques that these within-host individual-level details are beginning to emerge.

Although such qualitative descriptions of disease dynamics allow us to understand

the behavior of infection within an individual and may even shed some light on po-

tential transmission, if we are to extrapolate from the individual-level dynamics to the
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1.2 Characterization of diseases. 4

population-scale epidemic, numerical values are required for many of the key parame-

ters. Two fundamental quantities govern the population-level epidemic dynamics: the

basic reproductive ratio, R0, and the timescale of infection, which is measured by the

infectious period for SIS and SIR infections or by a mixture of exposed and infectious

periods in diseases with SEIR dynamics (for details, see [120], Chapter 2). The basic

reproductive number is one of the most critical epidemiological parameters because it

defines the average number of secondary cases an average primary case produces in a

totally susceptible population. Among other things, this single parameter allows us to

determine whether a disease can successfully invade or not, the threshold level of vacci-

nation required for eradication, and the long-term proportion of susceptible individuals

when the infection is endemic.

Figure 1.1: A caracature of the time-line of infection, showing the dynamics of the

pathogen (gray area) and the host immune response (black line) as well as labeling the

various infection classes: susceptible, exposed, infectious, and recovered. Note that the

diseased period, when symptoms are experienced, is not necessarily correlated with any

particular infection class. (Ref. Keeling et al. 2008[120])
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1.3 What are mathematical models? 5

1.3 What are mathematical models?

Recent years have seen an increasing trend in the number of publications, both in

highprofile journals and more generally, that utilize mathematical models (Figure 1.2).

This is associated with an increased understanding of what models can offer in terms

of prediction and insight. Any model can be typically thought of as a conceptual tool

that explains how an object (or system of objects) will behave. A mathematical model

uses the language of mathematics to produce a more refined and precise description of

the system. In epidemiology, models allow us to translate between behavior at various

scales, or extrapolate from a known set of conditions to another. As such, models allow

us to predict the population-level epidemic dynamics from an individual-level knowledge

of epidemiological factors, the long-term behavior from the early invasion dynamics, or

the impact of vaccination on the spread of infection.

By definition, all models are "wrong," in the sense that even the most complex will

make some simplifying assumptions. It is, therefore, difficult to express definitively

which model is "right," though naturally we are interested in developing models that

capture the essential features of a system. Ultimately, we are faced with a rather sub-

jective measure of the usefulness of any model.

Formulating a model for a particular problem is a trade-off between three important

and often conflicting elements: accuracy, transparency, and flexibility, [120]. Accuracy,

the ability to reproduce the observed data and reliably predict future dynamics, is clearly

vital, but whether a qualitative or quantitative fit is necessary depends on the details

of the problem. A qualitative fit may be sufficient to gain insights into the dynamics

of an infectious disease, but a good quantitative fit is generally necessary if the model

is used to advise on future control policies. Accuracy generally improves with increas-

ing model complexity and the inclusion of more heterogeneities and relevant biological

detail. Clearly, the feasibility of model complexity is compromised by computational

power, the mechanistic understanding of disease natural history, and the availability

of necessary parameters. Consequently, the accuracy of any model is always limited.

Transparency comes from being able to understand (either analytically or more often

numerically) how the various model components influence the dynamics and interact.

This is usually achieved by successively adding or removing components and building
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upon general intuitions from simpler models. As the number of model components

increases, it becomes more difficult to assess the role of each component and its interac-

tions with the whole. Transparency is, therefore, often in direct opposition to accuracy

(Figure 1.3). Flexibility measures the ease with which the model can be adapted to

new situations; this is vital if the model is to evaluate control policies or predict future

disease levels in an ever-changing environment. Most mechanistic models (such as those

within this book) are based on well-understood disease transmission principles and are

therefore highly flexible, whereas "black-box" time-series tools (such as neural nets)

that may be able to accurately reproduce a given time series of reported cases are less

amenable to modification.

1.4 What is a good model?

According to Keeling et al. 2008 [120], no model is perfect, and no model can ac-

curately predict the detailed outcome of an infection process. However, two key points

define a good model. First, a model should be suited to its purpose–that is, it should

be as simple as possible, but no simpler-having an appropriate balance of accuracy,

transparency, and flexibility (Figure 1.3). A model that is designed to help us under-

stand the behavior of an infectious disease should concentrate on the characteristics

that are of interest while simplifying all others. A model built for accurate prediction

should provide a comprehensive picture of the full dynamics, and include all the relevant

features of the disease and host, although determining which factors are relevant and

which may be safely ignored is a complex and skilled process. Second, the model should

be parameterizable (where necessary) from available data. Thus, although a predictive

model requires the inclusion of many features, it is important that they can all be pa-

rameterized from available data. Hence, in many situations–such as at the start of an

emerging (novel) epidemic–it may be impossible to produce a good predictive model. In

contrast, if we are interested only in understanding an epidemic pattern, there is far less

need for a model to accurately represent a particular scenario, and so parameterization

and availability of data are less important. Therefore, it is clear that what constitutes

a good model is context dependent.
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Figure 1.2: An indication of the increasing importance and use of mathematical models

in the epidemiological literature. White bars show the approximate number of publica-

tions in the entire scientific literature that utilize models of infectious diseases. (Data

are obtained from ISI Web of Science, and include all publications that contain in their

title or abstract the words "epidemic," and "infect*," and either "model*" or "simu-

lat*.") The gray and black bars show the number of these publications to be found in

Nature and Science respectively, providing some indication of the high impact of such

work. (These papers were identified from their title and abstract.) Note the different

scales for general papers and those in Nature or Science. (Ref. Keeling et al. 2008[120])

1.5 Aged-structured models

Structured population models distinguish individuals from one another according to

characteristics such as age, size, location, status, and movement, to determine the birth,

growth and death rates, interaction with each other and with environment, infectivity,

etc. The goal of structured population models is to understand how these characteristics

affect the dynamics of these models and thus the outcomes and consequences of the

biological and epidemiological processes Magal et al. 2008[148].

Mathematical models of populations incorporating age structure, or other structuring

of individuals with continuously varying properties, have an extensive history. The
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Figure 1.3: Realism versus Transparency.

earliest models of age structured populations, due to Sharpe and Lotka in 1911 [194]

and McKendrick in 1926[154] established a foundation for a partial differential equations

approach to modeling continuum age structure in an evolving population. At this early

stage of development, the stabilization of age structure in models with linear mortality

and fertility processes was recognized, although not rigorously established [138, 139].

Rigorous analysis of these linear models was accomplished later in 1941 by Feller [51],

in 1963 by Bellman and Cooke [15], and others, using the methods of Volterra integral

equations and Laplace transforms. Many applications of this theory have been developed

in demography: Coale [37], Inaba [112], Keyfitz [125], Pollard [184], biology: Arino [10],

Ayati [12], Bell and Anderson [13], Cushing [38], Gyllenberg [90], Von Foerster [207],

and epidemiology: Busenberg and Cooke [25], Castillo-Chavez and Feng [28], Feng,

Huang, Castillo-Chavez [71], Feng, Li, Milner [72], Hoppensteadt [102], Kermack and

McKendrick [124], to name only a few.

A new impetus of research in age structured models arose with the pioneering work

of Gurtin and MacCamy in 1974 [89] for nonlinear age structured models. Their

technology, which utilized a nonlinear Volterra integtral equations approach, estab-

lished the existence, uniqueness, and convergence to equilibrium of solutions to non-
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linear versions of the Sharpe-Lotka-McKendrick model. A rapid expansion of research

in nonlinear models ensued in both theoretical developments and biological applica-

tions. A comprehensive treatment of this approach is given by Iannelli [108]. The

increasingly complex mathematical issues involved in nonlinearities in age structured

models led to the development of new technologies, and one of the most useful of

these has been the method of semigroups of linear and nonlinear operators in Banach

spaces. This functional analytic approach was developed by many researchers, including

[14, 26, 35, 49, 50, 86, 87, 109, 140, 141, 186, 200, 201, 202, 203, 211].

In the semigroup approach, an evolving age structured population is viewed as a

dynamical system in a state space such as X = L1((0, a1),R), where a1 ≤ ∞ is the

maximum age of individuals. The initial stage at time t = 0 is a given age distribution

φ(a), a ∈ (0, a1), where φ ∈ X. The age distribution at a later time t > 0 is given by

(S(t)φ)(a), where S(t), t ≥ 0 is a linear or nonlinear semigroup of operators in X. The

function p(t, a) = (S(t)φ)(a) is viewed as the age density of the population at time t, in

the sense that the total population at any time t in a specific age range (ã, â) ⊂ (0, a1)

is ∫ â

ã

p(t, a)da.

If the initial data φ is sufficiently smooth, then p(t, a) satisfies the linear partial differ-

ential equation model (I.1):

∂

∂t
p(t, a) +

∂

∂a
p(t, a)

︸ ︷︷ ︸
aging

= −µ(a)p(t, a)︸ ︷︷ ︸
mortality

, a ∈ (0, a1), t > 0;

p(t, 0) =

∫ a1

0

β(a)p(t, a)da,

︸ ︷︷ ︸
birth rate at time t

t > 0;

p(0, a) = φ(a), a ∈ (0, a1), φ ∈ X.

The mortality process is controlled by the age-dependent mortality modulus µ(a). The

reproductive process is controlled by the age dependent fertility modulus β(a). If the

initial state φ ∈ X is not sufficiently regular, then the formula p(t, a) = (S(t)φ)(a) is

viewed as a generalized solution of (I.1). The advantage of the semigroup approach is

that it enables description of the population processes as a dynamical system in the state

space X. Nonlinear version of (I.1), as first investigated in [89], allow the mortality and

fertility moduli to depend on the density p(t, a) or a functional of density, such as the
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total population
∫ a1

0

p(t, a)da at time t [52, 61, 211, 212, 214].

1.6 Layout of this work.

This thesis is organized into five majors chapters (including this introduction). To

help with a rapid understanding of each chapter, crucial synopsis of the main points are

highlighted throughout the chapter as follows:

1. General Introduction

This chapter introduces the basic concepts and ideas of modeling, as well as providing

a brief overview of epidemiological characteristics and behavior. We also gives a brief

description of mathematical models of populations incorporating age structure, or other

structuring of individuals with continuously varying properties.

2. Biology of Malaria and Hepatitis B Virus

The emergence and spread of antimalarial drug resistance poses a severe and increasing

public health threat. All the most effective drugs that we have had in the last few

decades have been one by one rendered useless by the remarkable ability of this parasite

to mutate and develop resistance. The P. falciparum parasite is now resistant to all

of the used antimalarial drugs, even to the latest artemisinin-based combination treat-

ments. Failures in prophylaxis or treatments induce the re-emergence of parasite related

morbidity and mortality.

On the other hand, hepatitis B virus is a general term meaning inflammation of the

liver and can be caused by a variety of different viruses such as hepatitis A, B, C, D

and E. Of the many viral causes of human hepatitis few are of greater global importance

than hepatitis B virus. More than 2 000 million people alive today have been infected

with HBV at some time in their lives. Of these, about 350 million remain infected

chronically and become carriers of the virus.

3. Models of Hepatitis B virus and within-host malaria.

Mathematical models associated to within-host P. falciparum malaria infection have

been proposed since the pioneer work of Anderson, May and Gupta [2]. This model

was intended to explain experimental observations, namely parasitaemia, that is, the

concentration of parasitized red blue cells and also the decrease of the uninfected red

blue cells leading to anaemia. Such ideas have been further developed in [4, 78, 98,
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101, 103, 191, 134]. However all these works do not take into account an important

characteristic of P. falciparum which is sequestration of merozoites with the pRBC and

their ruptures. Such an issue has been considered using discrete age-structured systems

of equations (see for instance [79, 80, 81, 159]) with constant red blue cells population

assumption. We refer to Iggidr et al. [111] for a mathematical study of a discrete

age-structured model with varying red blue cells concentration.

For HBV infection, many mathematical models have been proposed to investigate the

transmission dynamics of HBV in various countries and regions in the world; covering

many topics: sexual transmission of HBV which includes heterogeneous mixing with

respect to age and sexual activity[5]; relation between the age at infection with HBV and

the development of the carrier state[68]; HBV transmission in developing countries[158,

67, 215]; the long-term effectiveness of the vaccination[221]; determined the prevalence

of infection[160]. Age-structured models have also been used to model the transmission

dynamics of HBV by some researchers; see for instance Edmunds et al.[68], McLean and

Blumberg[158], Zhao, Xu, and Lu[221], Zou, Ruan and Zhang[222].

4. Within-host malaria infection and Anopheles mosquito dynamics.

This first true chapter is subdivided in two sections. The first section deals with an age-

structured malaria within-host model and the second section deals with an advection-

reaction mathematical model for the dynamics of the malaria vector.

For the age-structured malaria within-host model, taking into account multi-strains

interaction, we provide a global analysis of the model depending upon some epidemic

threshold T0. When T0 ≤ 1, then the disease free equilibrium is globally asymptotically

stable and the parasites are cleared. On the contrary if T0 > 1, the model exhibits the

competition exclusion principle. Roughly speaking, only the strongest strain survives

while the other strains go to extinct. Under some additional parameter conditions we

prove that the endemic equilibrium corresponding to the strongest strain is globally

asymptotically stable.

Despite the enormous global burden of malaria, after more than a century of research

we still have a poor understanding of the mechanistic link between environmental vari-

ables, such as temperature and malaria risk. Hence, this chapter also develop and

analyze an advection-reaction mathematical model for the dynamics of the malaria vec-

tor, taking into account environmental parameters (such as temperature). We derive
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the existence of positive solutions to the seasonal model and the mosquito extinction

results. We also derive persistence results to the seasonal model: the weak persistence

results and the strong persistence results.

5. Population Models Structured by Age: Hepatitis B and SIL models

This chapter is organized in two sections and deals with two population models struc-

tured by age. The first section is concerned by a mathematical SIL (Susceptible-Infected-

Lost of sight) model for the spread of a directly transmitted infectious disease in an

age-structured population; taking into account the demographic process and the verti-

cal transmission of the disease. For the SIL model, we first establish the mathematical

well-posedness of the time evolution problem by using the semigroup approach. Next

we prove that the basic reproduction ratio R0 is given as the spectral radius of a positive

operator, and an endemic state exist if and only if the basic reproduction ratio R0 is

greater than unity, while the disease-free equilibrium is locally asymptotically stable if

R0 < 1. We also show that the endemic steady states are forwardly bifurcated from the

disease-free steady state when R0 cross the unity. Finally we examine the conditions for

the local stability of the endemic steady states.

The second section of the chapter is concerned by and age-structured model for the

transmission of hepatitis B virus, with differential infectivity: symptomatic infection

and asymptomatic infection. The model is completely analyzed. We compute the basic

reproduction number R0. We investigate the existence of equilibria and study their

stability. We found that the model exhibits a forward bifurcation, that is, if R0 ≤ 1,

there exists a disease-free equilibrium which is globally asymptotically stable, while if

R0 > 1, the disease-free equilibrium is unstable and there exists a unique endemic which

is globally asymptotically stable. Numerical results are presented to illustrate analytical

results. Through numerical simulation, we found that a control strategy of HBV consist

in a combination of immunization of newborns, immunization of susceptible individuals

(at least young adults), and reduction of perinatal infection.
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Chapter Two

Biology of Malaria and Hepatitis

B Virus.

2.1 Malaria biology

Malaria is one of the most severe public health problems worldwide. It is a leading

cause of death and disease in many developing countries, where young children and

pregnant women are the groups most affected. According to the World Health Orga-

nization’s World Malaria Report 2012 and the Global Malaria Action Plan: 3.3 billion

people (half the world’s population) live in areas at risk of malaria transmission in

106 countries and territories. In 2010, malaria caused an estimated 216 million clinical

episodes, and 655,000 deaths [169]. An estimated 91% of deaths in 2010 were in the

African Region [216], followed by 6% in the South-East Asian Region and 3% in the

Eastern Mediterranean Region (3%). About 86% of deaths globally were in children.

Malaria imposes substantial costs to both individuals and governments. Direct costs

(for example, illness, treatment, premature death) have been estimated to be at least

US$ 12 billion per year. The costs are many times more than that in lost economic

growth.

2.1.1 Epidemiology

The majority of malaria cases (65%) occur in children under 15 years old [167]. About

125 million pregnant women are at risk of infection each year; in Sub-Saharan Africa,

maternal malaria is associated with up to 200,000 estimated infant deaths yearly [96].

There are about 10,000 malaria cases per year in Western Europe, and 1300-1500 in the

United States [199]. About 900 people died from the disease in Europe between 1993 and

2003 [121]. Both the global incidence of disease and resulting mortality have declined

in recent years. According to the WHO, deaths attributable to malaria in 2010 were
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reduced by over a third from a 2000 estimate of 985,000, largely due to the widespread

use of insecticide-treated nets and artemisinin-based combination therapies [104].

The geographic distribution of malaria within large regions is complex, and malaria-

afflicted and malaria-free areas are often found close to each other [85]. Malaria is

presently endemic in a broad band around the equator, in areas of the Americas, many

parts of Asia, and much of Africa; in Sub-Saharan Africa, 85-90% of malaria fatalities

occur [130] (see Figure 2.1).

Malaria is prevalent in tropical and subtropical regions because of rainfall, consistent

high temperatures and high humidity, along with stagnant waters in which mosquito

larvae readily mature, providing them with the environment they need for continuous

breeding.

Figure 2.1: Approximation of the parts of the world where malaria transmission occurs.

Five species of Plasmodium can infect and be transmitted by humans. The vast

majority of deaths are caused by P. falciparum and P. vivax, while P. ovale, and P.

malariae cause a generally milder form of malaria that is rarely fatal. The zoonotic

species P. knowlesi, prevalent in Southeast Asia, causes malaria in macaques but can

also cause severe infections in humans. Malaria is typically diagnosed by the microscopic

examination of blood using blood films, or with antigen-based rapid diagnostic tests.
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Modern techniques that use the polymerase chain reaction to detect the parasite’s DNA

have also been developed, but these are not widely used in malaria-endemic areas due

to their cost and complexity.

2.1.2 Life cycle

The pathogenesis of human P. falciparum infection is a complex process (see Figure

2.2). In the life cycle of Plasmodium, a female Anopheles mosquito (the definitive host)

transmits a motile infective form (called the sporozoite) to a vertebrate host such as a

human (the secondary host), thus acting as a transmission vector. A sporozoite travels

through the blood vessels to liver cells (hepatocytes), where it reproduces asexually

(tissue schizogony), producing thousands of merozoites; this is the starting point of the

erythrocytic phase (we refer to [75] for mechanistic mechanism of the release). During

this phase, the free merozoites infect new red blood cells and initiate a series of asexual

multiplication cycles (blood schizogony) that produce 8 to 32 new infective merozoites,

at which point the cells burst and the infective cycle begins anew.[131] Other merozoites

develop into immature gametes, or gametocytes. When a fertilized mosquito bites an

infected person, gametocytes are taken up with the blood and mature in the mosquito

gut. The male and female gametocytes fuse and form zygotes (ookinetes), which develop

into new sporozoites. The sporozoites migrate to the insect’s salivary glands, ready to

infect a new vertebrate host. The sporozoites are injected into the skin, alongside saliva,

when the mosquito takes a subsequent blood meal [41].

Only female mosquitoes feed on blood; male mosquitoes feed on plant nectar, and

thus do not transmit the disease. The females of the Anopheles genus of mosquito prefer

to feed at night. They usually start searching for a meal at dusk, and will continue

throughout the night until taking a meal [11]. Malaria parasites can also be transmitted

by blood transfusions, although this is rare [177].

The blood stage of the parasites is mainly responsible for the clinical symptoms of

the infection. The rupture of the parasitized red bood cells (pRBC) causes clinical fever.

Moreover P. falciparum infection is the most frequent acquired red blood cells (RBC)

disorders in the world (see [84], we also refer to the review paper of Buffet et al [23]

and the references therein), that may also lead to severe symptoms such as anaemia or

cerebral malaria (see [77]).
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Figure 2.2: Malaria life cycle

2.1.3 Resistance to malaria drugs.

Despite a need, no effective vaccine currently exists, although efforts to develop one

are ongoing. Several medications are available to prevent malaria in travellers to malaria-

endemic countries (prophylaxis). A variety of antimalarial medications are available.

Severe malaria is treated with intravenous or intramuscular quinine or, since the mid-

2000s, the artemisinin derivative artesunate, which is superior to quinine in both children

and adults and is given in combination with a second anti-malarial such as mefloquine.

Resistance has developed to several antimalarial drugs and many drugs are out of use;

for example, chloroquine-resistant P. falciparum has spread to most malarial areas, and

emerging resistance to artemisinin has become a problem in some parts of Southeast

Asia.

The emergence and spread of antimalarial drug resistance poses a severe and increas-

ing public health threat. All the most effective drugs that we have had in the last few
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decades have been one by one rendered useless by the remarkable ability of this parasite

to mutate and develop resistance. The P. falciparum parasite is now resistant to all

of the used antimalarial drugs, even to the latest artemisinin-based combination treat-

ments (see Figure 2.3). Failures in prophylaxis or treatments induce the re-emergence

of parasite related morbidity and mortality. Knowledge about resistance mechanisms

involved may allow the development of new drugs that minimize or circumvent drug

resistance, may allow the identification of new targets for drug development and to

identify molecular markers for malaria resistance surveillance. Resistance is often asso-

ciated with 1) inhibition of alteration of key enzymes that are targets for antimalarial

drugs or 2) alteration of drug accumulation into the parasite which results from reduced

uptake of the drug, an increased efflux, or a combination of the two processes [185].

Figure 2.3: Introduction of malaria drugs and development of resistance (R) of P. fal-

ciparum.

2.2 HBV biology

Hepatitis B virus (HBV) infection is widespread in many parts of the world, espe-

cially in Africa, Southeast Asia, the Middle East, South and Western Pacific islands, the
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interior Amazon River basin, and certain parts of the Caribbean (Centers for Disease

Control and Prevention (CDC[30])). By the estimation of the World Health Organi-

zation (WHO[217]), about 2 billion people have been infected with HBV. An estimate

of 600,000 persons die each year due to the acute or chronic consequences of the virus

(WHO [217]).

Approximately 5% of all acute HBV infections progress to chronic infection, with

the risk of chronic HBV infection decreasing with age. As many as 90% of infants who

acquire HBV infection from their mothers at birth become chronically infected. Of

children who become infected with HBV between 1 year and 5 years of age, 30% to 50%

become chronically infected. By adulthood, the risk of acquiring chronic HBV infection

is approximately 5% (see Fig. 2.4).
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Figure 2.4: Outcome of HBV infection by age at infection

2.2.1 Epidemiology

Reservoir

Although other primates have been infected in laboratory conditions, HBV infection

affects only humans. No animal or insect hosts or vectors are known to exist (CDC).
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Transmission

The virus is transmitted by parenteral or mucosal exposure to hepatitis B surface

antigen(HBsAg)-positive body fluids from persons who have acute or chronic HBV in-

fection. The highest concentrations of virus are in blood and serous fluids; lower titers

are found in other fluids, such as saliva and semen. Saliva can be a vehicle of trans-

mission through bites; however, other types of exposure to saliva, including kissing, are

unlikely modes of transmission. There appears to be no transmission of HBV via tears,

sweat, urine, stool, or droplet nuclei. One of the most important route of transmission

is by sexual contact, either heterosexual or homosexual, with an infected person. Fecal-

oral transmission does not appear to occur. However, transmission occurs among men

who have sex with men, possibly via contamination from asymptomatic rectal mucosal

lesions.

Perinatal transmission from mother to infant at birth is very efficient. If the mother

is positive for both HBsAg and hepatitis B e antigen (HBeAg), 70%-90% of infants

will become infected in the absence of postexposure prophylaxis. The risk of perinatal

transmission is about 10% if the mother is positive only for HBsAg. As many as 90%

of these infected infants will become chronically infected with HBV.

The frequency of infection and patterns of transmission vary in different parts of the

world. Approximately 45% of the global population live in areas with a high prevalence

of chronic HBV infection (8% or more of the population is HBsAg positive), 43% in

areas with a moderate prevalence (2% to 7% of the population is HBsAg positive), and

12% in areas with a low prevalence (less than 2% of the population is HBsAg positive).

Source: CDC.

Communicability

Persons with either acute or chronic HBV infection should be considered infectious

any time that HBsAg is present in the blood. When symptoms are present in persons

with acute HBV infection, HBsAg can be found in blood and body fluids for 1-2 months

before and after the onset of symptoms.
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2.2.2 Public health policy against HBV

Hepatitis B vaccines have been available in the United States since 1981. However,

the impact of vaccine on HBV disease has been less than optimal.

The apparent lack of impact from the vaccine can be attributed to several factors.

From 1981 until 1991, vaccination was targeted to persons in groups at high risk of

acquiring HBV infection. A large proportion of persons with HBV infection (25% to

30%) deny having any risk factors for the disease. These persons would not be identified

by a targeted risk factor screening approach.

A comprehensive strategy to eliminate hepatitis B virus transmission was recom-

mended in 1991 by WHO; it includes prenatal testing of pregnant women for HBsAg to

identify newborns who require immunoprophylaxis for prevention of perinatal infection

and to identify household contacts who should be vaccinated, routine vaccination of

infants, vaccination of adolescents, and vaccination of adults at high risk for infection.

Recommendations to further enhance vaccination of adults at increased risk of HBV

infection were published in 2006.

Routine infant immunization

This routine infant vaccination is to vaccinate their new-borns from a young age.

Great efforts should be given to routine vaccination of infants, because most chronic

infections are acquired during the earliest childhood, especially in countries with medium

or high endemicity. It is also a high priority in countries with low endemicity, because it

is the only strategy to avoid infection of all age groups (children, adolescents and adults).

In these countries, the majority of chronic infections are acquired during adolescence

or adulthood, but infections that occur during childhood play an important role in

maintaining the burden of chronic infection.

Prevention of perinatal transmission of hepatitis B

Perinatal HBV transmission can be prevented by identifying HBV-infected (i.e., Hep-

atitis B surface antigen [HBsAg]-positive) pregnant women and providing Hepatitis B

immune globulin and Hepatitis B vaccine to their infants within 12 hours of birth.

Preventing perinatal HBV transmission is an integral part of the national strategy
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to eliminate Hepatitis B. Generally, it consist on: (i) Universal screening of pregnant

women for HBsAg during each pregnancy; (ii) Case management of HBsAg-positive

mothers and their infants; (iii) Provision of immunoprophylaxis for infants born to

infected mothers, including Hepatitis B vaccine and Hepatitis B immune globulin and

(iv) Routine vaccination of all infants with the Hepatitis B vaccine series, with the first

dose administered at birth.

The major obstacle is that screening pregnant women and infants research to infected

mothers are operations that require significant resources, which is sometimes expensive

for most countries with high prevalence. Prevention of perinatal transmission of hepatitis

B is of major importance because an estimated 90% of children infected at birth become

chronic in adulthood.

Catch-up Immunization Schedule

Catch-up strategies targeted at older age groups or groups with risk factors for acquir-

ing HBV infection should be considered as a supplement to routine infant vaccination in

countries of intermediate or low hepatitis B endemicity. In such settings, a substantial

proportion of the disease burden may be attributable to infections acquired by older

children, adolescents and adults. In countries of high endemicity, large-scale routine

vaccination of infants rapidly reduces the transmission of HBV. In these circumstances,

catch-up vaccination of older children and adults has relatively little impact on chronic

disease because most of them have already been infected.

It is particularly important that the catch-up vaccination in older age classes does

not impede efforts to achieve full immunization of infants and to prevent mother to child

transmission of the virus by administering to the last dose of vaccine at birth (WHO).
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Chapter Three

Hepatitis B virus and within-host

models.

3.1 Within-host models.

The within-host models describe the parasites dynamics and their interaction with

the host cells. For example P. falciparum attacks uninfected red blood cells and H.I.V.

attacks auxiliary lymphocytes CD4+T.

There has been numerous works on pathogen within-host dynamics in P. falciparum

infection. We refer to [4, 47, 78, 79, 80, 81, 98, 101, 103, 151, 156, 157, 164, 191].

We also refer to the survey paper of Molineaux and Dietz in [165] and the references

therein as well as the following recent papers on this topic [111, 205, 134, 189, 18, 163].

Mathematical models associated to within-host P. falciparum malaria infection have

been proposed since the pioneer work of Anderson, May and Gupta [2]. This model

was intended to explain experimental observations, namely parasitaemia, that is, the

concentration of parasitized red blue cells and also the decrease of the uninfected red

blue cells leading to anaemia. Such ideas have been further developed in [4, 78, 98, 101,

103, 191]. We also refer to Li et al [134] for a mathematical model with immune response

yielding to sustained oscillations. However all these works do not take into account an

important characteristic of P. falciparum which is sequestration of merozoites with the

pRBC and their ruptures [111]. Such an issue has been considered using discrete age-

structured systems of equations (see for instance [79, 80, 81, 159]) with constant red

blue cells population assumption. We refer to Iggidr et al. [111] for a mathematical

study of a discrete age-structured model with varying red blue cells concentration.
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3.1.1 Anderson-May-Gupta’s models

The original Anderson-May-Gupta’s (AMG) model is the following




ẋ = Λ− µxx− βxm,

ẏ = βxm− µy − ρyyI,

ṁ = rµyy − µm − βxm− ρmIm,

İ = ρmIm+ ρyIy − µII,

(3.1)

where in x denotes the concentration of uninfected red blood cells (uRBC), while y

denotes the concentration of parasitized red blue cells (pRBC). Finally m and I de-

notes the concentration of free merozoites in the blood stream and immune effectors

respectively. The parameters µx, µy, µm and µI are the death rates of uRBC, pRBC,

free merozoites respectively and immune effectors. The parameter β is the contact rate

between uRBC and merozoites. Uninfected blood cells are recruited at a constant rate

Λ from the bone marrow and have a natural life-expectation of 1/µx ≈ 120 days. Death

of a pRBC results in the release of an average number of r merozoites. The parameters

ρy is the removal rate of pRBC by immune effectors and ρm is the proliferation rate of

immune effectors by free merozoites.

3.1.2 Hetzel-Anderson’s model

The model of Hetzel-Anderson (HA) can be consider as an extension of AMG’s model,

according to the immune effectors dynamics.




ẋ = Λ− µxx− βxm,

ẏ = βxm− µy − ρyyI,

ṁ = rµyy − µm − βxm− ρmIm,

İ = ρmIm+ ρyIy − µII − µII
2,

(3.2)

The more general AMG’s model, given in Tewa et al. [205], is defined by




ẋ = f(x)− µxx− βxm,

ẏ = βxm− µy − ρyyI,

ṁ = rµyy − µm − uβxm− vβym− ρmmI,

İ = ψ(y,m, I),

(3.3)

where the function f(x)− µxx is of class C1 and models the recruitment rate of uRBC

from borne marrow while the parameters u and v can only take the values 0 or 1. I
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denotes the concentration of immune effectors and the function ψ represents the pro-

duction of immune effectors in reaction to the parasites. From model (3.3) they observe

that the immune response against merozoites is more difficult to observe than immune

response against pRBC. Another observation is that the immune response increase when

the parasites persist.

3.1.3 Barbara Hellriegel’s model [98]

Hellriegel’s model differs of the AMG and HA models by the following: without

parasites, that is pRBC and free merozoites, the immune response will not disappear.

The model of Hellriegel also takes into account multistrains malaria infections. The

model reads as




ẋ = Λ− µxx− β1m1x− β2m2x,

ẏ1 = β1m1x− (c1 + µy)y1 − (k11I1 + k12I2)y1,

ẏ2 = β2m2x− (c2 + µy)y2 − (k21I1 + k22I2)y2,

ġ1 = c1y1 − αyg1 − (l11I1 + l12I2)g1,

ġ2 = c2y2 − αyg2 − (l21I1 + l22I2)g2,

ṁ1 = rµyy1 − µmm1 − β1m1x− (h11I1 + h12I2)m1,

ṁ2 = rµyy2 − µmm2 − β2m2x− (h21I1 + h22I2)m2,

İ1 = (σ1m1 + γ1y1 + λ1g1)I1 − µII1 +
ǫ
2
,

İ2 = (σ2m2 + γ2y2 + λ2g2)I2 − µII2 +
ǫ
2
,

(3.4)

Wherein g is the gametocytes concentration.

3.1.4 The models of McKenzie et al. [156, 157, 155, 151]

McKenzie’s et al models consider the dynamics of pRBC and gamatocytes. Denoting

the pRBC concentration and the gametocytes concentration respectively by y and g;

the model reads as 



ẏ = ay − cyI − fi(y, I),

ġ = f1(y, I)− pg,

İ = f2(y, I)− cIy − qI,

(3.5)

wherein I denotes the concentration of immune effectors and

f1(y(.), I(.)) ∈
{
gay(.); gbI(.)y(.); gcy

2(.)
}
,

R. DJIDJOU DEMASSE c© 2014



3.1 Within-host models. 25

and

f2(y(.), I(.)) ∈ {s1y(.); s2I(.)yv; s3y(.)(I(.− τ)} .

3.1.5 Discrete age-structured models

The models of Gravenor and Kwiatkowski [80, 81] consider a discrete age-structured

of the pRBC dynamics. The model is a catenary compartmental model. If we distinguish

k stages, the linear model is given by




ẏ1 = rγk − (µ1 + γ1)y1,

ẏ2 = γ1y1 − (µ2 + γ2)y2,

· · ·
ẏi = γi−1yi−1 − (µi + γi)yi,

· · ·
ẏk = γk−1yk−1 − (µk + γk)yk.

(3.6)

The state yi denotes the concentration of pRBC of class i. The rate transmission from

compartment i to the following i + 1 is γi and the mortality of class i is µi. In the

last stage k the rupture of the erythrocyte releases r merozoites which invade fresh

erythrocytes giving rγk erythrocytes in stage 1.

In [111], Iggidr et al. considered an extension of model (3.6) as follows




ẋ = f(x)− µx − βxm,

ẏ1 = βxm− (µ1 + γ1)y1,

ẏ2 = γ1y1 − (µ2 + γ2)y2,

· · ·
ẏi = γi−1yi−1 − (µi + γi)yi,

· · ·
ẏk = γk−1yk−1 − (µk + γk)yk,

ṁ = rγkyk − µm − uβxm.

(3.7)

Note that in this latter work multistrain competitive interaction is also considered and

the authors derived the so-called competitive exclusion principle. Here we will extend

these results to an age-structured model.
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3.1.6 Within-in host HIV models

Earlier models of virus infection were commonly defined by ordinary differential equa-

tions (ODEs) (Nowak and May [176]; Perelson and Nelson [181]). In 1989, Perelson et

al. has published two popular within-host HIV models (see [181]). Perelson et al. model

is the following: 



Ṫ = s− rT

(
1− T + TL

Tmax

)
k1V T − µTT,

ṪL = k1V T − µTTL − k2TL,

ṪA = k2TL − µbTA − kV T,

V̇ = µbNTA − k1V T − µV − cV − kV T.

(3.8)

The general class of Perelson models is describe as follows (see [182]):




Ṫ = f(T )− kV T,

Ṫ ∗ = kV T − βT ∗,

V̇ = βNT ∗ − cV − ukV T,

(3.9)

wherein T is the concentration of uninfected red blood cells, T ∗ is the concentration of

parasitized red blood cells and V is the concentration of free parasites in the blood. The

parameter u takes the value 0 or 1.

For f(T ) = δ − αT + pT
(
1− T

Tmax

)
we obtain Perelson-Nelson model [181]. And

for f(T ) = δ − αT we derive Nowak-May model [176]. Parameters α, β and c are

respectively the rate of natural mortality of uninfected red blood cells, infected red

blood cells and free parasites. k is the contact rate between free parasite and uninfected

red blood cells. δ is the constant rate of lymphocytes production T , p is the growth rate

in logistic equation and Tmax is the carrying capacity of red blood cells population.

In [182], Perelson et al. estimated the average life span of a productively infected

cell, the maturation time of HIV virion, the viral productive rate, and the loss rate

of infected cells according to a set of viral load data collected from infected patients.

Considering the latent period between initial infection of a cell and production of sub-

sequent virus particles in reality, Herz et al. [99] first incorporated a discrete delay into

their HIV infection model and showed that this intracellular delay would substantially

shorten the estimates for the half-life of free virus obtained from clinical data. The in-

corporation of time delay in virus infection dynamics leads to a class of delay differential
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equation (DDE) models. Thereafter, models of HIV infection dynamics combining drug

treatment and discrete or distributed delays have generally been studied analytically

and numerically by Perelson and collaborators [162, 171, 170] and other researchers

[39, 105, 135, 137].

Recently, Nelson et al. [172] developed an age-structured model of HIV infection, in

which the production rate of viral particles and the death rate of productively infected

cells are allowed to vary and depend on two general functions of age, p(a) and β(a),

respectively. Nelson’s age-structured model without drug treatment is formulated as

follows:

Ṫ (t) = s− αT (t)− kV (t)T (t),

∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −β(a)i(t, a),

V̇ (t) =

∫ ∞

0

p(a)i(t, a)da− cV (t),

(3.10)

with the boundary condition

i(t, 0) = kV (t)T (t).

Here, i(t, a) denotes the density of infected T cells of infection age a (i.e., the time that

has elapsed since an HIV virion has penetrated cell) at time t.

Huang et al. [105] recently study the basic age-structured population model describ-

ing the HIV infection process, which is defined by PDEs (based on Nelson’s age-strutured

model). By using the direct Lyapunov method and constructing suitable Lyapunov func-

tions, they established (Huang at al) dynamical properties of the age-structured model

without (or with) drug treatment. The results show that the global asymptotic stabil-

ity of the infection-free steady state and the infected steady state depends only on the

basic reproductive number determined by the burst size. Further, they (Huang at al.)

establish mathematically that the typical ODE and DDE (delay differential equation)

models of HIV infection are equivalent to two special cases of PDE models.

3.2 Hepatitis B virus models.

In this section we summarize some well know hepatitis B virus (HBV) in the literature.

Some of them are due to Cvjetanovic et al., 1984 et 1987 ; Pasquini and Cvjetanovic,
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1987 ; Pasquini et al., 1987 ; Williams et al., 1996 ; Garuz et al., 1997; Medley et al.,

2001 ; Kretzschmar et al., 2002.

3.2.1 Anderson-May model

It is probably the first mathematical model for the transmission of HBV using ODEs

(Ordinary Differential Equations). In [3], Anderson and May introduced a HBV model

with differential infectivity. They assume that a proportion (1−π) of susceptible popu-

lation would develop carrier infection and then recovered, while the fraction π of suscep-

tible population would develop chronic infection. Dividing the total population into tree

subclasses: susceptible S, carrier infected I, chronic infected C; Anderson-May model

is the following. 



Ṡ = µN − (β1I + β2C)S − µS,

İ = π1(β1I + β2C)S − (µ+ γ1)I,

Ċ = π2(β1I + β2C)S − (µ+ γ2)I,

Ṙ = γ1I + γ2C − µR,

(3.11)

wherein π1 + π2 = 1, and βi is probability that an infective individual, I (i = 1) or

C (i = 2), will have contact with and successfully infect a susceptible individual. γi is

the rate moving from infectious to recovered. µ is the natural mortality rate and N is

total population (which is assume to be constant). Anderson-May model is an element

of the general models with differential infectivity (see [107]).

In [3], Anderson et al. also consider a second model of HBV infection taking into

account the vertical transmission of the disease (from infected mother to their new-

born). They (Anderson et al.) distinguish susceptible individuals according to their

reaction to infection and they assume that asymptomatic carriers will give rise to a

proportion ν asymptomatic carriers. Then the model assume that susceptible population

is subdivided in two groups with proportions π1 and π2 (π1 + π2 = 1). The model is
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formulated as follows:




Ṡ1 = π1µN − π1µνC − (β1I + β2C)S1 − µS1,

Ṡ2 = π2µN − π2µνC − (β1I + β2C)S2 − µS2,

İ = (β1I + β2C)S1 − (µ+ γ1)I,

Ċ = (β1I + β2C)S2 − (µ+ γ2)I + µνC,

Ṙ = γ1I + γ2C − µR,

(3.12)

and where S1 is for susceptible individual which will develop carrier infection, and S2

I=is for susceptible individual which will develop chronic infection.

3.2.2 Edmunds et al. model [68]

Their model focuses on the study of correlation between the age of infection of hep-

atitis B virus and probability from becoming chronic. They thus establish a model gives

a probability law to become chronic with respect to the age. Thus, they proposed the

following model:



p(a) = exp(−ras), a ≥ 6( months),

ppert = 0.885(95%C.L0.84− 0.93), a ≤ 6( months).
(3.13)

Parameters of the model is estimated from maximum likelihood principle, and using

the data of the epidemiological surveillance of hepatitis B in Gambia: r = 0.645 and

s = 0.455.

3.2.3 Medley et al. model (Williams et al., 1996; Medley et al.

2001) [67, 160, 215]

Williams et al. [215] have proposed a mathematical model applied to UK data. This

deterministic model, structured in 12 age classes, takes into account the vertical and

sexual transmissions of hepatitis B virus. They consider separately the dynamics of

the epidemic in erosexuels and male homosexuals population. The host population is

separated into six compartments: susceptibles, latently infected, acute infected, immune

after infection, chronic infected and immune following vaccination. Different vaccination

strategies is simulated in the model: Mass vaccination of infants is the least efficient,

while vaccination of new-born, from infected mother, is more efficient. Mass vaccination
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of adolescents is efficient faster than mass vaccination of infants. A second paper of

William et al.( Williams1996) indicates that 40 years is needed to have a good efficiency

of the mass vaccination programm of infants against HBV.

In 2001, Medley et al. [160], have a study of the role of age in carrying on the

level of endemicity: over this age is higher and less endemism is important. These

authors also analyzed the role of influx of virus carriers by immigration from highly

endemic countries. It seems essential role in countries with low endemicity, particularly

in the circulation of hepatitis B, but also the risk that carry viruses pose to the host

region to move to a level of endemicity more high. This risk may justify less efficient

short-term strategies targeted at populations at risk, but still interesting strategies mass

immunization in terms of public health in the long term.

3.2.4 Age-structured models

Age-structured models have also been used to model the transmission dynamics of

HBV by some researchers; see for instance Edmunds et al.[68], McLean and Blumberg[158],

Zhao, Xu, and Lu[221], Zou, Ruan and Zhang[222].

Recently, Zou, Ruan and Zhang[223] have proposed a mathematical model for the

transmission of HBV with susceptible, latently infected, acutely infectious, carrier, re-

covered, and immune following vaccination. The variables and model structure are de-

scribed in Figure 3.1. By determining the basic reproduction number, they (Zou et al.)

study the existence and stability of the disease-free and endemic steady state solutions

of the model. They also provided numerical simulations to find optimal strategies for

controlling the transmission of HBV. The analytical results and numerical simulations

of the model suggest that the optimal control strategy is a combination of immunization

of newborns and retroactive immunization of susceptible adults. But, to analyzed the

model Zou et al. ignored the perinatal infection of HBV (vertical transmission of the

disease) and deaths directly related to HBV. These assumptions are not entirely realistic

in many part of the world. In fact, HBV prevalence is highest in sub-Saharan Africa

and East Asia. Most people in these regions become infected with the hepatitis B virus

during birth (and childhood) with a high risk (90% at birth) of progressing to chronic

infection (WHO[217] and CDC[30]). Moreover, about 600,000 people die every year due

to the acute or chronic consequences of hepatitis B (WHO[217]); that is deaths directly
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related to HBV should not be neglected.

Figure 3.1: Flowchart of HBV transmission in a population (Ref. Zou et al. 2010[223])
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Chapter Four

Within-host malaria infection and

Anopheles mosquito dynamics.

This chapter is organized in two parts and deals with within-host model for malaria

infection and advection-reaction model for anopheles mosquito dynamics population.

Section 4.2 is concerned by an age-structured within-host model for multi-strain malaria

infections. Section 4.3 is devoted to a mathematical modeling of anopheles mosquito

dynamics population allowing migration.

4.1 Introduction

The global burden of malaria has increased over the past two decades, despite widespread

implementation of control measures including bed nets, new drugs and the World Health

Organization’s strategy which focuses on case finding.

The malaria parasite is transmitted between people by the female Anopheles mosquitoes

and more than 60 species are known to be able to transmit the infection. As a disease

vector, some Anopheles species are more significant than others because of variations in

susceptibility to the parasite or the propensity of the mosquito to bite humans and to

enter houses when looking for a blood meal (see [16], [179]). Both the male and female

Anopheles mosquitoes feed on nectar. However, only the female Anopheles mosquitoes

feed on animal blood, since blood is needed to provide proteins for the development

of their eggs. Thus, the transmission of malaria, from human to human, is essentially

driven by the human biting habit of the mosquito. When the mosquito interacts with

a human, it can either infect or be infected depending on the disease status of both the

mosquito and the human.

On the other hand, natural parasitic infections are often diverse, containing multiple

parasite species and/or distinct genotypes of the same species[187]. Parasites of the
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Plasmodium genus are no exception. Infections of multiple strains or species of parasites

have been widely reported [209, 118, 95, 119] and it may be typical in highly endemic

regions [119, 129]. Growth relationships between parasite types within a single host

have significant evolutionary implications for selection of fitness and drug resistance

traits that can greatly impact public health [188].

There are many reports of multiple infections of human malaria [43, 60, 210, 106, 95].

Wargo et al.[210] found that when a mixed infection containing a drug resistant and drug

sensitive clone is treated with drug, the removal of the sensitive parasite, which in the

absence of drug competitively suppresses the drug resistant clone, leads to competitive

release and allows for the expansion of the drug resistant parasite. We also refer to the

recent paper of [208] where the authors perform in vivo experiments to describe and

quantify the interaction of a two-strain infection. The same authors concluded that a

deeper understanding of the dynamic growth responses of multiple strain P. falciparum

infections, with and without drug pressure, can improve the understanding of the role

of parasite interactions in the spread of drug resistant parasites, perhaps suggesting

different treatment strategies [208].

To summarize the blood stage of the P. falciparum consists in the multiplication

of the number of parasites and the resulting clinical symptoms. This blood stage also

induces a strong competition between the different strains of the parasites that is re-

sponsible for the survival and spread of some particular strains and genetic traits. As

consequence of this selection pressure drug resistance or sensitivity may spread into the

whole population. In this section we consider an age-structured intra-host model for P.

falciparum infection with n different strains for the parasites. The age-structure will

allow us to have a good description of the pRBC rupture and of the merozoites release

phenomenon. The model we shall consider reads as




dx(t)

dt
= Λ− µxx(t)− x(t)

n∑

j=1

βjmj(t);

∂ωj(t, a)

∂t
+
∂ωj(t, a)

∂a
= −(µj(a) + µx)ωj(t, a);

dmj(t)

dt
=

∫ ∞

0

ρy,j(a)ωj(t, a)da− µm,jmj(t)− δjβjx(t)mj(t);

ωj(t, 0) = βjx(t)mj(t); j ∈ {1, 2, · · · , n}.

(4.1)

In (4.1), the RBC population is split into two classes, x(t) denotes the concentration
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of uninfected red blood cells (uRBC) at time t, while ωj(t, a) denotes the age-specific

concentration of pRBC at time t and parasitized since a time a by a specific j-strain.

Finally mj(t) denotes the concentration of free specific j-merozoites in the blood stream.

We briefly sketch the interpretation of the parameters arising in (4.1). Parameters µx,

µm,j respectively denotes the natural death rates for uRBC and for free specific j-

merozoites. Function µj(a) denotes the exit rate of pRBC due to the j-parasites at

age a. The parameter βj describes the contact rate between uRBC and free specific

j-merozoites while Λ denotes the recruitment rate of uRBC from the bone marrow. The

rupture of pRBC at age a results in the release of an average number rj(a) of specific

j-merozoites into the blood stream; so that pRBC infected by a specific j-strain then

produce j-merozoites at age a with the rate ρy,j(a) := rj(a)µj(a). Together with this

description, the quantity ∫ ∞

0

ρy,j(a)ωj(t, a)da,

corresponds to the number of specific j-merozoites produced by pRBC at time t. In the

literature the parameter δj takes the values δj = 0 when the loss of merozoites when

they enter a RBC is ignored or takes the value δj = 1 when this loss is not ignored.

System (4.1) is supplemented together with initial data those properties will described

below: for each j ∈ {1, 2, · · · , n}:

x(0) = x0 ≥ 0, ωj(0, .) = ω0,j(.), mj(0) = m0,j ≥ 0. (4.2)

There has been numerous works on pathogen within-host dynamics in P. falciparum

infection. We refer to [4, 47, 78, 79, 80, 81, 98, 101, 103, 151, 156, 157, 164, 191]. We

also refer to the survey paper of Molineaux and Dietz in [165] and the references therein

as well as the following recent papers on this topic [111, 205, 134, 189, 18, 163]. Let us

observe that the one-strain System (4.1) (namely with n = 1) has been rigorously and

recently studied by Huang et al. [105] in the context HIV infection model (and with

δ = 0).

Mathematical models associated to within-host P. falciparum malaria infection have

been proposed since the pioneer work of Anderson, May and Gupta [2]. This model

was intended to explain experimental observations, namely parasitaemia, i.e., the con-

centration of pRBC and also the decrease of the uRBC leading to anaemia. Such ideas

have been further developed in [4, 78, 98, 101, 103, 191]. We also refer to Li et al
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[134] for a mathematical model with immune response yielding to sustained oscillations.

However all these works do not take into account an important characteristic of P. fal-

ciparum which is sequestration of merozoites with the pRBC and their ruptures [111].

Such an issue has been considered using discrete age-structured systems of equations

(see for instance [79, 80, 81, 159]) with constant RBC population assumption. We re-

fer to Iggidr et al. [111] for a mathematical study of a discrete age-structured model

with varying RBC concentration. Note that in this latter work multi-strain competitive

interaction is also considered and the authors derived the so-called competitive exclu-

sion principle. This principle is well known in the context of theoretical ecology and

states that two competitive species cannot indefinitely occupy the same ecological niche

[22, 24, 27, 53, 98, 152, 153].

Despite the enormous global burden of malaria, after more than a century of re-

search we still have a poor understanding of the mechanistic link between environmen-

tal variables, such as temperature and malaria risk (Lafferty 2009[128]; Paaijmans et

al. 2009[178]; Alonso et al. 2011[1]). Temperature is fundamentally linked to malaria

mosquito and parasite vital rates (see [166] [44]), and understanding the role of temper-

ature in malaria transmission is particularly important in light of climate change.

Knowledge of the population dynamics of the malaria vector is fundamental to the

understanding of malaria epidemiology and the spread of insecticide resistance. There-

fore, studies on the population structure of malaria vectors have important implications

for the prediction and assessment of the effects of many vector control strategies. Due

to global warming, there is a risk of the emergence of malaria in new regions (where

malaria has not been endemic). Thus, the complete understanding of the malaria vector

population dynamics is necessary for gaining insight into the disease spread and the

design of effective vector control strategies. According to all malaria models, little has

been done with regard to the studies on the population dynamics of malaria vectors:

A deterministic differential equation model for the population dynamics of the human

malaria vector, Ngwa 2006[174]; A delay ordinary deterministic differential equation

model for the population dynamics of the malaria vector subject to two forms of the

vector birth rate function (the Verhulst-Pearl logistic growth function and the Maynard-

Smith-Slatkin function), Ngwa et al. 2010 [175]; Temporal models or/and taking into

account one-dimensional spatial components on mosquito population dynamics and SIT
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(Sterile Insect Technology is a nonpolluting method of control of the invading insects

that transmit disease), Manoranjan et al. 1986[149], Lewis et al. 1993[133]; The control

of the disease by the release of sterile or treated males in order to reduce the wild pop-

ulation of anopheles mosquito, Anguelov et al.[6]; A mathematical model to simulate

mosquito dispersal and its control taking into account environmental parameters, like

wind, temperature, or landscape elements Dufourd et al. 2013 [59].

In [59], Dufourd et al. have first consider a temporal compartmental approach and

then include the spatial component that leads to a system of coupled diffusion-advection-

reaction-like equations to model mosquito dispersal. For the temporal model, they (Du-

fourd et al.) derive some theoretical results (existence and uniqueness of a solution,

existence of equilibria, local and global stability) and give some illustration. But for the

diffusion-advection-reaction equations, they only derive a fast algorithm using appropri-

ate numerical methods to illustrate the dynamic of the system.

The aim of this work is: firstly, to perform a mathematical analysis of System (4.1)

and to obtain a generic competitive exclusion principle result. In an other context, let

us mention that the one-strain System (4.1) (namely with n = 1) has been rigorously

and recently studied by Huang et al [105] in the context HIV infection model (and with

δ = 0). Secondly, to develop and analyze an advection-reaction mathematical model

for the dynamics of the malaria vector, taking into account environmental parameters

(such as temperature).

This chapter is organized as follows.

X Section 4.2 deals with the mathematical analysis of with-in host malaria model (4.1).

In Section 4.2.1, we describe the main results that will be proved in this work. Sections

4.2.2 and 4.2.4 are devoted to deriving preliminary results and remarks on (4.1)-(4.2)

that will be used to study the long term behaviour of the problem. Section 4.2.5 is con-

cerned with the proof of the first part of Theorem 4.2.1 below, that roughly speaking

states that when the epidemic threshold (explicitly expressed using the parameters of

the system) T0 ≤ 1, then all the strains asymptotically die out and the parasites cannot

survive. Finally Section 4.2.6 deals with the proof of the second part of Theorem 4.2.1,

that roughly speaking say that when T0 > 1 and under some additional assumptions

on the different strains, then the competitive exclusion principle holds true, that is that

only the strongest strain (using a suitable order) is asymptotically surviving.
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X In sections 4.3, an advection-reaction mathematical model for the dynamics of the

malaria vector, taking into account environmental parameters (like temperature) is de-

veloped and analyzed. Section 4.3.1 is devoted to the mathematical model formulation,

including: the description of the model parameters and the state variables for dynamics

of the malaria vector. Then in section 4.3.2, we derive the existence of positive solutions

to the seasonal model. For the study of the long term behavior of the model, three

threshold parameters R♦, R♦ and R∗ (explicitly expressed using the parameters of the

model) are provided. In section 4.3.3, the mosquito extinction results is formulated;

that is when R♦ < 1, then the mosquito population die out. In sections 4.3.4-4.3.5, we

also derive persistence results to the seasonal model: the weak persistence results when

R♦ > 1 and the strong persistence results when R∗ > 1.

4.2 Age-structured within-host model for multi-strain

malaria infections

In this section we propose an age-structured malaria within-host model taking into

account multi-strains interaction. We provide a global analysis of the model depend-

ing upon some epidemic threshold T0. When T0 ≤ 1, then the disease free equilib-

rium is globally asymptotically stable and the parasites are cleared. On the contrary

if T0 > 1, the model exhibits the competition exclusion principle. Roughly speaking,

only the strongest strain survives while the other strains go to extinct. Under some

additional parameter conditions we prove that the endemic equilibrium corresponding

to the strongest strain is globally asymptotically stable.

4.2.1 Main results

In this section we will state the main results of this work. In order to deal with

system (4.1)-(4.2) we first provide a parameter reduction by introducing the following

unknown functions

yj(t, a) = ωj(t, a)e
∫ a
0 µj(l)dl.
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Therefore, by introducing the vector valued functions y(t, a) = (y1(t, a), .., yn(t, a))
T ,

m(t) = (m1(t), .., mn(t))
T as well as the matrix

β = diag (β1, .., βn) , δ = diag (δ1, .., δn) , En = (1, .., 1)T ∈ Rn,

µm = diag (µm,1, .., µm,n) , ρ(a) = diag (ρ1(a), .., ρn(a)) ,

System (4.1)-(4.2) re-writes as




dx(t)

dt
= Λ− µxx(t)− x(t)ET

n βm(t);

∂ty(t, a) + ∂ay(t, a) = −µxy(t, a);
y(t, 0) = βx(t)m(t);

dm(t)

dt
=

∫ ∞

0

ρ(a)y(t, a)da− µmm(t)− δβx(t)m(t);

(4.3)

supplemented together with initial data

y(0, .) = y0(.) ∈ L1
(
0,∞;Rn+

)
x(0) = x0 ≥ 0; m(0) = m0 ∈ Rn

+; (4.4)

and wherein we have set

ρj(a) = ρy,j(a)e
−

∫ a
0 µj(l)dl, j = 1, .., n, a ≥ 0.

In (4.4) Rn
+ denotes the positive orthant, namely Rn

+ = {(x1, .., xn)T ∈ Rn : xi ≥
0, ∀i = 1, .., n}.

In what follow we shall discuss the asymptotic behaviour of System (4.3)-(4.4) and

we will make use the following assumption.

Assumption 4.2.1. We assume that, for each j ∈ {1, 2, · · · , n} functions ρj belong to

L∞
+ (0,∞,R+) while Λ > 0, µx > 0, µm,j > 0, δj ∈ {0, 1} and βj > 0.

As mentioned in the introduction we shall focus on the competitive exclusion principle

generated by (4.3). Roughly speaking, to achieve such a goal we will provide an order

to separate the different strains of the parasite. Hence let us introduce, for each strain,

the quantity T i
0 defined by

T i
0 =

βiΛ

µxµmi

(∫ ∞

0

ρi(a)l(a)da− δi

)
, (4.5)

as well as

T0 = max
1≤i≤n

T i
0 ; (4.6)
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where function l ≡ l(a) is defined by

l(a) = e−µxa. (4.7)

As it will be seen below (see Theorem 4.2.1) the situation when T0 ≤ 1 is rather

simple because the infection asymptotically dies out. When T0 > 1 the situation is

much more involved. We expect that System (4.3)-(4.4) exhibits the competition ex-

clusion principle, that, roughly speaking, say that in presence of multiple strains only

the strongest can asymptotically survive. The parameters {Ri
0}i=1,..,n (see (4.5)) will

be used to quantify the strength of the different strain-specific infection. We will now

introduce some definitions. Let us first of all define the set of strains that can potentially

survive S defined by

S =




{i ∈ {1, .., n} : T i

0 > 1} if T0 > 1

∅ if T0 ≤ 1.

(4.8)

On the set of index {1, .., n} we define an order relation by

i✂ j ⇔ T i
0 ≤ T j

0 and i✁ j ⇔ T i
0 < T j

0 .

We would like to emphasize that when parameter δj are non-zero, the set of threshold

{T i
0 }i=1,..,n is different from the set of the different strain specific basic reproduction

numbers. Indeed the strain i−specific basic reproduction number reads as (see Section

4.2.3 for the computation):

Ri
0 = 1 +

µm,i
µm,i + δiβixf

(
T i
0 − 1

)
with xf =

Λ

µx
. (4.9)

Hence the above described ordered may be different from the one induced by the strain

specific basic reproduction numbers.

We also denote by max✁ the maximum operator associated to the order ✂. Note that

in general the operator max✁ is multi-valued and is defined by

max✁{i, j} =





i if T i
0 > T j

0 ,

j if T j
0 > T i

0 ,

{i, j} if T i
0 = T j

0 .

A subset {i1, .., ip} ⊂ {1, .., n} := Nn is said to be strictly ordered if there exists a

permutation σ of {1, .., p} such that

iσ(1) ✁ ..✁ iσ(p).
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Let us notice that on a strictly ordered set, the operator max✁ becomes a single-valued

map. Let us also mention that for biological reason, since we aim to deal with com-

petitive exclusion principle for our multi-strain model, it is relevant to assume that the

different strain is distinguishable. Hence we shall assume in most parts of this work

that, the species that can potentially survive are distinguishable, that is re-formulated

by assuming the set {i ∈ Nn : T i
0 > 1} is strictly ordered.

Before starting our main result let us introduce further notations that correspond to

the stationary states of (4.3) (see Proposition 4.2.3): xf = Λ
µ

and for each k ∈ S (when

S 6= ∅) :

xke =
xf
T k
0

; mk
e =

µx(T k
0 − 1)

βk
(δi,k)

n
i=1 ; yke(a) = βix

k
ee

−µxamk
e , (4.10)

wherein δi,j denotes the usual Kronecker symbol.

For technical reason in relation to some computations we shall assume some relation

of the parameters. The set S (when S 6= ∅) satisfies condition (Q) if

(
T i
0 − 1

)
δiβixf ≤ Ri

0µmi, ∀i ∈ S. (4.11)

Let us first notice that the above condition is always satisfied when δi = 0. When

δi > 0 then the above parameter condition can re-written in term of a limitation of the

strain specific basic reproduction numbers (see (4.9)). Indeed, if one sets γi =
δiβixf
µmi

then condition (Q) re-writes as

Ri
0 ≤ max

(
1 +

1

1 + 2γi
; 1 +

1 +
√
1 + 4γi
2γi

)
, ∀i ∈ S.

Using the above notations the main result of this work reads as

Theorem 4.2.1. Let Assumption 5.1.1 be satisfied. Assume that the set S is strictly

ordered and satisfies the parameter condition (Q). Let x0 ≥ 0, m0 ∈ Rn
+ and y0 ∈

L1
(
0,∞;Rn

+

)
be a given initial data and let us denote by (x(t),m(t),y(t, .)) the solution

of (4.3)-(4.4). Then the following holds true:

(i) If J := S ∩
{
k ∈ {1, .., n} : mk +

∫∞
0
y0,k(a)da > 0

}
= ∅ then

lim
t→∞

(x(t),m(t),y(t, .)) =
(
xf , 0Rn, 0L1(0,∞;Rn)

)
,

wherein the above convergence holds for the topology of R× Rn × L1 (0,∞;Rn).
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(ii) If J 6= ∅ then, setting i = max✁J and recalling (4.10) one has

lim
t→∞

(x(t),m(t),y(t, .)) =
(
xie,m

i
e,y

i
e(.)
)
,

for the topology of R× Rn × L1 (0,∞;Rn).

The first part of this result applies in particular when S = ∅, namely T0 ≤ 1. In

that case all the strains asymptotically die out and the parasites cannot survive. Let

us notice that the condition T0 ≤ 1 can be re-written in term of basic reproduction

R0 := max {Ri
0, i ∈ Nn} as R0 ≤ 1. The second part of the above theorem says that

when different strains are sufficiently strong to survive, then only the strongest present

strain (with respect to the order ✂) is surviving in the long term.

Remark 4.2.1. The parameter condition (Q) seems to be only a technical condition

that we cannot overcome. From numerical computations, the equilibrium associated to

the strongest strain continue to be globally stable even if condition (Q) is violated.

Table 4.1: Parameters values of model (4.1)

Parameters Description Value and Range References

Λ Production rate of RBC 1 RBC.h−1 Assumed

β1; β2 Infection rate of uRBC 0.02/24 RBC ml−1 .h−1 [2]

µx Natural death rate of uRBC 0.00833/24 RBC .h−1 [2]

µm1;µm2 Decay rates of malaria parasites 48/24 [101]

r1; r2 Merozoite mean rate produce by pRBC 16 [2]

Table 4.2: Initial values in model (4.1)

Variables Description Initial Values References

x(t) Population of uRBC 5× 109 RBC.ml−1 [2, 31, 101, 159]

ω1(t, .); ω2(t, .) Population of pRBC 0 RBC.ml−1 [2, 31, 101, 159]

m1(t); m2(t) Population of malaria parasite 107 RBC.ml−1 [2, 31, 101, 159]

We now provided some numerical simulations to illustrate the dynamics of Sys-

tem (4.1) in the case of two strains interactions (n = 2). They highlight the prin-

ciple of competitive exclusion. The upper bound age of RBC infectivity is set to
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a† = 59.3 hours ≈ 2.47 days [45]. Let us recall that when the meroziotes enter the

RBC they grow and reproduce during the sequestration period. This period correspond-

ing to the i-strain is denoted by τi ∈ [44; 52](hours) (see [45]). Following Su, Ruan and

Wei in [196] we will consider that the age-specific exit rate of pRBC µi(a) for the i-strain

takes the form

µi(a) :=





0, if a < τi;

di(a), if a ≥ τi,

together with d1 = d2 ≡ 0.98 while τ1, τ2 ∈ {48; 50}(hours). The other parameters of

the model are described in Table 4.1.

Let us assume that the sequestration period for the production of free merozoites

is τ1 = 48 hours for the strain 1 and τ2 = 50 hours for the strain 2. This means that

pRBC with strain 2 release the new parasites two hours later than the pRBC infected by

strain 1. The probability of pRBC to be still infected until age a approximately equals

to 1 before two days of infection and exponentially decreases to zero after 48 hours for

strain 1 and after 50 hours for strain 2 (see Figure 4.1c). The death rate of pRBC is

illustrated by Figure 4.1a and the average number of parasites produced by pRBC after

the sequestration period is represented in Figure 4.1b.

Using contact rate β1 = β2 = 0.02/24 Figure 4.2a represents the superimposition

of the time evolution two strains alone (that is without interaction) while Figure 4.2b

corresponds to the time evolution of competitive interactions between the two strains.

Since the sequestration period for strain 1 is smaller then strain 1 becomes the strongest

and it competitively suppresses strain 2. Let us also notice that the shape of these curves

are qualitatively close to the experimental situations recently obtained by Wacker et al

in [208]. Using these parameter sets, the basics reproduction rates for the system with

strain 1 only (resp. strain 2 only) is computed as R1
0 = 5.75 (resp. R2

0 = 4.74); so that

the basic reproduction rate for model (4.1) is R0 = 5.75.

Let us finally emphasize that using the parameter set described in Tables 4.1 and 4.2,

the weakest strain, namely, strain 2, is quickly suppressed after 20 days. This duration

plays an important role on the transmission of gametocytes to mosquitoes. Note that

such a conclusion has been reached without taking into account the interactions of the

different strains during the liver stage of the disease. This could have an influence on

the time needed to suppress the weakest strain during the blood stage and thus on the
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spread of the different strains. This will be studied in a forthcoming work.
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Figure 4.1: Parameters of the model (4.1) for variable sequestration period: exit rate of

pRBC (Fig. 1 (a)); density of parasites produced by pRBC (Fig. 1 (b)) and the lifetime

of pRBC (Fig. 1 (c)). pRBC by strain 1 (resp. by strain 2) release free merozoites after

48 hours (resp. 50 hours), that is τ1 = 48 (resp. τ2 = 50). All the other parameters are

given by Table 4.1.
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Figure 4.2: On the left hand-side superimposed time evolution of the density of mero-

zoites for strains 1 and 2 alone; on the right hand-side competitive suppression of strain

2 when the two strains are mixed. However, with this parameters, the basics reproduc-

tion rates of the model only with strain 1 (resp. 2) is R1
0 = 4.79 (resp. R2

0 = 3.95).

That is the basic reproduction rate for model (4.1) is R0 = 4.7975. To highlight the

competition of the two strains, initial value for the population of malaria parasites is

assumed to be 107 (resp. 5× 107) RBC.ml−1 for strain 1 (resp. 2). Other initial values

in model (4.1) are given by Table 4.2.
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4.2.2 Existence of semiflow and basic properties.

The aim of this section is to derive preliminary remarks on (4.3)-(4.4). These results

include the existence of the unique maximal semiflow bounded dissipative associated to

this system and the steady states of system (4.3)-(4.4).

Existence of semiflow.

In this section we shall deal with (4.3)-(4.4) using an integrated semigroup approach.

This approach has been introduced by Thieme in [200] in the context of age-structured

equations. We also refer to [123, 140, 144, 145, 58] and [201, 203] (see also the references

cited therein).

