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Abstract / Résumé

Abstract

This work deals with a recent within-host malaria infection model with multistrain
for the parasites and a spatial modeling of anopheles mosquito dynamics population.
In this work, we also consider models of infectious disease into the host population
structured by age. Namely, Hepatitis B virus (HBV) model and Susceptible-Infected-
Lost of sight (SIL) model for the spread of a directly transmitted infectious disease
taking into account demographic process and vertical transmission of the disease.

The work is organized into five majors chapters: 1. General introduction, 2. Biology
of Malaria and Hepatitis B Virus, 3. Hepatitis B virus and within-host malaria models,
4. Within-host malaria infection and Anopheles mosquito dynamics, 5. Population
Models Structured by Age (Hepatitis B and SIL models). The true chapters of this
work are Chapters 4 and 5.

Fundamentals tools of this work are Hille-Yosida operator, Strongly continuous semi-
group, Integrated semigroup, Invariant manifold, Bifurcation, Lyapunov stability, lin-
earized stability and Numerical analysis. For each model, we derived the existence of
a unique maximal bounded dissipative semiflow. We also performed the asymptotic
behavior of the models with respect to a specific threshold parameter.

Thematic results are provided for Within-host malaria infection, Anopheles mosquito
dynamics, HBV and HIV dynamics in age-structured population.

For example, for within-host multi-strain malaria infection dynamics, our study al-
lowed for the observation of competitive suppression, the reduction of parasites numbers
due to the presence of another parasite, and competitive release, the improved perfor-
mance of a parasite after the removal of a competitor. These studies demonstrated that

the presence of two parasites led to the reduction in density of at least one parasite.
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Résumé

Dans cette thése, nous étudions un récent modéle intra-hote de paludisme & plusieurs
souches et la dynamique spatiale des anophéles moustiques. Nous étudions aussi deux
modéles épidémiques pour une population hdte structuré en age. Plus précisément,
un modele de I'hépatite viral B et un modéle SIL (Susceptible-Infectés-Perdus de vue)
prenant en compte la transmission verticale de la maladie.

Ce travail est organisé en cinq chapitres majeurs: 1. Introduction Générale, 2.
Biologie du Paludisme et de I’'Hépatite Virale B, 3. Les modéles d’Hépatite virale B et
intra-hote de paludisme, 4. L’infection intra-héte de paludisme et Dynamique spatiale
des anophéles moustiques, 5. Modéles de population structurés en age (modéles SIL et
d’hépatite B). L’essentiel de ce travail est donné par les Chapitres 4 et 5.

Les outils fondamentaux de ce travail sont les opérateurs de Hille-Yosida, les semi-
groupes fortement continus, les semi-groupes intégrés, la théorie de bifurcation, sta-
bilité au sens de Lyapunov, la stabilité linéaire et ’analyse numérique. Pour chaque
model, nous démontrons 'existence et l'unicité d’un unique flow borné, dissipatif et
régulier. Nous étudions aussi le comportement asymptotique de chaque model suivant
un parameétre seuil spécifique.

Les résultats thématiques sont donnés pour la dynamique d’infection intra-hote multi-
souches de paludisme, la dynamique spatiale des anophéles moustiques, la dynamique
d’hépatite virale B et de VIH dans une population structurée en age.

Par exemple, pour I'infection intra-hote multi-souches de paludisme, notre étude dé-
montre I’élimination compétitive des souches plasmodiales, la réduction du nombre de
parasites dus & la présence d’une autre souche plasmodiale. Cette étude a démontré
que la présence de deux parasites conduit & la réduction de la densité d’au moins un

parasite.
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CHAPTER ONE

GENERAL INTRODUCTION

In this new century mankind faces ever more challenging environmental and public
health problems, such as pollution, invasion by exotic species, the emergence of new
diseases or the emergence of diseases into new regions (West Nile virus, SARS, An-
thrax, etc.), the resurgence of existing diseases (influenza, malaria, TB, HIV/AIDS,
etc.), and the antibiotic-resistant infections (malaria, etc.). Mathematical models have
been successfully used to study many biological, epidemiological and medical problems,
and nonlinear and complex dynamics have been observed in all of those contexts. Math-
ematical studies have helped us not only to better understand these problems but also
to find solutions in some cases, such as the prediction and control of SARS outbreaks,
understanding HIV infection, and the investigation of antibiotic-resistant infections in
hospitals.

This work deals with a recent within-host malaria infection model with multistrain
for the parasites and a spatial modeling of anopheles mosquito dynamics population.
In this work, we also consider models of infectious disease into the host population
structured by age. Namely, Hepatitis B virus (HBV) and Susceptible-Infected-Lost of
sight (SIL) models.

1.1 Type of diseases.

The Oxford English Dictionary defines a disease as "a condition of the body, or of
some part or organ of the body, in which its functions are disturbed or deranged; a
morbid physical condition; a departure from the state of health, especially when caused
by structural change." The fine-scale classification of diseases varies drastically between
different scientific disciplines. Medical doctors and veterinary clinicians, for example,
are primarily interested in treating human patients or animals and, as such, are most

concerned about the infection’s pathophysiology (affecting, for example, the central
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1.1 Type of diseases. 2

nervous system) or clinical symptoms (for example, secretory diarrhea). Microbiologists,
on the other hand, focus on the natural history of the causative organism: What is the
etiological agent (a virus, bacterium, protozoan, fungus, or prion)? and what are the
ideal conditions for its growth? Finally, epidemiologists are most interested in features
that determine patterns of disease and its transmission.

Diseases can be either infectious or noninfectious. Infectious diseases (such as in-
fluenza) can be passed between individuals, whereas noninfectious diseases (such as
arthritis) develop over an individual’s lifespan. The epidemiology of noninfectious dis-
eases is primarily a study of risk factors associated with the chance of developing the
disease (for example, the increased risk of lung cancer attributable to smoking). In
contrast, the primary risk factor for catching an infectious disease is the presence of
infectious cases in the local population.

Infectious diseases (both macro- and microparasitic) can be subdivided into two fur-
ther categories, depending on whether transmission of infection is direct or indirect.
Direct transmission is when infection is caught by close contact with an infectious in-
dividual. The great majority of microparasitic diseases, such as influenza, measles, and
HIV, are directly transmitted, although there are exceptions such as cholera, which is
waterborne. Generally, directly transmitted pathogens do not survive for long outside
the host organism. In contrast, indirectly transmitted parasites are passed between hosts
via the environment; most macroparasitic diseases, such as those caused by helminths
and schistosomes, are indirectly transmitted, spending part of their life cycle outside of
their hosts.

Worldwide there are about 1,415 known human pathogens of which 217 (15%) are
viruses or prions and 518 (38%) are bacteria or rickettsia; hence around 53% are mi-
croparasites (Cleaveland et al. 2001[34]). Of these pathogens, 868 (61%) are zoonotic
and can therefore be transmitted from animals to humans. Around 616 pathogens of
domestic livestock are known, of which around 18% are viral and 25% bacterial. How-
ever, if we restrict our attention to the 70 pathogens listed by the Office International
des Epizooties (which contain the most prominent and infectious livestock diseases), we
find that 77% are microparasites (Cleaveland et al. 2001[34]|). The lower number of
known livestock pathogens compared to human pathogens probably reflects to some de-

gree our natural anthropocentric bias. Similarly, very few infectious diseases of wildlife
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1.2 Characterization of diseases. 3

are known or studied in any detail, and yet wildlife reservoirs may be important sources
of novel emerging human infections. It is therefore clear that the study of microparasitic

infectious diseases encompasses a huge variety of hosts and diseases.

1.2 Characterization of diseases.

The progress of an infectious microparasitic disease is defined qualitatively in terms of
the level of pathogen within the host, which in turn is determined by the growth rate of
the pathogen and the interaction between the pathogen and the host’s immune response.
Figure 1.1 shows a much simplified infection profile. Initially, the host is susceptible to
infection: No pathogen is present; just a low-level nonspecific immunity within the host.
At time 0, the host encounters an infectious individual and becomes infected with a
microparasite; the abundance of the parasite grows over time. During this early phase
the individual may exhibit no obvious signs of infection and the abundance of pathogen
may be too low to allow further transmission—individuals in this phase are said to be
in the exposed class. Once the level of parasite is sufficiently large within the host, the
potential exists to transmit the infection to other susceptible individuals; the host is
infectious. Finally, once the individual’s immune system has cleared the parasite and
the host is therefore no longer infectious, they are referred to as recovered. [120].

This fundamental classification (as susceptible, exposed, infectious, or recovered)
solely depends on the host’s ability to transmit the pathogen. This has two implica-
tions. First, the disease status of the host is irrelevant—it is not important whether the
individual is showing symptoms; an individual who feels perfectly healthy can be excret-
ing large amounts of pathogen (Figure 1.1). Second, the boundaries between exposed
and infectious (and infectious and recovered) are somewhat fuzzy because the ability to
transmit does not simply switch on and off. This uncertainty is further complicated by
the variability in responses between different individuals and the variability in pathogen
levels over the infectious period; it is only with the recent advances in molecular tech-
niques that these within-host individual-level details are beginning to emerge.

Although such qualitative descriptions of disease dynamics allow us to understand
the behavior of infection within an individual and may even shed some light on po-

tential transmission, if we are to extrapolate from the individual-level dynamics to the
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1.2 Characterization of diseases. 4

population-scale epidemic, numerical values are required for many of the key parame-
ters. Two fundamental quantities govern the population-level epidemic dynamics: the
basic reproductive ratio, Ry, and the timescale of infection, which is measured by the
infectious period for SIS and SIR infections or by a mixture of exposed and infectious
periods in diseases with SEIR dynamics (for details, see [120], Chapter 2). The basic
reproductive number is one of the most critical epidemiological parameters because it
defines the average number of secondary cases an average primary case produces in a
totally susceptible population. Among other things, this single parameter allows us to
determine whether a disease can successfully invade or not, the threshold level of vacci-
nation required for eradication, and the long-term proportion of susceptible individuals

when the infection is endemic.

Incubation e Diseased > } Medical
status
. Recovered _
A g 4/ Latent < Infectious -~ Infection
. xposed / Laten ot
Susceptible o b e status
-

pathogen

time time since infection

of
infection

Figure 1.1: A caracature of the time-line of infection, showing the dynamics of the
pathogen (gray area) and the host immune response (black line) as well as labeling the
various infection classes: susceptible, exposed, infectious, and recovered. Note that the
diseased period, when symptoms are experienced, is not necessarily correlated with any

particular infection class. (Ref. Keeling et al. 2008[120])
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1.3 What are mathematical models? 5

1.3 What are mathematical models?

Recent years have seen an increasing trend in the number of publications, both in
highprofile journals and more generally, that utilize mathematical models (Figure 1.2).
This is associated with an increased understanding of what models can offer in terms
of prediction and insight. Any model can be typically thought of as a conceptual tool
that explains how an object (or system of objects) will behave. A mathematical model
uses the language of mathematics to produce a more refined and precise description of
the system. In epidemiology, models allow us to translate between behavior at various
scales, or extrapolate from a known set of conditions to another. As such, models allow
us to predict the population-level epidemic dynamics from an individual-level knowledge
of epidemiological factors, the long-term behavior from the early invasion dynamics, or
the impact of vaccination on the spread of infection.

By definition, all models are "wrong," in the sense that even the most complex will
make some simplifying assumptions. It is, therefore, difficult to express definitively
which model is "right," though naturally we are interested in developing models that
capture the essential features of a system. Ultimately, we are faced with a rather sub-
jective measure of the usefulness of any model.

Formulating a model for a particular problem is a trade-off between three important
and often conflicting elements: accuracy, transparency, and flexibility, [120]. Accuracy,
the ability to reproduce the observed data and reliably predict future dynamics, is clearly
vital, but whether a qualitative or quantitative fit is necessary depends on the details
of the problem. A qualitative fit may be sufficient to gain insights into the dynamics
of an infectious disease, but a good quantitative fit is generally necessary if the model
is used to advise on future control policies. Accuracy generally improves with increas-
ing model complexity and the inclusion of more heterogeneities and relevant biological
detail. Clearly, the feasibility of model complexity is compromised by computational
power, the mechanistic understanding of disease natural history, and the availability
of necessary parameters. Consequently, the accuracy of any model is always limited.
Transparency comes from being able to understand (either analytically or more often
numerically) how the various model components influence the dynamics and interact.

This is usually achieved by successively adding or removing components and building
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1.4 What is a good model? 6

upon general intuitions from simpler models. As the number of model components
increases, it becomes more difficult to assess the role of each component and its interac-
tions with the whole. Transparency is, therefore, often in direct opposition to accuracy
(Figure 1.3). Flexibility measures the ease with which the model can be adapted to
new situations; this is vital if the model is to evaluate control policies or predict future
disease levels in an ever-changing environment. Most mechanistic models (such as those
within this book) are based on well-understood disease transmission principles and are
therefore highly flexible, whereas "black-box" time-series tools (such as neural nets)
that may be able to accurately reproduce a given time series of reported cases are less

amenable to modification.

1.4 What is a good model?

According to Keeling et al. 2008 [120], no model is perfect, and no model can ac-
curately predict the detailed outcome of an infection process. However, two key points
define a good model. First, a model should be suited to its purpose-that is, it should
be as simple as possible, but no simpler-having an appropriate balance of accuracy,
transparency, and flexibility (Figure 1.3). A model that is designed to help us under-
stand the behavior of an infectious disease should concentrate on the characteristics
that are of interest while simplifying all others. A model built for accurate prediction
should provide a comprehensive picture of the full dynamics, and include all the relevant
features of the disease and host, although determining which factors are relevant and
which may be safely ignored is a complex and skilled process. Second, the model should
be parameterizable (where necessary) from available data. Thus, although a predictive
model requires the inclusion of many features, it is important that they can all be pa-
rameterized from available data. Hence, in many situations—such as at the start of an
emerging (novel) epidemic-it may be impossible to produce a good predictive model. In
contrast, if we are interested only in understanding an epidemic pattern, there is far less
need for a model to accurately represent a particular scenario, and so parameterization
and availability of data are less important. Therefore, it is clear that what constitutes

a good model is context dependent.
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Figure 1.2: An indication of the increasing importance and use of mathematical models
in the epidemiological literature. White bars show the approximate number of publica-
tions in the entire scientific literature that utilize models of infectious diseases. (Data
are obtained from ISI Web of Science, and include all publications that contain in their

" and "infect*," and either "model*" or "simu-

title or abstract the words "epidemic,
lat*.") The gray and black bars show the number of these publications to be found in
Nature and Science respectively, providing some indication of the high impact of such
work. (These papers were identified from their title and abstract.) Note the different

scales for general papers and those in Nature or Science. (Ref. Keeling et al. 2008[120])

1.5 Aged-structured models

Structured population models distinguish individuals from one another according to
characteristics such as age, size, location, status, and movement, to determine the birth,
growth and death rates, interaction with each other and with environment, infectivity,
etc. The goal of structured population models is to understand how these characteristics
affect the dynamics of these models and thus the outcomes and consequences of the
biological and epidemiological processes Magal et al. 2008|148].

Mathematical models of populations incorporating age structure, or other structuring

of individuals with continuously varying properties, have an extensive history. The
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earliest models of age structured populations, due to Sharpe and Lotka in 1911 [194]
and McKendrick in 1926[154] established a foundation for a partial differential equations
approach to modeling continuum age structure in an evolving population. At this early
stage of development, the stabilization of age structure in models with linear mortality
and fertility processes was recognized, although not rigorously established [138, 139].
Rigorous analysis of these linear models was accomplished later in 1941 by Feller [51],
in 1963 by Bellman and Cooke [15], and others, using the methods of Volterra integral
equations and Laplace transforms. Many applications of this theory have been developed
in demography: Coale 37|, Inaba [112], Keyfitz [125], Pollard [184], biology: Arino [10],
Ayati [12], Bell and Anderson [13], Cushing [38|, Gyllenberg [90], Von Foerster [207],
and epidemiology: Busenberg and Cooke [25], Castillo-Chavez and Feng [28|, Feng,
Huang, Castillo-Chavez [71|, Feng, Li, Milner [72|, Hoppensteadt [102], Kermack and
McKendrick [124], to name only a few.

A new impetus of research in age structured models arose with the pioneering work
of Gurtin and MacCamy in 1974 [89] for nonlinear age structured models. Their
technology, which utilized a nonlinear Volterra integtral equations approach, estab-

lished the existence, uniqueness, and convergence to equilibrium of solutions to non-
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linear versions of the Sharpe-Lotka-McKendrick model. A rapid expansion of research
in nonlinear models ensued in both theoretical developments and biological applica-
tions. A comprehensive treatment of this approach is given by lannelli [108]. The
increasingly complex mathematical issues involved in nonlinearities in age structured
models led to the development of new technologies, and one of the most useful of
these has been the method of semigroups of linear and nonlinear operators in Banach
spaces. This functional analytic approach was developed by many researchers, including
[14, 26, 35, 49, 50, 86, 87, 109, 140, 141, 186, 200, 201, 202, 203, 211].

In the semigroup approach, an evolving age structured population is viewed as a
dynamical system in a state space such as X = L'((0,a;),R), where a; < oo is the
maximum age of individuals. The initial stage at time t = 0 is a given age distribution
¢(a),a € (0,a1), where ¢ € X. The age distribution at a later time ¢ > 0 is given by
(S(t)¢)(a), where S(t), t > 0 is a linear or nonlinear semigroup of operators in X. The
function p(t,a) = (S(t)¢)(a) is viewed as the age density of the population at time ¢, in

the sense that the total population at any time ¢ in a specific age range (a,a) C (0, a;)

/;p(t, a)da.

If the initial data ¢ is sufficiently smooth, then p(t, a) satisfies the linear partial differ-

18

ential equation model (I.1):

3, g,
—p(t,a) + =—p(t,a) = —pla)p(t,a), a € (0,a1),t>0;
Y mortalit
aging Y

p(t,0) = /O " Blayp(t, a)da, t > 0:

birth rate at time t
6(a),a € (0,a1),6 € X.

p(0,a)

The mortality process is controlled by the age-dependent mortality modulus p(a). The
reproductive process is controlled by the age dependent fertility modulus f(a). If the
initial state ¢ € X is not sufficiently regular, then the formula p(t,a) = (S(t)¢)(a) is
viewed as a generalized solution of (I.1). The advantage of the semigroup approach is
that it enables description of the population processes as a dynamical system in the state
space X. Nonlinear version of (I.1), as first investigated in [89], allow the mortality and

fertility moduli to depend on the density p(t,a) or a functional of density, such as the
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al
total population / p(t,a)da at time t [52, 61, 211, 212, 214].
0

1.6 Layout of this work.

This thesis is organized into five majors chapters (including this introduction). To
help with a rapid understanding of each chapter, crucial synopsis of the main points are
highlighted throughout the chapter as follows:

1. General Introduction
This chapter introduces the basic concepts and ideas of modeling, as well as providing
a brief overview of epidemiological characteristics and behavior. We also gives a brief
description of mathematical models of populations incorporating age structure, or other
structuring of individuals with continuously varying properties.

2. Biology of Malaria and Hepatitis B Virus
The emergence and spread of antimalarial drug resistance poses a severe and increasing
public health threat. All the most effective drugs that we have had in the last few
decades have been one by one rendered useless by the remarkable ability of this parasite
to mutate and develop resistance. The P. falciparum parasite is now resistant to all
of the used antimalarial drugs, even to the latest artemisinin-based combination treat-
ments. Failures in prophylaxis or treatments induce the re-emergence of parasite related
morbidity and mortality.

On the other hand, hepatitis B virus is a general term meaning inflammation of the
liver and can be caused by a variety of different viruses such as hepatitis A, B, C, D
and E. Of the many viral causes of human hepatitis few are of greater global importance
than hepatitis B virus. More than 2 000 million people alive today have been infected
with HBV at some time in their lives. Of these, about 350 million remain infected
chronically and become carriers of the virus.

3. Models of Hepatitis B virus and within-host malaria.

Mathematical models associated to within-host P. falciparum malaria infection have
been proposed since the pioneer work of Anderson, May and Gupta [2]. This model
was intended to explain experimental observations, namely parasitaemia, that is, the
concentration of parasitized red blue cells and also the decrease of the uninfected red

blue cells leading to anaemia. Such ideas have been further developed in [4, 78, 98,
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101, 103, 191, 134]. However all these works do not take into account an important
characteristic of P. falciparum which is sequestration of merozoites with the pRBC and
their ruptures. Such an issue has been considered using discrete age-structured systems
of equations (see for instance |79, 80, 81, 159]) with constant red blue cells population
assumption. We refer to Iggidr et al. [111] for a mathematical study of a discrete
age-structured model with varying red blue cells concentration.

For HBV infection, many mathematical models have been proposed to investigate the
transmission dynamics of HBV in various countries and regions in the world; covering
many topics: sexual transmission of HBV which includes heterogeneous mixing with
respect to age and sexual activity[5]; relation between the age at infection with HBV and
the development of the carrier state[68]; HBV transmission in developing countries[158,
67, 215|; the long-term effectiveness of the vaccination[221]; determined the prevalence
of infection|[160]. Age-structured models have also been used to model the transmission
dynamics of HBV by some researchers; see for instance Edmunds et al.[68]|, McLean and
Blumberg|158|, Zhao, Xu, and Lu|221|, Zou, Ruan and Zhang|222].

4. Within-host malaria infection and Anopheles mosquito dynamics.

This first true chapter is subdivided in two sections. The first section deals with an age-
structured malaria within-host model and the second section deals with an advection-
reaction mathematical model for the dynamics of the malaria vector.

For the age-structured malaria within-host model, taking into account multi-strains
interaction, we provide a global analysis of the model depending upon some epidemic
threshold 75. When Ty < 1, then the disease free equilibrium is globally asymptotically
stable and the parasites are cleared. On the contrary if 7y > 1, the model exhibits the
competition exclusion principle. Roughly speaking, only the strongest strain survives
while the other strains go to extinct. Under some additional parameter conditions we
prove that the endemic equilibrium corresponding to the strongest strain is globally
asymptotically stable.

Despite the enormous global burden of malaria, after more than a century of research
we still have a poor understanding of the mechanistic link between environmental vari-
ables, such as temperature and malaria risk. Hence, this chapter also develop and
analyze an advection-reaction mathematical model for the dynamics of the malaria vec-

tor, taking into account environmental parameters (such as temperature). We derive
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the existence of positive solutions to the seasonal model and the mosquito extinction
results. We also derive persistence results to the seasonal model: the weak persistence
results and the strong persistence results.

5. Population Models Structured by Age: Hepatitis B and SIL models
This chapter is organized in two sections and deals with two population models struc-
tured by age. The first section is concerned by a mathematical SIL (Susceptible-Infected-
Lost of sight) model for the spread of a directly transmitted infectious disease in an
age-structured population; taking into account the demographic process and the verti-
cal transmission of the disease. For the SIL model, we first establish the mathematical
well-posedness of the time evolution problem by using the semigroup approach. Next
we prove that the basic reproduction ratio Ry is given as the spectral radius of a positive
operator, and an endemic state exist if and only if the basic reproduction ratio Ry is
greater than unity, while the disease-free equilibrium is locally asymptotically stable if
Ry < 1. We also show that the endemic steady states are forwardly bifurcated from the
disease-free steady state when Ry cross the unity. Finally we examine the conditions for
the local stability of the endemic steady states.

The second section of the chapter is concerned by and age-structured model for the
transmission of hepatitis B virus, with differential infectivity: symptomatic infection
and asymptomatic infection. The model is completely analyzed. We compute the basic
reproduction number Rg. We investigate the existence of equilibria and study their
stability. We found that the model exhibits a forward bifurcation, that is, if Ry < 1,
there exists a disease-free equilibrium which is globally asymptotically stable, while if
Ro > 1, the disease-free equilibrium is unstable and there exists a unique endemic which
is globally asymptotically stable. Numerical results are presented to illustrate analytical
results. Through numerical simulation, we found that a control strategy of HBV consist
in a combination of immunization of newborns, immunization of susceptible individuals

(at least young adults), and reduction of perinatal infection.
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CHAPTER Two

BIOLOGY OF MALARIA AND HEPATITIS

B VIRUS.

2.1 Malaria biology

Malaria is one of the most severe public health problems worldwide. It is a leading
cause of death and disease in many developing countries, where young children and
pregnant women are the groups most affected. According to the World Health Orga-
nization’s World Malaria Report 2012 and the Global Malaria Action Plan: 3.3 billion
people (half the world’s population) live in areas at risk of malaria transmission in
106 countries and territories. In 2010, malaria caused an estimated 216 million clinical
episodes, and 655,000 deaths [169]. An estimated 91% of deaths in 2010 were in the
African Region [216], followed by 6% in the South-East Asian Region and 3% in the
Eastern Mediterranean Region (3%). About 86% of deaths globally were in children.
Malaria imposes substantial costs to both individuals and governments. Direct costs
(for example, illness, treatment, premature death) have been estimated to be at least
US$ 12 billion per year. The costs are many times more than that in lost economic

growth.

2.1.1 Epidemiology

The majority of malaria cases (65%) occur in children under 15 years old [167]. About
125 million pregnant women are at risk of infection each year; in Sub-Saharan Africa,
maternal malaria is associated with up to 200,000 estimated infant deaths yearly [96].
There are about 10,000 malaria cases per year in Western Europe, and 1300-1500 in the
United States [199]. About 900 people died from the disease in Europe between 1993 and
2003 [121]. Both the global incidence of disease and resulting mortality have declined
in recent years. According to the WHO, deaths attributable to malaria in 2010 were
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reduced by over a third from a 2000 estimate of 985,000, largely due to the widespread
use of insecticide-treated nets and artemisinin-based combination therapies [104].

The geographic distribution of malaria within large regions is complex, and malaria-
afflicted and malaria-free areas are often found close to each other [85]. Malaria is
presently endemic in a broad band around the equator, in areas of the Americas, many
parts of Asia, and much of Africa; in Sub-Saharan Africa, 85-90% of malaria fatalities
occur [130] (see Figure 2.1).

Malaria is prevalent in tropical and subtropical regions because of rainfall, consistent
high temperatures and high humidity, along with stagnant waters in which mosquito
larvae readily mature, providing them with the environment they need for continuous

breeding.

-] Malaria transmission

- Malaria transmission Malaria transmission
——is not known to occur

occurs throughout occurs in some parts

Figure 2.1: Approximation of the parts of the world where malaria transmission occurs.

Five species of Plasmodium can infect and be transmitted by humans. The vast
majority of deaths are caused by P. falciparum and P. vivaz, while P. ovale, and P.
malariae cause a generally milder form of malaria that is rarely fatal. The zoonotic
species P. knowlesi, prevalent in Southeast Asia, causes malaria in macaques but can
also cause severe infections in humans. Malaria is typically diagnosed by the microscopic

examination of blood using blood films, or with antigen-based rapid diagnostic tests.
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Modern techniques that use the polymerase chain reaction to detect the parasite’s DNA
have also been developed, but these are not widely used in malaria-endemic areas due

to their cost and complexity.

2.1.2 Life cycle

The pathogenesis of human P. falciparum infection is a complex process (see Figure
2.2). In the life cycle of Plasmodium, a female Anopheles mosquito (the definitive host)
transmits a motile infective form (called the sporozoite) to a vertebrate host such as a
human (the secondary host), thus acting as a transmission vector. A sporozoite travels
through the blood vessels to liver cells (hepatocytes), where it reproduces asexually
(tissue schizogony), producing thousands of merozoites; this is the starting point of the
erythrocytic phase (we refer to 75| for mechanistic mechanism of the release). During
this phase, the free merozoites infect new red blood cells and initiate a series of asexual
multiplication cycles (blood schizogony) that produce 8 to 32 new infective merozoites,
at which point the cells burst and the infective cycle begins anew.[131] Other merozoites
develop into immature gametes, or gametocytes. When a fertilized mosquito bites an
infected person, gametocytes are taken up with the blood and mature in the mosquito
gut. The male and female gametocytes fuse and form zygotes (ookinetes), which develop
into new sporozoites. The sporozoites migrate to the insect’s salivary glands, ready to
infect a new vertebrate host. The sporozoites are injected into the skin, alongside saliva,
when the mosquito takes a subsequent blood meal [41].

Only female mosquitoes feed on blood; male mosquitoes feed on plant nectar, and
thus do not transmit the disease. The females of the Anopheles genus of mosquito prefer
to feed at night. They usually start searching for a meal at dusk, and will continue
throughout the night until taking a meal [11]. Malaria parasites can also be transmitted
by blood transfusions, although this is rare [177].

The blood stage of the parasites is mainly responsible for the clinical symptoms of
the infection. The rupture of the parasitized red bood cells (pRBC) causes clinical fever.
Moreover P. falciparum infection is the most frequent acquired red blood cells (RBC)
disorders in the world (see [84], we also refer to the review paper of Buffet et al [23]
and the references therein), that may also lead to severe symptoms such as anaemia or

cerebral malaria (see [77]).
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Figure 2.2: Malaria life cycle

2.1.3 Resistance to malaria drugs.

Despite a need, no effective vaccine currently exists, although efforts to develop one
are ongoing. Several medications are available to prevent malaria in travellers to malaria-
endemic countries (prophylaxis). A variety of antimalarial medications are available.
Severe malaria is treated with intravenous or intramuscular quinine or, since the mid-
2000s, the artemisinin derivative artesunate, which is superior to quinine in both children
and adults and is given in combination with a second anti-malarial such as mefloquine.
Resistance has developed to several antimalarial drugs and many drugs are out of use;
for example, chloroquine-resistant P. falciparum has spread to most malarial areas, and
emerging resistance to artemisinin has become a problem in some parts of Southeast
Asia.

The emergence and spread of antimalarial drug resistance poses a severe and increas-

ing public health threat. All the most effective drugs that we have had in the last few
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decades have been one by one rendered useless by the remarkable ability of this parasite
to mutate and develop resistance. The P. falciparum parasite is now resistant to all
of the used antimalarial drugs, even to the latest artemisinin-based combination treat-
ments (see Figure 2.3). Failures in prophylaxis or treatments induce the re-emergence
of parasite related morbidity and mortality. Knowledge about resistance mechanisms
involved may allow the development of new drugs that minimize or circumvent drug
resistance, may allow the identification of new targets for drug development and to
identify molecular markers for malaria resistance surveillance. Resistance is often asso-
ciated with 1) inhibition of alteration of key enzymes that are targets for antimalarial
drugs or 2) alteration of drug accumulation into the parasite which results from reduced

uptake of the drug, an increased efflux, or a combination of the two processes [185].
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Figure 2.3: Introduction of malaria drugs and development of resistance (R) of P. fal-
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2.2 HBYV biology

Hepatitis B virus (HBV) infection is widespread in many parts of the world, espe-

cially in Africa, Southeast Asia, the Middle East, South and Western Pacific islands, the
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interior Amazon River basin, and certain parts of the Caribbean (Centers for Disease
Control and Prevention (CDCJ30])). By the estimation of the World Health Organi-
zation (WHOI217]), about 2 billion people have been infected with HBV. An estimate
of 600,000 persons die each year due to the acute or chronic consequences of the virus
(WHO [217]).