Let us introduce the Banach space X̂ := Rn × L1(0,∞;Rn) as well as its positive

cone X̂+ = Rn
+ × L1(0,∞;Rn

+) and the linear operator Â : D(Â) ⊂ X̂ → X̂ defined by

D(Â) = {0Rn} ×W 1,1 (0,∞;Rn) , Â


 0Rn

ϕ


 =


 −ϕ(0)

−ϕ′ − µxϕ


 . (4.12)

Next consider the Banach space X and its positive cone X+ defined by

X = R× Rn × X̂ and X+ = R+ × Rn
+ × X̂+,

endowed with the norm
∣∣∣
∣∣∣(x, α, 0Rn , ϕ)T

∣∣∣
∣∣∣
X
= |x|+

n∑

i=1

|αi|+
n∑

i=1

||ϕi||L1(0,∞;R), ∀ (x, α, 0Rn , ϕ)T ∈ X.

We easily find that the space X+ is a normal cone with respect to the following partial

order: 


x

α

0Rn

ϕ




≤




y

β

0Rn

ψ




⇔




x

α

0Rn

ϕ




−




y

β

0Rn

ψ




∈ X+.

Let A : D(A) ⊂ X → X be the linear operator defined by

D(A) = R× Rn ×D
(
Â
)
, A = diag

(
−µx,−µm, Â

)
. (4.13)

Note that the domain of operator A is not dense in X because of the identity

D(A) = R× Rn × {0Rn} × L1(0,∞;Rn) 6= X.
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Finally let us introduce the nonlinear map F : D(A) → X defined by

F




x

m

0Rn

y




=




Λ− xET
n βm

∫∞
0
ρ(a)y(a)da− δβxm

βxm

0L1(0,∞;Rn)




.

By identifying u(t) together with (x(t),m(t), 0Rn,y(t, .))T and by setting u0 = (x0,m0, 0Rn ,y0(.))
T ,

one obtains that System (4.3)-(4.4) re-writes as the following non-densely defined Cauchy

problem: 



du(t)

dt
= Au(t) + F (u(t)) ; t ≥ 0

u(0) = u0 ∈ D(A) ∩X+.

(4.14)

We first derive that the above abstract Cauchy problem generates a unique globally

defined and positive semiflow. Let us set X0 = D(A) and X0+ = X0 ∩X+. Before the

main result of this section, let us introduce the following lemmas and proposition.

Lemma 4.2.1. Let Assumption 5.1.1 be satisfied. The nonlinear map F : X0 → X is

lipschitzian on bounded subset of X0.

Proof. Let c > 0 and B(0, c) =
{
(x, α, 0Rn , ϕ)T ∈ X0 :

∣∣∣
∣∣∣(x, α, 0Rn, ϕ)T

∣∣∣
∣∣∣
X
≤ c
}
. Let

u := (x, α, 0Rn , ϕ)T , ũ := (x̃, α̃, 0Rn, ϕ̃)T ∈ B(0, c), then

F




x

α

0Rn

ϕ




− F




x̃

α̃

0Rn

ϕ̃




=




−xET
n βα + x̃ET

n βα̃

∫∞
0
ρ(a)ϕ(a)da− δβxϕ−

∫∞
0
ρ(a)ϕ̃(a)da + δβx̃ϕ̃

βxϕ− βx̃ϕ̃

0L1(0,∞;Rn)




.

Since the nonlinear functions R×Rn ∋ (x, α) 7→ xET
n βα ∈ R and R×Rn ∋ (x, α) 7→

βxα ∈ Rn are class C1, we can find two positive constants C1(c, β) and C2(c, β) such

that

||βxα− βx̃α̃|| ≤ C2(c, β)

(
|x− x̃|+

n∑

j=1

|αj − α̃j|
)
,

and
∣∣xET

n βα− x̃ET
n βα̃

∣∣ ≤ C1(c, β)

(
|x− x̃|+

n∑

j=1

|αj − α̃j|
)
.
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Therefore,

||Fu− F ũ||X ≤ max {C1(c, β) + ||ρ||∞ + (δ + 1)C2(c, β)} ||u− ũ||X .

Proposition 4.2.1. Let A0 be the part of A in X0, where A is the linear operator

given by (5.3). Then A is a Hile-Yosida operator and A0 is generator of C0-semigroup

{TA0(t)}t≥0 on the Banach space X0.

Proof. Let
(
x̃, α̃, ψ̃, ϕ̃

)T
∈ X and λ > 0. Equation

(λI − A) (x, α, 0Rn, ϕ)T =
(
x̃, α̃, ψ̃, ϕ̃

)T
, for (x, α, 0Rn , ϕ)T ∈ D(A),

rewrites as the following problem:




ϕ′(a) = −(λ + µx)ϕ(a) + ϕ̃(a),

ϕ(0) = ψ̃,

(λ+ µm)α = α̃,

(λ+ µx)x = x̃,

which the unique solution is




ϕ(a) = e−(λ+µx)aψ̃ +

∫ a

0

e−(λ+µx)(a−s)ϕ̃(s)ds, ∀λ > 0,

α =
α̃

λ+ µm
,

x =
x̃

λ+ µx
.

We deduce that (0,+∞) ⊆ ρ(A) and
∣∣∣∣
∣∣∣∣(λI − A)−1

(
x̃, α̃, ψ̃, ϕ̃

)T ∣∣∣∣
∣∣∣∣
X

=
∣∣∣
∣∣∣(x, α, 0Rn, ϕ)T

∣∣∣
∣∣∣
X
= ||ϕ||L1 +

|α̃|
λ+ µm

+
|x̃|

λ+ µx
.

Furthermore,

||ϕ||L1 ≤ 1

λ

(
|ψ̃|+ ||ϕ̃||L1

)
,

from where
∣∣∣∣(λI − A)−1

∣∣∣∣
L(X)

≤ 1

λ
, ∀λ > 0.

Hence A is a Hile-Yosida operator and satisfied

lim
λ→+∞

(λI − A)−1u = 0, ∀u ∈ X.
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We find that D(A0) = X0, and

∣∣∣∣(λI − A0)
−1
∣∣∣∣

L(X0)
≤
∣∣∣∣(λI − A)−1

∣∣∣∣
L(X)

≤ 1

λ
, ∀λ > 0,

thus A0 is generator of a C0-semigroup.

Lemma 4.2.2. Let Assumption 5.1.1 be satisfied.

1. For all C > 0, there exists λC > 0 such that

(F + λCI) (x,m, 0Rn ,y)T ∈ X+, ∀ (x,m, 0Rn,y)T ∈ B(0, C) ∩X+.

2. (λI − A)−1X+ ⊆ X+, ∀λ > 0.

Proof.

1. Let (x,m, 0Rn,y)T ∈ B(0, C) ∩X+ and λ > 0. We have

(F + λI) (x,m, 0Rn,y)T =




Λ− xET
n βm+ λx

∫∞
0
ρ(a)y(a)da− δβxm+ λm

βxm

λy.




Then taking λC = C
∑n

j=1 βj, item 1. follows.

2. Writing

(λI − A)−1
(
x̃, m̃, ψ̃, ỹ

)T
= (x,m, 0Rn,y)T ,

with 



y(a) = e−(λ+µx)aψ̃ +

∫ a

0

e−(λ+µx)(a−s)ỹ(s)ds, ∀λ > 0,

m =
m̃

λ+ µm
,

x =
x̃

λ+ µx
.

Then, we easily find that (x,m, 0Rn ,y)T ∈ X+ as soon as
(
x̃, m̃, ψ̃, ỹ

)T
∈ X+.

The precise result of this section is the following:

Theorem 4.2.2. Let Assumption 5.1.1 be satisfied. Then there exists a unique strongly

continuous semiflow {U(t) : X0+ → X0+}t≥0 such that for each u0 ∈ X0+, the map u ∈
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C ([0,∞) : X0+) defined by u = U(.)u0 is a mild solution of (4.14), namely it satisfies
∫ t

0

u(s)ds ∈ D(A), ∀t ≥ 0,

u(t) = u0 + A

∫ t

0

u(s)ds+

∫ t

0

F (u(s))ds ; t > 0.

Furthermore {U(t)}t≥0 satisfies the following properties:

(i) Let U(t)u0 = (x(t),m(t), 0Rn ,y(t, .))T , then the following Voletrra integral formu-

lation holds true for j ∈ {1, 2, · · · , n}

yj(t, a) =





y0,j(a− t)e−µxt if a ≥ t

βjx(t− a)mj(t− a)e−µxa if a < t

,

so that x(t) and m(t) becomes the unique solution of the problem

dx(t)

dt
= Λ− µxx(t)− x(t)ET

n βm(t);

dm(t)

dt
= Ψ(x,m)(t)− µmm(t)− δβx(t)m(t);

where Ψ(x,m)(t) = (Ψ1(x,m)(t); · · · ; Ψn(x,m)(t))T and for j ∈ Nn

Ψj(x,m)(t) =

∫ t

0

ρj(a)βjx(t− a)mj(t− a)e−µxada+

∫ ∞

t

ρj(a)y0,j(a− t)e−µxtda.

(ii) For each u0 ∈ X0+ one has for all t ≥ 0:

x(t) +

∫ ∞

0

ET
n y(t, a)da ≤ x0 + ||ET

ny0||L1 +
Λ

µx
,

ET
nm(t) ≤ ET

nm0 +
1

µminm

(
x0 + ||ET

ny0||L1 +
Λ

µx

)
‖ρ‖max.

wherein we have set u0 = (x0,m0, (0Rn ,y0))
T ; U(t)u0 = (x(t),m(t), (0Rn ,y(t, .)))T ;

µminm = min
16j6n

µm,j and ‖ρ‖max = max
16j6n

‖ρj‖L∞ .

(iii) The semiflow {U(t)}t≥0 is bounded dissipative and asymptotically smooth.

Proof. The proof of this result is rather standard. Indeed it is easy to check that the

nonlinear map F is locally lipschitzian, the operator A satisfies the Hille-Yosida property

(see Lemmas 4.2.1, 4.2.2 and Proposition 4.2.1). Then standard methodologies apply

to provide the existence and uniqueness of mild solution for System (4.3)-(4.4). (see for

instance [140, 144, 145, 201, 203]).

Next the Voletrra integral formulation is also standard in the context of age-structured

equation and we refer to [108, 211] and the references cited therein for more details.
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Estimates stated in (ii) directly follow from the system of equations. Indeed adding-

up the x-equation together with the yi−equation yields

d

dt

(
x(t) +

∫ ∞

0

ET
n y(t, a)da

)
= Λ− µx

(
x(t) +

∫ ∞

0

ET
n y(t, a)da

)
;

from where one deduces the first estimate of (ii) while the second estimate directly

follows from the first one applied to the mi−equations.

It remains to prove (iii) and let us notice that the bounded dissipativity of the semi-

flow {U(t)}t≥0 is a direct consequence of (ii). To prove the asymptotically smoothness,

let B be a forward invariant bounded subset of X0+. According to the results in [192]

it is sufficient to show that the semiflow is asymptotically compact on B.

Let us consider a sequence of solutions
{
up = (xp;mp, 0,yp)T

}
p≥0

that is equibounded

in X0+ and let consider a sequence {tp}p≥0 such that tp → +∞. Let us show that the

sequence {up(tp)}p≥0 is relatively compact in X0+. To do so, we consider the sequence of

map {wp(t) = up(t+ tp)}p≥0. Since xp and mp are uniformly bounded in the Lipschitz

norm, Arzela-Ascoli theorem implies that, possibly along a sub-sequence, one may as-

sume that xp(t+ tp) → x̂ and mp(t+ tp) → m̂(t) locally uniformly for t ∈ R. It remains

to deal with the sequence {yp(tp, .)}p≥0. Let us denote by ỹp(t, .) = yp(t + tp, .). Using

the Volterra integral formulation one gets

ỹp(t, a) =





y0(a− t+ tp)e
−µx(t+tp) if a ≥ t+ tp,

βxp(t− a+ tp)mp(t− a + tp)e
−µxa if a < t+ tp.

(4.15)

Finally sine βxp(t − a + tp)mp(t − a + tp)e
−µxa convergences as p → ∞ towards some

function ξ(t, a) = βx̂(t− a)m̂(t− a)e−µxa locally uniformly, one easily concludes that

yp(tp, .) = ỹp(0, .) → βx̂(−.)m̂(−.)e−µx. in L1 (0,∞;Rn) .

The result follows.

Basic properties.

Now in order to deal with sub-system, it will be also convenient to introduce for each

J ⊂ Nn the close subspaces XJ ⊂ X and XJ
0 ⊂ X0 defined by

XJ =

{
(x,m, α;y)T ∈ X : mi +

∫ ∞

0

yi(a)da = 0, ∀i ∈ J

}
and XJ

0 = XJ ∩X0.
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We also introduce XJ
0+, the positive cone of XJ

0 defined by

XJ
0+ = XJ

0 ∩X0+.

If J = ∅ then XJ = X, XJ
0 = X0 and XJ

0+ = X0+. Recalling definition (5.3), note that

A(D(A) ∩ XJ
0 ) ⊂ XJ . In the sequel we shall denote by AJ : D(AJ) ⊂ XJ → XJ the

linear Hile Yosida operator defined by

D(AJ) = D(A) ∩XJ
0 , AJx = Ax, ∀x ∈ D(A) ∩XJ

0 . (4.16)

For each i ∈ Nn we also consider

M i
0 =

{
(x,m, α;y)T ∈ X0+ : mi +

∫ ∞

0

yi(a)da > 0

}
.

Then the following lemma holds true

Lemma 4.2.3. For each J ⊂ Nn and each i ∈ Nn, the subsets XJ
0+ ⊂ X0+ and M i

0 are

both positively invariant under the semiflow {U(t)}t≥0; in other words

U(t)M i
0 ⊂M i

0 and U(t)XJ
0+ ⊂ XJ

0+ ∀t ≥ 0.

Proof. To prove the above result, let i ∈ Nn be given. Let u0 := (x0;m0; 0Rn ;y0) ∈ M i
0

be given and let us denote for each t ≥ 0, U(t)u0 := (x(t);m(t); 0Rn ,y(t, .))T the orbit

passing through u0. Let us set pi(t) = mi(t) +

∫ ∞

0

yi(t, a)da. It comes that p′i(t) ≥
−max(µx, µmi)pi(0). That is

mi(t) +

∫ ∞

0

yi(t, a)da ≥ e−max(µx,µmi)t

(
m0i +

∫ ∞

0

y0i(a)da

)
.

This complete the fact that U(t)M i
0 ⊂M i

0.

Now, let u0 ∈ ∂M i
0. Using the Volterra formulation we easily find that mi(t) = 0 for all

t ≥ 0 and

∫∞
0
yi(t, a)da = β1

∫ t
0
x(t− a)mi(t− a)e−µxada+ e−µxt||y0i||L1

= 0.

Therefore U(t)∂M i
0 ⊂ ∂M i

0 for all t ≥ 0. This ends the proof of the lemma.

Then coupling Theorem 4.2.2 together with the results of Hale [91, 92], Hale et al.

[93] , one obtains the following proposition:
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Proposition 4.2.2. Let J ⊂ Nn be given. There exists a non-empty compact set AJ ⊂
XJ

0+ such that

(i) AJ is invariant under the semiflow
{
UJ(t) := U(t)|XJ

0+

}
t≥0

that is:

UJ(t)AJ = AJ , ∀t ≥ 0.

(ii) The subset AJ attracts the bounded sets of XJ
0+ under the semiflow UJ , namely,

for any bounded set B ⊂ XJ
0+,

lim
t→+∞

δJ (UJ(t)B,AJ) = 0,

wherein the semi-distance δJ is defined by δJ(A,B) = sup
x∈A

inf
y∈B

||x− y||XJ .

4.2.3 Steady states and basic reproduction number

Steady states of the model

Next the following proposition describes the equilibria of the model.

Proposition 4.2.3. Let Assumption 5.1.1 be satisfied. Assume furthermore that the set

S is strictly ordered. Then System (4.3) (or semiflow {U(t)}t≥0 provided by Theorem

4.2.2) has exactly 1 + card S stationary states:

(i) The disease free equilibrium defined by

u∗0 =
(
xf ; 0Rn; 0Rn, 0L1(0,∞;Rn)

)T ∈ XNn
0+ , xf =

Λ

µx
,

is an equilibrium of U and it is the only one when S = ∅.

(ii) When S 6= ∅, in addition to the disease free equilibrium u∗0, the semiflow U has

exactly card S endemic stationary states defined for each k ∈ S by

u∗k =
(
xke ,m

k
e , 0Rn ,yke

)T ∈ X
Nn\{k}
0+ ∩Mk

0 ,

wherein the above quantities are defined in (4.10).

Proof. An equilibrium (x,m, 0n;y)
T ∈ X0+ of system (4.3) is the solution of the follow-

ing system of equations




Λ− µxx− x

n∑

i=1

βimi = 0;

βjmjx(Kj − δj)− µmjmj = 0; for j = 1, . . . , n;

y(a) = xl(a)βm, ∀a ≥ 0;
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with

Kj =

∫ ∞

0

ρj(a)l(a)da; for j = 1, . . . , n. (4.17)

It is easily find that the disease free equilibrium
(
xf ; 0Rn ; 0Rn , 0L1(0,∞;Rn)

)T is always

a solution of the system wherein xf =
Λ

µx
. If T i

0 > 1, then there exists an endemic

equilibrium (xie;m
i
e; 0Rn ; yie(.)) ∈ X0+, corresponding to strain i, defined by

xie =
xf
T i
0

; mi
ei =

µx(T i
0 − 1)

βi
; yiei(a) = βix

i
em

i
eil(a), ∀a ∈ [0,∞);

while the values for the other indexes j 6= i are mi
ej = 0 and yiej = 0L1(0,∞,R) and wherein

the value of T i
0 is given by (4.5).

Basic reproduction rate of the model

Here we follow the methodology of Diekmann and Heesterbeek [48, 51] and Inaba

[116] (see also the references cited therein) to define the reproductive number as the

number of secondary infections that one infectious individual would create over the

duration of the infectious period, provided that everyone else is susceptible.

Let bj(t) be the density of newly produced j− merozoites at time t. Then from (4.1)

one has

bj(t) =

∫ ∞

0

r(a)µj(a)wj(t, a)da. (4.18)

In the early stage of the disease invasion process, the dynamics of the population can

be described by the linearized equation at the disease-free steady state. The linearized

system (4.1) at the disease-free equilibrium leads to the following equations:




dx(t)

dt
= −µxx(t)− xf

n∑

j=1

βjmj(t);

∂ωj(t, a)

∂t
+
∂ωj(t, a)

∂a
= −(µj(a) + µx)ωj(t, a);

dmj(t)

dt
=

∫ ∞

0

ρy,j(a)ωj(t, a)da− µm,jmj(t)− δjβjxfmj(t);

ωj(t, 0) = βjxfmj(t); j ∈ {1, 2, · · · , n}.

(4.19)

Integrating the ωj-equation of system (4.19) belong the characteristics, we obtain that

ωj(t, a) =





ω0,j(a− t)e−
∫ a
a−t

(µx+µj(s))ds if a ≥ t,

βjx(t− a)mj(t− a)e−
∫ a
0
(µx+µj(s))ds if a < t.
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Therefore, equation (4.18) gives that

bj(t) = βjxf

∫ t

0

ρj(a)l(a)mj(t− a)da +

∫ ∞

t

ρy,j(a)wj(0, a)da.

On the other hand, it follows from the mj component of the linearized system (4.19)

that ṁj(t) = bj(t)− (µm,j + δjβjxf )mj(t), that re-writes as

mj(t) =

∫ t

0

e−(µm,j+δjβjxf )(t−s)bj(s)ds+mj(0)e
−(µm,j+δjβjxf )t.

As a consequence bj satisfies the following renewal equation:

bj(t) = βjxf

∫ t

0

(∫ a

0

e−(µm,j+δjβjxf )(a−s)ρj(s)l(s)ds

)
bj(t− a)da

+βjxfmj(0)

∫ t

0

ρj(a)l(a)e
−(µm,j+δjβjxf )(t−a)da+

∫ ∞

t

rj(a)µj(a)wj(0, a)da.

Due to the above formulation, the j−strain specific basic reproduction number Rj
0 is

calculated as

Rj
0 = βjxf

∫ ∞

0

(∫ a

0

e−(µm,j+δjβjxf )(a−s)ρj(s)l(s)ds

)
da;

that is

Rj
0 =

βjxf
µm,j + δjβjxf

∫ ∞

0

ρj(a)l(a)da.

Now let us notice that sgn
(
Rj

0 − 1
)
= sgn

(
T j
0 − 1

)
. Indeed it is easy to check that

Rj
0 − 1 =

βjxf
µm,j + δjβjxf

∫ ∞

0

ρj(a)l(a)da− 1,

=
µm,j

µm,j + δjβjxf

[
βjxf
µm,j

∫ ∞

0

ρj(a)l(a)da−
µm,j + δjβjxf

µm,j

]
,

=
µm,j

µm,j + δjβjxf

[
βjxf
µm,j

(∫ ∞

0

ρj(a)l(a)da− δj

)
− 1

]
,

=
µm,j

µm,j + δjβjxf

(
T j
0 − 1

)
.

Moreover one can notice that when δj = 0 then Rj
0 = T j

0 .

4.2.4 Technical materials

In this subsection we establish some properties of the entire solutions of System

(4.3). These properties will be useful later to derive the asymptotic behaviour of (4.3)

especially when S 6= ∅.
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Our first result is concerned with spectral properties of the linearized semiflow UJ :=

U |XJ
0+

for some given subset J ⊂ Nn at an given stationary point u∗ ∈ ∂MJ
0 . Let

u∗ = (x∗,m∗, 0Rn ,y∗)T ∈ XJ
0+ be a given stationary state of the semiflow UJ . The

associated linearized equation at the point u∗ reads as

du(t)

dt
= (AJ +Bu∗)u(t);

where AJ is the linear operator defined in (4.16) while Bu∗ ∈ L
(
XJ

0 , X
J
)

is the bounded

linear operator defined by:

Bu∗




x

m

0Rn

y




=




−x∗ET
n βm− xET

n βm
∗

∫∞
0
ρ(a)y(a)da− δβ(x∗m+ xm∗)

x∗βm+ xβm∗

0L1(0,∞,Rn)




Lemma 4.2.4. Let J ⊂ Nn be given. Let us set Ω = {λ ∈ C : Re (λ) > −µx}. Then

the spectrum σ (AJ +Bu∗) ∩ Ω 6= ∅ only consists in point spectrum and one has

σ (AJ +Bu∗) ∩ Ω =
{
λ ∈ Ω : ∆J(λ, u∗) = 0

}
,

where function ∆J(., u∗) : Ω → C is defined by

∆J(λ, u∗) =
∏

i∈Nn\J
χi(λ, x

∗),

while for each i ∈ Nn and each x ∈ R, function χi(., x) : Ω → C is defined by

χi(λ, x) = 1− βix

λ+ µmi

[∫ ∞

0

ρi(a)e
−(λ+µx)ada− δi

]
. (4.20)

Proof. Let J ⊂ Nn be given. Let us denote by A0J the part of AJ in XJ
0 . Then it

is the infinitesimal generator of a C0−semigroup on XJ
0 denoted by {TA0J

(t)}t≥0. Let

(x,m, 0n;y)
T ∈ XJ

0 ; following results in [142], we find that

TA0J
(t)




x

m

0Rn

y




=





(e−µxtx, e−µmtm, 0Rn , e−µxty(a− t))
T
, ∀a ≥ t,

(
e−µxtx, e−µmtm, 0Rn , 0L1(0,∞,Rn)

)T
, ∀a < t.
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Then, for t ≥ a0 we have
∣∣∣∣TA0J

(t− a0)(x,m, 0n;y)
T
∣∣∣∣
X

= e−µx(t−a0)|x|+ e−µm(t−a0)|m|+
∫ ∞

t−a0
e−µx(t−a0)y(a− t+ a0)da,

≤ e−min(µx,µm)(t−a0)||(x,m, 0n;y)
T ||X, ∀t ≥ a0.

We deduce that

||TA0J
(t− a0)||L(X) ≤ e−min(µx,µm)(t−a0), ∀ t ≥ a0.

Next it is easy to check that the growth rate of this semigroup satisfies

ω0 (A0J ) := lim
t→+∞

ln
(
||TA0J

(t)||L(X)

)

t
≤ −min(µx, µm).

Then since operator Bu∗ is compact, the results in [203, 57] apply and provided that the

essential growth rate of
{
T(AJ+Bu∗)0(t)

}
t≥0

, the C0−semigroup generated by the part of

(AJ +Bu∗) in XJ
0 satisfies

ω0,ess ((AJ +Bu∗)0) ≤ ω0,ess (A0J) < ω0 (A0J) ≤ −min(µx, µm).

Applying the result in [145] (see also [69] and [213]), the latter inequality ensures that

Ω ∩ σ (AJ +Bu∗) 6= ∅ and it is only composed of point spectrum of (AJ +Bu∗).

It remains to derive the characteristic equation (we refer to [33, 136, 147] for more

details on the subject). Let λ ∈ ρ (AJ +Bu∗). We have

(λI − AJ − Bu∗)(x,m, 0n;y)
T = (x̃, m̃, ψ̃; ỹ)T ⇔

(λI − AJ)(x,m, 0n;y)
T − Bu∗(x,m, 0n;y)

T = (x̃, m̃, ψ̃; ỹ)T ,

fromwhere we have the following fixed point equation

(x,m, 0n;y)
T = (λI −AJ)

−1(x̃, m̃, ψ̃; ỹ)T + (λI − AJ)
−1Bu∗(x,m, 0n;y)

T . (4.21)

Since

(λI−AJ)−1(x̃, m̃, ψ̃; ỹ)T =

(
x̃

λ+ µx
,

m̃

λ+ µm
, 0Rn , e−(λ+µx).ψ̃ +

∫ .

0

e−(λ+µx)(.−s)ỹ(s)ds

)T
,

we find that

(λI − AJ)
−1Bu∗(x,m, 0n;y)

T =




−x∗ET
n βm− xET

n βm
∗

λ+ µx∫∞
0
ρ(a)y(a)da− δβ(x∗m+ xm∗)

λ+ µm

0Rn

e−(λ+µx). (x∗βm+ xβm∗)




.
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Therefore, equation (4.21) rewrites as
(
1 +

ET
n βm

∗

λ+ µx

)
x+

x∗ET
n β

λ + µx
m =

x̃

λ+ µx
, (4.22)

δβm∗

λ+ µm
x+

(
1 +

δβm∗

λ+ µm

)
m−

∫∞
0
ρ(a)y(a)da

λ+ µm
=

m̃

λ+ µm
, (4.23)

y(.)− e−(λ+µx). (x∗βm+ xβm∗) = e−(λ+µx).ψ̃ +

∫ .

0

e−(λ+µx)(.−s)ỹ(s)ds, (4.24)

Substituting (4.24) into (4.23), it comes that we can isolate x, m (and then (x,m, 0n;y))

in system (4.22)-(4.23) if and only if

∆J(λ, u∗) =
∏

i∈Nn\J
χi(λ, x

∗) 6= 0,

wherein the function χi(., x) : Ω → C is defined by (4.20). Therefore,

σ (AJ +Bu∗) ∩ Ω =
{
λ ∈ Ω : ∆J(λ, u∗) = 0

}
.

Our next result relies on properties of the entire solutions of System (4.3)

Lemma 4.2.5. Let
{
u(t) = (x(t),m(t), 0Rn ,y(t, .))T

}
t∈R

be a given entire solution of

the semiflow U . Then x satisfies

inf
t∈R

x(t) > 0. (4.25)

Furthermore the following properties holds true:

(i) If there exist i ∈ Nn and t0 ∈ R such that u(t0) ∈M i
0 then

mi(t) > 0, ∀t ∈ R and yi(t, a) > 0, ∀(t, a) ∈ R× [0,∞).

(ii) Assume that S 6= ∅ and assume there exist i ∈ S and t0 ∈ R such that u(t0) ∈ M i
0.

If u(t) → u∗ as t→ ∞ where u∗ is an equilibrium point of U . Then one has

u∗ ∈
{
u∗j : i✂ j

}
.

(iii) For each i ∈ Nn there exist a constant Mi > 1 such that

m−
i (t)

Mi
e−µxa ≤ yi(t, a) ≤Mie

−µxa; ∀(t, a) ∈ R× [0,∞),

wherein we have set m−
i (t) = infs≤tmi(s).
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Proof. Let us first notice that since u is an entire solution then

y(σ, a) = βx(σ − a)m(σ − a)e−µxa ∀(σ, a) ∈ R× [0,∞). (4.26)

This expression directly follows from the Volterra integral formulation in Theorem 4.2.2.

From the estimates provided in Theorem 4.2.2 and the x-equation there exists some

constant C > 0 such that for each s ∈ R and t ≥ 0 one has

x(s)e−Ct + Λ

∫ t

0

e−C(t−l)dl ≤ x(t+ s) ≤ x(s) +
Λ

µx
. (4.27)

This implies that inft∈R x(t) > 0 and complete the proof of (4.25).

We now turn to the proof of (i). Let us argue by contradiction by assuming that

there exists t1 ∈ R such that mi(t1) = 0. Then from the mi−equation we deduce that

mi(t) = 0 for all t ≤ t1. Next we infer from (4.26) that
∫ ∞

0

yi(t, a)da = 0, ∀t ≤ t1.

Hence mi(t) +
∫∞
0
yi(t, a)da ≡ 0, a contradiction with the existence of t0. On the other

hand, due to (4.27) and (4.25), if there exists (t1, a1) ∈ R×[0,∞) such that yi(t1, a1) = 0

then mi(t1 − a1) = 0 and the first part of the argument applies.

Let us now prove (ii). Let us first notice that since mi(t0) +
∫∞
0
yi(t0, a)da > 0, (i)

implies that

mi(t) > 0 for all t ∈ R and yi(t, a) > 0 for all (t, a) ∈ R× [0,∞).

Next consider the function Γi(a) =
∫∞
a
ρi(s)e

µx(a−s)ds and note that Γi ∈ L∞(0,∞,R)

and satisfies Γ′
i(a)− µxΓi(a) + ρi(a) = 0 a.e. a ≥ 0. Let us introduce the functional

Φi[u](t) =

∫ ∞

0

Γi(a)yi(t, a)da+mi(t),

that satisfies (recalling Definition (4.5))

dΦi[u](t)

dt
= µmimi(t)

[
Ri

0

x(t)

xf
− 1

]
, ∀t ∈ R. (4.28)

Using this computation we will obtain a contradiction by assuming that u(t) → u∗j as

t→ ∞ for some j✁ i. Indeed for j = 0 then u(t) → u∗0 as t→ ∞ implies that x(t) → xf

as t → ∞. Then since Ri
0 > 1 then function t 7→ Φi[u](t) is not decreasing for t large

enough. Hence there exists t0 ∈ R such that Φi[u](t) ≥ Φi[u](t0) for all t ≥ t0. Since
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Φi[u](t0) > 0, this prevents the component (yi, mi) to converge to (0, 0L1) as t→ ∞. A

contradiction with u(t) → u∗0.

The same argument holds for j ∈ S with j ✁ i. Indeed in such a case x(t) → xje as

t→ ∞ and since [
Ri

0

xje
xf

− 1

]
=

Ri
0

Rj
0

− 1 > 0,

the same arguments apply. This completes the proof of (ii).

Finally note that (iii) directly follows from (4.25) and (4.26). This ends the proof of

Lemma 4.2.5.

Our next lemma is a computation result which will be used in the sequel to perform

Lyapunov arguments.

Lemma 4.2.6. Let us assume that the same assumptions of Lemma 4.2.5 are satisfied.

Let h : (0,∞) → [0,∞) be the function defined by

h(s) = s− 1− ln s. (4.29)

Let us assume that there exists i0 ∈ S such that

lim inf
t→−∞

mi0(t) > 0. (4.30)

Then for each t ∈ R one has

[∫ ∞

.

ρi0(s)l(s)ds

]
h

(
yi0(t, .)

yi0ei0(.)

)
∈ L1(0,∞,R). (4.31)

Consider now the map Vi0[u] : R → [0,∞) defined by

Vi0[u](t) := Vx(t)+Vyi0 (t)+Vmi0
(t)+

p∑

j=1;j 6=i0

∫ ∞

0

fj(a)yj(t, a)da+

p∑

j=1;j 6=i0
djmj(t), (4.32)

wherein we have set

Vx(t) = h

(
x(t)

xi0e

)
; Vyi0 (t) =

∫ ∞

0

αi0(a) h

(
yi0(t, a)

yi0ei0(a)

)
da; Vmi0

(t) = di0 h

(
mi0(t)

mi0
ei0

)

and

di0 =
βi0m

i0
ei0

µmi0
; dj =

βj
µmj

, with j 6= i0; (4.33)

fj(a) =
βj
µmj

∫ ∞

a

ρj(s)e
−µx(s−a)ds; (4.34)
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αi0(a) =
β2
i0x

i0
e m

i0
ei0

µmi0

∫ ∞

a

ρi0(a)l(a)da. (4.35)

Then function t 7→ Vi0[u](t) is of the class C1 on R and we have

V̇i0[u](t) = − Θi0

xi0e x(t)

(
x(t)− xi0e

)2
+
x(t)

xi0e

p∑

j=1;j 6=i0

(
Rj

0

Ri0
0

− 1

)
βjmj(t)

−
∫ ∞

0

β2
i0
xi0e m

i0
ei0

µmi0
ρi0(a)l(a)

[
h

(
yi0(t, a)m

i0
ei0

yi0ei0(a)mi0(t)

)
+ h

(
mi0(t)y

i0
ei0
(0)

m1
ei0
yi0(t, 0)

)]
da;

with

Θi0 = µx − δi0
β2
i0
xi0e m

i0
ei0

µmi0
.

Proof. Let us first remark that (4.31) follows from the estimate provided by Lemma

4.2.5 (iii) as well as (4.30). Indeed function a 7→
∫∞
a
ρi0(s)l(s)ds satisfies

∫ ∞

0

a

∫ ∞

a

ρi0(s)l(s)dsds <∞.

Next note that function t 7→ Vi0 [u](t) is also well defined for each t ∈ R because of

(4.25), Lemma 4.2.5 (i) and finally because of fj ∈ L∞(0,∞) (see Definition (4.34)).

It now remains to compute the derivation of t 7→ Vi0[u](t) (that is obviously of the

class C1 on R since u is an entire solution).

Firstly one has

V̇x(t) =
Λ

xi0e
+ µx − µx

x(t)

xi0e
− Λ

x(t)
− βi0m

i0
ei0

yi0(t, 0)

yi0ei0(0)
+ βi0mi0(t)

+

(
1− x(t)

xi0e

) p∑

j=1;j 6=i0
βjmj(t).

(4.36)

Secondly one has

V̇yi0 (t) =

∫ ∞

0

αi0(a) h
′
(
yi0(t, a)

yi0ei0(a)

)
1

yi0ei0(a)

∂yi0(t, a)

∂t
da;

=

∫ ∞

0

αi0(a)
1

yi0ei0(a)
h′
(
yi0(t, a)

yi0ei0(a)

)(
−∂yi0(t, a)

∂a
− µxyi0(t, a)

)
da;

= −
∫ ∞

0

αi0(a)
e−µxa

yi0ei0(a)
h′

(
yi0(t, a)

yi0ei0(a)

)
d

da
(eµxayi0(t, a)) ;

= αi0(0)h

(
yi0(t, 0)

yi0ei0(0)

)
+

∫ ∞

0

α′
i0
(a)h

(
yi0(t, a)

yi0ei0(a)

)
da.
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Moreover we infer from the definition of αi0 (see (4.35))

V̇yi0 (t) =

∫ ∞

0

β2
1x

i0
e m

i0
ei0

µmi0
ρi0(a)l(a)

[
h

(
yi0(t, 0)

yi0ei0(0)

)
− h

(
yi0(t, a)

yi0ei0(a)

)]
da.

From where we deduce

V̇yi0 (t) =

∫ ∞

0

β2
i0x

i0
e m

i0
ei0

µmi0
ρi0(a)l(a)

[
yi0(t, 0)

yi0ei0(0)
− yi0(t, a)

yi0ei0(a)
− ln

yi0(t, 0)

yei0(0)
+ ln

yi0(t, a)

yi0ei0(a)

]
da.

(4.37)

Next one can also check that

V̇mi0
(t) =

∫ ∞

0

di0δi0βi0x
i0
e ρi0(a)l(a)

yi0(t, a)

yi0ei0(a)
da− di0µmi0

mi0
ei0

mi0(t)

− di0δi0βi0x
i0
e

yi0(t, 0)

yi0ei0(0)
− di0
mi0(t)

∫ ∞

0

ρi0(a)yi0(t, a)da

+ di0δi0βi0x(t) + di0µmi0 .

(4.38)

Using the fact that
∫ ∞

0

β2
i0
xi0e m

i0
ei0

µmi0
ρi0(a)l(a)da− βi0m

i0
ei0

− di0δi0βi0x
i0
e

=
β2
i0
xi0e m

i0
ei0

µmi0
(Ki0 − δi0)− βi0m

i0
ei0
;

= βi0m
i0
ei0

xi0e Ri0
0

xf
− βi0m

i0
ei0
;

= βi0m
i0
ei0

− βi0m
i0
ei0

= 0,

we infer from (4.36)-(4.38) that

V̇x(t) + V̇yi0 (t) + V̇mi0
(t) =

Λ

xi0e
+ µx + di0µmi0 − 2

β2
i0
xi0e m

i0
ei0

µmi0
Ki0 + (di0δi0βi0x

i0
e − µx)

x(t)

xi0e

+

(
Ki0β

2
i0
xi0e m

i0
ei0

µmi0
− Λ

xi0e

)
xi0e
x(t)

+

(
1− x(t)

xi0e

) p∑

j=1;j 6=i0
βjmj(t)

−
∫ ∞

0

β2
i0
xi0e m

i0
ei0

µmi0
ρi0(a)l(a)

[
h

(
yi0(t, a)m

i0
ei0

yi0ei0(a)mi0(t)

)
+ h

(
mi0(t)y

i0
ei0
(0)

mi0
ei0
yi0(t, 0)

)]
da.

Since EEi0 is an equilibrium of system (4.3), that is to say that
Λ

xi0e
= µx + βi0m

i0
ei0

and
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Ki0βi0x
i0
e = µmi0 + δi0βi0x

i0
e , one gets

V̇x(t) + V̇yi0 (t) + V̇mi0
(t) =

− Θi0

xi0e x(t)

(
x(t)− xi0e

)2
+

(
1− x(t)

xi0e

) p∑

j=1;j 6=i0
βjmj(t)

−
∫ ∞

0

β2
i0x

i0
e m

i0
ei0

µmi0
ρi0(a)l(a)

[
h

(
yi0(t, a)m

i0
ei0

yi0ei0(a)mi0(t)

)
+ h

(
mi0(t)y

i0
ei0
(0)

mi0
ei0
yi0(t, 0)

)]
da,

with

Θi0 = µx − δi0
β2
i0
xi0e m

i0
ei0

µmi0
.

Using the fact that f ′
j(a)− µxfj(a) + djρj(a) = 0 for all a ∈ [0,∞) and

δjdj +
1

xf
− fj(0) =

1−Rj
0

xf
,

one has

V̇EEi0
(t) = − Θi0

xi0e x(t)

(
x(t)− xi0e

)2
+
x(t)

xi0e

p∑

j=1;j 6=i0

(
Rj

0

Ri0
0

− 1

)
βjmj(t)

−
∫ ∞

0

β2
i0
xi0e m

i0
ei0

µmi0
ρi0(a)l(a)

[
h

(
yi0(t, a)m

i0
ei0

yi0ei0(a)mi0(t)

)
+ h

(
mi0(t)y

i0
ei0
(0)

m1
ei0
yi0(t, 0)

)]
da.

This ends the proof of the lemma.

4.2.5 Proof of Theorem 4.2.1 (i)

The aim of this section is to prove the first part of Theorem 4.2.1. By using all the

above introduced definitions and notations, this result can be reformulated as follows:

Proposition 4.2.4. Let Assumption 5.1.1 be satisfied. Then the following holds true:

lim
t→∞

US(t)x = u∗0,

for each x ∈ XS
0+ and where US denotes the restriction semiflow U at XS

0+.

Remember that if S = ∅, namely R0 ≤ 1 then XS
0+ = X0+ and US ≡ U . This remark

means that when R0 ≤ 1 then the disease free equilibrium is globally attractive.

The proof of this result relies on the construction of a suitable Lyapunov functional

on the entire solution of US .
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Proof. Let us consider AS ⊂ XS
0+ the global compact attractor of US provided by

Proposition 4.2.2. Let x ∈ AS be given and let {u(t)}t∈R ⊂ AS be an entire solution of

US such that u(0) = x. Recalling that from Lemma 4.2.5 (iii), inf
t∈R

x(t) > 0, one may

consider the functional V defined for each entire solutions by

V [u](t) = h

(
x

xf

)
+

n∑

j=1

∫ ∞

0

fj(a)yj(a)da+
n∑

j=1

djmj ,

where the positives constants dj and the functions fj are defined respectively by (4.33)

and (4.34) while function h is given in (4.29).

Next using System (4.3) we obtain

d V [u](t)

dt
=− µx

(x(t)− xf)
2

x(t)
−

n∑

j=1

(djµmj − βj)mj(t)

−
n∑

j=1

(
djδj +

1

xf

)
βjx(t)mj(t) +

n∑

j=1

dj

∫ ∞

0

ρj(a)yj(t, a)da

−
n∑

j=1

∫ ∞

0

fj(a)(∂ayj(t, a) + µxyj(t, a))da;

=− µx
(x(t)− xf)

2

x(t)
−

n∑

j=1

(djµmj − βj)mj(t)

−
n∑

j=1

(
δjdj +

1

xf

)
βjx(t)mj(t) +

n∑

j=1

dj

∫ ∞

0

ρj(a)yj(t, a)da

−
n∑

j=1

∫ ∞

0

fj(a)e
−µxa(∂ayj(t, a)e

µxa + µxe
µxayj(t, a))da.

Integrating by part the last integral of the previous equality and using the yj−boundary

condition of (4.3) yield to

d V [u](t)

dt
=− µx

(x(t)− xf)
2

x(t)
−

n∑

j=1

(djµmj − βj)mj(t)

−
n∑

j=1

(
δjdj +

1

xf
− fj(0)

)
βjx(t)mj(t)

+

n∑

j=1

∫ ∞

0

(
f ′
j(a)− µxfj(a) + djρj(a)

)
yj(t, a)da.

Finally since f ′
j(a)− µxfj(a) + djρj(a) = 0 for all a ∈ [0,∞) and

δjdj +
1

xf
− fj(0) =

1−Rj
0

xf
,
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by recalling that {u(t)}t∈R ⊂ XS
0+, one concludes that

d V [u](t)

dt
= −µx

(x(t)− xf )
2

x(t)
− x(t)

∑

j∈Nn\S

1−Rj
0

xf
βjmj(t). (4.39)

Hence we infer from the definition of S that t 7→ V [u](t) is decreasing along the entire

solutions of US . To conclude our proof let {tn}n≥0 be a sequence tending to −∞ as

n → ∞ and consider the sequence of map un(t) = u(t + tn). Note that one has

V [un](t) = V [u](t + tn). Up to a subsequence one may assume that un(t) → û(t)

as n→ ∞ locally uniformly for t ∈ R where {û(t)}t∈R ⊂ AS is an entire solution of US .

Since V is decreasing, one obtains that

V [û] (t) ≡ lim
t→−∞

V [u](t) = sup
t∈R

V [u](t).

By setting û = (x̂, m̂, 0, ŷ)T , (4.39) yields to x̂(t) ≡ xf while the x−equation provides

that m̂(t) ≡ 0 so that ŷ(t, .) ≡ 0. Hence V [û] (t) ≡ 0 and 0 ≤ V [u](t) ≤ 0 for t ∈ R and

u(t) ≡ u∗0. This completes the proof of Proposition 4.2.4.

4.2.6 Proof of Theorem 4.2.1 (ii)

The aim of this section is to proof Theorem 4.2.1 (ii). For this reason, we will assume

throughout this section that S 6= ∅. The proof of this result will follow an induction

argument. To be more specific we will study the behaviour of the semiflow US\J for each

subset J ⊂ S using card J ∈ {1, .., card S} as the induction parameter.

The precise result we will prove in the following:

Theorem 4.2.3. Let us assume that the assumptions of Theorem 4.2.1 are satisfied.

Assume that S 6= ∅. Then for each J ⊂ S the semiflow
{
US\J(t)

}
t≥0

satisfies for each

x ∈ X
S\J
0+ :

(i) if J (x) := J ∩ {i ∈ Nn : x ∈M i
0} = ∅ then x ∈ XS

0+ and

lim
t→∞

US\J(t)x = u∗0.

(ii) If J (x) 6= ∅ we set i = max✁ J (x) and one has

lim
t→∞

US\J(t)x = u∗i .
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Let us first notice that point (i) in the above theorem is a direct consequence of

Theorem 4.2.1 (i) (see Proposition 4.2.4). As a consequence, it is sufficient to prove (ii)

and let us notice that Theorem 4.2.1 (ii) corresponds to Theorem 4.2.3 with J = S. As

mentioned above, the proof of this result relies on an induction argument on card J . In

the sequel we shall investigate the case where card J = 1 and we will then show how

such a property is inherited.

Case card J = 1.

Let i ∈ S be given. For notational simplicity we consider the set Y0+ = X
S\{i}
0+ and

let us denote by
{
V (t) := US\{i}(t)

}
t≥0

. We also consider the sets

N0 = Y0+ ∩M i
0 and ∂N0 = Y0+ \N0 = XS

0+.

Before constructing a suitable Lyapunov function to study the asymptotic behaviour

of V (t)x for some x ∈ N0 let us first collect in the following lemma some properties of

the semiflow {V (t)}t≥0 :

Lemma 4.2.7. Under the assumption of Theorem 4.2.3, the semiflow {V (t)}t≥0 satisfies

the following properties:

(i) It is bounded dissipative and asymptotically smooth; N0 and ∂N0 are both posi-

tively invariant under V .

(ii) For each x ∈ ∂N0 one has V (t)x→ u∗0.

(iii) The semiflow V is uniformly persistent with respect to the pair (N0, ∂N0) in the

sense that there exists ε > 0 such that for each x ∈ N0:

lim inf
t→∞

d (U(t)x; ∂N0) ≥ ε.

Proof. Note that (i) directly follows from Theorem 4.2.2 (ii), (iii) and Lemma 4.2.3

while (ii) directly follows from Theorem 4.2.3 (i). It remains to prove (iii). To do so

we will apply Theorem 4.2 in [93]. Let us first notice that u∗0 is an unstable stationary

state with respect to the semiflow V . Indeed as an application of Lemma 4.2.4 we know

that the eigenvalues in Ω of the linearized semiflow V at u∗0 are given the resolution of

the equation ∆S\{i}(λ, u∗0) = 0. On the other hand these eigenvalues contain the roots

of the equation χi(λ, u∗0) = 0 (see (4.20)). Note that function χi(., u∗0) satisfies

χi(0, u
∗
0) = 1−Ri

0 < 0 and lim
λ→∞

χi(λ, u
∗
0) = 1,
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that ensures the existence of a strictly positive eigenvalue. The instability of u∗0 with

respect to V follows.

Applying Theorem 4.2 in [93] to complete the proof of Lemma 4.2.7 (iii) it is suf-

ficient to show that W s ({u∗0})
⋂
N0 = ∅ wherein we have set W s({u}) = {v ∈ Y0+ :

lim
t→+∞

V (t)v = u}. To prove this assertion, let us argue by contradiction by assuming

that there exists x ∈ W s ({u∗0})
⋂
N0. Then using the same computations as in Lemma

4.2.5 (ii), since Ri
0 > 1 one obtains that the function

Φ [V (t)x] :=

∫ ∞

0

Γ̃i(a)yi(t, a)da+mi(t) with Γ̃i(a) :=

∫ ∞

a

ρi(s)e
a−sds,

is increasing for t large enough. This prevents the function (yi(t, .), mi(t)) to converge

to (0L1 , 0) and provides a contradiction together with the definition x. This completes

the proof Lemma 4.2.7.

As a consequence of Lemma 4.2.7 and Theorem 3.7 in [143](see also the monograph

[193]) there exists B0 a compact subset of N0 which is a global attractor for the semiflow

{V (t)}t≥0 in N0. To complete the proof of Theorem 4.2.3 (ii) in the case J = {i} it

remains to prove that B0 = {u∗i}. This will be achieved by constructing a suitable

Lyapunov functional on B0. This idea has been used by Magal et al [147] and Thieme

[202].

Let
{
u(t) = (x(t),m(t), 0Rn,y(t, .))T

}
t∈R

⊂ B0 be a given entire solution of V . We

claim that

Claim 4.2.1. Function mi satisfies inft∈Rmi(t) > 0.

Before proving this claim let us complete the proof of Theorem 4.2.3 for J = {i}.
Using Claim 5.2.1 and Lemma 4.2.6, one can consider the functional (see Lemma 4.2.6

for the notations)

V [u](t) = Vx(t) + Vyi(t) + Vmi
(t) +

n∑

j=1;j 6=i

∫ ∞

0

fj(a)yj(t, a)da+
n∑

j=1;j 6=i
djmj(t).

Then one has by setting Θi = µx − δi
β2
i x

i
em

i
ei

µmi
:

V̇ [u](t) =− Θi

xiex(t)

(
x(t)− xie

)2
+
x(t)

xie

∑

j∈Nn\S

(
Rj

0

Ri
0

− 1

)
βjmj(t)

−
∫ ∞

0

β2
i x

i
em

i
ei

µmi
ρi(a)l(a)

[
h

(
yi(t, a)m

i
ei

yiei(a)mi(t)

)
+ h

(
mi(t)y

i
ei(0)

m1
eiyi(t, 0)

)]
da.
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Recalling condition (Q) one obtains that Θi ≤ 0 so that t 7→ V [u](t) is a bounded and

decreasing map. Finally arguing similarly as the end of the proof of Theorem 4.2.1 (i)

yields to u(t) ≡ u∗i .

It now remains to prove Claim 5.2.1.

Proof of Claim 5.2.1. Let us argue by contradiction by assuming that inft∈Rmi(t) = 0.

Note that due to Lemma 4.2.5 (i), one has mi(t) > 0. Hence let us for instance assume

that lim inft→−∞mi(t) = 0. Consider a sequence {tn}n≥0 tending to −∞ as n→ ∞ such

that mi(tn) → 0 as n → ∞. Consider the sequence of maps {un(t) := u(t+ tn)}n≥0.

Then up to a subsequence, one may assume that un(t) → û(t) locally uniformly wherein

û is an entire solution of V such that m̂i(0) = 0. Lemma 4.2.5 (i) ensures that

(m̂i(t), ŷi(t, .)) ≡ (0, 0L1) This prevents û to belong to N0, a contradiction. A simi-

lar argument holds true if one deals with lim inft→+∞mi(t) = 0. This completes the

proof of Claim 5.2.1.

Case card S ≥ 2 and 2 ≤ card J ≤ card S

In this section we assume that card S ≥ 2. Note that the proof of Theorem 4.2.3 (ii)

follows from the above section when card S = 1. Let J ⊂ S be a given subset such that

card J ≥ 2. Our induction hypothesis is concerned with the validity of Theorem 4.2.3

for each subset J ′ ⊂ S such that card J ′ < card J . Consider now the set Y0+ = X
S\J
0+ as

well as the semiflow V := US\J on Y0+. Let us denote i = max✁(J) and let us consider

N0 = Y0+ ∩M i
0 and ∂N0 = Y0+ \N0.

Let us first notice that to prove Theorem 4.2.3 (ii) for J , it is sufficient to show that

lim
t→∞

V (t)x = u∗i , ∀x ∈ N0. (4.40)

Indeed, if x ∈ ∂N0 then x ∈ X
S\J ′

0+ with J ′ = J \ {i}. Since J ′ ⊂ S and card J ′ <

card J then V (t)x = US\J ′(t)x and the asymptotic behaviour follows from the induction

hypothesis.

The proof of this section is rather similar to the one provided in the preceding section.

The only difference relies on the proof of the uniform persistence of the semiflow V with

respect to the pair (N0, ∂N0) because of the dynamics of the semiflow on the boundary
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∂N0. Hence to complete the proof of Theorem 4.2.3 (ii) for J we will only prove the

following lemma. The details are left to the reader.

Lemma 4.2.8. The semiflow V is uniformly persistent with respect to the pair (N0, ∂N0).

Proof. The proof of this result is an application of Theorem 4.2 in [93] with a non-trivial

dynamics for the boundary semiflow. Let us denote by J ′ = J \ {i}. Then note that

V |∂N0 = US\J ′. According to Proposition 4.2.2 let us consider A∂ := AS\J ′ the global

attractor of the semiflow V |∂N0. Note that according to the induction hypothesis the

following holds true:
⋃

x∈A∂

ω(x) = {u∗0} ∪
⋃

j∈J ′

{
u∗j
}
.

Here for each x ∈ Y0+, ω(x) denotes the omega-limit set of the point x with respect to

the semiflow V . The application of Theorem 4.2 in [93] relies on some properties of the

set Â∂ defined by

Â∂ = {u∗0} ∪
⋃

j∈J ′

{
u∗j
}
.

Let us first claim:

Claim 4.2.2. For each j ∈ J ′ ∪ {0} the stationary point u∗j is unstable with respect to

the semiflow V .

Proof of Claim 4.2.2. The proof of the above claim relies on Lemma 4.2.4. Let us notice

that for each j ∈ J ′ ∪ {0}, function χi(., u∗j (see (4.20)) satisfies

χi(0, u
∗
j) =




1−Ri

0 if j = 0,

1− Ri
0

Rj
0

if j ∈ J ′.

Hence since i = max✁ J , χi(0, u∗j) < 0 and since χi(λ, u∗j) → 1 as λ → ∞, for each

j ∈ J ′ ∪ {0} function χi(., u∗j) has a strictly positive root. The result follows.

Then we claim that:

Claim 4.2.3. For each (j, k) ∈ J ′ ∪ {0} then if {u(t)}t∈R is a non-trivial (that non-

constant) entire solution of V such that

lim
t→−∞

u(t) = u∗j and lim
t→∞

u(t) = u∗k,

then j ✁ k.
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Proof of Claim 4.2.3. The proof of this claim relies on the application of Lemma 4.2.5

(ii) as well as Lyapunov like argument.

Let us first consider the case where j ∈ J ′. Then applying Lemma 4.2.5 (ii) we know

that j ✂ k. It is therefore sufficient to show that there is no homoclinic connection at

u∗j . Let us argue by contradiction by assuming that

lim
t→±∞

u(t) = u∗j .

Then applying once again Lemma 4.2.5 (ii) we obtain that for each k ∈ J ′ such that

k ✄ j:

yk(t, .) ≡ 0 and mk(t) ≡ 0, ∀k ∈ J ′ ✄ j.

Then consider the functional

Vj[u](t) = Vx(t) + Vyj (t) + Vmj
(t) +

n∑

p=1;p 6=j

∫ ∞

0

fp(a)yp(t, a)da+

n∑

p=1;p 6=j
dpmp(t).

Using similar arguments and computations (see Lemma 4.2.6) as the ones provided in

the preceding section and using the fact that for each k ∈ S \ J ′ and each k ∈ J ′ such

that k ✄ j

yk(t, .) ≡ 0 and mk(t) ≡ 0,

one obtains that u(t) ≡ u∗j , a contradiction.

It remains to consider the case j = 0 and to show that there is no homoclinic con-

nection at u∗0. Let us argue by contradiction by assuming that

lim
t→±∞

u(t) = u∗0.

Then let us notice that due to Lemma 4.2.5 (ii) one has

yk(t, .) ≡ 0 and mk(t) ≡ 0, ∀k ∈ S.

Then by considering the map

V0[u](t) = h

(
x

xf

)
+

n∑

j=1

∫ ∞

0

fj(a)yj(a)da+
n∑

j=1

djmj ,

as well as computations and arguments similar to the proof of Proposition 4.2.4 one

concludes that

u(t) ≡ u∗0,

a contradiction that completes the proof of Claim 4.2.3.
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As a consequence of Claim 4.2.2 and Claim 4.2.3, the set Â∂ is isolated and has an

acyclic covering. Hence since the semiflow is bounded dissipative and asymptotically

smooth, Theorem 4.2 in [93] applies and to complete the proof of Lemma 4.2.8, it is

sufficient to show that N0 ∩W s
({
u∗j
})

= ∅ for each j ∈ J ′ ∪{0}. Similarly to the proof

in Section 4.2.6 this latter property directly follows from the functional

Φ [V (t)x] :=

∫ ∞

0

Γi(a)yi(t, a)da+mi(t) with Γi(a) :=

∫ ∞

a

ρi(s)e
a−sds.

This completes the proof of Lemma 4.2.8.

4.2.7 Future directions

The emergence and spread of antimalarial drug resistance poses a severe and in-

creasing public health threat. The P. falciparum parasite is now resistant to all of the

used antimalarial drugs, even to the latest artemisinin-based combination treatments.

Knowledge about resistance mechanisms involved may allow the development of new

drugs that minimize or circumvent drug resistance, may allow the identification of new

targets for drug development and to identify molecular markers for malaria resistance

surveillance. That is, a deeper understanding of the dynamic of multiple strain P. falci-

parum infection can improve the understanding of the role of parasite interactions in the

spread of drug-resistant parasites, perhaps suggesting different treatment strategies. To

this end, age-structured within host malaria models can also consider two mains inputs.

The first is to provide a good dynamics of the host immune system. The second is to

incorporate the dynamics of antimalarial drugs into the model.

4.2.8 Summary

In this section, we have examined an age-structured within-host model for multistrain

malaria infection. This model incorporates n strains for the parasite. Using integrated

semigroup theory, we provided a global analysis of this model. The rationale for includ-

ing multi-strain can be multiple. One reason is to take into account biological reasons,

e.g., consideration of morphological or age classes. The second is due to the recent

study on this subject. Recently, it has been proved that a deeper understanding of the

dynamic growth responses of multiple strain P. falciparum infections, with and with-

out drug pressure, can improve the understanding of the role of parasite interactions in
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the spread of drug resistant parasites, perhaps suggesting different treatment strategies

[208].

This model has been conceived from malaria infection, since it is well grounded that

malaria is a multi-strain infection. However other parasitic infections can be considered

by this model, e.g., the model can be extended to the HIV infections [105].

The main finding of this section can be summarized along the following lines:

X To separate the different strains we associated for each strain the i-specific basic

reproduction number Ri
0 defined by (4.9). We then find that the basic reproduction

number of the model is defined by R0 = max
i=1,...,n

Ri
0.

X We also find that if R0 ≤ 1, the model exhibits a unique disease-free steady

state, while if R0 > 1 the model has exactly nE disease-endemic steady states, wherein

nE = Card {i ∈ {1, . . . , n} : Ri
0 > 1} .

X We prove that if the basic reproduction number of the model satisfies R0 ≤ 1,

then the disease free equilibrium is globally asymptotically stable; i.e., the parasite is

cleared from the host population.

X Our global stability result when R0 > 1 can be summarized as a competitive

exclusion principle. If R0 > 1, if one strain has its individual threshold Ri
0 strictly

larger than the thresholds of the other strains and if a mild sufficient condition gives

by (4.11) is satisfied, then there exists a global asymptotic stable endemic equilibrium.

This equilibrium corresponds to the extinction of all strains, except the strain with the

largest threshold (winning strain).

4.3 Mathematical modeling of anopheles mosquito dy-

namics population.

In this section, we examined an advection-reaction model for anopheles mosquito dy-

namics population with time dependent parameters. We introduce the threshold values

R♦, R♦ and R∗. Then, we find that, if R♦ < 1, the anopheles mosquito population dies

out. On the other hand, if R♦ > 1 (resp. R∗ > 1) then anopheles mosquito uniformly

weakly (resp. strongly) persists in the population.
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4.3.1 Model formulation

For the mathematical description, we assume that there are two main stages in the

development of mosquitoes: an aquatic and an adult stage. The aquatic stage gathers

eggs, larvae and pupae. The adult stage can be divided into several compartments:

immature females, feeding females, resting females, breeding females (or more precisely

"egg laying females") and males. We assume that there is no sex differences in the

aquatic stage and mosquitoes, after emergence, are distributed between the immature

female compartment and the male compartment. Following [44], we consider that the

number of emerging females and emerging males is equal; therefore the sex ratio of

emerging adults, r, is set to 1
2
. We assume that a female mates only once with a male

in her lifetime. After mating with males, we assume that immature females start their

gonotrophic cycles [44] by entering the feeding female compartment. The gonotrophic

cycle defined by Clements [36] starts with a blood meal and ends with the first laid

egg. Then, after blood meals, they get into the resting compartment, allowing egg

maturation. Afterward, the females pass into the breeding compartment seeking for a

breeding site to deposit eggs. Once egg deposit is done, females start a new gonotrophic

cycle. The eggs laid by the breeding females supply the aquatic stage. We consider only

one compartment for the males. For the females, it is necessary to take into account

four sub-compartments since their behavior is very different.

At time t, the density of the anopheles mosquito population is divided into five com-

partments as follows: A of the population in aquatic stage, M of male, Y of immature

females, Q of questing females, U of breeding females and R of resting females.

The population in the aquatic stage is recruited at rate ΦU where Φ is the average

amount of eggs laid per fertilized female per day. In the model, we use a density

dependent death rate for the aquatic stage since anopheles larvae are density sensitive,

which imply an additional density mortality rate. In [44], the size of the population is

also restricted only in the aquatic stage but in a different way by an explicit carrying

capacity beyond which no eggs are laid. The population in the aquatic stage is affected

by the density independent mortality rate µ1 and the carrying capacity of the aquatic

siteKA. Population in the aquatic stage emerges at rate γ with 1−γ being the fraction of

emerging male mosquitoes. After mating with males mosquitoes, immature females leave

the breeding sites and arrive at the human habitat and then become questing females
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Q. We assume that immature females becomes questing females at rate βY with β the

mating rate between immature females and males mosquitoes. At the human habitat,

questing females interact with humans by mass action contact, during which contact

they can either survive to reproduce or get killed. Once rest, questing females will begin

to search blood meal and we assume that they are attracted to humans at rate b
H

H +K
Q

and enter the question class where
H

H +K
Q models the proportion of questing females

that prefers human blood as opposed to those that feed on other animals, K is a positive

constant representing a constant alternative food source for the site and b is a positive

constant. Questing females die at rate µq. Resting females becomes breeding females

at rate ϕHQ where ϕ is the successful rate in taking a blood meal of questing females

and H is a parameter representing the density of humans habitats. Resting females die

at rate µr. After laying eggs, breeding females becomes questing females at rate a. The

compartment of breeding females is affected by a mortality rate µu.

The structure of the model is depicted in Figure 4.3. The dashed arrow indicates the

mating between males mosquito and immature females.

Using all biological explanations the mathematical model for anopheles mosquito

population is the following system of ordinary differential equation:




Ȧ = φU

(
1− A

KA

)
− (γ + µ1)A,

Ẏ = γrA− µyY − βY,

Ṁ = (1− r)γA− µmM,

Ṙ = βY + b
HQ

H +K
− ϕHR− µrR,

U̇ = ϕHR− (a+ µu)U,

Q̇ = aU − b
HQ

H +K
− µqQ

(4.41)

Let us notice that model (4.41) is formulated and rigorously analyzed by Anguelov,
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State Variable Description

A Aquatic stage

M Male

Y Immature females

Q Questing females

U Breeding females

R Resting females

Figure 4.3: Anopheles mosquito flow chart. The dashed arrow indicates the mating

between males mosquito and immature females. The above table summarize the state

variable of the model. The description of parameters is also summarize in Tables 4.4

and 4.5.
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Dumont and Lubuma in [6]. Setting

Ā = KA

(
1− 1

R0

)
,

Ȳ =
γr

µY + β
Ā, M̄ =

(1− r)γ

µM
Ā, R̄ =

βγr

D(µY + β)
Ā,

Ū =
1

a

(
bH

H +K
+ µq

)
R̄, Q̄ =

a + µU
aρH

(
bH

H +K
+ µq

)
R̄,

(4.42)

wherein

R0 =
βγrφ

(
bH
H+K

+ µq
)

a(γ + µ1)(µY + β)D
, (4.43)

and

D =
a+ µU
aρH

(
bH

H +K
+ µq

)
− bH

H +K
,

the essential properties of the model (4.41) as a dynamical system are summarized in

the following theorem (see Theorem 7 in [6]).

Theorem 4.3.1. The set of ODEs (4.41) defines a dissipative dynamical system on

C0 = {x ∈ R6
+ : x ≥ 0}. Moreover

(i) If R0 ≤ 1 then the trivial equilibrium 0 is globally asymptotically stable on C0.

(ii) If R0 > 1 then system has two equilibrium 0 and Ē := (Ā, M̄, Ȳ , Ū , Q̄, R̄)T on C0

where Ē is stable with basin of attraction C0 \ {x = (A,M, Y, U,Q,R) ∈ R6
+ : A = Y =

U = Q = R = 0} and 0 is unstable with the nonnegative M-axis being a stable manifold.

Now, let us formulate the spatial-temporal model with migration of the mosquito.

It is well known that the ecology of mosquito vectors and malaria parasites affect the

incidence, seasonal transmission and geographical range of malaria [166]. According to

Mordecai et al. [166] there is a relationships between temperature and the mosquito

and parasite life-history traits that determine malaria risk. Therefore, we assume that

the following parameters are time-dependent parameters: Eggs laid per adult female

per day φ(.); mosquito adult mortality rate µy(.), µm(.), µr(.), µu(.), µq(.); Egg-to-adult

survival probability µ1(.); and larval development rate γ(.). Then equations to describe

the seasonal spatio-temporal dynamics of anopheles mosquito allowing migration are

the following:
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



∂A(t, x)

∂t
= φ(t)

(
1− A(t, x)

KA

)
U(t, x)− (γ(t) + µ1(t))A(t, x),

∂Y (t, x)

∂t
+ εm∇Y (t, x) = γ(t)rA(t, x)− µm(t)Y (t, x)− βY (t, x),

∂M(t, x)

∂t
+ εm∇M(t, x) = (1− r)γ(t)A(t, x)− µm(t)M(t, x),

∂R(t, x)

∂t
+ εm∇R(t, x) = βY (t, x) + b

HQ(t, x)

H +K
− ϕHR(t, x)− µr(t)R(t, x),

∂U(t, x)

∂t
+ εm∇U(t, x) = ϕHR(t, x)− (a + µu(t))U(t, x),

∂Q(t, x)

∂t
+ εm∇Q(t, x) = aU(t, x)− b

HQ(t, x)

H +K
− µq(t)Q(t, x),

(4.44)

System (4.44) is considered for t ∈ R+ in a domain Ω (x = (x1, x2)
T ∈ Ω ≡ [0, ω1) ×

[0, ω2) ⊂ R2), with initial and boundary conditions




Y (t, x) =M(t, x) = Q(t, x) = U(t, x) = R(t, x) = 0 ∀(t, x) ∈ R+ × ∂Ω,

A(0, x) = A0(x), Y (0, x) = Y0(x), M(0, x) =M0(x), Q(0, x) = Q0(x),

U(0, x) = U0(x), R(0, x) = R0(x),

(4.45)

where ∇v(t, x) =
2∑

j=1

∂v(t, x)

∂xj
and εm is the migration coefficient of adult mosquito.

In order to deal with system (4.44)-(4.45) we first introduce the vector-valued v(t, .) =

(A(t, .),M(t, .); Y (t, .);R(t, .);U(t, .);Q(t, .))T , ε = (0, εm, εm, εm, εm, εm)
T and the usual

scalar product 〈., .〉 as well as the functional
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F1(t,v) =


−(γ(t) + µ1(t) +
φ(t)U
KA

) 0 0 0 φ 0

(1− r)γ(t) −µm(t) 0 0 0 0

rγ(t) 0 −µy(t)− β 0 0 0

0 0 β −(ϕH + µr(t)) 0 bH
H+K

0 0 0 ϕH −(a + µu(t)) 0

0 0 0 0 a −bH
H+K

− µq(t)




;

(4.46)

system (4.44)-(4.45) rewrites as the following non-autonomous advection-reaction equa-

tion:
∂v(t, x)

∂t
+ diag(ε)∇v(t, x) = F1(t,v(t, x))v(t, x),

v(t, x) = 0, ∀(t, x) ∈ R+ × ∂Ω,

v(0, x) = v0(x) ∈ L1(Ω,R6
+),

(4.47)

In what follows, we will make use of the following assumption.

Assumption 4.3.1. We assume that, β, b, H, a, ϕ, r are nonnegative constants, εm > 0

while the functions φ(.), γ(.), µ1(.), µm(.), µy(.), µr(.), µu(.), µq(.) are ω-periodic and

belong to L∞(0,∞,R+).

4.3.2 Existence of positive solutions for seasonal model (4.44).

The aim of this section is to derive preliminary remarks on (4.47). These results

include the existence of the unique maximal bounded semiflow associated to this system.

We shall deal with the C0-semigroup approach introduced by Pazy [180].

Let us introduce X = L1(Ω,R6) as well as its positive cone X+ = L1(Ω,R6
+) and the

linear operator B : D(B) ⊂ X → X defined by

D(B) =
{
v ∈ W 1,1(Ω,R6

+) : v(x) = 0, ∀x ∈ ∂Ω
}
,

B (v) = −diag(ε)∇v.
(4.48)

Finally, let us introduce the nonlinear map F : [0, ω)×D(B) → X defined by

F (t,v) = F1(t,v)v.

Following Pazy[180], we have the following results on the linear operator B.
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Lemma 4.3.1. Let Assumption 4.3.1 be satisfied.

(i) The operator B is generator of a C0-semigroup of linear bounded operators {T (t)}t≥0

such that

T (t)v(x) =





v(x− tε), if (t, x− tε) ∈ R+ × Ω

0, if (t, x− tε) ∈ R+ × ∂Ω

(ii) The domain D(B) of operator B is dense in X and B is a closed operator.

(iii) The nonlinear operator F defined from X to itself is continuous and locally Lips-

chitz.

Proof. The proof of this result is rather standard. Standard methodologies apply to

provide item (i) (see Pazy 1983 [180]). Item (ii) is a direct consequence of the fact that

the operator B is generator of a C0-semigroup of linear bounded operators (see Corollary

2.5 in Pazy 1983 [180]).

Setting ψ(t) = v(t, .); system (4.47) rewrites as the following densely defined Cauchy

problem 



dψ(t)

dt
= Bψ(t) + F (t, ψ(t)), t ≥ 0,

ψ(0) = ψ0 ∈ D(B) = X ;

(4.49)

Let us introduce the following lemma.

Lemma 4.3.2. Let Assumption 4.3.1 be satisfied. The map F : [0, ω] × X → X is

continuous and for each ξ > 0, there exists K(ξ) > 0 such that

||F (t,v1)− F (t,v2)|| ≤ K(ξ)||v1 − v2||,

whenever v1,v2 ∈ X such that ||v1|| ≤ ξ, ||v2|| ≤ ξ.

Proof. Let ξ > 0 and v1,v2 ∈ X such that ||v1|| ≤ ξ, ||v2|| ≤ ξ. We easily find that

||F (t,v1)− F (t,v2)|| ≤ K(t, ξ)||v1 − v2||,

with

K(t, ξ) = max

(
φ(t) + ξ

φ(t)

KA
+ γ(t) + µ1(t); rγ(t) + µy(t) + β; (1− r)γ(t) + µm(t);

β +
bH

H +K
+ ρH + µr(t); ρH + a+ µu(t); a+

bH

H +K
+ µq(t)

)
.

Therefore Assumption 4.3.1 gives that ||F (t,v1) − F (t,v2)|| ≤ ||K(., ξ)||L∞.||v1 − v2||.
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In the following definition, τ is the blow-up time of maximal solutions of (4.49).

Definition 4.3.1. Consider two maps τ : [0, ω) × X → (0, ω] and U : Dτ → X,

where Dτ = {(t, s,v) ∈ [0, ω)2 ×X : s ≤ t ≤ s+ τ(s,v)} . We say that U is a maximal

non-autonomous semiflow on X if U satisfies the following properties:

(i) τ(r,U(r, s)v) + r = τ(s,v) + s, ∀s ≥ 0, ∀v ∈ X, ∀r ∈ [s, s+ τ(s,v)).

(ii) U(s, s)v = v, ∀s ≥ 0, ∀v ∈ X.

(iii) U(t, r)U(r, s)v = U(t, s)v, ∀s ≥ 0, ∀v ∈ X, ∀t, r ∈ [s, s+ τ(s,v)) with t ≥ r.

(iv) If τ(s,v) < +∞, then limt→(s+τ(s,v))− ||U(t, s)v|| = +∞.

Set D = {(t, s,v) ∈ [0, ω)2 ×X : t ≥ s} .
The main result of this subsection is the following theorem.

Theorem 4.3.2. Let Assumption 4.3.1 be satisfied. Then there exist a map τ [0, ω) ×
X → (0, ω] and a maximal non-autonomous semiflow U : Dτ → X, such that for each

v ∈ X+ and each s ≤ 0, U(., s)v ∈ C([s, s+ τ(s,v)), X+) is a unique maximal solution

of (4.49). Moreover,

(i) Dτ is open in D and the map (t, s,v) → U(t, s)v is continuous from Dτ into X.

(ii) Let U(t, t0)v0(.) = v(t., ); where v(t, .) := (A(t, .),M(t, .); Y (t, .);R(t, .);U(t, .);Q(t, .))T

solve (4.44)-(4.45). Assume that A0(x) ≤ KA for all x ∈ Ω. Then one has for all

t ≥ t0 ≥ 0
∫

Ω

A(t, x)dx ≤ mes(Ω)KA;
∫

Ω

(M(t, x) + Y (t, x) +R(t, x) + U(t, x) +Q(t, x)) dx ≤ mes(Ω)KA

sups∈[0,ω] γ(s)

infs∈[0,ω] µ(s)
;

(4.50)

wherein µ(.) = min (µm(.), µy(.), µr(.), µu(.), µq(.)) and mes(Ω) = ω1ω2.

Proof. The proof of this result is rather standard. Indeed it is easy to check that

operator B satisfies the Hille-Yosida property (see the proof of Proposition 4.2.1). Then

coupling Lemma 4.3.2 together with Theorem 4 in [146]; we obtain the existence of

non-autonomous semiflow U satisfying item (i). It remains to check item (ii). Without

lost of generality, we may assume that t0 = 0. The A-equation of system (4.44) gives

that

A(t, x) ≤
(
A0(x) +

∫ t

0

φ(s)U(s, x)e
∫ s
0

φ(η)U(η,x)
KA

dη
ds

)
e
−

∫ t
0

φ(η)U(η,x)
KA

dη
; ∀x ∈ Ω.
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Since A0(.) ≤ KA, we easily find that A(t, .) ≤ KA for all t ≥ 0. This ends the

first estimate of (4.50). Now let us introduce the following quantity
∫

Ω

M(t, x)dx. For

convenience we still use

M(t) =

∫

Ω

M(t, x)dx

and idem for the variables Y , Q, U and R. Therefore,

M ′(t) =

∫

Ω

∂tM(t, x)dx,

= −εm
∫

Ω

∇M(t, x)dx+ (1− r)γ(t)A(t)− µm(t)M(t).

Applying the divergence theorem, we find that
∫

Ω

∇M(t, x)dx =

∫

∂Ω

〈M(t, x), ν(x)〉 dσ(x),

wherein ν(x) is the unit outward vector to Ω at x ∈ ∂Ω. Since M(t, x) = 0 for all

x ∈ ∂Ω, then

M ′(t) = (1− r)γ(t)A(t)− µm(t)M(t).

Applying the same arguments to the variables Y , Q, U , R and using the first estimate

of (4.50), it comes that

d

dt
x(t) ≤ mes(Ω)KA sup

s∈[0,ω]
γ(s)− inf

s∈[0,ω]
µ(s)x(t), ∀t ≥ 0,

with x(t) =M(t)+Y (t)+R(t)+U(t)+Q(t). From where the second estimate of (4.50)

follows and this end the proof of the theorem.

The following result will be useful for the persistence results of the seasonal spatio-

temporal model (4.44)-(4.45). We claim that

Claim 4.3.1. A(t, x) ≤ KA, Y (t, x) ≤ rKA||γ||∞
β

and R(t, x) + U(t, x) + Q(t, x) ≤
rKA||γ||∞

infs∈[0,ω] µ(s)
for all (t, x) ∈ R+ × Ω.

Proof of Claim 4.3.1. Using the proof of item (ii) of theorem 4.3.2, we obtain that

A(t, x) ≤ KA for all (t, x) ∈ R+ × Ω. From the Y -equation of system (4.44)-(4.45)

we find that

Y (t, x) =

∫ t

0

rγ(s)A(s, x+ (s− t)εy)e
−

∫ t
s
(β+µy(η))dηds, ∀(t, x) ∈ R+ × Ω.

Therefore,

Y (t, x) ≤ rKA||γ||∞
β

, ∀(t, x) ∈ R+ × Ω.
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Adding up the Q, U and R equations of (4.44)-(4.45) we also find that

R(t, x) + U(t, x) +Q(t, x) ≤
∫ t

0

βY (s, x+ (s− t)ε)e−
∫ t
s µ(η)dηds, ∀(t, x) ∈ R+ × Ω.

From where

R(t, x) + U(t, x) +Q(t, x) ≤ rKA||γ||∞
infs∈[0,ω] µ(s)

, ∀(t, x) ∈ R+ × Ω.

This ends the proof of the claim.

Now let us introduce the following quantity
∫

Ω

A(t, x)dx. For convenience we still use

A(t) =

∫

Ω

A(t, x)dx

and idem for the variables Y , Q, U and R. From the (R + U + Q)-estimate of Claim

4.3.1 and the divergence theorem (see for instance the proof of Theorem 4.3.2) we easily

find that




dA(t)

dt
= φ(t)

∫

Ω

(
1− A(t, x)

KA

)
U(t, x)dx− (γ(t) + µ1(t))A(t),

dY (t)

dt
= γ(t)rA(t)− µy(t)Y (t)− βY (t),

dM(t)

dt
= (1− r)γ(t)A(t)− µm(t)M(t),

dR(t)

dt
= βY (t) + b

HQ(t)

H +K
− ϕHR(t)− µr(t)R(t),

dU(t)

dt
= ϕHR(t)− (a+ µu(t))U(t),

dQ(t)

dt
= aU(t)− b

HQ(t)

H +K
− µq(t)Q(t),

A(0) =

∫

Ω

A0(x)dx;

Y (0) =M(0) = Q(0) = U(0) = R(0) = 0.

(4.51)
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4.3.3 Mosquito extinction results for seasonal model (4.44).

Let us introduce the following notations:

A− =




−ϕH − µr∞ 0 bH
H+K

ϕH −a− µu∞ 0

0 a − bH
H+K

− µq∞


 ,

wherein µq∞, µu∞ and µr∞ are the limits inferior of µr(t), µu(t) and µq(t) as t → +∞.

Let

(γ(.) + µ1(.))♦ = lim inf
t→∞

1

t

∫ t

0

(γ(s) + µ1(s))ds,

R♦ =
rβ

(γ(.) + µ1(.))♦

× lim sup
t→∞

1

t

∫ t

0

φ(s)

∫ s

0

γ(ξ)e
∫ ξ
0
φ(η)dη+

∫ s
ξ
(γ(η)+µ1(η))dη

(∫ s

ξ

f∞(σ − t)e−
∫ σ
ξ
(β+µy(η))dηdσ

)
dξds,

and

f∞(.) :=
〈
(0, 1, 0)T ; e.A−(1, 0, 0)T

〉
;

and where {esA−}s is the C0-semigroup generate by the linear operator A−.

We have the extinction result of seasonal spatio-temporal model (4.44) as follows,

Theorem 4.3.3. Let R♦ < 1. Then the anopheles mosquito population dies out, i.e.,

for every solution of (4.44)-(4.45) we have A(t), Y (t), R(t), U(t), Q(t) → 0 as t→ ∞.

Proof. From the Y -equation of (4.51) we have

Y (t) =

∫ t

0

rγ(s)A(s)e−
∫ t
s (β+µy(η))dη . (4.52)

The Q, U and R-equations of (4.51) give that

d

dt
(R(t), U(t), Q(t))T ≤ A−(R(t), U(t), Q(t))

T + (βY (t), 0, 0)T ,

that is

U(t) ≤
∫ t

0

βY (s)f∞(s− t)ds. (4.53)

Substituting (4.52) into (4.53) we find that

U(t) ≤
∫ t

0

rβγ(s)A(s)

(∫ t

s

f∞(σ − t)e−
∫ σ
s
(β+µy(η))dηdσ

)
ds. (4.54)

The A-equation of (4.51) leads to

d

dt
lnA(t) ≤ φ(t)

U(t)

A(t)
− (γ(t) + µ1(t)). (4.55)
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Integrating (4.55), we have

1

t
ln
A(t)

A(0)
≤ 1

t

∫ t

0

φ(s)
U(s)

A(s)
− 1

t

∫ t

0

(γ(s) + µ1(s))ds. (4.56)

Using (4.54) we find that

U(s)

A(s)
≤
∫ s

0

rβγ(ξ)
A(ξ)

A(s)

(∫ s

ξ

f∞(σ − t)e−
∫ σ
ξ (β+µy(η))dηdσ

)
dξ.

From the A-equation of system (4.51), we easily find that

A(0)e−
∫ t
0 (γ(η)+µ1(η))dη ≤ A(t) ≤ A(0)e

∫ t
0 (φ(η)−γ(η)−µ1 (η))dη ; ∀t ≥ 0. (4.57)

From where we find that

A(ξ)

A(s)
≤ e

∫ ξ
0
φ(η)dη+

∫ s
ξ
(γ(η)+µ1(η))dη ; ∀s ≥ ξ ≥ 0.

Hence, (4.56) gives

1

t
ln
A(t)

A(0)
≤

rβ lim sup
t→∞

1

t

∫ t

0

φ(s)

∫ s

0

γ(ξ)e
∫ ξ
0 φ(η)dη+

∫ s
ξ (γ(η)+µ1(η))dη

(∫ s

ξ

f∞(σ − t)e−
∫ σ
ξ (β+µy(η))dηdσ

)
dξds

−(γ(.) + µ1(.))♦,

that is
1

t
ln
A(t)

A(0)
≤ (γ(.) + µ1(.))♦

(
R♦ − 1

)
.

Since R♦ < 1, it comes that

A(t) ≤ A(0)e(γ(.)+µ1(.))♦(R
♦−1)t → 0 as t→ ∞.

The Y , Q, U andR-equations of (4.51) give that Y (t), Q(t), U(t), R(t) → 0 as t→ ∞

4.3.4 Weak persistence results for seasonal model (4.44).

In order to obtain the weak persistence results of seasonal spatio-temporal model

(4.44) we set:

A+ =




−ϕH − µ∞
r 0 bH

H+K

ϕH −a− µ∞
u 0

0 a − bH
H+K

− µ∞
q


 ,
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where in µ∞
r , µ∞

u and µ∞
q are the limits superior of µr(t), µu(t) and µq(t) as t → +∞.

Let

(γ(.) + µ1(.))
♦ = lim sup

t→∞

1

t

∫ t

0

(γ(s) + µ1(s))ds,

R♦ =
rβ

(γ(.) + µ1(.))♦

× lim inf
t→∞

1

t

∫ t

0

φ(s)

∫ s

0

γ(ξ)e−
∫ ξ
0 φ(η)dη+

∫ s
ξ (γ(η)+µ1(η))dη

(∫ s

ξ

f∞(σ − t)e−
∫ σ
ξ (β+µy(η))dηdσ

)
dξds,

and

f∞(.) :=
〈
(0, 1, 0)T ; e.A

+

(1, 0, 0)T
〉
. (4.58)

Theorem 4.3.4. Let R♦ > 1. Then anopheles mosquito uniformly weakly persists in

the population, in the sense that there exists some ǫ > 0 such that

lim sup
t→+∞

A(t) > ǫ

for all solutions U(t, 0)v0 := (A(t, .),M(t, .); Y (t, .);R(t, .);U(t, .);Q(t, .))T , t ≥ 0 of

system (4.44)-(4.45).

Proof. Let us suppose that for every ǫ > 0, there is some solution with lim supt→+∞A(t) <

ǫ. From the Y -equation of (4.51) we have

Y (t) =

∫ t

0

rγ(s)A(s)e−
∫ t
s (β+µy(η))dη . (4.59)

The Q, U and R-equations of (4.51) give that

d

dt
(R(t), U(t), Q(t))T ≥ A+(R(t), U(t), Q(t))T + (βY (t), 0, 0)T ,

that is

U(t) =

∫ t

0

βY (s)f∞(s− t)ds. (4.60)

Substituting (4.59) into (4.60) we find that

U(t) =

∫ t

0

rβγ(s)A(s)

(∫ t

s

f∞(σ − t)e−
∫ σ
s
(β+µy(η))dηdσ

)
ds. (4.61)

The A-equation of (4.51) leads to

d

dt
lnA(t) =

φ(t)

A(t)

∫

Ω

(
1− A(t, x)

KA

)
U(t, x)dx− (γ(t) + µ1(t)). (4.62)

Setting A∞ := lim supt→+∞A(t) and since A∞ < ǫ, then there exists t∗ > 0 such that

A(t) < ǫ for all t > t∗.
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Integrating (4.62), we have for sufficiently large time t

1

t− t∗
ln

A(t)

A(t∗)
=

1

t− t∗

∫ t

t∗

φ(s)

A(s)

∫

Ω

(
1− A(s, x)

KA

)
U(s, x)dxds

− 1

t− t∗

∫ t

t∗

(γ(s) + µ1(s))ds.

That is

1

t− t∗
ln

A(t)

A(t∗)
≥ 1

t− t∗

∫ t

t∗

φ(s)

(
U(s)

A(s)
− U(s)

KA

)
ds− 1

t− t∗

∫ t

t∗

(γ(s) + µ1(s))ds.

(4.63)

Thus, using (4.61) and the fact that A(t) < ǫ for all t > t∗; we can find a non-negative

function c0(.) such that U(t) < ǫc0(t) for all t > t∗. Therefore, (4.63) becomes

1

t− t∗
ln

A(t)

A(t∗)
≥ 1

t− t∗

∫ t

t∗

φ(s)

(
U(s)

A(s)
− ǫc0(s)

KA

)
ds− 1

t− t∗

∫ t

t∗

(γ(s) + µ1(s))ds.

(4.64)

Using (4.61) we find that

U(s)

A(s)
=

∫ s

0

rβγ(ξ)
A(ξ)

A(s)

(∫ s

ξ

f∞(σ − t)e−
∫ σ
ξ (β+µy(η))dηdσ

)
dξ.

Equation (4.57) leads to

A(ξ)

A(s)
≥ e−

∫ ξ
0 φ(η)dη+

∫ s
ξ (γ(η)+µ1(η))dη ; ∀s ≥ ξ ≥ 0.

Hence, (4.64) becomes

1

t− t∗
ln

A(t)

A(t∗)
≥

rβ
1

t− t∗

∫ t

t∗

φ(s)

∫ s

0

γ(ξ)e−
∫ ξ
0 φ(η)dη+

∫ s
ξ (γ(η)+µ1(η))dη

(∫ s

ξ

f∞(σ − t)e−
∫ σ
ξ (β+µy(η))dηdσ

)
dξds

− ǫ

KA

1

t− t∗

∫ t

t∗

φ(s)c0(s)ds−
1

t− t∗

∫ t

t∗

(γ(s) + µ1(s))ds.

For sufficiently large t we have

1

t− t∗
ln

A(t)

A(t∗)
≥

rβ
1

t− t∗

∫ t

t∗

φ(s)

∫ s

0

γ(ξ)e−
∫ ξ
0
φ(η)dη+

∫ s
ξ
(γ(η)+µ1(η))dη

(∫ s

ξ

f∞(σ − t)e−
∫ σ
ξ
(β+µy(η))dηdσ

)
dξds

− ǫ

KA
(φ(.)c0(.))

♦ − (γ(.) + µ1(.))
♦.

Since R♦ > 1,

rβ lim inf
t→∞

1

t

∫ t

0

φ(s)

∫ s

0

γ(ξ)e−
∫ ξ
0
φ(η)dη+

∫ s
ξ
(γ(η)+µ1(η))dη

(∫ s

ξ

f∞(σ − t)e−
∫ σ
ξ
(β+µy(η))dηdσ

)
dξds

−(γ(.) + µ1(.))
♦ > 0.
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Hence
1

t− t∗
ln

A(t)

A(t∗)
≥ δ̃

for large times t, with δ̃ > 0 provided ǫ > 0 is chosen small enough. Thus

A(t) ≥ A(t∗)e
δ̃(t−t∗)

for sufficiently large t and A(t) → ∞ as t → ∞, a contradiction to the fact that A is

bounded.

4.3.5 Strong persistence results for seasonal model (4.44).

In order to formulate a strong persistence results, let

Ā+ =




−ϕH − µ̄∞
r 0 bH

H+K

ϕH −a− µ̄∞
u 0

0 a − bH
H+K

− µ̄∞
q


 ,

where in µ̄∞
r is the limit superior of µ̄r(t), as t→ +∞; and

µ̄r(t) = lim
s→∞

µr(s+ t).

Similarly considerations hold for the variables µ̄∞
u and µ̄∞

q .

Let

(γ(.) + µ1(.))
⋆ = lim sup

s,t→∞

1

t

∫ t

0

(γ(s+ r) + µ1(s+ r))dr.

R⋆ =
rβ

(γ(.) + µ1(.))⋆
×

lim inf
s,t→∞

1

t

∫ t

0

φ(s+ r)

∫ r

0

γ(s+ ξ)e−
∫ ξ
0 φ(s+η)dη+

∫ r
ξ (γ(s+η)+µ1(s+η))dη×

(∫ r

ξ

f̄∞(σ − t)e−
∫ σ
ξ
(β+µy(s+η))dηdσ

)
dξdr.

f̄∞(.) =
〈
(0, 1, 0)T ; e.Ā

+

(1, 0, 0)T
〉
.

Theorem 4.3.5. Let R⋆ > 1. Then anopheles mosquito uniformly strongly persists in

the population, in the sense that there exists some ǫ > 0 such that

lim inf
t→+∞

A(t) > ǫ

for all solutions U(t, 0)v0 := (A(t, .),M(t, .); Y (t, .);R(t, .);U(t, .);Q(t, .))T , t ≥ 0 of

system (4.44)-(4.45).
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Proof. In order to get into framework of uniform persistence results introduce by Thieme

[204], consider the space

X0 =

{
v(t, .) := (A(t, .),M(t, .); Y (t, .);R(t, .);U(t, .);Q(t, .)) ∈ X+ :

∫

Ω

A(t, x)dx > 0

}
,

endowed with the standard metric. Further let

ρ0 : v(t, .) ∈ X → [0,∞) ∋ ρ0(v(t, .)) :=

∫

Ω

A(t, x)dx

be a non-negative functional on X. Then the space X0 rewrites as

X0 = {v(t, .) ∈ X+ : ρ0(v(t, .)) > 0} .

We consider the function

σ0 : Dτ → [0,∞)

defined by

σ0(t, s, u) = ρ0(U(t+ s, s)u) :=

∫

Ω

A(t+ s, x)dx,

where v(t, .) := (A(t, .),M(t, .); Y (t, .);R(t, .);U(t, .);Q(t, .)) solve (4.44)-(4.45) and v(t, s) =

u.

According to Theorem 4.3.2 we have

A∞ ≤ mes(Ω)KA;

(M + Y +Q + U +R)∞ ≤ sup γ

inf µ
A∞;

and the set

Ω0 =

{
(A,M ; Y ;R;U ;Q) : A+M + Y +R + U +Q ≤

(
1 +

sup γ

inf µ

)
mes(Ω)KA

}

is absorbing and forward invariant. A standard Gronwall argument implies that σ0(., s, u)

is continuous on [0,∞) uniformly in u ∈ Ω0, s ≥ 0. Therefore the non-autonomous semi-

flow U has the following (CA)-property:

(CA) There exists a subset Ω0 in X with the following properties:

– For all u ∈ X0, s ≥ 0, we have U(t, s)u→ Ω0, t→ ∞, that is Ω0 absorbs U(., s)u.
– If (sj) is a sequence of real numbers and (uj) a sequence in X such that sj → ∞

and uj → Ω0 as j → ∞ and, for some ǫ > 0, ρ0(uj) = ǫ for all j ∈ N, then the

continuity of σ(., sj)uj is uniform in j ∈ N, possibly after choosing a sub-sequence.
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Now, for every ǫ > 0, t > 0 we defined set Σ(ǫ) and Σ(t, ǫ) as follows (Ω0 is the

absorbing set in (CA)):

Σ(t, ǫ) consists of continuous functions σ̃0 : [0, t] → [0, ǫ],

σ̃0(t) = 0 < σ̃0(0) = ǫ,

σ̃0(s) = limj→∞ σ0(s, sj)uj uniformly in s ∈ [0, t]

for sequences (sj) ⊂ [0,∞), (uj) ⊂ X with sj → ∞, uj → Ω0, as j → ∞.

Σ(ǫ) consists of continuous functions σ̃0 : [0,∞) → (0, ǫ],

0 < σ̃0(0) = ǫ,

σ̃0(s) = limj→∞ σ0(s, sj)uj locally uniformly in s ≥ 0

for sequences (sj) ⊂ [0,∞), (uj) ⊂ X with sj → ∞, uj → Ω0, as j → ∞.

(4.65)

The semiflow U is said to have property (PS) if the following holds:

(PS) If ǫ > 0 is chosen sufficiently small, the sets Σ(ǫ) and Σ(t, ǫ) are empty for all

t ≥ 0.

Coupling Theorem 4.3.4 and the (CA)-property together with Theorem 2.3 in [204]; in

order to check the uniformly strongly ρ0-persistence of U it is sufficient to check property

(PS). Let us describe elements of Σ(ǫ) and Σ(t, ǫ) in (4.65) in terms of systems (4.51).

To this end we consider sequences sj → ∞, uj → Ω0 in X, as j → ∞. Let Aj, Yj, Rj ,

Uj , Qj be the solutions of




dAj(t)

dt
= φ(t+ sj)

∫

Ω

(
1− Aj(t, x)

KA

)
Uj(t, x)dx− (γ(t+ sj) + µ1(t+ sj))Aj(t),

dYj(t)

dt
= γ(t+ sj)rAj(t)− µy(t+ sj)Yj(t)− βYj(t),

dRj(t)

dt
= βYj(t) + b

HQj(t)

H +K
− ϕHRj(t)− µr(t + sj)Rj(t),

dUj(t)

dt
= ϕHRj(t)− (a + µu(t + sj))Uj(t),

dQj(t)

dt
= aUj(t)− b

HQj(t)

H +K
− µq(t + sj)Qj(t),

(Aj(0), Yj(0), Rj(0), Uj(0), Qj(0)) = uj.

Since L1(0,∞) is separable, the Alaoglu-Bourbaki theorem implies that, after choosing

as sub-sequence, φ(t+sj) → φ̄(t), γ(t+sj) → γ̄(t), µ1(t+sj) → µ̄1(t), µy(t+sj) → µ̄y(t),
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µr(t + sj) → µ̄r(t), µu(t + sj) → µ̄u(t), µq(t + sj) → µ̄q(t), as j → ∞; where φ̄, γ̄, µ̄1,

µ̄y, µ̄r, µ̄u, µ̄q are elements of L∞(0,∞) and the convergence holds in the weak topology

carried by L∞(0,∞) as dual space of L1(0,∞).

The derivatives of Aj, Yj , Qj , Uj and Rj are bounded, uniformly in j ∈ N. By

Arzela-Ascoli theorem we have, after choosing a sub-sequence,

Aj(t) → Ā(t), Yj(t) → Ȳ (t), Qj(t) → Q̄(t), Uj(t) → Ū(t), Rj(t) → R̄(t), j → ∞

locally uniformly in t ≥ 0, where Ā, Ȳ , Q̄, Ū and R̄ are bounded and absolutely

continuous and satisfy




dĀ(t)

dt
= φ̄(t)

∫

Ω

(
1− Ā(t, x)

KA

)
Ū(t, x)dx− (γ̄(t) + µ̄1(t))Ā(t),

dȲ (t)

dt
= γ̄(t)rĀ(t)− µ̄y(t)Ȳ (t)− βȲ (t),

dR̄(t)

dt
= βȲ (t) + b

HQ̄(t)

H +K
− ϕHR̄(t)− µ̄r(t)R̄(t),

dŪ(t)

dt
= ϕHR̄(t)− (a+ µ̄u(t))Ū(t),

dQ̄(t)

dt
= aŪ(t)− b

HQ̄(t)

H +K
− µ̄q(t)Q̄(t),

(Ā(0), Ȳ (0), R̄(0), Ū(0), Q̄(0)) = u0 ∈ Ω0.

(4.66)

Since Ā(0) = ǫ > 0, we first realize that

Ā(t) ≥ Ā(0)e−
∫ t
0
(γ̄(s)+µ̄1(s))ds > 0; ∀t ≥ 0,

so Σ(t, ǫ) is empty.

The element of Σ(ǫ) in (4.65) can be identified as

σ̃(t) = Ā(t),

where Ā satisfies (4.66) and Ā(0) > 0, Ā(t) ≤ ǫ for all t ≥ 0.

The same consideration as in the proof of Theorem 4.3.4 now implies that such an Ā

cannot exist, if ǫ > 0 is chosen small enough, provided that R̄♦ > 1, where R̄♦ is the

analogue of R♦ in Theorem 4.3.4 with φ̄, γ̄, µ̄1, µ̄y, µ̄r, µ̄u, µ̄q replacing φ, γ, µ1, µy, µr,
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µu, µq. But, let us notice that

φ̄♦ = lim inf
t→∞

1

t

∫ t

0

φ̄(r)dr = lim inf
t→∞

1

t

∫ t

0

lim
j→∞

φ(r + sj)dr

= lim inf
t→∞

1

t
lim
j→∞

∫ t

0

φ(r + sj)dr

≥ lim inf
t→∞

1

t
lim inf
s→∞

∫ t

0

φ(r + s)dr

≥ lim inf
t,s→∞

1

t

∫ t

0

φ(r + s)dr = φ⋆.

Similarly considerations holds for the other terms in R̄♦. Hence R̄♦ ≥ R⋆ > 1. This end

the proof of the theorem.

4.3.6 Numerical illustration

We now provide some numerical illustrations of the dynamics of the seasonal model

(4.44). From the website of WMO (World Meteorological Organization) , we have

obtained the monthly temperature of the town of Garoua (Cameroon) from 1971 to

2000. The real data and its fitted curve are shown in Figure 4.4.
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Figure 4.4: The monthly temperature and its fitted curve.

In Table 4.5 we summarize parameters that are assumed to be constant in our model.

This include the proportion of female to the whole population, r, the transition rates β,

a, ϕ, the carrying capacity, KA, the constant alternative of blood for vectors, K.

In Table 4.4, we present the temperature-varying parameters, according to [166], [44].

This include the average number of eggs laid per female per day, φ, the mortality rates

for aquatic stage, for males, for immature females, for questing females, for breeding
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females, for resting females, µ1, µm, µy, µr, µu, µq, and the rate of emerging from the

aquatic stage, γ.

The values of temperature-varying parameters, γ, is given in [44]. Since we consider

continuous variations temperature, we interpolate the data parameter γ given in Table

4.3, using monotonic spline interpolation [73] (See Figure 4.5).

Now, according to Mordecai et al. 2012[166], let us describe how environmental

temperature drives malaria transmission via its combined effects on the mosquito and

parasite vital rates that determine transmission; namely the average number of eggs

laid per female per day, φ, the mortality rates for aquatic stage, for males, for immature

females, for questing females, for breeding females and for resting females, µ1, µm, µy,

µr, µu, µq. As all rate parameters in the temperature-dependent are expected to be

unimodal with respect to temperature, they (Mordecai et al. [166]) fit quadratic and

Brière functions (Briere et al. 1999 [21]) to each life-history parameter, as well as a linear

function for comparison (Table 4.6). The Brière function is a left-skewed unimodal

curve with three parameters, which represent the minimum temperature, maximum

temperature and a rate constant (Briere et al. 1999 [21]). The unimodal functions are

defined as Brière [c(T0−T (t))(Tm−T (t))1/2] and quadratic [qT 2(t) + zT (t) + s], where

T (t) is temperature in degrees Celsius at time t and c, T0 and Tm and q, z and s are fit

parameters of each function respectively.

All time dependent parameters for model (4.44) are given by Table 4.6 and Fig. 4.5

and the other parameters are estimated by Table 4.5.

In Figure 4.7, we illustrate the distribution of mature females (questing, breeding and

resting females) on a homogeneous landscape for different temperatures: 15oC, 20oC,

25oC, 30oC, 35oC and 40oC. With respect to each temperature, the lifetimes of mature

females are respectively given by: 8.27, 12.79, 12.31, 7.67, 4.29 and 2.45 days.

Table 4.3: Values of temperature-varying parameter γ [44].

Unit 10oC 15oC 20oC 25oC 30oC 35oC 40oC

day−1 0 0.0236 0.0578 0.0671 0.0645 0.0515 0
γ=Rate of emerging from aquatic stage.

Ref.: Delatte et al. 2009 [44].
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Figure 4.5: Time performance curves of mosquitoes traits for the town of Garoua.

Quadratic fitting for egg-to-adult survival probability, mosquitoes death rate and for

egg laid per adult female per day [166]. Rate of emerging from aquatic stage (larval

development rate) is fitting using monotonic cubic spline interpolation [73].
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Figure 4.6: The long term behaviors of mosquitoes population in two stages using

temperatures in the town of Garoua: Breeding females (left) and Aquatic stage (right).

b = 0.5; H = 100; K = 200; KA = 5000; a = 0.3, ϕ = 0.8. Other parameters are given

by Tab. 4.5 and Tab. 4.6.
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Figure 4.7: Distribution of mature females on a homogeneous landscape. b = 0.5;

H = 100; K = 200; KA = 5000; a = 0.3, ϕ = 0.8. Other parameters are given by Tab.

4.5 and Tab. 4.6.

Table 4.4: Temperature-varying parameters.

Parameter Description Ref.

φ Number of eggs laid per female per day [166]

µ1 Mortality rate in aquatic stage [166]

µm, µy, µr, µu, µq Mortality rates of mosquitoes [166], [44]

γ Rate of emerging from aquatic stage [44]
Ref.: Delatte et al. 2009 [44]; Mordecai et al. 2012 [166].
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Table 4.5: Values of constant parameters.

Parameter Description Estimated value Ref.

r Ratio of emerging females 0.5 [44]

KA Carrying capacity variable

β Mating rate between immature female and male 0.2 day−1 [44]

ϕ Probability of successfully taking a blood meal variable

H Constant population density of humans variable

at human habitat sites

K Constant alternative of blood for vectors variable

b Rate at which vectors visits human habitat sites

a Rate at which resting females become breeding variable

εm Adult mosquitoes speed of migration 0.1 ms−1 [59], [127]
Ref.: Delatte et al. 2009 [44]; Dufourd et al. 2013 [59]; Lacroix et al. 2009 [127]
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Table 4.6: The relationships between temperature and the mosquito and parasite life-history traits that determine malaria risk. Thermal

performance curves were fitted to the data assuming Brière [c(T0−T (t))(Tm−T (t))1/2], B, or Quadratic [qT 2(t)+zT (t)+s], Q, functions;

in which T (t) is temperature (oC) at time t. Standard deviations for the parameters are listed in parentheses alongside parameter values.

(see Mordecai et al. 2012 [166] and references therein).

Parameters Definition Fit Fit parameters (standard deviation)

e−µy Daily adult survival

probability

Q q = −0.000828(0.0000519) z = 0.0367(0.00239) s = 0.522(0.0235)

Mdr Mosquito development

rate

B c = 0.000111(0.00000954) Tm = 34(0.000106) T0 = 14.7(0.831)

pEA [pEA=e−µ1 ] Egg-to-adult survival

probability

Q q = −0.00924(0.00123) z = 0.453(0.0618) s = −4.77(0.746)

EFD Egg laid per adult fe-

male per day

Q q = −0.153(0.0307) z = 8.61(1.69) s = −97.7(22.6)

PDR Parasite development

rate

B c = 0.000111(0.0000161) Tm = 34.4(0.000176) T0 = 14.7(1.48)
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4.3.7 Future directions

When mosquitoes are not submitted to stimuli, it is possible to assume that they

move randomly in any direction [42]. This leads to a diffusion equation. For simplicity,

let us describe a generic equation to model the spread of a mosquito population. So,

let v represent the density of insects, then, one possible model is given by the following

general advection-diffusion-reaction equation (see also [59]):




∂v(t, x)

∂t
= ∇(D(t, x)v(t, x))−∇((∇C(t, x) +W (t, x))v(t, x)) + g(t, x, v), x ∈ Ω, t > 0,

v(0, x) = v0(x) ≥ 0, x ∈ Ω,

(−D∇v(t, x) +W (t, x)v(t, x)) · ηin = 0, ∀x ∈ ∂Ωin, t > 0,

∇v(t, x) · ηout = 0, ∀x ∈ ∂Ωout, t > 0,

(4.67)

where Ω is a bounded domain in Rn (1 ≤ n ≤ 3) with a piecewise smooth boundary

∂Ω. D(t, x) ≥ 0 is the diffusion (dispersion) coefficient or the diffusivity and v0(.) is a

continuous (or possibly discontinuous) function. Let ∂Ωin and ∂Ωout be partitions of the

boundary ∂Ω where ∂Ωin is the boundary at the inflow of mosquitoes in Ω and ∂Ωout

is the boundary at the outflow. ηin and ηout are respectively the unit outward normal

to the boundaries Ωin and Ωout. We consider total flux Cauchy boundary conditions on

∂Ωin [220], and Neumann boundary conditions on ∂Ωout.

Entomologists usually assume that there is no passive transportation of mosquito by

the wind. Conversely, mosquitoes follow (or are looking for) odors and carbon dioxide

(CO2) carried by the wind [74], which gives a main direction of migration of mosquitoes;

this is modeled by the term ∇(W (t, x)v(t, x)). Indeed, it is well known that CO2, in

interaction with other components, acts as an attractant and induces a direct response

to guide the mosquito towards the host. The breeding sites or the blood feeding sites

attractions are modeled by the term ∇(∇C(t, x)v(t, x)), where ∇C(t, x) represents the

force of attraction towards favorable places. In C we take into account wind direction

and strength to determine the area of attraction, which is commonly called plume by

entomologists.

The reaction term g(t, x, v) can be nonlinear, and represents death, birth, migration

in the population. If one only focus on mosquito dispersal, we may consider a linear

g(t, x, v) = −A(x)v + b(t, x), where A would be the mean daily death rate, and b would
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represent the birth rate in breeding sites.

Further works could be done from the mathematical and computational point of view

with respect to model (4.67). For instance, the existence of a solution of the impulse

parabolic system (4.67) could be considered, as well as the existence of a periodic equi-

librium. Then, in order to take into account more precisely environmental and landscape

parameters, High Performance Computing and more accurate numerical schemes should

be considered or developed.

4.3.8 Summary

In section 4.3 we have examined an advection-reaction model for anopheles mosquito

dynamics population. Knowledge of the population dynamics of the malaria vector is

fundamental to the understanding of malaria epidemiology and the spread of insecti-

cide resistance. Therefore, studies on the population structure of malaria vectors have

important implications for the prediction and assessment of the effects of many vector

control strategies. According to all malaria models, little has been done with regard to

the studies on the population dynamics of malaria vectors.

The aim finding of section 4.3 can be summarized along the following lines:

X We first derive the model description. This includes the description of model parame-

ters and the description of the state variables of the model (see Eq. (4.44)-(4.45)). This

model takes into account seasonal transmission and the geographical range of malaria.

X Using the semigroup approach we first derive the existence of the unique bounded

non-autonomous semiflow associated to the system (4.44)-(4.45).

X To find the behavior of the non-autonomous semiflow associated to the system (4.44)-

(4.45), we introduce the threshold values R♦, R♦ and R∗. Then, we find that, if R♦ < 1,

the anopheles mosquito population dies out.

X We also derive persistence results for seasonal mosquito model (4.44)-(4.45). Namely,

if R♦ > 1 (resp. R∗ > 1) then anopheles mosquito uniformly weakly (resp. strongly)

persists in the population. Finally, we provide some illustrations of the dynamics of the

seasonal model (4.44)-(4.45).
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Chapter Five

Population Models Structured by

Age: Hepatitis B and SIL models.

This chapter is organized in two sections and deals with two population models

structured by age. The first section is concerned by a mathematical SIL (Susceptible-

Infected-Lost of sight) model for the spread of a directly transmitted infectious disease

in an age-structured population; taking into account the demographic process and the

vertical transmission of the disease. There are important infective agents such as HBV

(hepatitis B virus), HIV (human immunodeficiency virus) and HTLV (human T-cell

leukemia virus) that can be vertically transmitted. The second section of the chapter is

concerned by and age-structured model for the transmission of hepatitis B virus, with

differential infectivity: symptomatic and asymptomatic infections.

5.1 Age-structured SIL model with demographics pro-

cess and vertical transmission.

We consider a mathematical SIL model for the spread of a directly transmitted in-

fectious disease in an age-structured population; taking into account the demographic

process and the vertical transmission of the disease. First we establish the mathematical

well-posedness of the time evolution problem by using the semigroup approach. Next

we prove that the basic reproduction ratio R0 is given as the spectral radius of a positive

operator, and an endemic state exist if and only if the basic reproduction ratio R0 is

greater than unity, while the disease-free equilibrium is locally asymptotically stable if

R0 < 1. We also show that the endemic steady states are forwardly bifurcated from the

disease-free steady state when R0 cross the unity. Finally we examine the conditions for

the local stability of the endemic steady states.
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5.1.1 Introduction

During the earliest centuries mankind faces ever more challenging environmental and

public health problems, such as emergence of new diseases or the emergence of disease

into new regions, and the resurgence diseases (tuberculosis, malaria HIV/AIDS, HBV).

Mathematical models of populations incorporating age structure, or other structuring

of individuals with continuously varing properties, have an extensive history.

The earliest models of age structured populations, due to Sharpe and Lotka in 1911

[194] and McKendrick in 1926 [154] established a foundation for a partial differential

equations approach to modeling continuum age structure in an evolving population. At

this early stage of development, the stabilization of age structure in models with linear

mortality and fertility processes was recognized, although not rigorously established

[138, 139]. Rigorous analysis of these linear models was accomplished later in 1941 by

Feller [70], in 1963 by Bellman and Cooke [15], and others, using the methods of Volterra

integral equations and Laplace transforms. Many applications of this theory have been

developed in demography [37, 112, 125, 184], in biology [10, 12, 13, 38, 90, 207] and in

epidemiology [25, 29, 71, 72, 102, 124, 56].

The increasingly complex mathematical issues involved in nonlinearities in age struc-

tured models led to the development of new technologies, and one of the most useful of

these has been the method of semi-groups of linear and nonlinear operators in Banach

spaces. Structured population models distinguish individual from another according to

characteristics such as age, size, location, status and movement. The goal of struc-

tured population is to understand how these characteristics affect the dynamics of these

models and thus the outcomes and consequence of the biological and epidemiological

processes.

In this section we consider a mathematical S-I-L (Susceptibles-Infected-Lost of sight)

model with demographics process, for the spread of a directly transmitted infectious

disease in an age-structured population. By infected (I) we mean infectious taking a

chemoprophylaxis in a care center. And by loss of sight (L), we mean infectious that

begun their effective therapy in the hospital and never return to the hospital for the

spuctrum examinations for many reasons such as long duration of treatment regimen,

poverty, mentality, etc... The lost of sight class was previously consider in some papers

as [20, 65].
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In this section, the infective agent can be transmitted not only horizontally but also

vertically from infected mothers to their newborns (perinatal transmission). There are

important infective agents such as HBV (hepatitis B virus), HIV (human immunode-

ficiency virus) and HTLV (human T-cell leukemia virus) that can be vertically trans-

mitted. Compared with the pure horizontal transmission case, so far we have not yet

so many results for vertically diseases in structured populations. In Africa, the vertical

transmission of the disease like HIV is in progression nowadays.

Worldwide, 1% of pregnant women are HIV-positive. However, sub-Saharan Africa

where 95% of HIV positive women live carries the vast majority of this burden [198].

Without treatment, approximately 25%-50% of HIV-positive mothers will transmit the

virus to their newborns during pregnancy, childbirth, or breastfeeding [17]. In 2007,

over 2 million children worldwide were living with HIV/AIDS, with the overwhelming

majority again in sub-Saharan Africa [198]. Approximately 400,000 infants contract HIV

from their mother every year, which is about 15% of the total global HIV incidence [183,

218]. The rate of pediatric HIV infections in sub-Saharan Africa remains unacceptably

high, with over 1,000 newborns infected with HIV per day [94].

Large simple trials which aim to study therapeutic interventions and epidemiologi-

cal associations of human immunodeficiency virus (HIV) infection, including perinatal

transmission, in Africa may have substantial rates of lost of sight. A better understand-

ing of the characteristics and the impact of women and children lost of sight is needed.

According to Ioannidis et al. [117], for the impact of lost of sight and vertical trans-

mission cohort in Malawi, several predictors of lost of sight were identified in this large

HIV perinatal cohort. Lost of sights can impact the observed transmission rate and the

risk associations in different studies. They (Ioannidis et al.) also focus that the HIV in-

fection status could not be determine for 36.9% of infant born to HIV-infected mothers;

6.7% with missing status because of various sample problems and 30.3% because they

never returned to the clinic (Lost of sight).

Firstly, the epidemic system is formulated. Then, we will describe the semigroup

approach to the time evolution problem of the abstract epidemic system. Next we

consider the disease invasion process to calculate the basic reproduction ratio R0, then,

we prove that the disease-free steady state is locally asymptotically stable if R0 <

1. Subsequently, we show that at least one endemic steady state exists if the basic
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reproduction ratio R0 is greater than unity. By introducing a bifurcation parameter, we

show that the endemic steady state is forwardly bifurcated from the disease-free steady

state when the basic reproduction ratio crosses unity. Finally, we consider the conditions

for the local stability of the endemic steady states.

5.1.2 The model

In this section, we formulate a model for the spread of the disease in a host population.

We consider a host population divided into three subpopulations; the susceptible class,

the infective class (those who are infectious but taking a chemoprophylaxis) and the

lost of sight class (those who are infectious but not on a chemoprophylaxis) denoted

respectively by S(t, a), I(t, a) and L(t, a) at time t and at specific age a. Let β(., .)

be the contact rate between susceptible individuals and infectious individuals. Namely,

β(a, σ) is the transmission rate from the infectious individuals aged σ to the susceptible

individuals aged a. All recruitment is into the susceptible class and occur at a specific

rate Λ(a). The rate of non-disease related death is µ(a). Infected and lost of sight have

additional death rates due to the disease d1(a) and d2(a) respectively. The transmission

of the disease occurs following adequate contacts between a susceptible and infectious

or lost of sight. r(a) denoted the proportion of individuals receiving an effective therapy

in a care center and φ(a) the fraction of them who after begun their treatment will not

return in the hospital for the examination. After some time, some of them can return

in the hospital at specific rate γ(a).

The basic system (age-structured SIL epidemic model) with vertical transmission can

be formulated as follows by equation (5.1).




(
∂

∂t
+

∂

∂a

)
S(t, a) = Λ(a)− (λ(t, a) + µ(a))S(t, a),

(
∂

∂t
+

∂

∂a

)
I(t, a) = λ(t, a)S(t, a)− (µ(a) + d1(a)

+r(a)φ(a))I(t, a) + γ(a)L(t, a),(
∂

∂t
+

∂

∂a

)
L(t, a) = r(a)φ(a)I(t, a)− (µ(a) + d2(a)

+γ(a))L(t, a).

(5.1)

For the boundary conditions of model (5.1), we consider that pregnant lost of sight

women generally return to the clinic for the birth of they new born, therefore, we can
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assume that there is not lost of sight new born (i.e. L(t, 0) = 0). Due to the above

consideration, the initial and boundary conditions of model (5.1) are given by:





S(t, 0) =
∫ a+
0

f(a)[S(t, a) + (1− p)(I(t, a) + L(t, a))]da,

I(t, 0) = p
∫ a+
0

f(a)(I(t, a) + L(t, a))da,

L(t, 0) = 0,

S(0, a) = ϕS(a); a ∈ (0, a+),

I(0, a) = ϕI(a); a ∈ (0, a+),

L(0, a) = ϕL(a); a ∈ (0, a+),

(5.2)

and where f(a) is the age-specific fertility rate, p is the proportion of newborns produced

from infected individuals who are vertically infected and a+ <∞ is the upper bound of

age. The force of infection λ(t, a) is given by

λ(t, a) =

∫ a+

0

β(a, σ)(I(t, σ) + L(t, σ))dσ.

where β(a, s) is the transmission rate between the susceptible individuals aged a and

infectious or lost of sight individuals aged s. a+ <∞ is the upper bound of age.

Let us note that in the literature the transmission rate β(a, σ) can take many forms:

β(a, σ) = β = constant (Dietz 1975 [54]; Greenhalgh 1987 [82]), β(a, σ) = g(a) (Gripen-

berg 1983 [88]; Webb 1985 [211]), β(a, σ) = g(a)h(σ) (Dietz and Schenzle 1985 [55];

Greenhalgh 1988 [83]; Castillo-Chavez and al. 1989 [29]).

In the following, we consider systems (5.1)-(5.2) under following assumption:

Assumption 5.1.1. We assume that β ∈ L∞[(0, a+,R+) × (0, a+,R+)] and functions

f, d1, d2, γ, Λ, µ belong to L∞(0, a+,R+).

5.1.3 Existence of flow

The aim of this section is to derive premininary remarks on (5.1)-(5.2). These results

include the existence of the unique maximal bounded semiflow associated to this system.

Abstract formulation

Let X be the space defined as X := L1(0, a+,R3) with the norm ||ϕ||X =
3∑
i=1

||ϕi||L1;

where ϕ = (ϕ1, ϕ2, ϕ3)
T ∈ X. Let us note X+ the positive cone of X.
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It is well known that (X, ||.||X) is a Banach space. Let A : D(A) ⊂ X → X be a

operator defined by

Aϕ = −ϕ′ − µϕ, (5.3)

with the domain

D(A) =




ϕ = (ϕ1, ϕ2, ϕ3) ∈ W 1,1(0, a+,R3) and




ϕ1(0)

ϕ2(0)

ϕ3(0)


 =




∫ a+
0

f(a)[ϕ1(a) + (1− p)(ϕ2(a) + ϕ3(a))]da

p
∫ a+
0

f(a)(ϕ2(a) + ϕ3(a))da

0








;

the function F : D(A) → X defined by

F




ϕ1

ϕ2

ϕ3


 =




Λ− λ[., ϕ]ϕ1

λ[., ϕ]ϕ1 − (d1 + rφ)ϕ2 + γϕ3

rφϕ2 − (d2 + γ)ϕ3



,

λ[., ϕ] ∈ L1(0, a+,R) is a function such that

λ[a, ϕ] =

∫ a+

0

β(a, σ)[ϕ2(σ) + ϕ3(σ)]dσ

and W 1,1(0, a+,R) is a usual Sobolev space.

Let us first derive the following lemma on operator A.

Lemma 5.1.1. 1. The operator A is generator of a C0-semigroup of linear bounded

operators {T (t)}t≥0 such that

T (t)ϕ(a) =





ϕ(a− t)e−µt if a− t ≥ 0

C(t− a)e−µa if a− t ≤ 0
for t ≤ a+

and T (t)ϕ(a) = 0R3 for t > a+; where C(t) = (C1(t), C2(t), 0) ∈ R3 is the unique

solution of the following Volterra integral equation

C(t) = G(t) + Φ(t, C),

with

G(t) =

(∫ a+

t

f(s)(ϕ1(s− t) + (1− p)ϕ2(s− t) + ϕ3(s− t))ds ; p

∫ a+

t

f(s)ϕ2(s− t)ds ; 0

)
,

Φ(t, C) =

(∫ t

0

f(s)(C1(t− s) + (1− p)C2(t− s))ds ; p

∫ t

0

f(s)C2(t− s)ds ; 0

)
.
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2. The domain D(A) of operator A is dense in X and A is a closed operator.

Proof. The proof of this result is rather standard. Standard methodologies apply to

provide item 1 (see Pazy 1983 [180]). Item 2 is a direct consequence of the fact that the

operator A is generator of a C0-semigroup of linear bounded operators (see Corollary

2.5 in Pazy 1983 [180]).

Therefore, one obtains that System (5.1)-(5.2) re-writes as the following densely de-

fined Cauchy problem 



dϕ(t)

dt
= Aϕ(t) + F (ϕ(t)),

ϕ(0) = (ϕS, ϕI , ϕL)
T .

(5.4)

Existence and uniqueness of solutions

We set X0 := D(A) and X0+ the positive cone of X0. In general we can not solve

(5.4) in this strong formulation, if u0 ∈ X0+ \ D(A). So, for arbitrary ϕ0 ∈ X0+ , we

solve it in the integrated form:

ϕ(t) = ϕ0 + A

∫ t

0

ϕ(s)ds+

∫ t

0

F (ϕ(s))ds ; t > 0. (5.5)

A solution of (5.5) is called a mild solution of the initial value problem (5.4). So, in

the following, we are looking for mild solution of abstract Cauchy-problem (5.4).

We can easily find that:

Lemma 5.1.2. On Assumption 5.1.1, the nonlinear operator F from X to X is con-

tinuous and locally Lipschitz.

Using Lemmas 5.1.1 and 5.1.2 the main results of this section reads as (see Theorem

1.4 in Pazy 1983[180]).

Theorem 5.1.1. Let Assumption 5.1.1 be satisfied.

If ϕ0 ∈ X0+ := L1(0, a+,R3
+). Then there exists a unique bounded continuous solution

ϕ to the integrated problem (5.5) defined on [0,+∞) with values in X0+.

5.1.4 Disease-Free Equilibrium (DFE)

The following proposition gives the characteristics of the disease-free equilibrium

(DFE) of system (5.1)-(5.2).
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Let us introduce l(a) = exp
(
−
∫ a
0
µ(s)ds

)
the average lifetime of individuals at age

a.

Proposition 5.1.1. Let
∫ a+

0

f(a)l(a)da < 1 be satisfied. Then, system (5.1)-(5.2) has

a unique Disease Free Equilibrium (DFE), ϕ0 = (S0, 0L1, 0L1), where S0 is given by




S0(0) =
1

1−
∫ a+
0

f(a)l(a)da

∫ a+

0

f(a)l(a)

(∫ a

0

Λ(s)

l(s)
ds

)
da,

S0(a) = l(a)

[
S0(0) +

∫ a

0

Λ(s)

l(s)
ds

]
for 0 ≤ a ≤ a+.

(5.6)

Proof. : ϕ is an equilibrium of problem (5.4) if and only if

ϕ ∈ D(A) and Aϕ+ F (ϕ) = 0X . (5.7)

For the DFE we have ϕ2 = ϕ3 ≡ 0L1 . Hence λ[a, ϕ] ≡ 0L1. From where the result

follows using straightforward computations.

5.1.5 Endemic Equilibrium (EE)

ϕ is an endemic equilibrium of (5.4) if and only if (5.7) is satisfied. That is,

ϕ1(a) = ϕ1(0)l(a) exp

(
−
∫ a

0

λ[σ, ϕ]dσ

)

+

∫ a

0

l(a)

l(s)
exp

(
−
∫ a

s

λ[σ, ϕ]dσ

)
Λ(s)ds; (5.8)

ϕ2(a) =

∫ a

0

l(a)Γ1(a)

l(s)Γ1(s)
exp

(
−
∫ a

s

r(σ)φ(σ)dσ

)
[γ(s)ϕ3(s) + λ[s, ϕ]ϕ1(s)] ds

+ϕ2(0)l(a)Γ1(a) exp

(
−
∫ a

0

r(σ)φ(σ)dσ

)
; (5.9)

ϕ3(a) = ϕ3(0)l(a)Γ2(a) exp

(
−
∫ a

0

γ(σ)dσ

)

+

∫ a

0

l(a)Γ2(a)

l(s)Γ2(s)
exp

(
−
∫ a

s

γ(σ)dσ

)
r(s)φ(s)ϕ2(s)ds; (5.10)

ϕ1(0) =

∫ a+

0

f(a)[ϕ1(a) + (1− p)(ϕ2(a) + ϕ3(a))]da; (5.11)

ϕ2(0) = p

∫ a+

0

f(a)(ϕ2(a) + ϕ3(a))da; (5.12)

ϕ3(0) = 0. (5.13)

where
Γ1(a) = exp

(
−
∫ a
0
(d1(s) + r(s)φ(s))ds

)
;

Γ2(a) = exp
(
−
∫ a
0
(d2(s) + γ(s))ds

)
.
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Let us set λ(s) = λ[s, ϕ] for s ∈ [0, a+). Equation (5.8) re-write as

ϕ1(a) = ϕ1(0)A11(λ, a) + u1(λ, a). (5.14)

Equations (5.8) and (5.9) give

ϕ2(a) = ϕ1(0)A21(λ, a) + ϕ2(0)A22(a) + u2(λ, a). (5.15)

Equations (5.10), (5.13) and (5.14) give

ϕ3(a) = ϕ1(0)A31(λ, a) + ϕ2(0)A32(λ, a) + u3(λ, a); (5.16)

with

A11(λ, a) = l(a) exp

(
−
∫ a

0

λ(σ)dσ

)
;

A21(λ, a) =

∫ a

0

χ21(a, s)λ(s) exp

(
−
∫ s

0

λ(σ)dσ

)
ds;

A22(a) = l(a)Γ1(a);

A31(λ, a) =

∫ a

0

χ31(a, s)λ(s) exp

(
−
∫ s

0

λ(σ)dσ

)
ds;

A32(a) = l(a)Γ2(a)

∫ a

0

Γ1(s)

Γ2(s)
r(s)φ(s)ds;

u1(λ, a) =

∫ a

0

l(a)

l(s)
Λ(s) exp

(
−
∫ a

s

λ(σ)dσ

)
ds;

u2(λ, a) =

∫ a

0

l(a)

l(s)
Λ(s)

∫ a

s

Γ1(a)

Γ1(η)
λ(η) exp

(
−
∫ η

s

λ(σ)dσ

)
ds;

u3(λ, a) =

∫ a

0

l(a)Γ2(a)

l(s)Γ2(s)
r(s)φ(s)u2(λ, s)ds

+

∫ a

0

l(a)Γ1(a)

l(s)Γ1(s)
exp

(
−
∫ a

s

r(σ)φ(σ)dσ

)
γ(s)ϕ3(s)ds;

and

χ21(a, s) = l(a)
Γ1(a)

Γ1(s)
; χ31(a, s) = l(a)

∫ a

s

Γ2(a)Γ1(η)

Γ2(η)Γ1(s)
r(η)φ(η)dη.

From equations (5.11) and (5.12), we respectively deduce that
(
1−

∫ a+

0

f(a)[A11(λ, a) + (1− p)(A21(λ, a) + A31(λ, a))]da

)
ϕ1(0)

− (1− p)ϕ2(0)

∫ a+

0

f(a)[A22(a) + A32(a)]da = v1(λ);

(5.17)
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and

pϕ1(0)

∫ a+

0

f(a)[A21(λ, a) + A31(λ, a)]da

+ ϕ2(0)

(
p

∫ a+

0

f(a)[A22(a) + A32(a)]da− 1

)
= −v2(λ);

(5.18)

where

v1(λ) =

∫ a+

0

f(a)[u1(λ, a) + (1− p)(u2(λ, a) + u3(λ, a))]da;

v2(λ) = p

∫ a+

0

f(a)[u2(λ, a) + u3(λ, a)]da.

Therefore, we find that ϕ1(0) =
∆1(λ)

∆(λ)
and ϕ2(0) =

∆2(λ)

∆(λ)
; with

∆(λ) = (1− p)p

∫ a+

0

f(a)[A22(a) + A32(a)]da×
∫ a+

0

f(a)[A21(λ, a) + A31(λ, a)]da

+

(
1−

∫ a+

0

f(a)[A11(λ, a) + (1− p)(A21(λ, a) + A31(λ, a))]da

)
×

(
p

∫ a+

0

f(a)[A22(a) + A32(a)]da− 1

)
;

∆1(λ) = v1(λ)

(
p

∫ a+

0

f(a)[A22(a) + A32(a)]da− 1

)

− (1− p)v2(λ)

∫ a+

0

f(a)[A22(a) + A32(a)]da;

∆2(λ) = v2(λ)

(∫ a+

0

f(a)[A11(λ, a) + (1− p)(A21(λ, a) + A31(λ, a))]da− 1

)

− pv1(λ)

∫ a+

0

f(a)[A21(λ, a) + A31(λ, a)]da.

Equations (5.15) and (5.16) give



ϕ2(a) =
∆1(λ)

∆(λ)
A21(λ, a) +

∆2(λ)

∆(λ)
A22(a) + u2(λ, a)

ϕ3(a) =
∆1(λ)

∆(λ)
A31(λ, a) +

∆2(λ)

∆(λ)
A32(a) + u3(λ, a)

(5.19)

Since λ(a) =
∫ a+
0

β(a, s)(ϕ2(s) + ϕ3(s))ds; then we have

λ(a) = H(λ)(a); (5.20)

where H is the operator defined from L1(0, a+,R) into itself by

H(ϕ)(a) =

∫ a+

0

β(a, s)

[
∆1(ϕ)

∆(ϕ)
(A21(ϕ, s) + A31(ϕ, s)) + u2(ϕ, s) + u3(ϕ, s)

+
∆2(ϕ)

∆(ϕ)
(A22(s) + A32(s))

]
ds. (5.21)
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Hence, system (5.1)-(5.2) have an endemic equilibrium if and only if the fixed point

equation (5.20) has at least one positive solution.

Now let us introduce the following technical assumptions on the transmission rate β

as in Inaba [114, 115, 113]:

Assumption 5.1.2. 1. β ∈ L1
+(R×R) such that β(a, s) = 0 for all (a, s) /∈ [o, a+]×

[0, a+].

2. lim
h→0

∫ +∞
−∞ |β(a+ h, ξ)− β(a, ξ)|da = 0 for ξ ∈ R.

3. It exists a function ε such that ε(s) > 0 for s ∈ (0, a+) and β(a, s) > ε(s) for all

(a, s) ∈ (0, a+)2.

On the above assumption, some properties of operator H are given by the following

lemma.

Lemma 5.1.3. Let Assumption 5.1.2 be satisfied.

(i) H is a positive, continuous operator. There exist a closed, bounded and convex

subset D ⊂ L1
+(0, a

+,R) such that H(D) ⊂ D.

(ii) Operator H has a Fréchet derivative H0 at the point ϕ ≡ 0 defined by (5.22) and

H0 := H ′(0) is a positive, compact and nonsupporting operator.

Proof. (i) The positivity and the continuity of operator H are obvious. Let ϕ ∈
L1(0, a+,R+), then

A21(ϕ, a) ≤ 1; A31(ϕ, a) ≤
∫ a

0

l(a)Γ2(a)

l(s)Γ2(s)
r(s)φ(s)ds := Ã31(a);

u1(ϕ, a) ≤
∫ a

0

l(a)

l(s)
Λ(s)ds; u2(ϕ, a) ≤ a||Λ||∞ and

u3(ϕ, a) ≤ ||Λ||∞Ã31(a) + sup
s∈[0,a]

γ(s)||ϕ||L1.

Since ∆1(ϕ)
∆(ϕ)

= ϕ1(0);
∆2(ϕ)
∆(ϕ)

= ϕ2(0) and the flow of system (5.1)-(5.2) is bounded (The-

orem 5.1.1), we can find MΩ > 0 such that |ϕ1(0)| ≤MΩ and |ϕ2(0)| ≤MΩ. Therefore,

||H(ϕ)||L1 ≤M ; with

M = ||β||∞
∫ a+

0

[
MΩ(1 + A22(s) + (Ã31(s) + A32(s)) + sup

s∈[0,a]
γ(s)) + ||Λ||∞(Ã31(s) + s)

]
ds.

Setting D = B+(0,M) with B+(0,M) := {ϕ ∈ L1(0, a+,R+) : ||ϕ||L1 ≤ M}. Hence

H(D) ⊂ D. This end the proof of item (i).
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(ii) We find that

H0(ψ)(a) =

∫ a+

0

β(a, s)

[
∆1(0)

∆(0)
(DA21(0, s)(ψ) +DA31(0, s)(ψ)) +Du2(0, s)(ψ)

+Du3(0, s)(ψ) +
D∆2(0)(ψ)

∆(0)
(A22(s) + A32(s))

]
ds.

where Du denotes the derivative of the function u and

Du2(0, a)(ψ) =

∫ a

0

χ2(a, s)ψ(s)ds; Du3(0, a)(ψ) =

∫ a

0

χ3(a, s)ψ(s)ds;

DA21(0, a)(ψ) =

∫ a

0

χ21(a, s)ψ(s)ds; DA31(0, a)(ψ) =

∫ a

0

χ31(a, s)ψ(s)ds;

D∆2(0)(ψ) = p

∫ a+

0

χ4(a)ψ(a)da.

with

χ21(a, s) =
l(a)Γ1(a)

l(s)Γ1(s)
exp

(
−
∫ a

s

r(σ)φ(σ)dσ

)
l(s)

χ31(a, s) =

∫ a

s

l(a)Γ2(a)

l(η)Γ2(η)
r(η)φ(η)χ21(η, s)dη

χ2(a, s) = χ21(a, s)

∫ s

0

Λ(η)

l(η)
dη; χ3(a, s) = χ31(a, s)

∫ s

0

Λ(η)

l(η)
dη;

χ4(a) =

[
S0(a)

l(a)

∫ a+

0

f(σ)l(σ)dσ − S0(0)

]∫ a+

a

f(s) [χ21(s, a) + χ31(s, a)] ds.

Hence, operator H0 read as a kernel operator:

H0(ψ)(a) =

∫ a+

0

χ(a, s)ψ(s)ds; (5.22)

where the kernel χ(a, s) is defined by

χ(a, s) =
S0(s)

l(s)

∫ a+

s

β(a, η) (χ21(η, s) + χ31(η, s)) dη

+
pχ4(s)

∆(0)

∫ a+

0

β(a, σ)(A22(σ) + A32(σ))dσ. (5.23)

The positivity of H0 is obvious. Let us show the compactness of the operator H0

on Assumption 5.1.2. Let ψ ∈ L1 and ǫ > 0. From Assumption 5.1.2; there exists

ρ = ρ(ǫ) > 0 such that, for |h| < ρ we have
∫ a+
0

|β(a+h, ξ)−β(a, ξ)|da < ǫ. Is therefore

h ∈ R such that |h| < ρ. ||τhH0(ψ)−H0(ψ)||L1 =

∫ a+

0

|H0(ψ)(a+ h)−H0(ψ)(a)|da. It

is easily checked that

|H0(ψ)(a + h)−H0(ψ)(a)| ≤ ||ψ||L1

∫ a+

0

|β(a+ h, s)− β(a, s)|C1(s)ds;
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where

C1(a) =

(
||Λ||∞ +

∆1(0)

∆(0)

)(
1 +

∫ a

0

l(a)Γ2(a)

l(s)Γ2(s)
r(s)φ(s)ds

)

+
||Λ||∞
∆(0)

(A22(a) + A32(a))

∫ a+

0

f(a)

(
1 +

∫ a

0

l(a)Γ2(a)

l(s)Γ2(s)
r(s)φ(s)ds

)
da.