Approximately 5% of all acute HBV infections progress to chronic infection, with
the risk of chronic HBV infection decreasing with age. As many as 90% of infants who
acquire HBV infection from their mothers at birth become chronically infected. Of
children who become infected with HBV between 1 year and 5 years of age, 30% to 50%
become chronically infected. By adulthood, the risk of acquiring chronic HBV infection

is approximately 5% (see Fig. 2.4).
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Figure 2.4: Outcome of HBV infection by age at infection

2.2.1 Epidemiology
Reservoir

Although other primates have been infected in laboratory conditions, HBV infection

affects only humans. No animal or insect hosts or vectors are known to exist (CDC).
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Transmission

The virus is transmitted by parenteral or mucosal exposure to hepatitis B surface
antigen(HBsAg)-positive body fluids from persons who have acute or chronic HBV in-
fection. The highest concentrations of virus are in blood and serous fluids; lower titers
are found in other fluids, such as saliva and semen. Saliva can be a vehicle of trans-
mission through bites; however, other types of exposure to saliva, including kissing, are
unlikely modes of transmission. There appears to be no transmission of HBV via tears,
sweat, urine, stool, or droplet nuclei. One of the most important route of transmission
is by sexual contact, either heterosexual or homosexual, with an infected person. Fecal-
oral transmission does not appear to occur. However, transmission occurs among men
who have sex with men, possibly via contamination from asymptomatic rectal mucosal
lesions.

Perinatal transmission from mother to infant at birth is very efficient. If the mother
is positive for both HBsAg and hepatitis B e antigen (HBeAg), 70%-90% of infants
will become infected in the absence of postexposure prophylaxis. The risk of perinatal
transmission is about 10% if the mother is positive only for HBsAg. As many as 90%
of these infected infants will become chronically infected with HBV.

The frequency of infection and patterns of transmission vary in different parts of the
world. Approximately 45% of the global population live in areas with a high prevalence
of chronic HBV infection (8% or more of the population is HBsAg positive), 43% in
areas with a moderate prevalence (2% to 7% of the population is HBsAg positive), and
12% in areas with a low prevalence (less than 2% of the population is HBsAg positive).
Source: CDC.

Communicability

Persons with either acute or chronic HBV infection should be considered infectious
any time that HBsAg is present in the blood. When symptoms are present in persons
with acute HBV infection, HBsAg can be found in blood and body fluids for 1-2 months

before and after the onset of symptoms.
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2.2.2 Public health policy against HBV

Hepatitis B vaccines have been available in the United States since 1981. However,
the impact of vaccine on HBV disease has been less than optimal.

The apparent lack of impact from the vaccine can be attributed to several factors.
From 1981 until 1991, vaccination was targeted to persons in groups at high risk of
acquiring HBV infection. A large proportion of persons with HBV infection (25% to
30%) deny having any risk factors for the disease. These persons would not be identified
by a targeted risk factor screening approach.

A comprehensive strategy to eliminate hepatitis B virus transmission was recom-
mended in 1991 by WHO; it includes prenatal testing of pregnant women for HBsAg to
identify newborns who require immunoprophylaxis for prevention of perinatal infection
and to identify household contacts who should be vaccinated, routine vaccination of
infants, vaccination of adolescents, and vaccination of adults at high risk for infection.
Recommendations to further enhance vaccination of adults at increased risk of HBV

infection were published in 2006.

Routine infant immunization

This routine infant vaccination is to vaccinate their new-borns from a young age.
Great efforts should be given to routine vaccination of infants, because most chronic
infections are acquired during the earliest childhood, especially in countries with medium
or high endemicity. It is also a high priority in countries with low endemicity, because it
is the only strategy to avoid infection of all age groups (children, adolescents and adults).
In these countries, the majority of chronic infections are acquired during adolescence
or adulthood, but infections that occur during childhood play an important role in

maintaining the burden of chronic infection.

Prevention of perinatal transmission of hepatitis B

Perinatal HBV transmission can be prevented by identifying HBV-infected (i.e., Hep-
atitis B surface antigen [HBsAg|-positive) pregnant women and providing Hepatitis B
immune globulin and Hepatitis B vaccine to their infants within 12 hours of birth.

Preventing perinatal HBV transmission is an integral part of the national strategy
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to eliminate Hepatitis B. Generally, it consist on: (i) Universal screening of pregnant
women for HBsAg during each pregnancy; (ii) Case management of HBsAg-positive
mothers and their infants; (iii) Provision of immunoprophylaxis for infants born to
infected mothers, including Hepatitis B vaccine and Hepatitis B immune globulin and
(iv) Routine vaccination of all infants with the Hepatitis B vaccine series, with the first
dose administered at birth.

The major obstacle is that screening pregnant women and infants research to infected
mothers are operations that require significant resources, which is sometimes expensive
for most countries with high prevalence. Prevention of perinatal transmission of hepatitis
B is of major importance because an estimated 90% of children infected at birth become

chronic in adulthood.

Catch-up Immunization Schedule

Catch-up strategies targeted at older age groups or groups with risk factors for acquir-
ing HBV infection should be considered as a supplement to routine infant vaccination in
countries of intermediate or low hepatitis B endemicity. In such settings, a substantial
proportion of the disease burden may be attributable to infections acquired by older
children, adolescents and adults. In countries of high endemicity, large-scale routine
vaccination of infants rapidly reduces the transmission of HBV. In these circumstances,
catch-up vaccination of older children and adults has relatively little impact on chronic
disease because most of them have already been infected.

It is particularly important that the catch-up vaccination in older age classes does
not impede efforts to achieve full immunization of infants and to prevent mother to child

transmission of the virus by administering to the last dose of vaccine at birth (WHO).
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CHAPTER THREE

HEPATITIS B VIRUS AND WITHIN-HOST

MODELS.

3.1 Within-host models.

The within-host models describe the parasites dynamics and their interaction with
the host cells. For example P. falciparum attacks uninfected red blood cells and H.I.V.
attacks auxiliary lymphocytes CD4+T.

There has been numerous works on pathogen within-host dynamics in P. falciparum
infection. We refer to [4, 47, 78, 79, 80, 81, 98, 101, 103, 151, 156, 157, 164, 191].
We also refer to the survey paper of Molineaux and Dietz in [165] and the references
therein as well as the following recent papers on this topic [111, 205, 134, 189, 18, 163|.
Mathematical models associated to within-host P. falciparum malaria infection have
been proposed since the pioneer work of Anderson, May and Gupta [2]. This model
was intended to explain experimental observations, namely parasitaemia, that is, the
concentration of parasitized red blue cells and also the decrease of the uninfected red
blue cells leading to anaemia. Such ideas have been further developed in [4, 78, 98, 101,
103, 191]. We also refer to Li et al [134] for a mathematical model with immune response
yielding to sustained oscillations. However all these works do not take into account an
important characteristic of P. falciparum which is sequestration of merozoites with the
pRBC and their ruptures [111]. Such an issue has been considered using discrete age-
structured systems of equations (see for instance [79, 80, 81, 159]) with constant red
blue cells population assumption. We refer to Iggidr et al. [111] for a mathematical

study of a discrete age-structured model with varying red blue cells concentration.
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3.1.1 Anderson-May-Gupta’s models

The original Anderson-May-Gupta’s (AMG) model is the following

,

= A—p,x— Bxm,
Y= 6$m_,uy_/)yy17

M= Ty — fim — Bxm — pnlm,

(3.1)

| I= pulm+p, Iy —pl,

where in z denotes the concentration of uninfected red blood cells (uRBC), while y
denotes the concentration of parasitized red blue cells (pRBC). Finally m and I de-
notes the concentration of free merozoites in the blood stream and immune effectors
respectively. The parameters fiz, fy, pm and p; are the death rates of uRBC, pRBC,
free merozoites respectively and immune effectors. The parameter 5 is the contact rate
between uRBC and merozoites. Uninfected blood cells are recruited at a constant rate
A from the bone marrow and have a natural life-expectation of 1/u, ~ 120 days. Death
of a pRBC results in the release of an average number of r merozoites. The parameters
py is the removal rate of pRBC by immune effectors and p,, is the proliferation rate of

immune effectors by free merozoites.

3.1.2 Hetzel-Anderson’s model

The model of Hetzel-Anderson (HA) can be consider as an extension of AMG’s model,

according to the immune effectors dynamics.

¢

= AN— p,x— pBrm,

y= prm—py—pyyl,

(3.2)
m= Ty — fim — Bxm — pmIm,
| = pudm+p Iy — pil — I,
The more general AMG’s model, given in Tewa et al. [205], is defined by
(&= @) - pox — Bam,
y=Prm—py,—pyyl, (3.3)

m= Ty — flym — uBzm —vBym — ppml,
\ I: ¢(y7 m7 I)?

where the function f(x) — p, is of class C'' and models the recruitment rate of uRBC

from borne marrow while the parameters u and v can only take the values 0 or 1. [
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denotes the concentration of immune effectors and the function v represents the pro-
duction of immune effectors in reaction to the parasites. From model (3.3) they observe
that the immune response against merozoites is more difficult to observe than immune
response against pRBC. Another observation is that the immune response increase when

the parasites persist.

3.1.3 Barbara Hellriegel’s model [98]

Hellriegel’s model differs of the AMG and HA models by the following: without
parasites, that is pRBC and free merozoites, the immune response will not disappear.
The model of Hellriegel also takes into account multistrains malaria infections. The

model reads as

&= A— px — fimix — Pamar,

1= Sz — (c1 + py)yr — (ki + kiada)ys,

Yo = Bamox — (o + p1y)ya — (karly + koo lo)ya,

G= iy —oygr — (ludy + haolo)gr,

Go = Cay2 — ayga — (lo1dy + lg212)gs, (3.4)
my = TpyYr — Pmma — i — (hily + higla)my,

Mo = ThyYs — PmMa — Pamox — (harly + hagls)mo,

L= (ovmi + vy +\g)h — prlh + 5,

Ly=(oama +7oy2 + Nago)lo — purla + §,

Wherein ¢ is the gametocytes concentration.

3.1.4 The models of McKenzie et al. [156, 157, 155, 151]

McKenzie’s et al models consider the dynamics of pRBC and gamatocytes. Denoting
the pRBC concentration and the gametocytes concentration respectively by y and g;
the model reads as

y= ay—cyl — fi(y,1),
9= fily. 1) — pg, (3.5)
I= foly.I) = cly —ql,

wherein I denotes the concentration of immune effectors and

Fiw(), 1)) € {9ay(); 9T (DY () 9e6° () }
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and

F(y(), 1()) € {s1y(); 21 (yv; say (I (- = 1)}

3.1.5 Discrete age-structured models

The models of Gravenor and Kwiatkowski [80, 81| consider a discrete age-structured
of the pPRBC dynamics. The model is a catenary compartmental model. If we distinguish
k stages, the linear model is given by

)
= 1y — (1 + 7)1,

Yo = 71y1 — (p2 + 72)Ya,

- (3.6)
Ui = Yie1Yi-1 — (i + %)y,

Uk = Ve—1Ye—1 — (ke + Vi) Yk-

The state y; denotes the concentration of pRBC of class i. The rate transmission from
compartment ¢ to the following ¢ 4+ 1 is 7; and the mortality of class ¢ is ;. In the
last stage k the rupture of the erythrocyte releases r merozoites which invade fresh
erythrocytes giving rv, erythrocytes in stage 1.

In [111], Iggidr et al. considered an extension of model (3.6) as follows

(j;: f(x)—ﬂx—ﬁl‘m7

= Brm — (g1 + 7)1,
Yo = 71y1 — (p2 + 72)Ya,

(3.7)
Yie1¥i-1 — (s + %) Yi,

Yi

U = Ye—1Ye—1 — (L + Vi) Yk

[ = TVl — M — uBTM.

Note that in this latter work multistrain competitive interaction is also considered and
the authors derived the so-called competitive exclusion principle. Here we will extend

these results to an age-structured model.
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3.1.6 Within-in host HIV models

Earlier models of virus infection were commonly defined by ordinary differential equa-
tions (ODEs) (Nowak and May [176]; Perelson and Nelson [181]). In 1989, Perelson et
al. has published two popular within-host HIV models (see [181]). Perelson et al. model

is the following:

. T+ T
T=s—rT <1— + L) VT — prT,
Ty = kVT - prTr — ko T, (3.8)
TA = koTy — pwTa — VT,
V =uNTs — VT — py — ¢V — kVT.
The general class of Perelson models is describe as follows (see [182]):
T = f(T) - kVT,
T = kVT — BT, (3.9)

V = BNT* — ¢V —ukVT,

wherein 7' is the concentration of uninfected red blood cells, T* is the concentration of
parasitized red blood cells and V' is the concentration of free parasites in the blood. The
parameter u takes the value 0 or 1.

For f(T) = 6 — oT + pT <1 — ﬁ) we obtain Perelson-Nelson model [181]. And
for f(T) = 6 — oT we derive Nowak-May model [176]. Parameters «, § and ¢ are
respectively the rate of natural mortality of uninfected red blood cells, infected red
blood cells and free parasites. k is the contact rate between free parasite and uninfected
red blood cells. § is the constant rate of lymphocytes production T', p is the growth rate
in logistic equation and 7,,,, is the carrying capacity of red blood cells population.

In [182], Perelson et al. estimated the average life span of a productively infected
cell, the maturation time of HIV virion, the viral productive rate, and the loss rate
of infected cells according to a set of viral load data collected from infected patients.
Considering the latent period between initial infection of a cell and production of sub-
sequent virus particles in reality, Herz et al. [99] first incorporated a discrete delay into
their HIV infection model and showed that this intracellular delay would substantially
shorten the estimates for the half-life of free virus obtained from clinical data. The in-

corporation of time delay in virus infection dynamics leads to a class of delay differential
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equation (DDE) models. Thereafter, models of HIV infection dynamics combining drug
treatment and discrete or distributed delays have generally been studied analytically
and numerically by Perelson and collaborators [162, 171, 170] and other researchers
[39, 105, 135, 137].

Recently, Nelson et al. [172] developed an age-structured model of HIV infection, in
which the production rate of viral particles and the death rate of productively infected
cells are allowed to vary and depend on two general functions of age, p(a) and S(a),
respectively. Nelson’s age-structured model without drug treatment is formulated as

follows:

T(t) =s—aT(t) — kV()T(t),
di(t,a)  0i(t,a)
ot oa

V(t) = /000 p(a)i(t,a)da — cV (1),

- _5(a)i(tva)» (310)

with the boundary condition

i(t,0) = kV(O)T(t).

Here, i(t, a) denotes the density of infected T cells of infection age a (i.e., the time that
has elapsed since an HIV virion has penetrated cell) at time ¢.

Huang et al. [105] recently study the basic age-structured population model describ-
ing the HIV infection process, which is defined by PDEs (based on Nelson’s age-strutured
model). By using the direct Lyapunov method and constructing suitable Lyapunov func-
tions, they established (Huang at al) dynamical properties of the age-structured model
without (or with) drug treatment. The results show that the global asymptotic stabil-
ity of the infection-free steady state and the infected steady state depends only on the
basic reproductive number determined by the burst size. Further, they (Huang at al.)
establish mathematically that the typical ODE and DDE (delay differential equation)

models of HIV infection are equivalent to two special cases of PDE models.

3.2 Hepatitis B virus models.

In this section we summarize some well know hepatitis B virus (HBV) in the literature.

Some of them are due to Cvjetanovic et al., 1984 et 1987 ; Pasquini and Cvjetanovic,
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1987 ; Pasquini et al., 1987 ; Williams et al., 1996 ; Garuz et al., 1997; Medley et al.,
2001 ; Kretzschmar et al., 2002.

3.2.1 Anderson-May model

It is probably the first mathematical model for the transmission of HBV using ODEs
(Ordinary Differential Equations). In [3], Anderson and May introduced a HBV model
with differential infectivity. They assume that a proportion (1 — ) of susceptible popu-
lation would develop carrier infection and then recovered, while the fraction 7 of suscep-
tible population would develop chronic infection. Dividing the total population into tree
subclasses: susceptible S, carrier infected I, chronic infected C'; Anderson-May model
is the following.

(S = uN = (BT + BoC)S — S,
I=m(Bi + BC)S — (n+ )1,
C = m(Bl + 20)S — (n+ 7)1,
R =1+ vC — uR,

(3.11)

wherein m; + m = 1, and f; is probability that an infective individual, I (i = 1) or
C (i = 2), will have contact with and successfully infect a susceptible individual. ; is
the rate moving from infectious to recovered. g is the natural mortality rate and N is
total population (which is assume to be constant). Anderson-May model is an element
of the general models with differential infectivity (see [107]).

In [3], Anderson et al. also consider a second model of HBV infection taking into
account the vertical transmission of the disease (from infected mother to their new-
born). They (Anderson et al.) distinguish susceptible individuals according to their
reaction to infection and they assume that asymptomatic carriers will give rise to a
proportion v asymptomatic carriers. Then the model assume that susceptible population

is subdivided in two groups with proportions m; and 7y (m; + m = 1). The model is
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formulated as follows:

(

Sy = mpuN — muvC — (B + B2C) Sy — uSh,

Sy = wopiN — mopvC — (Bl + B2C) Sy — 1S,

[ = (Bl + 20)S — (n+m)I, (3.12)
C = (Bl + 2C) S5 = (n+ )] + v C,

R =71 +%C — uR,

and where S is for susceptible individual which will develop carrier infection, and S,

I=is for susceptible individual which will develop chronic infection.

3.2.2 Edmunds et al. model [68]

Their model focuses on the study of correlation between the age of infection of hep-
atitis B virus and probability from becoming chronic. They thus establish a model gives
a probability law to become chronic with respect to the age. Thus, they proposed the

following model:

p(a) = exp(—ra®), a > 6( months),
(3.13)
Ppert = 0.885(95%C.L0.84 — 0.93), @ < 6( months).

Parameters of the model is estimated from maximum likelihood principle, and using
the data of the epidemiological surveillance of hepatitis B in Gambia: r = 0.645 and

s = 0.455.

3.2.3 Medley et al. model (Williams et al., 1996; Medley et al.
2001) [67, 160, 215]

Williams et al. [215] have proposed a mathematical model applied to UK data. This
deterministic model, structured in 12 age classes, takes into account the vertical and
sexual transmissions of hepatitis B virus. They consider separately the dynamics of
the epidemic in erosexuels and male homosexuals population. The host population is
separated into six compartments: susceptibles, latently infected, acute infected, immune
after infection, chronic infected and immune following vaccination. Different vaccination
strategies is simulated in the model: Mass vaccination of infants is the least efficient,

while vaccination of new-born, from infected mother, is more efficient. Mass vaccination
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of adolescents is efficient faster than mass vaccination of infants. A second paper of
William et al.( Williams1996) indicates that 40 years is needed to have a good efficiency
of the mass vaccination programm of infants against HBV.

In 2001, Medley et al. [160], have a study of the role of age in carrying on the
level of endemicity: over this age is higher and less endemism is important. These
authors also analyzed the role of influx of virus carriers by immigration from highly
endemic countries. It seems essential role in countries with low endemicity, particularly
in the circulation of hepatitis B, but also the risk that carry viruses pose to the host
region to move to a level of endemicity more high. This risk may justify less efficient
short-term strategies targeted at populations at risk, but still interesting strategies mass

immunization in terms of public health in the long term.

3.2.4 Age-structured models

Age-structured models have also been used to model the transmission dynamics of
HBYV by some researchers; see for instance Edmunds et al.[68|, McLean and Blumberg|[158|,
Zhao, Xu, and Lu|221], Zou, Ruan and Zhang|222].

Recently, Zou, Ruan and Zhang[223] have proposed a mathematical model for the
transmission of HBV with susceptible, latently infected, acutely infectious, carrier, re-
covered, and immune following vaccination. The variables and model structure are de-
scribed in Figure 3.1. By determining the basic reproduction number, they (Zou et al.)
study the existence and stability of the disease-free and endemic steady state solutions
of the model. They also provided numerical simulations to find optimal strategies for
controlling the transmission of HBV. The analytical results and numerical simulations
of the model suggest that the optimal control strategy is a combination of immunization
of newborns and retroactive immunization of susceptible adults. But, to analyzed the
model Zou et al. ignored the perinatal infection of HBV (vertical transmission of the
disease) and deaths directly related to HBV. These assumptions are not entirely realistic
in many part of the world. In fact, HBV prevalence is highest in sub-Saharan Africa
and East Asia. Most people in these regions become infected with the hepatitis B virus
during birth (and childhood) with a high risk (90% at birth) of progressing to chronic
infection (WHOI217] and CDC[30]). Moreover, about 600,000 people die every year due
to the acute or chronic consequences of hepatitis B (WHO|217]); that is deaths directly
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related to HBV should not be neglected.
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Figure 3.1: Flowchart of HBV transmission in a population (Ref. Zou et al. 2010[223])
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CHAPTER FOUR

WITHIN-HOST MALARIA INFECTION AND

ANOPHELES MOSQUITO DYNAMICS.

This chapter is organized in two parts and deals with within-host model for malaria
infection and advection-reaction model for anopheles mosquito dynamics population.
Section 4.2 is concerned by an age-structured within-host model for multi-strain malaria
infections. Section 4.3 is devoted to a mathematical modeling of anopheles mosquito

dynamics population allowing migration.

4.1 Introduction

The global burden of malaria has increased over the past two decades, despite widespread
implementation of control measures including bed nets, new drugs and the World Health
Organization’s strategy which focuses on case finding.

The malaria parasite is transmitted between people by the female Anopheles mosquitoes
and more than 60 species are known to be able to transmit the infection. As a disease
vector, some Anopheles species are more significant than others because of variations in
susceptibility to the parasite or the propensity of the mosquito to bite humans and to
enter houses when looking for a blood meal (see [16], [179]). Both the male and female
Anopheles mosquitoes feed on nectar. However, only the female Anopheles mosquitoes
feed on animal blood, since blood is needed to provide proteins for the development
of their eggs. Thus, the transmission of malaria, from human to human, is essentially
driven by the human biting habit of the mosquito. When the mosquito interacts with
a human, it can either infect or be infected depending on the disease status of both the
mosquito and the human.

On the other hand, natural parasitic infections are often diverse, containing multiple

parasite species and/or distinct genotypes of the same species|187|. Parasites of the
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Plasmodium genus are no exception. Infections of multiple strains or species of parasites
have been widely reported (209, 118, 95, 119] and it may be typical in highly endemic
regions [119, 129]. Growth relationships between parasite types within a single host
have significant evolutionary implications for selection of fitness and drug resistance
traits that can greatly impact public health [188].

There are many reports of multiple infections of human malaria [43, 60, 210, 106, 95].
Wargo et al.[210] found that when a mixed infection containing a drug resistant and drug
sensitive clone is treated with drug, the removal of the sensitive parasite, which in the
absence of drug competitively suppresses the drug resistant clone, leads to competitive
release and allows for the expansion of the drug resistant parasite. We also refer to the
recent paper of [208] where the authors perform in vivo experiments to describe and
quantify the interaction of a two-strain infection. The same authors concluded that a
deeper understanding of the dynamic growth responses of multiple strain P. falciparum
infections, with and without drug pressure, can improve the understanding of the role
of parasite interactions in the spread of drug resistant parasites, perhaps suggesting
different treatment strategies [208].

To summarize the blood stage of the P. falciparum consists in the multiplication
of the number of parasites and the resulting clinical symptoms. This blood stage also
induces a strong competition between the different strains of the parasites that is re-
sponsible for the survival and spread of some particular strains and genetic traits. As
consequence of this selection pressure drug resistance or sensitivity may spread into the
whole population. In this section we consider an age-structured intra-host model for P.
falciparum infection with n different strains for the parasites. The age-structure will
allow us to have a good description of the pRBC rupture and of the merozoites release
phenomenon. The model we shall consider reads as

) — A= palt) 20 Y By 0

8@&, (I) I GWja(CtL, (1) _ —(,uj ((I) n Mm)wj (t, a);

(4.1)
dmj

% B /0°° pyj(a)w;(t, a)da — pim,jm;(t) — 6;8;x(t)m;(t);

\wj(t,()) = Bx(t)m;(t); j€{1,2,---,n}.

In (4.1), the RBC population is split into two classes, z(t) denotes the concentration
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of uninfected red blood cells (uRBC) at time ¢, while w;(¢,a) denotes the age-specific
concentration of pRBC at time ¢ and parasitized since a time a by a specific j-strain.
Finally m;(t) denotes the concentration of free specific j-merozoites in the blood stream.
We briefly sketch the interpretation of the parameters arising in (4.1). Parameters i,
Im,; Tespectively denotes the natural death rates for uRBC and for free specific j-
merozoites. Function p;(a) denotes the exit rate of pRBC due to the j-parasites at
age a. The parameter 3; describes the contact rate between uRBC and free specific
j-merozoites while A denotes the recruitment rate of uRBC from the bone marrow. The
rupture of pRBC at age a results in the release of an average number 7;(a) of specific
j-merozoites into the blood stream; so that pRBC infected by a specific j-strain then
produce j-merozoites at age a with the rate p, ;(a) := rj(a)p;(a). Together with this
description, the quantity
/0 py.j(@)w;(t, a)da,

corresponds to the number of specific j-merozoites produced by pRBC at time ¢. In the
literature the parameter 0, takes the values 0; = 0 when the loss of merozoites when
they enter a RBC is ignored or takes the value §; = 1 when this loss is not ignored.
System (4.1) is supplemented together with initial data those properties will described
below: for each j € {1,2,--- n}:

z(0) = z9 > 0, w;(0,.) = wo(.), mj(0) =myg; > 0. (4.2)

There has been numerous works on pathogen within-host dynamics in P. falciparum
infection. We refer to [4, 47, 78, 79, 80, 81, 98, 101, 103, 151, 156, 157, 164, 191]. We
also refer to the survey paper of Molineaux and Dietz in [165] and the references therein
as well as the following recent papers on this topic [111, 205, 134, 189, 18, 163]. Let us
observe that the one-strain System (4.1) (namely with n = 1) has been rigorously and
recently studied by Huang et al. [105] in the context HIV infection model (and with
5 =0).

Mathematical models associated to within-host P. falciparum malaria infection have
been proposed since the pioneer work of Anderson, May and Gupta [2]. This model
was intended to explain experimental observations, namely parasitaemia, i.e., the con-
centration of pRBC and also the decrease of the uRBC leading to anaemia. Such ideas

have been further developed in [4, 78, 98, 101, 103, 191]. We also refer to Li et al
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[134] for a mathematical model with immune response yielding to sustained oscillations.
However all these works do not take into account an important characteristic of P. fal-
ciparum which is sequestration of merozoites with the pRBC and their ruptures [111].
Such an issue has been considered using discrete age-structured systems of equations
(see for instance |79, 80, 81, 159]) with constant RBC population assumption. We re-
fer to Iggidr et al. [111] for a mathematical study of a discrete age-structured model
with varying RBC concentration. Note that in this latter work multi-strain competitive
interaction is also considered and the authors derived the so-called competitive exclu-
sion principle. This principle is well known in the context of theoretical ecology and
states that two competitive species cannot indefinitely occupy the same ecological niche
[22, 24, 27, 53, 98, 152, 153].

Despite the enormous global burden of malaria, after more than a century of re-
search we still have a poor understanding of the mechanistic link between environmen-
tal variables, such as temperature and malaria risk (Lafferty 2009[128]; Paaijmans et
al. 2009[178]; Alonso et al. 2011[1]). Temperature is fundamentally linked to malaria
mosquito and parasite vital rates (see [166] [44]), and understanding the role of temper-
ature in malaria transmission is particularly important in light of climate change.

Knowledge of the population dynamics of the malaria vector is fundamental to the
understanding of malaria epidemiology and the spread of insecticide resistance. There-
fore, studies on the population structure of malaria vectors have important implications
for the prediction and assessment of the effects of many vector control strategies. Due
to global warming, there is a risk of the emergence of malaria in new regions (where
malaria has not been endemic). Thus, the complete understanding of the malaria vector
population dynamics is necessary for gaining insight into the disease spread and the
design of effective vector control strategies. According to all malaria models, little has
been done with regard to the studies on the population dynamics of malaria vectors:
A deterministic differential equation model for the population dynamics of the human
malaria vector, Ngwa 2006[174]; A delay ordinary deterministic differential equation
model for the population dynamics of the malaria vector subject to two forms of the
vector birth rate function (the Verhulst-Pearl logistic growth function and the Maynard-
Smith-Slatkin function), Ngwa et al. 2010 [175]; Temporal models or/and taking into

account one-dimensional spatial components on mosquito population dynamics and SIT
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(Sterile Insect Technology is a nonpolluting method of control of the invading insects
that transmit disease), Manoranjan et al. 1986[149|, Lewis et al. 1993|133]; The control
of the disease by the release of sterile or treated males in order to reduce the wild pop-
ulation of anopheles mosquito, Anguelov et al.[6]; A mathematical model to simulate
mosquito dispersal and its control taking into account environmental parameters, like
wind, temperature, or landscape elements Dufourd et al. 2013 [59].

In [59], Dufourd et al. have first consider a temporal compartmental approach and
then include the spatial component that leads to a system of coupled diffusion-advection-
reaction-like equations to model mosquito dispersal. For the temporal model, they (Du-
fourd et al.) derive some theoretical results (existence and uniqueness of a solution,
existence of equilibria, local and global stability) and give some illustration. But for the
diffusion-advection-reaction equations, they only derive a fast algorithm using appropri-
ate numerical methods to illustrate the dynamic of the system.

The aim of this work is: firstly, to perform a mathematical analysis of System (4.1)
and to obtain a generic competitive exclusion principle result. In an other context, let
us mention that the one-strain System (4.1) (namely with n = 1) has been rigorously
and recently studied by Huang et al [105] in the context HIV infection model (and with
d = 0). Secondly, to develop and analyze an advection-reaction mathematical model
for the dynamics of the malaria vector, taking into account environmental parameters
(such as temperature).

This chapter is organized as follows.

v  Section 4.2 deals with the mathematical analysis of with-in host malaria model (4.1).
In Section 4.2.1, we describe the main results that will be proved in this work. Sections
4.2.2 and 4.2.4 are devoted to deriving preliminary results and remarks on (4.1)-(4.2)
that will be used to study the long term behaviour of the problem. Section 4.2.5 is con-
cerned with the proof of the first part of Theorem 4.2.1 below, that roughly speaking
states that when the epidemic threshold (explicitly expressed using the parameters of
the system) 75 < 1, then all the strains asymptotically die out and the parasites cannot
survive. Finally Section 4.2.6 deals with the proof of the second part of Theorem 4.2.1,
that roughly speaking say that when 75 > 1 and under some additional assumptions
on the different strains, then the competitive exclusion principle holds true, that is that

only the strongest strain (using a suitable order) is asymptotically surviving.

R. DJIDJOU DEMASSE © 2014



4.2 Age-structured within-host model for multi-strain malaria infections 37

v In sections 4.3, an advection-reaction mathematical model for the dynamics of the
malaria vector, taking into account environmental parameters (like temperature) is de-
veloped and analyzed. Section 4.3.1 is devoted to the mathematical model formulation,
including: the description of the model parameters and the state variables for dynamics
of the malaria vector. Then in section 4.3.2, we derive the existence of positive solutions
to the seasonal model. For the study of the long term behavior of the model, three
threshold parameters R¢, R and R, (explicitly expressed using the parameters of the
model) are provided. In section 4.3.3, the mosquito extinction results is formulated;
that is when R¢ < 1, then the mosquito population die out. In sections 4.3.4-4.3.5, we
also derive persistence results to the seasonal model: the weak persistence results when

R¢ > 1 and the strong persistence results when R, > 1.

4.2 Age-structured within-host model for multi-strain
malaria infections

In this section we propose an age-structured malaria within-host model taking into
account multi-strains interaction. We provide a global analysis of the model depend-
ing upon some epidemic threshold 7. When 7y < 1, then the disease free equilib-
rium is globally asymptotically stable and the parasites are cleared. On the contrary
if 7o > 1, the model exhibits the competition exclusion principle. Roughly speaking,
only the strongest strain survives while the other strains go to extinct. Under some

additional parameter conditions we prove that the endemic equilibrium corresponding

to the strongest strain is globally asymptotically stable.