Since
(
|h| < ρ =⇒

∫ a+
0

|β(a+ h, s)− β(a, s)|da < ǫ
)
, it comes that

||τhH0(ψ)−H0(ψ)||L1 ≤ ǫ

(∫ a+

0

C1(a)da

)
||ψ||L1.

Let B a bounded subset of L1 such that ψ ∈ B. Then

||τhH0(ψ)−H0(ψ)||L1 ≤ ǫ

(∫ a+

0

C1(a)da

)
× sup

ϕ∈B
{||ϕ||L1}.

Applying the Riesz-Fréchet-Kolmogorov theorem on H0(B) we conclude that H0(B) is

relatively compact. From where H0 si a compact operator.

Now, let us check that H0 is a nonsupporting operator. We define the operator F0 ∈
(L1(0, a+,R+))

∗ (dual space of L1(0, a+,R+)) by

〈F0;ψ〉 =

∫ a+

0

ε(s)[Du2(0, s)(ψ) + δ(s)Du3(0, s)]ds;

where ε is the positive function given by Assumption 5.1.2 and 〈F0;ψ〉 is the value of

F0 ∈ (L1(0, a+,R+))
∗ at ψ ∈ L1(0, a+,R+). Then for ψ ∈ L1(0, a+,R+) we haveH0(ψ) ≥

〈F0;ψ〉 · e ( with e = 1 ∈ L1(0, a+,R+)). From whereHn+1
0 (ψ) ≥ 〈F0;ψ〉 〈F0; e〉n · e ∀n ∈

N. Hence for all n ∈ N∗; F ∈ (L1(0, a+,R+))
∗ \ {0} and ψ ∈ L1(0, a+,R+) \ {0} we have

〈F ;Hn
0 (ψ)〉 > 0. Therefore, H0 is a nonsupporting operator.

The main results of this section reads as

Theorem 5.1.2. Let Assumption 5.1.2 be satisfied. Let us note R0 = ρ(H0) the spectral

radius of operator H0.

1. If R0 ≤ 1, system (5.1)-(5.2) has a unique DFE defined by (5.6);

2. If R0 > 1, in addition to the DFE, system (5.1)-(5.2) has at least one endemic

equilibrium.

Proof. The operator H always has λ ≡ 0 as fixed point. This corresponds to the

permanent DFE for system (5.1)-(5.2). For the rest, we are looking for the positive fixed
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point to the operator H . From Lemma 5.1.3 we know that there exists a closed, bounded

and convex subset D of L1(0, a+,R+) which is invariant by the operator H . Moreover,

from Lemma 5.1.3, H has a Fréchet derivative H0 at the point 0 and H0 = DH(0)

is a compact and nonsupporting operator. Therefore, there exists a unique positive

eigenvector ψ0 corresponding to the eigenvalue R0 = ρ(H0) of H0. Using the same

arguments as for the Krasnoselskii fixe point theorem [126], it comes that if R0 =

ρ(H0) > 1, then the operator H has at least one positive fixed point λ∗ ∈ L1(0, a+,R+)\
{0}, corresponding to the EE of system (5.1)-(5.2).

Let us suppose that R0 = ρ(H0) ≤ 1. If the operator H has a positive fixe point λ∗ ∈
L1(0, a+,R+) \ {0} then λ∗ = H(λ∗). Let us notice that H −H0 ∈ L1(0, a+,R+) \ {0};
hence λ∗ ≤ H0(λ

∗). Let F0 ∈ (L1(0, a+,R+))
∗ \ {0} be the positive eigenfunctional

corresponding to the eigenvalue R0 = ρ(H0) of H0 (Sawashima [190]). Therefore

0 ≤ 〈F0;H0(λ
∗)− λ∗〉 = 〈F0, ;H0(λ

∗)〉 − 〈F0;λ
∗〉 ;

= ρ(H0) 〈F0;λ
∗〉 − 〈F0;λ

∗〉 ;

= (ρ(H0)− 1) 〈F0;λ
∗〉 .

From where (ρ(H0) − 1) 〈F0;λ
∗〉 ≥ 0. Since 〈F0;λ

∗〉 > 0, it follows that ρ(H0) ≥ 1;

which is a contradiction.

5.1.6 Stability analysis for equilibrium

In order to investigate the local stability of the equilibrium solutions (S∗(a); I∗(a);L∗(a))

we rewrite (5.1)-(5.2) into the equation for small perturbations. Let

(S(t, a), I(t, a), L(t, a)) = (S∗(a), I∗(a), L∗(a)) + (x(t, a), y(t, a), z(t, a)).

Then from system (5.1) we have
(
∂

∂t
+

∂

∂a

)
x(t, a) = −λ(t, a)(S∗(a) + x(t, a))

−(µ(a) + λ∗(a))x(t, a); (5.24)(
∂

∂t
+

∂

∂a

)
y(t, a) = λ(t, a)(x(t, a) + S∗(a)) + λ∗(a)x(t, a)

−(µ(a) + d1(a) + r(a)φ(a))y(t, a); (5.25)(
∂

∂t
+

∂

∂a

)
z(t, a) = r(a)φ(a)y(t, a)− (µ(a) + d2(a))z(t, a); (5.26)
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and from (5.2) we also have




x(t, 0) =
∫ a+
0

f(a)[x(t, a) + (1− p)(y(t, a) + z(t, a))]da;

y(t, 0) = p
∫ a+
0

f(a)(y(t, a) + z(t, a))da;

z(t, 0) = 0;

(5.27)

with λ(a, t) =
∫ a+

0

β(a, s)(y(t, s) + z(t, s))ds and λ∗(a) =
∫ a+

0

β(a, s)(I∗(s) + L∗(s))ds.

Let us note u(t) = (x(t), y(t), z(t))T . Then from equations (5.24), (5.25) and (5.26) we

have

d

dt
u(t) = Au(t) +G(u(t)); (5.28)

where A is the operator defined by (5.3). The nonlinear term G is defined by

G(u) =




−P(u2, u3)(u1 + S∗)− (λ∗ + µ)u1

P(u2, u3)(u1 + S∗) + λ∗u1 − (µ+ d1 + rφ)u2

rφu2 − (µ+ d2)u3




;

and P is linear operator defined on L1 × L1 by

P(u2, u3)(a) =

∫ a+

0

β(a, s)(u2(s) + u3(s))ds. (5.29)

The linearized equation of (5.28) around u = 0 is given by

d

dt
u(t) = (A + C)u(t); (5.30)

where the linear operator C is the Fréchet derivative of G(u) at u = 0 and it is given by

C(u) =




−P(u2, u3)S
∗ − (λ∗ + µ)u1

P(u2, u3)S
∗ + λ∗u1 − (µ+ d1 + rφ)u2

rφu2 − (µ+ d2)u3




Now let us consider the resolvent equation for Â+ C:

(z − (A+ C))ψ = ϑ; ψ ∈ D(A), ϑ ∈ X, z ∈ C. (5.31)

Applying the variation of constant formula to (5.79) we obtain the following equations:

ψ1(a) = Π(a)l(a)e−za
[
ψ1(0) +

∫ a

0

(T11(s)ϑ1(s)− T12(s)P(ψ1, ψ2)(s))ds

]
; (5.32)

ψ2(a) =

[
ψ2(0) +

∫ a

0

ezs

Γ1(s)l(s)
(ϑ2(s) + λ∗(s)ψ1(s) + P(ψ1, ψ2)(s)S

∗(s))ds

]

×Γ1(a)l(a)e
−za; (5.33)

ψ3(a) = Γ2(a)l(a)e
−za
[
ψ3(0) +

∫ a

0

ezs

Γ2(s)l(s)
(ϑ3(s) + r(s)φ(s)ψ2(s))ds

]
. (5.34)
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with Π(a) = exp

(
−
∫ a

0

λ∗(σ)dσ

)
; T11(s) =

ezs

Π(s)l(s)
and T12(s) = S∗(s)T11(s).

Equations (5.32)-(5.33) and (5.35)-(5.34) respectively gives

ψ2(a) = Γ1(a)l(a)e
−za
[
ψ2(0) + T21(a)ψ1(0) +

∫ a

0

T23(z, a, s)P(ψ1, ψ2)(s))ds

+

∫ a

0

T24(z, a, s)ϑ1(s)ds+

∫ a

0

T25(z, s)ϑ2(s)ds

]
(5.35)

and

ψ3(a) = Γ2(a)l(a)e
−za
[
T32(a)ψ2(0) + T31(a)ψ1(0) + ψ3(0) +

∫ a

0

T33(z, a, s)P(ψ1, ψ2)(s))ds

+

∫ a

0

T34(z, a, s)ϑ1(s)ds+

∫ a

0

T35(z, a, s)ϑ2(s)ds+

∫ a

0

T36(z, a, s)ϑ3(s)ds

]
;

(5.36)

where

T21(a) =

∫ a

0

Π(s)

Γ1(s)
λ∗(s)ds; T24(z, a, s) =

ezs

l(s)Π(s)

∫ a

s

Π(σ)

Γ1(σ)
λ∗(σ)dσ,

T23(z, a, s) =
ezs

l(s)
S∗(s)

(
1

Γ1(s)
− 1

Π(s)

∫ a

s

Π(σ)

Γ1(σ)
λ∗(σ)dσ

)
,

T25(z, s) =
ezs

l(s)Γ1(s)
, T31(a) =

∫ a

0

Γ1(s)

Γ2(s)
r(s)φ(s)T21(s)ds,

T32(a) =

∫ a

0

Γ1(s)

Γ2(s)
r(s)φ(s)ds, T36(z, a) =

eza

Γ2(a)l(a)
,

T33(z, a, s) =

∫ a

s

Γ1(σ)

Γ2(σ)
r(σ)φ(σ)T23(z, σ, s)dσ,

T34(z, a, s) =

∫ a

s

Γ1(σ)

Γ2(σ)
r(σ)φ(σ)T24(z, σ, s)dσ,

T35(z, a, s) = T25(z, s)

∫ a

s

Γ1(σ)

Γ2(σ)
r(σ)φ(σ)dσ.

Since ψ ∈ D(A); it comes that

ψ1(0) =

∫ a+

0

f(a)[ψ1(a) + (1− p)(ψ2(a) + ψ3(a))]da; (5.37)

ψ2(0) = p

∫ a+

0

f(a)(ψ2(a) + ψ3(a))da; (5.38)

ψ3(0) = 0. (5.39)
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Equations (5.36)-(5.39); (5.32)-(5.35)-(5.40)-(5.37) and (5.35)-(5.40)-(5.38) respectively

lead to

ψ3(a) = Γ2(a)l(a)e
−za
[
T32(a)ψ2(0) + T31(a)ψ1(0) + +

∫ a

0

T33(z, a, s)P(ψ1, ψ2)(s))ds

+

∫ a

0

T34(z, a, s)ϑ1(s)ds+

∫ a

0

T35(z, a, s)ϑ2(s)ds+

∫ a

0

T36(z, s)ϑ3(s)ds

]
;

(5.40)

(B11(z)− 1)ψ1(0) + (1− p)B12(z)ψ2(0) +

∫ a+

0

B13(z, a)P(ψ1, ψ2)(a)da

+

∫ a+

0

B14(z, a)ϑ1(a)da+

∫ a+

0

B15(z, a)ϑ2(a)da+

∫ a+

0

B16(z, a)ϑ3(a)da = 0;

(5.41)

and

pB21(z)ψ1(0) + (pB22(z)− 1)ψ2(0) + p

∫ a+

0

B23(z, a)P(ψ1, ψ2)(a)da

+ p

∫ a+

0

B24(z, a)ϑ1(a)da+ p

∫ a+

0

B25(z, a)ϑ2(a)da+ p

∫ a+

0

B26(z, a)ϑ3(a)da = 0;

(5.42)

with

B11(z) =

∫ a+

0

f(a)l(a)e−za [Π(a) + (1− p)(Γ1(a)T21(a) + Γ2(a)T31(a)] da;

B12(z) =

∫ a+

0

f(a)l(a)e−za [Γ1(a) + Γ2(a)T32(a)] da;

B13(z, a) =

∫ a+

a

f(s)l(s)e−zs [−T12(a)Π(s) + (1− p)(Γ1(s)T23(z, s, a) + Γ2(s)T33(z, s, a))] ds;

B14(z, a) =

∫ a+

a

f(s)l(s)e−zs [T11(a)Π(s) + (1− p)(Γ1(s)T24(z, s, a) + Γ2(s)T34(z, s, a))] ds;

B15(z, a) =

∫ a+

a

f(s)l(s)e−zs [Γ1(s)T25(z, a) + (1− p)Γ2(s)T35(z, s, a)] ds;

B16(z, a) = (1− p)

∫ a+

a

f(s)l(s)e−zsΓ2(s)T36(z, s)ds;

B21(z) =

∫ a+

0

f(a)l(a)e−za[Γ1(a)T21(a) + Γ2(a)T31(a)]da;

B22(z) =

∫ a+

0

f(a)l(a)e−za[Γ1(a) + Γ2(a)T32(a)]da;

B23(z, a) =

∫ a+

a

f(s)l(s)e−zs[Γ1(s)T23(z, s, a) + Γ2(s)T33(z, s, a)]ds;
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B24(z, a) =

∫ a+

a

f(s)l(s)e−zs[Γ1(s)T24(z, s, a) + Γ2(s)T34(z, s, a)]ds;

B25(z, a) = T25(z, a)

∫ a+

a

f(s)l(s)e−zs[Γ1(s)T25(z, a) + Γ2(s)T35(z, s, a)]ds;

B26(z, a) = T36(z, a)

∫ a+

a

f(s)l(s)Γ2(s)e
−zsds.

System (5.41)-(5.42) is a linear system with respect to ψ1(0) and ψ2(0), hence

ψ1(0) =

∫ a+

0

det11(z, a)P(ψ1, ψ2)(a)da+

∫ a+

0

det12(z, a)ϑ1(a)da+

+

∫ a+

0

det13(z, a)ϑ2(a)da+

∫ a+

0

det14(z, a)ϑ3(a)da; (5.43)

ψ2(0) =

∫ a+

0

det21(z, a)P(ψ1, ψ2)(a)da+

∫ a+

0

det22(z, a)ϑ1(a)da

+

∫ a+

0

det23(z, a)ϑ2(a)da+

∫ a+

0

det24(z, a)ϑ3(a)da; (5.44)

where

det11(z, a) =
−1

det
[(pB22(z)− 1)B13(z, a)− p(1− p)B12(z)B23(z, a)] ;

det12(z, a) =
−1

det
[(pB22(z)− 1)B14(z, a)− p(1− p)B12(z)B24(z, a)] ;

det13(z, a) =
−1

det
[(pB22(z)− 1)B15(z, a)− p(1− p)B12(z)B25(z, a)] ;

det14(z, a) =
−1

det
[(pB22(z)− 1)B16(z, a)− p(1− p)B12(z)B26(z, a)] ;

det21(z, a) =
p

det
[(B21(z)B13(z, a)− (B11(z)− 1)B23(z, a)] ;

det22(z, a) =
p

det
[(B21(z)B14(z, a)− (B11(z)− 1)B24(z, a)] ;

det23(z, a) =
p

det
[(B21(z)B15(z, a)− (B11(z)− 1)B25(z, a)] ;

det24(z, a) =
p

det
[(B21(z)B16(z, a)− (B11(z)− 1)B26(z, a)] ;

det = (B11(z)− 1)(pB22(z)− 1)− p(1− p)B21(z)B12(z).

From equations (5.29)-(5.35)-(5.40)-(5.43)-(5.44) it follows that

P(ψ2, ψ3)(η) = (I − Vz)
−1 [(Uzϑ1)(η) + (Wzϑ2)(η) + (Yzϑ3)(η)] ; (5.45)

where Vz, Uz, Wz and Yz are the Volterra operator define on L1(0, a+,R) into itself by

(Uzϕ)(a) =

∫ a+

0

Θz(η, a)ϕ(a)da; (Vzϕ)(a) =

∫ a+

0

χz(η, a)ϕ(a)da;

(Yzϕ)(a) =

∫ a+

0

Ez(η, a)ϕ(a)da; (Wzϕ)(a) =

∫ a+

0

Kz(η, a)ϕ(a)da;

(5.46)
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where

χz(η, a) = Cte
1 (η)det11(z, a) + Cte

2 (η)det21(z, a)

+

∫ a+

a

β(η, s)l(s)e−zs[Γ1(s)T23(z, s, a) + Γ2(s)T33(z, s, a)]ds;
(5.47)

Θz(η, a) = Cte
1 (η)det12(z, a) + Cte

2 (η)det22(z, a)

+

∫ a+

a

β(η, s)l(s)e−zs[Γ1(s)T24(z, s, a) + Γ2(s)T34(z, s, a)]ds;

Kz(η, a) = Cte
1 (η)det13(z, a) + Cte

2 (η)det23(z, a)

+

∫ a+

a

β(η, s)l(s)e−zs[Γ1(s)T25(z, s, a) + Γ2(s)T35(z, s, a)]ds;

Ez(η, a) = Cte
1 (η)det14(z, a) + Cte

2 (η)det24(z, a) +

∫ a+

a

β(η, s)l(s)e−zsΓ2(s)T36(z, s, a)ds;

and

Cte
1 (η) =

∫ a+

0

β(η, a)l(a)e−za[Γ1(a)T21(a) + Γ2(a)T31(a)]da;

Cte
2 (η) =

∫ a+

0

β(η, a)l(a)e−za[Γ1(a) + Γ2(a)T32(a)]da;

Let us recall some definitions related to a C0-semi-group {T (t)}t>0 on a Banach space

with infinitesimal generator R. The type or the growth bound of the semi-group {T (t)}t>0

is the quantity:

ω0(R) :=

inf{α ∈ R : ∃M ≥ 1 such that ||T (t)|| ≤Meαt ∀t ≥ 0}

= lim
t→0

ln ||T (t)||
t

.

The spectral bound of the C0-semi-group {T (t)}t>0 is the quantity:

s(R) := sup{Reλ : λ ∈ σp(R)},

where σp(R) denote the point spectrum of R.

Wow, we conclude that

Lemma 5.1.4. Recalling Assumptions 5.1.1 and 5.1.2. Then
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1. The perturbated operator A + C has a compact resolvent and

σ(A + C) = σp(A+ C) = {z ∈ C : 1 ∈ σp(Vz)};

where σ(A) and σp(A) denote the spectrum of A and the point spectrum of A

respectively.

2. Let {U(t)}t≥0 be the C0-semigroup generated by A + C. Then {U(t)}, t ≥ 0 is

eventually compact and

ω0(A+ C) = s(A+ C).

Proof. 1) From equations (5.32), (5.43) and (5.46) we find that

ψ1(a) = Π(a)l(a)e−zaψ1(0) + J1(ϑ1)(a) +K1(ϑ1, ϑ2)(a);

with

J1(ϑ1)(a) =

∫ a

0

Π(a)l(a)T11(s)e
−zsϑ1(s)ds;

K1(ϑ1, ϑ2)(a) =

∫ a

0

Π(a)l(a)T11(s)S
∗(s)e−zs(I − Vz)

−1

[(Uzϑ1)(s) + (Wzϑ2)(s) + (Yzϑ3)(s)]ds.

ψ1 is a compact operator if and only if J1 and K1 are compact. Since J1 is a Volterra

operator with continue kernel, we deduce that J1 is a compact operator on L1. Using

the same arguments as for the proof of the compactness of operator H0 (Lemma 5.1.3),

we can show that the operators Uz, Wz and Yz are compact for all z ∈ C. Let us set

Σ := {z ∈ C : 1 ∈ σp(Vz)}. Hence, if z ∈ C \ Σ then, K1 is a compact operator

from L1 × L1 to L1. In the same way, we can show that ψ2(a) and ψ3(a) are represent

by a compact operators. Therefore, the resolvent of A + C is compact. From where

σ(A + C) = σp(A + C) (see Kato, p.187 [122]) i.e. C \ Σ ⊂ ρ(A + C) and ρ(A + C)

denotes the resolvent of A+C. In other words Σ ⊃ σ(A+C) = σp(A+C). Since Vz is

a compact operator, we know that σ(Vz) \ {0} = σp(Vz) \ {0}. If z ∈ Σ, then it exists

ψz ∈ L1 \ {0} such that Vzψz = ψz. Let us set

φ1(a) = Π(a)l(a)e−za
[∫ a+

0

det11(z, a)ψz(a)da−
∫ a

0

eza

Π(s)l(s)
ψz(s)ds

]
;

φ2(a) = Π(a)l(a)e−za
[∫ a+

0

det21(z, a)ψz(a)da−
∫ a

0

eza

Γ1(s)l(s)
(λ∗(s)φ1(s) + S∗(s)ψz(s))ds

]
;

φ3(a) = Γ2(a)l(a)e
−za
∫ a

0

eza

Γ2(s)l(s)
r(s)φ(s)ψ2(s)ds.
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Then (φ1, φ2, φ3)
T is an eigenvector of A + C associated to the eigenvalue z. Hence,

z ∈ σ(A+C) = σp(A+C) i.e. Σ ⊂ σ(A+C) = σp(A+C). This end the proof of item

1.

2) For ψ ∈ X, let us set

C1ψ = (−P (ψ2, ψ3)S
∗,P(ψ2, ψ3)S

∗, 0)T ;

C2ψ = (−(λ∗ + µ)ψ1, λ
∗ψ1 − (µ+ d1 + rφ)ψ2rφψ2 − (µ+ d2)ψ3)

T ; .

Then C = C1+C2. The operator A+C2 generated a nilpotent C0-semigroup {S2(t)}t≥0,

from where {S2(t)}t≥0 is norm continuous. Using Assumptions 5.1.1 and 5.1.2, we find

that C1 is compact operator onX. From Theorem 1.30 of Nagel(1986) [168] it comes that

C1 is generator of a norm continuous C0-semigroup {S1(t)}t≥0. Therefore, S1(t) + S2(t)

is a C0-semigroup generated by A+C and it is norm continuous (Spectral theorem P.87

Nagel [168]).

Let us remark that if ω0(A+C) < 0, the equilibrium u = 0 of system (5.28) is locally

asymptotically stable (linearized stability, Webb 1985[211]). Therefore, to study the

stability of equilibrium states, we have to know the structure of the set Σ := {z ∈ C :

1 ∈ σp(Vz)}. Since ||Vz||L1 → 0 if z → +∞, I − Vz is inversible for the large values of

Rez.

By theorem of Steinberg(1968)[197], the function z ֌ (I − Vz)
−1 is meromorphic in

the complex domain, and hence the set Σ is a discrete set whose elements are poles of

(I − Vz)
−1 of finite order.

In the following, we will use elements of positive operator theory.

For the positivity of operator Vz we make the following assumption

Assumption 5.1.3.
∫ a+

0

(d1(σ) + r(σ)φ(σ))dσ ≤ exp

(
−
∫ a+

0

λ∗(σ)dσ

)
; (5.48)

where λ∗(σ) =
∫ a+
0

β(σ, η)(I∗(η) + L∗(η))dη.

Lemma 5.1.5. Let Assumption 5.1.3 be satisfied. Then

1. The operator Vz, z ∈ R, is nonsupporting with respect to L1(0, a+,R+) and

lim
z֌−∞

ρ(Vz) = +∞ ; lim
z֌+∞

ρ(Vz) = 0.
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2. There exists a unique z0 ∈ R ∩ Σ such that

ρ(Vz0) = 1 and





z0 > 0 if ρ(V0) > 1,

z0 = 0 if ρ(V0) = 1,

z0 < 0 if ρ(V0) < 1.

3. z0 > sup{Rez : z ∈ Σ \ {z0}}.

Proof. 1) Let z ∈ R. Unconditionally, Vz is a positive operator when λ∗(a) ≡ 0

(case of DFE). When λ∗(a) > 0, Vz is a positive operator once Γ1(s)T23(z, a, s) +

Γ2(s)T33(z, a, s) ≥ 0 for all 0 ≤ a ≤ s ≤ a+. To have the previous inequality, it

suffices that inequality (5.48) of Assumption 5.1.3 holds. We can checked that

Vzψ ≥ 〈fz, ψ〉 · e; (5.49)

where ψ ∈ L1(0, a+,R+); e ≡ 1 ∈ L1(0, a+,R+) and fz is a positive linear functional

defined by

< fz, ψ > = m

∫ a+

0

∫ a+

a

e−z(a−s)
l(s)

l(a)

(
1

Γ1(a)
− 1

Π(a)

∫ s

a

Π(σ)

Γ1(σ)
λ∗(σ)dσ

)
dsda;

with m = inf(a,s)∈[0,a+)2 β(a, s). From (5.49), we show that V n+1
z ψ ≥ 〈fz, ψ〉 〈fz, e〉n ·e for

all n ∈ N. Since fz is positive operator and e ∈ L1(0, a+,R+)\{0}, we have 〈F, V n
z ψ〉 > 0

∀ψ ∈ (L1(0, a+,R+))
∗ \ {0} ∀ψ ∈ L1(0, a+,R+) \ {0}. That is Vz is nonsupporting.

Let Fz be the eigenfunctional of Vz that corresponds to the eigenvalue ρ(Vz). Taking

the duality pairing into inequality (5.49), we have

ρ(Vz) 〈Fz, ψ〉 ≥ 〈fz, ψ〉 〈Fz, e〉 .

Taking ψ = e and since Fz is positive, it follows that ρ(Vz) ≥ 〈fz, e〉 → +∞ when

z → −∞. From where lim
z֌−∞

ρ(Vz) = +∞. since ||Vz||L1 → 0 when z → +∞, we deduce

that lim
z֌+∞

ρ(Vz) = 0. This end the proof of item 1.

2) Let h : R → C; z 7→ ρ(Vz). The kernel χz defined by (5.47) is strictly decreasing

with respect to z ∈ R. Let z1, z2 ∈ R such that z1 < z2, then χz1 < χz2 that is

Vz1 > Vz2. Since Vz1 and Vz2 are compact and nonsupporting operators we deduce from

Marek(1970) [150] that ρ(Vz1) > ρ(Vz2). Therefore, the function h is strictly decreasing.

The limits of the function h(z) = ρ(Vz) at −∞ and +∞ give that there exist a unique

z0 ∈ R ∩ Σ such that ρ(Vz0) = 1. If ρ(V0) > 1 then h(0) > h(z0) i.e. z0 < 0 (strictly

R. DJIDJOU DEMASSE c© 2014



5.1 Age-structured SIL model 120

decreasing of h) and the other cases is show in the same way. This end the proof of item

2.

3)Let z ∈ Σ, then there exists ψz ∈ L1 such that Vzψz = ψz. Let |ψz| be a function

defined by |ψz|(s) := |ψz(s)|. The definition of Vz leads to

|ψz| = |Vzψz| ≤ VRez|ψz|. (5.50)

Let FRez be the positive eigenfunction associated to the eigenvalue ρ(VRez) of VRez.

From (5.50) we deduce that 〈FRez, |ψz|〉 ≤ 〈FRez, VRez|ψz|〉 = r(VRez) 〈FRez, |ψz|〉. The

positivity of FRez implies that r(VRez) ≥ 1 that is h(Rez) ≥ h(z0) i.e. z0 ≤ Rez. To end

the proof, let us show that: if z0 = Rez then z = z0.

We know that |ψz| ≤ VRez|ψz| = Vz0|ψz|. Let us suppose that |ψz| < Vz0|ψz|; taking the

pairing product with the dual function F0 corresponding to the eigenvalue ρ(Vz0) = 1,

one has 〈F0, |ψz|〉 > 〈F0, |ψz|〉, which is a contradiction. Hence |ψz| = Vz0 |ψz|. Therefore

|ψz| = cψ0 where c is constant not equal to zero (Sawashima 1964 [190]) and ψ0 is the

eigenfunction corresponding to ρ(Vz0) = 1. So ψz(a) = cψ0(a)e
iα(a) for a reel function

α; moreover |Vzψz| = |ψz| = cψ0 = cVz0ψ0. Substituting ψz(a) = cψ0(a)e
iα(a) into the

equality |Vzψz| = cVz0ψ0 one has

∫ a+

0

∫ a+

a

β(η, s)l(s)e−z0(s−a)[Γ1(s)T̃23(s, a) + Γ2(s)T̃33(s, a)]ψ0(a)dsda =
∣∣∣∣∣

∫ a+

0

∫ a+

a

β(η, s)l(s)e−(z0+i(s−a)Imz)[Γ1(s)T̃23(s, a) + Γ2(s)T̃33(s, a)]e
iα(a)ψ0(a)dsda

∣∣∣∣∣ ;

(5.51)

with

T̃23(a, s) =
S∗(s)

l(s)

(
1

Γ1(s)
− 1

Π(s)

∫ a

s

Π(σ)

Γ1(σ)
λ∗(σ)dσ

)
;

T̃33(a, s) =

∫ a

s

Γ1(σ)

Γ2(σ)
r(σ)φ(σ)T̃23(a, σ)dσ.

Applying two times, Lemma 6.12 of Heijmans(1986) [97], to the relation (5.51) it comes

that (s − a)Imz + α(a) = b for all 0 ≤ a ≤ s ≤ a+ where b is a constant. From the

equality Vzψz = ψz one has eibVz0ψ0 = ψ0e
iα(a) i.e. b = α(a). From where Imz = 0, that

is z = z0.

From the above result, we can state the threshold criterion as follows:
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Proposition 5.1.2. Recalling Assumption 5.1.3. Then equilibrium (S∗, I∗, L∗) is locally

asymptotically stable if ρ(V0) < 1 and unstable if ρ(V0) > 1.

Proof. From Lemma 5.1.5 (items 2. and 3.), we conclude that: sup{Rez; 1 ∈ σp(Vz)} =

z0. Hence s(A + C) = sup{Rez; 1 ∈ σp(Vz)} < 0 if ρ(V0) < 1, and s(A + C) =

sup{Rez; 1 ∈ σp(Vz)} > 0 if ρ(V0) > 1.

In the following, let us note V 0
0 the operator V0 corresponding to the case λ∗(σ) ≡ 0

(DFE) and V ∗
0 the operator V0 corresponding to the case λ∗(σ) > 0 (EE). It is easily

checked that

χ0
0(a, s) = χ(a, s); (5.52)

where χ(a, s) is the kernel of the Volterra operator H0 defined by (5.23).

Now, the main results for the local stability of our epidemic model reads as

Theorem 5.1.3. Let Assumptions 5.1.1 and 5.1.2 be satisfied. Let R0 := ρ(H0) be the

spectral radius of the operator H0 defined by (5.22). Then,

1. If R0 = ρ(H0) < 1 then, the unique equilibrium of (5.1)-(5.2) (DFE) is locally

asymptotically stable.

2. If R0 = ρ(H0) > 1 then, the DFE is unstable.

3. If R0 = ρ(H0) > 1 then, in addition to the DFE system (5.1)-(5.2) has at least one

endemic equilibrium (EE). Moreover, if ρ(V ∗
0 ) < 1 and Assumption 5.1.3 holds,

then the EE is locally asymptotically stable.

Proof. For the DFE, one has λ∗(σ) ≡ 0. Hence, from (5.52) it comes that ρ(H0) =

ρ(V 0
0 ) := ρ(V0) (for λ∗ = 0). From Prop. 5.1.2 we deduce that: if ρ(H0) = ρ(V0) < 1,

the DFE is locally asymptotically stable; and unstable if ρ(H0) = ρ(V0) > 1. This end

the proof of items 1. and 2.

The case of EE is a direct consequence of Prop. 5.1.2.

Remark 5.1.1.

(♣) To emphasize the impact of vertical transmission on the spread of the disease, let

us observe that the next generation operator H0 can be rewrite as follows

H0(ψ)(a) =

∫ a+

0

χ♦(a, s)ψ(s)ds+

∫ a+

0

χ♦(p, a, s)ψ(s)ds;
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where the kernels χ♦(., .) and χ♦(p, ., .) are

χ♦(a, s) =
S0(s)

l(s)

∫ a+

s

β(a, η) (χ21(η, s) + χ31(η, s)) dη;

χ♦(p, a, s) =
pχ4(s)

∆(0)

∫ a+

0

β(a, σ)(A22(σ) + A32(σ))dσ.

It is easy to see that when the proportion of infected newborns is zero (p = 0), then

the kernel χ♦(0, ., .) ≡ 0. Therefore, the vertical transmission of the disease amplifies

positively the spread of the disease.

(♣♣) As a special case, we here briefly consider the proportionate mixing assumption,

that is, the transmission rate β can be written as β(a, s) = β1(a)β2(s) (see Dietz and

Schenzle [55]; Greenhalgh,1988 [83]). In this case, the basic reproductive number R0 is

explicitly given by:

R0 := ρ(H0) =

∫ a+

0

χ♦(s, s)ds+

∫ a+

0

χ♦(p, s, s)ds. (5.53)

And the same conclusion follows as for item (♣). Thus the vertical transmission of the

disease really has an impact on the dynamics and the spread of the disease into the host

population. We also refer to Figures 5.2-5.4 for some illustrations of the state variables

of system (5.1)-(5.2) when p takes different values: 0.02; 0.2 and 0.5.

5.1.7 Numerical analysis

In this section, we propose a numerical scheme for our model and gives some illus-

trations.

We adopt a finite differences scheme which is progressive of order 1 in time and

regressive of order 1 in age. Our model has a structure of the following partial differential

equation on the real axe:
∂u

∂t
+
∂u

∂a
= f(t, a). (5.54)

For equation (5.54), the numerical scheme is defined by:

un+1
i − uni
∆t

+
uni − uni−1

∆a
= f(tn, ai); (5.55)

where i and n are the index of age and time discretization respectively; and uni :=

u(tn, xi).
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We recall that, generally, all explicit numerical scheme is conditionally stable (Stricwerda[?]).

To ensure the stability of the scheme (5.55) the necessary condition is the famous

Courant-Friedrichs-Lewy (CFL) condition given as follow:

∆t

∆a
6 1. (5.56)

For a given age step discretization ∆a, the restriction ∆t 6 ∆a is necessary for the time

step discretisation ∆t.

We are able now to give the solution of the problem (5.1)-(5.2) on some time interval

[0, T ] using the above numerical scheme.

The age-specific reproduction rate f(a) is taken to be

f(a) =





1
5
sin2

(
π(a−15)

30

)
if 15 ≤ a ≤ 45;

0 if not.

The fecundity function f(.) is stated here in units of 1 / years for easier readability and

assumes that from age 15 to 45 years a woman will generally give birth to three children,

since
∫ a+
0

f(a)da = 3, where a+ = 80 is the largest age allowed for the simulation.

We also consider a low value of recruitment Λ(.)

Λ(a) =





1
10
sin2

(
π(a−17)

43

)
if 17 ≤ a ≤ 60;

0 if not.

This recruitment assume that the total number of recruitment at time t is approximately

equal two, that is
∫ a+
0

Λ(a) = 2.15

The transmission coefficient β(., .) is assume to be

β(a, s) =





β0 sin
2

(
π(a− 14)

46

)
sin2

(
π(s− 14)

46

)
, if a, s ∈ [14, 60];

0 if not.

wherein the nonnegative constant β0 (transmission constant) will be variable. Figure

5.1 illustrates the transmission coefficient β (for β0 = 10−3) and the fecundity function

f . The other parameters of our system are arbitrarily chosen (see Table 5.1).

We provide numerical illustrations for different values of vertical transmission p: 0.02,

0.2 and 0.5

In Figure 5.2, the vertical transmission rate of the disease is fixed to be p = 0.02. We

observe that infectious individuals (infected and lost of sight) are between 17 and 70 of
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Figure 5.1: (5.1a) Transmission coefficient β(., .) when the transmission constant β0 =

10−3. (5.1b) Fecundity function f(.) .

Table 5.1: Numerical values for the parameters of the model

Parameters Description Estimated value

β0 Transmission constant Variable

p Vertical tranmission rate Variable

µ Natural death rate 0.0101/yr 1

r Rate of effective therapy 1/yr 1

φ Rate at witch infectious 0.75/yr 1

become loss of sight

γ Rate at witch lost of sight 0.02/yr 1

return to the hospital

d1 Death rate of infectious 0.02/yr 1

d2 Death rate of lost of sight 0.2/yr 1

Note: Source of estimates.
1 Assumed.
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age. The number of young infectious (namely infectious with age a < 17) is negligible,

because the value of vertical transmission rate p is low.

In figure 5.3, the vertical transmission rate of the disease is fixed to be p = 0.2. We

observe that much of the infectious individuals (infected and lost of sight) are between

17 and 70 of age. Let us also observe that the number of infectious individuals with age

between 17 and 70 is approximately the same than the number of infectious individuals

with age between 17 and 70 when p = 0.02 (see Figs 5.2-5.3). But now, there are also

infectious individuals with age a < 17 which was not the case when p = 0.02.

The same observation is given by Figure 5.4 where the vertical transmission rate of

the disease is fixed to be p = 0.5. Hence Figures 5.2-5.4 emphasize that the vertical

transmission of the disease really has an impact on the dynamics and the spread of

the disease into the host population. See also Table 5.2 for the impact of the vertical

transmission of the disease on the spread of the epidemic.

Table 5.2: Impact of the vertical transmission of the disease.

Vertical transmission rate (p) Rate increase over the case when p = 0

p = 0.02 1.8%

p = 0.2 17.5%

p = 0.5 43.8%

Total cases (I+L) when p = 0: 954.85 cases. (i.e. when the vertical transmission of the disease is

neglected in the host population.
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Figure 5.2: The transmission constant and the vertical transmission rate are fixed to be

β0 = 10−3 and p = 0.02. The other parameters are given by Table 5.1. (5.2a) Distribu-

tion of Infected individuals. (5.2b) Distribution of Lost of sight. (5.2c) Distribution of

infected newborn. (5.2d) Distribution of Infected and Lost of sight individuals after 80

years of time observation.
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Figure 5.3: The transmission constant and the vertical transmission rate are fixed to be

β0 = 10−3 and p = 0.2. The other parameters are given by Table 5.1. (5.3a) Distribution

of Infected individuals. (5.3b) Distribution of Lost of sight. (5.3c) Distribution of

infected newborn. (5.3d) Distribution of Infected and Lost of sight individuals after 80

years of time observation.
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Figure 5.4: The transmission constant and the vertical transmission rate are fixed to be

β0 = 10−3 and p = 0.5. The other parameters are given by Table 5.1. (5.4a) Distribution

of Infected individuals. (5.4b) Distribution of Lost of sight. (5.4c) Distribution of

infected newborn. (5.4d) Distribution of Infected and Lost of sight individuals after 80

years of time observation.
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5.1.8 Future directions

In the absence of specific interventions the estimated rate of mother-to-child trans-

mission ranges from 15% to 40%, the differences between populations being largely

associated with the prevalence of breastfeeding [161]. Therefore, a SIL epidemic model

that incorporates the control mechanism, representing the case finding effort and the

prevention of mother-to-child transmission, could be considered.

The basic system (age-structured SIL epidemic model) with control can be formulated

as follows:




(
∂

∂t
+

∂

∂a

)
S(t, a) = Λ(a)− (λ(t, a) + µ(a))S(t, a),

(
∂

∂t
+

∂

∂a

)
I(t, a) = λ(t, a)S(t, a) + γ(a)L(t, a)− (µ(a) + d1(a)

+r(a)φ(a)(1− π1(a)v1(t, a)))I(t, a),(
∂

∂t
+

∂

∂a

)
L(t, a) = r(a)φ(a)(1− π1(a)v1(t, a))I(t, a)

−(µ(a) + d2(a) + γ(a))L(t, a),

(5.57)

with initial boundary conditions




S(t, 0) =
∫ a+
0

f(a) [s(t, a) + (1− p(1− π2v2(t))) (I(t, a) + L(t, a))] da,

I(t, 0) = p(1− π2v2(t))
∫ a+
0

f(a)(I(t, a) + L(t, a))da,

L(t, 0) = 0,

(5.58)

and wherein the state variables and the parameters are defined as previously.

In model (5.57)-(5.58), the functions v1(., .) and v2(.) are control functions. The

control v1(t, a) represents the effort that prevents an infectious individuals age a to

become lost of sight at time t (case finding effort). The control v2(t) represents the

effort that prevents the mother-to-child transmission at time t. The parameters πi,

πi ∈ (0, 1), i ∈ {1, 2}, measure the effectiveness of the controls. These parameters

measure the efficacy of the control.

The optimal control problem is the following:

minimize
∫ T

0

∫ a+

0

[
L(t, a) + p(1− π2v2(t))f(a)(I(t, a) + L(t, a)) +

W2(a)

2
v22(t, a)

]
dadt

+

∫ T

0

W1

2
v21(t)dt,

(5.59)
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subject to state system (5.57)-(5.58) and the control constrains

v2 ∈ Ω2 :=
{
v(t, a) : 0 ≤ v20 ≤ v(t, a) ≤ v21, (t, a) ∈ [0, T ]× [0, a+) a.e.,

v(t, a) mesurable on [0, T ]× [0, a+)
}

v1 ∈ Ω1 := {v(t) : 0 ≤ v10 ≤ v(t) ≤ v11, t ∈ [0, T ] a.e.,

v(t) mesurable on [0, T ]}

(5.60)

where W1 and W2 are a measure of the relative cost of the interventions associated to

the controls v1, v2, respectively.

5.1.9 Summary

In this section, we have considered a model for the spread of a directly transmit-

ted infections disease in an age-structured population with demographics process. The

disease can be transmitted not only horizontally but also vertically from infected moth-

ers to their newborns. There are important infective agents such as HBV (hepatitis B

virus), HIV (human immunodeficiency virus) and HTLV (human T-cell leukemia virus)

that can be vertically transmitted. In Africa, the vertical transmission of the disease

like HIV is in progression nowadays.

Worldwide, 1% of pregnant women are HIV-positive. However, sub-Saharan Africa

where 95% of HIV positive women live carries the vast majority of this burden [198].

Without treatment, approximately 25%-50% of HIV-positive mothers will transmit the

virus to their newborns during pregnancy, childbirth, or breastfeeding [17]. In 2007,

over 2 million children worldwide were living with HIV/AIDS, with the overwhelming

majority again in sub-Saharan Africa [198]. Approximately 400,000 infants contract HIV

from their mother every year, which is about 15% of the total global HIV incidence [183,

217]. The rate of pediatric HIV infections in sub-Saharan Africa remains unacceptably

high, with over 1,000 newborns infected with HIV per day [94].

The aim finding of this section can be summarized along the following lines:

X We formulated the dynamical system with boundary conditions, and then described

the semigroup approach to the time evolution problem of the abstract epidemic system.

X Next we have calculated the basic reproduction ratio and proved that the model

exhibits a unique disease-free steady state if R0 ≤ 1, and at least one endemic steady

state exists if the basic reproduction ratio R0 is greater than the unity.
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X We prove that if the basic reproduction number of the model satisfies R0 < 1, then

the disease-free steady state is locally asymptotically stable, i.e., the disease died out

from the host population.

X We have shown sufficient conditions which guarantee the local stability of the

endemic steady state; that is the persistence of the disease in the host population.

Roughly speaking, the endemic steady state is locally asymptotically stable if R0 > 1

and if it corresponds to a very small force of infection.

X Finally, to highlight the impact of the vertical transmission of the disease into the

host population, we provided some illustrations and discussion on the outcome of the

state variables of the model when the vertical transmission rate p takes different values:

0.02, 0.2 and 0.5.

5.2 Age-structured model for the transmission of hep-

atitis B, with differential infectivity.

Hepatitis B virus (HBV) infection is endemic in many parts of the world. One of the

characteristics of HBV transmission is the age structure of the host population and the

vertical transmission of the disease (perinatal infection from carrier mothers). In this

section, we propose an age-structured model for the transmission dynamics of HBV with

differential infectivity: symptomatic infection and asymptomatic infection. The model

is completely analyzed. We compute the basic reproduction number R0. We investigate

the existence of equilibria and study their stability. We found that the model exhibits

a forward bifurcation, that is, if R0 ≤ 1, there exists a disease-free equilibrium which is

globally asymptotically stable, while if R0 > 1, the disease-free equilibrium is unstable

and there exists a unique endemic which is globally asymptotically stable. Numerical

results are presented to illustrate analytical results. Through numerical simulation and

sensitivity analysis, we found that a control strategy of HBV consist in a combination

of immunization of newborns, immunization of susceptible individuals (at least young

adults), and reduction of perinatal infection.
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5.2.1 Introduction

According to CDC [30] and WHO [217], risk for chronic infection is inversely related

to age at infection: approximately 90% of infected infants and 30% of infected children

aged under 5 years become chronically infected, compared with 5% of adults. This

difference in the evolution of infection introduces naturally differential susceptibility.

Vaccination is recognized as the most efficient way of preventing hepatitis B. But the

problem of imperfect vaccine introduce naturally differential susceptibility. Even if HBV

vaccine is very efficient it does not offer 100% protection against infection. According to

WHO, Hepatitis B vaccine is 95% effective in preventing HBV infection and its chronic

consequences. Then vaccination also introduce individual with different susceptibility.

Many mathematical models have been proposed to investigate the transmission dy-

namics of HBV in various countries and regions in the world; covering many topics:

sexual transmission of HBV which includes heterogeneous mixing with respect to age

and sexual activity [5]; relation between the age at infection with HBV and the develop-

ment of the carrier state [68]; HBV transmission in developing countries [158, 67, 215];

the long-term effectiveness of the vaccination [221]; determined the prevalence of in-

fection [160]. Age-structured models have also been used to model the transmission

dynamics of HBV by some researchers; see for instance Edmunds et al. [68], McLean

and Blumberg [158], Zhao, Xu, and Lu[221], Zou, Ruan and Zhang[222].

Recently, Zou, Ruan and Zhang [223] have proposed a mathematical model for the

transmission of HBV with susceptible, latently infected, acutely infectious, carrier, re-

covered, and immune following vaccination. They (Zou et al.) do not take into account

age of the host population. However, outcome of the HBV infection is age dependent

(Shepard et al. [195], Goldstein et al. [76], WHO [217], CDC [30]). This characteris-

tic leads Zou et al. to extend they previous model to an age-structured model for the

transmission of HBV (see Zou et al. [222]). To analyzed the model, due possible to

his complexity, they ignored the perinatal infection of HBV (vertical transmission of the

disease) and deaths directly related to HBV. These assumptions are not entirely realistic

in many part of the world. In fact, HBV prevalence is highest in sub-Saharan Africa

and East Asia. Most people in these regions become infected with the hepatitis B virus

during birth (and childhood) with a high risk (90% at birth) of progressing to chronic

infection (WHO [217] and CDC [30]). Moreover, about 600,000 people die every year
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due to the acute or chronic consequences of hepatitis B (WHO [217]); that is deaths

directly related to HBV should not be neglected.

In this section, we propose a ’simple’ age-structured model for the transmission dy-

namics of HBV with differential infectivity: symptomatic HBV infection and asymp-

tomatic HBV infection. The host population is divided into seven subclasses: susceptible

and vaccinated population are stratified by age whereas latently infected progressing to

the symptomatic infection, latently infected progressing to the asymptomatic infection

, symptomatic HBV infectious, asymptomatic HBV infectious and recovered individu-

als are time dependent populations. The model also consider the perinatal infection of

HBV and deaths directly related to HBV infection. The model we shall consider is an

extension of the model proposed by Bonzi et al.[19] by taking into account a continuous

age structure for the host population.

We first describe the mathematical model. Next, we prove the existence and stability

of a disease-free equilibrium point, define the reproductive number, and describe the

existence and stability of the endemic equilibrium point. Then, numerical simulation

have been presented to illustrate theoretical results.

5.2.2 The model

We proposed an age-structured model to study the transmission dynamics of HBV

with differential infectivity: symptomatic HBV infection and asymptomatic HBV infec-

tion. The model includes age-dependent process such as the force of infection and the

probability of developing the chronicle infection, the susceptible population is stratified

by age. We divide the total population into seven subclasses: susceptible individu-

als S(t, a), immune individuals following vaccination V (t, a) age a at time t, latently

infected progressing to symptomatic HBV infectiousness Li(t), latently infected pro-

gressing to asymptomatic HBV infectiousness Lc(t), symptomatic HBV infectiousness

I(t), asymptomatic HBV infectiousness C(t) and recovered from HBV infection R(t) at

time t.

The age-structured model for the transmission of HVB is described by the following
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system:

∂S(t, a)

∂t
+
∂S(t, a)

∂a
= ψV (t, a)− (λ(t, a) + µ1 + p(a))S(t, a),

∂V (t, a)

∂t
+
∂V (t, a)

∂a
= p(a)S(t, a)− (ψ + µ1)V (t, a),

dLi(t)

dt
=

∫ ω

0

α(a)λ(t, a)S(t, a)da− (µ1 + γ)Li(t),

dLc(t)

dt
=

∫ ω

0

(1− α(a))λ(t, a)S(t, a)da+ bθνC(t)− (µ1 + δ)Lc(t),

dI(t)

dt
= γLi(t)− (γ1 + µ1 + µI)I(t),

dC(t)

dt
= δLc(t)− (γ2 + µ1 + µc)C(t),

dR(t)

dt
= γ1I(t) + γ2C(t)− µ1R(t),

(5.61)

with the initial and boundary conditions

S(t, 0) = θ(Λ− bνC(t)); S(0, a) = S0(a); V (t, 0) = (1− θ)Λ; V (0, a) = V0(a),

Li(0) = Li0; Lc(0) = Lc0; I(0) = I0; C(0) = C0; R(0) = R0,

(5.62)

where λ(t, a) is the force of infection defined by

λ(t, a) = β(a) (I(t) + C(t)) ,

ω is the upper bound of age of people in the model and Λ is the total number of births

of the host population at time t (which is assumed to be constant).

The parameters of the model is describe in Table 5.3.
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Table 5.3: Parameters description

Parameters Description Units

p(a) successful vaccination rate of susceptible against HBV /year

β(a) probability that an infective individual will have contact

with and successfully infect a susceptible individual of age a /(human.year)

α(a) probability of susceptible age a to become latently infected

(progressing to symptomatic infectiousness) /year

µ1 natural mortality rate /year

µI , µC HBV-related mortality rate /year

γ rate moving from latent to symptomatic infectiousness /year

δ rate moving from latent to asymptomatic infectiousness /year

Λ total number of births human

b equilibrium birth rate /year

1− θ proportion of births with successful vaccination /year

ψ rate of waning vaccine-induced immunity /year

γ1 rate moving from symptomatic infectious to recovered /year

γ2 rate of moving from asymptomatic infectious to recovered /year

ν proportion of perinatally infected /year

In order to deal with system (5.61) we first provide a parameter reduction by intro-

ducing the following unknown functions

s(t, a) = S(t, a)eµ1a, v(t, a) = V (t, a)eµ1a.

Therefore, by introducing the vector-valued functions

u(t) = (Li(t), Lc(t), I(t), C(t))
T = (ui)

T
i=1,··· ,4 ; y(t, .) = (s(t, .), v(t, .))T = (y1, y2)

T ;

and e1 = (1, 0), 1n = (1, . . . , 1) ∈ Rn, e = (0, 0, 1, 1); F4 = (0, 0, γ1, γ2), as well as the
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matrices

F1(a) =


 −p(a) ψ

p(a) −ψ


 , F2(a) =




0 0 α(a) α(a)

0 0 1− α(a) 1− α(a)

0 0 0 0

0 0 0 0



,

F3 =




−γ 0 0 0

0 −δ 0 bθν

γ 0 −(γ1 + µI) 0

0 δ 0 −(γ1 + µc)



, E1 =


 1 0

0 0


 ,

(5.63)

system (5.61) rewrites as




∂y(t, a)

∂t
+
∂y(t, a)

∂t
= −β(a)〈e,u(t)〉E1.y(t, a) + F1(a)y(t, a),

d

dt
u(t) =

∫ ω

0

l(a)β(a)〈e1,y(t, a)〉F2(a).u(t)da + (F3 + diag(−µ1)).u(t),

dR(t)

dt
= 〈F4,u(t)〉 − µ1R(t),

(5.64)

wherein 〈., .〉 is the usual scalar product.

System (5.64) supplemented together with boundary condition and initial data




y(t, 0) = (θ(Λ− bνu4(t)); (1− θ)Λ)T ,

y(0, .) = y0(.) ∈ L1(0, ω,R2), u(0) = u0 ∈ R4, R(0) = R0.
(5.65)

The age-dependent parameter l(a) into (5.64) is the survival function which is the pro-

portion of individuals who survive to age a, and it is defined by

l(a) := e−µ1a, a ∈ [0, ω).

In what follows we shall discuss the asymptotic behavior of system (5.64)-(5.65) and

we will make use of the following assumptions.

Assumption 5.2.1. A1: Recalling the description of parameters into Table 5.3; we

assume that: Λ > 0; b, µ1, µI, µC, γ, γ1, γ2, ψ, θ, ν, δ are nonnegative constants,

p(.) is nonnegative function while β(.) µ(.) and α(.) belong to L∞
+ (0, ω,R+).

A2: As a technical assumption, we assume that the population of newborn carries born

to carries is less than the natural mortality of the host population, that is bν < µ1.
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5.2.3 Existence of semiflow

The aim of this section is to derive preliminary remarks on (5.61)-(5.62). These

results include the existence of the unique maximal bounded semiflow associated to this

system. We shall deal with the integrated semigroup approach introduced by Thieme

[200].

Let us introduce X̂ = R2 × L1(0, ω,R2) as well as its positive cone X̂+ = R2
+ ×

L1(0, ω,R2
+) and the linear operator Â : D(Â) ⊂ X̂ → X̂ defined by

D(Â) = {0R2} ×W 1,1(0, ω,R2), Â


 0R2

ϕ


 =


 −ϕ(0)

−ϕ′


 . (5.66)

Next consider the Banach space

X = R4 × R× X̂ and X+ = R4
+ × R+ × X̂+

endowed with the usual product norm

∣∣∣∣(u, R, x,y)T
∣∣∣∣ =

4∑

i=1

|ui|+ |R|+
2∑

i=1

|xi|+
4∑

i=1

||yi||L1; ∀(u, R, x,y)T ∈ X.

Let A : D(A) ⊂ X → X be the linear operator defined by

D(A) = R4 × R×D(Â), A = diag
(
−µ1, Â

)
. (5.67)

Note that the domain of operator A is not dense in X because of the identity

D(A) = R5 × {0R2} × L1(0, ω,R2) 6= X.

Finally, let us introduce the nonlinear map F : D(A) → X defined by

F
(
(u, R, 0R2 ,y)T

)
=




∫ ω
0
l(a)β(a)〈e1,y(a)〉F2(a)uda+ F3u

〈F4,u〉 − µ1R

(θ(Λ− bνu4); (1− θ)Λ;F1(a)y − β(a)〈e,u〉E1y)
T




T

.

By identifying ϕ(t) together with (u(t), R(t), 0R2 ,y(t, .))T and by setting

ϕ0 = (u0, R0, 0R2 ,y0(.))
T ,
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one obtain that system (5.64)-(5.65) rewrites as the following nondensely defined Cauchy

problem: 



dϕ(t)

dt
= Aϕ(t) + F (ϕ(t)), t ≥ 0,

ϕ(0) = ϕ0 ∈ D(A) ∩X+.
(5.68)

We first derive that the above abstract Cauchy problem generates a unique glob-

ally defined and positive semiflow. We set X0 = D(A), X0+ = X0 ∩ X+, A =

{ϕ ∈ X0+ : ||ϕ|| ≤ Λ/µ1} and the precise result is the following theorem.

Theorem 5.2.1. Let Assumption 5.2.1 be satisfied. Then there exists a unique strongly

continuous semiflow {U(t) : X0 → X0}t≥0 such that for each ϕ0 ∈ A, the map ϕ ∈
C ([0, ω),A) defined by ϕ = U(.)ϕ0 is a mild solution of (5.68), namely, it satisfies

∫ t

0

ϕ(s)ds ∈ D(A) and ϕ(t) = ϕ0 + A

∫ t

0

ϕ(s)ds+

∫ t

0

F (ϕ(s))ds; ∀t ≥ 0.

Furthermore {U(t)}t≥0 satisfies the following properties:

(i) Let U(t)ϕ0 = (u(t), R(t), 0R2,y(t, .))T ; then the following Volterra integral formula-

tion holds true:

y(t, a) =





exp

(∫ a

a−t
(F1(a)− β(a)〈e,u(σ)〉E1) dσ

)
y0(a− t); if a ≥ t,

exp

(∫ a

0

(F1(σ)− β(σ)〈e,u(t)〉E1) dσ

)
y(t− a, 0); if a < t.

with y(t− a, 0) = [θ(Λ− bνu4(t− a)); (1− θ)Λ]T .

(ii) For each ϕ0 ∈ A one has for all t ≥ 0

〈14,u(t)〉+R(t) +

∫ ω

0

l(a)〈12,y(t, a)〉da ≤
Λ

µ1

.

(iii) The nonempty compact set A is invariant under the semiflow U , and the subset A
attracts the bounded sets of X0+ under the semiflow U .

Proof. The proof of this result is rather standard. Indeed it is easy to check that operator

A satisfies the Hille-Yosida property. Then standard methodologies apply to provide the

existence and uniqueness of a mild solution for system (5.64)-(5.65) (see, for instance,

[144, 200, 113] and the proof of Theorem 4.2.2). Next the Volterra integral formulation

is also standard in the context of age-structured equations and we refer to [110] and the

references cited therein for more details. Estimates stated in (ii) directly follow from
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the system of equations. Let us assume for a moment that y0 ∈ W 1,1(0, ω,R2); then

adding up the equations of system (5.64) yields v̇(t) ≤ Λ− µ1v(t), that is

v(t) ≤ Λ

µ1
+ e−µ1t

(
v(0)− Λ

µ1

)
, (5.69)

wherein v(t) = 〈14,u(t)〉 +R(t) +

∫ ω

0

l(a)〈12,y(t, a)〉da. From where one deduces esti-

mate (ii). Particularly, Assumption (item A2) gives that S(t, 0) = θ(Λ − bνC(t)) > 0

for all t > 0.

It remains to prove (iii) and this is a direct consequence of (5.69).

5.2.4 The disease-free steady state and reproductive number

Existence of the disease-free steady state

A steady state (u, 0R2 ,y(a)) of system (5.64)-(5.65) must satisfy the system of ordi-

nary differential equations:

dy(a)

da
= −β(a)〈e,u〉E1.y(a) + F1(a)y(a),

∫ ω

0

l(a)β(a)〈e1,y(a)〉F2(a).uda+ (F3 + diag(−µ1)).u = 0,

〈F4,u〉 − µ1R = 0,

(5.70)

with initial condition y(0) = (θ(Λ− bνu4); (1− θ)Λ)T . Therefore, we obtain the disease-

free steady state E0 = (0R4 , 0, 0R2 , s0(.), v0(.))
T
, where

s0(a) = Λ

[
θe−

∫ a
0 (ψ+p(η))dη + ψ

∫ a

0

e−
∫ a
σ (ψ+p(η))dηdσ

]
;

v0(a) = Λ− s0(a).

Reproductive number.

We use the next generation operator approach as described by Diekmann-Heesterbeek-

Metz [48] and Inaba [116] to define the reproductive number, R0, as the number of

secondary infections that one infectious individual would create over the duration of the

infectious period, provided that everyone else is susceptible.

In the early stage of the epidemic, the dynamics of the population can be described by

the linearized equation at the disease-free steady state E0. Since the linearized equations
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for infective population does not include other subpopulations, we can only consider the

single equation for infective population as

d

dt
u(t) =

∫ ω

0

l(a)β(a)〈e1,E0(a)〉F2(a).u(t)da+ (F3 + diag(−µ1)).u(t),

u(0) ∈ R4.

(5.71)

Equation (5.71) rewrites

d

dt
u(t) = Fu(t)− Vu(t), u(0) ∈ R4; (5.72)

where the matrices F and V are respectively the rate of appearance of new infections

in each class and the rate of transfer (into and out of) each class; and are defined by

F =




0 0 Ki Ki

0 0 Kc Kc + bθν

0 0 0 0

0 0 0 0



, V =




v11 0 0 0

0 v22 0 0

−γ 0 v33 0

0 −δ 0 v44



,

with

Ki =

∫ ω

0

β(a)α(a)l(a)s0(a)da, Kc =

∫ ω

0

β(a)(1− α(a))l(a)s0(a)da,

and
v11 = µ1 + γ; v22 = µ1 + δ;

v33 = γ1 + µI + µ1; v44 = γ2 + µc + µ1.
(5.73)

Then the basic reproductive number is defined as the spectral radius of the next gener-

ation matrix FV−1

R0 =
1

2


 γKi

v11v33
+
δ(Kc + bθν)

v22v44
+

((
γKi

v11v33
+
δ(Kc − bθν)

v22v44

)2

+
4δ2bθνKc

v222v
2
44

)1/2

 .

(5.74)

Remark 5.2.1. We can also follow van den Driessche and Watmough[206], we obtain

that the basic reproduction number, defined as the expected number of secondary infec-

tions produced by an index case (Anderson and May [3]), is given by

R̃0 =
δ(Kc + bθν)

v22v44
+

γKi

v11v33
. (5.75)

In fact, simple calculation shows that R0 < 1(= 1, > 1) is equivalent to R̃0 < 1(= 1, >

1).
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Global stability of the disease-free steady state.

Theorem 5.2.2. Under Assumption 5.2.1, the disease-free steady state E0 is globally

asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. Let us denote by A0 the part of operator A in D(A). Then it is infinitesimal

generator of a C0-semigroup onD(A) denoted by {TA0(t)}t≥0. Using the same arguments

as in the proof of Lemma 4.2.4 we find that {TA0(t)}t≥0 satisfies

||TA0(t)|| ≤Me−µ1t, ∀t ≥ 0,

for some constant M > 0. It follows that ωess(A0), the essential growth of rate of

{TA0(t)}t≥0 is, ≤ −µ1. Let
{
T(A0+DF (E0))(t)

}
t≥0

be the linear C0-semigroup generated

by (A+DF (E0))0 the part of A +DF (E0) : D(A) ⊂ X → X in D(A). Since DF (E0)

is a compact bounded linear operator, it follows that (Ref. [57] an references therein)

ωess(A+DF (E0)) ≤ −µ1.

Now, let us assume that R0 > 1. The linearized equation of system (5.64) at

the disease-free steady state is given by (5.72). For w = (wi)i=1,...,4 ∈ R4 and u =

(ui)i=1,...,4 ∈ R4; let us consider the resolvent equation:

(z − (F − V))w = u, z ∈ C and Re(z) > −µ1. (5.76)

then we have

(I − T (z))w =

(
ui

z + vii

)T

i=1,...,4

; (5.77)

where T (z), z ∈ C, is 4× 4 matrix defined by:

T (z) =




0 0 Ki

z+v11

Ki

z+v11

0 0 Kc

z+v22
Kc+bθν
z+v22

γ
z+v33

0 0 0

0 δ
z+v44

0 0




(5.78)

Let us observe that the basic reproduction ratio R0 is the spectral radius, denoted by

r (T (0)), of the generation operator T (0). (See Ref. [113] and references therein). Then,

we claim that:
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Claim 5.2.1. There exists a unique z0 > −vmin := −min (vii)i=1,2,3,4 such that r (T (z0)) =

1 and 



z0 > 0 if r (T (0)) > 1;

z0 = 0 if r (T (0)) = 1;

z0 < 0 if r (T (0)) < 1;

and it is the dominant characteristic root, as

z0 > sup
{
Re(z) : z ∈ Σ0 \ {z0}

}
;

where Σ0 := {z ∈ C : (I − T (z)) is not inversible} is the spectrum of F − V.

Proof. The positive operator T (0) has the Perron-Frobenius properties, roughly speak-

ing, T (z) is irreducible and r (T (z)) is decreasing for real z ∈ (−vmin,+∞). Moreover,

limz→−vmin
r (T (z)) = +∞ and limz→+∞ r (T (z)) = 0; then the first half of the claim

is the direct consequence of this monotonicity of r (T (z)). Next we show the dominant

property of z0. For any z ∈ Σ0\{z0}, there is an vector ψz, such that T (z)ψz = ψz. Then

we have |ψz| = |T (z)ψz| ≤ T (Rez)|ψz|. The eigenspace corresponding to the eigenvalue

r (T (Rez)) is one-dimensional subspace of R4 spanned by a strictly positive functional

FRez. We obtain that

r (T (Rez)) [FRez, |ψz|] = [FRez, T (Rez)|ψz|] ≥ [FRez, |ψz|],

where we write the value of FRez at ψz as [FRez, ψz]. Hence we have r (T (Rez)) ≥ 1 and

Rez ≤ z0 because r (T (z)) is strictly deceasing for z ∈ (−µ1,+∞) and r (T (Rez0)) = 1.

This end the proof of Claim 5.2.1.

Therefore, the disease-free steady state is locally asymptotically stable if R0 =

r (T (0)) < 1 and unstable if R0 = r (T (0)) > 1.

The second part of the proof deal with the global stability of the disease-free steady

state. Let us consider A ⊂ X0+, the global attractor of U provided by Theorem

5.2.1. Let (u0, R0, 0R2,y0) ∈ A be given and let {ϕ(t) = (u(t), R(t), 0R2 ,y(t, .))}t∈R
be the entire solution of U passing trough (u0, R0, 0R2 ,y0). Since s(0, .) ≤ s0(.) for all

(u0, R0, 0R2 ,y0) ∈ A, we deduce that s(t, .) ≤ s0(.) for all t ∈ R. One may consider the

functional V defined for each entire solutions by

V [ϕ] (t) = d.u(t),
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where the positive constant vector d ∈ R4 is defined by d1 = γd3
γ+µ1

, d2 = δd4
µ1+δ

, d3 =

1
2(µ1+γ1+µI)

, and d4 = 1
2(µc+µ1+γ2)

.

Next, using system (5.64) we obtain

dV [ϕ] (t)

dt
≤ (R0 − 1) 〈e,u(t)〉. (5.79)

Hence we infer from the definition of X0+ that t 7→ V [ϕ] (t) is decreasing along the

entire solutions of U . To conlude our proof, let {tn}n≥0 be a sequence tending to −∞
as n → +∞ and consider the sequence of map ϕn(t) = ϕ(t + tn). Note that one has

V [ϕn] (t) = V [ϕ] (t + tn). Up to a subsequence one may assume that ϕn(t) → ϕ̂(t) as

n → +∞ locally uniformly for t ∈ R, where {ϕ̂(t)}t∈R ⊂ A is an entire solution of U .

Since V is decreasing, one obtains that

V [ϕ̂] (t) ≡ lim
t→−∞

V [ϕ] (t) = sup
t∈R

V [ϕ] (t).

By setting ϕ̂ = (û, R̂, 0R2 , ŷ), equation (5.79) yields to û(t) ≡ 0 while ŷ ≡ (s0(.), v0(.))T .

Hence V [ϕ̂] (t) ≡ 0 and 0 ≤ V [ϕ] (t) ≤ 0 for t ∈ R and ϕ(t) ≡ E0. This end the proof

of Theorem 5.2.2.

Remark 5.2.2. With respect to the result of Zou et al.[222], we do not ignore the

proportion of perinatal infection to deal with the stability of the disease-free steady state

of model (5.64).

5.2.5 Disease-endemic steady states.

In this subsection, we discuss the existence and stability of the disease-endemic steady

states. Endemic equilibrium points are steady-state solutions where the disease persists

in the population. We use general bifurcation theory to prove the existence of at least

one endemic equilibrium point for all R0 > 1. We have the following result.

Theorem 5.2.3. Let Assumption 5.2.1 be satisfied and R0 > 1, then there is a unique

positive disease-endemic steady state E∗(.) = (s∗(.), v∗(.), L∗
i , L

∗
c , I

∗, C∗, R∗)T of system

(5.64)-(5.65).

Before giving the proof of Theorem 5.2.3, let us introduce the following useful result

for the existence and uniqueness of a positive fixed point of a multi-variable function.
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Theorem 5.2.4. (Hethcote and Thieme [100], Theorem 2.1) Let H(x) be a continuous,

monotone non-decreasing, strictly sub linear, bounded function which maps the non-

negative orthant Rn
+ into itself. Let H(0) = 0 and H ′(0) exists and be irreducible. Then

H(x) does not have a non-trivial fixed point on the boundary of Rn
+. Moreover, H(x)

has a positive fixed point iff the spectral radius ρ(H ′(0)) > 1. If there is a positive fixed

point, then it is unique.

Proof of Theorem 5.2.3. The coordinates of E∗ satisfied

s(a) = θ(Λ− bνC)e−
∫ a
0
(β(σ)(I+C)+p(σ))dσ

+ψ

∫ a

0

v(η)e−
∫ a
η (β(σ)(I+C)+p(σ))dσdη, (5.80)

Li =
I + C

µ1 + γ

∫ ω

0

β(a)α(a)l(a)h(I, C, a)da,

Lc =
I + C

µ1 + δ

∫ ω

0

β(a)(1− α(a))l(a)h(I, C, a)da+
bθνC

µ1 + δ
,

I =
γ(I + C)

(µ1 + γ)(µ1 + µI + γ1)

∫ ω

0

β(a)α(a)l(a)h(I, C, a)da, (5.81)

C =
δ(I + C)

(µ1 + δ)(µ1 + µc + γ2)

∫ ω

0

β(a)(1− α(a))l(a)h(I, C, a)da

+
δbθνC

(µ1 + δ)(µ1 + µc + γ2)
, (5.82)

v(a) = Λ(1− θ)e−ψa +

∫ a

0

p(η)s(η)e−ψ(a−η)dη,

R =
γ1I + γ2C

µ1
.

wherein h(I, C, a) is the right-hand side of (5.80).

Using equations (5.81) and (5.82) we have the following fixed point equationH(I, C)T =

(I, C)T ; where

H : (I, C) ∈ [0,M0]× [0,M0] ⊂ R2 → R2 ∋ H(I, C)T =



γ(I + C)

(µ1 + γ)(µ1 + µI + γ1)

∫ ω

0

β(a)α(a)l(a)h(I, C, a)da

δ(I + C)

(µ1 + δ)(µ1 + µc + γ2)

∫ ω

0

β(a)(1− α(a))l(a)h(I, C, a)da+
δbθνC

(µ1 + δ)(µ1 + µc + γ2)


 ,

(5.83)

wherein M0 is a positive constant provided by item (ii) of Theorem 5.2.1.

Thus the equilibrium points are fixed points of H given by

H(I, C)T = (I, C)T . (5.84)
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The equation (5.84) implies that at the endemic steady state the infected population

simply reproduce itself. Therefore we can call H the next generation operator at the

endemic steady state. This fact will be used to show the stability of the endemic steady

state in the next subsection.

We use (5.84) to prove existence and uniqueness of an endemic equilibrium point.

We easily find that H(., .) is continuous, bounded function. Since h(0, 0, .) = s0(.)

(the disease-free steady state) and H is infinitely differentiable, then the Jacobian at

point (0, 0) is given by

H ′(0, 0) =




γKi

(µ1+γ)(µ1+µI+γ1)
γKi

(µ1+γ)(µ1+µI+γ1)

δKc

(µ1+δ)(µ1+µc+γ2)
δ(Kc+bθν)

(µ1+δ)(µ1+µc+γ2)




Thus the function H(I, C) is monotone non-decreasing and H(0, 0) = (0, 0). Note that

ρ(H ′(0, 0)) = R0 > 1. Thanks the graph theory, we claim that H ′(0, 0) is irreducible

because the associated graph of the matrix is strongly connected.

Let us now prove that H is strictly sub linear, i.e., H(rI, rC) > rH(I, C), for any

(I, C) > 0 and r ∈ (0, 1). For instance let us set H(., .) := (H1(., .);H2(., .)), then

rH1(I, C)

H1(rI, rC)
=

r
∫ ω
0
β(a)(1− α(a))l(a)h(I, C, a)da∫ ω

0
β(a)(1− α(a))l(a)h(rI, rC, a)da

≤ r < 1;

and the same argument gives that
rH2(I, C)

H2(rI, rC)
< 1. Then applying Theorem 5.2.4, the

result follows.

Remark 5.2.3. As in Remark 5.2.2 and with respect to the result to result of Zou et

al.[222] we do not ignore deaths directly related to HBV to deal with the existence of the

disease-endemic steady state.

The rest of this section deals with the stability of the endemic steady-state. The

linearized system (5.64) at the endemic steady state E∗ = (u∗, R∗, {0R2},y∗(.)) can be

written as
dϕ(t)

dt
= Aϕ(t) + Feϕ(t), (5.85)
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with ϕ(t) = (u(t), R, 0R2 ,y(t, .))T and where the linear operator Fe is given by

Fe
(
(u(t), R(t), 0R2 ,y(t, .))T

)
=




∫ ω
0
l(a)β(a)〈e1,y∗(a)〉F2(a)u(t)da+

∫ ω
0
l(a)β(a)〈e1,y(t, a)〉F2(a)u

∗da+ F3u(t)

〈F4,u(t)〉 − µ1R(t)

(−bθνu4(t); 0;F1(a)y(t, a)− β(a)〈e,u∗〉E1y(t, a)− β(a)〈e,u(t)〉E1y
∗(a))




T

.

(5.86)

Since the linearized stability principle holds for the age-structured population system

(5.64) (Ref. [211]), the endemic steady state is locally asymptotically stable if the trivial

equilibrium ϕ = 0 of the linearized system (5.85) is locally asymptotically stable, while

the endemic steady state is unstable if ϕ = 0 is unstable in (5.85).

In order to see the linearized stability by calculating the resolvent spectrum, let us

consider the resolvent equation for the linearized operator:

(z − (A + Fe))w = u, w ∈ D(A), u ∈ X, z ∈ C.

Let w = (s̄(.), v̄(.), L̄i, L̄c, C̄, Ī , R̄) and u = (u1(.), u2(.), u3, u4, u5, u6, u7). Then we have

s̄′(a) = −(z + β(a)(I∗ + C∗) + p(a))s̄(a) + ψv̄(a)

−β(a)s∗(a)(Ī + C̄) + u1(a), (5.87)

v̄′(a) = −(z + ψ)v̄(a) + p(a)s̄(a) + u2(a),

zL̄i = (I∗ + C∗)

∫ ω

0

α(a)l(a)β(a)s̄(a)da (5.88)

+(Ī + C̄)

∫ ω

0

α(a)l(a)β(a)s∗(a)da− (µ1 + γ)L̄i + u3, (5.89)

zL̄c = (I∗ + C∗)

∫ ω

0

(1− α(a))l(a)β(a)s̄(a)da+ bθνC̄ + u4

+(Ī + C̄)

∫ ω

0

(1− α(a))l(a)β(a)s∗(a)da− (µ1 + δ)L̄c, (5.90)

zĪ = γL̄i − (γ1 + µ1 + µI)Ī + u5, (5.91)

zC̄ = δL̄c − (γ2 + µ1 + µc)C̄ + u6, (5.92)

zR̄ = γ1Ī + γ2C̄ − µ1R̄ + u7,

s̄(0) = −bθνC̄ ; v̄(0) = 0. (5.93)

Equations (5.88) and (5.87), coupling with (5.93), respectively gives

v̄(a) =

∫ a

0

(p(σ) + u2(σ))e
−(z+ψ)(a− σ)s̄(σ)dσ,
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and

s̄(a) = −bθνC̄e−
∫ a
0 (z+β(η)(I∗+C∗)+p(η))dη

+

∫ a

0

[u1(σ) + ψv̄(σ)− β(σ)s∗(σ)(Ī + C̄)]e−
∫ a
σ
(z+β(η)(I∗+C∗)+p(η))dηdσ.

Recalling (5.73); from (5.91) and (5.92) it comes that

L̄i =
1

γ
(z + v33)−

u5
γ
, L̄c =

1

δ
(z + v44)−

u6
δ
. (5.94)

Substituting (5.94) into system (5.89)-(5.90) we have

(I − B(z))(Ī , C̄)T = (χ1, χ2)
T ; (5.95)

where B(z), z ∈ C is 2× 2 matrix defined by

B(z) =




B1(z) B1(z)

B2(z) B2(z) +
δbθν

v22v44


 , (5.96)

wherein

B1(z) =
γ
∫ ω
0
α(a)l(a)β(a)s∗(a)da

(z + v11)(z + v33)
;

B2(z) =
δ
∫ ω
0
(1− α(a))l(a)β(a)s∗(a)da

(z + v22)(z + v44)
;

and

χ1 =
γ(Ī∗ + C̄∗)

∫ ω
0
α(a)l(a)β(a)s∗(a)da

(z + v11)(z + v33)
+

u5
z + v33

;

χ2 =
δ(Ī∗ + C̄∗)

∫ ω
0
(1− α(a))l(a)β(a)s∗(a)da

(z + v22)(z + v44)
+

u6
z + v44

.

We can observe that B(0) ≤ H , where H is the next generation operator at the endemic

steady state. Since H is also irreducible, its spectral radius is the Frobenius eigenvalue

corresponding to the unique positive eigenvector. If R0 > 1, H has a positive fixed

point (see Theorem 5.2.3), that is r(H) = 1. Hence from Perron-Frobenius Theorem

we obtain that r(B(0)) < r(H) = 1. Let Σ∗ be the spectrum of A + Fe. By using the

same argument as the proof of Claim 5.2.1, we know that the dominant characteristic

root in Σ∗ is given as the unique real root of equation r(B(z)) = 1, z ∈ C, and it is

less than zero if r(B(0)) < 1. Then it follows that the endemic steady state is locally

asymptotically stable. Therefore, we obtain the following result on the stability of the

disease-endemic steady state.

Theorem 5.2.5. Let Assumption 5.2.1 be satisfied and R0 > 1, then the disease-

endemic steady state E∗ of system (5.64) is locally asymptotically stable.
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5.2.6 Numerical illustration

The model parameters.

Our numerical simulations are based on some main parameters used or derived in

Zhao, Xu, and Lu[221]; Zou, Zhang and Ruan[222] for HBV infection.

We first have the transmission coefficient β(a) given by

β(a) =





0.13074116− 0.01362531a+ 0.00046463a2 − 0.00000489a3; 0 ≤ a ≤ 47.5,

β(47.5); a > 47.5

(5.97)

The probability of susceptible age a to become latently infected (progressing to symp-

tomatic infectiousness) is given by

α(a) = 0.9153552− 0.706004 exp(−0.787711a), (5.98)

thus 1 − α(a) is the probability of susceptible age a to become latently infected (pro-

gressing to asymptomatic infectiousness). The remaining parameters are given in Table

5.6.

Using a constant p for p(a), we simulate the behavior of the model. Fig. 5.5 illustrates

the behavior of system for p = 0.5, θ = 0.1, ν = 0.011 such that R0 = 0.8413 <

1 (R̃0 = 0.8413 < 1); that is the disease cannot persist. Secondly, we observe the

behavior of the system for p = 0.12. In Figure 5.6, θ = 0.6 such that R0 = 2.3320 > 1

(R̃0 = 2.3338 > 1). This indicates that hepatitis B is endemic.

Sensitivity analysis of model parameters to R̃0

We carried out the sensitivity analysis to determine the model robustness to param-

eter values. That is to help us know the parameters that have a hight impact on the

reproduction number (R0); using the approach in(Chitnis et al. [32]).

Definition 5.2.1. The normalized forward sensitivity index of basic reproduction num-

ber, R̃0, that depends differentiably on a parameter, l, is defined as:

ΥR̃0
l :=

∂R̃0

∂l
× l

R̃0

. (5.99)

We therefore derive the sensitivity of the basic reproduction number R̃0 to each of

the following parameters: p(.), 1− θ and 1− ν (see Table 5.6 for they description). As
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for our numerical simulation, here we also assume that p(.) is a constant parameter:

p(a) ≡ p = 90% for all a ∈ [0, ω].

Recalling that

R̃0 =
δ(Kc(p) + bθν)

v22v44
+
γKi(p)

v11v33
,

with

Ki(p) =

∫ ω

0

β(a)α(a)l(a)s0(p, a)da, Kc(p) =

∫ ω

0

β(a)(1− α(a))l(a)s0(p, a)da,

and s0(p, a) ≡ s0(a) (the disease-free steady state of the model) when p(.) is assume to

be the constant p. In this case, we easily find that

s0(p, a) = Λe−(p+ψ)a

(
θ − ψ

ψ + p

(
1− e(p+ψ)a

))
.

The detail sensitivity indices of R̃0 resulting from the evaluation of parameters of the

model are shown below:

ΥR̃0
p =

(
δ(K0

c (p) + bθν)

v22v44
+
γK0

i (p)

v11v33

)
p

R̃0

;

ΥR̃0
1−θ =

δbν

v22v44
× θ − 1

R̃0

;

ΥR̃0
1−ν =

δbθ

v22v44
× ν − 1

R̃0

;

(5.100)

wherein

K0
i (p) =

∫ ω

0

β(a)α(a)l(a)∂ps
0(p, a)da, K0

c(p) =

∫ ω

0

β(a)(1− α(a))l(a)∂ps
0(p, a)da.

The sensitivity index of basic reproduction number is summarize in Table 5.4.

Table 5.4 implies that increasing (resp. decreasing) the vaccination rate of susceptible,

by 10%, decreases (resp. increases) the basic reproduction rate R̃0 by 4.91%.

Increasing (resp. decreasing) the proportion of births with successful vaccination,

1− θ, by 10%, decreases (resp. increases) the basic reproduction rate R̃0 by 0.34%.

Similarly, increasing (resp. decreasing) the proportion of births without perinatal

infection, 1 − ν, by 10%, decreases (resp. increases) the basic reproduction rate R̃0 by

4.13%.

Actually, it is not easy to practice a mass vaccination to all the susceptible individuals:

a specific age group of susceptible should be provided. Then, let us examine the impact

of the mass group vaccination of susceptible (i.e. for a specific age group of susceptible

R. DJIDJOU DEMASSE c© 2014



5.2 Age-structured model for the transmission of hepatitis B virus 150

Table 5.4: Sensitivity index of model parameters to R̃0

Parameter Description Sensitivity index

p vaccination rate of susceptible −0.4910

1− θ proportion of births with successful vaccination −0.0341

1− ν proportion of births without perinatal infection −0.4135

individuals) on the spread of the disease. To this end we consider two age groups:

0 ≤ a ≤ 5 (years) and a > 5 (years). The vaccination rate of susceptible p(a) is then

define by:

p(a) =





p1 per year; 0 ≤ a ≤ 5 (years),

p2 per year; a > 5 (years),
(5.101)

wherein pj; (j = 1, 2) is the vaccination rate of susceptible for the specific age group.

Consider the same vaccination rate of susceptible for each age group, that is pj =

90%; (j = 1, . . . , 5) and θ = 0.6 (the remaining parameters are given in Table 5.6),

the sensitivity index of the vaccination rate of susceptible for the specific age group

is summarize in Table 5.5. We observe that the much sensitive group is susceptible

individuals with age between 0 and 5 years old (with respect to our set of parameters).

Let us simulate the impact of age group mass vaccination on the spread of the disease.

For this end, consider p2 = 0 (i.e. there is not vaccination on the group of susceptibles

with more than 5 years old) and for different values of mass vaccination rate p1 on the

group age [0, 5](years old). Figure 5.7 indicates that mass vaccination in infants (with

less than 5 years old) can reduce the spread of the epidemic (specially the spread of the

asymptotic infection of HBV). But, this is not enough to control the infection.

To find better control strategies for HBV infection, we would like to see what param-

eters can reduce the basic reproduction number R0 given by (5.74). From Fig. 5.8 we

can see that R0 decreases if 1 − θ (immunization of newborns) increases, or ν (propor-

tion of perinatally infected) decreases, or p (immunization of susceptible individuals)

increases. Fig. 5.8(a) shows that combining immunization of susceptible individuals

(at least young adults) and reduction of perinatal infection can reduce R0 to be less

than 1. HBV could be eliminated even if p = 0 and 1 − ν is large enough (see Fig.

5.5). Fig. 5.8(b) also shows that combining immunization of newborns and reduction

of perinatal infection is also an efficient intervention. HBV could be eliminated if both

1 − ν and 1 − θ are large enough. Fig. 5.8(c) shows that combining immunization of
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Table 5.5: Sensitivity index of vaccination rate for the specific age group to R̃0

Two age groups case: [0, 5](years old) and ]5, ω](years old)

Parameter Description Sensitivity index

p1 vaccination rate of susceptibles age a: 0 ≤ a ≤ 5(years) −0.4590

p2 vaccination rate of susceptibles age a: a > 5(years) −0.0772

1− θ proportion of births with successful vaccination −0.0286

1− ν proportion of births without perinatal infection −0.3473

Only one age group case: [0, 5](years old)

Parameter Description Sensitivity index

p1 vaccination rate of susceptibles age a: 0 ≤ a ≤ 5(years) −0.3347

1− θ proportion of births with successful vaccination −0.0206

1− ν proportion of births without perinatal infection −0.2500

both newborns and susceptible individuals can reduce R0 to be less than 1. HBV could

be eliminated if both p and 1− θ are large enough. If the transmission coefficient β(.) is

sufficiently small HBV could also be eliminated. However, it is difficult to control β(.).

In the light of these results, we find that the control of the epidemic of hepatitis B

virus pass through a reduction or even eradication of perinatal transmission of the disease

(See Figs 5.8(a),(b),(c)). Therefore, although the proportion of perinatal transmission

of the disease is low (as pointed in Zou et al.[222]), this factor should not be neglected in

the transmission of HBV. A control strategy will be a combination of immunization of

newborns, immunization of susceptible individuals (at least young adults), and reduction

of perinatal infection.
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Figure 5.5: The behavior of system for p = 0.5, θ = 0.1, ν = 0.011 and R0 = 0.8413.

All other parameters are given in Tab. 5.6 and Eqs. (5.97)-(5.98).
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Figure 5.6: The behavior of system for p = 0.12, θ = 0.6 and R0 = 3.2707. All other

parameters are given in Tab. 5.6 and Eqs. (5.97)-(5.98).
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Figure 5.7: Impact of the mass vaccination on the spread of the epidemic: p1 ∈
{0, 0.5, 0.9} for group [0, 5](years old) and p2 = 0 for group ]5, ω](years old). θ = 0.6

and all other parameters are given in Tab. 5.6 and Eqs. (5.97)-(5.98).
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Figure 5.8: The graphs of the basic reproduction number R0 in terms of some parame-

ters: (a) R0 in terms of 1 − ν and p. 1 − θ is fixed to be 1 − θ = 0.8, (b) R0 in terms

of 1 − θ and 1 − ν. p is fixed to be p = 0.5, (c) R0 in terms of 1 − θ and p. 1 − ν is

fixed to be 1− ν = 0.89, (d) R0 in terms of 1− ν. p and 1− θ fixed to be p = 0.45 and

1− θ = 0.87. All other parameters are given in Tab. 5.6 and Eqs. (5.97)-(5.98).

5.2.7 Summary

In this section, we have examined an age-structured model for the transmission of

Hepatitis B virus (HBV) with differential infectivity: symptomatic infection and asymp-

tomatic infection. The rationale for including age-structured can be multiple. According

to CDC and WHO, risk for chronic infection is inversely related to age at infection: ap-

proximately 90% of infected infants and 30% of infected children aged under 5 years
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Table 5.6: Parameters values used in numerical simulation

Parameters Description Values Ref.

p(a) vaccination rate of susceptible 0 - 1

µ1 natural mortality rate 0.0132/yr WHO[219]

µI , µC HBV-related mortality rate 0.2%/yr CDC[30]

γ rate moving from latent infection to Edmunds et al.[67],

symptomatic infectiousness 6/yr CDC[30]

δ rate moving from latent to Edmunds et al.[67],

asymptomatic infectiousness 6/yr CDC[30]

Λ total number of births variable

b equilibrium birth rate 0.0380/year WHO[219]

1− θ proportion of births with successful

vaccination 0 - 1

ψ rate of waning vaccine-induced

immunity 0.1 Edmunds et al.[63]

γ1 rate moving from symptomatic Edmunds et al.[67],

infectiousness to recovered 4.8/yr CDC[30]

γ2 rate of moving from asymptomatic Edmunds et al.[67],

infectiousness to recovered 0.025/yr CDC[30]

ν proportion of perinatally infected

(from chronicle infectious mothers) 0.11 Edmunds et al.[67]

become chronically infected, compared with 5% of adults. Vaccination is recognized

as the most efficient way of preventing hepatitis B. But the problem of imperfect vac-

cine introduce naturally differential susceptibility. Even if HBV vaccine is very efficient

it does not offer 100% protection against infection. According to WHO, Hepatitis B

vaccine is 95% effective in preventing HBV infection and its chronic consequences.

The main finding of this section can be summarized along the following lines:

X We discussed the existence and stability of the disease-free and disease-endemic

equilibria of the model in terms of the basic reproduction number R0.

X We performed sensitivity analysis of the parameters with respect to the basic
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reproduction number R0.

The analytical results and numerical simulations of the model suggest that :

X Mass vaccination in infants increases the average age of infection in unimmunized

individuals and shifts the average age at infection to older age groups (Edmunds et

al.[67]). This indicates that mass vaccination in infants might be not enough to control

the infection and eradicate the virus (this is also supported by Zou et al.[222]).

X The control strategy consist in a combination of immunization of newborns, im-

munization of susceptible individuals (at least young adults), and reduction of perinatal

infection.
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Conclusion

This work deals with a recent within-host malaria infection model with multistrain

for the parasites and a spatial modeling of anopheles mosquito dynamics population. In

this work, we also consider population models of infectious disease structured by age.

Namely, Hepatitis B virus (HBV) and Susceptible-Infected-Lost of sight (SIL) models.

The first section of the first true chapter of this work deals with an age-structured

within-host model for multistrain malaria infection. This model incorporates n strains

for the parasite. Using integrated semigroup theory, we provided a global analysis of this

model. The rationale for including multi-strain can be multiple. One reason is to take

into account biological reasons, e.g., consideration of morphological or age classes. The

second is due to the recent study on this subject. Recently, it has been proved that a

deeper understanding of the dynamic growth responses of multiple strain P. falciparum

infections can improve the understanding of the role of parasite interactions in the spread

of drug resistant parasites, perhaps suggesting different treatment strategies [208]. This

model has been conceived from malaria infection, since it is well grounded that malaria

is a multi-strain infection. However other parasitic infections can be considered by this

model, e.g., the model can be extended to the HIV infections [105]. The main finding

of this model is the following:

◮ To separate the different strains we associated for each strain the i-specific basic

reproduction number Ri
0. We then find that the basic reproduction number of the

model is defined by R0 = max
i=1,...,n

Ri
0.

◮ We also find that if R0 ≤ 1, the model exhibits a unique disease-free steady state,

while if R0 > 1 the model has exactly nE disease-endemic steady states, wherein nE =

Card {i ∈ {1, . . . , n} : Ri
0 > 1} .

◮ We prove that if the basic reproduction number of the model satisfies R0 ≤ 1, then

the parasite is cleared from the host population. Our global stability result when R0 > 1

can be summarized as a competitive exclusion principle. If R0 > 1, then there exists
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a global asymptotic stable endemic equilibrium. This equilibrium corresponds to the

extinction of all strains, except the strain with the largest threshold (winning strain).

In the first true chapter of this work, we also consider an advection-reaction model

for anopheles mosquito dynamics population. Knowledge of the population dynamics

of the malaria vector is fundamental to the understanding of malaria epidemiology and

the spread of insecticide resistance. Therefore, studies on the population structure of

malaria vectors have important implications for the prediction and assessment of the

effects of many vector control strategies. According to all malaria models, little has been

done with regard to the studies on the population dynamics of malaria vectors. The

aim finding of our analyzes can be summarized along as follows:

◮ The seasonal spatio-temporal model of anopheles mosquito is consider. This model

takes into account seasonal transmission and the geographical range of malaria. Using

the semigroup approach we derive the existence of the unique bounded non-autonomous

semiflow associated to the seasonal spatio-temporal model.

◮ To find the behavior of the non-autonomous semiflow associated to the seasonal

spatio-temporal model, we introduce three threshold values R♦, R♦ and R∗.

◮ Then, we find that, if R♦ < 1, the anopheles mosquito population dies out.

◮ We also derive persistence results for the seasonal mosquito model. Namely, if R♦ > 1

(resp. R∗ > 1) then anopheles mosquito uniformly weakly (resp. strongly) persists in

the population.

The second (and the last) true chapter of this work is organized in two sections and

deals with two population models structured by age. The first section is concerned

by a mathematical SIL (Susceptible-Infected-Lost of sight) model for the spread of a

directly transmitted infectious disease. The second section of the chapter is concerned

by and age-structured model for the transmission of hepatitis B virus, with differential

infectivity: symptomatic infection and asymptomatic infection.

The first section considered a model for the spread of a directly transmitted infections

disease in an age-structured population with demographics process, SIL-model. The

disease can be transmitted not only horizontally but also vertically from infected mothers

to their newborns. There are important infective agents such as HBV (hepatitis B virus),

HIV (human immunodeficiency virus) and HTLV (human T-cell leukemia virus) that

can be vertically transmitted. In Africa, the vertical transmission of the disease like HIV
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is in progression nowadays. The aim finding of this section is summarized as follows:

◮ We formulated the dynamical system with boundary conditions, and then described

the semigroup approach to the time evolution problem of the abstract epidemic system.

◮ Next we have calculated the basic reproduction ratio and proved that the SIL-model

exhibits a unique disease-free steady state if R0 ≤ 1, and at least one endemic steady

state exists if the basic reproduction ratio R0 is greater than the unity.

◮ We prove that if the basic reproduction number of the SIL-model satisfies R0 < 1,

then the disease-free steady state is locally asymptotically stable, i.e., the disease died

out from the host population.

◮ We have shown sufficient conditions which guarantee the local stability of the endemic

steady state; that is the persistence of the disease in the host population. Roughly

speaking, the endemic steady state is locally asymptotically stable if R0 > 1 and if it

corresponds to a very small force of infection.

◮ Finally, to highlight the impact of the vertical transmission of the disease into the

host population, we provided some illustrations and discussion on the outcome of the

state variables of the model when the vertical transmission rate p takes different values:

0.02, 0.2 and 0.5.

In the second section of the second true chapter of this work, we have examined an

age-structured model for the transmission of Hepatitis B virus (HBV) with differential

infectivity: symptomatic infection and asymptomatic infection. Vaccination is recog-

nized as the most efficient way of preventing hepatitis B. But the problem of imperfect

vaccine introduce naturally differential susceptibility. Even if HBV vaccine is very effi-

cient it does not offer 100% protection against infection. According to WHO, Hepatitis

B vaccine is 95% effective in preventing HBV infection and its chronic consequences.

The main finding of this section can be summarized along the following lines:

◮ We discussed the existence and stability of the disease-free and disease-endemic equi-

libria of the model in terms of the basic reproduction number R0.

◮ We performed sensitivity analysis of the parameters with respect to the basic repro-

duction number R0.

◮ The analytical results and numerical simulations of the model suggest that, mass

vaccination in infants increases the average age of infection in unimmunized individuals

and shifts the average age at infection to older age groups (Edmunds et al.[67]). This
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indicates that mass vaccination in infants might be not enough to control the infection

and eradicate the virus (this is also supported by Zou et al.[222]).

◮ A optimal control strategy consist in a combination of immunization of newborns, im-

munization of susceptible individuals (at least young adults), and reduction of perinatal

infection.
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MULTISTRAIN MALARIA INFECTIONS∗
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Abstract. In this paper we propose an age-structured malaria within-host model taking into
account multistrains interaction. We provide a global analysis of the model depending upon some
threshold T0. When T0 ≤ 1, then the disease-free equilibrium is globally asymptotically stable and
the parasites are cleared. On the contrary, if T0 > 1, the model exhibits the competition exclusion
principle. Roughly speaking, only the strongest strain, according to a suitable order, survives while
the other strains go to extinction. Under some additional parameter conditions we prove that the
endemic equilibrium corresponding to the strongest strain is globally asymptotically stable.
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tems, global stability, Plasmodium falciparum, intrahost model
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1. Introduction. In this paper we consider an age-structured system of equa-
tions modeling the blood stage of multistrain malaria infections. We more specifically
focus upon human malaria caused by the protozoa Plasmodium falciparum, the most
widespread within the tropics and particularly in Sub-Saharan Africa.

According to Read and Taylor [40] natural parasitic infections are often diverse,
including multiple parasite species and/or distinct genotypes of the same species.
Parasites of the Plasmodium genus are no exception. Human infections of multiple
strains or species have been widely reported [6, 49] and it may be typical in highly
endemic regions [27, 29].

Recently, using quantitative PCR methods, Wacker et al. [48] proved and quan-
tified that the interactions between different strains of P. falciparum lead to the
competitive suppression of the weakest one. This feature was already observed for
P. chabaudi, the parasite responsible for rodent malaria (see [6] and the references
therein). Such a competition has a strong influence on the spread of strains and thus
on drug resistance. According to Wacker et al. [48], a deeper understanding of the
dynamic of multiple strain P. falciparum infection can improve the understanding
of the role of parasite interactions in the spread of drug-resistant parasites, perhaps
suggesting different treatment strategies.

In this work we shall focus on the blood stage of the parasite where the aforemen-
tioned competitive suppression has been reported. Before going to the mathematical
model, let us briefly review the features of malaria. The life cycle of malaria parasites
inside the human body consists of two phases: an exoerythrocytic (the liver stage)
and an erythrocytic phase (the blood stage). After an infective bite, a mosquito in-
jects the pathogen in the so-called sporozoites form, which rapidly reaches the liver
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‡UMR CNRS 5251 IMB, Université de Bordeaux, 3 ter Place de la Victoire, 33076 Bordeaux,
France (arnaud.ducrot@u-bordeaux2.fr).

572



MULTISTRAIN MALARIA INFECTIONS 573

cells. An asymptomatic period follows during which parasites mature and multiply
asexually within the liver cells, yielding to hepatic schizonts. Once hepatic schitzonts
rupture, the parasitized cells release the so-called merozoites into the bloodstream, the
starting point of the blood stage. During this phase, the merozoites enter uninfected
red blood cells (uRBC) to undergo asexual multiplication. After a sequestration pe-
riod of about 48 hours (for P. falciparum) the rupture of the parasitized red bood
cells (pRBC) occurs releasing 8 to 32 free merozoites into the bloodstream ready to
repeat the invasion scheme. The blood stage of the parasites is mainly responsible
for the clinical symptoms of the infection. The rupture of pRBC causes clinical fever.
Moreover P. falciparum infection is the most frequent acquired RBC disorder in the
world (see Buffet et al. [3] and the references therein), that may also lead to severe
symptoms such as anemia or cerebral malaria.

In this paper we consider an age-structured intrahost model for P. falciparum
infection with n different strains for the parasites. The age structure will allow us
to have a good description of the pRBC rupture and of the merozoites release phe-
nomenon. These parameters play an important role in describing the strength of a
strain and thus have important consequences on the spread of the infection. The
model we shall consider is an extension of the model proposed by Iggidr et al. in [26]
by taking into account a continuous age structure. It reads as

(1.1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)

dt
= Λ− μxx(t)− x(t)

n∑

j=1

βjmj(t),

∂wj(t, a)

∂t
+

∂wj(t, a)

∂a
= −(μj(a) + μx)wj(t, a),

dmj(t)

dt
=

∫ ∞

0

rj(a)μj(a)wj(t, a)da− μm,jmj(t)− δjβjx(t)mj(t),

wj(t, 0) = βjx(t)mj(t), j ∈ {1, 2, . . . , n}.

In (1.1), the RBC population is split into two classes: x(t) denotes the concen-
tration of uRBC at time t, while wj(t, a) denotes the age-specific concentration of
pRBC at time t and parasitized since a time a by a specific j-strain. Finally mj(t)
denotes the concentration of free specific j-merozoites in the blood stream. We briefly
sketch the interpretation of the parameters arising in (1.1). Parameters μx, μm,j, re-
spectively, denote the natural death rates for uRBC and for free specific j-merozoites.
Function μj(a) denotes the additional death rate of pRBC due to the j-parasites at
age a and leading to the rupture. The rupture of pRBC at age a results in the release
of an average number rj(a) of specific j-merozoites into the blood stream, so that
pRBC infected by a specific j-strain then produce, at age a, j-merozoites with the
rate rj(a)μj(a). Together with this description, the quantity

∫∞
0 rj(a)μj(a)wj(t, a)da

corresponds to the number of specific j-merozoites produced by pRBC at time t. Fi-
nally the parameter βj describes the contact rate between uRBC and free specific
j-merozoites while Λ denotes the recruitment rate of uRBC from the bone marrow.
In the literature the parameter δj takes the values δj = 0 when the loss of merozoites,
when they enter an RBC, is ignored or takes the value δj = 1 when this loss is not
ignored. System (1.1) is supplemented together with initial data whose properties
will be described below.

There have been numerous works on pathogen within-host dynamics describing
P. falciparum infection. The pioneer work of Anderson [2], focused on describing
parasitemia, has been further developed in several direction including, in particular,
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immune response and oscillations [13, 20, 21, 22, 30, 38]. We also refer to the sur-
vey paper of Molineaux and Dietz [39] and the references therein. However all these
works do not take into account an important characteristic of P. falciparum which
is sequestration of merozoites within the pRBC and their ruptures. Such an issue
has been considered using discrete age-structured systems of equations (see, for in-
stance, [14, 15, 16, 37]) with a constant RBC population assumption. We finally refer
to Iggidr et al. [26] for a mathematical study of a discrete age-structured model with
varying RBC concentration. Note that in this latter work multistrain competitive
interaction is also considered and the authors derived the so-called competitive ex-
clusion principle. In another context, let us mention that the one-strain system (1.1)
(namely, with n = 1) has been rigorously and recently studied by Huang, Liu, and
Takeuchi [23] in the context of the HIV infection model (and with δ = 0).

Here we will extend these results to (1.1) by proving that this problem exhibits
the competitive exclusion principle. This work is organized as follows. In section 2,
we describe the main results that will be proved in this work. Section 3 is devoted
to deriving preliminary results and remarks that will be used to study the long-
term behavior of the problem. Section 4 is concerned with the proof of the first
part of Theorem 2.2 below that, roughly speaking, states that when some threshold
(explicitly expressed using the parameters of the system) T0 ≤ 1, then all the strains
asymptotically die out and the parasites cannot survive. Finally, section 5 deals
with the proof of the second part of Theorem 2.2, that, roughly speaking, says that
when T0 > 1 and under some additional assumptions on the different strains, the
competitive exclusion principle holds true, that is, only the strongest strain (using a
suitable order) is asymptotically surviving.

2. Main results. In this section we will state the main results of this work.
In order to deal with system (1.1) we first provide a parameter reduction by in-

troducing the following unknown functions yj(t, a) = wj(t, a)e
∫

a
0

μj(l)dl. Therefore,
by introducing the vector-valued functions y(t, a) = (y1(t, a), . . . , yn(t, a))

T , m(t) =
(m1(t), . . . ,mn(t))

T , as well as the matrices

β = diag (β1, . . . , βn) , δ = diag (δ1, . . . , δn) , En = (1, . . . , 1)T ∈ Rn,

μm = diag (μm,1, . . . , μm,n) , ρ(a) = diag (ρ1(a), . . . , ρn(a)) ,

system (1.1) rewrites as

(2.1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)

dt
= Λ − μxx(t) − x(t)ET

n βm(t),

∂ty(t, a) + ∂ay(t, a) = −μxy(t, a),

y(t, 0) = βx(t)m(t),

dm(t)

dt
=

∫ ∞

0

ρ(a)y(t, a)da − μmm(t)− δβx(t)m(t),

supplemented together with initial data

(2.2) y(0, .) = y0(.) ∈ L1
(
0,∞;Rn

+

)
, x(0) = x0 ≥ 0, m(0) = m0 ∈ Rn

+,

and where we have set ρj(a) = rj(a)μj(a)e
−

∫
a
0

μj(l)dl for j = 1, . . . , n. In (2.2), Rn
+

denotes the positive orthant, namely, Rn
+ = {(x1, . . . , xn)

T ∈ Rn : xi ≥ 0 ∀i =
1, . . . , n}.
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In what follows we shall discuss the asymptotic behavior of system (2.1)–(2.2)
and we will make use of the following assumption.

Assumption 2.1. We assume that, for each j ∈ {1, 2, . . . , n}, functions ρj belong
to L∞

+ (0,∞,R+) while Λ > 0, μx > 0, μm,j > 0, δj ∈ {0, 1}, and βj > 0.
As mentioned in the introduction we shall focus on the competitive exclusion

principle generated by (2.1). Roughly speaking, to achieve such a goal we will provide
an order to separate the different strains of the parasite. Hence let us introduce, for
each strain, the quantity T i

0 defined by

(2.3) T i
0 =

βiΛ

μxμmi

(∫ ∞

0

ρi(a)l(a)da− δi

)
,

as well as T0 = max1≤i≤n T i
0 and where function l ≡ l(a) is defined by

(2.4) l(a) = e−μxa.

As will be seen below (see Theorem 2.2) the situation when T0 ≤ 1 is rather simple
because the infection asymptotically dies out. When T0 > 1 the situation is much
more involved. We expect that system (2.1)–(2.2) exhibits the competition exclusion
principle that, roughly speaking, says that in the presence of multiple strains only
the strongest can asymptotically survive. The parameters {T i

0 }i=1,...,n (see (2.3)) will
be used to quantify the strength of the different strain-specific infections. We will
now introduce some definitions. Let us first of all define the set of strains that can
potentially survive as S defined by

(2.5) S =

{{
i ∈ {1, . . . , n} : T i

0 > 1
}

if T0 > 1,

∅ if T0 ≤ 1.

On the set of index {1, . . . , n} we define an order relation by

i� j ⇔ T i
0 ≤ T j

0 and i� j ⇔ T i
0 < T j

0 .

We would like to emphasize that when the parameters δj are nonzero, the set of
threshold {T i

0 }i=1,...,n is different from the set of the different strain-specific basic
reproduction numbers. Indeed the strain i–specific basic reproduction number reads
as (see Appendix A for the computation)

(2.6) Ri
0 = 1 +

μm,i

μm,i + δiβixf

(
T i
0 − 1

)
with xf =

Λ

μx
.

Hence, when δ 
= 0, the above described order may be different from the one induced
by the strain-specific basic reproduction numbers.

We also denote by max� the maximum operator associated with the order �.
Note that in general the operator max� is multivalued and is defined by

max�{i, j} =

⎧
⎪⎨
⎪⎩

i if T i
0 > T j

0 ,

j if T j
0 > T i

0 ,

{i, j} if T i
0 = T j

0 .

A subset {i1, . . . , ip} ⊂ {1, . . . , n} := Nn is said to be strictly ordered if there exists
a permutation σ of {1, . . . , p} such that iσ(1) � · · · � iσ(p). Let us notice that on
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a strictly ordered set, the operator max� becomes a single-valued map. Let us also
mention that for biological reasons, since we aim to deal with the competitive exclusion
principle for our multistrain model, it is relevant to assume that the different strain
is distinguishable. Hence we shall assume in most parts of this work that the species
that can potentially survive are distinguishable, that is, reformulated by assuming the
set {i ∈ Nn : T i

0 > 1} is strictly ordered.
Before stating our main result let us introduce further notations that correspond

to the stationary states of (2.1) (see Proposition 3.4): xf = Λ
μx

and for each k ∈ S
(when S 
= ∅)

(2.7) xk
e =

xf

T k
0

, mk
e =

μx(T k
0 − 1)

βk
(δi,k)

n
i=1 , yk

e (a) = βix
k
ee

−μxamk
e ,

where δi,j denotes the usual Kronecker symbol.
For technical reasons in relation to some computations, we shall assume some

relation between the parameters. The set S (when S 
= ∅) satisfies condition (Q) if

(2.8)
(
T i
0 − 1

)
δiβixf ≤ T i

0 μmi ∀i ∈ S.

Let us first notice that the above condition is always satisfied when δi = 0. When
δi > 0 the above parameter condition can be rewritten in terms of a limitation of the
strain-specific basic reproduction numbers (see (2.6)). Indeed, if one sets γi =

δiβixf

μmi

then condition (Q) is rewriten as

Ri
0 ≤ max

(
1 +

1

1 + 2γi
; 1 +

1 +
√
1 + 4γi
2γi

)
∀i ∈ S.

Using the above notations the main result of this work is the following theorem.
Theorem 2.2. Let Assumption 2.1 be satisfied. Let x0 ≥ 0, m0 ∈ Rn

+, and
y0 ∈ L1(0,∞;Rn

+) be a given initial datum and let us denote by (x(t),m(t),y(t, .))
the solution of (2.1)–(2.2). Then the following hold true:

(i) If J := S ∩ {k ∈ {1, . . . , n} : m0,k +
∫∞
0

y0,k(a)da > 0} = ∅, then

lim
t→∞

(x(t),m(t),y(t, .)) =
(
xf , 0Rn , 0L1(0,∞;Rn)

)
,

wherein the above convergence holds for the topology of R×Rn×L1(0,∞;Rn).
(ii) Let us assume that the set S is strictly ordered and satisfies the parameter

condition (Q). If J 
= ∅, then setting i = max� J and recalling (2.7) one has

lim
t→∞

(x(t),m(t),y(t, .)) =
(
xi
e,m

i
e,y

i
e(.)
)

for the topology of R× Rn × L1 (0,∞;Rn).
The first part of this result applies in particular when S = ∅, namely T0 ≤ 1. In

that case all the strains asymptotically die out and the parasites cannot persist. Let
us notice that the condition T0 ≤ 1 can be rewritten in terms of basic reproduction
R0 := max{Ri

0, i ∈ Nn} as R0 ≤ 1. The second part of the above theorem says
that when different strains are sufficiently strong to survive, then only the strongest
present strain (with respect to the order �) survives in the long term.

Remark 2.3. The parameter condition (Q) seems to be only a technical condition
that we cannot overcome. From numerical computations, the equilibrium associated
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Table 2.1
Parameter set for (1.1).

Parameters Description Value and range References

Λ Production rate of RBC 1.73× 106 cell·h−1·ml−1 [1]
β1; β2 Infection rate of uRBC 0.02/24 ml·cell−1·h−1 [1]
μx Natural death rate of uRBC 0.00833/24 h−1 [1]
μm1;μm2 Decay rates of malaria parasites 48/24 h−1 [21]
r1; r2 Merozoite mean rate produced by pRBC 16 [1]
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Fig. 1. On the left-hand side, superimposed time evolution of the density of merozoites for
strains 1 and 2 alone; on the right-hand side, competitive suppression of strain 2 when the two
strains are mixed. Parameter set for (1.1) is described in Table 2.1 while initial distributions are
given in Table 2.2. Here one has R1

0 = 4.79 and R2
0 = 3.95.

Table 2.2
Initial values in model (1.1).

Variables Description Initial Values References

x(0) Population of uRBC 5× 109 cell·ml−1 [1, 4, 21, 37]
w1(0, .); w2(0, .) Population of pRBC 0 cell·ml−1 [1, 4, 21, 37]
m1(0); m2(0) Malaria parasite 107 parasite·ml−1 [1, 4, 21, 37]

with the strongest strain continue to be globally stable even if condition (Q) is vio-
lated.

We now provide some numerical simulations to illustrate the dynamics of system
(1.1) in the case of two-strain interactions (n = 2) and using the parameter set de-
scribed in Table 2.1. They highlight the principle of competitive exclusion. According
to [7] the sequestration period for the i-strain satisfies τi ∈ [44; 52](hours). For numer-
ical simulations we set τ1 = 48 and τ2 = 50 h while μi ≡ μi(a) is set (following [43])
to

μi(a) := 0 if a < τi and 0.98 if a ≥ τi.

Using contact rate β1 = β2 = 0.02/24, Figure 1 (left) represents the superimposition
of the time evolution of two strains alone, that is, without interaction while Figure 1
(right) corresponds to the time evolution of competitive interactions between the two
strains. Since the sequestration period for strain 1 is smaller, strain 1 becomes the
strongest and it competitively suppresses strain 2. Let us also notice that the shape of
these curves are qualitatively close to the experimental situations recently obtained by
Wacker et al. in [48]. Let us finally emphasize that using the parameter set described
in Tables 2.1 and 2.2, the weakest strain, namely, strain 2, is quickly suppressed after
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20 days. This duration plays an important role on the transmission of gametocytes
to mosquitoes. Note that such a conclusion has been reached without taking into
account the interactions of the different strains during the liver stage of the disease.
This could have an influence on the time needed to suppress the weakest strain during
the blood stage and thus on the spread of the different strains. This will be studied
in a forthcoming work.

3. Preliminaries. The aim of this section is to derive preliminary remarks on
(2.1)–(2.2). These results include the existence of the unique maximal bounded dis-
sipative semiflow associated with this system. The second part of this section relies
on technical material that will be used to prove our stability results.

3.1. Existence of semiflow and basic properties. In this section we shall
deal with (2.1)–(2.2) using an integrated semigroup approach. This approach has
been introduced by Thieme in [44] in the context of age-structured equations. We
also refer to [11, 28, 32, 34, 35] and [45, 47] (see also the references cited therein).

Let us introduce the Banach space X̂ := Rn ×L1(0,∞;Rn) as well as its positive

cone X̂+ = Rn
+ × L1(0,∞;Rn

+) and the linear operator Â : D(Â) ⊂ X̂ → X̂ defined
by

(3.1) D(Â) = {0Rn} ×W 1,1 (0,∞;Rn) , Â

(
0Rn

ϕ

)
=

(
−ϕ(0)

−ϕ′ − μxϕ

)
.

Next consider the Banach space X and its positive cone X+ defined by

X = R× Rn × X̂ and X+ = R+ × Rn
+ × X̂+,

endowed with the usual product norm. Let A : D(A) ⊂ X → X be the linear operator
defined by

(3.2) D(A) = R× Rn ×D
(
Â
)
, A = diag

(
−μx,−μm, Â

)
.

Note that the domain of operator A is not dense in X because of the identity

D(A) = R× Rn × {0Rn} × L1(0,∞;Rn) 
= X.

Finally let us introduce the nonlinear map F : D(A) → X defined by

F
(
(x,m, 0Rn ,y)

T
)
=

(
Λ− xET

n βm,

∫ ∞

0

ρ(a)y(a)da − δβxm, βxm, 0L1(0,∞;Rn)

)T

.

By identifying u(t) together with (x(t),m(t), 0Rn ,y(t, .))T and by setting u0 = (x0,m0,
0Rn ,y0(.))

T , one obtains that system (2.1)–(2.2) rewrites as the following nondensely
defined Cauchy problem:

(3.3)
du(t)

dt
= Au(t) + F (u(t)) t ≥ 0 and u(0) = u0 ∈ D(A) ∩X+.

We first derive that the above abstract Cauchy problem generates a unique glob-
ally defined and positive semiflow. We set X0 = D(A) and X0+ = X0 ∩X+ and the
precise result is the following theorem.

Theorem 3.1. Let Assumption 2.1 be satisfied. Then there exists a unique
strongly continuous semiflow {U(t) : X0+ → X0+}t≥0 such that for each u0 ∈ X0+,
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the map u ∈ C([0,∞) : X0+) defined by u = U(.)u0 is a mild solution of (3.3),
namely, it satisfies

∫ t

0

u(s)ds ∈ D(A) and u(t) = u0 +A

∫ t

0

u(s)ds+

∫ t

0

F (u(s))ds ∀t � 0.

Furthermore {U(t)}t≥0 satisfies the following properties:

(i) Let U(t)u0 = (x(t),m(t), 0Rn ,y(t, .))
T
; then the following Volterra integral

formulation holds true:

y(t, a) =

{
y0(a− t)e−μxt if a ≥ t,

βx(t − a)m(t− a)e−μxa if a < t,

coupled with the x(t) and m(t) equations of (2.1).
(ii) For each u0 ∈ X0+ one has for all t ≥ 0

x(t) +

∫ ∞

0

ET
n y(t, a)da ≤ x0 + ||ET

n y0||L1 +
Λ

μx
,

ET
nm(t) ≤ ET

nm0 +
1

μmin
m

(
x0 + ||ET

n y0||L1 +
Λ

μx

)
‖ρ‖max,

where we have set μmin
m = min1�j�n μm,j and ‖ρ‖max = max1�j�n ‖ρj‖L∞.

(iii) The semiflow {U(t)}t≥0 is bounded dissipative and asymptotically smooth.
Proof. The proof of this result is rather standard. Indeed it is easy to check that

operator A satisfies the Hille–Yosida property. Then standard methodologies apply
to provide the existence and uniqueness of a mild solution for system (2.1)–(2.2) (see,
for instance, [32, 34, 35, 45, 47]).

Next the Volterra integral formulation is also standard in the context of age-
structured equations and we refer to [25, 50] and the references cited therein for more
details.

Estimates stated in (ii) directly follow from the system of equations. Let us
assume for a moment that y0 ∈ W 1,1(0,∞;Rn); then adding up the x equation
together with the yi equations yields

d

dt

(
x(t) +

∫ ∞

0

ET
n y(t, a)da

)
= Λ − μx

(
x(t) +

∫ ∞

0

ET
n y(t, a)da

)
,

from where one deduces the first estimate of (ii) when y0 is smooth enough. Then a
usual density argument coupled with the continuity of the semiflow with respect to
the initial data yield the conclusion for y0 ∈ L1(0,∞;Rn

+). Then the second estimate
directly follows from the first one applied to the mi equations.

It remains to prove (iii) and let us notice that the bounded dissipativity of the
semiflow {U(t)}t≥0 is a direct consequence of (ii). To prove the asymptotic smooth-
ness, let B be a forward invariant bounded subset of X0+. According to the results
in [41] it is sufficient to show that the semiflow is asymptotically compact on B.

Let us consider a sequence of solutions {up = (xp;mp, 0,yp)T }p≥0 that is equi-
bounded in X0+ and let us consider a sequence {tp}p≥0 such that tp → +∞. Let
us show that the sequence {up(tp)}p≥0 is relatively compact in X0+. To do so, we
consider the sequence of map {wp(t) = up(t+ tp)}p≥0. Since xp and mp are uniformly
bounded in the Lipschitz norm, the Arzela–Ascoli theorem implies that, possibly along
a subsequence, one may assume that xp(t + tp) → x̂ and mp(t + tp) → m̂(t) locally
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uniformly for t ∈ R. It remains to deal with the sequence {yp(tp, .)}p≥0. Let us

denote ỹp(t, .) = yp(t+ tp, .). Using the Volterra integral formulation one gets

(3.4) ỹp(t, a) =

{
y0(a− t+ tp)e

−μx(t+tp) if a ≥ t+ tp,

βxp(t− a+ tp)mp(t− a+ tp)e
−μxa if a < t+ tp.

Finally since βxp(t − a + tp)mp(t − a + tp)e
−μxa converges as p → ∞ towards some

function ξ(t, a) = βx̂(t− a)m̂(t− a)e−μxa locally uniformly, one easily concludes that

yp(tp, .) = ỹp(0, .) → βx̂(−.)m̂(−.)e−μx. in L1 (0,∞;Rn) .

The result follows.
Now in order to deal with the subsystem, it will be also convenient to introduce

for each J ⊂ Nn the closed subspaces XJ ⊂ X and XJ
0 ⊂ X0 defined by

XJ =

{
(x,m, α;y)T ∈ X : mi +

∫ ∞

0

yi(a)da = 0 ∀i ∈ J

}
and XJ

0 = XJ ∩X0.

We also introduce XJ
0+, the positive cone of XJ

0 defined by XJ
0+ = XJ

0 ∩ X0+. If
J = ∅, then XJ = X , XJ

0 = X0, and XJ
0+ = X0+. Recalling definition (3.2), note

that A(D(A)∩XJ
0 ) ⊂ XJ . In the sequel we shall denote by AJ : D(AJ ) ⊂ XJ → XJ

the linear Hille–Yosida operator defined by

(3.5) D(AJ ) = D(A) ∩XJ
0 , AJx = Ax ∀x ∈ D(A) ∩XJ

0 .

For each i ∈ Nn we also consider

M i
0 =

{
(x,m, α;y)T ∈ X0+ : mi +

∫ ∞

0

yi(a)da > 0

}
.

Then the following lemma holds true.
Lemma 3.2. For each J ⊂ Nn and each i ∈ Nn, the subsets XJ

0+ ⊂ X0+ and M i
0

are both positively invariant under the semiflow {U(t)}t≥0; in other words,

U(t)M i
0 ⊂ M i

0 and U(t)XJ
0+ ⊂ XJ

0+ ∀t ≥ 0.

Proof. To prove the above result, let i ∈ Nn be given. Let u0 := (x0;m0; 0Rn ;y0) ∈
M i

0 be given and let us denote for each t ≥ 0, U(t)u0 := (x(t);m(t); 0Rn ,y(t, .))T , the
orbit passing through u0. Let us set pi(t) = mi(t) +

∫∞
0 yi(t, a)da. It follows that

p′i(t) ≥ −max(μx, μmi)pi(0). That is

mi(t) +

∫ ∞

0

yi(t, a)da ≥ e−max(μx,μmi)t

(
m0i +

∫ ∞

0

y0i(a)da

)
.

This completes the fact that U(t)M i
0 ⊂ M i

0.
Now, let u0 ∈ ∂M i

0. Using the Volterra formulation we easily find that mi(t) = 0
for all t ≥ 0 and

∫ ∞

0

yi(t, a)da = β1

∫ t

0

x(t− a)mi(t− a)e−μxada+ e−μxt||y0i||L1 = 0.

Therefore U(t)∂M i
0 ⊂ ∂M i

0 for all t ≥ 0. This ends the proof of the lemma.
Then coupling Theorem 3.1 together with the results of Hale [17, 18] and Hale

and Waltman [19], one obtains the following proposition.
Proposition 3.3. Let J ⊂ Nn be given. There exists a nonempty compact set

AJ ⊂ XJ
0+ such that
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(i) AJ is invariant under the semiflow {UJ(t) := U(t)|XJ
0+
}t≥0;

(ii) the subset AJ attracts the bounded sets of XJ
0+ under the semiflow UJ .

Next, the following proposition describes the equilibria of the model.
Proposition 3.4. Let Assumption 2.1 be satisfied. Assume furthermore that

the set S is strictly ordered. Then system (2.1) (or semiflow {U(t)}t≥0 provided by
Theorem 3.1) has exactly 1 + card S stationary states.

(i) The disease-free equilibrium defined by

u∗
0 =

(
xf ; 0Rn ; 0Rn , 0L1(0,∞;Rn)

)T ∈ XNn
0+ , xf =

Λ

μx
,

is an equilibrium of U and it is the only one when S = ∅.
(ii) When S 
= ∅ the semiflow U has exactly card S endemic stationary states

defined for each k ∈ S by

u∗
k =

(
xk
e ,m

k
e , 0Rn ,yk

e

)T ∈ X
Nn\{k}
0+ ∩Mk

0 ,

where the above quantities are defined in (2.7).
The proof of this result follows from straightforward algebra. The details are left

to the reader.

3.2. Technical materials. In this subsection we establish some properties of
the entire solutions of system (2.1). These properties will be useful later to derive the
asymptotic behavior of (2.1) especially when S 
= ∅.

Our first result is concerned with spectral properties of the linearized semiflow
UJ := U |XJ

0+
for some given subset J ⊂ Nn at a given stationary point u∗ ∈ ∂MJ

0 .

Let u∗ = (x∗,m∗, 0Rn ,y∗)T ∈ XJ
0+ be a given stationary state of the semiflow UJ .

The associated linearized equation at the point u∗ reads as

du(t)

dt
= (AJ +Bu∗)u(t),

where AJ is the linear operator defined in (3.5) while Bu∗ ∈ L(XJ
0 , X

J) is the bounded
linear operator defined by:

Bu∗

⎛
⎜⎜⎝

x
m
0Rn

y

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

−x∗ET
n βm − xET

n βm
∗

∫∞
0 ρ(a)y(a)da − δβ(x∗m+ xm∗)

x∗βm+ xβm∗

0L1(0,∞,Rn)

⎞
⎟⎟⎟⎟⎟⎠

.

Lemma 3.5. Let J ⊂ Nn be given. Let us set Ω = {λ ∈ C : Re (λ) > −μx}.
Then the spectrum σ(AJ +Bu∗) ∩ Ω only consists of a point spectrum and one has

σ (AJ +Bu∗) ∩ Ω =
{
λ ∈ Ω : ΔJ(λ, u∗) = 0

}
,

where the function ΔJ (., u∗) : Ω → C is defined by

ΔJ (λ, u∗) =
∏

i∈Nn\J
χi(λ, x

∗),

while for each i ∈ Nn and each x ∈ R, the function χi(., x) : Ω → C is defined by

(3.6) χi(λ, x) = 1− βix

λ+ μmi

[∫ ∞

0

ρi(a)e
−(λ+μx)ada− δi

]
.
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Proof. Let J ⊂ Nn be given. Let us denote by A0J the part of AJ in XJ
0 . Then

it is the infinitesimal generator of a C0-semigroup on XJ
0 denoted by {TA0J (t)}t≥0.

Next it is easy to check that the essential growth rate of this semigroup satisfies
ω0,ess(A0J ) ≤ −μx. Then since operator Bu∗ is compact, the results in [10, 47] apply
and ensure that the essential growth rate of {T(AJ+Bu∗ )0(t)}t≥0, the C0-semigroup
generated by the part of (AJ + Bu∗) in XJ

0 satisfies ω0,ess((AJ + Bu∗)0) ≤ −μx.
Applying the result in [35] (see also [12] and [51]), the latter inequality ensures that
Ω ∩ σ(AJ +Bu∗) is only composed of a point spectrum of (AJ +Bu∗).

It remains to derive the characteristic equation. However this part is also standard
and we refer, for instance, to [5, 31, 36].

Our next result relies on properties of the entire solutions of system (2.1).
Lemma 3.6. Let {u(t) = (x(t),m(t), 0Rn ,y(t, .))T }t∈R be a given entire solution

of the semiflow U . Then x satisfies

(3.7) inf
t∈R

x(t) > 0.

Furthermore the following properties hold true:
(i) If there exist i ∈ Nn and t0 ∈ R such that u(t0) ∈ M i

0, then mi(t) > 0 ∀t ∈ R
and yi(t, a) > 0 for any (t, a) ∈ R× [0,∞).

(ii) Assume that S 
= ∅ and assume there exist i ∈ S and t0 ∈ R such that
u(t0) ∈ M i

0. If u(t) → u∗ as t → ∞, where u∗ is an equilibrium point of U ,
then one has u∗ ∈ {u∗

j : i� j}.
(iii) For each i ∈ Nn there exists a constant Mi > 1 such that

m−
i (t)

Mi
e−μxa ≤ yi(t, a) ≤ Mie

−μxa ∀(t, a) ∈ R× [0,∞),

where we have set m−
i (t) = infs≤t mi(s).

Proof. Let us first notice that since u is an entire solution then

(3.8) y(σ, a) = βx(σ − a)m(σ − a)e−μxa ∀(σ, a) ∈ R× [0,∞).

This expression directly follows from the Volterra integral formulation in Theorem 3.1.
From the estimates provided in Theorem 3.1 and the x equation there exists some

constant C > 0 such that for each s ∈ R and t ≥ 0 one has

(3.9) x(s)e−Ct + Λ

∫ t

0

e−C(t−l)dl ≤ x(t+ s) ≤ x(s) +
Λ

μx
.

This implies that inft∈R x(t) > 0 and completes the proof of (3.7).
We now turn to the proof of (i). Let us argue by contradiction by assuming that

there exists t1 ∈ R such that mi(t1) = 0. Then from the mi equation we deduce that
mi(t) = 0 for all t ≤ t1. Next we infer from (3.8) that

∫∞
0 yi(t, a)da = 0 for any

t ≤ t1. Hence mi(t) +
∫∞
0 yi(t, a)da ≡ 0, a contradiction with the existence of t0. On

the other hand, due to (3.9) and (3.7), if there exists (t1, a1) ∈ R × [0,∞) such that
yi(t1, a1) = 0, then mi(t1 − a1) = 0 and the first part of the argument applies.

Let us now prove (ii). Let us first notice that since mi(t0) +
∫∞
0 yi(t0, a)da > 0,

(i) implies that mi(t) > 0 for all t ∈ R and yi(t, a) > 0 for all (t, a) ∈ R× [0,∞). Next
consider the function Γi(a) =

∫∞
a

ρi(s)e
μx(a−s)ds and note that Γi ∈ L∞(0,∞,R)

and satisfies Γ′
i(a)− μxΓi(a) + ρi(a) = 0 a.e. a ≥ 0. Let us introduce the functional

Φi[u](t) =

∫ ∞

0

Γi(a)yi(t, a)da+mi(t)
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that satisfies (recalling definition (2.3))

(3.10)
dΦi[u](t)

dt
= μmimi(t)

[
T i
0

x(t)

xf
− 1

]
∀t ∈ R.

Using this computation we will obtain a contradiction by assuming that u(t) → u∗
j as

t → ∞ for some j � i. Indeed for j = 0, u(t) → u∗
0 as t → ∞ implies that x(t) → xf

as t → ∞. Then since T i
0 > 1 function t �→ Φi[u](t) is not decreasing for t large

enough. Hence there exists t0 ∈ R such that Φi[u](t) ≥ Φi[u](t0) for all t ≥ t0. Since
Φi[u](t0) > 0, this prevents the component (yi,mi) from converging to (0, 0L1) as
t → ∞. A contradiction with u(t) → u∗

0.
The same argument holds for j ∈ S with j � i. Indeed in such a case x(t) → xj

e

as t → ∞ and since
[
T i
0

xj
e

xf
− 1

]
=

T i
0

T j
0

− 1 > 0,

the same arguments apply. This completes the proof of (ii).
Finally note that (iii) directly follows from (3.7) and (3.8). This ends the proof

of Lemma 3.6.
Our next lemma is a computational result that will be used in what follows to

perform Lyapunov arguments.
Lemma 3.7. Let us assume that the same assumptions of Lemma 3.6 are satisfied.

Let h : (0,∞) → [0,∞) be the function defined by

(3.11) h(s) = s− 1− ln s.

Let us assume that there exists i0 ∈ S such that

(3.12) lim inf
t→−∞

mi0(t) > 0.

Then
(i) for each t ∈ R one has

(3.13)

[∫ ∞

.

ρi0(s)l(s)ds

]
h

(
yi0(t, .)

yi0ei0(.)

)
∈ L1(0,∞,R).

(ii) Consider now the map Vi0 [u] : R → [0,∞) defined by

(3.14) Vi0 [u](t) := Wi0 (t) +

p∑

j=1;j 
=i0

∫ ∞

0

fj(a)yj(t, a)da+

p∑

j=1;j 
=i0

djmj(t),

where we have set Wi0(t) = Vx(t) + Vyi0
(t) + Vmi0

(t) and

Vx(t) = h

(
x(t)

xi0
e

)
, Vyi0

(t) =

∫ ∞

0

αi0(a) h

(
yi0(t, a)

yi0ei0(a)

)
da, Vmi0

(t) = di0 h

(
mi0(t)

mi0
ei0

)
,

and

di0 =
βi0m

i0
ei0

μmi0

, dj =
βj

μmj
with j 
= i0,(3.15)

fj(a) =
βj

μmj

∫ ∞

a

ρj(s)e
−μx(s−a)ds, and αi0(a) =

β2
i0
xi0
e mi0

ei0

μmi0

∫ ∞

a

ρi0(a)l(a)da.(3.16)
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Then function t �→ Vi0 [u](t) is of the class C1 on R and we have

V̇i0 [u](t) = − Θi0

xi0
e x(t)

(
x(t) − xi0

e

)2
+

x(t)

xi0
e

p∑

j=1;j 
=i0

(
T j
0

T i0
0

− 1

)
βjmj(t)

−
∫ ∞

0

β2
i0x

i0
e mi0

ei0

μmi0

ρi0(a)l(a)

[
h

(
yi0(t, a)m

i0
ei0

yi0ei0(a)mi0 (t)

)
+ h

(
mi0(t)y

i0
ei0

(0)

m1
ei0

yi0(t, 0)

)]
da

with

(3.17) Θi0 = μx − δi0
β2
i0x

i0
e mi0

ei0

μmi0

.

Proof. (i) Let us first remark that (3.13) follows from the estimate provided by
Lemma 3.6(iii) as well as (3.12). Indeed function a �→

∫∞
a ρi0(s)l(s)ds satisfies

∫ ∞

0

a

∫ ∞

a

ρi0(s)l(s)dsds < ∞.

(ii) Next note that function t �→ Vi0 [u](t) is also well defined for each t ∈ R because
of (3.7), Lemma 3.6(i), and finally because of fj ∈ L∞(0,∞) (see definition (3.16)).

It now remains to compute the derivation of t �→ Vi0 [u](t) (that is obviously of
the class C1 on R since u is an entire solution).
First one has

V̇x(t) =
Λ

xi0
e

+ μx − μx
x(t)

xi0
e

− Λ

x(t)
− βi0m

i0
ei0

yi0(t, 0)

yi0ei0 (0)
+ βi0mi0(t)

+

(
1− x(t)

xi0
e

) p∑

j=1;j 
=i0

βjmj(t).

(3.18)

Second using the yi0 equation and integration by parts, simple algebra leads to

V̇yi0
(t) = αi0(0)h

(
yi0(t, 0)

yi0ei0(0)

)
+

∫ ∞

0

α′
i0(a)h

(
yi0(t, a)

yi0ei0(a)

)
da.

Moreover we infer from the definition of αi0 (see (3.16))

(3.19) V̇yi0
(t) =

∫ ∞

0

β2
1x

i0
e mi0

ei0

μmi0

ρi0(a)l(a)

[
h

(
yi0(t, 0)

yi0ei0(0)

)
− h

(
yi0(t, a)

yi0ei0 (a)

)]
da.

Next one can also check that

V̇mi0
(t) =

∫ ∞

0

di0δi0βi0x
i0
e ρi0(a)l(a)

yi0(t, a)

yi0ei0 (a)
da− di0μmi0

mi0
ei0

mi0(t)

− di0δi0βi0x
i0
e

yi0(t, 0)

yi0ei0 (0)
− di0

mi0(t)

∫ ∞

0

ρi0(a)yi0 (t, a)da

+ di0δi0βi0x(t) + di0μmi0 .