4.2.1 Main results

In this section we will state the main results of this work. In order to deal with
system (4.1)-(4.2) we first provide a parameter reduction by introducing the following
unknown functions

y;(t,a) = w;(t, a)els HiOE,
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Therefore, by introducing the vector valued functions y(t,a) = (y1(t, a), .., ya(t, a))",
m(t) = (mq(t), .., my(t))" as well as the matrix

B =diag (Bi,..,B), 0 = diag (61,..,6,), E,=(1,..,1)T € R,

pm = diag (pm, - mn) » p(a) = diag (p1(a), .., pu(a)),

System (4.1)-(4.2) re-writes as

(N () — () B
Oy (t,a) + Oay (t, a) = —pay (L, a); 43)
y(t,0) = Bz (t)m(t);
d oo
| P = [ syt ada - ) - a5 (tm(ey
supplemented together with initial data
y(0,.) =yo(.) € L' (0,00;R}) z(0) =z > 0; m(0) =mg € R; (4.4)

and wherein we have set

pi(a) = py (a)eJo O 5 =1 n a>0.

In (4.4) R’} denotes the positive orthant, namely R} = {(21,..,2,)" € R" : z; >
0, Vi=1,.,n}.
In what follow we shall discuss the asymptotic behaviour of System (4.3)-(4.4) and

we will make use the following assumption.

Assumption 4.2.1. We assume that, for each j € {1,2,--- ,n} functions p; belong to
L®(0,00,Ry) while A >0, pi; >0, fiym; >0, 60; € {0,1} and 3; > 0.

As mentioned in the introduction we shall focus on the competitive exclusion principle
generated by (4.3). Roughly speaking, to achieve such a goal we will provide an order
to separate the different strains of the parasite. Hence let us introduce, for each strain,
the quantity 7, defined by

i oA ( /0 " pi(@)l(a)da — 51-) , (4.5)

Haxmi

as well as

To = max T; (4.6)

1<i<n
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where function [ = [(a) is defined by
l(a) = e H=1. (4.7)

As it will be seen below (see Theorem 4.2.1) the situation when 75 < 1 is rather
simple because the infection asymptotically dies out. When 7q > 1 the situation is
much more involved. We expect that System (4.3)-(4.4) exhibits the competition ex-
clusion principle, that, roughly speaking, say that in presence of multiple strains only
the strongest can asymptotically survive. The parameters {R{},_; , (see (4.5)) will
be used to quantify the strength of the different strain-specific infection. We will now
introduce some definitions. Let us first of all define the set of strains that can potentially

survive S defined by
{ie{l,.,n}: Tg>1} ifTo>1
0if 7o < 1.
On the set of index {1,..,n} we define an order relation by
i) & TE<Td and i<j & T <Tq.
We would like to emphasize that when parameter d; are non-zero, the set of threshold
{73}1.:1’”7” is different from the set of the different strain specific basic reproduction

numbers. Indeed the strain i—specific basic reproduction number reads as (see Section

4.2.3 for the computation):

— (70— 1) with xp = —. 4.9
i + 0i B (75 = 1) T (4.9)

Hence the above described ordered may be different from the one induced by the strain

Ry =1+

specific basic reproduction numbers.
We also denote by max< the maximum operator associated to the order <. Note that

in general the operator max< is multi-valued and is defined by
iif T3 > 75,
max™{i, j} = 4 j if T¢ > T3,
{i. 7} it 75 = 75
A subset {iy,..,i,} C {1,..,n} = N, is said to be strictly ordered if there exists a

permutation o of {1,..,p} such that

ig(l) <. 4 ig(p).
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Let us notice that on a strictly ordered set, the operator max< becomes a single-valued
map. Let us also mention that for biological reason, since we aim to deal with com-
petitive exclusion principle for our multi-strain model, it is relevant to assume that the
different strain is distinguishable. Hence we shall assume in most parts of this work
that, the species that can potentially survive are distinguishable, that is re-formulated
by assuming the set {i € N,, : T > 1} is strictly ordered.

Before starting our main result let us introduce further notations that correspond to

the stationary states of (4.3) (see Proposition 4.2.3): zy = % and for each k € § (when
S#0):

E_ Lf. mkiuz(%k_l)

T B

T Gi)iy s yE(a) = Bizfe = m}, (4.10)

wherein 6; ; denotes the usual Kronecker symbol.
For technical reason in relation to some computations we shall assume some relation

of the parameters. The set S (when S # () satisfies condition (Q) if
(T3 — 1) 0iBixy < Rifimi, Vi € S. (4.11)

Let us first notice that the above condition is always satisfied when §; = 0. When
0; > 0 then the above parameter condition can re-written in term of a limitation of the
strain specific basic reproduction numbers (see (4.9)). Indeed, if one sets v; = (Sfﬁ

then condition (Q)) re-writes as

, 1 1++/1+4y .
Ry <max |1+ 14 i + , Vi €S.
142y 273

Using the above notations the main result of this work reads as

Theorem 4.2.1. Let Assumption 5.1.1 be satisfied. Assume that the set S is strictly
ordered and satisfies the parameter condition (Q)). Let o > 0, my € R} and y, €
L' (0, o0; RZLF) be a given initial data and let us denote by (x(t), m(t),y(t,.)) the solution
of (4.3)-(4.4). Then the following holds true:

(i) If T =8n{ke{l,..n}: mp+ [ yor(a)da >0} =0 then

lim ({E(t), m(t)v Y(ta )) = (xfa ORn, OLl(O,oo;R”)) )

t—o0

wherein the above convergence holds for the topology of R x R™ x L' (0, 0o; R™).
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(i1) If T # O then, setting i = max<J and recalling (4.10) one has

lim (2(t), m(t),y(t,.)) = (z1, mi, yi(.),

t—o0

for the topology of R x R™ x L' (0, 00; R™).

The first part of this result applies in particular when & = (), namely 7, < 1. In
that case all the strains asymptotically die out and the parasites cannot survive. Let
us notice that the condition 7y < 1 can be re-written in term of basic reproduction
Ro := max{R}, i € N,} as Ry < 1. The second part of the above theorem says that
when different strains are sufficiently strong to survive, then only the strongest present

strain (with respect to the order <) is surviving in the long term.

Remark 4.2.1. The parameter condition (()) seems to be only a technical condition
that we cannot overcome. From numerical computations, the equilibrium associated to

the strongest strain continue to be globally stable even if condition (Q) is violated.

Table 4.1: Parameters values of model (4.1)

Parameters Description Value and Range References
A Production rate of RBC 1 RBC.h™! Assumed
B1; Pa Infection rate of uRBC 0.02/24 RBC ml™! .h=t 2]

[ Natural death rate of uRBC 0.00833/24 RBC .h™' 2]

L1 fom2 Decay rates of malaria parasites 48 /24 [101]

T1; T Merozoite mean rate produce by pRBC 16 2]

Table 4.2: Initial values in model (4.1)

Variables Description Initial Values References

z(t) Population of uRBC 5 x 10° RBC.mi~! |2, 31, 101, 159]
wi(t,.); wa(t,.) Population of pRBC 0 RBC.ml™! [2, 31, 101, 159]
ma(t); ma(t) Population of malaria parasite 107 RBC.ml™* [2, 31, 101, 159]

We now provided some numerical simulations to illustrate the dynamics of Sys-
tem (4.1) in the case of two strains interactions (n = 2). They highlight the prin-

ciple of competitive exclusion. The upper bound age of RBC infectivity is set to
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a; = 59.3 hours =~ 2.47 days [45|. Let us recall that when the meroziotes enter the
RBC they grow and reproduce during the sequestration period. This period correspond-
ing to the i-strain is denoted by 7; € [44; 52](hours) (see [45]). Following Su, Ruan and
Wei in [196] we will consider that the age-specific exit rate of pRBC p;(a) for the i-strain

takes the form
0, ifa <7

pi(a) =
di(a), ifa>m,
together with d; = dy = 0.98 while 71,75 € {48;50}(hours). The other parameters of
the model are described in Table 4.1.

Let us assume that the sequestration period for the production of free merozoites
is 71 = 48 hours for the strain 1 and 7 = 50 hours for the strain 2. This means that
pRBC with strain 2 release the new parasites two hours later than the pRBC infected by
strain 1. The probability of pRBC to be still infected until age a approximately equals
to 1 before two days of infection and exponentially decreases to zero after 48 hours for
strain 1 and after 50 hours for strain 2 (see Figure 4.1c). The death rate of pRBC is
illustrated by Figure 4.1a and the average number of parasites produced by pRBC after
the sequestration period is represented in Figure 4.1b.

Using contact rate 1 = fo = 0.02/24 Figure 4.2a represents the superimposition
of the time evolution two strains alone (that is without interaction) while Figure 4.2b
corresponds to the time evolution of competitive interactions between the two strains.
Since the sequestration period for strain 1 is smaller then strain 1 becomes the strongest
and it competitively suppresses strain 2. Let us also notice that the shape of these curves
are qualitatively close to the experimental situations recently obtained by Wacker et al
in [208]. Using these parameter sets, the basics reproduction rates for the system with
strain 1 only (resp. strain 2 only) is computed as R} = 5.75 (resp. R2 = 4.74); so that
the basic reproduction rate for model (4.1) is Ry = 5.75.

Let us finally emphasize that using the parameter set described in Tables 4.1 and 4.2,
the weakest strain, namely, strain 2, is quickly suppressed after 20 days. This duration
plays an important role on the transmission of gametocytes to mosquitoes. Note that
such a conclusion has been reached without taking into account the interactions of the
different strains during the liver stage of the disease. This could have an influence on

the time needed to suppress the weakest strain during the blood stage and thus on the
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spread of the different strains. This will be studied in a forthcoming work.
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Figure 4.1: Parameters of the model (4.1) for variable sequestration period: exit rate of
pRBC (Fig. 1 (a)); density of parasites produced by pRBC (Fig. 1 (b)) and the lifetime
of pRBC (Fig. 1 (c)). pRBC by strain 1 (resp. by strain 2) release free merozoites after
48 hours (resp. 50 hours), that is 77 = 48 (resp. 7 = 50). All the other parameters are
given by Table 4.1.
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Figure 4.2: On the left hand-side superimposed time evolution of the density of mero-
zoites for strains 1 and 2 alone; on the right hand-side competitive suppression of strain
2 when the two strains are mixed. However, with this parameters, the basics reproduc-
tion rates of the model only with strain 1 (resp. 2) is R} = 4.79 (resp. R2 = 3.95).
That is the basic reproduction rate for model (4.1) is Ry = 4.7975. To highlight the
competition of the two strains, initial value for the population of malaria parasites is
assumed to be 107 (resp. 5 x 107) RBC.ml™! for strain 1 (resp. 2). Other initial values
in model (4.1) are given by Table 4.2.
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4.2.2 Existence of semiflow and basic properties.

The aim of this section is to derive preliminary remarks on (4.3)-(4.4). These results
include the existence of the unique maximal semiflow bounded dissipative associated to

this system and the steady states of system (4.3)-(4.4).

Existence of semiflow.

In this section we shall deal with (4.3)-(4.4) using an integrated semigroup approach.
This approach has been introduced by Thieme in [200] in the context of age-structured
equations. We also refer to [123, 140, 144, 145, 58] and [201, 203] (see also the references
cited therein).

Let us introduce the Banach space X =R"x L'(0,00;R™) as well as its positive

cone X, = R’ x L'(0,00;R}) and the linear operator A:D(A) C X — X defined by

D(A) = {0pn} x W (0, 00;R"), A e ) —0) : (4.12)

© —¢' = g

Next consider the Banach space X and its positive cone X defined by
X =RxR"x X and X; =R, x R" x X,
endowed with the norm
(@, 0,080,9)7|| = lal + Z o] + Z i1l ooty ¥ (@@, 0mn, )T € X

We easily find that the space X is a normal cone with respect to the following partial

T Yy T Yy
[0 [0
< g & - b € X,
OR" OR” ORn O]Rn
@ (0 o (0

Let A: D(A) C X — X be the linear operator defined by
D(A) =R xR" x D (?1) . A = diag (—ui, —Mm,fl) . (4.13)
Note that the domain of operator A is not dense in X because of the identity

D(A) =R x R" x {0gn} x L*(0, 00; R") # X.
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Finally let us introduce the nonlinear map F': D(A) — X defined by

A — zEl'Bm
x
m e a)da — dfrm
F =
O Srm
y
OLI(O,OO;R”)

By identifying u(t) together with (z(t), m(t), Og, y(¢,.))" and by setting ug = (2o, mg, Og, yo(.))",

one obtains that System (4.3)-(4.4) re-writes as the following non-densely defined Cauchy

problem:
W) gt + Flu()) : t>0
dt (4.14)
u(0) = wupe€ D(A)NX,.

We first derive that the above abstract Cauchy problem generates a unique globally
defined and positive semiflow. Let us set Xo = D(A) and Xy, = Xo N X,. Before the

main result of this section, let us introduce the following lemmas and proposition.

Lemma 4.2.1. Let Assumption 5.1.1 be satisfied. The nonlinear map F : Xo — X is

lipschitzian on bounded subset of X.

Proof. Let ¢ > 0 and B(0,¢) = {(JJ o, O, @) € Xy : H(m,a,ORn,Lp)THX < c}. Let
wi= (z,0,0pn0,0)", @ := (%,&,0pn, 3)" € B(0,c), then

N —zEr'Ba + TET Ba
T T
o a e a)da — 6Bz — [ p(a)p(a)da + 053¢
F —F =
Ve O B — B
4 4 OLI(O,OO;Rn)

Since the nonlinear functions R x R" 3 (z,a) — rETBa € R and R x R" > (z,a)
Bra € R™ are class O, we can find two positive constants C(c, 3) and Cy(c, 3) such

that

||Bra — Bral| < Cy(c, B) (!x — I+ Z la; — dﬂ) ,
j=1
and

|2E} Ba — FEL Bal < Ci(c, B) <Ix — &+ |y - dﬂ) :
j=1
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Therefore,
|Fu — Ful|y <max{Ci(c, B) + [|pllec + (6 +1)Ca(c, B)} [[u — | x-
O

Proposition 4.2.1. Let Ag be the part of A in Xo, where A is the linear operator
given by (5.3). Then A is a Hile-Yosida operator and Aq is generator of Cy-semigroup
{T4y(t)} 1= on the Banach space X,.

- \T
Proof. Let (ﬂ&,zﬂ,gﬁ) € X and A > 0. Equation
T -~ - A\T T
()‘[_A) (xvaaoR"NP) = (33,0[,77/},(,0> ) for (l";aaOR"aSO) S D(A)7

rewrites as the following problem:

¢'(a) = —(A + pz)p(a) + (a),
©(0) =7,

(A + pm)a = @,
A+ )z = 7,

which the unique solution is

0

Qa
o= ,
A+ o,

T
T = )
A+l

We deduce that (0, +00) C p(A) and

T || 7]

Al A+ p

= || @ 0=, )| = llellzs +
X X

Furthermore,
1y - .
lellzs < 5 (91 + 181

from where

[|(A—A VA > 0.

_ 1
) 1Hz:(X) = 2\

Hence A is a Hile-Yosida operator and satisfied

lim (A — A)'u=0,Yu € X.

A—+00
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We find that D(Ay) = Xo, and

<

1
||(AT — A gH(A[—A)‘lHE(X)_X, VA >0,

-1
)7 e
thus Ay is generator of a C-semigroup. U

Lemma 4.2.2. Let Assumption 5.1.1 be satisfied.

1. For all C' > 0, there exists Ac > 0 such that
(F + Ael) (z,m,0gn,y)" € X,V (z,m, 0pn,y)" € B(0,C) N X,

2. M —A)™1X, C X, ,VA>0.

Proof.

1. Let (z,m,Ope,y)" € B(0,C)N X, and A > 0. We have

A — zEIBm + \x

(F+AI) (z,m, Ogn, y)" Jo~ pla)y(a)da — 5fzm + Am
z,m,Ogn,y) =
Sxm

Ay.

Then taking Ac = C'3_7_, f3;, item 1. follows.

2. Writing
- N\T
(AI—A)_I (i’,l’h,d&y) = (IamaoRna}I)Ta
with .
y(a) = e OFHelay +/ e~ Mra)a=9) g (5)ds WA > 0,
m = m 0
A
B x
= .
YA
Then, we easily find that (z, m, Ogn, y)T € X, as soon as <:E7 m, w,jf) e X,. O

The precise result of this section is the following:

Theorem 4.2.2. Let Assumption 5.1.1 be satisfied. Then there exists a unique strongly

continuous semiflow {U(t) : Xoy — Xot},sq such that for each ug € Xoy, the map u €
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C([0,00) : Xoy) defined by u = U(.)ug is a mild solution of (4.14), namely it satisfies
t
/ u(s)ds € D(A), Vvt >0,
0

t t
u(t) = ug + A/ u(s)ds —|—/ F(u(s))ds; t>=0.
0 0
Furthermore {U(t) }+>0 satisfies the following properties:

(i) Let U(t)uo = (x(t), m(t), Ogn, y(t,.))", then the following Voletrra integral formu-
lation holds true for j € {1,2,--- ,n}
Yo jla—t)e "t ifa >t
yj (tv CL) = )
Bix(t —a)ym;(t —a)e " if a <t

so that x(t) and m(t) becomes the unique solution of the problem

d”;f) = A — ppa(t) — o(t) ET fm(t);
drzll—ft) =U(z,m)(t) — ppm(t) — Gz (t)m(t);

where ¥(x, m)(t) = (Vy(z,m)(t); - -; ¥, (x,m)(t))" and for j € N,

Vj(z, m)(t) = /0 pi(a)Bx(t — aym;(t — a)e™="da + / p;(@)yo;(a — t)e Htda.

t

(ii) For each ug € Xo, one has for all t > 0:

> A
x(t)+/ E,Z;y(t,a)dagl‘o—'—||E;1;y0||L1—|—u—,
0 T

1 A
Efm(t) < Efmy +— ( T IE ol + ?) 1l

m

wherein we have set ug = (o, Mo, (Ogn, yo))T; U(t)ug = (z(t), m(t), (Ogn, y (¢, .)))T;

min

JUSES lgljlgnﬂm,j and ||pl|mae = gj«g!lpjllm :

(iii) The semiflow {U(t)}i>o s bounded dissipative and asymptotically smooth.

Proof. The proof of this result is rather standard. Indeed it is easy to check that the
nonlinear map F' is locally lipschitzian, the operator A satisfies the Hille-Yosida property
(see Lemmas 4.2.1, 4.2.2 and Proposition 4.2.1). Then standard methodologies apply
to provide the existence and uniqueness of mild solution for System (4.3)-(4.4). (see for
instance [140, 144, 145, 201, 203)).

Next the Voletrra integral formulation is also standard in the context of age-structured

equation and we refer to [108, 211] and the references cited therein for more details.
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Estimates stated in (ii) directly follow from the system of equations. Indeed adding-

up the z-equation together with the y;—equation yields

% <x(t) + /000 Ely(t, a)da> =A—p, (x(t) + /000 Ely(t, a)da) ;
from where one deduces the first estimate of (i4) while the second estimate directly
follows from the first one applied to the m;—equations.

It remains to prove (i77) and let us notice that the bounded dissipativity of the semi-
flow {U(t)}+>0 is a direct consequence of (iz). To prove the asymptotically smoothness,
let B be a forward invariant bounded subset of X(.. According to the results in [192]
it is sufficient to show that the semiflow is asymptotically compact on B.

Let us consider a sequence of solutions {up = (2P;m?, 0, y”)T} o that is equibounded
in Xo; and let consider a sequence {t¢,},>o such that ¢, — +ooZ.O_Let us show that the
sequence {u,(t,)},>0 is relatively compact in Xoy. To do so, we consider the sequence of
map {wy(t) = up(t +1p)},5,- Since x, and m,, are uniformly bounded in the Lipschitz
norm, Arzela-Ascoli theorem implies that, possibly along a sub-sequence, one may as-
sume that z,(t+1t,) — = and m, (¢ +1¢,) — m(¢) locally uniformly for ¢ € R. It remains

to deal with the sequence {y?(t,,.)} Let us denote by y,(t,.) = y,(t + t,,.). Using

p>0"
the Volterra integral formulation one gets
B yola —t +t,)e Htt) if g > ¢+ ¢,
Vp(t,a) = (4.15)
Pyt —a+t,)my(t —a+ty)e H*if a <t+t,.

Finally sine fz,(t — a + t,)m,(t — a + t,)e”#** convergences as p — oo towards some

function (¢, a) = px(t — a)m(t — a)e #+* locally uniformly, one easily concludes that
Yoty ) = F5(0,.) = BE(— )@~ )= in L1 (0,00, R")
The result follows. O

Basic properties.

Now in order to deal with sub-system, it will be also convenient to introduce for each

J C N, the close subspaces X/ C X and X7 C X defined by

XJ:{(x,m,a;y)TeX: mi—l—/ yi(a)da = 0, ViGJ} and X{ = X’ N X,.
0

R. DJIDJOU DEMASSE © 2014



4.2 Age-structured within-host model for multi-strain malaria infections 51

We also introduce X, the positive cone of Xy defined by
X, = X N Xos-

If J =0 then X’ = X, XJ = X; and X, = Xo,. Recalling definition (5.3), note that
A(D(A)N XJ) c X7. In the sequel we shall denote by Ay : D(A;) € X/ — X7 the
linear Hile Yosida operator defined by

D(A))=D(A)NXJ, Ajx= Az, Yo € D(A)NX{. (4.16)
For each i € N,, we also consider

Mé:{(xjm’a;y)TgXoJr: mi—f—/ yi(a)da>0}.
0

Then the following lemma holds true

Lemma 4.2.3. For each J C N,, and each i € N,, the subsets X, C Xo and M are

both positively invariant under the semiflow {U(t) }+>0; in other words
Ut)M{ € Mg and U(t) Xy, C X, vt > 0.

Proof. To prove the above result, let i € N,, be given. Let ug := (x; mg; Opn;yo) € M
be given and let us denote for each ¢ > 0, U(t)up := (x(t); m(t); Ogn, y(t,.))" the orbit
passing through ug. Let us set p;(t) = m;(t) + /oo yi(t,a)da. It comes that pi(t) >
— max (e, tmi)pi(0). That is '

mit) + [ wlt ada 2 e (m v yoxa)da) |
0 0

This complete the fact that U(t)M; C M.
Now, let ug € OM{. Using the Volterra formulation we easily find that m;(t) = 0 for all
t >0 and

fooo yi(t,a)da = [ fo (t —a)m;(t — a)e *da + e | |yo| | 11
= 0.

Therefore U(t)0M} C OM; for all t > 0. This ends the proof of the lemma. O

Then coupling Theorem 4.2.2 together with the results of Hale [91, 92|, Hale et al.

[93] , one obtains the following proposition:
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Proposition 4.2.2. Let J C N,, be given. There exists a non-empty compact set A; C
Xg, such that
(i) Ay is invariant under the semiflow {UJ(t) = U(t)]X61+} that is:

>0
UJ(t).AJ - .AJ,Vt 2 0.
(ii) The subset Ay attracts the bounded sets of X(]]+ under the semiflow Uy, namely,

for any bounded set B C X{,,

hm 6J (Uj(t)B, AJ) == 0,

t—+o00

wherein the semi-distance 0y is defined by 6,(A, B) = sup infg |z —y||x7-
z€EAYE

4.2.3 Steady states and basic reproduction number
Steady states of the model
Next the following proposition describes the equilibria of the model.

Proposition 4.2.3. Let Assumption 5.1.1 be satisfied. Assume furthermore that the set
S is strictly ordered. Then System (4.3) (or semiflow {U(t)}i>0 provided by Theorem
4.2.2) has ezxactly 1 + card S stationary states:

(1) The disease free equilibrium defined by

T
ug = (25; 0rn; Opn, Op, (0,00mm) ) € Xor, xy = R
xr

is an equilibrium of U and it is the only one when S = (.

(ii) When § # 0, in addition to the disease free equilibrium uf, the semiflow U has

exactly card S endemic stationary states defined for each k € S by
ui, = (ef, mf, 0z, yE) " € Xo7 ™ 0 g,
wherein the above quantities are defined in (4.10).

Proof. An equilibrium (z, m,0,;y)T € Xgy of system (4.3) is the solution of the follow-

ing system of equations
n
A — ppx — wZ@-mi = 0;
i=1

ﬁjmjx(Kj - 5j) — Mmjimy = O7 for ] = 1, ey NG

y(a) = zl(a)pm,Va > 0;
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with
K= [ m@iada forj=1....n (4.17)
0

It is easily find that the disease free equilibrium (xf;ORn;ORn,OLl(Om;Rn))T is always
a solution of the system wherein x; = —. If 7y > 1, then there exists an endemic

equilibrium (z%; m’; Ogn; 3% (.)) € Xo4, corresponding to strain 4, defined by

, , AT —1 . o

v =2 i = 22D ) = Bt i(a), va € 0,00):
7o Bi

while the values for the other indexes j # i are mij =0 and yij = 0p1(0,00,r) and wherein

the value of 7 is given by (4.5). O

Basic reproduction rate of the model

Here we follow the methodology of Diekmann and Heesterbeek [48, 51| and Inaba
[116] (see also the references cited therein) to define the reproductive number as the
number of secondary infections that one infectious individual would create over the
duration of the infectious period, provided that everyone else is susceptible.

Let b;(t) be the density of newly produced j— merozoites at time ¢. Then from (4.1)

one has
b0 = [ @@t o de (4.18)
0
In the early stage of the disease invasion process, the dynamics of the population can

be described by the linearized equation at the disease-free steady state. The linearized

system (4.1) at the disease-free equilibrium leads to the following equations:

da;it) = — 2 (t) — x4 Z Bim;(t);

awjgz, a) N awjé(ctl, a) _ (@) & )t a):

dm;(t o
D [ st ) gm0 838570,

(4.19)

w;(t,0) = Bixym;(t); je{l,2,---,n}.
Integrating the w;-equation of system (4.19) belong the characteristics, we obtain that

( ) wO,j(a _ t)e_ Jo (patpg(s))ds if a > t,
wj(t,a) =
Bt — a)ym;(t — a)e™ Jo eti(Dds 3 ¢ < ¢
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Therefore, equation (4.18) gives that

o

b(t) = By / o3 (@)l(@)m;(t — a)da + / pys(@)w;(0, a)da.

t
On the other hand, it follows from the m; component of the linearized system (4.19)

that m;(t) = b;(t) — (pm,; + 0;8;25)m;(t), that re-writes as
t
m;(t) = / —(km,j+0;Bjzp)(t=s)p) i (8)ds + m](0)6*(#m,j+5jﬂjzf)t_
0
As a consequence b; satisfies the following renewal equation:
t a
bi(t) = 5]‘If/ (/ e(Mm,j+6jﬁjwf)(as)pj(s)l(s)d8> bi(t — a)da
o \Jo
t 00
+5jxfmj(0)/ p;(a)l(a)eWmitoifizn(t=a) g, +/ ri(a)pi(a)w;(0,a)da.
t

0

Due to the above formulation, the j—strain specific basic reproduction number Rg is

Ry = oy [ ([ et itsas )
0 0

, Bxy /00
Ry = —L1 pi(a)l(a)da.
" g+ 0iBias Jo jla)ita)

Now let us notice that sgn (R(]) — 1) = sgn (76j — 1). Indeed it is easy to check that

calculated as

that is

. By /00
Ry—1 = —F"L+4 pi(a)l(a)da — 1,
’ tm.j + 058521 Jo s{a)ila)

g B[ o) - s
Wi(a)

B P, + 5j6jxf Hm,j Mo, j

Hm,j {ﬁyxf </OO da — 6; > — 1]
Mm,] +9; /Bjxf Hm,j 0 ’

IUM,]
77 -1
Mm] +5 Bjxf ( )

Moreover one can notice that when ¢; = 0 then R} = T3 .

4.2.4 Technical materials

In this subsection we establish some properties of the entire solutions of System
(4.3). These properties will be useful later to derive the asymptotic behaviour of (4.3)
especially when S # ().
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Our first result is concerned with spectral properties of the linearized semiflow U; :=
Ul Xy, for some given subset J C N, at an given stationary point u* € OMg. Let
u* = (:L'*,m*,ORn,y*)T € XOJJr be a given stationary state of the semiflow U;. The
associated linearized equation at the point u* reads as

du(t)
dt

= (AJ + Bu*)u(t>;

where A is the linear operator defined in (4.16) while B,+ € £ (X, X”) is the bounded

linear operator defined by:

—r*ETfm — zET fm*

x
s ™ Jy” pla)y(a)da — 68(z*m + zm”)
O *fm + xfm*
Yy

0L1(0,00,8™)

Lemma 4.2.4. Let J C N,, be given. Let us set @ = {\ € C: Re (\) > —u,}. Then

the spectrum o (Ay + By) N # () only consists in point spectrum and one has
oc(A;+By)NQ={AeQ: A\ u*) =0},
where function A7 (., u*) : Q — C is defined by

Ay = [ xh 2,

i€N, \J

while for each i € N, and each x € R, function x;(.,x) : Q — C is defined by

xil\, ) =1- X fﬁx {/ pi(a)e=MHalade — 5,1 (4.20)
Hemi 0

Proof. Let J C N,, be given. Let us denote by Agy the part of Ay in XJ. Then it
is the infinitesimal generator of a Co—semigroup on X¢ denoted by {Ta,,(t)},5,- Let

(z,m,0,;y)" € XJ; following results in [142], we find that

x
o (0 m (et=tgy e~ rmim Ogn, e Pety(a — 1)) Va > t,
A p—
v Ogn (e7Hetz, e#mtm, On, OLI(O’OO’RTL))T Va < t.
y

R. DJIDJOU DEMASSE © 2014



4.2 Age-structured within-host model for multi-strain malaria infections 56

Then, for t > ag we have

HTAOJ (t —ap)(z,m, 0,; y)T’ ‘X = e H=(t=a0) | g| 4 pmHm(t=a0) Iy 4 / e M=)y (g — t + ag)da,
t—ag

S e min(#b#"’L)(tiaO)H(‘T7 m, OYU Y)THXv Vt 2 ag.

We deduce that
| T, (t — GO)HL(X) < e~ minpepm)(t=a0) v/ ¢ > g0
Next it is easy to check that the growth rate of this semigroup satisfies

. ln.(HilmJ(t)Hc(X)>
wo (Ags) == lim

t—-+o00 t

< —min(fig, fhm)-

Then since operator B« is compact, the results in [203, 57] apply and provided that the
essential growth rate of {T(AJ+BU*)O (t)}
(Aj + By+) in X satisfies

i>o» the Co—semigroup generated by the part of

o‘-}O,e.ss ((AJ + Bu*)o) S wO,ess (AOJ) < W (AOJ) S - min(,u';m ,um)

Applying the result in [145] (see also [69] and [213]), the latter inequality ensures that
QNo(Ay+ By) # 0 and it is only composed of point spectrum of (A + By-).
It remains to derive the characteristic equation (we refer to [33, 136, 147| for more

details on the subject). Let A € p(A; + By+). We have
()\[—AJ—BU*)(SU,IH, On;y)T: (fj7ﬁ’171/~];57)T And
()\[ - AJ)(%’, m, On; y>T - Bu* (.T, m, On; Y>T = (i’a ﬁlv J}; S’)T )
fromwhere we have the following fixed point equation

(2.m,0,53)7 = (A = A)) ™ (@100, 55 3)7 + (M = A7) By, m,0,5y)7. (4.21)

Since

~ . T
()\I—AJ)il(N,ﬁl,d;;y)T — < T m 70R"7 e*(/\‘HLI).L; +/ e()\+ﬂr)(-8)57(s)d5> ,

>‘ + /1:767 )‘ + Hm 0
we find that
—2*Elfm — zET fm*
A+ g
I pla)y(a)da — 65(z*m + zm*)
(AI— AJ)ilBu*($7m7 0n7Y)T = A‘i‘/im
Ogn

e~ W) (2% Bm 4 2 fm”)
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Therefore, equation (4.21) rewrites as

ET * *ET ~,
B GBS T (49
A+ pg A+ fig A+ fig
* * oo d ~
A+ f, A+ f, A+ f, A+ fhm,

y(.) — e O (27 fm + zfm*) = em M)y 4 / e~ A Fra)=9)y (5)ds, (4.24)
0

Substituting (4.24) into (4.23), it comes that we can isolate x, m (and then (z,m,0,;y))
in system (4.22)-(4.23) if and only if
Ay = T xi(na) #0,
1€NR\J

wherein the function x;(.,x) :  — C is defined by (4.20). Therefore,

o(Aj+ BN ={reQ: AN\ u")=0}.

Our next result relies on properties of the entire solutions of System (4.3)

Lemma 4.2.5. Let {u(t) = (x(t), m(t), Ogn, y (1, ))T} be a given entire solution of
teR
the semiflow U. Then x satisfies

inf z(t) > 0. (4.25)

teR
Furthermore the following properties holds true:

(i) If there exist i € N,, and ty € R such that u(ty) € M then
m;(t) >0, Vt € R and y;(t,a) >0, Y(t,a) € R x [0, 00).

(1i) Assume that S # () and assume there existi € S and to € R such that u(to) € M.

If u(t) — u* as t — oo where u* is an equilibrium point of U. Then one has
u*e{u;: iﬁj}.

(i1i) For each i € N,, there exist a constant M; > 1 such that

S (t
”ﬂL]zw(.)e—uma < yi(t,a) < Mze ™ H=%; Y(t,a) € R x [0, 00),

()

wherein we have set m; (t) = infs<; my(s).
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Proof. Let us first notice that since u is an entire solution then
y(o,a) = Bx(o —a)m(o — a)e "* Y(o,a) € R x [0, 00). (4.26)

This expression directly follows from the Volterra integral formulation in Theorem 4.2.2.
From the estimates provided in Theorem 4.2.2 and the xz-equation there exists some

constant C' > 0 such that for each s € R and ¢ > 0 one has

t
A

z(s)e " + A/ e CUDAl < a(t +5) < a(s) + —. (4.27)
0 M

This implies that inf,cg 2(t) > 0 and complete the proof of (4.25).

We now turn to the proof of (i). Let us argue by contradiction by assuming that
there exists t; € R such that m;(¢;) = 0. Then from the m;—equation we deduce that
m;(t) = 0 for all t < ;. Next we infer from (4.26) that

/ yi(t,a)da =0, Vit < ty.
0

Hence m;(t) + [;~ yi(t, a)da = 0, a contradiction with the existence of #. On the other
hand, due to (4.27) and (4.25), if there exists (¢1,a1) € Rx [0, 00) such that y;(t1,a1) =0
then m;(t; — a;) = 0 and the first part of the argument applies.

Let us now prove (). Let us first notice that since m;(to) + [, vi(to, a)da > 0, (2)
implies that

m;(t) > 0 for all ¢ € R and y;(¢,a) > 0 for all (t,a) € R x [0, 00).

Next consider the function I';(a) = [ p;(s)e*(@*)ds and note that I'; € L>(0, 00, R)
and satisfies I';(a) — pI'i(a) + p;(a) = 0 a.e. a > 0. Let us introduce the functional

O, [ul(t) = /000 Ii(a)yi(t, a)da + my(t),

that satisfies (recalling Definition (4.5))

d®;[u)(t)
dt

= [ (t) [RO%) — 1} , VteR. (4.28)

Using this computation we will obtain a contradiction by assuming that wu(t) — uj as
t — oo for some j <1i. Indeed for j = 0 then u(t) — u, as ¢ — oo implies that z(t) —
as t — o0o. Then since R} > 1 then function ¢ — ®;[u](f) is not decreasing for ¢ large

enough. Hence there exists ty € R such that ®;[u](t) > ®;[u](to) for all t > ty. Since
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®;[ul(tg) > 0, this prevents the component (y;, m;) to converge to (0,0.1) as ¢t — co. A
contradiction with w(t) — ug.

The same argument holds for j € S with j < 4. Indeed in such a case z(t) — zJ as
t — oo and since

i Ri
{Rgﬁ—l]——?—1>0,
l’f 0

the same arguments apply. This completes the proof of (ii).
Finally note that (izi) directly follows from (4.25) and (4.26). This ends the proof of
Lemma 4.2.5. O

Our next lemma is a computation result which will be used in the sequel to perform

Lyapunov arguments.

Lemma 4.2.6. Let us assume that the same assumptions of Lemma 4.2.5 are satisfied.

Let h : (0,00) — [0,00) be the function defined by

h(s)=s—1—Ins. (4.29)
Let us assume that there exists ig € S such that

lim inf m;, (t) > 0. (4.30)

t——00

Then for each t € R one has

{/Oo Pio(s)l(s)ds] h(ym(t’ )) € L'(0,00,R). (4.31)

Consider now the map V;,[u] : R — [0, 00) defined by

Viplu](t) = Vo (t)+V,, (#)+ Vi, ( / fila)y;(t, a)da+ Z d;m;(t), (4.32)

Jj=1;j#i0 Jj=1;37i0

wherein we have set

Va(t) = h(ﬁ?) V() = /0 " aia) h(%) da; Vi, (1) = di, h(T':n(t)>

and
dio ﬁm ezo7 dj — /6]' ’ thhj 7& io; (433)
Hemig Homyj
— _ﬁj > —pz(s—a) j..
fila) = o pi(s)e ds; (4.34)
mj a
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2 10 11y 80 oo
g (a) = Do Mo [ ()i(a) da. (4.35)

:umzo a

Then function t — Vi [u](t) is of the class C* on R and we have

Valut) = 0 (alt) —22)* + 20 3 (77; - 1) im0

v (t) e =t A0
oo Q2 zo 0 ; t : t i0 0
_ / B’LO e mezo plo (a)l(a) h y 0( a) e’Lo + h m i)( )?/620 (0 ) da’
0 Mg yeio ( )mzo (t) Mo Yio (t, )
with
2 xlomem

9i0 = Mg — 5i0 fo”e

mig
Proof. Let us first remark that (4.31) follows from the estimate provided by Lemma
4.2.5 (iii) as well as (4.30). Indeed function a — [ p;,(s)l(s)ds satisfies

/ / Pio(8)l(s)dsds < oo.

Next note that function ¢ — Vj [u](¢) is also well defined for each ¢ € R because of
(4.25), Lemma 4.2.5 (7) and finally because of f; € L>(0,00) (see Definition (4.34)).

It now remains to compute the derivation of ¢ — Vj [u](t) (that is obviously of the
class C' on R since w is an entire solution).

Firstly one has

' A z(t) A o Yio(t;0)
Velt) =— + e — po—" — —5 — BioMej, —; + Biymi, (¢
( ) $60 xeo 'Z.( ) ye(z?o (0) ( )
(4.36)
J=1;3#i0

Secondly one has

ylo / o (@ Yio (t,a) iol yi, (t,a) da:
0 yezo ( ) Yeio ((I) ot
* Yio (tv CL) < ayio <t7 a) >
azo h 3 5 — MY tva da;
/o yem <ye‘20(a) ) da petiolt )
e g Hat io t.a d a
= [ ) (5 (t,0));
0 yeio( ) yezo

da
. Yig (t> O) Yio
m<o>h<ygo(0) ) (y )
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Moreover we infer from the definition of o, (see (4.35))

0= [ 1257 25 ) e

From where we deduce

. 00 32 704 t0 ' , 4 o
V. (1) = /0 BTy (aia) [yzg(t,O)_qu(t,a)_lnym(t,o) 1 vl )]da.

i Yeio(0) el (@) Yeio (0) Yero (@)
(4.37)
Next one can also check that
’ > i Yi (ta CL) dz Hmi
Vmio (t) :/ di05i0 ioxe)plo( )l( ) 30 da — — 0 Omio (t)
0 eig (a) meio
LioYio(t:0) i, /°° (e (t.ada (4.38)
zoﬁzo yzgo(o) mio(t) 0 plo( )ylo( ? )
+ dioéioﬁiox(t) + diO/’LmiO'
Using the fact that
* gaiom Z
/ Mpio (a’) ( ) Blo ezo mﬁlo ’
0 Homig
Bon Zeo ezo i .
(Kio — 0iy) — BigMmejy:
Homig
ioRlo
- ﬁlo ezo xf 610 ezo;
- Bl() 57,0 /620 ezo
we infer from (4.36)-(4.38) that
V(1) + Vi () + Vin,, () =
A 12 leo ez ] z t
— 4+ j22% + dio,umio - B — = K (dz‘odioﬁioxleo - IL[/.Z')Q
ZL’ZeO Hmig Zeo
K;, ziom A xlo
+ 'l() € EZ() _ _’L e _|_ ( > B M
( Hmig l'eo> l‘(t) j %;510 ! ]
00 52 yioypio i (t,a)m ms, (H)y© (0
. / w0e eto plo (a)l(a) h yo( ) elo + h lOO( )yezo( )
0 Hmig yeig( )mm (t) Mgy Yio (t> O)
A
Since EE;, is an equilibrium of system (4.3), that is to say that — = u, + Bi,;m¢}, and

6
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B i
K, Big® = fimiy + iy Bip T, One gets

Vx (t) + V;Jio (t) + Vmio (t) -

—Qim(x(t)—xi‘)f%— <1—x@> zp: Bim,(t)
v a(t) ) ) A
o0 32 g0y i (t, a)ym™ Dy (0
_/ zoxe melopm(@)l(@) h y@(;)( a)mezo +h mloo( )yezo() da,
0 Hmig Yeio (a)mio (t) MeioYio (tv O)
with o
Brm
Giozux_éioM'

mi()
Using the fact that fj(a) — p.f;(a) + d;p;(a) = 0 for all a € [0, 00) and
R

1
5jdj+$—f—fj(0)— o

one has

VEEiO (t) = — .@io (z(t) — x?)Q + x(t) Z <R6 - 1) Bm;(t)

10 10 %0
e (t) e e \ %0

00 32 grioypio i (1, i (e (0
_ / loxe mezo pio (a)l(a) h yl(;)( a)mezo + h m;)( )yezg(o ) da.
0 Homig Yeio (CL)mio (t) Mo Yio (t> )

This ends the proof of the lemma. O

4.2.5 Proof of Theorem 4.2.1 (i)

The aim of this section is to prove the first part of Theorem 4.2.1. By using all the

above introduced definitions and notations, this result can be reformulated as follows:

Proposition 4.2.4. Let Assumption 5.1.1 be satisfied. Then the following holds true:

tlggo Us(t)z = uy,

for each x € X§, and where Us denotes the restriction semiflow U at X§, .

Remember that if S = (), namely Ry < 1 then X59+ = Xy, and Ug = U. This remark
means that when Ry < 1 then the disease free equilibrium is globally attractive.
The proof of this result relies on the construction of a suitable Lyapunov functional

on the entire solution of Us.
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Proof. Let us consider As C X(‘]SJr the global compact attractor of Ug provided by

Proposition 4.2.2. Let € Ag be given and let {u(t)};er C As be an entire solution of

Us such that u(0) = z. Recalling that from Lemma 4.2.5 (i), 1itnlgsc(t) > 0, one may
=

consider the functional V' defined for each entire solutions by

Vil(t) = h (—f) ¥ Z | H@mtada+ Zi;djmj,

where the positives constants d; and the functions f; are defined respectively by (4.33)
and (4.34) while function A is given in (4.29).

Next using System (4.3) we obtain

% —_ Mm% = (djttms — B)my(t)

Jj=1

—Z<d5+ ) +Zd/ pi(a)y;(t,a)da

—Z / £5(@)@uts (1) + prats (1, 0))da

=— MIM = > (djptms — By)my(1)

x(t) =
—Z<5d+ ) +Zd/ pi(a)y;(t, a)da
- Z:: /O fi@)e ™4 (Day; (L, a)e*® + pge=y;(t, a))da.

Integrating by part the last integral of the previous equality and using the y;—boundary
condition of (4.3) yield to

% _ M% = (djpimj — B;) my(1)

J=1

T Z/ — piafi(a) + d;pj(a)) y;(t, a)da.

Finally since fi(a) — . fj(a) + d;p;(a) = 0 for all a € [0, 00) and

9jd;j + ——f]( )= 1_R],

xf
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by recalling that {u(t)}er C X§,, one concludes that

dvie) _ @l -2 =R,
7 He D (t)j%‘\s (). (4.39)

Hence we infer from the definition of S that ¢t — V[u](t) is decreasing along the entire
solutions of Us. To conclude our proof let {t,},>0 be a sequence tending to —oco as
n — oo and consider the sequence of map wu,(t) = u(t + t,). Note that one has
Viun](t) = Vu](t + t,). Up to a subsequence one may assume that u,(t) — u(t)
as n — oo locally uniformly for t € R where {u(t)},.x C As is an entire solution of Us.
Since V' is decreasing, one obtains that

Viul(t) = lim V{u](t) =sup V[u](t).

t——o0 teR

By setting u = (Z, m, 0,9)", (4.39) yields to Z(t) = x; while the x—equation provides
that m(¢) = 0 so that y(¢,.) = 0. Hence V [u] (t) =0 and 0 < V[u](t) <0 for t € R and

u(t) = uj. This completes the proof of Proposition 4.2.4.

4.2.6 Proof of Theorem 4.2.1 (ii)

The aim of this section is to proof Theorem 4.2.1 (¢7). For this reason, we will assume
throughout this section that S # (). The proof of this result will follow an induction
argument. To be more specific we will study the behaviour of the semiflow Us, s for each
subset J C S using card J € {1, ..,card S} as the induction parameter.

The precise result we will prove in the following:

Theorem 4.2.3. Let us assume that the assumptions of Theorem 4.2.1 are satisfied.
Assume that S # (). Then for each J C S the semiflow {US\J(t)}
S X(iy:

(i) if T(x) :=JN{i €N, : o € Mi} =0 then v € X, and

10 satisfies for each

tliglo Us\s(t)x = uy.

(i1) If T(x) # 0 we set i = max~ J(x) and one has

lim Ug\j(t)x = u;.
t—o0
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Let us first notice that point (i) in the above theorem is a direct consequence of
Theorem 4.2.1 (i) (see Proposition 4.2.4). As a consequence, it is sufficient to prove (i7)
and let us notice that Theorem 4.2.1 (i) corresponds to Theorem 4.2.3 with J = S. As
mentioned above, the proof of this result relies on an induction argument on card J. In
the sequel we shall investigate the case where card J = 1 and we will then show how

such a property is inherited.

Case card J = 1.

Let i € S be given. For notational simplicity we consider the set Y5, = X{)Sl{i} and

let us denote by {V/(t) := Ug\{i}(t)}t>0. We also consider the sets
Ny = Yo, N M and ONy = Yo, \ No = X,

Before constructing a suitable Lyapunov function to study the asymptotic behaviour
of V(t)x for some x € Ny let us first collect in the following lemma some properties of

the semiflow {V'(¢) }+>0 :

Lemma 4.2.7. Under the assumption of Theorem 4.2.3, the semiflow {V (t) }+>¢ satisfies
the following properties:
(i) It is bounded dissipative and asymptotically smooth; Ny and ONy are both posi-
tively tnvariant under V.
(ii) For each x € ONy one has V (t)x — uf.
(iii) The semiflow V' is uniformly persistent with respect to the pair (Ny, ONy) in the

sense that there exists € > 0 such that for each x € Ny:

liminfd (U(t)x; ONy) > e.

t—o00
Proof. Note that (i) directly follows from Theorem 4.2.2 (i), (i7i) and Lemma 4.2.3
while (7i) directly follows from Theorem 4.2.3 (7). It remains to prove (ii7). To do so
we will apply Theorem 4.2 in [93]. Let us first notice that ug is an unstable stationary
state with respect to the semiflow V. Indeed as an application of Lemma 4.2.4 we know
that the eigenvalues in 2 of the linearized semiflow V' at u( are given the resolution of
the equation ASM(), ug) = 0. On the other hand these eigenvalues contain the roots

of the equation x; (X, u§) = 0 (see (4.20)). Note that function y;(., u) satisfies

xi(0,u5) =1 —R§ < 0 and /\hm i\ uh) =1,
—00
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that ensures the existence of a strictly positive eigenvalue. The instability of u with
respect to V' follows.

Applying Theorem 4.2 in [93] to complete the proof of Lemma 4.2.7 (i) it is suf-
ficient to show that W* ({ugy}) (| No = 0 wherein we have set W*({u}) = {v € Yy, :
tEEFnOOV(t)U = u}. To prove this assertion, let us argue by contradiction by assuming

that there exists x € W* ({ug}) ) No. Then using the same computations as in Lemma

4.2.5 (i1), since R} > 1 one obtains that the function

& [V(t)r] = / " @)yt a)da + mi(t) with T'(a) = / * (s)eds

is increasing for t large enough. This prevents the function (y;(¢,.), m;(t)) to converge
to (0z1,0) and provides a contradiction together with the definition . This completes

the proof Lemma 4.2.7. O

As a consequence of Lemma 4.2.7 and Theorem 3.7 in [143](see also the monograph
[193]) there exists By a compact subset of Ny which is a global attractor for the semiflow
{V(t)}+>0 in Ny. To complete the proof of Theorem 4.2.3 (ii) in the case J = {i} it
remains to prove that By = {wu;}. This will be achieved by constructing a suitable
Lyapunov functional on By. This idea has been used by Magal et al [147] and Thieme
1202].

Let {u(t) = (z(t), m(t), Orn, y (t, .))T}te]R C By be a given entire solution of V. We

claim that
Claim 4.2.1. Function m; satisfies inf,cg m;(t) > 0.

Before proving this claim let us complete the proof of Theorem 4.2.3 for J = {i}.
Using Claim 5.2.1 and Lemma 4.2.6, one can consider the functional (see Lemma 4.2.6

for the notations)

VIO =V + V0 + V04 Y [ st ada s Y dmi)

J=Lj#d j=1;5#i
Then one has by setting ©; = u, — 6; Frem
Viul(t) = — —— (z(t) — — —
(1) = = s (o) — 1) + 2 Z\S 1) i)

e () (ayf?%))]dw
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Recalling condition (@) one obtains that ©; < 0 so that ¢ — V[u](¢) is a bounded and
decreasing map. Finally arguing similarly as the end of the proof of Theorem 4.2.1 (1)
yields to u(t) = u].

It now remains to prove Claim 5.2.1.

Proof of Claim 5.2.1. Let us argue by contradiction by assuming that inf;cg m;(¢) = 0.
Note that due to Lemma 4.2.5 (i), one has m;(t) > 0. Hence let us for instance assume
that liminf;, , . m;(t) = 0. Consider a sequence {t,},>o tending to —oco as n — oo such
that m;(t,) — 0 as n — oo. Consider the sequence of maps {u,(t) == u(t +t,)},5-
Then up to a subsequence, one may assume that u, (t) — u(t) locally uniformly wherein
u is an entire solution of V such that m;(0) = 0. Lemma 4.2.5 (i) ensures that
(mi(t),yi(t,.)) = (0,0r:) This prevents u to belong to Ny, a contradiction. A simi-
lar argument holds true if one deals with liminf, , ., m;(t) = 0. This completes the

proof of Claim 5.2.1. O

Case card S > 2 and 2 <card J <card S

In this section we assume that card S > 2. Note that the proof of Theorem 4.2.3 (i)
follows from the above section when card § = 1. Let J C S be a given subset such that
card J > 2. Our induction hypothesis is concerned with the validity of Theorem 4.2.3
for each subset J' C S such that card J' < card J. Consider now the set Yy, = X@J as

well as the semiflow V' := Ug\; on Yj;. Let us denote ¢ = max<(.J) and let us consider
NO = YEH— N Mé and BNO = Y0+ \ No.
Let us first notice that to prove Theorem 4.2.3 (ii) for J, it is sufficient to show that

lim V(t)z = u;, Yx € Nj. (4.40)

v i
Indeed, if x € ONy then = € X&i\‘], with J' = J\ {i}. Since J' C § and card J' <
card J then V(t)z = Usg\ y(t)x and the asymptotic behaviour follows from the induction
hypothesis.

The proof of this section is rather similar to the one provided in the preceding section.
The only difference relies on the proof of the uniform persistence of the semiflow V' with

respect to the pair (Ny, 0Ny) because of the dynamics of the semiflow on the boundary
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ONy. Hence to complete the proof of Theorem 4.2.3 (ii) for J we will only prove the

following lemma. The details are left to the reader.
Lemma 4.2.8. The semiflow V is uniformly persistent with respect to the pair (No, ONy).

Proof. The proof of this result is an application of Theorem 4.2 in [93]| with a non-trivial
dynamics for the boundary semiflow. Let us denote by J' = J \ {i}. Then note that
Vlan, = Us\y. According to Proposition 4.2.2 let us consider Ay := Ag\;» the global
attractor of the semiflow V|gy,. Note that according to the induction hypothesis the

following holds true:

U w@) = {utu | {u;}.

€Ay jeJ’

Here for each = € Yy, w(z) denotes the omega-limit set of the point x with respect to
the semiflow V. The application of Theorem 4.2 in [93] relies on some properties of the

set /zl\a defined by
Ay = {ui} U U {u}.

jeJ

Let us first claim:

Claim 4.2.2. For each j € J U {0} the stationary point u; is unstable with respect to
the semiflow V.

Proof of Claim 4.2.2. The proof of the above claim relies on Lemma 4.2.4. Let us notice

that for each j € J'U {0}, function x;(.,u} (see (4.20)) satisfies

1—Ryif j=0,
Xi(O,uj): RE .o . /
1—R—21f]€J.

Hence since i = max®J, x;(0,u}) < 0 and since x;(A,u}) — 1 as A — oo, for each

J € J'U{0} function x;(.,u}) has a strictly positive root. The result follows. O
Then we claim that:
Claim 4.2.3. For each (j, k) € J"' U {0} then if {u(t)}er is a non-trivial (that non-

constant) entire solution of V' such that

: . : .
tLl{noou(t) =u; and tlgglo u(t) = ug,

then j < k.
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Proof of Claim 4.2.3. The proof of this claim relies on the application of Lemma 4.2.5
(i7) as well as Lyapunov like argument.

Let us first consider the case where j € J’. Then applying Lemma 4.2.5 (i7) we know
that 7 < k. It is therefore sufficient to show that there is no homoclinic connection at

u;. Let us argue by contradiction by assuming that

tE:rl:noo U(t) - uj.

Then applying once again Lemma 4.2.5 (i7) we obtain that for each k € J’ such that
kg
yr(t,.) =0 and my(t) =0, Vk e J' > j.

Then consider the functional

VIO = Va0 =V, 0+ Vo, 0+ Y [ f@mtadat Y dam(0)
p=Lip#j V' ° p=1;p#j

Using similar arguments and computations (see Lemma 4.2.6) as the ones provided in

the preceding section and using the fact that for each k € S\ J' and each k € J' such

that k> j

yk(t,.) = 0 and my(t) =0,

one obtains that u(t) = uj}, a contradiction.
It remains to consider the case j = 0 and to show that there is no homoclinic con-
nection at ug. Let us argue by contradiction by assuming that
li t) = ug.
S =%
Then let us notice that due to Lemma 4.2.5 (47) one has

yr(t,.) =0 and mg(t) =0, Vk € S.

Then by considering the map

Volul(t) = h (—f) ¥ Z | ftamaa+ fjldjmj,

as well as computations and arguments similar to the proof of Proposition 4.2.4 one

concludes that

a contradiction that completes the proof of Claim 4.2.3. O
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As a consequence of Claim 4.2.2 and Claim 4.2.3, the set A\a is isolated and has an
acyclic covering. Hence since the semiflow is bounded dissipative and asymptotically
smooth, Theorem 4.2 in [93]| applies and to complete the proof of Lemma 4.2.8, it is
sufficient to show that No N W* ({u}}) = 0 for each j € J'U{0}. Similarly to the proof

in Section 4.2.6 this latter property directly follows from the functional

OV (t)z] = /000 Li(a)y;(t, a)da + m;(t) with I';(a) == /OO pi(s)e ?ds.

This completes the proof of Lemma 4.2.8. O

4.2.7 Future directions

The emergence and spread of antimalarial drug resistance poses a severe and in-
creasing public health threat. The P. falciparum parasite is now resistant to all of the
used antimalarial drugs, even to the latest artemisinin-based combination treatments.
Knowledge about resistance mechanisms involved may allow the development of new
drugs that minimize or circumvent drug resistance, may allow the identification of new
targets for drug development and to identify molecular markers for malaria resistance
surveillance. That is, a deeper understanding of the dynamic of multiple strain P. falci-
parum infection can improve the understanding of the role of parasite interactions in the
spread of drug-resistant parasites, perhaps suggesting different treatment strategies. To
this end, age-structured within host malaria models can also consider two mains inputs.
The first is to provide a good dynamics of the host immune system. The second is to

incorporate the dynamics of antimalarial drugs into the model.

4.2.8 Summary

In this section, we have examined an age-structured within-host model for multistrain
malaria infection. This model incorporates n strains for the parasite. Using integrated
semigroup theory, we provided a global analysis of this model. The rationale for includ-
ing multi-strain can be multiple. One reason is to take into account biological reasons,
e.g., consideration of morphological or age classes. The second is due to the recent
study on this subject. Recently, it has been proved that a deeper understanding of the
dynamic growth responses of multiple strain P. falciparum infections, with and with-

out drug pressure, can improve the understanding of the role of parasite interactions in
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the spread of drug resistant parasites, perhaps suggesting different treatment strategies
[208].

This model has been conceived from malaria infection, since it is well grounded that
malaria is a multi-strain infection. However other parasitic infections can be considered
by this model, e.g., the model can be extended to the HIV infections [105].

The main finding of this section can be summarized along the following lines:

v To separate the different strains we associated for each strain the i-specific basic
reproduction number R} defined by (4.9). We then find that the basic reproduction

number of the model is defined by Ry = max Ry

n

77777

v' We also find that if Rg < 1, the model exhibits a unique disease-free steady
state, while if Rg > 1 the model has exactly ng disease-endemic steady states, wherein
ng = Card{i € {1,...,n}: Ry > 1}.

v" We prove that if the basic reproduction number of the model satisfies Rg < 1,
then the disease free equilibrium is globally asymptotically stable; i.e., the parasite is
cleared from the host population.

v' Our global stability result when Ry > 1 can be summarized as a competitive
exclusion principle. If Ry > 1, if one strain has its individual threshold R} strictly
larger than the thresholds of the other strains and if a mild sufficient condition gives
by (4.11) is satisfied, then there exists a global asymptotic stable endemic equilibrium.
This equilibrium corresponds to the extinction of all strains, except the strain with the

largest threshold (winning strain).

4.3 Mathematical modeling of anopheles mosquito dy-
namics population.

In this section, we examined an advection-reaction model for anopheles mosquito dy-
namics population with time dependent parameters. We introduce the threshold values
R, R, and R,. Then, we find that, if R® < 1, the anopheles mosquito population dies
out. On the other hand, if R¢, > 1 (resp. R, > 1) then anopheles mosquito uniformly
weakly (resp. strongly) persists in the population.
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4.3.1 Model formulation

For the mathematical description, we assume that there are two main stages in the
development of mosquitoes: an aquatic and an adult stage. The aquatic stage gathers
eggs, larvae and pupae. The adult stage can be divided into several compartments:
immature females, feeding females, resting females, breeding females (or more precisely
"egg laying females") and males. We assume that there is no sex differences in the
aquatic stage and mosquitoes, after emergence, are distributed between the immature
female compartment and the male compartment. Following [44], we consider that the
number of emerging females and emerging males is equal; therefore the sex ratio of
emerging adults, r, is set to % We assume that a female mates only once with a male
in her lifetime. After mating with males, we assume that immature females start their
gonotrophic cycles [44] by entering the feeding female compartment. The gonotrophic
cycle defined by Clements [36] starts with a blood meal and ends with the first laid
egg. Then, after blood meals, they get into the resting compartment, allowing egg
maturation. Afterward, the females pass into the breeding compartment seeking for a
breeding site to deposit eggs. Once egg deposit is done, females start a new gonotrophic
cycle. The eggs laid by the breeding females supply the aquatic stage. We consider only
one compartment for the males. For the females, it is necessary to take into account
four sub-compartments since their behavior is very different.

At time ¢, the density of the anopheles mosquito population is divided into five com-
partments as follows: A of the population in aquatic stage, M of male, Y of immature
females, @) of questing females, U of breeding females and R of resting females.

The population in the aquatic stage is recruited at rate ®U where ® is the average
amount of eggs laid per fertilized female per day. In the model, we use a density
dependent, death rate for the aquatic stage since anopheles larvae are density sensitive,
which imply an additional density mortality rate. In [44], the size of the population is
also restricted only in the aquatic stage but in a different way by an explicit carrying
capacity beyond which no eggs are laid. The population in the aquatic stage is affected
by the density independent mortality rate py and the carrying capacity of the aquatic
site K 4. Population in the aquatic stage emerges at rate v with 1—~ being the fraction of
emerging male mosquitoes. After mating with males mosquitoes, immature females leave

the breeding sites and arrive at the human habitat and then become questing females
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. We assume that immature females becomes questing females at rate SY with £ the
mating rate between immature females and males mosquitoes. At the human habitat,
questing females interact with humans by mass action contact, during which contact
they can either survive to reproduce or get killed. Once rest, questing females will begin

K9

() models the proportion of questing females

to search blood meal and we assume that they are attracted to humans at rate b 7

H
H+ K
that prefers human blood as opposed to those that feed on other animals, K is a positive

and enter the question class where

constant representing a constant alternative food source for the site and b is a positive
constant. Questing females die at rate p,. Resting females becomes breeding females
at rate o HQ) where ¢ is the successful rate in taking a blood meal of questing females
and H is a parameter representing the density of humans habitats. Resting females die
at rate u,.. After laying eggs, breeding females becomes questing females at rate a. The
compartment of breeding females is affected by a mortality rate p,.

The structure of the model is depicted in Figure 4.3. The dashed arrow indicates the
mating between males mosquito and immature females.

Using all biological explanations the mathematical model for anopheles mosquito

population is the following system of ordinary differential equation:

. A

A = oU <1_K—> — (v +m)A,
A

Y = yrA = Y — By,

M = (1—=r)yA— M,
(4.41)

HQ
H+K

R = BY +1b — @HR — 1, R,

U = @HR— (a+ p,)U,

e
H+K

Q = alU-—-b 1q@

Let us notice that model (4.41) is formulated and rigorously analyzed by Anguelov,
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Pl

State Variable Description

Aquatic stage
Male

Immature females
Questing females

Breeding females

D TO < oz o

Resting females

Figure 4.3: Anopheles mosquito flow chart. The dashed arrow indicates the mating
between males mosquito and immature females. The above table summarize the state
variable of the model. The description of parameters is also summarize in Tables 4.4

and 4.5.
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Dumont and Lubuma in [6]. Setting

_ T 1— L -
Ly S v G Ul Dy S SN Ly | (4.42)
ﬁty + fH ot D(/gﬁ‘f' B)
-1 _ ~ a + Hu _
Uﬁa H—l—K%—'uq>R7 ©= apH <H+K+'uq) ’
wherein .
pyre (H+—HK + Uq)
Ro = : (4.43)
a(y + ) (py + B)D
and
a+ g bH bH
= + /qu - ’
apH \H+ K H+ K

the essential properties of the model (4.41) as a dynamical system are summarized in

the following theorem (see Theorem 7 in [6]).

Theorem 4.3.1. The set of ODEs (4.41) defines a dissipative dynamical system on
Co={z € RS : © > 0}. Moreover

(i) If Ry < 1 then the trivial equilibrium 0 is globally asymptotically stable on Cy.