(3.20)

Using the fact that

∫ ∞

0

β2
i0
xi0
e mi0

ei0

μmi0

ρi0(a)l(a)da− βi0m
i0
ei0

− di0δi0βi0x
i0
e = 0,
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we infer from (3.18)–(3.20) that

Ẇi0(t) =
Λ

xi0
e

+ μx + di0μmi0 − 2
β2
i0x

i0
e mi0

ei0

μmi0

Ki0 + (di0δi0βi0x
i0
e − μx)

x(t)

xi0
e

+

(
Ki0β

2
i0
xi0
e mi0

ei0

μmi0

− Λ

xi0
e

)
xi0
e

x(t)
+

(
1− x(t)

xi0
e

) p∑

j=1;j 
=i0

βjmj(t)

−
∫ ∞

0

β2
i0
xi0
e mi0

ei0

μmi0

ρi0(a)l(a)

[
h

(
yi0(t, a)m

i0
ei0

yi0ei0(a)mi0 (t)

)
+ h

(
mi0(t)y

i0
ei0

(0)

mi0
ei0

yi0(t, 0)

)]
da.

Since EEi0 is an equilibrium of system (2.1) one gets

Ẇi0(t) =− Θi0

xi0
e x(t)

(
x(t) − xi0

e

)2
+

(
1− x(t)

xi0
e

) p∑

j=1;j 
=i0

βjmj(t)

−
∫ ∞

0

β2
i0
xi0
e mi0

ei0

μmi0

ρi0(a)l(a)

[
h

(
yi0(t, a)m

i0
ei0

yi0ei0(a)mi0 (t)

)
+ h

(
mi0(t)y

i0
ei0

(0)

mi0
ei0

yi0(t, 0)

)]
da,

with Θi0 defined in (3.17). Using the fact that f ′
j(a) − μxfj(a) + djρj(a) = 0 for all

a ≥ 0 and δjdj +
1
xf

− fj(0) =
1−T j

0

xf
, one has

V̇i0 [u](t) = − Θi0

xi0
e x(t)

(
x(t)− xi0

e

)2
+

x(t)

xi0
e

p∑

j=1;j 
=i0

(
T j
0

T i0
0

− 1

)
βjmj(t)

−
∫ ∞

0

β2
i0
xi0
e mi0

ei0

μmi0

ρi0(a)l(a)

[
h

(
yi0(t, a)m

i0
ei0

yi0ei0(a)mi0(t)

)
+ h

(
mi0(t)y

i0
ei0

(0)

m1
ei0

yi0(t, 0)

)]
da.

This ends the proof of the lemma.

4. Proof of Theorem 2.2(i). The aim of this section is to prove the first part
of Theorem 2.2. By using all the above introduced definitions and notations, this
result can be reformulated as follows.

Proposition 4.1. Let Assumption 2.1 be satisfied. Then the following holds
true:

lim
t→∞

US(t)x = u∗
0

for each x ∈ XS
0+ and where US denotes the restriction semiflow U at XS

0+.
Remember that if S = ∅, namely, T0 ≤ 1, then XS

0+ = X0+ and US ≡ U . This
remark means that when T0 ≤ 1 the disease-free equilibrium is globally attractive.

The proof of this result relies on the construction of a suitable Lyapunov functional
on the entire solution of US .

Proof. Let us consider AS ⊂ XS
0+, the global compact attractor of US provided

by Proposition 3.3. Let x ∈ AS be given and let {u(t)}t∈R ⊂ AS be an entire solution
of US such that u(0) = x. Recalling that from Lemma 3.6(iii), inft∈R x(t) > 0, one
may consider the functional V defined for each entire solutions by

V [u](t) = h

(
x

xf

)
+

n∑

j=1

∫ ∞

0

fj(a)yj(a)da+

n∑

j=1

djmj ,
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where the positive constants dj and the functions fj are defined, respectively, by
(3.15) and (3.16) while function h is given in (3.11).

Next, using system (2.1) we obtain

d V [u](t)

dt
= −μx

(x(t) − xf )
2

x(t)
−

n∑

j=1

(djμmj − βj)mj(t)

−
n∑

j=1

(
δjdj +

1

xf

)
βjx(t)mj(t) +

n∑

j=1

dj

∫ ∞

0

ρj(a)yj(t, a)da

−
n∑

j=1

∫ ∞

0

fj(a)e
−μxa(∂ayj(t, a)e

μxa + μxe
μxayj(t, a))da.

Integrating by parts the last integral of the previous equality, using the yj boundary
condition of (2.1) together with f ′

j(a) − μxfj(a) + djρj(a) = 0 for all a ≥ 0, one

obtains, recalling {u(t)}t∈R ⊂ XS
0+, that

(4.1)
d V [u](t)

dt
= −μx

(x(t) − xf )
2

x(t)
− x(t)

∑

j∈Nn\S

1− T j
0

xf
βjmj(t).

Hence we infer from the definition of S that t �→ V [u](t) is decreasing along the entire
solutions of US . To conclude our proof, let {tn}n≥0 be an increasing sequence tending
to −∞ as n → ∞ and consider the sequence of map un(t) = u(t+ tn). Note that one
has V [un](t) = V [u](t+ tn). Up to a subsequence one may assume that un(t) → û(t)
as n → ∞ locally uniformly for t ∈ R, where {û(t)}t∈R ⊂ AS is an entire solution of
US . Since V is decreasing, one obtains that

V [û] (t) ≡ lim
t→−∞

V [u](t) = sup
t∈R

V [u](t).

By setting û = (x̂, m̂, 0, ŷ)T , (4.1) yields to x̂(t) ≡ xf while the x equation provides
that m̂(t) ≡ 0 so that ŷ(t, .) ≡ 0. Hence V [û](t) ≡ 0 and 0 ≤ V [u](t) ≤ 0 for t ∈ R
and u(t) ≡ u∗

0. This completes the proof of Proposition 4.1.

5. Proof of Theorem 2.2(ii). The aim of this section is to prove Theorem
2.2(ii). For this reason, we will assume throughout this section that S 
= ∅. The proof
of this result will follow an induction argument. To be more specific we will study the
behavior of the semiflow US\J for each subset J ⊂ S using card J ∈ {1, . . . , card S}
as the induction parameter.

The precise result we will prove is the following.
Theorem 5.1. Let us assume that the assumptions of Theorem 2.2 are satisfied.

Assume that S 
= ∅. Then for each J ⊂ S the semiflow {US\J(t)}t≥0 satisfies, for

each x ∈ X
S\J
0+ ,

(i) if J (x) := J ∩ {i ∈ Nn : x ∈ M i
0} = ∅, then x ∈ XS

0+ and

lim
t→∞

US\J(t)x = u∗
0;

(ii) if J (x) 
= ∅ we set i = max� J (x) and one has

lim
t→∞

US\J(t)x = u∗
i .
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Let us first notice that point (i) in the above theorem is a direct consequence of
Theorem 2.2(i) (see Proposition 4.1). As a consequence, it is sufficient to prove (ii)
and let us notice that Theorem 2.2(ii) corresponds to Theorem 5.1 with J = S. As
mentioned above, the proof of this result relies on an induction argument on card J .
In what follows we shall investigate the case where card J = 1 and we will then show
how such a property is inherited.

5.1. Case card J = 1. Let i ∈ S be given. For notational simplicity we

consider the set Y0+ = X
S\{i}
0+ and let us denote {V (t) := US\{i}(t)}t≥0. We also

consider the sets

N0 = Y0+ ∩M i
0 and ∂N0 = Y0+ \N0 = XS

0+.

Before constructing a suitable Lyapunov function to study the asymptotic behav-
ior of V (t)x for some x ∈ N0 let us first collect in the following lemma some properties
of the semiflow {V (t)}t≥0.

Lemma 5.2. Under the assumption of Theorem 5.1, the semiflow {V (t)}t≥0

satisfies the following properties:
(i) It is bounded dissipative and asymptotically smooth; N0 and ∂N0 are both

positively invariant under V .
(ii) For each x ∈ ∂N0 one has V (t)x → u∗

0.
(iii) The semiflow V is uniformly persistent with respect to the pair (N0, ∂N0) in

the sense that there exists ε > 0 such that, for each x ∈ N0,

lim inf
t→∞

d (U(t)x; ∂N0) ≥ ε.

Proof. Note that (i) directly follows from Theorem 3.1(ii), (iii) and Lemma 3.2
while (ii) directly follows from Theorem 5.1(i). It remains to prove (iii). To do so we
will apply Theorem 4.2 in [19]. Let us first notice that u∗

0 is an unstable stationary
state with respect to the semiflow V . Indeed as an application of Lemma 3.5 we know
that the eigenvalues in Ω of the linearized semiflow V at u∗

0 are given the resolution
of the equation ΔS\{i}(λ, u∗

0) = 0. On the other hand these eigenvalues contain the
roots of the equation χi(λ, u

∗
0) = 0 (see (3.6)). Note that function χi(., u

∗
0) satisfies

χi(0, u
∗
0) = 1− T i

0 < 0 and lim
λ→∞

χi(λ, u
∗
0) = 1

that ensures the existence of a strictly positive eigenvalue. The instability of u∗
0 with

respect to V follows.
Applying Theorem 4.2 in [19] to complete the proof of Lemma 5.2(iii), it is suf-

ficient to show that W s({u∗
0})
⋂
N0 = ∅ where we have set W s({u}) = {v ∈ Y0+ :

limt→+∞ V (t)v = u}. To prove this assertion, let us argue by contradiction by as-
suming that there exists x ∈ W s({u∗

0})
⋂
N0. Then using the same computations as

in Lemma 3.6(ii), since T i
0 > 1 one obtains that the function

Φ [V (t)x] :=

∫ ∞

0

Γi(a)yi(t, a)da+mi(t) with Γi(a) :=

∫ ∞

a

ρi(s)e
a−sds

is increasing for t large enough. This prevents the function (yi(t, .),mi(t)) from con-
verging to (0L1 , 0) and provides a contradiction together with the definition x. This
completes the proof of Lemma 5.2.

As a consequence of Lemma 5.2 and Theorem 3.7 in [33] (see also the monograph
[42]), there exists B0, a compact subset of N0, which is a global attractor for the
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semiflow {V (t)}t≥0 in N0. To complete the proof of Theorem 5.1(ii) in the case
J = {i} it remains to prove that B0 = {u∗

i }. This will be achieved by constructing a
suitable Lyapunov functional on B0. This idea has been used by Magal, McCluskey,
and Webb [36] and Thieme [46].

Let {u(t) = (x(t),m(t), 0Rn ,y(t, .))T }t∈R ⊂ B0 be a given entire solution of V .
We make the following claim.

Claim 5.3. Function mi satisfies inft∈R mi(t) > 0.
Before proving this claim let us complete the proof of Theorem 5.1 for J = {i}.

Using Claim 5.3 and Lemma 3.7, one can consider the functional Vi[u] defined in
Lemma 3.7. Defining Θi as in (3.17) one has

V̇i[u](t) =− Θi

xi
ex(t)

(
x(t)− xi

e

)2
+

x(t)

xi
e

∑

j∈Nn\S

(
T j
0

T i
0

− 1

)
βjmj(t)

−
∫ ∞

0

β2
i x

i
em

i
ei

μmi
ρi(a)l(a)

[
h

(
yi(t, a)m

i
ei

yiei(a)mi(t)

)
+ h

(
mi(t)y

i
ei(0)

m1
eiyi(t, 0)

)]
da.

Recalling condition (Q) one obtains that Θi ≥ 0 so that t �→ V [u](t) is a bounded and
decreasing map. Finally arguing similarly as the end of the proof of Theorem 2.2(i)
yields u(t) ≡ u∗

i .
It now remains to prove Claim 5.3.
Proof of Claim 5.3. Let us argue by contradiction by assuming that inft∈R mi(t) =

0. Note that due to Lemma 3.6(i), one has mi(t) > 0. Hence let us for instance
assume that lim inft→−∞ mi(t) = 0. Consider a sequence {tn}n≥0 tending to −∞ as
n → ∞ such that mi(tn) → 0 as n → ∞. Consider the sequence of maps {un(t) :=
u(t+ tn)}n≥0. Then up to a subsequence, one may assume that un(t) → û(t) locally
uniformly where û is an entire solution of V such that m̂i(0) = 0. Lemma 3.6(i) ensures
that (m̂i(t), ŷi(t, .)) ≡ (0, 0L1) This prevents û from belonging to N0, a contradiction.
A similar argument holds true if one deals with lim inft→+∞ mi(t) = 0. This completes
the proof of Claim 5.3.

5.2. Case card S ≥ 2 and 2 ≤ card J ≤ card S. In this section we assume
that card S ≥ 2. Note that the proof of Theorem 5.1(ii) follows from the above section
when card S = 1. Let J ⊂ S be a given subset such that card J ≥ 2. Our induction
hypothesis is concerned with the validity of Theorem 5.1 for each subset J ′ ⊂ S such

that card J ′ < card J . Consider now the set Y0+ = X
S\J
0+ as well as the semiflow

V := US\J on Y0+. Let us denote i = max�(J) and let us consider

N0 = Y0+ ∩M i
0 and ∂N0 = Y0+ \N0.

Let us first notice that to prove Theorem 5.1(ii) for J , it is sufficient to show that

(5.1) lim
t→∞

V (t)x = u∗
i ∀x ∈ N0.

Indeed, if x ∈ ∂N0, then x ∈ X
S\J′

0+ with J ′ = J \ {i}. Since J ′ ⊂ S and card J ′ <
card J , then V (t)x = US\J′(t)x and the asymptotic behavior follows from the induc-
tion hypothesis.

The proof of this section is rather similar to the one provided in the preceding
section. The only difference relies on the proof of the uniform persistence of the
semiflow V with respect to the pair (N0, ∂N0) because of the dynamics of the semiflow
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on the boundary ∂N0. Hence to complete the proof of Theorem 5.1(ii) for J we will
only prove the following lemma. The details are left to the reader.

Lemma 5.4. The semiflow V is uniformly persistent with respect to the pair
(N0, ∂N0).

Proof. The proof of this result is an application of Theorem 4.2 in [19] with a
nontrivial dynamics for the boundary semiflow. Let us denote J ′ = J \ {i}. Then
note that V |∂N0 = US\J′ . According to Proposition 3.3 let us consider A∂ := AS\J′ ,
the global attractor of the semiflow V |∂N0 . Note that according to the induction
hypothesis the following holds true:

⋃

x∈A∂

ω(x) = {u∗
0} ∪

⋃

j∈J′

{
u∗
j

}
.

Here for each x ∈ Y0+, ω(x) denotes the omega-limit set of the point x with respect
to the semiflow V . The application of Theorem 4.2 in [19] relies on some properties

of the set Â∂ defined by

Â∂ = {u∗
0} ∪

⋃

j∈J′

{
u∗
j

}
.

Let us first claim the following.
Claim 5.5. For each j ∈ J ′ ∪{0} the stationary point u∗

j is unstable with respect
to the semiflow V .

Proof of Claim 5.5. The proof of the above claim relies on Lemma 3.5. Let us
notice that for each j ∈ J ′ ∪ {0}, function χi(., u

∗
j ) (see (3.6)) satisfies

χi(0, u
∗
j) =

{
1− T i

0 if j = 0,

1− T i
0

T j
0

if j ∈ J ′.

Hence since i = max� J , χi(0, u
∗
j) < 0, and since χi(λ, u

∗
j ) → 1 as λ → ∞, for each

j ∈ J ′ ∪ {0}, function χi(., u
∗
j ) has a strictly positive root. The result follows.

Then we claim the following.
Claim 5.6. For each (j, k) ∈ J ′ ∪ {0}, if {u(t)}t∈R is a nontrivial (that is

nonconstant) entire solution of V such that

lim
t→−∞

u(t) = u∗
j and lim

t→∞
u(t) = u∗

k,

then j � k.
Proof of Claim 5.6. The proof of this claim relies on the application of Lemma

3.6(ii) as well as a Lyapunov-functional-like argument.
Let us first consider the case where j ∈ J ′. Then applying Lemma 3.6(ii) we know

that j � k. It is therefore sufficient to show that there is no homoclinic connection at
u∗
j . Let us argue by contradiction by assuming that

lim
t→±∞

u(t) = u∗
j .

Then applying once again Lemma 3.6(ii) we obtain that for each k ∈ J ′ such that
k � j,

yk(t, .) ≡ 0 and mk(t) ≡ 0 ∀k ∈ J ′ � j.
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Then consider the functional

Vj [u](t) = Vx(t) + Vyj (t) + Vmj (t) +

n∑

p=1;p
=j

∫ ∞

0

fp(a)yp(t, a)da+

n∑

p=1;p
=j

dpmp(t).

Using similar arguments and computations (see Lemma 3.7) as the ones provided in
the preceding section and using the fact that, for each k ∈ S \ J ′ and each k ∈ J ′

such that k � j,

yk(t, .) ≡ 0 and mk(t) ≡ 0,

one obtains that u(t) ≡ u∗
j , a contradiction.

It remains to consider the case j = 0 and to show that there is no homoclinic
connection at u∗

0. Let us argue by contradiction by assuming that

lim
t→±∞

u(t) = u∗
0.

Then let us notice that due to Lemma 3.6(ii) one has

yk(t, .) ≡ 0 and mk(t) ≡ 0, ∀k ∈ S.

Then by considering the map

V0[u](t) = h

(
x

xf

)
+

n∑

j=1

∫ ∞

0

fj(a)yj(a)da+
n∑

j=1

djmj ,

as well as computations and arguments similar to the proof of Proposition 4.1, one
concludes that

u(t) ≡ u∗
0,

a contradiction that completes the proof of Claim 5.6.
As a consequence of Claims 5.5 and 5.6, the set Â∂ is isolated and has an acyclic

covering. Hence since the semiflow is bounded dissipative and asymptotically smooth,
Theorem 4.2 in [19] applies and to complete the proof of Lemma 5.4, it is sufficient
to show that N0 ∩ W s({u∗

j}) = ∅ for each j ∈ J ′ ∪ {0}. Similarly to the proof in
section 5.1 this latter property directly follows from the functional

Φ [V (t)x] :=

∫ ∞

0

Γi(a)yi(t, a)da+mi(t) with Γi(a) :=

∫ ∞

a

ρi(s)e
a−sds.

This completes the proof of Lemma 5.4.

Appendix A. Basic reproduction rate of system (1.1). Here we follow the
methodology of Diekmann and co-workers [8, 9] and Inaba [24] (see also the references
cited therein). Let bj(t) be the density of newly produced j-merozoites at time t. Then
from (1.1) one has

bj(t) =

∫ ∞

0

r(a)μj(a)wj(t, a)da.

Since wj is given by the resolution of the linearized system (1.1) at the disease-free
equilibrium (DFE), the Volterra formulation of the transport equation yields

bj(t) = βjxf

∫ t

0

ρj(a)l(a)mj(t− a)da+

∫ ∞

t

ρy,j(a)wj(0, a)da.
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On the other hand, it follows from the mj component of the linearized system (1.1)
at the DFE that

ṁj(t) = bj(t)− (μm,j + δjβjxf )mj(t),

that rewrites as

mj(t) =

∫ t

0

e−(μm,j+δjβjxf )(t−s)bj(s)ds+mj(0)e
−(μm,j+δjβjxf )t.

As a consequence bj satisfies the following renewal equation:

bj(t) = βjxf

∫ t

0

(∫ a

0

e−(μm,j+δjβjxf )(a−s)ρj(s)l(s)ds

)
bj(t− a)da

+ βjxfmj(0)

∫ t

0

ρj(a)l(a)e
−(μm,j+δjβjxf )(t−a)da+

∫ ∞

t

rj(a)μj(a)wj(0, a)da.

Due to the above formulation, the j-strain specific basic reproduction number Rj
0 is

calculated as

Rj
0 = βjxf

∫ ∞

0

(∫ a

0

e−(μm,j+δjβjxf )(a−s)ρj(s)l(s)ds

)
da;

that is,

Rj
0 =

βjxf

μm,j + δjβjxf

∫ ∞

0

ρj(a)l(a)da.

Now let us notice that sgn (Rj
0 − 1) = sgn (T j

0 − 1). Indeed it is easy to check that

Rj
0 − 1 =

μm,j

μm,j + δjβjxf

(
T j
0 − 1

)
.

Moreover one can notice that when δj = 0, Rj
0 = T j

0 .
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ABSTRACT. We consider a mathematical SIL model for the spread of a directly transmitted infectious
disease in an age-structured population; taking into account the demographic process and the vertical
transmission of the disease. First we establish the mathematical well-posedness of the time evolution
problem by using the semigroup approach. Next we prove that the basic reproduction ratio R0 is
given as the spectral radius of a positive operator, and an endemic state exist if and only if the basic
reproduction ratio R0 is greater than unity, while the disease-free equilibrium is locally asymptotically
stable if R0 < 1. We also show that the endemic steady states are forwardly bifurcated from the
disease-free steady state when R0 cross the unity. Finally we examine the conditions for the local
stability of the endemic steady states.

RÉSUMÉ. Nous considérons ici un modèle mathématique SIL de transmission directe de la maladie
dans une population hôte structurée en âge; prenant en compte les processus démographiques et
la transmission verticale de la maladie. Premièrement, nous étudions le caractère bien posé du pro-
blème par la théorie des semi-groupes. Ensuite, nous montrons que le taux de reproduction de base
R0 est le rayon spectral d’un opérateur positif; et un équilibre endémique existe si et seulement si R0

est supérieur à l’unité, tandis que l’équilibre sans maladie est localement asymptotiquement stable si
R0 < 1. Nous établissons aussi l’existence d’une bifurcation de l’équilibre sans maladie quand R0

passe par l’unité. Enfin, nous donnons des conditions nécessaires pour la stabilité locale de l’équilibre
endémique.
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1. Introduction

During the earliest centuries mankind faces ever more challenging environmental and
public health problems, such as emergence of new diseases orthe emergence of disease
into new regions, and the resurgence diseases (tuberculosis, malaria HIV/AIDS, HBV).
Mathematical models of populations incorporating age structure, or other structuring of
individuals with continuously varing properties, have an extensive history.

The earliest models of age structured populations, due to Sharpe and Lotka in 1911
[37] and McKendrick in 1926 [39] established a foundation for a partial differential equa-
tions approach to modeling continuum age structure in an evolving population. At this
early stage of development, the stabilization of age structure in models with linear mor-
tality and fertility processes was recognized, although not rigorously established [35, 36].
Rigorous analysis of these linear models was accomplished later in 1941 by Feller [16],
in 1963 by Bellman and Cooke [4], and others, using the methods of Volterra integral
equations and Laplace transforms. Many applications of this theory have been devel-
oped in demography [9, 27, 33, 43], in biology [1, 2, 3, 10, 24, 48] and in epidemiology
[7, 8, 17, 18, 22, 32, 13, 12].

The increasingly complex mathematical issues involved in nonlinearities in age struc-
tured models led to the development of new technologies, andone of the most useful of
these has been the method of semi-groups of linear and nonlinear operators in Banach
spaces. Structured population models distinguish individual from another according to
characteristics such as age, size, location, status and movement. The goal of structured
population is to understand how these characteristics affect the dynamics of these models
and thus the outcomes and consequence of the biological and epidemiological processes.

In this paper we consider a mathematical S-I-L (Susceptibles-Infected-Lost of sight)
model with demographics process, for the spread of a directly transmitted infectious dis-
ease in an age-structured population. By infected (I) we mean infectious taking a chemo-
prophylaxis in a care center. And by loss of sight (L), we meaninfectious that begun their
effective therapy in the hospital and never return to the hospital for the spuctrum exami-
nations for many reasons such as long duration of treatment regimen, poverty, mentality,
etc... The lost of sight class was previously consider in some papers as [6, 15].

In this paper, the infective agent can be transmitted not only horizontally but also
vertically from infected mothers to their newborns (perinatal transmission). There are im-
portant infective agents such as HBV (hepatitis B virus), HIV (human immunodeficiency
virus) and HTLV (human T-cell leukemia virus) that can be vertically transmitted. Com-
pared with the pure horizontal transmission case, so far we have not yet so many results
for vertically diseases in structured populations. In Africa, the vertical transmission of the
disease like HIV is in progression nowadays.

Worldwide, 1% of pregnant women are HIV-positive. However,sub-Saharan Africa
where 95% of HIV positive women live carries the vast majority of this burden [46].
Without treatment, approximately 25%-50% of HIV-positivemothers will transmit the
virus to their newborns during pregnancy, childbirth, or breastfeeding [5]. In 2007, over 2
million children worldwide were living with HIV/AIDS, withthe overwhelming majority
again in sub-Saharan Africa [46]. Approximately 400,000 infants contract HIV from their
mother every year, which is about 15% of the total global HIV incidence [41, 50]. The
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rate of pediatric HIV infections in sub-Saharan Africa remains unacceptably high, with
over 1,000 newborns infected with HIV per day [25].

Large simple trials which aim to study therapeutic interventions and epidemiological
associations of human immunodeficiency virus (HIV) infection, including perinatal trans-
mission, in Africa may have substantial rates of lost of sight. A better understanding of
the characteristics and the impact of women and children lost of sight is needed. Accord-
ing to Ioannidis et al. [30], for the impact of lost of sight and vertical transmission cohort
in Malawi, several predictors of lost of sight were identified in this large HIV perinatal
cohort. Lost of sights can impact the observed transmissionrate and the risk associations
in different studies. They (Ioannidis et al.) also focus that the HIV infection status could
not be determine for36.9% of infant born to HIV-infected mothers;6.7% with missing
status because of various sample problems and30.3% because they never returned to the
clinic (Lost of sight).

Firstly, the epidemic system is formulated. Then, we will describe the semigroup
approach to the time evolution problem of the abstract epidemic system. Next we consider
the disease invasion process to calculate the basic reproduction ratioR0, then, we prove
that the disease-free steady state is locally asymptotically stable ifR0 < 1. Subsequently,
we show that at least one endemic steady state exists if the basic reproduction ratioR0

is greater than unity. By introducing a bifurcation parameter, we show that the endemic
steady state is forwardly bifurcated from the disease-freesteady state when the basic
reproduction ratio crosses unity. Finally, we consider theconditions for the local stability
of the endemic steady states.

2. The model

In this section, we formulate a model for the spread of the disease in a host population.
We consider a host population divided into three subpopulations; the susceptible class, the
infective class (those who are infectious but taking a chemoprophylaxis) and the lost of
sight class (those who are infectious but not on a chemoprophylaxis) denoted respectively
by S(t, a), I(t, a) andL(t, a) at timet and at specific agea. Let β(., .) be the contact
rate between susceptible individuals and infectious individuals. Namely,β(a, σ) is the
transmission rate from the infectious individuals agedσ to the susceptible individuals
ageda. All recruitment is into the susceptible class and occur at aspecific rateΛ(a). The
rate of non-disease related death isµ(a). Infected and lost of sight have additional death
rates due to the diseased1(a) andd2(a) respectively. The transmission of the disease
occurs following adequate contacts between a susceptible and infectious or lost of sight.
r(a) denoted the proportion of individuals receiving an effective therapy in a care center
andφ(a) the fraction of them who after begun their treatment will notreturn in the hospital
for the examination. After some time, some of them can returnin the hospital at specific
rateγ(a).
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The basic system (age-structured SIL epidemic model) with vertical transmission can
be formulated as follows by equation (1).





(
∂

∂t
+

∂

∂a

)
S(t, a) = Λ(a)− (λ(t, a) + µ(a))S(t, a),

(
∂

∂t
+

∂

∂a

)
I(t, a) = λ(t, a)S(t, a)− (µ(a) + d1(a)

+r(a)φ(a))I(t, a) + γ(a)L(t, a),(
∂

∂t
+

∂

∂a

)
L(t, a) = r(a)φ(a)I(t, a) − (µ(a) + d2(a)

+γ(a))L(t, a).

(1)

For the boundary conditions of model (1), we consider that pregnant lost of sight
women generally return to the clinic for the birth of they newborn, therefore, we can
assume that there is not lost of sight new born (i.e.L(t, 0) = 0). Due to the above
consideration, the initial boundary conditions of model (1) is given by:





S(t, 0) =
∫ a+

0
f(a)[S(t, a) + (1− p)(I(t, a) + L(t, a))]da,

I(t, 0) = p
∫ a+

0 f(a)(I(t, a) + L(t, a))da,
L(t, 0) = 0,
S(0, a) = ϕS(a); a ∈ (0, a+),
I(0, a) = ϕI(a); a ∈ (0, a+),
L(0, a) = ϕL(a); a ∈ (0, a+),

(2)

and wheref(a) is the age-specific fertility rate,p is the proportion of newborns produced
from infected individuals who are vertically infected anda+ < ∞ is the upper bound of
age. The force of infectionλ(t, a) is given by

λ(t, a) =

∫ a+

0

β(a, σ)(I(t, σ) + L(t, σ))dσ.

whereβ(a, s) is the transmission rate between the susceptible individuals aged a and in-
fectious or lost of sight individuals ageds. a+ <∞ is the upper bound of age.
Let us note that in the literature the transmission rateβ(a, σ) can take many forms:
β(a, σ) = β = constant (Dietz 1975 [11]; Greenhalgh 1987 [19]), β(a, σ) = g(a)
(Gripenberg 1983 [20]; Webb 1985 [49]), β(a, σ) = g(a)h(σ) (Dietz and Schenzle 1985
[14]; Greenhalgh 1988 [23]; Castillo-Chavez and al. 1989 [8]).

In the following, we consider systems (1)-(2) under following assumption:

Assumption 1. We assume thatβ ∈ L∞[(0, a+,R+) × (0, a+,R+)] and functions
f, d1, d2, γ, Λ, µ belong toL∞(0, a+,R+).

3. Existence of flow

The aim of this section is to derive premininary remarks on (1)-(2). These results
include the existence of the unique maximal bounded semiflowassociated to this system.
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3.1. Abstract formulation

LetX be the space defined as

X := L1(0, a+,R3)

with the norm

||ϕ||X =

3∑

i=1

||ϕi||L1 ;

whereϕ = (ϕ1, ϕ2, ϕ3)
T ∈ X . Let us noteX+ the positive cone ofX .

It is well known that(X, ||.||X) is a Banach space. LetA : D(A) ⊂ X → X be a
operator defined by

Aϕ = −ϕ′ − µϕ, (3)

with the domain

D(A) =



ϕ = (ϕ1, ϕ2, ϕ3) ∈W 1,1(0, a+,R3) and




ϕ1(0)
ϕ2(0)
ϕ3(0)


 =




∫ a+

0
f(a)[ϕ1(a) + (1− p)(ϕ2(a) + ϕ3(a))]da

p
∫ a+

0
f(a)(ϕ2(a) + ϕ3(a))da

0








;

the functionF : D(A) → X defined by

F




ϕ1

ϕ2

ϕ3


 =




Λ− λ[., ϕ]ϕ1

λ[., ϕ]ϕ1 − (d1 + rφ)ϕ2 + γϕ3

rφϕ2 − (d2 + γ)ϕ3


 ,

λ[., ϕ] ∈ L1(0, a+,R) is a function such that

λ[a, ϕ] =

∫ a+

0

β(a, σ)[ϕ2(σ) + ϕ3(σ)]dσ

andW 1,1(0, a+,R) is a usual Sobolev space.

Let us first derive the following lemma on operatorA.

Lemma 1. 1) The operatorA is generator of aC0-semigroup of linear bounded
operators{T (t)}t≥0 such that

T (t)ϕ(a) =

{
ϕ(a− t) if a− t ≥ 0
C(t− a) if a− t ≤ 0

for t ≤ a+

andT (t)ϕ(a) = 0R3 for t > a+; whereC(t) = (C1(t), C2(t), 0) ∈ R3 is the unique
solution of the following Volterra integral equation

C(t) = G(t) + Φ(t, C),

with

G(t) =

(∫ a+

t

f(s)(ϕ1(s− t) + (1− p)ϕ2(s− t) + ϕ3(s− t))ds ; p

∫ a+

t

f(s)ϕ2(s− t)ds ; 0

)
,

Φ(t, C) =

(∫ t

0

f(s)(C1(t− s) + (1− p)C2(t− s))ds ; p

∫ t

0

f(s)C2(t− s)ds ; 0

)
.
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2) The domainD(A) of operatorA is dense inX andA is a closed operator.

Proof. The proof of this result is rather standard. Standard methodologies apply to pro-
vide item 1 (see Pazy 1983 [40]). Item 2 is a direct consequence of the fact that the
operatorA is generator of aC0-semigroup of linear bounded operators (see Corollary 2.5
in Pazy 1983 [40]).

Therefore, one obtains that System (1)-(2) re-writes as the following densely defined
Cauchy problem 




dϕ(t)

dt
= Aϕ(t) + F (ϕ(t)),

ϕ(0) = (ϕS , ϕI , ϕL)
T .

(4)

3.2. Existence and uniqueness of solutions

We setX0 := D(A) andX0+ the positive cone ofX0. In general we can not solve (4)
in this strong formulation, ifu0 ∈ X0+ \D(A). So, for arbitraryϕ0 ∈ X0+ , we solve it
in the integrated form:

ϕ(t) = ϕ0 +A

∫ t

0

ϕ(s)ds+

∫ t

0

F (ϕ(s))ds ; t > 0. (5)

A solution of (5) is called amild solutionof the initial value problem (4). So, in the
following, we are looking for mild solution of abstract Cauchy-problem (4).

We can easily find that:

Lemma 2. On Assumption1, the nonlinear operatorF fromX toX is continuous and
locally Lipschitz.

Using Lemmas1 and2 the main results of this section reads as (see Theorem 1.4 in
Pazy 1983[40]).

Theorem 1. Recalling Assumption1 and let Lemmas1 and 2 be satisfied. Ifϕ0 ∈
X0+ := L1(0, a+,R3

+). Then there exists a unique bounded continuous solutionϕ to
the integrated problem(5) defined on[0,+∞) with values inX0+.

4. Equilibria

4.1. Disease-Free Equilibrium (DFE)

The following proposition gives the characteristics of thedisease-free equilibrium
(DFE) of system (1)-(2).

Let us introducel(a) = exp
(
−
∫ a

0
µ(s)ds

)
the average lifetime of individuals at age

a.
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Proposition 1. Let
∫ a+

0

f(a)l(a)da < 1 be satisfied. Then, system (1)-(2) has a unique

Disease Free Equilibrium (DFE),ϕ0 = (S0, 0L1 , 0L1), whereS0 is given by




S0(0) =
1

1−
∫ a+

0 f(a)l(a)da

∫ a+

0

f(a)l(a)

(∫ a

0

Λ(s)

l(s)
ds

)
da,

S0(a) = l(a)

[
S0(0) +

∫ a

0

Λ(s)

l(s)
ds

]
for 0 ≤ a ≤ a+.

(6)

Proof. : ϕ is an equilibrium of problem (4) if and only if

ϕ ∈ D(A) andAϕ+ F (ϕ) = 0X . (7)

For the DFE we haveϕ2 = ϕ3 ≡ 0L1 . Henceλ[a, ϕ] ≡ 0L1 . From where the result
follows using straightforward computations.

4.2. Endemic equilibrium (EE)

ϕ is an endemic equilibrium of (4) if and only if (7) is satisfied. That is,

ϕ1(a) = ϕ1(0)l(a) exp

(
−
∫ a

0

λ[σ, ϕ]dσ

)

+

∫ a

0

l(a)

l(s)
exp

(
−
∫ a

s

λ[σ, ϕ]dσ

)
Λ(s)ds; (8)

ϕ2(a) =

∫ a

0

l(a)Γ1(a)

l(s)Γ1(s)
exp

(
−
∫ a

s

r(σ)φ(σ)dσ

)
[γ(s)ϕ3(s) + λ[s, ϕ]ϕ1(s)] ds

+ϕ2(0)l(a)Γ1(a) exp

(
−
∫ a

0

r(σ)φ(σ)dσ

)
; (9)

ϕ3(a) = ϕ3(0)l(a)Γ2(a) exp

(
−
∫ a

0

γ(σ)dσ

)

+

∫ a

0

l(a)Γ2(a)

l(s)Γ2(s)
exp

(
−
∫ a

s

γ(σ)dσ

)
r(s)φ(s)ϕ2(s)ds; (10)

ϕ1(0) =

∫ a+

0

f(a)[ϕ1(a) + (1− p)(ϕ2(a) + ϕ3(a))]da; (11)

ϕ2(0) = p

∫ a+

0

f(a)(ϕ2(a) + ϕ3(a))da; (12)

ϕ3(0) = 0. (13)

where
Γ1(a) = exp

(
−
∫ a

0 (d1(s) + r(s)φ(s))ds
)
;

Γ2(a) = exp
(
−
∫ a

0
(d2(s) + γ(s))ds

)
.

Let us setλ(s) = λ[s, ϕ] for s ∈ [0, a+). Equation (8) re-write as

ϕ1(a) = ϕ1(0)A11(λ, a) + u1(λ, a). (14)
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Equations (8) and (9) give

ϕ2(a) = ϕ1(0)A21(λ, a) + ϕ2(0)A22(a) + u2(λ, a). (15)

Equations (10), (13) and (14) give

ϕ3(a) = ϕ1(0)A31(λ, a) + ϕ2(0)A32(λ, a) + u3(λ, a); (16)

with

A11(λ, a) = l(a) exp

(
−
∫ a

0

λ(σ)dσ

)
;

A21(λ, a) =

∫ a

0

χ21(a, s)λ(s) exp

(
−
∫ s

0

λ(σ)dσ

)
ds;

A22(a) = l(a)Γ1(a);

A31(λ, a) =

∫ a

0

χ31(a, s)λ(s) exp

(
−
∫ s

0

λ(σ)dσ

)
ds;

A32(a) = l(a)Γ2(a)

∫ a

0

Γ1(s)

Γ2(s)
r(s)φ(s)ds;

u1(λ, a) =

∫ a

0

l(a)

l(s)
Λ(s) exp

(
−
∫ a

s

λ(σ)dσ

)
ds;

u2(λ, a) =

∫ a

0

l(a)

l(s)
Λ(s)

∫ a

s

Γ1(a)

Γ1(η)
λ(η) exp

(
−
∫ η

s

λ(σ)dσ

)
ds;

u3(λ, a) =

∫ a

0

l(a)Γ2(a)

l(s)Γ2(s)
r(s)φ(s)u2(λ, s)ds

+

∫ a

0

l(a)Γ1(a)

l(s)Γ1(s)
exp

(
−
∫ a

s

r(σ)φ(σ)dσ

)
γ(s)ϕ3(s)ds;

and

χ21(a, s) = l(a)
Γ1(a)

Γ1(s)
; χ31(a, s) = l(a)

∫ a

s

Γ2(a)Γ1(η)

Γ2(η)Γ1(s)
r(η)φ(η)dη.

From equations (11) and (12), we respectively deduce that
(
1−

∫ a+

0

f(a)[A11(λ, a) + (1− p)(A21(λ, a) +A31(λ, a))]da

)
ϕ1(0)

− (1− p)ϕ2(0)

∫ a+

0

f(a)[A22(a) +A32(a)]da = v1(λ);

(17)

and

pϕ1(0)

∫ a+

0

f(a)[A21(λ, a) +A31(λ, a)]da

+ ϕ2(0)

(
p

∫ a+

0

f(a)[A22(a) +A32(a)]da− 1

)
= −v2(λ);

(18)
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where

v1(λ) =

∫ a+

0

f(a)[u1(λ, a) + (1− p)(u2(λ, a) + u3(λ, a))]da;

v2(λ) = p

∫ a+

0

f(a)[u2(λ, a) + u3(λ, a)]da.

Therefore, we find thatϕ1(0) =
∆1(λ)

∆(λ)
andϕ2(0) =

∆2(λ)

∆(λ)
; with

∆(λ) = (1− p)p

∫ a+

0

f(a)[A22(a) +A32(a)]da×
∫ a+

0

f(a)[A21(λ, a) +A31(λ, a)]da

+

(
1−

∫ a+

0

f(a)[A11(λ, a) + (1− p)(A21(λ, a) +A31(λ, a))]da

)
×

(
p

∫ a+

0

f(a)[A22(a) +A32(a)]da− 1

)
;

∆1(λ) = v1(λ)

(
p

∫ a+

0

f(a)[A22(a) +A32(a)]da− 1

)

− (1 − p)v2(λ)

∫ a+

0

f(a)[A22(a) +A32(a)]da;

∆2(λ) = v2(λ)

(∫ a+

0

f(a)[A11(λ, a) + (1− p)(A21(λ, a) +A31(λ, a))]da − 1

)

− pv1(λ)

∫ a+

0

f(a)[A21(λ, a) +A31(λ, a)]da.

Equations (15) and (16) give




ϕ2(a) =
∆1(λ)

∆(λ)
A21(λ, a) +

∆2(λ)

∆(λ)
A22(a) + u2(λ, a)

ϕ3(a) =
∆1(λ)

∆(λ)
A31(λ, a) +

∆2(λ)

∆(λ)
A32(a) + u3(λ, a)

(19)

Sinceλ(a) =
∫ a+

0
β(a, s)(ϕ2(s) + ϕ3(s))ds; then we have

λ(a) = H(λ)(a); (20)

whereH is the operator defined fromL1(0, a+,R) into itself by

H(ϕ)(a) =

∫ a+

0

β(a, s)

[
∆1(ϕ)

∆(ϕ)
(A21(ϕ, s) +A31(ϕ, s)) + u2(ϕ, s) + u3(ϕ, s)

+
∆2(ϕ)

∆(ϕ)
(A22(s) +A32(s))

]
ds. (21)
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Hence, system (1)-(2) have an endemic equilibrium if and only if the fixed point equation
(20) has at least one positive solution.

Now let us introduce the following technical assumptions onthe transmission rateβ
as in Inaba [26, 28, 29]:

Assumption 2. 1) β ∈ L1
+(R×R) such thatβ(a, s) = 0 for all (a, s) /∈ [o, a+]×

[0, a+].

2) lim
h→0

∫ +∞
−∞ |β(a+ h, ξ)− β(a, ξ)|da = 0 for ξ ∈ R.

3) It exists a functionε such thatε(s) > 0 for s ∈ (0, a+) andβ(a, s) > ε(s) for
all (a, s) ∈ (0, a+)2.

On the above assumption, some properties of operatorH are given by the following
lemma.

Lemma 3. Let Assumption2 be satisfied.

(i) H is a positive, continu operator. There exist a closed, bounded and convex subset
D ⊂ L1

+(0, a
+,R) such thatH(D) ⊂ D.

(ii) OperatorH has a Fréchet derivativeH0 at the pointϕ ≡ 0 defined by(22) and
H0 := H ′(0) is a positive, compact and nonsupporting operator.

Proof. (i) The positivity and the continuity of operatorH are obvious. Letϕ ∈ L1(0, a+,R+),
then

A21(ϕ, a) ≤ 1; A31(ϕ, a) ≤
∫ a

0

l(a)Γ2(a)

l(s)Γ2(s)
r(s)φ(s)ds := Ã31(a);

u1(ϕ, a) ≤
∫ a

0

l(a)

l(s)
Λ(s)ds; u2(ϕ, a) ≤ a||Λ||∞ and

u3(ϕ, a) ≤ ||Λ||∞Ã31(a) + sup
s∈[0,a]

γ(s)||ϕ||L1 .

Since∆1(ϕ)
∆(ϕ) = ϕ1(0);

∆2(ϕ)
∆(ϕ) = ϕ2(0) and the flow of system (1)-(2) is bounded (The-

orem1), we can findMΩ > 0 such that|ϕ1(0)| ≤ MΩ and|ϕ2(0)| ≤ MΩ. Therefore,
||H(ϕ)||L1 ≤M ; with

M = ||β||∞
∫ a+

0

[
MΩ(1 +A22(s) + (Ã31(s) + A32(s)) + sup

s∈[0,a]

γ(s)) + ||Λ||∞(Ã31(s) + s)

]
ds.

SettingD = B+(0,M) with B+(0,M) := {ϕ ∈ L1(0, a+,R+) : ||ϕ||L1 ≤M}. Hence
H(D) ⊂ D. This end the proof of item (i).

(ii) We find that

H0(ψ)(a) =

∫ a+

0

β(a, s)

[
∆1(0)

∆(0)
(DA21(0, s)(ψ) +DA31(0, s)(ψ)) +Du2(0, s)(ψ)

+Du3(0, s)(ψ) +
D∆2(0)(ψ)

∆(0)
(A22(s) +A32(s))

]
ds.
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whereDu denotes the derivative of the functionu and

Du2(0, a)(ψ) =

∫ a

0

χ2(a, s)ψ(s)ds; Du3(0, a)(ψ) =

∫ a

0

χ3(a, s)ψ(s)ds;

DA21(0, a)(ψ) =

∫ a

0

χ21(a, s)ψ(s)ds; DA31(0, a)(ψ) =

∫ a

0

χ31(a, s)ψ(s)ds;

D∆2(0)(ψ) = p

∫ a+

0

χ4(a)ψ(a)da.

with

χ21(a, s) =
l(a)Γ1(a)

l(s)Γ1(s)
exp

(
−
∫ a

s

r(σ)φ(σ)dσ

)
l(s)

χ31(a, s) =

∫ a

s

l(a)Γ2(a)

l(η)Γ2(η)
r(η)φ(η)χ21(η, s)dη

χ2(a, s) = χ21(a, s)

∫ s

0

Λ(η)

l(η)
dη; χ3(a, s) = χ31(a, s)

∫ s

0

Λ(η)

l(η)
dη;

χ4(a) =

[
S0(a)

l(a)

∫ a+

0

f(σ)l(σ)dσ − S0(0)

]∫ a+

a

f(s) [χ21(s, a) + χ31(s, a)] ds.

Hence, operatorH0 read as a kernel operator:

H0(ψ)(a) =

∫ a+

0

χ(a, s)ψ(s)ds; (22)

where the kernelχ(a, s) is defined by

χ(a, s) =
S0(s)

l(s)

∫ a+

s

β(a, η) (χ21(η, s) + χ31(η, s)) dη

+
pχ4(s)

∆(0)

∫ a+

0

β(a, σ)(A22(σ) +A32(σ))dσ. (23)

The positivity ofH0 is obvious. Let us show the compactness of the operatorH0 on
Assumption2. Let ψ ∈ L1 andǫ > 0. From Assumption2; there existsρ = ρ(ǫ) > 0

such that, for|h| < ρ we have
∫ a+

0
|β(a + h, ξ) − β(a, ξ)|da < ǫ. Is thereforeh ∈ R

such that|h| < ρ. ||τhH0(ψ)−H0(ψ)||L1 =

∫ a+

0

|H0(ψ)(a + h)−H0(ψ)(a)|da. It is

easily checked that

|H0(ψ)(a + h)−H0(ψ)(a)| ≤ ||ψ||L1

∫ a+

0

|β(a+ h, s)− β(a, s)|C1(s)ds;

where

C1(a) =

(
||Λ||∞ +

∆1(0)

∆(0)

)(
1 +

∫ a

0

l(a)Γ2(a)

l(s)Γ2(s)
r(s)φ(s)ds

)

+
||Λ||∞
∆(0)

(A22(a) +A32(a))

∫ a+

0

f(a)

(
1 +

∫ a

0

l(a)Γ2(a)

l(s)Γ2(s)
r(s)φ(s)ds

)
da.
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Since
(
|h| < ρ =⇒

∫ a+

0
|β(a+ h, s)− β(a, s)|da < ǫ

)
, it comes that

||τhH0(ψ)−H0(ψ)||L1 ≤ ǫ

(∫ a+

0

C1(a)da

)
||ψ||L1 .

LetB a bounded subset ofL1 such thatψ ∈ B. Then

||τhH0(ψ)−H0(ψ)||L1 ≤ ǫ

(∫ a+

0

C1(a)da

)
× sup

ϕ∈B
{||ϕ||L1}.

Applying the Riesz-Fréchet-Kolmogorov theorem onH0(B) we conclude thatH0(B) is
relatively compact. From whereH0 si a compact operator.
Now, let us check thatH0 is a nonsupporting operator. We define the operatorF0 ∈
(L1(0, a+,R+))

∗ (dual space ofL1(0, a+,R+)) by

〈F0;ψ〉 =

∫ a+

0

ε(s)[Du2(0, s)(ψ) + δ(s)Du3(0, s)]ds;

whereε is the positive function given by Assumption2 and〈F0;ψ〉 is the value ofF0 ∈
(L1(0, a+,R+))

∗ atψ ∈ L1(0, a+,R+). Then forψ ∈ L1(0, a+,R+) we haveH0(ψ) ≥
〈F0;ψ〉 · e ( with e = 1 ∈ L1(0, a+,R+)). From whereHn+1

0 (ψ) ≥ 〈F0;ψ〉 〈F0; e〉n · e ∀n ∈
N. Hence for alln ∈ N∗; F ∈ (L1(0, a+,R+))

∗ \ {0} andψ ∈ L1(0, a+,R+) \ {0} we
have〈F ;Hn

0 (ψ)〉 > 0. Therefore,H0 is a nonsupporting operator.

The main results of this section reads as

Theorem 2. Let Assumption2 be satisfied. Let us noteR0 = ρ(H0) the spectral radius
of operatorH0.

1) If R0 ≤ 1, system (1)-(2) has a unique DFE defined by(6);

2) If R0 > 1, in addition to the DFE, system (1)-(2) has at least one endemic
equilibrium.

Proof. The operatorH always hasλ ≡ 0 as fixed point. This corresponds to the perma-
nent DFE for system (1)-(2). For the rest, we are looking for the positive fixed point to the
operatorH . From Lemma3 we know that there exists a closed, bounded and convex sub-
setD of L1(0, a+,R+) which is invariant by the operatorH . Moreover, from Lemma3,
H has a Fréchet derivativeH0 at the point0 andH0 = DH(0) is a compact and nonsup-
porting operator. Therefore, there exists a unique positive eigenvectorψ0 corresponding
to the eigenvalueR0 = ρ(H0) of H0. Using the same arguments as for the Krasnoselskii
fixe point theorem [34], it comes that ifR0 = ρ(H0) > 1, then the operatorH has at least
one positive fixed pointλ∗ ∈ L1(0, a+,R+) \ {0}, corresponding to the EE of system
(1)-(2).

Let us suppose thatR0 = ρ(H0) ≤ 1. If the operatorH has a positive fixe pointλ∗ ∈
L1(0, a+,R+)\{0} thenλ∗ = H(λ∗). Let us notice thatH−H0 ∈ L1(0, a+,R+)\{0};
henceλ∗ ≤ H0(λ

∗). Let F0 ∈ (L1(0, a+,R+))
∗ \ {0} be the positive eigenfunctional

corresponding to the eigenvalueR0 = ρ(H0) of H0 (Sawashima [44]). Therefore

0 ≤ 〈F0;H0(λ
∗)− λ∗〉 = 〈F0, ;H0(λ

∗)〉 − 〈F0;λ
∗〉 ;

= ρ(H0) 〈F0;λ
∗〉 − 〈F0;λ

∗〉 ;
= (ρ(H0)− 1) 〈F0;λ

∗〉 .
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From where(ρ(H0) − 1) 〈F0;λ
∗〉 ≥ 0. Since〈F0;λ

∗〉 > 0, it follows thatρ(H0) ≥ 1;
which is a contradiction.

5. Stability analysis for equilibrium

In order to investigate the local stability of the equilibrium solutions(S∗(a); I∗(a);L∗(a))
we rewrite (1)-(2) into the equation for small perturbations. Let

(S(t, a), I(t, a), L(t, a)) = (S∗(a), I∗(a), L∗(a)) + (x(t, a), y(t, a), z(t, a)).

Then from system (1) we have

(
∂

∂t
+

∂

∂a

)
x(t, a) = −λ(t, a)(S∗(a) + x(t, a))

−(µ(a) + λ∗(a))x(t, a); (24)
(
∂

∂t
+

∂

∂a

)
y(t, a) = λ(t, a)(x(t, a) + S∗(a)) + λ∗(a)x(t, a)

−(µ(a) + d1(a) + r(a)φ(a))y(t, a); (25)
(
∂

∂t
+

∂

∂a

)
z(t, a) = r(a)φ(a)y(t, a) − (µ(a) + d2(a))z(t, a); (26)

and from (2) we also have





x(t, 0) =
∫ a+

0
f(a)[x(t, a) + (1− p)(y(t, a) + z(t, a))]da;

y(t, 0) = p
∫ a+

0
f(a)(y(t, a) + z(t, a))da;

z(t, 0) = 0;

(27)

with λ(a, t) =

∫ a+

0

β(a, s)(y(t, s) + z(t, s))ds and λ∗(a) =

∫ a+

0

β(a, s)(I∗(s) +

L∗(s))ds.
Let us noteu(t) = (x(t), y(t), z(t))T . Then from equations (24), (25) and (26) we have

d

dt
u(t) = Au(t) +G(u(t)); (28)

whereA is the operator defined by (3). The nonlinear termG is defined by

G(u) =




−P(u2, u3)(u1 + S∗)− (λ∗ + µ)u1

P(u2, u3)(u1 + S∗) + λ∗u1 − (µ+ d1 + rφ)u2
rφu2 − (µ+ d2)u3


 ;

andP is linear operator defined onL1 × L1 by

P(u2, u3)(a) =

∫ a+

0

β(a, s)(u2(s) + u3(s))ds. (29)
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The linearized equation of (28) aroundu = 0 is given by

d

dt
u(t) = (A+ C)u(t); (30)

where the linear operatorC is the Fréchet derivative ofG(u) atu = 0 and it is given by

C(u) =




−P(u2, u3)S
∗ − (λ∗ + µ)u1

P(u2, u3)S
∗ + λ∗u1 − (µ+ d1 + rφ)u2
rφu2 − (µ+ d2)u3




Now let us consider the resolvent equation forÂ+ C:

(z − (A+ C))ψ = ϑ; ψ ∈ D(A), ϑ ∈ X, z ∈ C. (31)

Applying the variation of constant formula to (31) we obtain the following equations:

ψ1(a) = Π(a)l(a)e−za

[
ψ1(0) +

∫ a

0

(T11(s)ϑ1(s)− T12(s)P(ψ1, ψ2)(s))ds

]
;(32)

ψ2(a) =

[
ψ2(0) +

∫ a

0

ezs

Γ1(s)l(s)
(ϑ2(s) + λ∗(s)ψ1(s) + P(ψ1, ψ2)(s)S

∗(s))ds

]

×Γ1(a)l(a)e
−za; (33)

ψ3(a) = Γ2(a)l(a)e
−za

[
ψ3(0) +

∫ a

0

ezs

Γ2(s)l(s)
(ϑ3(s) + r(s)φ(s)ψ2(s))ds

]
.(34)

with Π(a) = exp

(
−
∫ a

0

λ∗(σ)dσ

)
; T11(s) =

ezs

Π(s)l(s)
andT12(s) = S∗(s)T11(s).

Equations (32)-(33) and (35)-(34) respectively gives

ψ2(a) = Γ1(a)l(a)e
−za

[
ψ2(0) + T21(a)ψ1(0) +

∫ a

0

T23(z, a, s)P(ψ1, ψ2)(s))ds

+

∫ a

0

T24(z, a, s)ϑ1(s)ds+

∫ a

0

T25(z, s)ϑ2(s)ds

]
(35)

and

ψ3(a) = Γ2(a)l(a)e
−za

[
T32(a)ψ2(0) + T31(a)ψ1(0) + ψ3(0) +

∫ a

0

T33(z, a, s)P(ψ1, ψ2)(s))ds

+

∫ a

0

T34(z, a, s)ϑ1(s)ds+

∫ a

0

T35(z, a, s)ϑ2(s)ds+

∫ a

0

T36(z, a, s)ϑ3(s)ds

]
;

(36)

where

T21(a) =

∫ a

0

Π(s)

Γ1(s)
λ∗(s)ds; T24(z, a, s) =

ezs

l(s)Π(s)

∫ a

s

Π(σ)

Γ1(σ)
λ∗(σ)dσ,

T23(z, a, s) =
ezs

l(s)
S∗(s)

(
1

Γ1(s)
− 1

Π(s)

∫ a

s

Π(σ)

Γ1(σ)
λ∗(σ)dσ

)
,
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T25(z, s) =
ezs

l(s)Γ1(s)
, T31(a) =

∫ a

0

Γ1(s)

Γ2(s)
r(s)φ(s)T21(s)ds,

T32(a) =

∫ a

0

Γ1(s)

Γ2(s)
r(s)φ(s)ds, T36(z, a) =

eza

Γ2(a)l(a)
,

T33(z, a, s) =

∫ a

s

Γ1(σ)

Γ2(σ)
r(σ)φ(σ)T23(z, σ, s)dσ,

T34(z, a, s) =

∫ a

s

Γ1(σ)

Γ2(σ)
r(σ)φ(σ)T24(z, σ, s)dσ,

T35(z, a, s) = T25(z, s)

∫ a

s

Γ1(σ)

Γ2(σ)
r(σ)φ(σ)dσ.

Sinceψ ∈ D(A); it comes that

ψ1(0) =

∫ a+

0

f(a)[ψ1(a) + (1 − p)(ψ2(a) + ψ3(a))]da; (37)

ψ2(0) = p

∫ a+

0

f(a)(ψ2(a) + ψ3(a))da; (38)

ψ3(0) = 0. (39)

Equations (36)-(39); (32)-(35)-(40)-(37) and (35)-(40)-(38) respectively lead to

ψ3(a) = Γ2(a)l(a)e
−za

[
T32(a)ψ2(0) + T31(a)ψ1(0) + +

∫ a

0

T33(z, a, s)P(ψ1, ψ2)(s))ds

+

∫ a

0

T34(z, a, s)ϑ1(s)ds+

∫ a

0

T35(z, a, s)ϑ2(s)ds+

∫ a

0

T36(z, s)ϑ3(s)ds

]
;

(40)

(B11(z)− 1)ψ1(0) + (1− p)B12(z)ψ2(0) +

∫ a+

0

B13(z, a)P(ψ1, ψ2)(a)da

+

∫ a+

0

B14(z, a)ϑ1(a)da+

∫ a+

0

B15(z, a)ϑ2(a)da+

∫ a+

0

B16(z, a)ϑ3(a)da = 0;

(41)

and

pB21(z)ψ1(0) + (pB22(z)− 1)ψ2(0) + p

∫ a+

0

B23(z, a)P(ψ1, ψ2)(a)da

+ p

∫ a+

0

B24(z, a)ϑ1(a)da+ p

∫ a+

0

B25(z, a)ϑ2(a)da+ p

∫ a+

0

B26(z, a)ϑ3(a)da = 0;

(42)

with

B11(z) =

∫ a+

0

f(a)l(a)e−za [Π(a) + (1− p)(Γ1(a)T21(a) + Γ2(a)T31(a)] da;
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B12(z) =

∫ a+

0

f(a)l(a)e−za [Γ1(a) + Γ2(a)T32(a)] da;

B13(z, a) =

∫ a+

a

f(s)l(s)e−zs [−T12(a)Π(s) + (1− p)(Γ1(s)T23(z, s, a) + Γ2(s)T33(z, s, a))] ds;

B14(z, a) =

∫ a+

a

f(s)l(s)e−zs [T11(a)Π(s) + (1− p)(Γ1(s)T24(z, s, a) + Γ2(s)T34(z, s, a))] ds;

B15(z, a) =

∫ a+

a

f(s)l(s)e−zs [Γ1(s)T25(z, a) + (1− p)Γ2(s)T35(z, s, a)] ds;

B16(z, a) = (1 − p)

∫ a+

a

f(s)l(s)e−zsΓ2(s)T36(z, s)ds;

B21(z) =

∫ a+

0

f(a)l(a)e−za[Γ1(a)T21(a) + Γ2(a)T31(a)]da;

B22(z) =

∫ a+

0

f(a)l(a)e−za[Γ1(a) + Γ2(a)T32(a)]da;

B23(z, a) =

∫ a+

a

f(s)l(s)e−zs[Γ1(s)T23(z, s, a) + Γ2(s)T33(z, s, a)]ds;

B24(z, a) =

∫ a+

a

f(s)l(s)e−zs[Γ1(s)T24(z, s, a) + Γ2(s)T34(z, s, a)]ds;

B25(z, a) = T25(z, a)

∫ a+

a

f(s)l(s)e−zs[Γ1(s)T25(z, a) + Γ2(s)T35(z, s, a)]ds;

B26(z, a) = T36(z, a)

∫ a+

a

f(s)l(s)Γ2(s)e
−zsds.

System (41)-(42) is a linear system with respect toψ1(0) andψ2(0), hence

ψ1(0) =

∫ a+

0

det11(z, a)P(ψ1, ψ2)(a)da+

∫ a+

0

det12(z, a)ϑ1(a)da+

+

∫ a+

0

det13(z, a)ϑ2(a)da+

∫ a+

0

det14(z, a)ϑ3(a)da; (43)

ψ2(0) =

∫ a+

0

det21(z, a)P(ψ1, ψ2)(a)da+

∫ a+

0

det22(z, a)ϑ1(a)da

+

∫ a+

0

det23(z, a)ϑ2(a)da+

∫ a+

0

det24(z, a)ϑ3(a)da; (44)

where

det11(z, a) =
−1

det
[(pB22(z)− 1)B13(z, a)− p(1− p)B12(z)B23(z, a)] ;

det12(z, a) =
−1

det
[(pB22(z)− 1)B14(z, a)− p(1− p)B12(z)B24(z, a)] ;
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det13(z, a) =
−1

det
[(pB22(z)− 1)B15(z, a)− p(1− p)B12(z)B25(z, a)] ;

det14(z, a) =
−1

det
[(pB22(z)− 1)B16(z, a)− p(1− p)B12(z)B26(z, a)] ;

det21(z, a) =
p

det
[(B21(z)B13(z, a)− (B11(z)− 1)B23(z, a)] ;

det22(z, a) =
p

det
[(B21(z)B14(z, a)− (B11(z)− 1)B24(z, a)] ;

det23(z, a) =
p

det
[(B21(z)B15(z, a)− (B11(z)− 1)B25(z, a)] ;

det24(z, a) =
p

det
[(B21(z)B16(z, a)− (B11(z)− 1)B26(z, a)] ;

det = (B11(z)− 1)(pB22(z)− 1)− p(1− p)B21(z)B12(z).

From equations (29)-(35)-(40)-(43)-(44) it follows that

P(ψ2, ψ3)(η) = (I − Vz)
−1

[(Uzϑ1)(η) + (Wzϑ2)(η) + (Yzϑ3)(η)] ; (45)

whereVz, Uz,Wz andYz are the Volterra operator define onL1(0, a+,R) into itself by

(Uzϕ)(a) =

∫ a+

0

Θz(η, a)ϕ(a)da; (Vzϕ)(a) =

∫ a+

0

χz(η, a)ϕ(a)da;

(Yzϕ)(a) =

∫ a+

0

Ez(η, a)ϕ(a)da; (Wzϕ)(a) =

∫ a+

0

Kz(η, a)ϕ(a)da;

(46)

where

χz(η, a) = Cte
1 (η)det11(z, a) + Cte

2 (η)det21(z, a)

+

∫ a+

a

β(η, s)l(s)e−zs[Γ1(s)T23(z, s, a) + Γ2(s)T33(z, s, a)]ds;
(47)

Θz(η, a) = Cte
1 (η)det12(z, a) + Cte

2 (η)det22(z, a)

+

∫ a+

a

β(η, s)l(s)e−zs[Γ1(s)T24(z, s, a) + Γ2(s)T34(z, s, a)]ds;

Kz(η, a) = Cte
1 (η)det13(z, a) + Cte

2 (η)det23(z, a)

+

∫ a+

a

β(η, s)l(s)e−zs[Γ1(s)T25(z, s, a) + Γ2(s)T35(z, s, a)]ds;

Ez(η, a) = Cte
1 (η)det14(z, a) + Cte

2 (η)det24(z, a) +

∫ a+

a

β(η, s)l(s)e−zsΓ2(s)T36(z, s, a)ds;
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and

Cte
1 (η) =

∫ a+

0

β(η, a)l(a)e−za[Γ1(a)T21(a) + Γ2(a)T31(a)]da;

Cte
2 (η) =

∫ a+

0

β(η, a)l(a)e−za[Γ1(a) + Γ2(a)T32(a)]da;

Let us recall some definitions related to aC0-semi-group{T (t)}t>0 on a Banach
space with infinitesimal generatorR. The typeor thegrowth boundof the semi-group
{T (t)}t>0 is the quantity:

ω0(R) :=
inf{α ∈ R : ∃M ≥ 1 such that||T (t)|| ≤Meαt ∀t ≥ 0}
= lim

t→0

ln ||T (t)||
t

.

Thespectral boundof theC0-semi-group{T (t)}t>0 is the quantity:

s(R) := sup{Reλ : λ ∈ σp(R)},

whereσp(R) denote the point spectrum ofR.

Wow, we conclude that

Lemma 4. Recalling Assumptions1 and2. Then

1) The perturbated operatorA+ C has a compact resolvent and

σ(A+ C) = σp(A+ C) = {z ∈ C : 1 ∈ σp(Vz)};

whereσ(A) andσp(A) denote the spectrum ofA and the point spectrum ofA respectively.

2) Let{U(t)}t≥0 be theC0-semigroup generated byA + C. Then{U(t)}, t ≥ 0
is eventually compact and

ω0(A+ C) = s(A+ C).

Proof. 1) From equations (32), (43) and (46) we find that

ψ1(a) = Π(a)l(a)e−zaψ1(0) + J1(ϑ1)(a) +K1(ϑ1, ϑ2)(a);

with

J1(ϑ1)(a) =

∫ a

0

Π(a)l(a)T11(s)e
−zsϑ1(s)ds;

K1(ϑ1, ϑ2)(a) =

∫ a

0

Π(a)l(a)T11(s)S
∗(s)e−zs(I − Vz)

−1

[(Uzϑ1)(s) + (Wzϑ2)(s) + (Yzϑ3)(s)]ds.

ψ1 is a compact operator if and only ifJ1 andK1 are compact. SinceJ1 is a Volterra
operator with continue kernel, we deduce thatJ1 is a compact operator onL1. Using the
same arguments as for the proof of the compactness of operator H0 (Lemma3), we can
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show that the operatorsUz, Wz andYz are compact for allz ∈ C. Let us setΣ := {z ∈
C : 1 ∈ σp(Vz)}. Hence, ifz ∈ C\Σ then,K1 is a compact operator fromL1×L1 toL1.
In the same way, we can show thatψ2(a) andψ3(a) are represent by a compact operators.
Therefore, the resolvent ofA+C is compact. From whereσ(A+C) = σp(A+C) (see
Kato, p.187 [31]) i.e. C\Σ ⊂ ρ(A+C) andρ(A+C) denotes the resolvent ofA+C. In
other wordsΣ ⊃ σ(A+C) = σp(A+C). SinceVz is a compact operator, we know that
σ(Vz) \ {0} = σp(Vz) \ {0}. If z ∈ Σ, then it existsψz ∈ L1 \ {0} such thatVzψz = ψz.
Let us set

φ1(a) = Π(a)l(a)e−za

[∫ a+

0

det11(z, a)ψz(a)da−
∫ a

0

eza

Π(s)l(s)
ψz(s)ds

]
;

φ2(a) = Π(a)l(a)e−za

[∫ a+

0

det21(z, a)ψz(a)da−
∫ a

0

eza

Γ1(s)l(s)
(λ∗(s)φ1(s) + S∗(s)ψz(s))ds

]
;

φ3(a) = Γ2(a)l(a)e
−za

∫ a

0

eza

Γ2(s)l(s)
r(s)φ(s)ψ2(s)ds.

Then(φ1, φ2, φ3)T is an eigenvector ofA + C associated to the eigenvaluez. Hence,
z ∈ σ(A + C) = σp(A + C) i.e. Σ ⊂ σ(A + C) = σp(A + C). This end the proof of
item 1.

2) Forψ ∈ X , let us set

C1ψ = (−P (ψ2, ψ3)S
∗,P(ψ2, ψ3)S

∗, 0)T ;

C2ψ = (−(λ∗ + µ)ψ1, λ
∗ψ1 − (µ+ d1 + rφ)ψ2rφψ2 − (µ+ d2)ψ3)

T ; .