(ii) If Ry > 1 then system has two equilibrium 0 and E := (A, M,Y,U,Q,R)" on Cj
where E is stable with basin of attraction Co\ {x = (A, M,Y,U,Q,R) e R, : A=Y =
U=Q =R =0} and 0 is unstable with the nonnegative M-axis being a stable manifold.

Now, let us formulate the spatial-temporal model with migration of the mosquito.

It is well known that the ecology of mosquito vectors and malaria parasites affect the
incidence, seasonal transmission and geographical range of malaria [166]. According to
Mordecai et al. [166] there is a relationships between temperature and the mosquito
and parasite life-history traits that determine malaria risk. Therefore, we assume that
the following parameters are time-dependent parameters: Eggs laid per adult female
per day ¢(.); mosquito adult mortality rate i, (.), fm(.), pr(.), pu(.), pg(.); Egg-to-adult
survival probability yu1(.); and larval development rate v(.). Then equations to describe
the seasonal spatio-temporal dynamics of anopheles mosquito allowing migration are

the following;:
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( aAétt, x) = ¢(t) (1 — %) Ut,z) — (v(t) + i (1) A(t, ),

% +emVY (1, 2) = Y(t)rA(t, 7) — pim ()Y (£, 2) — BY (t, ),
OID) | T ) = (1= (DA ) — (DM, ),
aRg;, z) | enVR(t,2) = BY (t,2) + b% — GHR(tx) — i (OR(L, 2),
aUéi’ 2 emVU(t, ) = pHR(t, ) — (a + pu (1)U, z),
\ an;’ ) 4 e VO 3) = al(t 7) — bfm (OO ),

(4.44)
System (4.44) is considered for ¢ € R, in a domain Q (x = (z1,22)7 € Q = [0,w;) X

[0,ws) C R?), with initial and boundary conditions

=

z
Il
S

(t,x) =Q(t,x) =U(t,x) = R(t,x) =0 Y(t,z) € Ry x 09,
yx) =Yo(x), M(0,z) = My(z), Q(0,2)= Qo(x),

(4.45)

2
ov(t,x . . .
where Vo(t, z) = Z ((; ) and ¢, is the migration coefficient of adult mosquito.
I‘ .
j=1 I

In order to deal with system (4.44)-(4.45) we first introduce the vector-valued v(¢,.) =
(A(L,.), M(t,.);Y (L, .); R(t, ); U, .); Q(t, )", & = (0, £m, Ems Ems Emy €m) " and the usual

scalar product (.,.) as well as the functional
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Fi(t,v) =
~((O) +m®) + %) 0 0 0 ¢ 0
(1=r)y(t) — i (1) 0 0 0 0
ry(t) 0 —m(t)=p 0 0 0
0 0 B —(pH + (1) 0 TR
0 0 0 oH —(a+ (1)) 0
0 0 0 0 a e — pg(t)
(4.46)
system (4.44)-(4.45) rewrites as the following non-autonomous advection-reaction equa-
tion:
avg;, ") 4 diag(e)Vv(t,x) = Fu(t, v(t, 2)v(t,),

v(t,z) =0, Y(t,x) € Ry x 09, (4.47)
v(0,z) = vo(x) € L'(Q,RY),

In what follows, we will make use of the following assumption.

Assumption 4.3.1. We assume that, 5, b, H, a, ¢, r are nonnegative constants, €, > 0

while the functions ¢(.), v(.), p1(.), pm(-), ty(L), w1 (), pu(.), pe(.) are w-periodic and
belong to L>(0, 00, R, ).

4.3.2 Existence of positive solutions for seasonal model (4.44).

The aim of this section is to derive preliminary remarks on (4.47). These results
include the existence of the unique maximal bounded semiflow associated to this system.
We shall deal with the Cy-semigroup approach introduced by Pazy [180].

Let us introduce X = L'(Q,R°) as well as its positive cone X = L'(Q,R%) and the
linear operator B : D(B) C X — X defined by

D(B)={ve W QR : v(x)=0, Voo },
B (v) = —diag(e)Vv.

(4.48)

Finally, let us introduce the nonlinear map F : [0,w) x D(B) — X defined by
F(t,v) = Fi(t,v)v.

Following Pazy[180], we have the following results on the linear operator B.
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Lemma 4.3.1. Let Assumption 4.3.1 be satisfied.
(i) The operator B is generator of a Cy-semigroup of linear bounded operators {T'(t) }+>0

such that
v(z —te), if (t,x —te) e Ry x

0, if (t,x —te) € Ry x 09

T(t)v(z) =

(ii) The domain D(B) of operator B is dense in X and B is a closed operator.
(i1i) The nonlinear operator F defined from X to itself is continuous and locally Lips-

chitz.

Proof. The proof of this result is rather standard. Standard methodologies apply to
provide item (i) (see Pazy 1983 [180]). Item (ii) is a direct consequence of the fact that
the operator B is generator of a Cy-semigroup of linear bounded operators (see Corollary

2.5 in Pazy 1983 [180]). O

Setting ¥ (t) = v(t,.); system (4.47) rewrites as the following densely defined Cauchy

problem

WO gy + B ), 30,
T (4.49)

$(0) = 4 € D(B) = X;

Let us introduce the following lemma.

Lemma 4.3.2. Let Assumption 4.53.1 be satisfied. The map F : [0,w] x X — X s

continuous and for each & > 0, there exists K(§) > 0 such that
| (8 v1) = F(E, v2) || < K(&)[lva — vall,
whenever vi,ve € X such that ||vi]| <&, ||va]] < €.
Proof. Let € > 0 and vy, vy € X such that ||vy|| <&, [|va|| <& We easily find that

|F (8, v1) = F(t,vo)|] < K(t §)[ve = val|,

with
K(t,§) = max <¢(t) + 5% + () + pa(); 7y () + py () + 85 (1 =)y () + pm(2);
B e+ oH + (00 ot e +alt)).

Therefore Assumption 4.3.1 gives that ||F(t,vy) — F(t,va)|| < [|K(.,&)||1e.]|v1 — Vall.
O
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In the following definition, 7 is the blow-up time of maximal solutions of (4.49).

Definition 4.3.1. Consider two maps 7 : [0,w) x X — (0,w] and U : D, — X,
where D, = {(t,5,v) € [0,w)* x X : s <t < s+ 7(s,v)}. We say that U is a maximal
non-autonomous semiflow on X if U satisfies the following properties:

(i) T(r,U(r,s)v) +r=1(s,v)+s,Vs >0,Vv € X,Vr € [s, s+ 7(s,V)).

(i) U(s,s)v =v,V¥s > 0,Vv € X.

(1i3) U(t, r)U(r,s)v =U(t, s)v,Vs > 0,Yv € X,Vt,r € [s,s+7(s,V)) witht > r.

(iv) If 7(s,v) < +00, then limy_, (s r(sv))- |[U(t, s)V|| = +o0.

Set D = {(t,s,v) € [0,w)?* x X : t > s}.

The main result of this subsection is the following theorem.

Theorem 4.3.2. Let Assumption 4.5.1 be satisfied. Then there exist a map 7[0,w) X
X — (0,w] and a mazimal non-autonomous semiflow U : D, — X, such that for each
v e X, and each s <0, U(.,s)v € C([s,s +7(s,Vv)), X}) is a unique mazimal solution
of (4.49). Moreover,

(i) D, is open in D and the map (t,s,v) — U(t, s)v is continuous from D, into X .
(ii) Let U(t, to)vo(.) = v(t.,); where v(t,.) == (A(t,.), M(t,.); Y (t,.): R(t,.); U(t,.); Q(¢, )"
solve (4.44)-(4.45). Assume that Ag(z) < K4 for all x € Q. Then one has for all

t>t >0

/A(t, x)dr < mes(Q)Ka;
Q

SUPse[0,u] ’V(S)

lnfsé[Ow ( ) ,
4.50)

/ (M(t,x) +Y(t,z) + R(t,z) + U(t,z) + Q(t, z)) dv < mes(Q) K 4

wherein pu(.) = min (fiy,(-), ty (), pr(2)s pu(L)s 1ig(.)) and mes(2) = wiws.

Proof. The proof of this result is rather standard. Indeed it is easy to check that
operator B satisfies the Hille-Yosida property (see the proof of Proposition 4.2.1). Then
coupling Lemma 4.3.2 together with Theorem 4 in [146]; we obtain the existence of
non-autonomous semiflow U satisfying item (i). It remains to check item (ii). Without
lost of generality, we may assume that ¢y = 0. The A-equation of system (4.44) gives
that

s ¢(n)U<n x) _ [t ¢(mU(n,z)
A(t, ) < / o(s fo dnds) e h TRy My € Q.

R. DJIDJOU DEMASSE © 2014




4.3 Mathematical modeling of anopheles mosquito dynamics population. 80

Since Ap(.) < Ky, we easily find that A(t,.) < Ky for all ¢ > 0. This ends the
first estimate of (4.50). Now let us introduce the following quantity / M(t,z)dz. For
Q

convenience we still use
M(t) = / M(t,z)dx
Q
and idem for the variables Y, @, U and R. Therefore,

M'(t) = [ o.M(t,z)dx,
=—¢pm, /Q VM (t,z)dx + (1 —7)y(t)A(t) — pm (t) M (t).

Applying the divergence theorem, we find that

/VM(t,a:)da::/ (M(t,x),v(z))do(x),
Q o0

wherein v(z) is the unit outward vector to © at x € 0€2. Since M(t,x) = 0 for all

x € 0F), then

MI(t) = (1= )AA(L) — ()M ().
Applying the same arguments to the variables Y, ), U, R and using the first estimate
of (4.50), it comes that

d
—x(t) < mes(Q)K4 sup (s) — inf p(s)x(t),vt >0,
dt 5€[0,w] s€[0,w]

with z(t) = M(t)+ Y (t)+ R(t)+ U(t) + Q(t). From where the second estimate of (4.50)

follows and this end the proof of the theorem. O

The following result will be useful for the persistence results of the seasonal spatio-
temporal model (4.44)-(4.45). We claim that

a7l

Claim 4.3.1. A(t,z) < Ky, Y(t,z) < 3

and R(t,x) + U(t,z) + Q(t,z) <
rKallll
infse[o,w} p(s)
Proof of Claim 4.3.1. Using the proof of item (ii) of theorem 4.3.2, we obtain that
A(t,z) < K4 for all (t,z) € Ry x Q. From the Y-equation of system (4.44)-(4.45)

we find that

for all (t,z) € Ry x €.

t
s

¢
Y(t,x) = / ry(8)A(s, x4 (s — t)e,)e™ s BHmangg (¢ z) e Ry x Q.
0

Therefore,
r K4Vl

Y(t,x) < 3

,V(t, .T,') S RJ’_ x €.
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Adding up the @, U and R equations of (4.44)-(4.45) we also find that
t
R(t,z)+ U(t,x) + Q(t,x) < / BY (s, + (s — t)e)e Js M gs (t 2) € Ry x Q.
0

From where

rKal[7]loo

R(t,z) + U(t,2) + Q(t,x) < - ,
() + U(t,x) + Q(¢, 2) Foco0 /1(5)

V(t, x) € R+ x €.
This ends the proof of the claim. O

Now let us introduce the following quantity / A(t, z)dx. For convenience we still use
Q

A(t) :/QA(t,:I:)dac

and idem for the variables Y, @, U and R. From the (R + U + @Q)-estimate of Claim
4.3.1 and the divergence theorem (see for instance the proof of Theorem 4.3.2) we easily

find that

%it) — ¢(t)/9 <1 - Ag’f?) U(t,z)dx — (y(t) + pi(t))A(t),

%@ — A(OrA() — (DY (1) — BY (1),

T — (1 (A — )M 0),

O vy + 052D o) — ()R, (4:51)
% — GHR(t) — (a + p(0)U(1),

90— ) 290w,

Y (0) = M(0) = Q(0) = U(0) = R(0) =0
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4.3.3 Mosquito extinction results for seasonal model (4.44).

Let us introduce the following notations:

_QOH — Mreo 0 ;_~_—HK
A_ = oH —a — flyso 0 )
0 a _Hb.t,_—HK — Hgoo

wherein flyeo, fluco a0d firoo are the limits inferior of f,(¢), ., (t) and p,(t) as t — 4o0.
Let

(0 + (Do = limint [ (305)+ (5,

t—r00
rf
RO =
(V) + Do .
x lim sup 1/ ¢<5)/ 7(5)(3]05 G(m)dn+ [¢ (v(n)+p1(m)dn </ foolo — e f;(6+uy(n))dnd0> déds,
0 3

t—o0 0

and
fro() = {(0,1,0)"; e (1,0,0)7);
and where {e*4-}, is the Cy-semigroup generate by the linear operator A_.

We have the extinction result of seasonal spatio-temporal model (4.44) as follows,

Theorem 4.3.3. Let R® < 1. Then the anopheles mosquito population dies out, i.e.,
for every solution of (4.44)-(4.45) we have A(t),Y (t), R(t),U(t),Q(t) — 0 as t — oo.

Proof. From the Y-equation of (4.51) we have
t
Y(t) = / ry(s) A(s)e™ s Brrumdn (4.52)
0

The @, U and R-equations of (4.51) give that

d

—(B(1),U(1),Q1)" < A(R(1),U(1), Q)" + (BY(£),0,0)",

that is .
U(t) < / BY () foo(s — t)ds. (4.53)
0
Substituting (4.52) into (4.53) we find that
U(t) < /t rBy(s)A(s) (/t foolo —t)e™ f:(m'“y(”))d"do) ds. (4.54)
0 s

The A-equation of (4.51) leads to

%mA(t) < ()2 — (Y(t) + m(b)). (4.55)

R. DJIDJOU DEMASSE © 2014



4.3 Mathematical modeling of anopheles mosquito dynamics population. 83

Integrating (4.55), we have

%m%%s%%¢@i8—%évmwummw. (4,56)
Using (4.54) we find that
U(s) ST A(¢ o= JE (B+my(m)dn g
mwgﬁ B(€) S(/ﬂn d)%

From the A-equation of system (4.51), we easily find that
A(0)e~ Jo(rm+u(m)dn < A(t) < A(O)eﬁf(aﬁ(n)—v(n)—m (mMdn. gt > 0, (4.57)

From where we find that

A(€) < ef(f o(mdn+ [ (v(n)+m (U))d";vg >£>0.

A(s) ~
Hence, (4.56) gives
Alt) _
t “A(O) =
N T () I [ (o) ))dn( ’ e S By ) >

otimsup 7 [ o) [ qlg)elf artiowrm lhwtkﬁ+”"wd%
—(v() + p1())os
that is

1 At

T < 00 +m() (R -1).

Since R® < 1, it comes that
A(t) < A(0)e0OH D (RO=1)E 5 0 a5 ¢ — oo,

The Y, Q, U and R-equations of (4.51) give that Y (¢), Q(¢),U(t), R(t) — 0ast — oo O

4.3.4 Weak persistence results for seasonal model (4.44).

In order to obtain the weak persistence results of seasonal spatio-temporal model

(4.44) we set:

00 bH
—pH — 17 0 TiR
At = oH —a — s 0 .
bH 00
0 @ TER M
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where in p°, p° and pg° are the limits superior of ju,(t), pu(t) and ji,(t) as t — +oc.
Let

(00 + () =timsin g [ (2(s) + pu(s)ds,

t—o0
rf
CORITIaN S
« lim inf Z/O qg(s)/o v(€)e J§ $(mdn+ [ (y(m)+11 (n))dn (/5 (o —t)e ff(ﬂ+uy(n))dnd0> déds,

Ry =

t—o00

and
720) = {(0,1,0)7;¢4" (1,0,0)7) . (4.58)
Theorem 4.3.4. Let Ry > 1. Then anopheles mosquito uniformly weakly persists in

the population, in the sense that there exists some € > 0 such that

limsup A(t) > €

t—+4o00

for all solutions U(t,0)vo = (A(t,.), M(t,.);Y(t,.); R(t,.); U(t,);Q(t,.)", t > 0 of
system (4.44)-(4.45).

Proof. Let us suppose that for every € > 0, there is some solution with limsup,_, , ., A(t) <

e. From the Y-equation of (4.51) we have

¢
Y(t):/ rv(s)A(s)e*fs(B+“’J("))d”. (4.59)
0

The @, U and R-equations of (4.51) give that

SR, U, QW) > AT(R(), U, Q)T + (5Y (1), 0,0)"
that is .
(1) = /0 BY (5)F=(s — t)ds. (4.60)
Substituting (4.59) into (4.60) we find that
U(t) —/ 6y (s (/ F=(o = t)e I3 i) d”da) ds. (4.61)

The A-equation of (4.51) leads to

%1 A(t) = % /Q (1 - %Ax)) Ut )de — (v(t) + m (). (4.62)

Setting A> := limsup,_, . A(t) and since A® < ¢, then there exists ¢, > 0 such that
A(t) < efor all t > t,.
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Integrating (4.62), we have for sufficiently large time ¢

L[5 ]

— —1t* /t (v(s) + pi(s))ds.
That is
L ()N S & U(s)  U(s) 1t
A =t / 9(s) (@ - K—A> ds — ﬁ/t (7(5) + pa(s))ds.

(4.63)

Thus, using (4.61) and the fact that A(t) < e for all ¢ > t,; we can find a non-negative

o~

function c¢o(.) such that U(t) < ecy(t) for all ¢ > .. Therefore, (4.63) becomes

1 A(t) 1 ! U(s) ecols) 1 !
TR ey /t o(s) (A(s) T Ky ) S (7($)+“1(S))?j'64)

Using (4.61) we find that

= /0 S Tﬁv(f)jg < /E S (o —t)efg”(ﬁJruy(n))dndU) .

Equation (4.57) leads to

AE) o -8 SONdnt [ G ). g > ¢ > ()

Als)
Hence, (4.64) becomes
1 A(t)
1 >
t—t. At ©

13 1t* /t¢(s) /s 7(6) e (il O @ </ foo )e_fiﬂ(ﬁ‘ﬁuy(n))dndo.) déds
KAt—t / d(s)eo(s)ds — +— ( (s) + pua(s))ds.

For sufficiently large ¢ we have

1AW
>
= VA S

rﬁt . /t¢(s> /S v(&)e™ Js Sm)dn+ [ (y(m)+pa (m))dn </S (o —t)e” f{(ﬁwy(n))dndU) déds

= b Jy, 0 3

€
— =000 = (1) + ()"

A

Since Ry > 1,
B hgn inf 1 /t o(s) /S y(€)e™ Js $m)dn+ [ (v(m)+pa (m))dn (/S (o —t)e” f!(6+uy(n))dndg> déds
—00 0 0 ¢

—(v() + m()° > 0.
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Hence
1 A(t)

In

>
t—t,  Alt,) =

for large times ¢, with 6 > 0 provided € > 0 is chosen small enough. Thus
A(t) > A(t,)edt=t)

for sufficiently large ¢ and A(t) — oo as t — oo, a contradiction to the fact that A is

bounded. O

4.3.5 Strong persistence results for seasonal model (4.44).

In order to formulate a strong persistence results, let

=00 bH
—oH — 17 0 H+K
./4+ == QOH —a — /foLo 0 )
bH
0 @ ~mR Mg

where in £i2° is the limit superior of [, (), as ¢ — 400; and

ir(t) = lim g, (s +1).

5—00

Similarly considerations hold for the variables ug® and fg°.

Let t
(0 () = limsup [ (3055 7) s+ )
rf3 |
+M1
12{325 / “* / (s + £)e I HeEDITEI s G

(/ fOO o —te = J¢ (B+py (s+n) dndg> dedr.
3

720 = ((0.1,0)75¢%(1,0,0)7).
Theorem 4.3.5. Let R, > 1. Then anopheles mosquito uniformly strongly persists in

the population, in the sense that there exists some € > 0 such that

liminf A(t) > €

t—-+o0

for all solutions U(t,0)vy == (A(t,.), M(t,.);Y(t,.); R(t,.); U(t,.);:Q(t, )", t > 0 of
system (4.44)-(4.45).
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Proof. In order to get into framework of uniform persistence results introduce by Thieme

[204], consider the space

Xo = {V(t, D)= (A(t,.), M(t,.);Y(t,.); R(t,.); U(t,.); Q(t,.) € X : /

A(t,z)dx > O} ,
Q

endowed with the standard metric. Further let
po:v(t,.) € X —[0,00) D po(v(t,.)) := /QA(t,x)da:
be a non-negative functional on X. Then the space X, rewrites as
Xo ={v(t,.) € Xy : po(v(t,.)) > 0}.

We consider the function
0o : Dy — [0, 00)
defined by
alt5,0) = Wt 45 5)0)i= [ Afe+ s,0)d,
Q
where v(t,.) := (A(t,.), M(t,.); Y (t,.); R(t,.); U(t,.); Q(t,.)) solve (4.44)-(4.45) and v (¢, s) =
u.

According to Theorem 4.3.2 we have

A% < mes(Q)K a;

(M+Y +Q+U+R)™ < 22714,
inf

and the set

QO—{(A,M;Y;R;U;Q):A+M+Y+R+U+Q§ (1+Si“p7> mes(Q)KA}

is absorbing and forward invariant. A standard Gronwall argument implies that oq(., s, u)
is continuous on [0, c0) uniformly in u € €y, s > 0. Therefore the non-autonomous semi-
flow U has the following (CA)-property:
(CA) There exists a subset Qg in X with the following properties:
— For all u € X, s > 0, we have U(t, s)u — Qp, t — oo, that is y absorbs U(., s)u.
— If (s;) is a sequence of real numbers and (u;) a sequence in X such that s; — oo
and u; — Qg as j — oo and, for some € > 0, po(u;) = € for all j € N, then the

continuity of o(., s;)u; is uniform in j € N, possibly after choosing a sub-sequence.
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Now, for every ¢ > 0, t > 0 we defined set ¥(e) and X(t,€) as follows (£ is the
absorbing set in (CA)):

Y(t,€) consists of continuous functions y : [0,t] — [0, €],

ao(t) =0 < 79(0) = e,

do(s) = lim;_ o0 09($, sj)u; uniformly in s € [0, ]

for sequences (s;) C [0,00), (u;) C X with s; = 0o, u; — Qq, as j — oo.
Y(e)  consists of continuous functions ay : [0,00) — (0, €],

0 < Go(0) = e,

Go(s) = lim;_,o 09(s, sj)u; locally uniformly in s > 0

for sequences (s;) C [0,00), (u;) C X with s; = 0o, u; — €, as j — oo.
(4.65)

The semiflow U is said to have property (PS) if the following holds:

(PS) If € > 0 is chosen sufficiently small, the sets X(e) and X(t, €) are empty for all
t>0.

Coupling Theorem 4.3.4 and the (CA)-property together with Theorem 2.3 in [204]; in
order to check the uniformly strongly po-persistence of U it is sufficient to check property
(PS). Let us describe elements of ¥(¢) and (¢, €) in (4.65) in terms of systems (4.51).
To this end we consider sequences s; — 0o, u; — 2o in X, as j — oo. Let A;, Y}, R;,

Uj, @; be the solutions of

() —aters) [ (1-HED) U - 64 s) e )AL
T b4 5)r A 0) = o+ 5,)V3(6) — Y3 (0),
PO _ vy + TP ol (1) — e+ 5,) R, 1),
WD — HR(1) ~ (0t + )50,
d%t(t) = aUj;(t) — bfﬂ:(]? — pg(t 4 55)Q; (1),
[ (41000, Y5(0), 7,(0).U,(0).Q,(0)) = ;.

Since L'(0,00) is separable, the Alaoglu-Bourbaki theorem implies that, after choosing

as sub-sequence, ¢(t+s;) — o(1), Y(t+s;) = (), pa(t+s;) = pa(t), py(t+s;) = ay(t),
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it 4 53) = Fn(t), palt + 53) = Talt)y 1glt + 53) = (), a5 § — o0; where 6, 7, i,
oy, fry [lu, [iq are elements of L>°(0, 00) and the convergence holds in the weak topology
carried by L>(0,00) as dual space of L!(0, c0).

The derivatives of A;, Y;, Q;, U; and R; are bounded, uniformly in j € N. By

Arzela-Ascoli theorem we have, after choosing a sub-sequence,

Aj(t) = A(t),  Y;(t) =Y (1), Qi) = Q). Ui(t) = U(t), R;{t) = R(t), j— o0

locally uniformly in ¢ > 0, where A, Y, @, U and R are bounded and absolutely

continuous and satisfy

(L0 50 [ (1- 2D 00 01ds - (0 + ()40,
% =7(O)rA(t) — (Y () — BY (1),
C”z_it) = BY (1) + bgi@ — wHR(t) - fi,(t)R(t), (4.66)
@ — GHR() — (a + ()T (1),
W0 _ a2 a0,
(A(0),Y(0), R(0),U(0),Q(0)) = ug € .

Since A(0) = € > 0, we first realize that

A(t) > A(0)e™ Jo (o) +ma(s)ds < 0;Vt > 0,

so X(t, €) is empty.
The element of ¥(¢€) in (4.65) can be identified as

a(t) = At),

where A satisfies (4.66) and A(0) > 0, A(t) < ¢ for all ¢ > 0.
The same consideration as in the proof of Theorem 4.3.4 now implies that such an A
cannot exist, if € > 0 is chosen small enough, provided that R, > 1, where R, is the

analogue of R, in Theorem 4.3.4 with ¢, 7, fi, flys [y, [y, [l TEPlACING O, 7, i1, fby, fr,
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I, [4g- But, let us notice that

B ) ) 1 t B 1 t
bo = htrgg)lf 7 o(r)dr = hrgglf ; /0 lim ¢(r + s;)dr

j—)OO

1
= liminf — lim / G(r + s;5)dr

t—o0 Jj—o0 0

> hmmfhmmf/ o(r+ s)d

t—o00 $—00

> liminf — /¢r+3 )dr = ¢,

t,s—00

Similarly considerations holds for the other terms in R¢. Hence Ry > R, > 1. This end

the proof of the theorem. O

4.3.6 Numerical illustration

We now provide some numerical illustrations of the dynamics of the seasonal model
(4.44). From the website of WMO (World Meteorological Organization) , we have
obtained the monthly temperature of the town of Garoua (Cameroon) from 1971 to

2000. The real data and its fitted curve are shown in Figure 4.4.

Temperature vs Time

o Data
— Fitting curve

\

0 200 400 600 800 1000
Time (day)

w
N

w
o

Temperature CC)
N
o]

N
)]

N
~

Town of Garoua

Figure 4.4: The monthly temperature and its fitted curve.

In Table 4.5 we summarize parameters that are assumed to be constant in our model.
This include the proportion of female to the whole population, r, the transition rates 5,
a, , the carrying capacity, K 4, the constant alternative of blood for vectors, K.

In Table 4.4, we present the temperature-varying parameters, according to [166|, [44].
This include the average number of eggs laid per female per day, ¢, the mortality rates

for aquatic stage, for males, for immature females, for questing females, for breeding
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females, for resting females, fi1, fim, [y, fr, fus g, and the rate of emerging from the
aquatic stage, 7.

The values of temperature-varying parameters, v, is given in [44]. Since we consider
continuous variations temperature, we interpolate the data parameter v given in Table
4.3, using monotonic spline interpolation [73] (See Figure 4.5).

Now, according to Mordecai et al. 2012[166], let us describe how environmental
temperature drives malaria transmission via its combined effects on the mosquito and
parasite vital rates that determine transmission; namely the average number of eggs
laid per female per day, ¢, the mortality rates for aquatic stage, for males, for immature
females, for questing females, for breeding females and for resting females, fu1, i, iy,
My, [, [q. As all rate parameters in the temperature-dependent are expected to be
unimodal with respect to temperature, they (Mordecai et al. [166]) fit quadratic and
Briére functions (Briere et al. 1999 [21]) to each life-history parameter, as well as a linear
function for comparison (Table 4.6). The Briére function is a left-skewed unimodal
curve with three parameters, which represent the minimum temperature, maximum
temperature and a rate constant (Briere et al. 1999 [21]). The unimodal functions are
defined as Briére [c(Ty — T'(t))(Tm — T(t))"/?] and quadratic [¢T?(t) + 2T(t) + s|, where
T(t) is temperature in degrees Celsius at time ¢ and ¢, Ty and 7T, and ¢, z and s are fit
parameters of each function respectively.

All time dependent parameters for model (4.44) are given by Table 4.6 and Fig. 4.5
and the other parameters are estimated by Table 4.5.

In Figure 4.7, we illustrate the distribution of mature females (questing, breeding and
resting females) on a homogeneous landscape for different temperatures: 15°C, 20°C,
25°C, 30°C, 35°C" and 40°C'. With respect to each temperature, the lifetimes of mature
females are respectively given by: 8.27, 12.79, 12.31, 7.67, 4.29 and 2.45 days.

Table 4.3: Values of temperature-varying parameter 7 [44].

Unit  10°C 15°C  20°C  25°C  30°C  35°C  40°C

day=! 0 0.0236 0.0578 0.0671 0.0645 0.0515 0
~v=Rate of emerging from aquatic stage.

Ref.: Delatte et al. 2009 [44].
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Egg to adult survival probability Mosquitoes death rate vs Time
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Figure 4.5: Time performance curves of mosquitoes traits for the town of Garoua.
Quadratic fitting for egg-to-adult survival probability, mosquitoes death rate and for
egg laid per adult female per day [166]. Rate of emerging from aquatic stage (larval

development rate) is fitting using monotonic cubic spline interpolation |73].
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Figure 4.6: The long term behaviors of mosquitoes population in two stages using
temperatures in the town of Garoua: Breeding females (left) and Aquatic stage (right).
b=0.5; H=100; K =200; K4 =5000; a =0.3, ¢ = 0.8. Other parameters are given
by Tab. 4.5 and Tab. 4.6.
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Figure 4.7: Distribution of mature females on a homogeneous landscape. b = 0.5;
H =100; K = 200; K4 = 5000; a = 0.3, o = 0.8. Other parameters are given by Tab.
4.5 and Tab. 4.6.

Table 4.4: Temperature-varying parameters.

Parameter Description Ref.

1) Number of eggs laid per female per day |[166]

{1 Mortality rate in aquatic stage [166]

Py Hys ey flu, g Mortality rates of mosquitoes [166], [44]
0 Rate of emerging from aquatic stage [44]

Ref.: Delatte et al. 2009 [44]; Mordecai et al. 2012 [166].
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Table 4.5: Values of constant parameters.

Parameter Description Estimated value Ref.
r Ratio of emerging females 0.5 [44]
Ky Carrying capacity variable

Mating rate between immature female and male 0.2 day ! [44]
Y Probability of successfully taking a blood meal  variable
H Constant population density of humans variable

at human habitat sites

K Constant alternative of blood for vectors variable

b Rate at which vectors visits human habitat sites

a Rate at which resting females become breeding  variable

Em Adult mosquitoes speed of migration 0.1ms™! [59], [127]

Ref.: Delatte et al. 2009 [44]; Dufourd et al. 2013 [59]; Lacroix et al. 2009 [127]
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Table 4.6: The relationships between temperature and the mosquito and parasite life-history traits that determine malaria risk. Thermal
performance curves were fitted to the data assuming Briére [c(Ty—T'(t))(Tm—T(t))"/?], B, or Quadratic [¢T?(¢)+2T(t)+s], Q, functions;
in which 7'(¢) is temperature (°C') at time ¢. Standard deviations for the parameters are listed in parentheses alongside parameter values.

(see Mordecai et al. 2012 [166] and references therein).

Parameters Definition Fit Fit parameters (standard deviation)

ey Daily adult survival Q ¢ = —0.000828(0.0000519) =z = 0.0367(0.00239) s = 0.522(0.0235)
probability

Mdr Mosquito development B ¢ =0.000111(0.00000954) T}, = 34(0.000106) To = 14.7(0.831)
rate

pEA [pEA=e #1] Egg-to-adult survival Q ¢ = —0.00924(0.00123) z = 0.453(0.0618) s = —4.77(0.746)

probability

EFD Egg laid per adult fe- Q ¢ = —0.153(0.0307) z = 8.61(1.69) s = —97.7(22.6)
male per day

PDR Parasite  development B ¢ =0.000111(0.0000161) T = 34.4(0.000176) Ty = 14.7(1.48)
rate
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4.3.7 Future directions

When mosquitoes are not submitted to stimuli, it is possible to assume that they
move randomly in any direction [42]. This leads to a diffusion equation. For simplicity,
let us describe a generic equation to model the spread of a mosquito population. So,
let v represent the density of insects, then, one possible model is given by the following
general advection-diffusion-reaction equation (see also [59]):

( Ov(t,x)
ot
v(0,2) =vo(x) >0, x€Q,

=V(D(t,z)v(t,x)) = V((VC(t,x) + W(t,x))v(t,z)) + g(t,z,v), ze€Q,t>0,

(=DVo(t,z) + W(t,z)v(t,z))  nim =0, Vo & 0y, t>0,

\ Vou(t, z) - Nous = 0,V € Oy, t > 0,
(4.67)

where  is a bounded domain in R" (1 < n < 3) with a piecewise smooth boundary
0. D(t,z) > 0 is the diffusion (dispersion) coefficient or the diffusivity and wy(.) is a
continuous (or possibly discontinuous) function. Let 9€2;, and 9, be partitions of the
boundary 92 where 0€);, is the boundary at the inflow of mosquitoes in © and 0.,
is the boundary at the outflow. 7, and 1., are respectively the unit outward normal
to the boundaries €2, and €2,,;. We consider total flux Cauchy boundary conditions on
0, [220], and Neumann boundary conditions on 9€y;.

Entomologists usually assume that there is no passive transportation of mosquito by
the wind. Conversely, mosquitoes follow (or are looking for) odors and carbon dioxide
(COq) carried by the wind |74], which gives a main direction of migration of mosquitoes;
this is modeled by the term V(W (t,z)v(t,z)). Indeed, it is well known that C'O,, in
interaction with other components, acts as an attractant and induces a direct response
to guide the mosquito towards the host. The breeding sites or the blood feeding sites
attractions are modeled by the term V(VC(t, x)v(t,z)), where VC(t, x) represents the
force of attraction towards favorable places. In C' we take into account wind direction
and strength to determine the area of attraction, which is commonly called plume by
entomologists.

The reaction term g(¢, x,v) can be nonlinear, and represents death, birth, migration
in the population. If one only focus on mosquito dispersal, we may consider a linear

g(t,x,v) = —A(x)v + b(t, ), where A would be the mean daily death rate, and b would
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represent the birth rate in breeding sites.

Further works could be done from the mathematical and computational point of view
with respect to model (4.67). For instance, the existence of a solution of the impulse
parabolic system (4.67) could be considered, as well as the existence of a periodic equi-
librium. Then, in order to take into account more precisely environmental and landscape
parameters, High Performance Computing and more accurate numerical schemes should

be considered or developed.

4.3.8 Summary

In section 4.3 we have examined an advection-reaction model for anopheles mosquito
dynamics population. Knowledge of the population dynamics of the malaria vector is
fundamental to the understanding of malaria epidemiology and the spread of insecti-
cide resistance. Therefore, studies on the population structure of malaria vectors have
important implications for the prediction and assessment of the effects of many vector
control strategies. According to all malaria models, little has been done with regard to
the studies on the population dynamics of malaria vectors.

The aim finding of section 4.3 can be summarized along the following lines:

v" We first derive the model description. This includes the description of model parame-
ters and the description of the state variables of the model (see Eq. (4.44)-(4.45)). This
model takes into account seasonal transmission and the geographical range of malaria.
v" Using the semigroup approach we first derive the existence of the unique bounded
non-autonomous semiflow associated to the system (4.44)-(4.45).

v To find the behavior of the non-autonomous semiflow associated to the system (4.44)-
(4.45), we introduce the threshold values R, R, and R.. Then, we find that, if R® < 1,
the anopheles mosquito population dies out.

v We also derive persistence results for seasonal mosquito model (4.44)-(4.45). Namely,
if Re > 1 (resp. R, > 1) then anopheles mosquito uniformly weakly (resp. strongly)
persists in the population. Finally, we provide some illustrations of the dynamics of the

seasonal model (4.44)-(4.45).
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CHAPTER FIVE

POPULATION MODELS STRUCTURED BY

AGE: HEPATITIS B AND SIIL. MODELS.

This chapter is organized in two sections and deals with two population models
structured by age. The first section is concerned by a mathematical SIL (Susceptible-
Infected-Lost of sight) model for the spread of a directly transmitted infectious disease
in an age-structured population; taking into account the demographic process and the
vertical transmission of the disease. There are important infective agents such as HBV
(hepatitis B virus), HIV (human immunodeficiency virus) and HTLV (human T-cell
leukemia virus) that can be vertically transmitted. The second section of the chapter is
concerned by and age-structured model for the transmission of hepatitis B virus, with

differential infectivity: symptomatic and asymptomatic infections.

5.1 Age-structured SIL model with demographics pro-
cess and vertical transmission.

We consider a mathematical SIL model for the spread of a directly transmitted in-
fectious disease in an age-structured population; taking into account the demographic
process and the vertical transmission of the disease. First we establish the mathematical
well-posedness of the time evolution problem by using the semigroup approach. Next
we prove that the basic reproduction ratio Ry is given as the spectral radius of a positive
operator, and an endemic state exist if and only if the basic reproduction ratio Ry is
greater than unity, while the disease-free equilibrium is locally asymptotically stable if
Ry < 1. We also show that the endemic steady states are forwardly bifurcated from the
disease-free steady state when Ry cross the unity. Finally we examine the conditions for

the local stability of the endemic steady states.
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5.1.1 Introduction

During the earliest centuries mankind faces ever more challenging environmental and
public health problems, such as emergence of new diseases or the emergence of disease
into new regions, and the resurgence diseases (tuberculosis, malaria HIV/AIDS, HBV).
Mathematical models of populations incorporating age structure, or other structuring
of individuals with continuously varing properties, have an extensive history.

The earliest models of age structured populations, due to Sharpe and Lotka in 1911
[194] and McKendrick in 1926 [154] established a foundation for a partial differential
equations approach to modeling continuum age structure in an evolving population. At
this early stage of development, the stabilization of age structure in models with linear
mortality and fertility processes was recognized, although not rigorously established
[138, 139]. Rigorous analysis of these linear models was accomplished later in 1941 by
Feller [70], in 1963 by Bellman and Cooke [15], and others, using the methods of Volterra
integral equations and Laplace transforms. Many applications of this theory have been
developed in demography [37, 112, 125, 184], in biology [10, 12, 13, 38, 90, 207| and in
epidemiology (25, 29, 71, 72, 102, 124, 56].

The increasingly complex mathematical issues involved in nonlinearities in age struc-
tured models led to the development of new technologies, and one of the most useful of
these has been the method of semi-groups of linear and nonlinear operators in Banach
spaces. Structured population models distinguish individual from another according to
characteristics such as age, size, location, status and movement. The goal of struc-
tured population is to understand how these characteristics affect the dynamics of these
models and thus the outcomes and consequence of the biological and epidemiological
processes.

In this section we consider a mathematical S-I-L (Susceptibles-Infected-Lost of sight)
model with demographics process, for the spread of a directly transmitted infectious
disease in an age-structured population. By infected (I) we mean infectious taking a
chemoprophylaxis in a care center. And by loss of sight (L), we mean infectious that
begun their effective therapy in the hospital and never return to the hospital for the
spuctrum examinations for many reasons such as long duration of treatment regimen,
poverty, mentality, etc... The lost of sight class was previously consider in some papers

as 20, 65].
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In this section, the infective agent can be transmitted not only horizontally but also
vertically from infected mothers to their newborns (perinatal transmission). There are
important infective agents such as HBV (hepatitis B virus), HIV (human immunode-
ficiency virus) and HTLV (human T-cell leukemia virus) that can be vertically trans-
mitted. Compared with the pure horizontal transmission case, so far we have not yet
so many results for vertically diseases in structured populations. In Africa, the vertical
transmission of the disease like HIV is in progression nowadays.

Worldwide, 1% of pregnant women are HIV-positive. However, sub-Saharan Africa
where 95% of HIV positive women live carries the vast majority of this burden [198].
Without treatment, approximately 25%-50% of HIV-positive mothers will transmit the
virus to their newborns during pregnancy, childbirth, or breastfeeding [17]. In 2007,
over 2 million children worldwide were living with HIV/AIDS, with the overwhelming
majority again in sub-Saharan Africa [198]. Approximately 400,000 infants contract HIV
from their mother every year, which is about 15% of the total global HIV incidence [183,
218|. The rate of pediatric HIV infections in sub-Saharan Africa remains unacceptably
high, with over 1,000 newborns infected with HIV per day [94].

Large simple trials which aim to study therapeutic interventions and epidemiologi-
cal associations of human immunodeficiency virus (HIV) infection, including perinatal
transmission, in Africa may have substantial rates of lost of sight. A better understand-
ing of the characteristics and the impact of women and children lost of sight is needed.
According to Toannidis et al. [117], for the impact of lost of sight and vertical trans-
mission cohort in Malawi, several predictors of lost of sight were identified in this large
HIV perinatal cohort. Lost of sights can impact the observed transmission rate and the
risk associations in different studies. They (Ioannidis et al.) also focus that the HIV in-
fection status could not be determine for 36.9% of infant born to HIV-infected mothers;
6.7% with missing status because of various sample problems and 30.3% because they
never returned to the clinic (Lost of sight).

Firstly, the epidemic system is formulated. Then, we will describe the semigroup
approach to the time evolution problem of the abstract epidemic system. Next we
consider the disease invasion process to calculate the basic reproduction ratio Ry, then,
we prove that the disease-free steady state is locally asymptotically stable if Ry <

1. Subsequently, we show that at least one endemic steady state exists if the basic
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reproduction ratio Ry is greater than unity. By introducing a bifurcation parameter, we
show that the endemic steady state is forwardly bifurcated from the disease-free steady
state when the basic reproduction ratio crosses unity. Finally, we consider the conditions

for the local stability of the endemic steady states.

5.1.2 The model

In this section, we formulate a model for the spread of the disease in a host population.
We consider a host population divided into three subpopulations; the susceptible class,
the infective class (those who are infectious but taking a chemoprophylaxis) and the
lost of sight class (those who are infectious but not on a chemoprophylaxis) denoted
respectively by S(t,a), I(t,a) and L(t,a) at time ¢ and at specific age a. Let f(.,.)
be the contact rate between susceptible individuals and infectious individuals. Namely,
B(a, o) is the transmission rate from the infectious individuals aged o to the susceptible
individuals aged a. All recruitment is into the susceptible class and occur at a specific
rate A(a). The rate of non-disease related death is u(a). Infected and lost of sight have
additional death rates due to the disease d;(a) and dy(a) respectively. The transmission
of the disease occurs following adequate contacts between a susceptible and infectious
or lost of sight. r(a) denoted the proportion of individuals receiving an effective therapy
in a care center and ¢(a) the fraction of them who after begun their treatment will not
return in the hospital for the examination. After some time, some of them can return
in the hospital at specific rate v(a).

The basic system (age-structured SIL epidemic model) with vertical transmission can

be formulated as follows by equation (5.1).

| (% * 33) S(ta) = Ala) = (Mt,a) + (@) S(t,a),
(8825 + i) I(t,a) = A{t,a)S(t,a) — (u(a) + di(a)
+r(a)p(a)(t, a) +~(a)L(t, a), (5.1)
(5+ ) Lt = r@olalt.0)~ (u(a) + o

+v(a))L(t,a).

~

\
For the boundary conditions of model (5.1), we consider that pregnant lost of sight

women generally return to the clinic for the birth of they new born, therefore, we can
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assume that there is not lost of sight new born (i.e. L(t,0) = 0). Due to the above

consideration, the initial and boundary conditions of model (5.1) are given by:

(

S(t0) = [3 f(a)[S(t.a)+ (1 - p)(I(t,a) + L(t, a))|da,
1(t,0) = pJy" f(@)(I(ta)+ L(t,a))da,
L(t,0) = 0,
(5.2)
S(0,a) = ps(a); a€ (0,a"),
[(Ova) = @I(a); a€(07a+)7
L(07a) = @L(a); CLE(O,CL+),

\

and where f(a) is the age-specific fertility rate, p is the proportion of newborns produced
from infected individuals who are vertically infected and at < oo is the upper bound of

age. The force of infection A(¢,a) is given by

At,a) = /Oa Bla,o)(I(t,0) + L(t, 0))do.

where ((a, s) is the transmission rate between the susceptible individuals aged a and
infectious or lost of sight individuals aged s. a™ < oo is the upper bound of age.

Let us note that in the literature the transmission rate 3(a, o) can take many forms:
B(a,0) = = constant (Dietz 1975 |54]; Greenhalgh 1987 [82]), f(a, o) = g(a) (Gripen-
berg 1983 [88]; Webb 1985 [211]), 5(a,0) = g(a)h(o) (Dietz and Schenzle 1985 [55];
Greenhalgh 1988 [83]; Castillo-Chavez and al. 1989 [29]).

In the following, we consider systems (5.1)-(5.2) under following assumption:

Assumption 5.1.1. We assume that € L*°[(0,a™,Ry) x (0,a™, R, )| and functions
f, di, da, v, A, p belong to L>=(0,at,R,).

5.1.3 Existence of flow
The aim of this section is to derive premininary remarks on (5.1)-(5.2). These results
include the existence of the unique maximal bounded semiflow associated to this system.

Abstract formulation

3
Let X be the space defined as X := L*(0,a*,R?) with the norm ||¢||x = 3. ||¢s||11;
i=1
where ¢ = (1, P9, 03)7 € X. Let us note X, the positive cone of X.
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It is well known that (X,||.||x) is a Banach space. Let A : D(A) C X — X be a
operator defined by

Ap = —¢' — pep, (5.3)
with the domain
©1(0)
D(A) = ¢ =I(p1,92,03) € WH(0,a", R and | ,(0) | =
©3(0)

a+ )

" f(@)pr(a) + (1= p)(pa(a) + p3(a))]da
p [ f(a)(pa(a) + ws(a))da

0
the function F': D(A) — X defined by
©1 A— )\{7 (70]901
Ele | = ALeler = (di+rd)ps +70s |-
3 rops — (d2 4 7)ps

A, ¢] € LY(0,a™,R) is a function such that

at
Nadl = [ Bla.0)lpalo) + pulo)ldo
0
and W1(0,a™, R) is a usual Sobolev space.
Let us first derive the following lemma on operator A.
Lemma 5.1.1. 1. The operator A is generator of a Cy-semigroup of linear bounded
operators {T(t)}+>o such that

pla—t)e ™™ if a—t>0
T(t =
(De(e) { Ct—a)e ™ if a—t<0

for t<a*

and T(t)p(a) = Ogs fort > a*; where C(t) = (Cy(t), Ca(t),0) € R? is the unique

solution of the following Volterra integral equation
Ct) = G(t) + (¢, C),
with

G(t) = < taf<s><sol<s 1)+ (1= p)als — 1) + als — £))ds 5 p t‘}<s>w2<s ~t)ds o) ,

o(t,C) = (/Otf(S)(Cl(t— s) + (1 —p)Ca(t — s))ds ; p/otf(S)Ca(t — s)ds ; 0> :
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2. The domain D(A) of operator A is dense in X and A is a closed operator.

Proof. The proof of this result is rather standard. Standard methodologies apply to
provide item 1 (see Pazy 1983 [180]). Item 2 is a direct consequence of the fact that the
operator A is generator of a Cy-semigroup of linear bounded operators (see Corollary

2.5 in Pazy 1983 [180]). O

Therefore, one obtains that System (5.1)-(5.2) re-writes as the following densely de-

fined Cauchy problem

do(t
U o) + Ple)),
(5.4)
e(0) = (psipr )"
Existence and uniqueness of solutions
We set Xg := D(A) and Xg, the positive cone of Xy. In general we can not solve

(5.4) in this strong formulation, if uy € Xo; \ D(A). So, for arbitrary ¢y € Xo; , we

solve it in the integrated form:

ot) = @o+ A/Ottp(s)ds + /OtF(w(s))ds ;6> 0. (5.5)

A solution of (5.5) is called a mild solution of the initial value problem (5.4). So, in
the following, we are looking for mild solution of abstract Cauchy-problem (5.4).

We can easily find that:

Lemma 5.1.2. On Assumption 5.1.1, the nonlinear operator F' from X to X is con-

tinuous and locally Lipschitz.

Using Lemmas 5.1.1 and 5.1.2 the main results of this section reads as (see Theorem

1.4 in Pazy 1983[180]).

Theorem 5.1.1. Let Assumption 5.1.1 be satisfied.
If pg € Xy := Ll(O,aJr,]Ri). Then there exists a unique bounded continuous solution

¢ to the integrated problem (5.5) defined on [0, +00) with values in Xo, .

5.1.4 Disease-Free Equilibrium (DFE)

The following proposition gives the characteristics of the disease-free equilibrium

(DFE) of system (5.1)-(5.2).
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Let us introduce I(a) = ea:p( fo ds) the average lifetime of individuals at age

a.

Proposition 5.1.1. Let/ f(a)l(a)da < 1 be satisfied. Then, system (5.1)-(5.2) has
a unique Disease Free Equilibrium (DFE), o = (So,0p1,071), where Sy is given by

at

! a)l(a A s ) da
%ol0) = 1— [ f(a)l(a)da/o fla)ita) </o I(s) ! >d ’ (5.6)
“A(s)
So(a) = I(a) {SO(O) —0—/0 ) ds] for0<a<a®.
Proof. : ¢ is an equilibrium of problem (5.4) if and only if
v € D(A) and Ap + F(p) = 0x. (5.7)

For the DFE we have ¢y = @3 = 0p1. Hence Aa, ] = 071. From where the result

follows using straightforward computations. O

5.1.5 Endemic Equilibrium (EE)

¢ is an endemic equilibrium of (5.4) if and only if (5.7) is satisfied. That is,

or(@) = o(0)i(a)exp (— / "\o. gp]dg)
Ao, ld

[ (- ) Als)as (58)
(

¢<o>da) 1 (s)eals) + Mls. elipr (5)] ds

g, p
“l(a)l(a) “
aw = [ne e (-] @
Te2(0)1(@)Ts (@) exp (- /O r(0)¢(a)da>; (5.9)
ps(a) = @s(0)l(a)y(a)exp (- /O av(a)da)
+ /a é((ggziz)) exp (— /ay(a)d0> r(s)p(s)pa(s)ds; (5.10)
o1(0) = / F(@)l1(a) + (1 — p)(ala) + pala))da: (5.11)
2(0) = / £()(p2(a) + s(a))da; (5.12)
p3(0) = 0. (5.13)
where
Ti(a) = exp(— [ (di(s) +r(s)o(s))ds);

J
Tao(a) = exp (= [o (da(s) +7(s))ds) .

R. DJIDJOU DEMASSE © 2014



5.1 Age-structured SIL model 106

Let us set A\(s) = A[s, ¢] for s € [0,a™). Equation (5.8) re-write as
e1(a) = @1(0)A11(N a) +ui (A a). (5.14)
Equations (5.8) and (5.9) give
wa(a) = ¢1(0)A21 (X, a) + p2(0)Agz(a) + uz(A, a). (5.15)
Equations (5.10), (5.13) and (5.14) give
p3(a) = ¢1(0)As1(X, a) + 2(0)As2(A, @) + uz(A, a); (5.16)

with

A\ a) = (a)exp( / Ao )da>;
Ax (), a) /0 Xa1(a, ) exp( /Os/\(a)da> ds;

As1 (N a) / x31(a, $)A(s) exp ( / )\(O’)dO’) ds;
0 0

Fl(S)

[ Ao (- ) i

and

'y (a) /a I'y(a)T'1(n)

X21(a, ) = l(a)F T (s) " n)é(n)dn.

mé x31(a, ) = l(a)

From equations (5.11) and (5.12), we respectively deduce that

<1 - / F@)[An (X a) + (1= p) (A (A, a) + Azt (A, a))}da) ©1(0)
0 (5.17)

(1 p)pa(0) / " F@)[An(a) + As(a)lda = v, (V);
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and

pi0) [ " F@)[An(ha) + An(ha)lda
0 (5.18)

+ 2(0) <P /Oa f(a)[Ax(a) + Ass(a)lda — 1) = —v(N);
where

vi(\) = /a fla)[ur(N\, a) + (1 = p)(uz(A, a) + us(X, a))]da;

va(A) = f a)[ug(N, a) + uz(A, a)lda.
Therefore, we find that ¢;(0) = AA((/\)\; and ¢, (0) = AQ()\); with

A = (1—p)p / " F(@)[Aa(a) + Asp(a)lda x / " F(@)An (A a) + Ay (A a)lda

+ <1 - /o(}(a) [A11(A @) + (1 = p)(Azn (A, a) + Az (A, a))]da> x

(p /Oaf(a) [Ag2(a) + Asa(a)]da — 1) :

ALY = (M) <p / Fa)[Asn(a) + Asp(a))da — 1)
(- eV / 'F(@)[Aznla) + An(a))da;
As(A) = vs(N) (/OL}(@) (A (A a) + (1 — p)(Asi(A, a) + Agi (A, a))]da — 1)

~ () /0 " F@)[An(\ @) + Agi (A, a)lda.

Equations (5.15) and (5.16) give

{ 902(a) = AAl((;\)) A21(>\7 CL) + AAQ((;\)) AQQ(G) -+ ’UQ()\, a)

_ A0 Aa() (5:19)
Y ey

Since \(a fo ©2(5) + p3(s))ds; then we have

— Az (A a) +

Agg(a) + Ug(/\, a)

Ma) = H(N)(a); (5.20)
where H is the operator defined from LI(O a™,R) into itself by

/ﬁ{

As(p)

(A2 (¢, 8) + Az1(p, 8)) + ualp, s) + us(ep, s)
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Hence, system (5.1)-(5.2) have an endemic equilibrium if and only if the fixed point
equation (5.20) has at least one positive solution.
Now let us introduce the following technical assumptions on the transmission rate

as in Inaba 114, 115, 113]:

Assumption 5.1.2. 1. f € L1 (RxR) such that 3(a,s) =0 for all (a,s) ¢ [o,a™] X
[0,at].
2. lim [TF[3(a+h,€) — Bla.€)lda=0 for§ €R.

3. It exists a function € such that £(s) > 0 for s € (0,a™) and f(a,s) > e(s) for all
(a,5) € (0,a").

On the above assumption, some properties of operator H are given by the following

lemma.

Lemma 5.1.3. Let Assumption 5.1.2 be satisfied.

(i) H is a positive, continuous operator. There exist a closed, bounded and convex
subset D C L (0,a™,R) such that H(D) C D.

(ii) Operator H has a Fréchet derivative Hy at the point ¢ = 0 defined by (5.22) and

Hy := H'(0) is a positive, compact and nonsupporting operator.

Proof. (i) The positivity and the continuity of operator H are obvious. Let ¢ €
L'(0,a™,R,), then

Ag(p,a) <1; Az (p,a) < /0‘1 l(a)FQ(a)r(s)qﬁ(s)ds = Agi(a);

I(s)l2(s)
l(a)

wi(p,a) < / Ha) § (s)ds; us(ip, @) < al|All and
0 Z(S)

us(0, @) < [|AllsoAzi(a) + sup ()|l

s€(0,a]

Since AAl((f)) = 1(0); AAZ’((:’)) = 9(0) and the flow of system (5.1)-(5.2) is bounded (The-

orem 5.1.1), we can find Mg > 0 such that |¢1(0)| < Mg and |¢5(0)] < M. Therefore,
|H ()| 22 < M; with

M = HﬁHoo/Oa [Mﬂ(l + Aza(s) + (Asi(s) + Asa(s)) + supy(s)) + [|Al|o(Azi(s) + ) | ds.

s€[0,qa]

Setting D = B (0, M) with B, (0, M) := {¢ € L'(0,a™,R}) : ||p||;x < M}. Hence
H(D) C D. This end the proof of item (i).
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(ii) We find that

o) = / Bas) [AAl((OO))(DAm(O,s)(@ZJ)+DA31(075)(1/1))+DU2(0a3)(¢)

DA (0)(¥)

(AQQ(S) + A32(5)):| dS.
where Du denotes the derivative of the function v and
Dus(0.0)(w) = [ xala9)i(s)dss Dus(0.0)w) = [ xalars)uls)ds
0 0
DAn(0.0)(%) = [ xaifa)0(s)ds DAu(0.0)0) = [ (o s)u(s)ds
0 0

at

DAL(0)(¢) = p / ya(a)(a)da.

0

with
xo1(a, s) = ii‘”?iﬁg xp< /Sar(0)¢>(a)da> I(s)
l(a)Fg(a)
xa(as) = | l(n)Fz(n) Al (. )
= x21(a, s) ) l( dn, xs(a, s) X31(a,5)/0 ?(S;?))dn;

[SO / f(o)l(o)do — Sp(0 ] / f(s) [xa1(s,a) + x31(s, a)] ds.

Hence, operator Hy read as a kernel operator:

mo)e) = [ xaspos (522
where the kernel x(a, s) is defined by

SOS) /Sa Bla,n) (xa1(n; 8) + xa1(n, 5)) dny

X(a7 S) =

(0) + Ass(0))do. (5.23)

The positivity of Hgy is obvious. Let us show the compactness of the operator Hj

on Assumption 5.1.2. Let ¢ € L' and ¢ > 0. From Assumption 5.1.2; there exists

p = p(€) > 0 such that, for |h| < p we have f0a+ |B(a+h,&)—B(a,§)|da < €. Is therefore
+

h € R such that |h| < p. ||TnHo(0) — Ho(¥)||r = / |Ho(¢)(a + h) — Hyo(¥)(a)|da. Tt
0
is easily checked that

at

[Ho(¢)(a + h) = Ho(¢)(a)] < Hz/JHLl/ 6(a+ h,s) — B(a, s)|Ci(s)ds
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where

) = <HAHOO+ AAl(((%)) (H/Oa %T(SW(S)%)

—HAHOO a a ” a ' 7l(a)r2(a>7’ S s)as a
S o)+ ) [ f@) (14 [T 005105 ) do

Since (|h| <p= fa+

o |Bla+h,s)—B(a,s)|da < 6), it comes that

1T Ho(¥) — Ho(¥)[[r < 6(/; C1(@)da>|\w!|p.

Let B a bounded subset of L! such that 1) € B. Then

| Ho (1) — Ho()|[r < e(/oa 01(a)da> Xitég{l\cpllu}'

Applying the Riesz-Fréchet-Kolmogorov theorem on Hy(B) we conclude that Hy(B) is
relatively compact. From where Hj si a compact operator.

Now, let us check that Hy is a nonsupporting operator. We define the operator Fy €
(L'(0,a™, R, ))* (dual space of L'(0,a™,Ry)) by

at

(Fo; ) = /o £(s)[Du2(0, s)(¢) + d(s)Dus(0, s)]ds;
where ¢ is the positive function given by Assumption 5.1.2 and (Fp; 1)) is the value of
Fy € (LY0,a™,Ry))*at ¢ € LY(0,a*,Ry). Then for ¢ € L'(0,a™, R, ) we have Hy()) >
(Fo;9) -e (withe = 1 € LY(0,a™,R,)). From where H (1) > (Fy;¢) (Fo;e)" -e Vn €
N. Hence for all n € N*; F € (L'(0,a™,R,))*\ {0} and v € L*(0,a™,R;)\ {0} we have
(F; H(v)) > 0. Therefore, Hy is a nonsupporting operator. O

The main results of this section reads as
Theorem 5.1.2. Let Assumption 5.1.2 be satisfied. Let us note Ry = p(Hy) the spectral
radius of operator Hy.

1. If Ry <1, system (5.1)-(5.2) has a unique DFE defined by (5.6);

2. If Ry > 1, in addition to the DFE, system (5.1)-(5.2) has at least one endemic

equilibrium.

Proof. The operator H always has A = 0 as fixed point. This corresponds to the
permanent DFE for system (5.1)-(5.2). For the rest, we are looking for the positive fixed
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point to the operator H. From Lemma 5.1.3 we know that there exists a closed, bounded
and convex subset D of L'(0,a™, R ) which is invariant by the operator H. Moreover,
from Lemma 5.1.3, H has a Fréchet derivative Hy at the point 0 and Hy = DH(0)
is a compact and nonsupporting operator. Therefore, there exists a unique positive
eigenvector 1y corresponding to the eigenvalue Ry = p(Hy) of Hy. Using the same
arguments as for the Krasnoselskii fixe point theorem [126|, it comes that if Ry =
p(Hy) > 1, then the operator H has at least one positive fixed point \* € L1(0,a*, R )\
{0}, corresponding to the EE of system (5.1)-(5.2).

Let us suppose that Ry = p(Hp) < 1. If the operator H has a positive fixe point A* €
LY0,a%,Ry) \ {0} then \* = H(\*). Let us notice that H — Hy € L'(0,a™,R;) \ {0};
hence \* < Hy(A\*). Let Fy € (L'(0,a™,R;))* \ {0} be the positive eigenfunctional

corresponding to the eigenvalue Ry = p(Hy) of Hy (Sawashima [190]). Therefore

0 < (Fo; Ho(A") =A%) (Fo,; Ho(A")) = (Fo; A") 5

= p(Ho) (Fo; A*) — (Fo; ") ;
= (p(Ho) = 1) (Fop; ") .
From where (p(Hp) — 1) (Fo; A*) > 0. Since (Fy; A*) > 0, it follows that p(Hy) > 1,

which is a contradiction. O

5.1.6 Stability analysis for equilibrium

In order to investigate the local stability of the equilibrium solutions (S*(a); I*(a); L*(a))

we rewrite (5.1)-(5.2) into the equation for small perturbations. Let

(S(t,a),I(t,a), L(t,a)) = (S*(a), I*(a), L*(a)) + (z(t,a),y(t,a), z(t,a)).

Then from system (5.1) we have
(% . a%) w(t,a) = —A(ta)(S*(a) + 2t a))
—(pla) + X (a))z(t, a); (5.24)
9,90 = At a)(a(t,a) + 5%(a)) + N (@)a(t,a)
<8t—|—aa>y(t,a) = At,a)(z(t,a a a)z(t,a
—(pla) + di(a) +r(a)p(a))y(t, a); (5.25)
(5 + 3 ) st = r@o@ut0) - () + dla)stea (520
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and from (5.2) we also have

2(t,0) = [3" f@)a(t.a) + (1= p)(y(t,0) + =(t,0))]da;
y(t.0) = pfy fla)y(t.a) + =(t,a))da; (5.27)
2(t,0) = 0;
with A(a,t) / Ba, s)(y(t,s) + z(t, s))ds and X\*(a / B(a )+ L*(s))ds.
Let us note u(t) = (x(t),y(t), 2(t))". Then from equations (5.24), (5. 25) and (5.26) we
have
d
au(t) = Au(t) + G(u(t)); (5.28)

where A is the operator defined by (5.3). The nonlinear term G is defined by
—P(ug, us)(uy + S*) — (N + p)uy
Glu) = Plug,uz)(us + S*) + Nuy — (u+dy + rd)us |
rous — (p+ da)us

and P is linear operator defined on L' x L' by

P (ug, uz)( / B(a, s)(us(s) + us(s))ds. (5.29)
The linearized equation of (5.28) around u = 0 is given by
d
%u(t) = (A+Q)u(t); (5.30)

where the linear operator C' is the Fréchet derivative of G(u) at w = 0 and it is given by
—Plug, ug)S* = (A" + p)uy
Clu) = P(ug,u3)S* + Nup — (u+ dy + ro)usg
rouy — (p+ da)us
Now let us consider the resolvent equation for A+C:
(z—(A+C))p = ¥; veD(A), deX, zeC. (5.31)

Applying the variation of constant formula to (5.79) we obtain the following equations:

di(a) = Il(a)l(a)e™ [1/)1(0) /a(Tu(SWl(S)—T12(8)7’(1/)17w2)(5))d8]; (5.32)

wla) = [0+ / rie) (92(5) + X (5r(5) + P, 0a) (5)5°(5)ds
xI'y(a)l(a)e = (5.33)

(9a(s) + r<s>¢<s>w2<s>>ds} - (5.34)

zZSs
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a

with II(a) = exp —/0 )\*(O')d0'>; Ti1(s) = ﬁ and Tio(s) = S*(s)T11(s).