ThenC = C1+C2. The operatorA+C2 generated a nilpotentC0-semigroup{S2(t)}t≥0,
from where{S2(t)}t≥0 is norm continuous. Using Assumptions1 and2, we find thatC1

is compact operator onX . From Theorem 1.30 of Nagel(1986) [42] it comes thatC1 is
generator of a norm continuousC0-semigroup{S1(t)}t≥0. Therefore,S1(t) + S2(t) is
a C0-semigroup generated byA + C and it is norm continuous (Spectral theorem P.87
Nagel [42]).

Let us remark that ifω0(A + C) < 0, the equilibriumu = 0 of system (28) is
locally asymptotically stable (linearized stability, Webb 1985[49]). Therefore, to study
the stability of equilibrium states, we have to know the structure of the setΣ := {z ∈ C :
1 ∈ σp(Vz)}. Since||Vz ||L1 → 0 if z → +∞, I − Vz is inversible for the large values of
Rez.
By theorem of Steinberg(1968)[47], the functionz ֌ (I − Vz)

−1 is meromorphic in
the complex domain, and hence the setΣ is a discrete set whose elements are poles of
(I − Vz)

−1 of finite order.

In the following, we will use elements of positive operator theory.

For the positivity of operatorVz we make the following assumption

Assumption 3.
∫ a+

0

(d1(σ) + r(σ)φ(σ))dσ ≤ exp

(
−
∫ a+

0

λ∗(σ)dσ

)
; (48)

whereλ∗(σ) =
∫ a+

0 β(σ, η)(I∗(η) + L∗(η))dη.
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Lemma 5. Let Assumption3 be satisfied. Then

1) The operatorVz , z ∈ R, is nonsupporting with respect toL1(0, a+,R+) and

lim
z֌−∞

ρ(Vz) = +∞ ; lim
z֌+∞

ρ(Vz) = 0.

2) There exists a uniquez0 ∈ R ∩ Σ such that

ρ(Vz0) = 1 and





z0 > 0 if ρ(V0) > 1,
z0 = 0 if ρ(V0) = 1,
z0 < 0 if ρ(V0) < 1.

3) z0 > sup{Rez : z ∈ Σ \ {z0}}.

Proof. 1) Let z ∈ R. Unconditionally,Vz is a positive operator whenλ∗(a) ≡ 0
(case of DFE). Whenλ∗(a) > 0, Vz is a positive operator onceΓ1(s)T23(z, a, s) +
Γ2(s)T33(z, a, s) ≥ 0 for all 0 ≤ a ≤ s ≤ a+. To have the previous inequality, it suffices
that inequality (48) of Assumption3 holds. We can checked that

Vzψ ≥ 〈fz, ψ〉 · e; (49)

whereψ ∈ L1(0, a+,R+); e ≡ 1 ∈ L1(0, a+,R+) andfz is a positive linear functional
defined by

< fz, ψ > = m

∫ a+

0

∫ a+

a

e−z(a−s) l(s)

l(a)

(
1

Γ1(a)
− 1

Π(a)

∫ s

a

Π(σ)

Γ1(σ)
λ∗(σ)dσ

)
dsda;

with m = inf(a,s)∈[0,a+)2 β(a, s). From (49), we show thatV n+1
z ψ ≥ 〈fz, ψ〉 〈fz, e〉n · e

for all n ∈ N. Sincefz is positive operator ande ∈ L1(0, a+,R+) \ {0}, we have
〈F, V n

z ψ〉 > 0 ∀ψ ∈ (L1(0, a+,R+))
∗ \ {0} ∀ψ ∈ L1(0, a+,R+) \ {0}. That isVz is

nonsupporting.

Let Fz be the eigenfunctional ofVz that corresponds to the eigenvalueρ(Vz). Taking
the duality pairing into inequality (49), we have

ρ(Vz) 〈Fz , ψ〉 ≥ 〈fz, ψ〉 〈Fz , e〉 .

Takingψ = e and sinceFz is positive, it follows thatρ(Vz) ≥ 〈fz, e〉 → +∞ when
z → −∞. From where lim

z֌−∞
ρ(Vz) = +∞. since||Vz ||L1 → 0 whenz → +∞, we

deduce that lim
z֌+∞

ρ(Vz) = 0. This end the proof of item 1.

2) Let h : R → C; z 7→ ρ(Vz). The kernelχz defined by (47) is strictly decreasing
with respect toz ∈ R. Let z1, z2 ∈ R such thatz1 < z2, thenχz1 < χz2 that is
Vz1 > Vz2 . SinceVz1 andVz2 are compact and nonsupporting operators we deduce from
Marek(1970) [38] thatρ(Vz1) > ρ(Vz2). Therefore, the functionh is strictly decreasing.
The limits of the functionh(z) = ρ(Vz) at−∞ and+∞ give that there exist a unique
z0 ∈ R ∩ Σ such thatρ(Vz0) = 1. If ρ(V0) > 1 thenh(0) > h(z0) i.e. z0 < 0 (strictly
decreasing ofh) and the other cases is show in the same way. This end the proofof item
2.

3)Let z ∈ Σ, then there existsψz ∈ L1 such thatVzψz = ψz . Let |ψz | be a function
defined by|ψz|(s) := |ψz(s)|. The definition ofVz leads to

|ψz| = |Vzψz | ≤ VRez |ψz|. (50)
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Let FRez be the positive eigenfunction associated to the eigenvalueρ(VRez) of VRez.
From (50) we deduce that〈FRez, |ψz|〉 ≤ 〈FRez , VRez|ψz |〉 = r(VRez) 〈FRez, |ψz |〉.
The positivity ofFRez implies thatr(VRez) ≥ 1 that ish(Rez) ≥ h(z0) i.e. z0 ≤ Rez.
To end the proof, let us show that: ifz0 = Rez thenz = z0.
We know that|ψz | ≤ VRez|ψz | = Vz0 |ψz |. Let us suppose that|ψz| < Vz0 |ψz |; taking the
pairing product with the dual functionF0 corresponding to the eigenvalueρ(Vz0) = 1, one
has〈F0, |ψz|〉 > 〈F0, |ψz|〉, which is a contradiction. Hence|ψz| = Vz0 |ψz|. Therefore
|ψz| = cψ0 wherec is constant not equal to zero (Sawashima 1964 [44]) andψ0 is the
eigenfunction corresponding toρ(Vz0) = 1. Soψz(a) = cψ0(a)e

iα(a) for a reel function
α; moreover|Vzψz | = |ψz | = cψ0 = cVz0ψ0. Substitutingψz(a) = cψ0(a)e

iα(a) into
the equality|Vzψz| = cVz0ψ0 one has

∫ a+

0

∫ a+

a

β(η, s)l(s)e−z0(s−a)[Γ1(s)T̃23(s, a) + Γ2(s)T̃33(s, a)]ψ0(a)dsda =

∣∣∣∣∣

∫ a+

0

∫ a+

a

β(η, s)l(s)e−(z0+i(s−a)Imz)[Γ1(s)T̃23(s, a) + Γ2(s)T̃33(s, a)]e
iα(a)ψ0(a)dsda

∣∣∣∣∣ ;

(51)

with

T̃23(a, s) =
S∗(s)
l(s)

(
1

Γ1(s)
− 1

Π(s)

∫ a

s

Π(σ)

Γ1(σ)
λ∗(σ)dσ

)
;

T̃33(a, s) =

∫ a

s

Γ1(σ)

Γ2(σ)
r(σ)φ(σ)T̃23(a, σ)dσ.

Applying two times, Lemma 6.12 of Heijmans(1986) [21], to the relation (51) it comes
that (s − a)Imz + α(a) = b for all 0 ≤ a ≤ s ≤ a+ whereb is a constant. From the
equalityVzψz = ψz one haseibVz0ψ0 = ψ0e

iα(a) i.e. b = α(a). From whereImz = 0,
that isz = z0.

From the above result, we can state the threshold criterion as follows:

Proposition 2. Recalling Assumption3. Then equilibrium(S∗, I∗, L∗) is locally asymp-
totically stable ifρ(V0) < 1 and unstable ifρ(V0) > 1.

Proof. From Lemma5 (items 2. and 3.), we conclude that:sup{Rez; 1 ∈ σp(Vz)} = z0.
Hences(A + C) = sup{Rez; 1 ∈ σp(Vz)} < 0 if ρ(V0) < 1, ands(A + C) =
sup{Rez; 1 ∈ σp(Vz)} > 0 if ρ(V0) > 1.

In the following, let us noteV 0
0 the operatorV0 corresponding to the caseλ∗(σ) ≡ 0

(DFE) andV ∗
0 the operatorV0 corresponding to the caseλ∗(σ) > 0 (EE). It is easily

checked that

χ0
0(a, s) = χ(a, s); (52)

whereχ(a, s) is the kernel of the Volterra operatorH0 defined by (23).

Now, the main results for the local stability of our epidemicmodel reads as

Theorem 3. Let Assumptions1 and 2 be satisfied. LetR0 := ρ(H0) be the spectral
radius of the operatorH0 defined by (22). Then,
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1) If R0 = ρ(H0) < 1 then, the unique equilibrium of (1)-(2) (DFE) is locally
asymptotically stable.

2) If R0 = ρ(H0) > 1 then, the DFE is unstable.

3) If R0 = ρ(H0) > 1 then, in addition to the DFE system (1)-(2) has at least one
endemic equilibrium (EE). Moreover, ifρ(V ∗

0 ) < 1 and Assumption3 holds, then the EE
is locally asymptotically stable.

Proof. For the DFE, one hasλ∗(σ) ≡ 0. Hence, from (52) it comes thatρ(H0) =
ρ(V 0

0 ) := ρ(V0) (for λ∗ = 0). From Prop.2 we deduce that: ifρ(H0) = ρ(V0) < 1, the
DFE is locally asymptotically stable; and unstable ifρ(H0) = ρ(V0) > 1. This end the
proof of items 1. and 2.
The case of EE is a direct consequence of Prop.2.

Remark 1.

(♣) To emphasize the impact of vertical transmission on the spread of the disease, let us
observe that the next generation operatorH0 can be rewrite as follows

H0(ψ)(a) =

∫ a+

0

χ♦(a, s)ψ(s)ds +
∫ a+

0

χ♦(p, a, s)ψ(s)ds;

where the kernelsχ♦(., .) andχ♦(p, ., .) are

χ♦(a, s) =
S0(s)

l(s)

∫ a+

s

β(a, η) (χ21(η, s) + χ31(η, s)) dη;

χ♦(p, a, s) =
pχ4(s)

∆(0)

∫ a+

0

β(a, σ)(A22(σ) +A32(σ))dσ.

It is easy to see that when the proportion of infected newborns is zero (p = 0), then
the kernelχ♦(0, ., .) ≡ 0. Therefore, the vertical transmission of the disease amplifies
positively the spread of the disease.

(♣♣) As a special case, we here briefly consider the proportionate mixing assumption,
that is, the transmission rateβ can be written asβ(a, s) = β1(a)β2(s) (see Dietz and
Schenzle [14]; Greenhalgh,1988 [23]). In this case, the basic reproductive numberR0 is
explicitly given by:

R0 := ρ(H0) =

∫ a+

0

χ♦(s, s)ds+
∫ a+

0

χ♦(p, s, s)ds. (53)

And the same conclusion follows as for item (♣). Thus the vertical transmission of the
disease really has an impact on the dynamics and the spread ofthe disease into the host
population. We also refer to Figures2-4 for some illustrations of the state variables of
system (1)-(2) whenp takes different values:0.02; 0.2 and0.5.
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6. Numerical analysis

In this section, we propose a numerical scheme for our model and gives some illustra-
tions.

We adopt a finite differences scheme which is progressive of order 1 in time and
regressive of order 1 in age. Our model has a structure of the following partial differential
equation on the real axe:

∂u

∂t
+
∂u

∂a
= f(t, a). (54)

For equation (54), the numerical scheme is defined by:

un+1
i − uni

∆t
+
uni − uni−1

∆a
= f(tn, ai); (55)

where i and n are the index of age and time discretization respectively; and uni :=
u(tn, xi).

We recall that, generally, all explicit numerical scheme isconditionally stable (Stricwerda[45]).
To ensure the stability of the scheme (55) the necessary condition is the famous Courant-
Friedrichs-Lewy (CFL) condition given as follow:

∆t

∆a
6 1. (56)

For a given age step discretization∆a, the restriction∆t 6 ∆a is necessary for the time
step discretisation∆t.

We are able now to give the solution of the problem (1)-(2) on some time interval
[0, T ] using the above numerical scheme.

The age-specific reproduction ratef(a) is taken to be

f(a) =

{
1
5 sin

2
(

π(a−15)
30

)
if 15 ≤ a ≤ 45;

0 if not.

The fecundity functionf(.) is stated here in units of 1 / years for easier readability and
assumes that from age15 to 45 years a woman will generally give birth to three children,

since
∫ a+

0 f(a)da = 3, wherea+ = 80 is the largest age allowed for the simulation.

We also consider a low value of recruitmentΛ(.)

Λ(a) =

{
1
10 sin

2
(

π(a−17)
43

)
if 17 ≤ a ≤ 60;

0 if not.

This recruitment assume that the total number of recruitment at timet is approximately

equal two, that is
∫ a+

0
Λ(a) = 2.15

The transmission coefficientβ(., .) is assume to be

β(a, s) =




β0 sin

2

(
π(a− 14)

46

)
sin2

(
π(s− 14)

46

)
, if a, s ∈ [14, 60];

0 if not.
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Figure 1: (1a) Transmission coefficientβ(., .) when the transmission constantβ0 = 10−3.
(1b) Fecundity functionf(.) .

Table 1: Numerical values for the parameters of the model

Parameters Description Estimated value

β0 Transmission constant Variable
p Vertical tranmission rate Variable
µ Natural death rate 0.0101/yr1

r Rate of effective therapy 1/yr 1

φ Rate at witch infectious 0.75/yr1

become loss of sight
γ Rate at witch lost of sight 0.02/yr1

return to the hospital
d1 Death rate of infectious 0.02/yr1

d2 Death rate of lost of sight 0.2/yr1

Note: Source of estimates.
1 Assumed.

wherein the nonnegative constantβ0 (transmission constant) will be variable. Figure1
illustrates the transmission coefficientβ (for β0 = 10−3) and the fecundity functionf .
The other parameters of our system are arbitrarily chosen (see Table1).

We provide numerical illustrations for different values ofvertical transmissionp: 0.02,
0.2 and0.5

In Figure2, the vertical transmission rate of the disease is fixed to bep = 0.02. We
observe that infectious individuals (infected and lost of sight) are between 17 and 70 of
age. The number of young infectious (namely infectious withagea < 17) is negligible,
because the value of vertical transmission ratep is low.

In figure 3, the vertical transmission rate of the disease is fixed to bep = 0.2. We
observe that much of the infectious individuals (infected and lost of sight) are between
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17 and 70 of age. Let us also observe that the number of infectious individuals with age
between 17 and 70 is approximately the same than the number ofinfectious individuals
with age between 17 and 70 whenp = 0.02 (see Figs2-3). But now, there are also
infectious individuals with agea < 17 which was not the case whenp = 0.02.

The same observation is given by Figure4 where the vertical transmission rate of the
disease is fixed to bep = 0.5. Hence Figures2-4 emphasize that the vertical transmission
of the disease really has an impact on the dynamics and the spread of the disease into the
host population. See also Table2 for the impact of the vertical transmission of the disease
on the spread of the epidemic.
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Figure 2: The transmission constant and the vertical transmission rate are fixed to be
β0 = 10−3 andp = 0.02. The other parameters are given by Table1. (2a) Distribution
of Infected individuals. (2b) Distribution of Lost of sight. (2c) Distribution of infected
newborn. (2d) Distribution of Infected and Lost of sight individuals after80 years of time
observation.
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Figure 3: The transmission constant and the vertical transmission rate are fixed to be
β0 = 10−3 andp = 0.2. The other parameters are given by Table1. (3a) Distribution
of Infected individuals. (3b) Distribution of Lost of sight. (3c) Distribution of infected
newborn. (3d) Distribution of Infected and Lost of sight individuals after80 years of time
observation.

Table 2: Impact of the vertical transmission of the disease.

Vertical transmission rate (p) Rate increase over the case whenp = 0
p = 0.02 1.8%
p = 0.2 17.5%
p = 0.5 43.8%

Total cases (I+L) when p = 0: 954.85 cases. (i.e. when the vertical transmission of the disease is
neglected in the host population.
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Figure 4: The transmission constant and the vertical transmission rate are fixed to be
β0 = 10−3 andp = 0.5. The other parameters are given by Table1. (4a) Distribution
of Infected individuals. (4b) Distribution of Lost of sight. (4c) Distribution of infected
newborn. (4d) Distribution of Infected and Lost of sight individuals after80 years of time
observation.

7. Conclusion

In this paper, we consider a mathematical model for the spread of a directly transmit-
ted infections disease in an age-structured population with demographics process. The
disease can be transmitted not only horizontally but also vertically from adult individuals
to their children. The dynamical system is formulated with boundary conditions.

We have described the semigroup approach to the time evolution problem of the ab-
stract epidemic system. Next we have calculated the basic reproduction ratio and proved
that the disease-free steady state is locally asymptotically stable ifR0 < 1, and at least
one endemic steady state exists if the basic reproduction ratio R0 is greater than the unity.
Moreover, we have shown that the endemic steady state is forwardly bifurcating from the
disease-free steady state atR0 = 1. Finally we have shown sufficient conditions which
guarantee the local stability of the endemic steady state. Roughly speaking, the endemic
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steady state is locally asymptotically stable if it corresponds to a very small force of in-
fection.

However the global stability of the model still an interesting open problem. Moreover,
biologically appropriate assumptions for the unique existence of an endemic steady state
is also not yet know.
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1 Introduction

Hepatitis B virus (HBV) infection is widespread in many parts of the world, espe-
cially in Africa, Southeast Asia, the Middle East, South andWestern Pacific islands,
the interior Amazon River basin, and certain parts of the Caribbean (Centers for Dis-
ease Control and Prevention (CDC [7])). By the estimation ofthe World Health Or-
ganization (WHO [38]), about 2 billion people have been infected with HBV. An
estimate of 600,000 persons die each year due to the acute or chronic consequences
of the virus (WHO [38]).

Hepatitis B is transmitted through body fluids like blood, semen, and vaginal se-
cretions. One of the most important factors influencing the probability of developing
of HBV is age. Acute HBV infection causes chronic (long-term) infection in 30-90%
of persons infected as infants or young children and in less than 5% of adolescents
and adults (Shepard et al. [34], Goldstein et al. [22]). A person suffering from a HBV
infection can progress to a symptomatic infection or to an asymptomatic infection.
(McMahon et al. [31]).

According to CDC [7] and WHO [38], risk for chronic infection is inversely
related to age at infection: approximately 90% of infected infants and 30% of in-
fected children aged under 5 years become chronically infected, compared with 5%
of adults. This difference in the evolution of infection introduces naturally differential
susceptibility.

Many mathematical models have been proposed to investigatethe transmission
dynamics of HBV in various countries and regions in the world; covering many top-
ics: sexual transmission of HBV which includes heterogeneous mixing with respect
to age and sexual activity [2]; relation between the age at infection with HBV and the
development of the carrier state [12]; HBV transmission in developing countries [30,
13,40]; the long-term effectiveness of the vaccination [41]; determined the prevalence
of infection [32]. Age-structured models have also been used to model the transmis-
sion dynamics of HBV by some researchers (see for instance Edmunds et al. [12],
McLean and Blumberg [30], Zhao, Xu, and Lu [41], Zou, Ruan andZhang [42,43]).

Mathematical models can provide a powerful tool for investigating the dynamics
and control of infectious diseases. Optimal control theoryprovides a valuable tool
to begin to assess the trade-offs between vaccination and treatment strategies. Op-
timal control is a mathematical technique derived from the calculus of variations.
Anyhow we can give suggestions to the public health authorities about the effects
of a particular control policy with respect to others, and inthis context the analysis
and simulation of mathematical models may become a powerfultool in the hands of
the above authorities. Several HBV intervention options (called controls) do exist.
Individual with HBV infection require a special treatment to overcome the infection.
As for preventive measures, vaccination strategies can be consider to reduce the size
of the epidemic. There have been numerous works on optimal control of the epi-
demics (see for example Emvudu et al. [16,15], Bowong [6], Neilan et al. [33] and
references cited therein). In the context of optimal control of age-structured popula-
tions Anita [3] consider optimal harvesting in single equation case. Da Prato et al.[8]
treated boundary control involving the birth rate for a Lotka-McKendrick equation.
Barbu et al. [4] also examined a boundary control problem with an application to an
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epidemic model. For work involving optimal control of interacting species see Fis-
ter et al. [21] and references cited therein. For the existence of an optimal control
of age-structured dynamics, see Ekerland variational principle [17]. Reader may also
consult Feichtinger et al. [20] for the necessary optimality conditions.

This paper builds on the existing works mentioned above and fills the gaps ob-
served in these works. In view of the usefulness and the current investigation on the
spread of HBV within a population and taking into account a continuous age struc-
ture, the perinatal infection of HBV and death directly related to HBV infection, we
propose an age-structured model for the transmission dynamics of HBV with differ-
ential infectivity: symptomatic and asymptomatic HBV infections. We do an in-depth
optimal control for an age-structure HBV dynamics which to the author knowledge
has not been addressed in the literature.

The rest of the paper is organized as follows. In Section 2, weformulate the model
without optimal intervention strategies and present the mathematical analysis of the
model. More precisely, we formulate the model, show the existence of semi flow,
compute the basic reproduction number, compute and study the stability of steady
states (free and endemic) and perform the sensitivity analysis of the initial model pa-
rameters to determine the impact of control-related parameters on outbreak severity.
In Section 3, we introduce three intervention strategies: vaccination effort of young
susceptible individuals, the effort to prevent perinatal infection and the treatment of
people with HBV symptomatic infection. Using optimal control theory (see [20,4,21]
and refs. cited therein) and numerical simulations, we determine the cots-effective
balance of three interventions methods which minimizes HBV-related deaths as well
as the costs associated with intervention. Finally, we access the effectiveness of bal-
ancing multiple intervention methods (or vaccination of young adults) relative to the
two other optimal strategies of one intervention method alone (treatment of symp-
tomatic infections or prevention of perinatal infections). Conclusion and discussions
end the paper in Section 4.

2 Model formulation and mathematical analysis

2.1 The model

Herein, we propose an age-structured model to study the transmission dynamics of
HBV with differential infectivity: symptomatic and asymptomatic HBV infections.
We divide the total population into seven sub classes: the proportion of suscep-
tible to infectionS(t,a), those immune following vaccinationV(t,a), latently in-
fected progressing to symptomatic HBV infectionsLi(t), latently infected progress-
ing to asymptomatic HBV infectionsLc(t), symptomatic HBV infectionsI(t), asymp-
tomatic HBV infectionsC(t) and recovered from HBV infections with protective im-
munity R(t).

First of all, let us answer the following question:why consider an age-structured
for susceptible and immune classes?It is well know that symptomatic and asymp-
tomatic HBV infections are age-dependent. Indeed, the probability to progress to
symptomatic infection at agea is given by [41]:
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α(a) = 0.9153552−0.706004e−0.787711a. (1)

Hence, we find that risk of asymptomatic HBV infection is inversely related to
age at infection (see Fig. 1).
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Fig. 1: Probability to move to symptomatic infection at agea.

We now briefly describe the model. We define the force of infection byλ (t,a) :=
β (a)(I(t)+ τC(t)) as the product of transmission rate,β (a), and the number of in-
fectious individuals at timet. τ is the reduced transmission rate. Then infected in-
dividuals move to the exposed class in two groups at ratesα(a)λ (t,a)S(t,a) and
(1−α(a))λ (t,a)S(t,a) for symptomatic and asymptomatic infections respectively.
That is

∫ ω
0 α(a)λ (t,a)S(t,a)da and

∫ ω
0 (1−α(a))λ (t,a)S(t,a)da are the number of

infected individuals progressing to symptomatic and asymptomatic infections respec-
tively at timet; whereinω is the upper bound of age of people in the model. Suscep-
tible individuals are immune by vaccination at ratep(a) and the immunity to HBV is
assumed to wane at rateψ. Rates moving from latent infection classes to infectious
classes areγ andδ for symptomatic and asymptomatic infections respectively. For
symptomatic and asymptomatic classes,µI andµC are HBV-related death rates,γ1

andγ2 are rates of recovery from HBV.µ(a) andµ1 are the natural mortality rates of
the host population. Now, let us describe the dynamics of thenewborns. We define
the proportion of newborns with successful vaccination by(1−θ)b as the product of
proportion of birth with successful vaccination 1−θ and the equilibrium birth rateb.
Among the proportion of newborns without successful vaccinationθb, some of them
will be infected by their carrier mother at rateν and would move to an asymptomatic
infection. That isbθ(1−νC(t)) is the proportion of susceptible newborns at timet,
andbθνC(t) is the proportion of newborns with perinatal infection at timet.
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Table 1: Parameters values used in numerical simulation

Parameters Description Values Ref.
p(a) vaccination rate of susceptible 0 - 1
µ1 natural mortality rate 0.0132/yr WHO[39]

µI , µC HBV-related mortality rate 0.2%/yr CDC[7]
τ Reduced transmission rate 0.16 Edmunds et al.[13]
γ rate moving from latent infection to

symptomatic infectiousness 6/yr Edmunds et al.[13], CDC[7]
δ rate moving from latent to

asymptomatic infectiousness 6/yr Edmunds et al.[13], CDC[7]
b equilibrium birth rate 0.0380/year WHO[39]

1−θ proportion of births with successful vaccination 0 - 1
ψ rate of waning vaccine-induced immunity 0.1 Edmunds et al.[14]
γ1 rate moving from symptomatic infectiousness

to recovered 4.8/yr Edmunds et al.[13], CDC[7]
γ2 rate of moving from asymptomatic infectiousness

to recovered 0.025/yr Edmunds et al.[13], CDC[7]
ν proportion of perinatally infected

(from chronicle infectious mothers) 0.11 Edmunds et al.[13]

Then, age-structured model for the transmission of HBV is described by the fol-
lowing system:

∂S(t,a)
∂ t

+
∂S(t,a)

∂a
= ψV(t,a)− (λ (t,a)+µ1+ p(a))S(t,a),

∂V(t,a)
∂ t

+
∂V(t,a)

∂a
= p(a)S(t,a)− (ψ +µ1)V(t,a),

dLi(t)
dt

=

∫ ω

0
α(a)λ (t,a)S(t,a)da− (µ1+ γ)Li(t),

dLc(t)
dt

=
∫ ω

0
(1−α(a))λ (t,a)S(t,a)da+bθνC(t)− (µ1+δ )Lc(t),

dI(t)
dt

= γLi(t)− (γ1+µ1+µI )I(t),

dC(t)
dt

= δLc(t)− (γ2+µ1+µc)C(t),

dR(t)
dt

= γ1I(t)+ γ2C(t)−µ1R(t),

(2)

with the initial and boundary conditions

S(t,0) = θb(1−νC(t)); S(0,a) = S0(a); V(t,0) = (1−θ)b; V(0,a) =V0(a),
Li(0) = Li0; Lc(0) = Lc0; I(0) = I0; C(0) =C0; R(0) = R0.

(3)
The model parameters are described in Table 1.
In order to deal with system (2) we first provide a parameter reduction by intro-

ducing the following unknown functionss(t,a) = S(t,a)eµ1a, v(t,a) =V(t,a)eµ1a.
Therefore, by introducing the vector-valued functionsu(t)= (Li(t),Lc(t), I(t),C(t))

T =
(ui)

T
i=1,··· ,4; y(t, .) = (s(t, .),v(t, .))T = (y1,y2)

T ; e1 = (1,0), 1n = (1, . . . ,1) ∈ Rn,
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e= (0,0,1,1) and the usual scalar product〈., .〉 as well as the matrices

F1(a) =

(
−p(a) ψ
p(a) −ψ

)
, F2(a) =




0 0 α(a) τα(a)
0 0 1−α(a) τ(1−α(a))
0 0 0 0
0 0 0 0


 ,

F3 =




−γ 0 0 0
0 −δ 0 bθν
γ 0 −(γ1+µI ) 0
0 δ 0 −(γ1+µc)


 , E1 =

(
1 0
0 0

)
,

F4 = (0,0,γ1,γ2),

(4)

system (2) rewrites as




∂y(t,a)
∂ t

+
∂y(t,a)

∂ t
=−β (a)〈e,u(t)〉E1.y(t,a)+F1(a)y(t,a),

d
dt

u(t) =
∫ ω

0
l(a)β (a)〈e1,y(t,a)〉F2(a).u(t)da+(F3+diag(−µ1)).u(t),

dR(t)
dt

= 〈F4,u(t)〉−µ1R(t),

(5)

supplemented together with boundary condition and initialdata
{

y(t,0) = (θb(1−νu4(t));(1−θ)b)T ,
y(0, .) = y0(.) ∈ L1(0,ω,R2), u(0) = u0 ∈ R4, R(0) = R0,

(6)

whereinl(a) := e−µ1a is the survival function which is the proportion of individuals
who survive to agea.

In what follows, we shall discuss the asymptotic behavior ofsystem (5)-(6) and
we will make use of the following assumptions.

Assumption 1 We assume that: b,µ1, µI , µC, γ, γ1, γ2, ψ, θ , ν , δ are nonneg-
ative constants, p(.) is nonnegative function whileβ (.) µ(.) and α(.) belong to
L∞
+(0,ω,R+).

2.2 Existence of semiflow

We shall deal with the integrated semigroup approach introduced by Thieme [35].
We also refer to Djidjou et al. [9] (see also references therein).

Let us introducêX = R2×L1(0,ω,R2) as well as its positive conêX+ = R2×
L1(0,ω,R2

+) and the linear operator̂A : D(Â)⊂ X̂ → X̂ defined by

D(Â) = {0R2}×W1,1(0,ω,R2), Â

(
0R2

ϕ

)
=

(
−ϕ(0)
−ϕ ′

)
. (7)

Next consider the Banach spaceX = R4×R× X̂ andX+ = R4
+×R+× X̂+ en-

dowed with the usual product norm||.||. Let A : D(A)⊂ X → X be the linear operator
defined by

D(A) = R4×R×D(Â), A= diag
(
−µ1, Â

)
. (8)
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Note that the domain of operatorA is not dense inX because of the identity

D(A) = R5×{0R2}×L1(0,ω,R2) 6= X.

Finally, let us introduce the nonlinear mapF : D(A)→ X defined by

F
(
(u,R,0R2,y)T

)
=


∫ ω

0 l(a)β (a)〈e1,y(a)〉F2(a)uda+F3u
〈F4,u〉−µ1R

(θb(1−νu4);(1−θ)b;F1(a)y−β (a)〈e,u〉E1y)




T

.

By identifying ϕ(t) together with(u(t),R(t),0R2,y(t, .))T and by settingϕ0 =
(u0,R0,0R2,y0(.))

T , one obtains that system (5)-(6) rewrites as the following non-
densely defined Cauchy problem:

dϕ(t)
dt

= Aϕ(t)+F(ϕ(t)), t ≥ 0 and ϕ(0) = ϕ0 ∈ D(A)∩X+. (9)

We setX0 =D(A), X0+ =X0∩X+, A = {ϕ ∈ X0+ : ||ϕ|| ≤ b/µ1} and the precise
result is the following theorem.

Theorem 2 Let Assumption 1 be satisfied. Then there exists a unique strongly contin-
uous semiflow{U(t) : X0 → X0}t≥0 such that for eachϕ0∈A , the mapϕ ∈C ([0,ω),A )

defined byϕ =U(.)ϕ0 is a mild solution of(9), namely, it satisfies
∫ t

0 ϕ(s)ds∈ D(A)
andϕ(t) = ϕ0+A

∫ t
0 ϕ(s)ds+

∫ t
0 F(ϕ(s))ds;∀t ≥ 0. Furthermore{U(t)}t≥0 satisfies

the following properties:

(i) Let U(t)ϕ0 = (u(t),R(t),0R2,y(t, .))T ; then the following Volterra integral for-
mulation holds true:

y(t,a) =

{
e
∫ a
a−t (F1(a)−β (a)〈e,u(σ)〉E1)dσ y0(a− t); if a ≥ t,

e
∫ a
0 (F1(σ)−β (σ)〈e,u(t)〉E1)dσ y(t −a,0); if a < t.

with y(t −a,0) = [θb(1−νu4(t −a));(1−θ)b]T .
(ii) For eachϕ0 ∈ A one has for all t≥ 0

〈14,u(t)〉+R(t)+
∫ ω

0
l(a)〈12,y(t,a)〉da≤ b

µ1
.

(iii) The nonempty compact setA is invariant under the semiflow U, and the subset
A attracts the bounded sets of X0+ under the semiflow U.

Proof The proof of this result is rather standard. Indeed it is easyto check that op-
eratorA satisfies the Hille-Yosida property. Then standard methodologies apply to
provide the existence and uniqueness of a mild solution for system (5)-(6) (see, for
instance, Refs. [28,35,26,9]). Next the Volterra integralformulation is also standard
in the context of age-structured equations and we refer to Ref. [25] and the references
cited therein for more details. Estimates stated in (ii) directly follow from the system
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of equations. Let us assume for a moment thaty0 ∈ W1,1(0,ω,R2); then adding up
the equations of system (5) yields ˙v(t)≤ b−µ1v(t), that is

v(t)≤ b
µ1

+e−µ1t
(

v(0)− b
µ1

)
, (10)

whereinv(t) = 〈14,u(t)〉+R(t) +
∫ ω

0 l(a)〈12,y(t,a)〉da. From where one deduces
estimate (ii). It remains to prove (iii) and this is a direct consequence of (10).

2.3 Mathematical analysis

2.3.1 The disease-free steady state and reproductive number

The disease-free steady state isE0 =
(
0R4,0,0R2,s0(.),v0(.)

)T
, where

s0(a) = b
[
θe−

∫ a
0 (ψ+p(η))dη +ψ

∫ a
0 e−

∫ a
σ (ψ+p(η))dηdσ

]
;v0(a) = b−s0(a).

For the computation of the basic reproduction number, we usethe next generation
operator approach as described by Diekmann-Heesterbeek-Metz[10], Inaba[27] and
Djidjou-Ducrot[9] to define the basic reproduction number,R0, as the number of
secondary infections that one infectious individual wouldcreate over the duration of
the infectious period, provided that everyone else is susceptible.

In the early stage of the epidemic, the dynamics of the population can be described
by the linearized equation at the disease-free steady stateE0. Since the linearized
equations for infective population does not include other subpopulations, we find that

R0=
1
2


 γKi

v11v33
+

δ (Kc+bθν)
v22v44

+

((
γKi

v11v33
+

δ (Kc−bθν)
v22v44

)2

+
4δ 2bθνKc

v2
22v

2
44

)1/2

 ,

(11)
whereinKi =

∫ ω
0 β (a)α(a)l(a)s0(a)da,Kc= τ

∫ ω
0 β (a)(1−α(a))l(a)s0(a)da, v11=

µ1+ γ; v22 = µ1+δ ; v33 = γ1+µI +µ1; andv44 = γ2+µc+µ1.

Remark 1
1. We can also follow van den Driessche and Watmough[36], we obtain that the basic
reproduction number, defined as the expected number of secondary infections pro-
duced by an index case (Anderson and May[1]), is given by

R̃0 =
δ (Kc+bθν)

v22v44
+

γKi

v11v33
. (12)

In fact, simple calculation shows thatR0 < 1(= 1,> 1) is equivalent toR̃0 < 1(=
1,> 1).
2. Actually, it’s more easier to interpret the term̃R0 than the termR0. In fact, ac-
cording to (12), we can observe that the first fraction in the sum is the number of
secondary infections induced by asymptomatic infections and the other is the num-
ber of secondary infections induced by symptomatic infections.
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2.3.2 Global stability of the disease-free steady state.

We have the following result about the global stability of the disease-free steady state.

Theorem 3 Under Assumption 1, the disease-free steady stateE0 is globally asymp-
totically stable ifR0 < 1 and unstable ifR0 > 1.

Proof Since
{

TA0(t)
}

t≥0 the semigroup generated byA0 the part ofA in D(A) satis-

fies
∣∣∣∣TA0(t)

∣∣∣∣≤ Me−µ1t , ∀t ≥ 0, for some constantM > 0. It follows thatωess(A0),

the essential growth of rate of
{

TA0(t)
}

t≥0 is, ≤ −µ1. Let
{

T(A0+DF(E0))(t)
}

t≥0

be the linearC0-semigroup generated by
(
A+DF(E0)

)
0 the part ofA+DF(E0) :

D(A)⊂ X → X in D(A). SinceDF(E0) is a compact bounded linear operator, it fol-
lows that (Ref. [11] an references therein)ωess(A+DF(E0))≤−µ1.

Now, let us assume thatR0 > 1. Let w= (wi)i=1,...,4 ∈ R4, u= (ui)i=1,...,4 ∈ R4

and using the linearized equation of system (5) at the disease-free steady state, let us
consider the resolvent equation:

(zI−V )w= u, z∈ C andRe(z)>−µ1. (13)

with

V =




−v11 0 Ki Ki

0 −v22 Kc Kc+bθν
γ 0 −v33 0
0 δ 0 −v44


 .

Then, one has

(I −T(z))w=

(
ui

z+vii

)T

i=1,...,4
; (14)

whereT(z), z∈ C, is 4×4 matrix defined by:

T(z) =




0 0 Ki
z+v11

Ki
z+v11

0 0 Kc
z+v22

Kc+bθν
z+v22γ

z+v33
0 0 0

0 δ
z+v44

0 0


 (15)

Let us observe that the basic reproduction ratioR0 is the spectral radius, denoted
by r (T(0)), of the generation operatorT(0). (See Ref. [26] and references therein).
Then, we claim that (see Appendix A for the proof):

Claim There exists a uniquez0 >−vmin :=−min(vii )i=1,2,3,4 such thatr (T(z0)) = 1
andz0 > 0 if r (T(0))> 1; z0 = 0 if r (T(0)) = 1; z0 < 0 if r (T(0))< 1, and it is the
dominant characteristic root, as

z0 > sup
{

Re(z) : z∈ Σ0\{z0}
}

;

whereΣ0 := {z∈ C : (I −T(z)) is not inversible} is the spectrum ofV .
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Therefore, the disease-free steady state is locally asymptotically stable ifR0 =
r (T(0))< 1 and unstable ifR0 = r (T(0))> 1.

The second part of the proof deals with the global stability of the disease-free
steady state. Let us considerA ⊂X0+, the global attractor ofU provided by Theorem
2. Let (u0,R0,0R2,y0) ∈ A be given and let{ϕ(t) = (u(t),R(t),0R2,y(t, .))}t∈R be
the entire solution ofU passing trough(u0,R0,0R2,y0). Sinces(0, .) ≤ s0(.) for all
(u0,R0,0R2,y0)∈A , we deduce thats(t, .)≤ s0(.) for all t ∈R. One may consider the
functionalV defined for each entire solutions byV [ϕ] (t) = d.u(t), where the positive
constant vectord ∈ R4 is defined byd1 = γd3

γ+µ1
, d2 = δd4

µ1+δ , d3 = 1
2(µ1+γ1+µI )

, and

d4 =
1

2(µc+µ1+γ2)
.

Next, using system (5) we obtain

dV [ϕ] (t)
dt

≤ (R0−1)〈e,u(t)〉. (16)

Hence, we infer from the definition ofX0+ that t 7→V [ϕ] (t) is decreasing along the
entire solutions ofU . To conclude our proof, let{tn}n≥0 be an increasing sequence
tending to−∞ asn→+∞ and consider the sequence of mapϕn(t) = ϕ(t + tn). Note
that one hasV [ϕn] (t) = V [ϕ] (t + tn). Up to a subsequence one may assume that
ϕn(t)→ ϕ̂(t) asn→+∞ locally uniformly fort ∈R, where{ϕ̂(t)}t∈R ⊂A is an en-
tire solution ofU . SinceV is decreasing, one obtains thatV [ϕ̂] (t)≡ lim

t→−∞
V [ϕ] (t) =

sup
t∈R

V [ϕ] (t).

By settinĝϕ = (û, R̂,0R2, ŷ), (16) yields toû(t) ≡ 0 while ŷ ≡ (s0(.),v0(.))T .
HenceV [ϕ̂] (t) ≡ 0 and 0≤ V [ϕ] (t) ≤ 0 for t ∈ R and ϕ(t) ≡ E0. This end the
proof of Theorem 3.

2.3.3 Disease-endemic steady states.

The existence and uniqueness of the disease-endemic steadyis stated in Theorem 4
and proved in Appendix B.

Theorem 4 Let Assumption 1 be satisfied andR0 > 1, then there is a unique disease-
endemic steady stateE∗ of system(5)-(6).

Now, we investigate the stability of the unique endemic steady-state. The lin-
earized system (5) at the endemic steady stateE∗ = (u∗,R∗,{0R2},y∗(.)) can be
written as

dϕ(t)
dt

= Aϕ(t)+Feϕ(t), (17)

with ϕ(t) = (u(t),R,0R2,y(t, .))T and where the linear operatorFe is given by

Fe
(
(u(t),R(t),0R2,y(t, .))T

)
=


∫ ω

0 l(a)β (a)〈e1,y∗(a)〉F2(a)u(t)da+
∫ ω

0 l(a)β (a)〈e1,y(t,a)〉F2(a)u∗da+F3u(t)
〈F4,u(t)〉−µ1R(t)

(−bθνu4(t);0;F1(a)y(t,a)−β (a)〈e,u∗〉E1y(t,a)−β (a)〈e,u(t)〉E1y∗(a))




T

.

(18)
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Since the linearized stability principle holds for the age-structured population
system (5) (Ref. [37]), the endemic steady state is locally asymptotically stable if
the trivial equilibriumϕ = 0 of the linearized system (17) is locally asymptotically
stable, while the endemic steady state is unstable ifϕ = 0 is unstable in (17).

In order to see the linearized stability by calculating the resolvent spectrum, let
us consider the resolvent equation for the linearized operator:

(zI− (A+Fe))w= u, w∈ D(A), u∈ X, z∈ C.

Let w= (s̄(.), v̄(.), L̄i , L̄c,C̄, Ī , R̄) andu= (u1(.),u2(.),u3,u4,u5,u6,u7). Then we have

s̄′(a) = −(z+β (a)(I∗+ τC∗)+ p(a))s̄(a)+ψ v̄(a)

−β (a)s∗(a)(Ī + τC̄)+u1(a), (19)

v̄′(a) = −(z+ψ)v̄(a)+ p(a)s̄(a)+u2(a),

zL̄i = (I∗+ τC∗)
∫ ω

0
α(a)l(a)β (a)s̄(a)da (20)

+(Ī + τC̄)
∫ ω

0
α(a)l(a)β (a)s∗(a)da− (µ1+ γ)L̄i +u3, (21)

zL̄c = (I∗+ τC∗)
∫ ω

0
(1−α(a))l(a)β (a)s̄(a)da+bθνC̄+u4

+(Ī + τC̄)
∫ ω

0
(1−α(a))l(a)β (a)s∗(a)da− (µ1+δ )L̄c, (22)

zĪ = γL̄i − (γ1+µ1+µI )Ī +u5, (23)

zC̄ = δ L̄c− (γ2+µ1+µc)C̄+u6, (24)

zR̄= γ1Ī + γ2C̄−µ1R̄+u7,

s̄(0) =−bθνC̄; v̄(0) = 0. (25)

Equations (20) and (19), coupling with (25), respectively give

v̄(a) =
∫ a

0
(p(σ)+u2(σ))e−(z+ψ)(a−σ)s̄(σ)dσ ,

and

s̄(a) =−bθνC̄e−
∫ a
0 (z+β (η)(I∗+τC∗)+p(η))dη

+
∫ a

0 [u1(σ)+ψ v̄(σ)−β (σ)s∗(σ)(Ī + τC̄)]e−
∫ a

σ (z+β (η)(I∗+τC∗)+p(η))dηdσ .

From (23) and (24) it comes that

L̄i =
1
γ (z+v33)− u5

γ , L̄c =
1
δ (z+v44)− u6

δ . (26)

Substituting (26) into system (21)-(22) we have

(I −B(z))(Ī ,C̄)T = (χ1,χ2)
T ; (27)

whereB(z), z∈ C is 2×2 matrix defined by

B(z) =

(
B1(z) B1(z)
B2(z) B2(z)+ δbθν

v22v44

)
, (28)
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whereinB1(z) =
γ
∫ ω
0 α(a)l(a)β (a)s∗(a)da

(z+v11)(z+v33)
; B2(z) =

δ
∫ ω
0 (1−α(a))l(a)β (a)s∗(a)da

(z+v22)(z+v44)
; and

χ1 =
γ(I∗+ τC∗)

∫ ω
0 α(a)l(a)β (a)s∗(a)da

(z+v11)(z+v33)
+

u5

z+v33
;

χ2 =
δ (I∗+ τC∗)

∫ ω
0 (1−α(a))l(a)β (a)s∗(a)da
(z+v22)(z+v44)

+
u6

z+v44
.

We can observe thatB(0) ≤ H, whereH is the next generation operator at the en-
demic steady state given by (48). SinceH is also irreducible, its spectral radius is the
Frobenius eigenvalue corresponding to the unique positiveeigenvector. IfR0 > 1,
H has a positive fixed point (see Theorem 4), that isr(H) = 1. Hence from Perron-
Frobenius Theorem we obtain thatr(B(0)) < r(H) = 1. Let Σ ∗ be the spectrum of
A+Fe. By using the same argument as the proof of Claim 2.3.2, we know that the
dominant characteristic root inΣ ∗ is given as the unique real root ofr(B(z)) = 1 and
it is less than zero ifr(B(0))< 1. Then it follows that the endemic steady state is lo-
cally asymptotically stable. Therefore, we obtain the following result on the stability
of the disease-endemic steady state.

Theorem 5 Let Assumption 1 be satisfied andR0 > 1, then the disease-endemic
steady stateE∗ of system(5) is stable.

2.3.4 Numerical illustrations

Numerical simulations are based on some main parameters used or derived in Zhao,
Xu, and Lu[41]; Zou, Zhang and Ruan[42] for HBV infection.

We first have the transmission coefficientβ (a) given by

β (a)=
{

0.13074116−0.01362531a+0.00046463a2−0.00000489a3; 0≤ a≤ 47.5,
β (47.5); a> 47.5

(29)
The remaining parameters are given by (30) and Table 1.
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Fig. 2: The behavior of system forp = 0.12, θ = 0.6 andR0 = 1.4796. All other
parameters are given in Tab. 1 and Eqs. (29)-(1).
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Using a constantp for p(a) (vaccination rate at agea), we simulate the behavior
of the model.

We observe the behavior of the system forp = 0.12. In Figure 2,θ = 0.6 such
thatR0 = 1.7499> 1 (R̃0 = 1.7522> 1). This indicates that hepatitis B is endemic
in the host population.

2.3.5 Sensitivity analysis

We carried out the sensitivity analysis to determine the model robustness to parameter
values. That is to help us know the parameters that are most influential in determin-
ing disease dynamics. A Latin Hypercute Sampling (LHS) scheme (Marino et al.
[29]; Blower et al. [5]) samples 1000 values for each input parameter using a uniform
distribution over the range of biologically realistic values, listed in Table 2 with de-
scriptions and references given in Table 1. Using the systemof differential equations
that describe (2) and a time period of 500 months, 1000 model simulations are per-
formed by randomly pairing sampled values for all LHS parameters. Four outcome
measures are calculated for each run: the maximum and total size of the symptomatic
and asymptomatic infected population over the model’s timespan. Partial Rank Cor-
relation Coefficients (PRCC) and correspondingp-values are computed. An output is
assumed sensitive to an input if the corresponding PRCC is less than−0.50 or greater
than+0.50, and the correspondingp-value is less than 5%.

To examine the impact of the mass group vaccination of susceptible (i.e. for a
specific age group of susceptible individuals) on the spreadof the disease, we con-
sider two age groups: 0≤ a ≤ 5 (years) anda > 5 (years). The vaccination rate of
susceptiblep(a) is then defined by:

p(a) =

{
p1 per year; 0≤ a≤ 5 (years),
0 per year;a> 5 (years),

(30)

whereinp1 is the vaccination rate of susceptible for the specific age group.
The sensitivity results suggest that maximum monthly symptomatic and asymp-

tomatic infections and the total size of symptomatic infection outcome measures are
sensitive to changes in the parametersp1, µI , µC, γ, δ , θ , ν , γ1 andγ2.

The sensitivity results suggest that the control of the epidemic of hepatitis B virus
pass through a combination of immunization of newborns, immunization of suscepti-
ble individuals (at least young adults), and reduction of perinatal infection. Therefore,
although the proportion of perinatal transmission of the disease is low, this factor
should not be neglected in the transmission of HBV. HBV couldalso be eliminated
if the transmission coefficientβ (.) is sufficiently small. However, it is difficult to
controlβ (.).

3 Optimal intervention strategies

3.1 Extended model with intervention methods

Several HBV treatment and intervention options do exists. The treatment of HBV
asymptomatic infections is not considered here against anyfinancial trade-off. On the
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Table 2: Sensitivity analysis of the model without controls

LHS-PRCC sensitivity analysis
Parameter Parameter ranges PRCC values1

Min Max Maximum Maximum Total size of
symptomatic asymptomatic of all infected
infection infection classes

p1 0.001 0.99 -0.87∗ -0.70∗ -0.83∗

µI 0.001 0.05 -0.87∗ -0.69∗ -0.82∗

µC 0.001 0.05 -0.86∗ -0.68∗ -0.82∗

γ 0.001 0.99 -0.86∗ -0.68∗ -0.81∗

δ 0.01 0.8 -0.86∗ -0.67∗ -0.82∗

θ 0.001 0.5 -0.86∗ -0.67∗ -0.83∗

ν 0.001 0.3 -0.86∗ -0.68∗ -0.83∗

γ1 0.01 0.3 -0.87∗ -0.70∗ -0.84∗

γ2 0.01 0.05 -0.87∗ -0.70∗ -0.84∗

1Asterisks indicate the correspondingp-values which represent the significance of a nonzero PRCC:∗

denotes ap-value bellow 0.001

other hand, individual with HBV symptomatic infections require a special treatment
to overcome the infection. As for preventive measures, two vaccination strategies can
be consider: the immunization of young adults (at least susceptible with the age less
than 5 years old) and the reduction of perinatal infection. Those interventions are also
supported by the sensitivity analysis.

Three interventions strategies, called controls, are include into our initial model.
Controls are represented as functions of time and assigned reasonable upper and
lower bounds. First, vaccination effort moves susceptibleindividuals agea to im-
mune class at rateh1(t,a) at timet. Second, the effort to prevent perinatal infection
is at rateh2(t) at timet (i.e. the screening of pregnant women for a potential asymp-
tomatic HBV during each pregnancy). Third,h3(t) is the proportion of people with
HBV symptomatic infection who receive treatment at timet. Those receiving a treat-
ment are assume to have an increased rate of recovery (γ̃1 > γ1) and a decreased rate
of death due to HBV (̃µI < µI ).

Using the same parameter and class names as model (2) and Table 1, the system
describing our model with controls is:
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∂S(t,a)
∂ t

+
∂S(t,a)

∂a
= ψV(t,a)− (λ (t,a)+µ1+ p(a)(1+h1(t,a))S(t,a),

∂V(t,a)
∂ t

+
∂V(t,a)

∂a
= p(a)(1+h1(t,a))S(t,a)− (ψ +µ1)V(t,a),

dLi(t)
dt

= (I(t)+ τC(t))q1(t)− (µ1+ γ)Li(t),

dLc(t)
dt

= (I(t)+ τC(t))q2(t)+bθν(1−h2(t))(1−h1(t,0))C(t)− (µ1+δ )Lc(t),

dI(t)
dt

= γLi(t)−µ1I(t)− (γ1+µI )(1−h3(t))I(t)− (γ̃1+ µ̃I )h3(t)I(t),

dC(t)
dt

= δLc(t)− (γ2+µ1+µc)C(t),

dR(t)
dt

= γ1(1−h3(t))I(t)+ γ̃1h3(t)I(t)+ γ2C(t)−µ1R(t),

S(t,0) = θ(1−h1(t,0))b(1−ν(1−h2(t))C(t)); V(t,0) = (1−θ(1−h1(t,0)))b,
(31)

with q1(t) =
∫ ω

0 α(a)β (a)S(t,a)daandq2(t) =
∫ ω

0 (1−α(a))β (a)S(t,a)da.
Settingy(t, .) = (V(t, .);S(t.,))T andx(t) = (Li(t), I(t),Lc(t),C(t))T system (31)

becomes




(∂t +∂a)y(t,a) = f(t,a,y(t,a),h1(t,a)) := f(t,a),
ẋ(t) = g(t,x(t),qy(t),h2(t),h3(t)) := g(t),
y(t,0) = ϕ(t); y(0, .) = y0(.) := (V(0, .);S(0.,))T ,

x(0) = x0 := (Li(0), I(0),Lc(0),C(0))T ,

(32)

whereinq(t)= (q1(t),q2(t))T andϕ(t)= [(1−θ(1−h1(t,0)))b,θ(1−h1(t,0))b(1−ν(1−h2(t))C(t))].
Moreover,f(t,a) is given by the right-hand side of (31) for the(V,S)-compartment;
g(t) := (gi(t))

T
i=1,...,4 with g1, g2, g3 andg4 given by the the right-hand side of (31)

for theLi , I , Lc andC-compartment respectively.

3.2 Optimal control problem

A successful scheme is one which reduces HBV-related deathswith a minimal cost.
We assume that the control scheme is optimal if it minimizes the objective functional

J(h1,h2,h3) =

∫ Tf

0
L0(t,x,h2,h3)dt+

∫ Tf

0

∫ ω

0
L(t,a,y,h1)dadt, (33)

with

L0(t,x,h2,h3) =B[µ̃I h3(t)I(t)+(1−h3(t))µI I(t)+µCC(t)]+B3h3(t)I(t)

+λ3h2
3(t)+B2h2(t)C(t)+λ2h2

2(t),

L(t,a,y,h1) =B1(a)h1(t,a)(S(t,a)+Li(t)+Lc(t)+C(t))+λ1(a)h
2
1(t,a),
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and whereB, B1, B2, B3, λ1, λ2, λ3 are balancing coefficients transforming the inte-
gral into cost expended over a finite period ofTf months (See Tab. 3). The first sum
in the first integral, multiply byB, is the cost of death due to HBV and the remaining
expressions (for both integrals) are costs for implementation for the three controls.
Quadratic expressions of the controls are included to indicate non-linear costs po-
tentially arising at high treatment levels. The term(Li +Lc+C) in the cost function
is due to the fact that individuals inC and the two latent classes probably would be
vaccinating without any effect on them, but those vaccinations would cost.

Table 3: Cost coefficients in objective functional

Parameter Value
B 2000 USD per human death
B1 50 USD per vaccinated individual
B2 195 USD per perinatal infection prevention
B3 800 USD per month of treatment
λ1 10 USD per (vaccination rate)2

λ2 10 USD per (perinatal infection prevention rate)2

λ3 10 USD per (proportion ofI treated)2

The problem now is to find(h∗1,h
∗
2,h

∗
3) satisfying

J(h∗1,h
∗
2,h

∗
3) = min

U
J(h1,h2,h3), (34)

on the control set

U = {((h1,h2,h3)) ∈ L∞(Q) : 0≤ h1(.,a)≤ h1max(a);0≤ h2(.)≤ h2max;0≤ h3(.)≤ h3max} ,

whereQ :=
[
(0,Tf )× (0,ω)

]
×
(
0,Tf

)
×
(
0,Tf

)
; h2max, h3maxare given positive con-

stants andh1max(.) is given measurable positive function.

3.3 The necessary optimality condition

To deal with necessary optimality condition, we will make use of the results in Fe-
ichtinger et al. [20] and references cited therein. We introduce the following adjoint
functions (λV(t,a),λS(t,a)); (λLi (t),λI (t),λLc(t),λC(t)), considered as row-vector
functions (whiley, x are column-vectors). We also define the following functional

H0(t,h2,h3) = L0(t,x,h2,h3)+g1(t)λLi (t)+g2(t)λI (t)+g3(t)λLc(t)+g4(t)λC(t).
(35)

Below △z denotes differentiation with respect to the variablez. Introducing the
following distributed Hamiltonian (see [20])

H(t,a,h1,h2,h3) = H0(t,h2,h3)+L(t,a,h1)+ξ (t,a) · f(t,a), (36)
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we find that the adjoint system is given by




−(∂t +∂a)ξ (t,a) =△yL(t,a)+ξ (t,a) ·△yf(t,a),
ξ (Tf ,a) = 0; ξ (t,ω) = 0,

−λ̇Li =
∂H0
∂Li

; −λ̇I =
∂H0
∂I

; −λ̇Lc =
∂H0
∂Lc

; −λ̇C = ∂H0
∂C

,

λLi (Tf ) = λI (Tf ) = λLc(Tf ) = λC(Tf ) = 0,

that is




−(∂t +∂a)λV = −(ψ +µ1)λV +ψλS,
−(∂t +∂a)λS= p(a)(1+h1(t,a))λV − (λ (t,a)+µ1+ p(a)(1+h1(t,a)))λS

+B1(a)h1(t,a),
−λ̇Li = −(µ1+ γ)λLi + γλI ,

−λ̇I = Bµ̃I h3(t)+B(1−h3(t))µI +B3h3(t)+q1(t)λLi

−(µ1+(1−h3(t))(γ1+µI )λI +h3(t)(γ̃1+ µ̃I ))λI +q2(t)λLc,

−λ̇Lc = −(µ1+δ )λLc +δλC,

−λ̇C = BµC+B2h2(t)+q1(t)λLi +(q2(t)+(1−h2(t))bθν)λLc

−(γ2+µ1+µC)λC,
(37)

with the boundary conditions
{

λV(Tf ,a) = λS(Tf ,a) = 0;λV(t,ω) = λS(t,ω) = 0,

λLi (Tf ) = λI (Tf ) = λLc(Tf ) = λC(Tf ) = 0.
(38)

Note that the final time boundary conditions (transversality conditions) are zero since
there is no dependence on the states at the final time in the objective functional.

Furthermore, if(h∗1,h
∗
2,h

∗
3) in U is an optimal control minimizing (33), then it is

characterized by

h∗1(t,a) = max
(
0,min

(
ĥ1(t,a),h1max(a)

))
,

h∗2(t) = max
(
0,min

(
ĥ2(t),h2max

))
,

h∗3(t) = max
(
0,min

(
ĥ3(t),h3max

))
(39)

wherein

ĥ1(t,a) =
p(a)(λS(t,a)−λV(t,a))S(t,a)−B1(a)(S(t,a)+Li(t)+Lc(t)+C(t))

2λ1(a)
,

ĥ2(t) =
bθν(1−h1(t,0))C(t)λLc(t)−B2C(t)

2λ2
,

ĥ3(t) =
(γ̃1+ µ̃I − γ1−µI )I(t)λI (t)−B(µ̃I −µI )I(t)−B3I(t)

2λ3
.

The control characterizationh∗1 comes from∂H
∂h1

= 0 whenever 0< h∗1(t,a)< h1max(a)
and taking bounds into account, and similarly for the controls h2 andh3.

The state system of differential equations and the adjoint system of differential
equations together with the control characterization above form the optimality system
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to be solved numerically. Since the state equations have initial conditions and the
adjoint equations have final time conditions, we cannot solve the optimality system
directly by only sweeping forward in time. Thus, an iterative algorithm, ”forward-
backward sweep method”, is used (see Emvudu et al. [15,16] and Lenhart et al. [23]).

3.4 Existence of an optimal control

We first give some useful notations for this section. Given a control vectorh :=
(h1,h2,h3) ∈ U , the corresponding state variables is denotes bywh and the corre-
sponding adjoint variables byλ h. We also define the mappingL : L1(Q1)×L1(Q2)×
L1(Q2)→ L∞(Q1)×L∞(Q2)×L∞(Q2) by L (H1,H2,H3) = (L1H1,L2H2,L2H3)
with

LiHi =





0, if Hi < 0,

Hi , if 0 ≤ Hi < himax,

himax, if Hi ≥ himax,

i = 1,2,3,

andQ1 = (0,Tf )× (0,ω); Q2 = (0,Tf ).
Denoting byX := Q2

1 ×Q4
2, we also define the norm|| · ||L1(X ) as follows: for

(y,x) := (yi ,x j)i=1,2; j=1,··· ,4 ∈ X ,

||(y,x)||L1(X ) =
∫

Q1

(|y1|+ |y2|)(t,a)dadt+
4

∑
j=1

∫

Q2

|x j |(t)dt,

In the same way, ce define the norms|| · ||L∞(X ), || · ||L1(Q), || · ||L∞(Q), || · ||L1(Qi)
and

|| · ||L∞(Qi) (i = 1,2).
We embed our optimal problem in the spaceL1(Q) by defining the following

functional

J (h) =

{
J(h), if h∈ U ,

+∞, if h /∈ U .
(40)

To prove the existence of the optimal control, let us introduce the following
lemma.

Lemma 6 Let Tf be sufficiently small.
1. The map h∈ U → wh ∈ L1(X ) is Lipschitz in the following ways:

||wh−wv||L1(X ) ≤ TfC1||h−v||L1(Q),

||wh−wv||L∞(X ) ≤ TfC2||h−v||L∞(Q),

for all h,v∈ U .
2. For h∈ U , the adjoint system(37)has a weak solutionλ h in L∞(X ) such that

||λ h−λ v||L∞(X ) ≤ TfC3||h−v||L∞(Q),

for all h,v∈ U .
3. The functionalJ (h) is upper semicontinuous with respect to L1(Q) convergence.
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Proof See C.

It seen easily that the functionalJ : Q → (−∞,∞] is lower semi-continuous with
respect to strongL1 convergence not with respect to weakL1 convergence. Thus, in
general it does not attain its infimum onQ. Thus we have to circumvent this situation
by using the Ekerland variational principle (see [17]): forε > 0, there existshε in
L1(Q) such that

J (hε) ≤ inf
h∈U

J (h)+ ε , (41)

J (hε) = min
h∈U

{
J (h)+

√
ε ||hε −h||L1(Q)

}
. (42)

Note that, by (42), the perturbed functional

Jε(h) = J (h)+
√

ε ||hε −h||L1(Q)

attains its infimum athε . By the same argument as in Section 3.3, and using the
projection mapL onU , we find that

Lemma 7 If hε is an optimal control minimizing the functionalJε(h), then

hε = L

(
ĥ1(w

hε ,λ hε )+

√
επε

1

2λ1
, ĥ2(w

hε ,λ hε )+

√
επε

2

2λ2
, ĥ3(w

hε ,λ hε )+

√
επε

3

2λ3

)
,

whereπε
1 ∈ L∞(Q1); πε

2 ,π
ε
3 ∈ L∞(Q2), with |πε

1(·, ·)| ≤ 1, |πε
i (·)| ≤ 1(i = 2,3), and

ĥ1(w
hε ,λ hε ) =

p(λ hε
S −λ hε

V )Shε −B1(Shε +Lhε
i +Lhε

c +Chε )

2λ1
,

ĥ2(w
hε ,λ hε ) =

bθν(1− ĥ1(whε ,λ hε )(·,0))Chε λ hε
Lc

−B2Chε

2λ2
,

ĥ3(w
hε ,λ hε ) =

(γ̃1+ µ̃I − γ1−µI )Ihε λ hε
I −B(µ̃I −µI )Ihε −B3Ihε

2λ3
.

We are now ready to prove the existence and uniqueness of an optimal controller.
Namely, we have the following theorem.

Theorem 8 Assume that the balancing coefficientλ1 is constant parameter (λ1(a)≡
λ1). If

Tf
2 (1/λ1+1/λ2+1/λ3) is sufficiently small, there exists one and only one

optimal controller h∗ in U minimizingJ (h).

Proof Let us start with the uniqueness. DefineF : U → U by

F (h) = L
(

ĥ1(w
h,λ h), ĥ2(w

h,λ h), ĥ3(w
h,λ h)

)
,

whereinwh andλ h are state and adjoint solutions corresponding toh. Using the Lip-
schitz properties ofwh andλ h (see Lemma 6), forh,v∈ U , we find that

||L1(h1)−L1(v1)||L∞(Q1) =

∣∣∣∣
∣∣∣∣

p(λ h
S−λ h

V )S
h−B1(S

h+Lh
i +Lh

c+Ch)

2λ1
− p(λ v

S−λ v
V )S

v−B1(S
v+Lv

i +Lv
c+Cv)

2λ1

∣∣∣∣
∣∣∣∣
L∞(Q1)

≤ Tf C8
2λ1

||h−v||L∞(Q).
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By the same argument, we also find that

||Li(hi)−Li(vi)||L∞(Q2) ≤
Tf C7+i

2λi
||h−v||L∞(Q), i = 2,3.

Therefore,

||F (h)−F (v)||L∞(Q) ≤ TfC11||h−v||L∞(Q)

3

∑
i=1

1
2λi

, (43)

where the constantC11 depends on theL∞ bounds on the state and adjoint solu-
tions and Lipschitz constants. If

Tf
2 (1/λ1+1/λ2+1/λ3)< 1, then the mapF has a

unique fixed pointh∗.
To prove that this fixed point is an optimal controller, we used the approximate

minimizershε from Ekerland variational principle. From Lemma 7 and the contrac-
tion property ofF , we have

∣∣∣∣
∣∣∣∣F (hε)−L

(
ĥ1(w

hε ,λ hε )+

√
επε

1

2λ1
, ĥ2(w

hε ,λ hε )+

√
επε

2

2λ2
, ĥ3(w

hε ,λ hε )+

√
επε

3

2λ3

)∣∣∣∣
∣∣∣∣
L∞(Q)

=

∣∣∣
∣∣∣L
(

ĥ1(w
hε ,λ hε ), ĥ2(w

hε ,λ hε ), ĥ3(w
hε ,λ hε )

)
−

L

(
ĥ1(w

hε ,λ hε )+

√
επε

1

2λ1
, ĥ2(w

hε ,λ hε )+

√
επε

2

2λ2
, ĥ3(w

hε ,λ hε )+

√
επε

3

2λ3

)∣∣∣∣
∣∣∣∣
L∞(Q)

≤
∣∣∣∣
∣∣∣∣
√

επε
1

2λ1

∣∣∣∣
∣∣∣∣
L∞(Q1)

+
3

∑
i=2

∣∣∣∣
∣∣∣∣
√

επε
i

2λi

∣∣∣∣
∣∣∣∣
L∞(Q2)

≤
√

ε
3

∑
i=1

1
2λi

. (44)

Consequently, from (43)-(44), we have

||h∗−hε ||L∞(Q) =∣∣∣
∣∣∣F (h∗)−L

(
ĥ1(whε ,λ hε )+

√
επε

1
2λ1

, ĥ2(whε ,λ hε )+
√

επε
2

2λ2
, ĥ3(whε ,λ hε )+

√
επε

3
2λ3

)∣∣∣
∣∣∣
L∞(Q)

≤
||F (h∗)−F (hε)||L∞(Q)

+
∣∣∣
∣∣∣F (hε)−L

(
ĥ1(whε ,λ hε )+

√
επε

1
2λ1

, ĥ2(whε ,λ hε )+
√

επε
2

2λ2
, ĥ3(whε ,λ hε )+

√
επε

3
2λ3

)∣∣∣
∣∣∣
L∞(Q)

≤ TfC11||h∗−hε ||L∞(Q) ∑3
i=1

1
2λi

+
√

ε ∑3
i=1

1
2λi

.

SinceTf ∑3
i=1

1
2λi

is sufficiently small, it comes

||h∗−hε ||L∞(Q) ≤
√

ε

[
1−TfC11

3

∑
i=1

1
2λi

]−1 3

∑
i=1

1
2λi

,

thushε → h∗ in L∞(Q) and by (41) (asε → 0)

J (h∗) = inf
h∈U

J (h).
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Fig. 3: Optimal balance of multiple controls. Using the three controls, the proportions
of people receiving treatment and people being vaccinated are shown in the first two
frames, while the proportion of immune newborns from perinatal infection is shown
in the third frame. See Table 4 for the costs of different strategies.

3.5 Numerical simulations

Cost coefficients are fixed within the objective functional (33) and the optimal sched-
ule of the three controls overTf = 130 months is simulated.

As Figure 3 illustrates, optimal results provide clearly different strategies for
relative application of immunization of newborns from perinatal infection, vacci-
nation of young adults and treatment of infected individuals. The optimal control
schemes shows that vaccinating at maximum rates initially is optimal in preventing
deaths regardless of the population’s ratio of asymptomatic to symptomatic infections
(see proportion of people being vaccinated, Fig. 3). Vaccination of young adults can
greatly reduce the total number of infected individuals andis crucial to apply dur-
ing the first few months of the disease detection. Even in the absence of the other
controls (treatment of symptomatic infection and immunization of newborns from
perinatal infection), immediate vaccination of young adults remains a cost-effective
method of minimizing death by preventing severe infections.

Optimal three-part intervention strategies provide considerable reductions in the
severity of the projected outbreaks (see Fig. 4). HBV death is reduced by 81.9%
during the outbreak period. Significant reduction of greater than 55% (resp. 13%) is
also achieved in peak number of symptomatic (resp. asymptomatic) infections.

Let us notice that the optimal control problem can be formulated to find the opti-
mal strategy of each intervention method when used alone. Assuming only one of the
three controls is feasible, we set the remaining two controls to identically zero in the
system (31) and in the objective functional (33). Using parameters value in Tab. 1 and
cost coefficients in Tab. 3, the optimal schedule of each intervention method is deter-
mined numerically. In the absence of vaccination of young adults and immunization
of newborns from perinatal infection, the optimal quantityof treatment nearly triples
due to an increased number on symptomatic infections. Fig. 5displays the corre-
sponding asymptomatic and symptomatic infected populations resulting from each
of the optimal single intervention strategies as well as those corresponding to the
optimal strategy balancing all three controls.

In optimal schedule of treatment alone reduces the number ofdeaths by 5.5%
(cost 991.3 USD). The optimal applications of vaccination of young adults alone
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Fig. 4: Dynamics of two infected classes (symptomatic and asymptomatic). Dotted
curves correspond to outbreak dynamics without controls. Solid curves indicates the
alleviated outbreak dynamics with multiple controls strategy. Solid curves indicate a
considerable reduction in the size of the infectious classes.
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Fig. 5: Dynamics of two infected classes (symptomatic and asymptomatic) of one
control and multiple controls. Comparing the optimal strategies for each single con-
trol, the strategy comprise of only vaccination of young adults is most effective in
reducing the size of both infected classes during the outbreak while also reducing the
death toll. In the absence of the other two controls, prevention of perinatal infections
does little to reduce the size of the epidemic for both infected classes. The treatment
of symptomatic infections is effective in decreasing the size of symptomatic infected
classes. According to our model, the optimal strategy balancing the three controls
is close to the strategy comprise of only vaccination of young adults. (Color figure
online).
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and immunization of newborns from perinatal infection alone reduce the number of
deaths by 79.8% (cost 3.7617×105 USD ) and 0.02% (cost 428.6 USD), respectively.
The prevention of perinatal infection (only) has no effect on the outbreack of the
disease. The optimal strategy balancing of three controls (or vaccination of young
adults) is considerably more effective in reducing both HBV-related death and total
infections than the treatment of symptomatic infections. But the strategy of three con-
trols (or vaccination) is approximately 386 times much expensive than the treatment
of symptomatic infections (but 15 times more effective in reducing both HBV-related
death and total infections than the treatment only).

Table 4: Costs of intervention strategies.

Intervention: Prevent perinatal Treatment of symptomatic Vaccination of Three intervention
infection infection young adults strategies

Costs (USD): 428.6 991.3 3.7617×105 3.8335×105

4 Conclusion and Discussions

Hepatitis B virus (HBV) infection is endemic in many parts ofthe world. One of the
characteristics of HBV transmission is the age structure ofthe host population and
the vertical transmission of the disease (perinatal infection from carrier mothers).

In this paper, we proposed an age-structured model for the transmission dynamics
of HBV with differential infectivity: symptomatic and asymptomatic infections. We
discussed the existence and stability of the disease-free and disease-endemic equilib-
ria of the model in terms of the basic reproduction number andperformed sensitiv-
ity analysis of the parameters. Then, we consider three intervention options (called
controls): vaccination of young adults, prevention of HBV perinatal infections and
treatment of symptomatic HBV infections. The analytical results and numerical sim-
ulations of the model suggest that a optimal control strategy is a combination of
immunization of young adults (at least susceptible with theage less than 5 years old)
and treatment of HBV symptomatic infections.

We also observe that mass vaccination in infants increases the average age of
infection in unimmunized individuals and shifts the average age at infection to older
age groups (see Fig. 6). This indicates that mass vaccination in infants might be not
enough to control the infection and eradicate the virus (this is also supported by Zou
et al.[42]). Different immunization programs can be evaluated by considering the
prevalence of carriers after the implementation of immunization.

A Proof of Claim 2.3.2

The positive operatorT(0) has the Perron-Frobenius properties, roughly speaking,T(z) is irreducible and
r (T(z)) is decreasing for realz∈ (−vmin,+∞). Moreover, limz→−vmin r (T(z))=+∞ and limz→+∞ r (T(z))=
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Fig. 6: Dynamics of susceptible individuals without any control and with vaccination
strategy only. Mass vaccination in infants (with maximum of5 years old) increases
the average age of infection in unimmunized individuals (Color figure online).

0; then the first half of the proposition is the direct consequence of this monotonicity ofr (T(z)). Next we
show the dominant property ofz0. For anyz∈ Σ0 \ {z0}, there is an vectorψz, such thatT(z)ψz = ψz.
Then we have|ψz| = |T(z)ψz| ≤ T(Rez)|ψz|. The eigenspace corresponding to the eigenvaluer (T(Rez))
is one-dimensional subspace ofR4 spanned by a strictly positive functionalFRez. We obtain that

r (T(Rez)) [FRez, |ψz|] = [FRez,T(Rez)|ψz|]≥ [FRez, |ψz|],

where we write the value ofFRez at ψz as[FRez,ψz]. Hence we haver (T(Rez)) ≥ 1 andRez≤ z0 because
r (T(z)) is strictly deceasing forz∈ (−µ1,+∞) andr (T(Rez0)) = 1. This end the proof of Claim 2.3.2.

B Proof of Theorem 4

The coordinates ofE∗ satisfied

s(a) = θb(1−νC)e−
∫ a
0 (β (σ)(I+τC)+p(σ))dσ

+ψ
∫ a

0
v(η)e−

∫ a
η (β (σ)(I+τC)+p(σ))dσ dη , (45)

Li =
I + τC
µ1+ γ

∫ ω

0
β (a)α(a)l(a)h(I ,C,a)da,

Lc =
I + τC
µ1+δ

∫ ω

0
β (a)(1−α(a))l(a)h(I ,C,a)da+

bθνC
µ1+δ

,

I =
γ(I + τC)

(µ1+ γ)(µ1+µI + γ1)

∫ ω

0
β (a)α(a)l(a)h(I ,C,a)da, (46)

C =
δ (I + τC)

(µ1+δ )(µ1+µc+ γ2)

∫ ω

0
β (a)(1−α(a))l(a)h(I ,C,a)da

+
δbθνC

(µ1+δ )(µ1+µc+ γ2)
, (47)

v(a) = b(1−θ)e−ψa+

∫ a

0
p(η)s(η)e−ψ(a−η)dη ,

R =
γ1I + γ2C

µ1
.

whereinh(I ,C,a) is the right-hand side of (45).
Using equations (46) and (47) we have the following fixed point equationH(I ,C)T = (I ,C)T ; where

H(I ,C)T =
(

H1(I ,C),H2(I ,C)
)T

andH1(I ,C); H2(I ,C) are respectively the right-hand side of equations
(46) and (47).
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Thus the equilibrium points are fixed points ofH given by

H(I ,C)T = (I ,C)T . (48)

The equation (48) implies that at the endemic steady state the infected population simply reproduce itself.
Therefore we can callH the next generation operator at the endemic steady state. This fact is used to show
the stability of the endemic steady state in Section 2.3.3.

We use (48) to prove existence and uniqueness of an endemic equilibrium point. Then we use a
theorem for the existence and uniqueness of a positive fixed point of a multi-variable function (see Hethcote
and Thieme [24], Theorem 2.1).

In fact H(I ,C) is continuous, bounded function. Sinceh(0,0, .) = s0(.) (the disease-free steady state)
andH infinitely differentiable, then the Jacobian at point(0,0) is given by

H ′(0,0) =




γKi
(µ1+γ)(µ1+µI+γ1)

γKi
(µ1+γ)(µ1+µI+γ1)

δKc
(µ1+δ )(µ1+µc+γ2)

δ (Kc+bθν)
(µ1+δ )(µ1+µc+γ2)




Thus the functionH(I ,C) is monotone non-decreasing andH(0,0) = (0,0). Note thatρ(H ′(0,0)) =R0 >
1. Thanks the graph theory, we claim thatH ′(0,0) is irreducible because the associated graph of the matrix
is strongly connected.

Let us now prove thatH is strictly sub linear, i.e.,H(rI , rC) > rH (I ,C), for any (I ,C) > 0 andr ∈
(0,1). For instance

rH1(I ,C)
H1(rI , rC)

=
r
∫ ω

0 β (a)(1−α(a))l(a)h(I ,C,a)da∫ ω
0 β (a)(1−α(a))l(a)h(rI , rC,a)da

≤ r < 1;

and the same argument gives thatrH2(I ,C)
H2(rI ,rC) < 1. In this way we end the proof of Theorem 4.

C Proof of Lemma 6

1. Let us setwh := (Sh,Vh,Lh
i , I

h,Lh
c,C

h) and the same forwv. Using the Volterra integral formulation and
system (31), we find that

||Sh−Sv||L1(Q1)
+ ||Vh−Vv||L1(Q1)

≤Tf C4(||wh−wv||L1(X )+ ||h−v||L1(Q)+ ||h1(.,0)−v1(.,0)||L1(Q2)
).

We also find that

||(Lh
i , I

h,Lh
c,C

h)−(Lv
i , I

v,Lv
c,C

v)||L1(Q2)
≤Tf C5(||wh−wv||L1(X )+ ||h−v||L1(Q)+ ||h1(.,0)−v1(.,0)||L1(Q2)

).

Then, forTf sufficiently small,

||wh−wv||L1(X ) ≤ Tf C1||h−v||L1(Q).

The same arguments can be apply for the second estimate of item 1.and for item 2. It remains to check
item 3.

3. We suppose thathn := (h1n,h2n,h3n) → h := (h1,h2,h3) in L1(Q. Possibly along a subsequence
(using the same notation),h2

n → h2 a.e. onQ by (see [18], p.21). By Lebesgue’s dominated convergence
theorem, it comes limn→∞ ||h2

n||L1(Q) = ||h2||L1(Q). We have the similar arguments for||v2||L1(Q). These
handle the convergence of the squared terms in our functional.

Next, we illustrate the convergence of one term in the functional,

||B1(h1nShn −h1Sh)||L1(Q1)
≤ ||B1||∞ b

µ1
||hn−h||L1(Q)+ ||B1||∞||h1max||∞||whn −wh||L1(X )

≤ C6(Tf )||hn−h||L1(Q).

Therefore,
|J (hn)−J (h)| ≤C7(Tf )||hn−h||L1(Q).

Hence we have the lower semi-continuity,J (h)≤ liminfn→∞ J (hn).
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1 Introduction

Tuberculosis (TB) is a disease caused by infection with Mycobacterium tuberculosis, which
most frequently affects the lungs (pulmonary TB). At present, about 95 % of the estimated 8
million new cases of TB occurring each year are in developing countries, where 80 % occur
among people between the ages of 15 and 59 Dye et al. (1999). In Sub-Saharan Africa, TB
is the leading cause of mortality, and in developing countries it accounts for an estimated
2 million deaths which accounts for a quarter of avoidable adult deaths Raviglione et al.
(1997). TB was assumed to be on its way out in developed countries until the number of
TB cases began to increase in the 1980s. With this return, we face the paradox of a well-
known bacteria, fully treatable with efficient and affordable drugs according to internationally
recommended guidelines, which yet causes increasing human suffering and death. As the
world is experiencing the devastating effect of HIV/AIDS epidemic, it is now necessary to
ask why we have so far failed to control TB and define the limits of the global TB control
programs Raviglione (2002). Currently, half of the people living with HIV are TB co-infected
and three quarters of all dually infected people live in Sub-Saharan Africa. In Cameroon for
example, it is estimated that in the absence of effective epidemiology statistics, there are
100 new cases for 100,000 habitants per year Bercion and Kuaban (1998). As it is the case
in many subsaharian African countries, the fight against tuberculosis (TB) in Cameroon
is difficult due to the interaction with the Human Immunodeficiency Virus (HIV) Global
Tuberculosis Control (2005) and particularly with the poor socio-economic conditions. We
note that, the statistic studies Boulahbal and Chaulet (2004) prove that many infectious
patients do not take their treatment until the end due to a brief relief or a long time for
complete treatment. Otherwise, some of those individuals can transmit the disease without
presenting any symptom. In this work, we call them lost of sight individuals. In Cameroon,
for example, for a national program of fight against TB , there is about 10 % of infectious
individuals who do not end their treatment and become lost of sight individuals. Lost of sight
individuals are very dangerous for human health, because they are able to transmit the disease
very quickly and discreetly.

In the literature, there are many TB mathematical models Feng and Castillo-Chavez
(1998), Blower et al. (1996), Bowong et al. (2010). The study of these models has an impact in
the control process of the disease. Most of those models are SEIR-models; for those models,
one supposes that the population is subdivided into four epidemiological classes: suscepti-
ble individuals, latently infected individuals (those who are infected but not infectious yet),
infectious and the recovered or cured individuals. The particularity of those type of models is
that, the rate at which susceptible individuals become latently infected or infectious is a func-
tion of infectious individuals number in a population at that time. The class of loss of sight
individuals class (L) has already been taken into account by some authors Tewa and Bowong
(2009), Bowong et al. (2010). Tewa and Bowong (2009) studied an SEIL-tuberculosis model
in which they took into account the low and fast progression of susceptibles to latently infected
and infectious classes, respectively. This model also takes into account infectious individuals
on chemoprophylaxis, and they introduce a constant rate to become cured individuals. In
(2010), Bowong deals with the problem of optimal control for the transmission dynamics
of tuberculosis for an SEI-tuberculosis model using state-dependent Riccati equations. The
feedback control is proved to be capable to reduce the number of individuals with active TB.

This paper considers the optimal control problem of the dynamic transmission of tubercu-
losis. We present a SEIL-tuberculosis model [based on the model presented in Tewa and
Bowong (2009)] that incorporates the control mechanism, representing the case finding
efforts. This is incorporated by adding a control term so that the rate at which infectious
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individuals become lost of sight individuals will be reduced. Our model also presents the
essential biological and epidemiological features of the disease such as exogenous reinfec-
tion and chemoprophylaxis of latently infected individuals. The model is shown to exhibit
the phenomenon of backward bifurcation, where a stable disease-free equilibrium coexists
with one or more stable endemic equilibria when the associated basic reproduction number
is less than unity. Comparing to existing results Bowong (2010), our work differs from these
studies in that we completely analyse a SEIL-tuberculosis model that incorporates the con-
trol mechanism and we address the question of controlling the disease, our policy based on
decreasing the number of people going to the class of lost of sight individuals. We first for-
mulate a mathematical model taking into account our control mechanism. Then, we perfect
a mathematical analysis of the controlled model where we compute the basic reproduction
ratio of the controlled system. We then define a cost function so that we could deduce the
optimal control function. A huge part of this work is to compute the solutions numerically
and then draw a conclusion about the efficiency of the control. Numerical simulation shows
that the proposed optimal algorithm permits the reduction of the number of lost of sight
individuals accounting the control effort.

2 The model

We consider a population of N people. We assume that latently infected individuals (inactive
TB) have a variable (typically long) latency period. At any given time, an individual is in
one of the following four states: susceptible, latently infected (i.e., exposed to TB but are not
infectious yet), infectious (i.e., have active TB but are in a care center) and lost of sight (i.e.,
have active TB but are not in a care center). We will denote these states by S, E, I and L. Every
recruitment is into the susceptible class, and occurs at a constant rate �. The transmission
of tuberculosis occurs following an adequate contact between a susceptible individual and
an infectious individual or between a susceptible individual and a lost of sight who is still
infectious. On an adequate contact with infectious or lost of sight, a susceptible individual
becomes infected but not infectious yet. This individual remains in the latently infected class
for some latent period. Since we do not know if lost of sight individuals are recovered, died or
are still infectious, we assume that a fraction δ of them is still infectious and can transmit dis-
ease to susceptible. We use the standard mass balance incidence expressions βSI and βδSL
to indicate the successful transmission of tuberculosis due to nonlinear contact dynamics in
the population. After receiving an effective therapy, individuals leave the infectious class I
to the latently infected class E at the rate r2. We assume that chemoprophylaxis of latently
infected individuals reduce their reactivation at a constant rate r1. Another assumption is that
among the fraction 1 − r2 of infectious who did not recover, some of them who had begun
their treatment would not return to the hospital for the examination of sputum at a constant
rate φ and enter the class of lost of sight L. After some times, some of them will continue
to suffer from the disease and will return to the hospital at a constant rate γ . The constant
rate for non-disease related death is μ, thus 1/μ is the average lifetime. Infectious and lost to
follow-up have additional death rates due to TB-induce mortality with constant rates d1 and
d2, respectively. A fraction p of the newly infected individuals are assumed to undergo fast
progression directly to the infectious class, while the remainder are latently infected and enter
the latent class. Once latently infected with TB, an individual will remain so for unless reacti-
vation occurs. To account for treatment, we define r1 E as the fraction of infected individuals
receiving effective chemoprophylaxis. We assume that chemoprophylaxis of latently infected
individuals E reduces their reactivation at rate r1. Thus, a fraction (1 − r1)E of infected indi-
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Fig. 1 Flow diagram of the model without control

viduals who does not receive chemoprophylaxis becomes infectious with a rate k, so that 1/k
is the average latent period. Thus, individuals leave the class E to I at the rate k(1 − r1).

Thus, the corresponding transfer diagram is given by Fig. 1 [see Tewa and Bowong (2009)].
We have N = S + E + I + L individuals.
The above scheme leads to the following differential system:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ṡ = � − μS − β(I + δL)S;
Ė = β(1 − p)(I + δL)S + r2 I − [μ + k(1 − r1)]E;
İ = βp(I + δL)S + k(1 − r1)E + γ L

−[r2 + μ + d1 + �(1 − r2)]I ;
L̇ = �(1 − r2)I − (γ + μ + d2)L .

2.1 The control and its policy

The aim of the control is to decrease the total number of the lost of sight patients during
a period of time t f . The strategy of control we adopt consists of introducing one control
parameter v(t) representing the effort made to take the infectious patients in a health center
in charge systematically.

Having introduced the functions v(t), we obtain the following compartmental model.
The Fig. 2 leads us to the following differential system:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ṡ = � − μS − β(I + δL)S;
Ė = β(1 − p)(I + δL)S + r2 I − [μ + k(1 − r1)]E;
İ = βp(I + δL)S + k(1 − r1)E + γ L

−[r2 + μ + d1 + �(1 − v)(1 − r2)]I ;
L̇ = �(1 − v)(1 − r2)I − (γ + μ + d2)L .

(1)

with initial conditions (S(0); E(0); I (0); L(0)) ∈ R4+.

Remark 2.1 The functions v(t) are assumed to be integrable in the sense of Lebesgue,
bounded with (0 ≤ v(t) ≤ 1). When the control functions are near to 1, the control is
very strict.
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Fig. 2 Flow diagram of the model with control

3 Mathematical analysis of the model with control

System (2) can be written in the following compact form:
{

Ṡ = ϕ(S) − S〈η, Y 〉;
Ẏ = S〈η, Y 〉B + A(t)Y.

(2)

where S is a state representing the compartment of susceptible individuals, Y = (E, I, L)Tis
the vector representing the state compartment of different infected individuals (latently
infected individuals, infectious, lost of sight individuals). ϕ(S) = � − μS is a function
that depends on S ∈ R+, η = (0, β, βδ)T, B = (1 − p, p, 0) and 〈, 〉 is the usual scalar
product in R3 and A is a Metzler Berman and Plemmons (1994) 3 × 3 non-constant matrix
defined as

A(t) =
⎡
⎣

−A1 r2 0
k(1 − r1) −A2 γ

0 φ(1 − v(t))(1 − r2) −A3

⎤
⎦ ;

where

A1 = μ + k(1 − r1),

A2 = r2 + μ − d1 + φ(1 − v(t))(1 − r2),

A3 = γ + μ + d2.

Remark 3.1 The dynamic of the susceptibles is asymptotically stable. In other words, for the
system

Ṡ = ϕ(S);
there exists a unique equilibrium S0 = �

μ
such that

ϕ(S) > 0 for 0 < S < S0,

ϕ(S) < 0 for S0 < S. (3)

3.1 Positive invariance of the non-negative orthant

We have the following result:
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Proposition 3.2 The non-negative orthant R4+ is positively invariant for the system (2).

Proof The system (2) can be written as
{

Ṡ = ϕ(S) − S〈η, Y 〉,
Ẏ = (SBηT + A(t))Y.

(4)

The first equation of system (4) implies that

K S(t) = K S0e−K (t−t0) + �(1 − e−K (t−t0)),

for t ≥ t0; where K = μ + β(I + δL). For I ≥ 0; L ≥ 0 and S0 ≥ 0 it comes that
S(t) ≥ 0 ∀t ≥ t0. As consequence, R+ is invariant for the system Ṡ = ϕ(S) − S〈η, Y 〉.
Since S ≥ 0, the matrix (SBηT + A(t)) is a Metzler matrix. And it is well known that linear
Metzler matrices let invariant the non-negative orthant. This proves the positive invariance
of the non-negative orthant R4+ for the system (2) �	
3.2 Boundedness of trajectories

Adding all equations of model (2), one has

Ṅ (t) = � − μ(S + E + I + L) − d1 I − d2 L .

Thus, one can deduce that

Ṅ (t) ≤ � − μN (t).

Integrating the previous inequality we obtain

N (t) ≤ �

μ
+ e−μt N (0).

Therefore,

lim
t→+∞ N (t) ≤ S0.

It is straightforward to prove that for ε > 0 the simplex

�ε =
{
(S, E, I, L) ∈ R4+ ; N (t) ≤ �

μ
+ ε

}
,

is a compact invariant set for the system (2) and that this set is absorbing. So, we limit our
study to this simplex.

3.3 Basic reproduction ratio

The basic reproduction ratio is the average number of secondary cases produced by a single
infective individual which is introduced into an entirely susceptible population. We are going
to compute the basic reproduction ratio of the system with control, and then deduce the basic
reproduction ratio of the system without control.

Proposition 3.3 The basic reproduction ratio R0(v) of system (1), with the control function
v, is given by

R0(v) = βS0

R03(v)
(R01 + δR02(v)); (5)
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where

R0,1 = (μ + d2 + γ )(pμ + k(1 − r1)),

R0,2(v) = φ(1 − v)(1 − r2)(μ + k(1 − r1)),

R03(v) = r2μ(μ + d2) + (μ + k(1 − r1))[γ (μ + d1)

+(μ + d2)(μ + d1 + φ(1 − v)(1 − r2))].
Proof The system (2) has an evident equilibrium (S0, 0, 0, 0) where there is no disease. This
equilibrium is the disease free equilibrium (DFE). We calculate the basic reproduction ratio,
R0(v), using the Van Den Driesseche and Watmough next generation approach Driessche
(2002) and the techniques reported in Refs. Luenberger (1979), Diekmann et al. (1990). In
order to compute the basic reproduction ratio, it is important to distinguish new infections
from all other class transitions in the population. The infected classes are I, E and L. We can
write system (2) as

ẋ = F(x) − V(x) = F(x) − (V+(x) − V−(x)) (6)

where x = (E, I, L , S),F is the rate of new infections in each class,V+ is the rate of transfer
into each class by all other means and V−(x) is the rate transfer out of each class. Hence,

F(x) = (β(1 − p)(I + δL)S, βp(I + δL)S, 0, 0)T,

and

V(x) =

⎛
⎜⎜⎝

A1 E − r2 I
A2 I − k(1 − r1)E − γ L

A3L − φ(1 − v)(1 − r2)I
0

⎞
⎟⎟⎠

The Jacobian matrices of F and V at the disease free equilibrium DFE can be partitioned
as

DF(DFE) =
[

F 0
0 0

]
and DV(DFE) =

[
V 0
0 0

]

where F and V correspond to the derivatives of DF and DV with respect to the infected
classes:

F =
⎛
⎝

0 β(1 − p)S0 δβ(1 − p)S0

0 βpS0 δβpS0

0 0 0

⎞
⎠

and

V =
⎛
⎝

A1 −r2 0
−k(1 − r1) A2 −γ

0 −φ(1 − v)(1 − r2) A3

⎞
⎠ .

The basic reproduction ratio is defined, following Van den Driessche and Watmough Driess-
che (2002), as the spectral radius of the next generation matrix, FV −1. �	

From R0(v), we deduce R0(0) (basic reproduction ratio of the system without control) by
taking v ≡ (0, 0). We are going to compare R0(v) and R0(0).

Let us assume that

H1 : (μ + d2)(μ + γ + r2) ≤ δ[(μ + d1)(μ + d2 + γ ) + r2μ(μ + d1 + γ )]
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Assumption H1 can be interpreted as: The number of secondary cases generated by an
individual in infection state I is less than or equal to the number of secondary cases generated
by an individual in infection state L.

Proposition 3.4 We have R0(v) ≤ R0(0) (i.e., the basic reproduction ratio of the system
with control is less than or equal to the one without control) if and only if assumption H1 is
satisfied.

Proof It is easily checked that

R0(v) − R0(0) = βS0[pμ − k(1 − r1)]φ(1 − r2)v

[μ + k(1 − r1)]R0,2(0)R0,2(v)
[(μ + d2)(μ + γ + r2)

−δ[(μ + d1)(μ + γ + d2) + r2μ(μ + γ + d1)]]

This ends the proof. �	
3.4 Equilibria

The equilibrium (S, Y ) on system (2) can be obtained by setting the right hand side of all the
equations in model (2) equal to zero, that is,

{
ϕ(S) − S〈η, Y 〉 = 0;
S〈η, Y 〉B + A(t)Y = 0.

(7)

From the second equation of (7), one has Y = S(−A−1(t))〈η, Y 〉B. And replacing in 〈η, Y 〉
yields

〈η, Y 〉 = S〈η, (−A−1(t))B〉〈η, Y 〉. (8)

The case 〈η, Y 〉 = 0 implies ϕ(S) = 0 and A(t)Y = 0. Since A is non-singular, this gives
the disease free equilibrium P0 = (S0, 0, 0, 0).
The case 〈η, Y 〉 
= 0 implies S∗ = S0

R0(v)
. From (7), we have Y ∗ = (E∗, I ∗, L∗)T =

(−A−1(t)Bϕ(S∗).
After calculations, we obtained that with R0(v) > 1, the model (2) has a unique endemic
equilibrium P∗(v) = (S∗(v), E∗(v), I ∗(v), L∗(v)) which is in the non-negative orthant R4+
given by

S∗(v) = S0

R0(v)
;

E∗(v) = Q1�

R0,2(v)

(
1 − 1

R0(v)

)
;

I ∗(v) = Q2�

R0,2(v)

(
1 − 1

R0(v)

)
;

L∗(v) = Q3(v)�

R0,2(v)

(
1 − 1

R0(v)

)
;

(9)
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where

Q1 = r2 p(γ + μ + d2) + (r2 + μ + d1)(1 − p)γ

+(1 − p)(μ + d2)[r2 + μ + d1 + φ(1 − r2)];
Q2 = (1 − p)k(1 − r1)(μ + d2) + (1 − p)γ k(1 − r1)

+p(γ1 + μ + d2)[μ + k(1 − r1)];
Q3(v) = φ(1 − v)k(1 − r1) + φ(1 − v)μp.

Lemma 3.5 Tewa and Bowong (2009) When R0(v) > 1, model (2) has a unique endemic
equilibrium defined by (9).

Remark 3.6 Without control, it is shown in Tewa and Bowong (2009) that

• If R0(0) ≤ 1, the disease free equilibrium P0 is globally asymptotically stable on the
non-negative orthant R+

4 . This means that, the disease naturally dies out in the host
population.

• If R0(0) > 1, then the positive endemic equilibrium P∗(0) of model (2) is globally
asymptotically stable on the set �ε .

4 Optimal control

The classical epidemiological requirement of making R0 less than unity is not longer suffi-
cient, although necessary, for effectively controlling the spread of TB in a community.

4.1 Definition of the cost function

The system (2) can be represented by the following nonlinear structure, having state-
dependent coefficients:

Ẋ = � + D1(X)X + B1v(t); (10)

where X = (S, E, I, L)T;� = (�, 0, 0, 0)T; B1 = [0, 0, φ(1 − r2),−φ(1 − r2))
T and

D1(X) =

⎡
⎢⎢⎣

−μ − β(I + δL) 0 0 0
β(1 − p)(I + δL) −μ − k(1 − r1) r2 0

β(I + δL) k(1 − r1) −μ − d1 − φ(1 − r1) γ

0 0 φ(1 − r2) −μ − d2 − γ

⎤
⎥⎥⎦ .

Remark 4.1 The factorization of state system (2) to the form (10) is not unique, specially for
the term D1(X)X . The controllability issue of such technique is fully discussed in Cloutier
et al. (1996).

Proposition 4.2 The system (10) can be written as

Ẏ = D2(Y )Y + B2v(t); (11)

where Y = (X, 1)T and B2 = [B1, 0]T are R5 vectors. D2 =
[

D1(X) �

0 0

]
is a 5 × 5

state-dependent matrix.
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Proof It is easy to prove this proposition as follows: the system (10) is equivalent to the
following state-dependent system

(
Ẋ
1

)
=

[
D1(X) �

0 0

] (
X
1

)
+

(
B1

0

)
v

�	
Let λ be the cost associated to the control v(t); t ∈ [0, t f ]. λ represents the necessary

means to realize the control defined by v. Our cost function is the following:

J (v) = 1

2

t f∫

0

[L(t)2 + λv(t)2] dt.

The cost function is defined having in mind that, we are going to penalize the number of
lost of sight individuals. This justifies the presence of the term L . The functional J can be
rewritten as

J (v) =
t f∫

0

[||Y (t)||2W + ||v(t)||2V ] dt; (12)

where ||Y (t)||2W = Y (t)TW (t)Y (t); ||v(t)||2V = v(t)TV (t)v(t); V (t) = λ
2 and

W (t) =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1/2 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

is a 5 × 5 matrix.

The matrices W and V are the ponderosity matrices.

Remark 4.3 The matrix W is positive, but not necessarily definite. The matrix V is positive
definite. For example, if W ≡ 0 the cost function is always minimal for v = 0.

The problem now is to find v∗ satisfying

J (v∗) = min
�

J (v) (13)

Where � is the control set defined by

� = {v ∈ L2(0, t f ) : v measurable, 0 ≤ v(t) ≤ 1, t ∈ [0, t f ]}. (14)

4.2 Existence of an optimal control

The existence of the optimal control can be obtained using a result in Refs. Fleming and
Rishel (1975), Hattaf and Yousfi (2011).

Theorem 4.4 There exists an optimal control v∗ such that

J (v∗) = min
�

J (v).

Proof To use an existence result in Fleming and Rishel (1975), we must check the following
properties:
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(a) The set of controls and corresponding state variables is non-empty;
(b) The control set � defined by (14) is convex and closed;
(c) The right hand side of the state system (1) is bounded by a linear function in the state

and control variables;
(d) The integrand of the objective functional (12) is concave on �;
(e) There exist constants c1, c2 > 0, and c3 > 1 such that the integrand L(L , v) of the

objective functional satisfies

L(L(t), v(t)) ≥ c2 + c1|v(t)|c3 ,

for all t ∈ [0, t f ].
In order to verify these conditions, we use a result by Hattaf and Yousfi (2011) to give the
existence of solutions of system (1), which gives condition (a). The control set � is convex
and closed by definition, which gives condition (b). Since our state system is linear in v,
in the sense that system (1) can be represented by Eq. (10): Ẋ = � + D1(X)X + B1v(t).
Then the right hand side of system (1) satisfies condition (c). The integrand of the objective
functional (12) is defined by L(L , v) = 1

2 (L2 +λv2), with v ∈ �. The second-order Fréchet
derivative of L is positive on �, then L is concave on �. It is easily checked that

L(L(t), v(t)) ≥ 1

2
(L(t)2 + λv(t)2).

This ends the proof. �	

4.3 Resolution of the optimal problem

The theorem below gives the form of the optimized functional.

Theorem 4.5 Bowong (2010), Willard and Randal (2002), Rafikov and Balthazar (2008)
The feedback control

v(t) = −V (t)−1 B2(t)
T F(t)Y (t), (15)

minimizes the functional (12), where the positive definite matrix F(t) is evaluated through
the solution of the matrix formulation of the Riccati differential equation Brogan (1991):

{
Ḟ = −W − DT

2 (Y )F − F D2(Y ) + F B2V −1 BT
2 F;

F(t f ) = 0.
(16)

Proof Let us consider the feedback control (15) with matrix F defined by (16), minimizing
the functional

J1(v) =
t f∫

0

[C(Y ) + ||v(t)||2V ] dt; (17)

where the function C(Y ) needs to be determined. According to the Dynamic Programming
rules Wyse et al. (2007), one knows that if the minimum of functional J1 exists and if VL is
a smooth function of the initial conditions, then it satisfies the following Hamilton–Jacobi–
Bellman equation

dVL

dt
+ C(Y ) + ||v(t)||2V = 0.

123

Author's personal copy



202 Y. Emvudu et al.

Considering a Lyapunov functional

VL(Y ) = Y T F(t)Y, (18)

where F(t) is a symmetric positive definite matrix which satisfies the differential Riccati
equation (16). The time derivative of the function VL(Y ), evaluated in the optimal state-
trajectory with control given by (15), is

V̇L(Y ) = Ẏ T F(t)Y + Y T Ḟ(t)Y + Y T F(t)Ẏ ,

= Y T[DT
2 F(t) + Ḟ(t) + F(t)D2]Y + vT BT

2 F(t)Y + Y T F(t)B2v,

= Y T[Ḟ(t) + DT
2 F(t) + F(t)D2 − 2F(t)B2V −1 BT

2 F(t)]Y, (19)

and

||v(t)||2V = v(t)TV v(t),

= Y T F(t)B2V −1 BT
2 F(t)Y. (20)

Substituting V̇L and ||v(t)||2V into the Hamilton–Jacobi–Bellman equation (17) yields

Y T[Ḟ(t) + DT
2 F(t) + F(t)D2 − F(t)B2V −1 BT

2 F(t)]Y + C(Y ) = 0. (21)

Taking into account the fact that F(t) satisfies the differential Riccati equation (16), the
equation (21) becomes

−Y TW Y + C(Y ) = 0;
i.e.,

C(Y ) = ||Y (t)||2W .

We can conclude that, the control function (15) minimizes the functional

J1(v) =
t f∫

0

[||Y (t)||2W + ||v(t)||2V ] dt.

Note that for the positive function C(y) and positive definite matrix V , the time derivative
of the function (18), evaluated in the optimal trajectory of system (11), is given by

V̇ (Y ) = −||Y ||2W − ||v(t)||2V ;
and it is negative definite. Thus, the function (18) is a Lyapunov function, and the controlled
system (11) is asymptotically stable. �	

Remark 4.6 As we are finding our optimal control v∗ into �, it comes from theorem (4.5)
that

v∗(t) = min{max{a; −V (t)−1 B2(t)
T F(t)Y (t)}; b} for all t ∈ [0, t f ]

where a, b ∈ [0, 1]. We can also note that, this choice of v∗ in the set � is not unique.
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4.4 Determination of the control function

In this section, we are going to show step by step, how to determine the optimal functions
numerically.

Remark 4.7 The main difficulty here for the optimal control is that we have initial condition
for system (11) and final condition for the associated Riccati differential equation (16).

To overcome this difficulty, we proceed as follows:

Step 1 We choose a control function v(t) ≡ vc(t) in the set �. However, this choice is not
a random process, it depends on the strategy we need to adopt. For example, in this
paper, we adopt a strategy which is very strict at the beginning of the control. We
choose

uc
1(t) = b ∀t ∈ [0, t f ].

Step 2 Then, with this choice of the control function vc(t), we determine the solution
(S(t), E(t), I (t), L(t)) of the Cauchy problem associated to system (2).

Step 3 The knowledge of v(t) ≡ vc(t) and (S(t), E(t), I (t), L(t)) allows us to determine
the solution F(t) of the state-dependent Riccati equation defined by system (16). This
leads us to the control functions defined in (15) by v∗ := −V (t)−1 B2(t)T F(t)Y (t).

Step 4 On one hand, we have the chosen control function vc, and on the other hand, we
have the control function v∗. We take a convex combination of those functions as
follows:

v(t) =
(

1 − t

t f

)
vc(t) + t

t f
v∗(t)

for t ∈ [0, t f ].
Step 5 This process is repeated (Steps 2, 3 and 4), and iterations are stopped when the values

at the unknown iteration are very closed to the ones at the present iteration.

5 Numerical simulations

We are going to study an optimal strategy of our TB model and the basic reproduction ratio
R0(u) and R0(0) with control and without control numerically.
We will illustrate that the optimal control strategies depend on the parameters φ and β, which
denote respectively the rate of progression from infectious to lost of sight and the rate of the
disease transmission. The values of parameters are given by Table 1.
We solve the state equation (2) with the chosen functions vc(t using the Runge–Kutta for-
ward scheme of order 4. Then, we solve the state-dependent Riccati equation (16) using the
backward Runge–Kutta scheme of order 4. We deduce v∗ from system (15).
For those simulations, we take t f = 5 years as control period.

Figure 3: The transmission coefficient β = 0.002 is chosen to assure that the reproduction
ratio R0 without control is less than 1. The rate at which infectious become lost of sight
φ = 0.0022 is chosen here small enough to show that the control of lost of sight individuals
would not really be necessary (Fig. 3a).

Figure 3b: the average basic reproduction ratio is about 0.1344 without control and about
0.1330 with the control of lost of sight individuals. Both of the previous reproduction
ratio are approximately equal, this is due to the fact that our control is not rigorous
enough.
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Table 1 Table of parameter values National Institute of Statistics (2007), WHO (2004), CNPFAT (2001)

Parameters Description Estimated values Source

� Recruitment rate of
susceptible individuals

2 (year)−1 National Institute of Statistics (2007)

β Transmission coefficient variable Assumed

μ Natural death rate 0.019896 (year)−1 National Institute of Statistics (2007)

d1 Death rate of the infectious 0.02272 (year)−1 CNPFAT (2001)

d2 Death rate for the lost of sight 0.20 (year)−1 CNPFAT (2001)

δ Fraction of lost of sight that is
till infectious

1 (year)−1 Assumed

φ Rate at which infectious
become lost of sight

variable Assumed

p Proportion of newly infected
individuals that have fast
progression to the
infectious class

0.3 (year)−1 CNPFAT (2001)

r1 Rate of effective
chemoprophylaxis of
individuals

0 (year)−1 CNPFAT (2001)

r2 Rate of effective
chemoprophylaxis of
infectious individuals

0.8182 (year)−1 CNPFAT (2001)

γ Rate at which the lost of sight
return to the hospital to
continue the treatment

0.01 (year)−1 Assumed

k Rate of progression from
latently infected to
infectious

0.005 (year)−1 WHO (2004)

Figure 3f: for L(0) = 40, the average number during t f = 5 years of lost of sight is about
24.1143 individuals without control. This average number is approximately the same with
control (24.1230), because the rate at which infectious become lost of sight φ = 0.0022 is
chosen here very small.

The Figs. 3c, d and e respectively represent the time evolution of susceptibles S(t), latently
infected E(t) and infectious I (t).

Figure 4: We take the transmission rate β = 0.003 to assure that the reproduction ratio R0

without control is less than 1. The rate at which infectious become lost of sight φ is assumed
here to be φ = 0.1.
Figure 4a: The associated control function v is strict during the two first years.
Figure 4b: The average basic reproduction ratio is about 0.2286 without control of lost of
sight individuals and about 0.2167 with the control.
Figure 4f: for L(0) = 40, the average number during t f = 5 years of lost of sight is about
28.0065 individuals without control and about 24.5704 with the control of lost of sight
individuals. In a period of five years of control (t f = 5) , we succeed in keeping about 10 %
of infectious individuals in a care center with the control strategy.
The Figs. 4c, d and e respectively represent the time evolution of susceptibles S(t), latently
infected E(t) and infectious I (t).

Figure 5: here, the transmission rate of the disease is β = 0.02, and the rate at which
individuals become lost of sight is φ = 0.5.
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Fig. 3 The influence of the control with β = 0.002 and φ = 0.0022. All the other parameter values are as in
Table 1

Figure 5a: for the chosen value of the rate at which individuals become lost of sight (φ), the
associated control function v is strict for the third first years of the control period.
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Fig. 4 The influence of the control with β = 0.003 and φ = 0.1. All the other parameter values are as in
Table 1

Figure 5b: the average basic reproduction ratio is about 0.2226 without control of the lost of
sight individuals and about 0.1584 with the control.
Figure 5f: for L(0) = 40, the average number during the five years of control period of the
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Fig. 5 The influence of the control with β = 0.02 and φ = 0.5. All the other parameter values are as in
Table 1

lost of sight is about 42.3987 individuals without the control of the lost of sight individuals
and about 24.5510 with the control. In a period of five years (t f = 5) of control, we succeed
in keeping about 42% of infectious individuals in a care center.
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Fig. 6 The influence of the control with β = 0.02 and φ = 0.7. All the other parameter values are as in
Table 1

The Figs. 5c, d and e respectively represent the time evolution of susceptibles S(t), latently
infected E(t) and infectious I (t).

Figure 6: for this simulation, the transmission rate of the disease is β = 0.02 and the rate
at which individuals become lost of sight is φ = 0.7.

123

Author's personal copy



Optimal control using state-dependent Riccati equation 209

Figure 6a: for the chosen value of the rate at which individuals become lost of sight (φ), the
associated control function v is strict for the third and the half first years of the control period.
Figure 6b: the average basic reproduction ratio is about 2.5307 without the control of the lost
of sight individuals and about 1.5776 with the control.
Figure 5f: for L(0) = 40, the average number during the 5 years of the control period of the
lost of sight is about 55.1286 individuals without the control of the lost of sight individuals
and about 24.6178 with the control. In a period of five years (t f = 5) of control, we succeed
in keeping about 55 % of infectious individuals in a care center.
The Figs. 6c, d and e respectively represent the time evolution of susceptibles S(t), latently
infected E(t) and infectious I (t).

6 Conclusion

This has considered the problem of optimal control of the transmission dynamic of TB.
A model considering a new class has been investigated and analyzed. An optimal control
strategy has been presented and the results show how important it is to control the lost of
sight class which is very crucial to the study of the disease. Numerical simulations have been
given to illustrate the effectiveness and efficiency of the proposed control scheme. In Africa,
it is very important to keep infectious individuals in a care center in order to complete their
treatment and avoid the quick transmission of the disease. Our control strategy helps to do
so, though other control strategies could be investigated.
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Abstract—The populations of prey and predator interact
with prey harvesting. When there is no predator, the
logistic equation models the behavior of the preys. For
interactions between preys and predators, we use the
generalized Holling response function of type III. This
function which models the consumption of preys by
predators is such that the predation rate of predators
increases when the preys are few and decreases when
they reach their satiety. Our main goal is to analyze the
influence of a SIS infectious disease in the community. The
epidemiological SIS model with simple mass incidence is
chosen, where only susceptibles and infectious are counted.
We assume firstly that the disease spreads only among the
prey population and secondly that it spreads only among
the predator population. There are many bifurcations as:
Hopf bifurcation, transcritical bifurcation and saddle-node
bifurcation. The results indicate that either the disease
dies out or persists and then, at least one population can
disappear because of infection. For some particular choices
of the parameters however, there exists endemic equilibria
in which both populations survive. Numerical simulations
on MATLAB and SCILAB are used to illustrate our
results.

Keywords-Predator; Prey; Infectious disease; Response
function; Bifurcation; Global Stability

I. I NTRODUCTION

There are many epidemiological or ecological models
[6], [7], [8], [9], [10], [11], [5] in the literature and
also many models which encompass the two fields
[3], [4], [8], [9], [10], [11], [12]. Dynamic models for
infectious diseases are mostly based on compartment
structures that were initially proposed by Kermack and
McKendrick (1927,1932) and developed later by many
other researchers.

The main questions regarding population dynamics
concern the effects of infectious diseases in regulating
natural populations, decreasing their population sizes,
reducing their natural fluctuations, or causing destabi-
lizations of equilibria into oscillations of the population
states. With the Holling function response of type III, it
is well known that the predators increase their searching
activity when the prey density increases.

Generally, ifx denotes the density of prey population,
the Holling function of type I isφ1(x) = r x wherer is
the intrinsic growth rate of preys. The Holling function of

type II is φ2(x) =
B ω0 x

1 +B ω1 x
, whereω0 andω1 denote

respectively the time taking by a predator to search and
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capture preys,B is the predation rate per unit of time. In
the models considered in this work, the Holling function
of type III is used for interactions between predators

and preys :φ3(x) =
mx2

a x2 + b x+ 1
[2], wherem and

a are positive constants,b is an arbitrary constant. This
function models the consumption of preys by predators.
It is well known that with this function, the predation
rate of predators increases when the preys are few
and decreases when they reach their satiety (a predator
increases his searching activity when the prey density
increases). The functionsφ1, φ2 andφ3 are respectively
also referred to as Lotka-Volterra, Michaelis-Menten and
sigmoidal response functions. Generally, there are more
macroparasitic infections which can affect only preys,
only predators or both preys and predators. Our goal in
this paper is to analyze the influence of a SIS infectious
disease which spreads only in one of the two populations.
The models considered and analyzed here are different
from all the models in the literature. Moreover, we use
numerical simulations on MATLAB and SCILAB to
illustrate our results.

II. T HE MODEL FORMULATION

The model (s1) is obtained from the classic Lotka-
Volterra model with simple mass action when the disease
spreads only inside the prey population. In this model,
the infected preys do not reproduce and there is no dis-
ease related mortality. The model (s2) is obtained when
the disease spreads only inside the predator population.
These models are respectively





ẋ = r̃

(
1− x

k̃

)
x− m̃x2y

ãx2 + b̃x+ 1
− λ̃x z

+γ̃z − h̃1,

ż = λ̃x z − γ̃z − m̃1z
2y

ãz2 + b̃z + 1
, (s1)

ẏ =
c̃m̃x2y

ãx2 + b̃x+ 1
− m̃2z

2y

ãz2 + b̃z + 1
− d̃y,

x ≥ 0, z ≥ 0, y ≥ 0,





ẋ = r̃

(
1− x

k̃

)
x− m̃x2y

ãx2 + b̃x+ 1
− η̃1x

2ω

ãx2 + b̃x+ 1
−h̃1,

ẏ =
c̃m̃x2y

ãx2 + b̃x+ 1
− d̃ y − δ̃ y ω + µ̃ ω, (s2)

ω̇ =
ẽm̃x2ω

ãx2 + b̃x+ 1
+ δ̃yω − (µ̃+ d̃)ω,

x ≥ 0, y ≥ 0, ω ≥ 0.

where the variablesz and ω denotes respectively the
infected preys and infected predators,r̃ denotes the

intrinsic growth rate of preys,̃d is the natural death rate
of predators,̃k is the capacity of environment to support
the growth of preys,̃h1 is the rate of preys’s harvesting,γ̃
andµ̃ are the recover rates of infected preys and infected
predators respectively,̃λ is the adequate contact rate
between susceptible preys and infected preys whileδ̃ is
the adequate contact rate between susceptible predators
and infected predators. We also assume that infected
predators still can catch preys at a different rateη̃1 than
sound ones. The parameterη̃1 can be thought to be less
than m̃, if the disease affects the ability in hunting of
the predators or larger thañm, if we want to emphasize
that the interactions with infected predators cause the
preys to die for the disease even if they are not caught.
ã andb̃ are positive constants.̃m > 0 andm̃1 > 0 denote
the adequate predation rate between predators and preys.
c̃ and ẽ denote the conversion coefficients.̃m2 can be
negative (conversion of prey’s biomass into predator’s
biomass) or positive (bad effect of the infected preys for
the predator population due to disease).

Trough the linear transformation and time scaling

(X,Z, Y,W, T ) =

(
x

k̃
,
z

k̃
,
y

c̃k̃
,
ω

ẽk̃
, c̃m̃k̃2t

)
, the follow-

ing simplified systems are obtained from (s1) and (s2),





ẋ = ρx(1− x)− p(x) y − λx z + γ z − h1,
ż = λx z − γ z −m1 p(z) y,
ẏ = p(x) y −m2 p(z) y − d y,
x ≥ 0; y ≥ 0; z ≥ 0,

(1)





ẋ = ρx(1− x)− p(x) y − η1 p(x)ω − h1,
ẏ = p(x)y − dy − δ y ω + µω,
ω̇ = e p(x)ω + δ1 y ω − µ1 ω,
x ≥ 0; y ≥ 0;ω ≥ 0,

(2)

where the parameters are defined as follow

ρ =
r̃

c̃m̃k̃2
, η1 =

η̃1ẽ

c̃m̃
, η2 =

η̃2ẽ

c̃m̃
, h1 =

h̃1

c̃m̃k̃3
, λ =

λ̃

c̃m̃k̃
,

γ =
γ̃

c̃m̃k̃2
,m1 =

m̃1

m̃
,m2 =

m̃2

c̃m̃
,m3 =

m̃3

c̃m̃
, d =

d̃

c̃m̃k̃2
,

δ =
δ̃ẽ

c̃m̃k̃
, µ =

µ̃ẽ

c̃2m̃k̃2
, e =

ẽ

c̃
, δ1 =

δ̃

m̃k̃
, µ1 =

µ̃+ d̃

c̃m̃k̃2
,

a = ãk̃2, b = b̃k̃, p(x) =
x2

a x2 + b x+ 1
.

(3)
Systems (1) and System (2) are new and different from

all the models in the literature. These models without
disease give us the same system which has been analyzed
without disease in [1].
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III. R ESULTS

A. Results for the Model (1) with Disease only in Prey
Population

Let us setu1(x) =
ρx(1− x)− h1

(1 +m)p(x)−md
, R0 =

m2(p(η)− d)u21(η)

a(p(η)− d)2u21(η) + b(λη − γ)(p(η)− d)u1(η) + (λη − γ)2

the basic reproduction number, and

x1 =

1−
√
1− 4

h1
ρ

2
, x2 =

1 +

√
1− 4

h1
ρ

2
,

xz =
γ

λ
, x0 =

1

2
, z0 ∈ R∗

+,

(4)

the expressions of the positive real valuesx0, x1, x2, xz.

Theorem 1:The equilibrium points of System (1),
according to the values of the parameters, are given as
follow :

• Whenh1 >
ρ

4
, then there is no equilibrium point.

• When h1 =
ρ

4
, then the unique equilibrium is

B0(x0, 0, 0) which is a double point ifd 6=
1

a+ 2b+ 4
and triple point ifd =

1

a+ 2b+ 4
.

• Whenh1 <
ρ

4
anda d ≥ 1, then the equilibria are

B1(x1, 0, 0) andB2(x2; 0; 0).
• When h1 <

ρ

4
; a d < 1 and x3 = x1, then

B1(x1, 0, 0) is a double point andB2(x2, 0, 0) ex-
ists.

• When h1 <
ρ

4
; a d < 1 and x3 = x2, then

B1(x1, 0, 0) is simple andB2(x2, 0, 0) is a double
point.

• When h1 <
ρ

4
; a d < 1 and x3 ∈]x1;x2[, then

B1(x1, 0, 0); B2(x2, 0, 0) and B3(x3, 0, y3) exist,

wherey3 =
ρx3(1− x3)− h1

d
> 0.

• Whenh1 <
ρ

4
; a d < 1 andx3 ∈ [0;x1[∪]x2; +∞[,

thenB1(x1, 0, 0) andB2(x2, 0, 0) exist.
• When h1 <

ρ

4
; ad < 1; x4 ∈]η;x2[, x2 >

max

(
x3;

γ

λ

)
and R0 > 1, then B1(x1, 0, 0);

B2(x2, 0, 0) andB4(x4, z4, y4) exist, wherex4 > 0,
z4 > 0 andy4 > 0.

Proof : These equilibria are obtained by setting the
right hand side of (1) equals to zero. Fory = 0 one has
equationρx2 − ρx+ h1 = 0. Then we haveB0, B1 and
B2. For z = 0, one hasp(x) = d ⇐⇒ (1 − a d)x2 −

b dx−d = 0. We deducex3 and thenB3. The condition

for existence ofB4 is p(z) =
1

m2
(p(x) − d) > 0 ie

p(x)− d > 0 ⇐⇒ a d < 1 andx ∈]x3,+∞[.
Concerning the stability of these equilibria, the fol-

lowing theorem hold.
Theorem 2:Let’s consider System (1).

• The equilibriaB0 andB1 are always unstable.
• The equilibriumB2 is stable if one of the following

conditions is satisfied :h1 <
ρ

4
,
γ

λ
≥ x2 and

p(x2) ≤ d, or h1 <
ρ

4
,
γ

λ
< x2, p(x2) = d and

p′′(x2) ≤ 0.
• The equilibriumB3 is stable if one of the following

conditions is satisfied.h1 <
ρ

4
, ad < 1, x3 ∈]x1;x2[

andx3 =
γ

λ
, or h1 <

ρ

4
, ad < 1, x3 ∈]x1;x2[, x3 <

γ

λ
and d >

1

a+ 2b+ 4
, or h1 <

ρ

4
, ad < 1, x3 ∈

]x1;x2[, x3 <
γ

λ
, d <

1

a+ 2b+ 4
andχ0(x3) < 0,

whereχ0(x3) is the eigenvalue ofx3.
• The equilibrium pointB4(x4, z4, y4) is asymptoti-

cally stable if and only if the following conditions
hold : a2 < 0; a2a1+a0 > 0 anda1a0 > 0, where





a2 = ρ(1− 2x4)− p′(x4)y4 − λz4
+λx4 − γ −m1p

′(z4)y4,
a1 = − [ρ(1− 2x4)− p′(x4)y4 − λz4]×

[λx4 − γ −m1p
′(z4)y4]

−λm1p(z4)y4 − p(x4)p
′(x4)y4,

a0 = − [ρ(1− 2x4)− p′(x4)y4 − λz4]×
[λx4 − γ −m1p

′(z4)y4] + λm2p(x4)p
′(z4)y4z4

+p′(x4)y4m1p(z4)(λx4 − γ)
+p(x4)p

′(x4)y4(λx4 − γ −m1p
′(z4)y4).

(5)

Proof : The eigenvalues of the jacobian matrixJ(B0)
areχ1 = 0; χ2 = λx0 − γ andχ3 = p(x0)− d.

a) If
γ

λ
<

1

2
or d <

1

a+ 2b+ 4
= p(x0), then

χ2 > 0 or χ3 > 0 andB0 is unstable.

b) If
γ

λ
>

1

2
and d =

1

a+ 2b+ 4
= p(x0), then

χ2 < 0 and χ3 = 0. Hence, the stability of
B0 is given by the center manifold theorem.
The translation(u1, u2, u3) = (x − x0, z, y)
brings the singular pointB0 to the origin.
In the neighborhood of the origin and, since
h1 =

ρ

4
, System (1) has a new form. The

Jacobian matrixJ(B0) is not diagonalizable
and the passage matrix to the Jordan’s basis is
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P =




−1 0 1
0 0 −1
0 1 0


. By the transformation

(v1, v2, v3)
T = P−1(u1, u2, u3)

T , the system
becomes:




v̇1 = v2 + p′(x0)(v1v3 − v23)

+
p′′(x0)

2
(v21 + v23 − 2v1v3)v2

+
m1p

′′(0)
2

v2v
2
3 +O(|(v1, v2, v3)|4),

v̇2 = v3 + p′(x0)(v1v3 − v23)

+
p′′(x0)

2
(v21 + v23 − 2v1v3)v2

−m2p
′′(0)
2

v2v
2
3 +O(|(v1, v2, v3)|4),

v̇3 = χ2v3 − λ(v1v3 − v23) +
m1p

′′(0)
2

v2v
2
3

+O(|(v1, v2, v3)|4).
(6)

We can now find that the center manifold is
given by W c = {v3 = 0}. Therefore, the
system (6) is topologically equivalent, around
the origin, to the following system:




v̇1 = v2 +
p′′(x0)

2
v21v2 +O(|(v1, v2)|4),

v̇2 = O(|(v1, v2)|4),
v̇3 = O(|(v1, v2)|4).

Then, the singular pointB0 is unstable.

c) If
γ

λ
=

1

2
and d =

1

a+ 2b+ 4
= p(x0), then

χ2 = 0 and χ3 = 0. Applying the center
manifold theory as previously,B0 is unstable.

d) If
γ

λ
=

1

2
and d >

1

a+ 2b+ 4
= p(x0), we

haveχ2 = 0 andχ3 < 0. Applying the center
manifold theory as previously,B0 is unstable.

The stability ofB1 is obtained with jacobian matrix.
The stability ofB2 is obtained using the center manifold
theorem. Taking into account the fact thatp(x3) = d, one
find that the characteristic polynomial of the linearized
system around the singular pointB3 is

Q(χ) = (χ− λx3 + γ)
[−χ2 + (ρ(1− 2x3)− p′(x3)y3)χ

]

−d(χ− λx3 + γ)p′(x3)y3.

The discriminant ofQ(χ) is

∆3(h1) =
(
ρ(1− 2x3)− p′(x3)y3

)2 − 4dp′(x3)y3. (7)

a) If x3 >
γ
λ , then the eigenvalueχ1 = λx3−γ >

0. Hence,B3 is unstable.
b) If x3 <

γ
λ , thenχ1 < 0.

b1) When∆3(h1) = 0 the Jacobian matrix atB3

has a double eigenvalue

χ0(x3) :=
ρ(1− 2x3)− p′(x3)y3

2
. (8)

• If d ≥ 1

a+ 2b+ 4
, thenx3 > 1

2 . From where

χ0(h1) < 0. Therefore, the singular pointB3

is stable.
• If d <

1

a+ 2b+ 4
, then: Whenχ0(h1) < 0

(resp.χ0(h1) > 0) the singular pointB3 is
stable (resp. unstable).

b2) When∆3 > 0 the eigenvalues of the Jacobian

matrix atB3 areχ1 < 0, χ2 = χ0(h1)−
√
∆3

2

andχ3 = χ0(h1) +

√
∆3

2
. We have,χ2χ3 =

dp′(h1)y3 > 0 andχ2 + χ3 = χ0(h1), where
χ0(h1) is defined by (8).

• If d ≥ 1

a+ 2b+ 4
, then the singular point

B3 is stable.

• If d <
1

a+ 2b+ 4
, then: Whenχ0(h1) < 0

(resp.χ0(h1) > 0) the singular pointB3 is
stable (resp. unstable).

b3) If ∆3 < 0, then the eigenvalues of the Jacobian
matrix at B3 are χ1 < 0, χ2 = χ0(h1) −
i

√−∆3

2
and χ3 = χ0(h1) + i

√−∆3

2
, where

χ0(h1) is defined by (8). Ifd ≥ 1

a+ 2b+ 4
,

then the singular pointB3 is stable. If d <
1

a+ 2b+ 4
andχ0(h1) < 0 then, the singular

point B3 is stable. If d <
1

a+ 2b+ 4
and

χ0(h1) > 0 then, the singular point is unstable.

If d <
1

a+ 2b+ 4
and χ0(h1) = 0 then,

the real central and stable spaces are respec-
tively defined byEc = 〈(1, 0, 0); (0, 0, 1)〉 and

Es =

〈
(1,−1− dp′(x3)y3

χ2
1

,
p′(x3)y3

χ1
)

〉
. Then

applying the center manifold theorem it comes
that the singular pointB3 is unstable.

The stability ofB4 is obtained using the Routh-Hurwitz
conditions.
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B. Results for the Model (2) with Disease only inside
Predator Population

Let us setu2(x) =
e

δ

[
µ1

e
− p(x)

]
and v2(x) =

(p(x)− d)u2(x)

e

[
d

e
− p(x)

] . Let x5 the eventual positive root of

equationp(x5) =
d

e
and the functiong2(x) = ρx(1 −

x)− h1 − p(x)u2(x)− η1p(x)v2(x).
Hypothesis 1 : The attack of non-infected predators

is more important than the one of the infected predators

i.e. e =
ẽ

c̃
≤ 1.

Theorem 3:The equilibria of System (2), wherex0;
x1 andx2 are given by (4), according to the values of
the parameters, are given as follow.

• Whenh1 >
ρ

4
, then there is no equilibrium point.

• Whenh1 =
ρ

4
, thenC0(x0; 0; 0) is a double point if

d 6= 1

a+ 2b+ 4
and triple point ifd =

1

a+ 2b+ 4
.

• When h1 <
ρ

4
and a d ≥ 1, thenC1(x1; 0; 0) and

C2(x2; 0; 0) exist.
• When h1 <

ρ

4
; a d < 1 and x3 = x1, then

C1(x1; 0; 0) is a double point andC2(x2; 0; 0) ex-
ists.

• When h1 <
ρ

4
; a d < 1 and x3 = x2, then

C1(x1; 0; 0) exists andC2(x2; 0; 0) is a double
point.

• When h1 <
ρ

4
; a d < 1 and x3 ∈]x1;x2[,

then the equilibria areC1(x1; 0; 0); C2(x2; 0; 0) and

C3(x3; y3; 0), wherey3 =
ρx3(1− x3)− h1

d
> 0.

• Whenh1 <
ρ

4
; a d < 1 andx3 ∈ [0;x1[∪]x2; +∞[,

then the equilibria areC1(x1; 0; 0) andC2(x2; 0; 0).

• When h1 <
ρ

4
; a d < 1;

a d

e
≥ 1, x6 ∈

]x1;x2[∩]x3; +∞[; x2 > x3 or h1 <
ρ

4
;
a d

e
<

1, x6 ∈]x1;x2[∩]x3;x5[; x2 > x3; x1 < x5,
then the equilibria areC1(x1; 0; 0); C2(x2; 0; 0) and
C4(x6; y6;ω6), y6 = u2(x6) andω6 = v2(x6).

Proof : The equilibriaC0, C1, C2 andC3 are obtained
in the same way as in theorem 1, setting the right hand
side of the system equals to zero. EquilibriumC4 exists
when the previous conditions are satisfied.

Concerning the Stability analysis of these equilibria,
the following theorem holds.

Theorem 4:Let’s consider the System (2) and sup-
pose that Hypothesis 1 holds.

• The equilibriaC0 andC1 are always unstable.
• The equilibriumC2 is stable ifh1 <

ρ

4
andp(x2) <

d.
• The equilibriumC3 is stable if and only if one of

these conditions is satisfied :h1 <
ρ

4
, ad < 1, x3 ∈

]x1;x2[ andy3 =
e

δ1

(
µ1

e
− d

)
or h1 <

ρ

4
, ad < 1,

x3 ∈]x1;x2[, y3 <
e

δ1

(
µ1

e
− d

)
, d > p(x0), or

h1 <
ρ

4
, ad < 1, x3 ∈]x1;x2[, y3 <

e

δ1

(
µ1

e
− d

)
,

d < p(x0), ξ0(x3) < 0.
• The singular pointC4(x6, y6, ω6) is asymptotically

stable if and only if the following conditions are
satisfied :b2 < 0; b2b1 + b0 > 0 and b1b0 > 0,
where



b2 = ρ(1− 2x6)− p′(x6)(y6 + η1ω6)
+p(x6)− d− δω6;

b1 = − (ρ(1− 2x6)− p′(x6)(y6 + η1ω6))×
(p(x6)− d− δω6) + δ1ω6(µ− δy6)
−p(x6)p

′(x6)y6 − eη1p(x6)p
′(x6)ω6;

b0 = ep(x6)p
′(x6)ω6 [δy6 − µ+ η1(p(x6)− d− δω6)]

−δ1η1p(x6)p
′(x6)y6ω6

−δ1ω6(µ− δy6) (ρ(1− 2x6)− p′(x6)(y6 + η1ω6)) .
(9)

Proof : The stability ofC0 is deduce as forB0 in theorem
2. The jacobian matrix always has a positive eigenvalue.
Then,C1 is unstable. We obtain the stability ofC2 and
C3 applying the same arguments as forB2 and B3 in
theorem 2. The stability ofC4 is obtained using the
Routh-Hurwitz conditions.

IV. H OPFBIFURCATION

Let us introduce the following parameters

h10 =
ρx3

bx3 + 2

[
2ax33 + (b− a)x23 + 1

]
, (10)

and

Π =
1

16

[
p(2)(x3) + p(3)(x3)

]
− (p′(x3))2

4
√
−∆3(h10)

. (11)

Recalling (4), the flow of System (1) and System (2)
respectively undergo a supercritical Hopf bifurcation
aroundh10 given by the following result

Theorem 5:(Hopf bifurcation) Leth1 < ρ
4 ; ad < 1;

x3 ∈]x1,min
(
1
2 ,

γ
λ

)
[. Thanks to Hypothesis 1. Then, a

unique stable curve of periodic solution bifurcates from
the singular pointsB3 andC3 into the regionsh1 > h10
if Π < 0 or h1 < h10 if Π > 0. The singular points
B3 and C3 are stable forh1 < h10 and unstable for
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h1 ≥ h10. This correspond to supercritical stable Hopf
bifurcation.

Proof : The proof can be obtained as in [13].

V. NUMERICAL SIMULATIONS
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Fig. 1. Phase portraits of System (1) forh1 <
ρ
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Fig. 3. Phase portraits of System (2) forh1 <
ρ

4
andd > p(x2).

Stability of C2.
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Fig. 4. Phase portraits of System (2) forh1 <
ρ

4
andd < p(x2).
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Fig. 5. Phase portraits of System (1). The case (a) corresponds to

h1 < ρ
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and
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2
. Illustration of saddle-node bifurcation phenomenon.

VI. CONCLUSION

Our goal was to analyze the modifications on a preda-
tor prey model (generalized Gause model) with prey har-

vesting and Holling response type III :
mx2

a x2 + b x+ 1
,

to account for a disease spreading among one of the
two species. The simple epidemiological model SIS has
been chosen, where only susceptibles and infectives are
counted. The results indicate that either the disease dies
out, leaving only neutral cycles of generalized Gause
model, or one species disappears and all individuals
in the other one eventually become infected. For some
particular choices of the parameters however, endemic
equilibria in which both populations survive seem to
arise.
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