Equations (5.32)-(5.33) and (5.35)-(5.34) respectively gives
Pa(a) = Ti(a)l(a)e™™ {¢2(0)+Tz1(a)¢1(0)+ /O aTas(Z,a, )P (1, 42)(s))ds
+ /0 " Ta(z,a, )0, (s)ds + /O "D, s)%(s)ds} (5.35)
and
¥s(a) = Is(a)l(a)e™™ [Tw(a)w(m + T51(a)yn(0) + ¥3(0) + /0 a Ts3(z,a, )P (¥1, ¥2)(s))ds

+/0a T34(z,a,s)01(s)ds + /Oa T35(z, a, s)02(s)ds + /0“ T36(2, a, 5)193(5)d5] ;
(5.36)

where

Since ¢ € D(A); it comes that

hi(0) = / " F@a(a) + (1 — p)(tala) + s (a))]da: (5.37)

6(0) = p / £(0) (@) + s a))da; (5.38)
P3(0) = 0. (5.39)
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Equations (5.36)-(5.39); (5.32)-(5.35)-(5.40)-(5.37) and (5.35)-(5.40)-(5.38) respectively
lead to

V3(a) = Ta(a)l(a)e™*" |:T32<a)¢)2(0) + T31(a)y1(0) + + /Oa Ts33(z, a, s)P(11,12)(s))ds
—0—/0a T34(z,a,s)01(s)ds + /Oa T35(z, a, s)02(s)ds + /a Ts6(z, 8)193(8)d8j| ;

0

(5.40)
(Buz) = D01 (0)+ (1= p)Buala(0) + [ Bz, a)Pln, ) a)da
. . o (5.41)
—1—/0 Bia(z,a)0(a)da +/0 By;5(z,a)02(a)da —|—/O Bis(z,a)V3(a)da = 0;
and
P (0) + (0Baa(2) = D0(0) +1 [ Bn(e,0) P, ) )
+p/0a Baoy(z,a)t(a)da +p/oa Bos(z,a)¥s(a)da +p/0a Bags(z,a)¥3(a)da = 0;
(5.42)
with
Bu(z / fla + (1 = p)(I'1(a)Toi(a) + Tao(a)T3(a)] da;
Bia(2 / fla I (a) + Ta(a)Te(a)] das
Bi3(z,a) / f(s [—T12(a)I(s) + (1 — p)(T1(s)Ta3(2, s,a) + a(s)Ts3(2, s, a))] ds;
Biy(z,a) / f(s T (a)II(s) + (1 — p)(T1(s)T24(2, 8,a) + Ta(8)T34(2, s, a))] ds;
Bl5 Z CL / f =8 Pl )T25(Z, Cl) + (1 — p)FQ(S)T35(Z, S, CL)] dS,
B16 z, CL ]. — / f ZSFQ T36(Z S)dS
NE / F(@)l(@)e [Ty (a)Tax () + To(a)Tin (0)]do
B (2 / fla 1 [ly(a) + Ty(a)Ts(a)]da;
Bys(z,a) / f(s 2T (s)Tas(z, 8, a) + Da(s)Ts3(z, s, a)]ds;
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Bou(z,a) / f(s T2 (s)T2a(2, 8, a) + Ta(s)T54(2, s, a)]ds;
Bos(z,a) = Tos(z, a)/ F(8)l(s)e**[T'1(s)Ta5(2, a) + Ta(s)T35(2, s, a)]ds;

Bas(z,a) = Tz¢(z,a) /a F(8)l(s)Ta(s)e *ds.

System (5.41)-(5.42) is a linear system with respect to ¢;(0) and 15(0), hence
a+ ll+

¥1(0) :/0 d€t11(2aa)73(1/11,¢2)(a)d@+/0 det1z(z, a)v(a)da +

+/ det13(z,a)02(a)da+/ det14(z, a)Vs(a)da; (5.43)
0 0
(l+ a+

12(0) _/0 detzl(z,a)P(q/zl,%)(a)da—i—/0 detyy (2, a)v(a)da

at at

+ /0 detas (2, a)0a(a)da + /0 detaa(z, a)ds(a)da; (5.44)
where
detia(,0) = —— [(PB(z) ~ 1)Bus(z,a) ~ p(1 — ) Bux(2) Bz, )]
detra(z,a) = d—i[(PBM( ) — 1)Bu(z,a) — p( )B12(2) Bas(2, a)]
detia(z10) = [(#Baa(2) — 1)Bis(za) — pl1 = ) Bra(2)Bas(z,0)
detis(,0) = —— [(pBoa(z) — 1)Buo(2. ) = p(1 ~ p) Bia(2) Bao (2, )
detor (2, a) = % [(Bor(2)Bia(2,a) — (Bii(2) — 1)Bas(z, a)] ;
detys(z,a) = % [(Ba1(2)Bia(z,a) — (B11(z) — 1)Ba(z,a)];
detoz(z,a) = % [(Ba1(2)Bis(z,a) — (B11(z) — 1)Bas(2,a)];
detyy(z,a) = = [(By1(=) B (2, 0) = (Bu(2) — 1) Bas(2, )]
(

det = (BH( ) — 1)(]?322(2’) — 1) —p(l —p)B21 Z)Blg(Z)
)-

From equations (5.29)-(5.35)-(5.40)-(5.43)-(5.44) it follows that

P, 3) () = (I = Vo)~ [(U01) () + (W02) () + (Ya03) (n)] (5.45)

where V,, U,, W, and Y, are the Volterra operator define on L'(0,a™,R) into itself by
at at

Upla) = [ utmarplwda Vi) = [l a)plaldes

0 (5.46)

at

(Yp)(a) = / E.(n, a)p(a)da; (W.g)( / K.(1,0)
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where

- (5.47)
+ / B, s)l(s)e **[T1(s)Tas(z, s,a) + T'a(s)Ts3(z, s, a)|ds;

O.( ) Ci¢(n)detz(z, a) + C4 (n)detay (2, a)

/ B(n, s T (5)T2a(z, 8, a) + Ta(8)T34(2, s, a)]ds;

K.(n,a) = C*(n)deti3(z, a) + C% (n)detas(z, a)

/ B(n, s)l(s)e *°[T'1(s)Ta5(2, s,a) + T'a(s)T35(z, s, a)]ds;

E.(n,a) = CY(n)detia(z, a) + C5(n)detz(z, a) +/ B0, s)l(s)e”*Ta(s)Tse(2, 5, a)ds;
and
at
cit) = [ Bl [0 (@) (@) + Ta(a)Tos()da
0
at
cst) = [ Bl [0i(@) + Ta(a)Tia(w)da
0
Let us recall some definitions related to a Cy-semi-group {7'() }+>0 on a Banach space

with infinitesimal generator R. The type or the growth bound of the semi-group {7'(¢) }+=0
is the quantity:

WO(R) =
inf{a € R: IM > 1 such that ||T(¢)|| < Me* Vt > 0}
Tl

t—0 t

The spectral bound of the Cy-semi-group {7'(t)}+>o is the quantity:
s(R) = sup{RA: X\ €0,(R)},

where 0,(R) denote the point spectrum of R.

Wow, we conclude that

Lemma 5.1.4. Recalling Assumptions 5.1.1 and 5.1.2. Then
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1. The perturbated operator A+ C has a compact resolvent and
0(A+C)=0,(A+C)={2€C: 1eo,(V)}

where o(A) and o,(A) denote the spectrum of A and the point spectrum of A

respectively.

2. Let {U(t)}i>0 be the Co-semigroup generated by A+ C. Then {U(t)}, t >0 is
eventually compact and

wo(A+C) =s(A+C).

Proof. 1) From equations (5.32), (5.43) and (5.46) we find that

Yi(a) = H(a)l(a)e”**P1(0) + Ji(91)(a) + Ki(h, ¥2)(a);
with

Ji(0)(a) = H a)Ti1(s)e™ >V (s)ds;

K1(191,792)(a) = T11 )S*(S)e_zs([_vz)_l

[(U01)(s) + (W.D2)(s) + (Y03)(s)]ds.

1y is a compact operator if and only if J; and K; are compact. Since J; is a Volterra
operator with continue kernel, we deduce that J; is a compact operator on L. Using
the same arguments as for the proof of the compactness of operator Hy (Lemma 5.1.3),
we can show that the operators U,, W, and Y, are compact for all z € C. Let us set

={2€C: 1e€o0,(V,)} Hence, if z € C\ X then, K; is a compact operator
from L' x L' to L'. In the same way, we can show that 1)5(a) and v3(a) are represent
by a compact operators. Therefore, the resolvent of A + C' is compact. From where
0g(A+C) = 0,(A+ C) (see Kato, p.187 [122]) i.e. C\ X C p(A+ C) and p(A+ C)
denotes the resolvent of A+ C. In other words ¥ D 0(A+C) = 0,(A+ C). Since V, is
a compact operator, we know that o(V,) \ {0} = 0,(V;) \ {0}. If =z € 3, then it exists
Y, € L'\ {0} such that V.1, = 1,. Let us set

at

o1(a) = TI{a)l(a)e" [/0 detn (oo~ [ s

za

za

wz(s)dsl :

62(a) = (@)l (a)e ™ [/0 deta(z. 0.0~ [ s

a za
(&

WT(S)QB(S)%(SM&

65(a) = Ta(a)l(a)e— /O
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Then (¢1, ¢o, ¢3)T is an eigenvector of A + C associated to the eigenvalue z. Hence,
z€0(A+C)=0,(A+C)ie. ¥ Co(A+C)=0,(A+C). This end the proof of item
1.

2) For ¢ € X, let us set

Cip = (—P(%, ¢3)S*7P(¢2, ¢3)S*, 0)T§
Coty = (=N + )by, N1 — (p+ dy + ro)ardnhs — (1 + do)s) "

Then C' = C; +Cy. The operator A+ C, generated a nilpotent Cy-semigroup {S2(t) }+>o,
from where {S2(t)}+>0 is norm continuous. Using Assumptions 5.1.1 and 5.1.2, we find
that C is compact operator on X. From Theorem 1.30 of Nagel(1986) [168] it comes that
C} is generator of a norm continuous Cy-semigroup {S1(t)}i>o. Therefore, Sy (t) + Sa(t)
is a Cy-semigroup generated by A+ C and it is norm continuous (Spectral theorem P.87

Nagel [168]). O

Let us remark that if wo(A+ C) < 0, the equilibrium u = 0 of system (5.28) is locally

asymptotically stable (linearized stability, Webb 1985[211]). Therefore, to study the
stability of equilibrium states, we have to know the structure of the set ¥ := {z € C :
1 € 0,(V2)}. Since [|V,||pn — 0 if 2 — 400, I —V, is inversible for the large values of
R.z.
By theorem of Steinberg(1968)[197], the function z — (I — V,)~! is meromorphic in
the complex domain, and hence the set ¥ is a discrete set whose elements are poles of
(I —V,)~! of finite order.

In the following, we will use elements of positive operator theory.

For the positivity of operator V, we make the following assumption

Assumption 5.1.3.

J

where (o) = [ Blo,n)(I* () + L*(n))dn.

at at

(di(o) +r(o)p(o))de < exp (—/0 )\*(U)d(f); (5.48)

Lemma 5.1.5. Let Assumption 5.1.3 be satisfied. Then

1. The operator V,, z € R, is nonsupporting with respect to L'(0,a™,Ry) and

lim p(V,)=+oc0 ; lim p(V.)=0.

2r——00 2—-+00
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2. There exists a unique zg € RN 3 such that

Zo > 0 Zf p(%) > 17
(V) =1 and { z=0 if p(Ve)=1,
20 <0 if p(Vp) <1.

3. zg >sup{R.z: z€ X\ {z}}

Proof. 1) Let z € R. Unconditionally, V, is a positive operator when \(a) = 0
(case of DFE). When \*(a) > 0, V, is a positive operator once I'1(s)Ta3(z,a,s) +
[9(s)T33(z,a,8) > 0 for all 0 < a < s < a™. To have the previous inequality, it
suffices that inequality (5.48) of Assumption 5.1.3 holds. We can checked that

Vo = (f2 ) - (5.49)

where ¢ € L*(0,a™,R,); e =1 € L'(0,a™,R,) and f, is a positive linear functional
defined by

<fa> = m/oa+ /aa+ e_z(a_s)%z; <F11(a) — H(la) /as Il?l((?) )\*(a)da) dsda;

with m = inf(, 5)ep.a+)2 B(a, s). From (5.49), we show that V"' > (f., ) (f.,e)" e for
alln € N. Since f, is positive operator and e € L'(0,a™, R, )\ {0}, we have (F, V¢) > 0
Vi € (LY(0,a™,R.))*\ {0} Voo € L*(0,a™,Ry) \ {0}. That is V, is nonsupporting.

Let F, be the eigenfunctional of V, that corresponds to the eigenvalue p(V,). Taking
the duality pairing into inequality (5.49), we have

p(Vo) (Fx, ) = ([, 0) (Fe).

Taking 1) = e and since F, is positive, it follows that p(V.) > (f.,e) — 400 when
z — —oo. From where Z)l_i)gloo p(V,) = 4o0. since ||V,||;r — 0 when z — +o00, we deduce
that ZE{POO p(V,) = 0. This end the proof of item 1.

2) Let h: R — C; z — p(V.). The kernel y, defined by (5.47) is strictly decreasing
with respect to z € R. Let 21,20 € R such that z; < 29, then x,, < x., that is
V., > V.,. Since V,, and V,, are compact and nonsupporting operators we deduce from
Marek(1970) [150] that p(Vs,) > p(Vs,). Therefore, the function h is strictly decreasing.
The limits of the function h(z) = p(V.) at —oo and 400 give that there exist a unique
2o € RN X such that p(V,,) = 1. If p(Vo) > 1 then h(0) > h(z) i.e. 2o < O (strictly
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decreasing of h) and the other cases is show in the same way. This end the proof of item
2.

3)Let z € X, then there exists ¢, € L' such that V.1, = 1),. Let |+,| be a function
defined by |¢,[(s) := [¢.(s)|. The definition of V, leads to

2] = |Vatha| < VR 2|9 (5.50)

Let Fgr,. be the positive eigenfunction associated to the eigenvalue p(Vg,.) of Vg, ..
From (5.50) we deduce that (Fg.., |[¥.]) < (Fr.z, Ve.:|¥:|) = 7(VR.2) (FRr.2, [¢.]). The
positivity of Fg_ . implies that 7(Vg, ) > 1 that is h(R.z) > h(zo) i.e. zg < Rez. To end
the proof, let us show that: if zg = R.z then z = z.

We know that [¢,| < Vg, .|1.] = V,,|1¥.|. Let us suppose that [i.| < V,,|1,|; taking the
pairing product with the dual function Fy corresponding to the eigenvalue p(V,,) = 1,
one has (Fy, [1.]) > (Fo, [¢.]), which is a contradiction. Hence [¢,| = V,,|1.|. Therefore
|9.| = c1bp where ¢ is constant not equal to zero (Sawashima 1964 [190]) and vy is the
eigenfunction corresponding to p(V,,) = 1. So ¥.(a) = cp(a)e@ for a reel function
a; moreover |V ab,| = |1, = ciby = cVi1bp. Substituting ¢, (a) = ciy(a)e™® into the

equality |V,1,| = ¢V, one has

/Oa /a B(n, S)Z(s)e*ZO(S*“) [Fl(S)ng(S, a) + Fg(s)ng(s, a)|vo(a)dsda =

/a B S)l(s)e—(zo+i(s—a)lmz) [Fl(s)fgg(s, a) + FQ(S)ng(S, a)]em(a)i/)o(a)dsda :
(5.51)

with

Tys(a,s) = ( 11(3 () /Sa E((Z)))\*(a)d0>§

T33(CL,S) = / EO_)T’(O') ( )T23(CL U)dO'

Applying two times, Lemma 6.12 of Heijmans(1986) [97], to the relation (5.51) it comes

that (s —a)Imz + a(a) = b for all 0 < a < s < a* where b is a constant. From the
equality V.1, = 1, one has eV, 1)y = 1@ ie. b = a(a). From where Imz = 0, that

is z = zj. [l

From the above result, we can state the threshold criterion as follows:
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Proposition 5.1.2. Recalling Assumption 5.1.3. Then equilibrium (S*, I*, L*) is locally
asymptotically stable if p(Vo) < 1 and unstable if p(Vy) > 1.

Proof. From Lemma 5.1.5 (items 2. and 3.), we conclude that: sup{R.z; 1 € 0,(V.)} =
z9. Hence s(A+ C) = sup{R.z; 1 € 0,(V.)} < 0if p(Vp) < 1, and s(A+ C) =
sup{R.z; 1 € 0,(V,)} > 0if p(Vy) > 1. O

In the following, let us note V the operator V; corresponding to the case \*(a) =0
(DFE) and Vj the operator V; corresponding to the case \*(c) > 0 (EE). It is easily
checked that

Xg(a73) = X(av 3)? (5'52>

where x(a, s) is the kernel of the Volterra operator Hy defined by (5.23).

Now, the main results for the local stability of our epidemic model reads as

Theorem 5.1.3. Let Assumptions 5.1.1 and 5.1.2 be satisfied. Let Ry := p(H,) be the
spectral radius of the operator Hy defined by (5.22). Then,

1. If Ry = p(Hy) < 1 then, the unique equilibrium of (5.1)-(5.2) (DFE) is locally
asymptotically stable.

2. If Ry = p(Hy) > 1 then, the DFE is unstable.

3. If Ry = p(Hoy) > 1 then, in addition to the DFE system (5.1)-(5.2) has at least one
endemic equilibrium (EE). Moreover, if p(Vy) < 1 and Assumption 5.1.3 holds,
then the EFE is locally asymptotically stable.

Proof. For the DFE, one has A*(¢) = 0. Hence, from (5.52) it comes that p(H,) =
p(V) := p(Vp) (for A* = 0). From Prop. 5.1.2 we deduce that: if p(Hy) = p(Vp) < 1,
the DFE is locally asymptotically stable; and unstable if p(Hy) = p(Vp) > 1. This end
the proof of items 1. and 2.

The case of EE is a direct consequence of Prop. 5.1.2. O

Remark 5.1.1.

(&%) To emphasize the impact of vertical transmission on the spread of the disease, let

us observe that the next generation operator Hy can be rewrite as follows

at at

Xo(a,s)w(s)ds—i-/ Xo(p, a, $)(s)ds;

0

) = |
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where the kernels x°(.,.) and xs(p, .,.) are

las) = 5[ st () + x50

wolnans) = B [ 5(0,0)(Anlo0) + Ao

It is easy to see that when the proportion of infected newborns is zero (p = 0), then
the kernel x©(0,.,.) = 0. Therefore, the vertical transmission of the disease amplifies

positively the spread of the disease.

(déh) As a special case, we here briefly consider the proportionate mizing assumption,
that is, the transmission rate 5 can be written as B(a,s) = [1(a)P2(s) (see Dietz and
Schenzle [55]; Greenhalgh,1988 [83]). In this case, the basic reproductive number Ry is
explicitly given by:

at at

Xo(s,s)ds—l—/ Xo(p, s, s)ds. (5.53)
0

Ry = p(Hy) = /

0
And the same conclusion follows as for item (). Thus the vertical transmission of the
disease really has an impact on the dynamics and the spread of the disease into the host
population. We also refer to Figures 5.2-5.4 for some illustrations of the state variables

of system (5.1)-(5.2) when p takes different values: 0.02; 0.2 and 0.5.

5.1.7 Numerical analysis

In this section, we propose a numerical scheme for our model and gives some illus-
trations.

We adopt a finite differences scheme which is progressive of order 1 in time and
regressive of order 1 in age. Our model has a structure of the following partial differential

equation on the real axe:

ou Ou
E + % = f(t, a). (554)

For equation (5.54), the numerical scheme is defined by:

n

n n
Uy Uy — Ui

u;}—i—l o N
At Aa

= [(tn, ai); (5.55)

where ¢ and n are the index of age and time discretization respectively; and u] =

w(tn, ;).
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We recall that, generally, all explicit numerical scheme is conditionally stable (Stricwerda|?]).
To ensure the stability of the scheme (5.55) the necessary condition is the famous
Courant-Friedrichs-Lewy (CFL) condition given as follow:

% < 1. (5.56)
For a given age step discretization Aa, the restriction At < Aa is necessary for the time
step discretisation At.

We are able now to give the solution of the problem (5.1)-(5.2) on some time interval
[0, T using the above numerical scheme.

The age-specific reproduction rate f(a) is taken to be

Lsin? (T452) if 15 <0 < 45
fla) =

0 if not.
The fecundity function f(.) is stated here in units of 1 / years for easier readability and
assumes that from age 15 to 45 years a woman will generally give birth to three children,
since foa+ f(a)da = 3, where a™ = 80 is the largest age allowed for the simulation.

We also consider a low value of recruitment A(.)

12 (wa=17) < 0 < 60-
Ala) = TG Sin (—43 ) if 17 <a <60;

0 if not.
This recruitment assume that the total number of recruitment at time ¢ is approximately
at
equal two, that is [ A(a) =2.15

The transmission coefficient 3(.,.) is assume to be

B sin® <M> sin’ <M) , if a, s € [14,60];

Bla,s) = 10 10

0 if not.
wherein the nonnegative constant (5, (transmission constant) will be variable. Figure
5.1 illustrates the transmission coefficient 3 (for Sy = 107%) and the fecundity function
f. The other parameters of our system are arbitrarily chosen (see Table 5.1).
We provide numerical illustrations for different values of vertical transmission p: 0.02,
0.2 and 0.5
In Figure 5.2, the vertical transmission rate of the disease is fixed to be p = 0.02. We

observe that infectious individuals (infected and lost of sight) are between 17 and 70 of
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Figure 5.1: (5.1a) Transmission coefficient 3(.,.) when the transmission constant 5, =

1073. (5.1b) Fecundity function f(.) .

Table 5.1: Numerical values for the parameters of the model

Parameters Description Estimated value

Bo Transmission constant Variable

D Vertical tranmission rate  Variable

1 Natural death rate 0.0101/yr !

r Rate of effective therapy — 1/yr !

0] Rate at witch infectious 0.75/yr !
become loss of sight

vy Rate at witch lost of sight 0.02/yr !
return to the hospital

dy Death rate of infectious 0.02/yr !

ds Death rate of lost of sight 0.2/yr !

Note: Source of estimates.

I Assumed.
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age. The number of young infectious (namely infectious with age a < 17) is negligible,
because the value of vertical transmission rate p is low.

In figure 5.3, the vertical transmission rate of the disease is fixed to be p = 0.2. We
observe that much of the infectious individuals (infected and lost of sight) are between
17 and 70 of age. Let us also observe that the number of infectious individuals with age
between 17 and 70 is approximately the same than the number of infectious individuals
with age between 17 and 70 when p = 0.02 (see Figs 5.2-5.3). But now, there are also
infectious individuals with age a < 17 which was not the case when p = 0.02.

The same observation is given by Figure 5.4 where the vertical transmission rate of
the disease is fixed to be p = 0.5. Hence Figures 5.2-5.4 emphasize that the vertical
transmission of the disease really has an impact on the dynamics and the spread of
the disease into the host population. See also Table 5.2 for the impact of the vertical

transmission of the disease on the spread of the epidemic.

Table 5.2: Impact of the vertical transmission of the disease.

Vertical transmission rate (p) Rate increase over the case when p =0

p=0.02 1.8%
p=0.2 17.5%
p=05 43.8%

Total cases (I+L) when p = 0: 954.85 cases. (i.e. when the vertical transmission of the disease is

neglected in the host population.
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Figure 5.2: The transmission constant and the vertical transmission rate are fixed to be
Bo = 1072 and p = 0.02. The other parameters are given by Table 5.1. (5.2a) Distribu-
tion of Infected individuals. (5.2b) Distribution of Lost of sight. (5.2c) Distribution of
infected newborn. (5.2d) Distribution of Infected and Lost of sight individuals after 80

years of time observation.
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Figure 5.3: The transmission constant and the vertical transmission rate are fixed to be
Bo = 1072 and p = 0.2. The other parameters are given by Table 5.1. (5.3a) Distribution
of Infected individuals. (5.3b) Distribution of Lost of sight. (5.3c) Distribution of
infected newborn. (5.3d) Distribution of Infected and Lost of sight individuals after 80

years of time observation.
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Figure 5.4: The transmission constant and the vertical transmission rate are fixed to be
Bo = 1072 and p = 0.5. The other parameters are given by Table 5.1. (5.4a) Distribution

of Infected individuals. (5.4b) Distribution of Lost of sight.

(5.4c) Distribution of
infected newborn. (5.4d) Distribution of Infected and Lost of sight individuals after 80

years of time observation.
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5.1.8 Future directions

In the absence of specific interventions the estimated rate of mother-to-child trans-
mission ranges from 15% to 40%, the differences between populations being largely
associated with the prevalence of breastfeeding [161]. Therefore, a SIL epidemic model
that incorporates the control mechanism, representing the case finding effort and the
prevention of mother-to-child transmission, could be considered.

The basic system (age-structured SIL epidemic model) with control can be formulated

as follows:

(%+7%)3@@ = ) - (A(t,a) + (@) S(t,a),

<%+7§>Hu® = At,a)S(t,a) +~(a)L(t,a) — (u(a) + di(a)
+r(a)d(a)(1 — mi(a)un(t, ) (t, a), (5:57)

<§+§)wa = r(@)p(a)(1 - m(a)ur(t,a)I(t, a)

—(p(a) + dsy(a) +~(a)) L(t, a),

with initial boundary conditions

S(t,0) = [ fla)[s(t,a) + Uf-ﬂ—mw@DU@®+L@@HM,
I(t,0) = p(1—myvs(t)) [ f(a)(I(t,a) + L(t,a))da, (5.58)
L(t,0) = 0,

and wherein the state variables and the parameters are defined as previously.

In model (5.57)-(5.58), the functions v1(.,.) and vs(.) are control functions. The
control v (t,a) represents the effort that prevents an infectious individuals age a to
become lost of sight at time ¢ (case finding effort). The control vs(t) represents the
effort that prevents the mother-to-child transmission at time ¢. The parameters m;,

€ (0,1), i € {1,2}, measure the effectiveness of the controls. These parameters
measure the efficacy of the control.

The optimal control problem is the following:

minimize / / [ t,a) + p(1 — mua(t)) f(a)(I(t,a) + L(t,a)) + W22(a) vs(t,a)| dadt

(5.59)
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subject to state system (5.57)-(5.58) and the control constrains

vy € Dy = {v(t,a): 0 < vy <w(t,a) <wa, (ta) €[0,T] x [0,a%) ae.,
v(t,a) mesurable on [0,7] x [0,a™
() 0.7] % 0.0°)) 550
v € Q= {v(t):0<wyp <o) <wv,tel0,T] ae.,

v(t) mesurable on [0, 77}

where W, and W5 are a measure of the relative cost of the interventions associated to

the controls vy, vy, respectively.

5.1.9 Summary

In this section, we have considered a model for the spread of a directly transmit-
ted infections disease in an age-structured population with demographics process. The
disease can be transmitted not only horizontally but also vertically from infected moth-
ers to their newborns. There are important infective agents such as HBV (hepatitis B
virus), HIV (human immunodeficiency virus) and HTLV (human T-cell leukemia virus)
that can be vertically transmitted. In Africa, the vertical transmission of the disease
like HIV is in progression nowadays.

Worldwide, 1% of pregnant women are HIV-positive. However, sub-Saharan Africa
where 95% of HIV positive women live carries the vast majority of this burden [198].
Without treatment, approximately 25%-50% of HIV-positive mothers will transmit the
virus to their newborns during pregnancy, childbirth, or breastfeeding [17]. In 2007,
over 2 million children worldwide were living with HIV/AIDS, with the overwhelming
majority again in sub-Saharan Africa [198]. Approximately 400,000 infants contract HIV
from their mother every year, which is about 15% of the total global HIV incidence [183,
217]. The rate of pediatric HIV infections in sub-Saharan Africa remains unacceptably
high, with over 1,000 newborns infected with HIV per day [94].

The aim finding of this section can be summarized along the following lines:

v" We formulated the dynamical system with boundary conditions, and then described
the semigroup approach to the time evolution problem of the abstract epidemic system.

v Next we have calculated the basic reproduction ratio and proved that the model
exhibits a unique disease-free steady state if Ry < 1, and at least one endemic steady

state exists if the basic reproduction ratio Ry is greater than the unity.
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v We prove that if the basic reproduction number of the model satisfies Ry < 1, then
the disease-free steady state is locally asymptotically stable, i.e., the disease died out
from the host population.

v We have shown sufficient conditions which guarantee the local stability of the
endemic steady state; that is the persistence of the disease in the host population.
Roughly speaking, the endemic steady state is locally asymptotically stable if Ry > 1
and if it corresponds to a very small force of infection.

v' Finally, to highlight the impact of the vertical transmission of the disease into the
host population, we provided some illustrations and discussion on the outcome of the
state variables of the model when the vertical transmission rate p takes different values:

0.02, 0.2 and 0.5.

5.2 Age-structured model for the transmission of hep-
atitis B, with differential infectivity.

Hepatitis B virus (HBV) infection is endemic in many parts of the world. One of the
characteristics of HBV transmission is the age structure of the host population and the
vertical transmission of the disease (perinatal infection from carrier mothers). In this
section, we propose an age-structured model for the transmission dynamics of HBV with
differential infectivity: symptomatic infection and asymptomatic infection. The model
is completely analyzed. We compute the basic reproduction number R,. We investigate
the existence of equilibria and study their stability. We found that the model exhibits
a forward bifurcation, that is, if Rg < 1, there exists a disease-free equilibrium which is
globally asymptotically stable, while if Ry > 1, the disease-free equilibrium is unstable
and there exists a unique endemic which is globally asymptotically stable. Numerical
results are presented to illustrate analytical results. Through numerical simulation and
sensitivity analysis, we found that a control strategy of HBV consist in a combination
of immunization of newborns, immunization of susceptible individuals (at least young

adults), and reduction of perinatal infection.
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5.2.1 Introduction

According to CDC [30] and WHO [217], risk for chronic infection is inversely related
to age at infection: approximately 90% of infected infants and 30% of infected children
aged under 5 years become chronically infected, compared with 5% of adults. This
difference in the evolution of infection introduces naturally differential susceptibility.
Vaccination is recognized as the most efficient way of preventing hepatitis B. But the
problem of imperfect vaccine introduce naturally differential susceptibility. Even if HBV
vaccine is very efficient it does not offer 100% protection against infection. According to
WHO, Hepatitis B vaccine is 95% effective in preventing HBV infection and its chronic
consequences. Then vaccination also introduce individual with different susceptibility.

Many mathematical models have been proposed to investigate the transmission dy-
namics of HBV in various countries and regions in the world; covering many topics:
sexual transmission of HBV which includes heterogeneous mixing with respect to age
and sexual activity [5]; relation between the age at infection with HBV and the develop-
ment of the carrier state [68]; HBV transmission in developing countries [158, 67, 215];
the long-term effectiveness of the vaccination [221]; determined the prevalence of in-
fection [160]. Age-structured models have also been used to model the transmission
dynamics of HBV by some researchers; see for instance Edmunds et al. [68], McLean
and Blumberg [158|, Zhao, Xu, and Lu[221], Zou, Ruan and Zhang[222].

Recently, Zou, Ruan and Zhang [223| have proposed a mathematical model for the
transmission of HBV with susceptible, latently infected, acutely infectious, carrier, re-
covered, and immune following vaccination. They (Zou et al.) do not take into account
age of the host population. However, outcome of the HBV infection is age dependent
(Shepard et al. [195], Goldstein et al. [76], WHO [217|, CDC [30]). This characteris-
tic leads Zou et al. to extend they previous model to an age-structured model for the
transmission of HBV (see Zou et al. [222]). To analyzed the model, due possible to
his complexity, they ignored the perinatal infection of HBV (vertical transmission of the
disease) and deaths directly related to HBV. These assumptions are not entirely realistic
in many part of the world. In fact, HBV prevalence is highest in sub-Saharan Africa
and East Asia. Most people in these regions become infected with the hepatitis B virus
during birth (and childhood) with a high risk (90% at birth) of progressing to chronic
infection (WHO [217] and CDC [30]). Moreover, about 600,000 people die every year
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due to the acute or chronic consequences of hepatitis B (WHO [217]); that is deaths
directly related to HBV should not be neglected.

In this section, we propose a ’simple’ age-structured model for the transmission dy-
namics of HBV with differential infectivity: symptomatic HBV infection and asymp-
tomatic HBV infection. The host population is divided into seven subclasses: susceptible
and vaccinated population are stratified by age whereas latently infected progressing to
the symptomatic infection, latently infected progressing to the asymptomatic infection
, symptomatic HBV infectious, asymptomatic HBV infectious and recovered individu-
als are time dependent populations. The model also consider the perinatal infection of
HBYV and deaths directly related to HBV infection. The model we shall consider is an
extension of the model proposed by Bonzi et al.[19] by taking into account a continuous
age structure for the host population.

We first describe the mathematical model. Next, we prove the existence and stability
of a disease-free equilibrium point, define the reproductive number, and describe the
existence and stability of the endemic equilibrium point. Then, numerical simulation

have been presented to illustrate theoretical results.

5.2.2 The model

We proposed an age-structured model to study the transmission dynamics of HBV
with differential infectivity: symptomatic HBV infection and asymptomatic HBV infec-
tion. The model includes age-dependent process such as the force of infection and the
probability of developing the chronicle infection, the susceptible population is stratified
by age. We divide the total population into seven subclasses: susceptible individu-
als S(t,a), immune individuals following vaccination V(¢,a) age a at time ¢, latently
infected progressing to symptomatic HBV infectiousness L;(t), latently infected pro-
gressing to asymptomatic HBV infectiousness L.(t), symptomatic HBV infectiousness
I(t), asymptomatic HBV infectiousness C'(t) and recovered from HBV infection R(t) at
time t.

The age-structured model for the transmission of HVB is described by the following
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system:

95(ta) L 9SWa) _ vy gy — (A(ta) + i + p(a))S(L ),

ot da
V(ta) | V) _ s, a) — (44 )V 0,00,
d%’t(t) _ /Ow a(a)A(t,a)S(t, a)da — (p1 + v)Li(t),
d[;lct(t) = w(l — a(a))M\t, a)S(t, a)da + bOvC(t) — (u1 + 6) L), (5.61)
%g) = YLi(t) = (71 4 + p) L (2),
%}Et) = 0Lc(t) — (2 + p1 + 1) C(2),
%}Et) = ’le(t) + ’)/QC(t) - /LIR(t%

with the initial and boundary conditions

S(t,0) =0(A =bvC(t); S(0,a) = Sp(a); V(t,0)=(1-0)A; V(0,a) = Vy(a),
Li(0) = Liyp; L.(0) = Ly; I(0)=1y; C(0)=Co; R(0)= Ry,
(5.62)

where \(¢,a) is the force of infection defined by
At a) = f(a) (I(1) + C(1)),

w is the upper bound of age of people in the model and A is the total number of births
of the host population at time ¢ (which is assumed to be constant).

The parameters of the model is describe in Table 5.3.
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Table 5.3: Parameters description

Parameters Description Units
p(a) successful vaccination rate of susceptible against HBV /year
B(a) probability that an infective individual will have contact

with and successfully infect a susceptible individual of age a /(human.year)

ala) probability of susceptible age a to become latently infected
(progressing to symptomatic infectiousness) /year
fi1 natural mortality rate /year
11, e HBV-related mortality rate /year
¥ rate moving from latent to symptomatic infectiousness /year
1) rate moving from latent to asymptomatic infectiousness /year
A total number of births human
b equilibrium birth rate /year
1-4 proportion of births with successful vaccination /year
P rate of waning vaccine-induced immunity /year
0G| rate moving from symptomatic infectious to recovered /year
Y2 rate of moving from asymptomatic infectious to recovered /year
v proportion of perinatally infected /year

In order to deal with system (5.61) we first provide a parameter reduction by intro-

ducing the following unknown functions
s(t,a) = S(t,a)e!, w(t,a) =V(t,a)e"".
Therefore, by introducing the vector-valued functions
u(t) = (Lit), Le(t), I(t), C(0)" = (w)i_y.. 4; y(t,) = (s(t,.),v(t, )" = (y1,2)";

and e; = (1,0), 1, = (1,...,1) e R", e = (0,0,1,1); Fy = (0,0,71,72), as well as the
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matrices
00 «afa) ala)
Fu(a) —pla) Fy(a) 0 0 1—aa) 1—ala)
pla)  —¢ 00 0 0 ’
00 0 0
(5.63)
0 0 0
- 0 —¢ 0 bov B - 10
’ v 0 —(y1+ pr) 0 T 00 ’
0 6 0 —(m + he)
system (5.61) rewrites as
(0D N ya) o ue) By y(ta) + Fia)y(t.0),
) = [ H@p@eny(t ) Fala)u(0da-+ (Fa + diag(-u)n(0). (6.0)
W)~ (Bt - ()

wherein (.,.) is the usual scalar product.
System (5.64) supplemented together with boundary condition and initial data
y(£,0) = (O(A — brua(t)); (1 — 6)A)",
(5.65)
y(0,.) =yo(.) € L'(0,w,R?), u(0) =uy € R*, R(0) = Ry.
The age-dependent parameter [(a) into (5.64) is the survival function which is the pro-

portion of individuals who survive to age a, and it is defined by
l(a) =€ a€l0,w).

In what follows we shall discuss the asymptotic behavior of system (5.64)-(5.65) and

we will make use of the following assumptions.

Assumption 5.2.1. A1: Recalling the description of parameters into Table 5.3; we
assume that: A > 0; b, uy, pr, e, v, Y1, V2, ¥, 0, v, § are nonnegative constants,
p(.) is nonnegative function while 3(.) p(.) and o(.) belong to L3(0,w,Ry).

A2: As a technical assumption, we assume that the population of newborn carries born

to carries is less than the natural mortality of the host population, that is bv < pi;.
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5.2.3 Existence of semiflow

The aim of this section is to derive preliminary remarks on (5.61)-(5.62). These
results include the existence of the unique maximal bounded semiflow associated to this
system. We shall deal with the integrated semigroup approach introduced by Thieme
[200].

Let us introduce X = R? x LY(0,w,R?) as well as its positive cone )?+ = Ri X

LY0,w, Ri) and the linear operator A : D(//l\) C X — X defined by

D(A) = {02} x WH(0,w,R?), A O ) _ _“0((/)) . (5.66)

2 —¥
Next consider the Banach space

X=R'xRx X and X; =R} xR, x X,

endowed with the usual product norm

|(w, R, z,y)"|| = i luil + | R| + i || + i lyillr; Y(u, R, z,y)" € X.
i=1 i=1 i=1
Let A: D(A) C X — X be the linear operator defined by
D(A) =R* xR x D(A), A= diag (—m,ﬁ) . (5.67)
Note that the domain of operator A is not dense in X because of the identity

D(A) = R® x {0z} x LY(0,w,R?) # X.

Finally, let us introduce the nonlinear map F : D(A) — X defined by

F ((u7 R7 0R27y)T) =
f(]w l(a)ﬁ(a) <e17 y(a)>F2(a)UdCL + Fgu
<F4a u> - /~L1R
(O(A = brug); (1 = O)A; Fi(a)y — B(a)(e, u)Ely)T

T

By identifying ¢(t) together with (u(t), R(t), Ogz,y(¢,.))T and by setting

Yo = (u07 R07 OR27 yo('))T7
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one obtain that system (5.64)-(5.65) rewrites as the following nondensely defined Cauchy
problem:
dp(t)

¢(0) = o € D(A) N X (5:65)

We first derive that the above abstract Cauchy problem generates a unique glob-

ally defined and positive semiflow. We set Xy = D(A), Xo» = XoN X, A =
{p € Xoy : ||¢ll < A/p1} and the precise result is the following theorem.

Theorem 5.2.1. Let Assumption 5.2.1 be satisfied. Then there exists a unique strongly
continuous semiflow {U(t) : Xo — Xo},5q such that for each o € A, the map ¢ €
C ([0,w),.A) defined by ¢ = U(.)po is a mild solution of (5.68), namely, it satisfies

/Otw(s)ds € D(A) and o(t) = o+ A/Ot (s)ds + /OtF(w(s))ds;Vt > 0.

Furthermore {U(t)},, satisfies the following properties:

(i) Let U(t)po = (u(t), R(t),0g2,y(t,.)); then the following Volterra integral formula-

tion holds true:
ol (/ (Fi(a) — Bla){e, u(0)) Ey) do—> vola—1): ifa>t.
y(t,a) = fa’
exp (/ (Fi(0) — B(o)(e,u(t))Ey) d0> y(t—a,0); ifa <t

0
with y(t — a,0) = [A(A — bvug(t — a)); (1 — 0)A]".
(ii) For each ¢y € A one has for allt >0

(Lo u(t) + R(t) + / " 1(a) (Lo, y(t, a))da < f

(iii) The nonempty compact set A is invariant under the semiflow U, and the subset A

attracts the bounded sets of Xo. under the semiflow U.

Proof. The proof of this result is rather standard. Indeed it is easy to check that operator
A satisfies the Hille-Yosida property. Then standard methodologies apply to provide the
existence and uniqueness of a mild solution for system (5.64)-(5.65) (see, for instance,
[144, 200, 113] and the proof of Theorem 4.2.2). Next the Volterra integral formulation
is also standard in the context of age-structured equations and we refer to [110] and the

references cited therein for more details. Estimates stated in (ii) directly follow from
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the system of equations. Let us assume for a moment that y, € W'(0,w,R?); then

adding up the equations of system (5.64) yields v(t) < A — pyv(t), that is

v(t) < % + et (v(O) - %) , (5.69)

wherein v(t) = (14,u(t)) + R(t) +/ l(a)(12,y(t,a))da. From where one deduces esti-
0

mate (ii). Particularly, Assumption (item A2) gives that S(¢,0) = (A — bvC(t)) > 0

for all ¢ > 0.

It remains to prove (iii) and this is a direct consequence of (5.69). O

5.2.4 The disease-free steady state and reproductive number
Existence of the disease-free steady state

A steady state (u,Ogz,y(a)) of system (5.64)-(5.65) must satisfy the system of ordi-

nary differential equations:

W — —ba) e w) Euy(a) + Fia)y o)
/0“’ l(a)B(a)(er,y(a))Fy(a).uda + (F5 + diag(—p1)).u =0, (5.70)

<F47u> - MIR = 07

with initial condition y(0) = (6(A — bvuy); (1 — 8)A)” . Therefore, we obtain the disease-
free steady state E® = (Oga, 0, Ogz, s°(.),v°(.))" , where

s%a) = A |fe” Jo' G+pm)dn ¥ /a e~ Jo Wtp(m))dn g, ;
0
v’(a) = A — s%a).
Reproductive number.

We use the next generation operator approach as described by Diekmann-Heesterbeek-
Metz [48] and Inaba [116] to define the reproductive number, Ry, as the number of
secondary infections that one infectious individual would create over the duration of the
infectious period, provided that everyone else is susceptible.

In the early stage of the epidemic, the dynamics of the population can be described by

the linearized equation at the disease-free steady state E°. Since the linearized equations
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for infective population does not include other subpopulations, we can only consider the

single equation for infective population as

%u(t) = /Ow I(a)B(a)(er, E%(a)) Fy(a).u(t)da + (F3 + diag(—p)).u(t), 65.71)
u(0) € R%.
Equation (5.71) rewrites
() = Fult) - V() (o) € B (5.72)

where the matrices F and V are respectively the rate of appearance of new infections

in each class and the rate of transfer (into and out of) each class; and are defined by

0 0 ICz ’Cz V11 0 0 0
0 0 ICC ]Cc + bov 0 V29 0 0
F = , V= ’

00 O 0 -y 0 w33 O
00 O 0 0 =0 0 wy

with

K= [ saja@i@sade, K= [ Ba)1 - ala)i@)s @da
0 0
and

Uil = fa T+ Vg = 1 + 0; (5.73)
Uz = Y1+ [ + {15 Vaga = Y2 1 fe T+ [
Then the basic reproductive number is defined as the spectral radius of the next gener-

ation matrix FV !

2 [vi1vs3 V22V44 V11033 V22V44

1/2
1| K (Ko + b0 Ki (K. —bov)\*> 45200k,
Ro =2 i ~|—< V)+ <7 —l—( V)>+ 21;
U224y
(5.74)
Remark 5.2.1. We can also follow van den Driessche and Watmough[206], we obtain
that the basic reproduction number, defined as the expected number of secondary infec-

tions produced by an index case (Anderson and May [3]), is given by

=~ c bH 7
R — MWKt br) | ki (5.75)
V22V44 V11033

In fact, simple calculation shows that Ry < 1(=1,> 1) is equivalent to Ry < 1(=1,>

1).
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Global stability of the disease-free steady state.

Theorem 5.2.2. Under Assumption 5.2.1, the disease-free steady state EY is globally
asymptotically stable if Ry < 1 and unstable if Ry > 1.

Proof. Let us denote by A, the part of operator A in D(A). Then it is infinitesimal

generator of a Cy-semigroup on D(A) denoted by {74, (t)},5,- Using the same arguments

as in the proof of Lemma 4.2.4 we find that {T'4,(?)},, satisfies
| Ta,(t)|| < Me "t ¥t >0,

for some constant M > 0. It follows that Wess(Ap), the essential growth of rate of

{Tao(t)},50 18, < —pu1. Let {T(A0+DF(EO))(t)}tZO be the linear Cy-semigroup generated

by (A+ DF(E)), the part of A+ DF(E") : D(A) C X — X in D(A). Since DF(E?)

is a compact bounded linear operator, it follows that (Ref. [57] an references therein)
o‘-}633(14 + DF(EO)) S —H1-

Now, let us assume that Ry > 1. The linearized equation of system (5.64) at

77777

(z—(F=V)w=u, z€Cand R.(z) > —p. (5.76)

then we have

- T = (2 ) ; (577)

ZH Vi) iz 4
where T'(z), z € C, is 4 X 4 matrix defined by:
K Ks
0 0 z+v11 z+v11
0 0 Ke Kc+b0v
T(z) = hee e (5.78)
9l
o 0 0 0
0 g 0 0

z+v44
Let us observe that the basic reproduction ratio R is the spectral radius, denoted by
r(7T(0)), of the generation operator T'(0). (See Ref. [113] and references therein). Then,

we claim that:
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Claim 5.2.1. There exists a unique zg > —Upy = — min (1)1-2-)2.:1’2’374 such thatr (T(zp)) =

1 and
20 >0 if r(T(0)) > 1;

20 =0 1if r(T(0)) =1,
2o <0 if r(T(0)) < 1,

and it is the dominant characteristic root, as
20 > sup { Re(z) : 2 € 2%\ {20} } ;
where $° := {2z € C: (I — T(2)) is not inversible} is the spectrum of F — V.

Proof. The positive operator T'(0) has the Perron-Frobenius properties, roughly speak-
ing, T'(z) is irreducible and r (7'(z)) is decreasing for real z € (—vyin, +00). Moreover,
lim, , ., . r(T(z)) = +oo and lim,, 7 (7T(2)) = 0; then the first half of the claim
is the direct consequence of this monotonicity of  (7'(z)). Next we show the dominant
property of zg. For any 2z € X%\ {20}, there is an vector 1., such that T'(2)1, = 1.. Then
we have |¢,| = |T'(2)1.| < T(Rez)[¢.|. The eigenspace corresponding to the eigenvalue
r (T(R.z)) is one-dimensional subspace of R* spanned by a strictly positive functional

Fg... We obtain that

r (T(Rez)) [FRezv |wz|] = [FREZ7T(R€Z)|wZH > [FRem |w2|]a

where we write the value of Fg_, at ¢, as [Fg,.,1.]. Hence we have r (T'(R.z)) > 1 and
R.z < zy because 1 (T'(z)) is strictly deceasing for z € (—py, +00) and 7 (T'(Re2p)) = 1.
This end the proof of Claim 5.2.1. O

Therefore, the disease-free steady state is locally asymptotically stable if Rg =
r(T(0)) < 1 and unstable if Ry = (7°(0)) > 1.

The second part of the proof deal with the global stability of the disease-free steady
state. Let us consider A C Xy, the global attractor of U provided by Theorem
5.2.1. Let (ug, Ro,0g2,y0) € A be given and let {p(t) = (u(t), R(t), 02, y(t,.)) }1er
be the entire solution of U passing trough (ug, Ro,Ogz,yo). Since s(0,.) < s%(.) for all
(ug, Ry, Og2,yo) € A, we deduce that s(t,.) < s°(.) for all t € R. One may consider the

functional V' defined for each entire solutions by

Vgl (t) = d.u(t),
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where the positive constant vector d € R? is defined by d; = ,ﬂf:l, dy = fff;‘(s, dz =
and d4 =

1 1
2(p1+y1+pr)”’ 2(petp1+72)”

Next, using system (5.64) we obtain

dv'lg] ()
dt

< (Ro—1) (e, u(t)). (5.79)
Hence we infer from the definition of Xy that ¢ — V [p] (¢) is decreasing along the
entire solutions of U. To conlude our proof, let {t,},>0 be a sequence tending to —oo
as n — +oo and consider the sequence of map ¢, (t) = ¢(t + t,). Note that one has
Vipn] (t) = V]g] (t +t,). Up to a subsequence one may assume that o, (t) — @(t) as
n — +oo locally uniformly for ¢ € R, where {$(t)};er C A is an entire solution of U.
Since V' is decreasing, one obtains that

Vgl (t) = lim Vig](t) =sup V [g] (¢).

t——o0 teR

By setting @ = (1, R, Oz, ¥), equation (5.79) yields to ti(¢) = 0 while y = (s°(.), v°(.))7
Hence V [7] (t) =0 and 0 < V [¢] (t) < 0 for t € R and ¢(t) = E°. This end the proof
of Theorem 5.2.2. U

Remark 5.2.2. With respect to the result of Zou et al.[222], we do not ignore the
proportion of perinatal infection to deal with the stability of the disease-free steady state

of model (5.64).

5.2.5 Disease-endemic steady states.

In this subsection, we discuss the existence and stability of the disease-endemic steady
states. Endemic equilibrium points are steady-state solutions where the disease persists
in the population. We use general bifurcation theory to prove the existence of at least

one endemic equilibrium point for all Ry > 1. We have the following result.

Theorem 5.2.3. Let Assumption 5.2.1 be satisfied and Rq > 1, then there is a unique
positive disease-endemic steady state B*(.) = (s*(.),v*(.), L, L, I*,C*, R*)" of system
(5.64)-(5.65).

Before giving the proof of Theorem 5.2.3, let us introduce the following useful result

for the existence and uniqueness of a positive fixed point of a multi-variable function.
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Theorem 5.2.4. (Hethcote and Thieme [100], Theorem 2.1) Let H(x) be a continuous,
monotone non-decreasing, strictly sub linear, bounded function which maps the non-
negative orthant R, into itself. Let H(0) = 0 and H'(0) exists and be irreducible. Then
H(x) does not have a non-trivial fized point on the boundary of RY. Moreover, H(x)
has a positive fized point iff the spectral radius p(H'(0)) > 1. If there is a positive fized

point, then it is unique.

Proof of Theorem 5.2.3. The coordinates of E* satisfied

s(a) = — bvC)e Jo BOII+C)+p(0))do
+1) / o~ o (B I+C)+p(0))do dn, (5.80)
L = iff;/ Bla (I, C,a)da,
fe = ifgs/ Bla)(1 - ala))i(e)(l, C, a)da+50”f§
h- (uﬁv)(ic;rf;imtm)/ Bla)ala)l(a)h(1, C, a)da, (5.81)
© - (“1+55)((21++C;10+%) /Owﬁ(a)(l—a(a))l(a)h(I,C,a)da
sbovC

(1 + 6)(p1 + pe +72)° (5.82)

o) = AL [ pste ey
Nl +yC ’
1
wherein h(I,C,a) is the right-hand side of (5.80).
Using equations (5.81) and (5.82) we have the following fixed point equation H(I,C)? =
(I,C)T; where

:(1,C) € [0, My] x [0, Mo] € R* - R* 5 H(I,C)" =

S

(I +0O) w

(1 +75)<(;L U)Llﬂl) 5 Bla)a(a)l(a)h(I,C, a)da "
G000 T et ) Sy PO — eI, Ca)dat e = s

(5.83)
wherein M, is a positive constant provided by item (ii) of Theorem 5.2.1.
Thus the equilibrium points are fixed points of H given by
H(I,0)" = (1,0)". (5.84)
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The equation (5.84) implies that at the endemic steady state the infected population
simply reproduce itself. Therefore we can call H the next generation operator at the
endemic steady state. This fact will be used to show the stability of the endemic steady
state in the next subsection.

We use (5.84) to prove existence and uniqueness of an endemic equilibrium point.

We easily find that H(.,.) is continuous, bounded function. Since h(0,0,.) = s°(.)
(the disease-free steady state) and H is infinitely differentiable, then the Jacobian at
point (0,0) is given by

Y s
() (prtpr+y)  (p+y)(pa+pr+m)

H'(0,0) =

K. (Kc+bbv)
(m+8)(p1tpety2)  (1+6)(p1+pet2)

Thus the function H (I, C') is monotone non-decreasing and H(0,0) = (0,0). Note that
p(H'(0,0)) = Rp > 1. Thanks the graph theory, we claim that H’(0,0) is irreducible
because the associated graph of the matrix is strongly connected.

Let us now prove that H is strictly sub linear, i.e., H(rl,rC) > rH(I,C), for any
(I,C) > 0 and r € (0,1). For instance let us set H(.,.) := (Hy(.,.); Ha(.,.)), then

rH\(I1,C) 1 [y Bla)(1 — afa)l(a)h(I, C,a)da P
Hi(rI,rC) [ B(a)(l — a(a))l(a)h(rl,rC,a)da ~ 7
Hy(I,C
and the same argument gives that w < 1. Then applying Theorem 5.2.4, the
HQ(’I"], TC)

result follows. O

Remark 5.2.3. As in Remark 5.2.2 and with respect to the result to result of Zou et
al.[222] we do not ignore deaths directly related to HBV to deal with the existence of the

disease-endemic steady state.

The rest of this section deals with the stability of the endemic steady-state. The
linearized system (5.64) at the endemic steady state E* = (u*, R*, {Og2},y*(.)) can be

written as
dp(t)

~ = Ap(t) + Fop(t), (5.85)
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with () = (u(t), R, Ogz, y(t,.))" and where the linear operator F, is given by

F. ((u(t), R(t), 052, ¥(t,.))") =

Jy Wa)B(a)(er, y*(a)) Fa(a)u(t)da + [5 I(a)B(a)(er, y(t, a)) Fa(a)u*da + Fau(t) '
(Fy,u(t)) — mR(t)
(—=b0vuq(t); 0; Fi(a)y(t, a) — B(a){e, u) Evy(t, a) — B(a)(e, u(t)) Ery*(a))
(5.86)

Since the linearized stability principle holds for the age-structured population system
(5.64) (Ref. [211]), the endemic steady state is locally asymptotically stable if the trivial
equilibrium ¢ = 0 of the linearized system (5.85) is locally asymptotically stable, while
the endemic steady state is unstable if ¢ = 0 is unstable in (5.85).

In order to see the linearized stability by calculating the resolvent spectrum, let us

consider the resolvent equation for the linearized operator:

(z—(A+F)w=u weDA), uweX, zeC.

Let w = (5(.),0(.), Ls, Lo, C, I, R) and u = (uy(.), ua(.), us, ug, us, ug, u7). Then we have

§(a) = —(z+Bla)(I" + C") + pla))s(a) + Pv(a)
—B(a)s*(a)(I + C) + uy(a), (5.87)
v'(a) = —(z+1)v(a)+p(a)sa) + us(a),
2L = (I"+C* /0 ala)l(a)p(a)s(a)da (5.88)
+(I +C) /Ow ala)l(a)B(a)s*(a)da — (p1 + ) Li + us, (5.89)

zL. = (I"+C) /Ow(l — afa))l(a)B(a)s(a)da + bOvC + uy

+(I+0) /Ow(l —a(a))l(a)B(a)s*(a)da — (1 + §)Le, (5.90)
2l = ~L; — (v + py + pp)I + us, (5.91)
2C = 8L~ (y2 + p1 + pe)C + ug, (5.92)

2R = yI+%C —mR+ ur,
5(0) = —bOvC; 9(0) = 0. (5.93)

Equations (5.88) and (5.87), coupling with (5.93), respectively gives

(@) = [ 60) + wlo))e ) (a o)s(o)do
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and

5(a) = —bfvCe™ Jo (z+Bm)I*+C*)+p(n))dn

+/1M@ﬂ+¢ﬂﬂ—ﬁﬂﬂfwﬂf+@W2ﬁ@w@m“mﬂmwwa
0

Recalling (5.73); from (5.91) and (5.92) it comes that

Ei = ’1y(Z + U33> — %, Ec = %(2 + U44) - % (594>
Substituting (5.94) into system (5.89)-(5.90) we have
(I = B)(,C)" = (x1,x2)"; (5.95)
where B(z), z € Cis 2 x 2 matrix defined by
By(z) Bi(z)
B(z) = , 5.96
(2) Ba(z) Byle) + U&b&u (5.96)
22U44
wherein
_ 1o ela)l(a)B(a)s*(a)da.
Bi(z) = (Z + Uu)(z + U33) ’
5 (1 — al@)i(@)5(0)s* (@)da,
Bal2) (2 +v2)(z ¥ vas)
and

YI*+C%) Ji ala)l(a)B(a)s*(a)da  us

X1 =

. 7(,2 + v11)(2 + v33) z+ U33;
\ o(I* +C*) Jy (1 = a(a))l(a)B(a)s*(a)da L s
2 (Z —+ UQQ)(Z -+ 1244) z+ U44.

We can observe that B(0) < H, where H is the next generation operator at the endemic
steady state. Since H is also irreducible, its spectral radius is the Frobenius eigenvalue
corresponding to the unique positive eigenvector. If Ry > 1, H has a positive fixed
point (see Theorem 5.2.3), that is r(H) = 1. Hence from Perron-Frobenius Theorem
we obtain that r(B(0)) < r(H) = 1. Let ¥* be the spectrum of A + F.. By using the
same argument as the proof of Claim 5.2.1, we know that the dominant characteristic
root in X* is given as the unique real root of equation r(B(z)) = 1, z € C, and it is
less than zero if r(B(0)) < 1. Then it follows that the endemic steady state is locally
asymptotically stable. Therefore, we obtain the following result on the stability of the

disease-endemic steady state.

Theorem 5.2.5. Let Assumption 5.2.1 be satisfied and Ro > 1, then the disease-

endemic steady state E* of system (5.64) is locally asymptotically stable.
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5.2.6 Numerical illustration
The model parameters.

Our numerical simulations are based on some main parameters used or derived in
Zhao, Xu, and Lu|221]; Zou, Zhang and Ruan|222| for HBV infection.

We first have the transmission coefficient 5(a) given by

0.13074116 — 0.01362531a + 0.00046463a? — 0.00000489a?; 0 < a < 47.5,

B(47.5); a > 47.5
(5.97)

The probability of susceptible age a to become latently infected (progressing to symp-

tomatic infectiousness) is given by
a(a) = 0.9153552 — 0.706004 exp(—0.787711a), (5.98)

thus 1 — a(a) is the probability of susceptible age a to become latently infected (pro-
gressing to asymptomatic infectiousness). The remaining parameters are given in Table
5.6.

Using a constant p for p(a), we simulate the behavior of the model. Fig. 5.5 illustrates
the behavior of system for p = 0.5, ¢ = 0.1, v = 0.011 such that Ry = 0.8413 <
1 (ﬁo = 0.8413 < 1); that is the disease cannot persist. Secondly, we observe the
behavior of the system for p = 0.12. In Figure 5.6, § = 0.6 such that Ry = 2.3320 > 1
(Ro = 2.3338 > 1). This indicates that hepatitis B is endemic.

Sensitivity analysis of model parameters to ﬁo

We carried out the sensitivity analysis to determine the model robustness to param-
eter values. That is to help us know the parameters that have a hight impact on the

reproduction number (Ry); using the approach in(Chitnis et al. [32]).

Definition 5.2.1. The normalized forward sensitivity index of basic reproduction num-

ber, ﬁo, that depends differentiably on a parameter, [, is defined as:

Tfo::%x :

ekt (5.99)

We therefore derive the sensitivity of the basic reproduction number ﬁo to each of

the following parameters: p(.), 1 — 6 and 1 — v (see Table 5.6 for they description). As
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for our numerical simulation, here we also assume that p(.) is a constant parameter:
pla) =p=90% for all a € [0, w].
Recalling that

Ry I(Ke(p) + bOv) N vKi(p)

7
V22U44 V11033
with

K.(p) = / " Ba)a(@)l(@)s(p.a)da, Ku(p) = / " Bla)(1 - a(a)l(@)s(p. a)da,

and s°(p,a) = s°(a) (the disease-free steady state of the model) when p(.) is assume to

be the constant p. In this case, we easily find that

s%(p,a) = Ae~(PH¥)a (0 — _7/) 1 — ePt¥a > )
(p, a) i ( )

The detail sensitivity indices of 7%0 resulting from the evaluation of parameters of the

model are shown below:

YR <5<K3<p> ) VK?(JO)> P

V22V44 V11V33 E(f
= 0b 0—1
TRo, = 27 T (5.100)
U244 Ro
% 0bl -1
TR = x ;
V22U44 Ro

wherein

K (p) = /Ow B(a)a(a)l(a)apso(p, a)da, K2(p) = /0w Bla)(1 — a(a))l(a)(?pso(p, a)da.

The sensitivity index of basic reproduction number is summarize in Table 5.4.

Table 5.4 implies that increasing (resp. decreasing) the vaccination rate of susceptible,
by 10%, decreases (resp. increases) the basic reproduction rate 7%0 by 4.91%.

Increasing (resp. decreasing) the proportion of births with successful vaccination,
1 — 0, by 10%, decreases (resp. increases) the basic reproduction rate Ro by 0.34%.

Similarly, increasing (resp. decreasing) the proportion of births without perinatal
infection, 1 — v, by 10%, decreases (resp. increases) the basic reproduction rate ﬁo by
4.13%.

Actually, it is not easy to practice a mass vaccination to all the susceptible individuals:
a specific age group of susceptible should be provided. Then, let us examine the impact

of the mass group vaccination of susceptible (i.e. for a specific age group of susceptible
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Table 5.4: Sensitivity index of model parameters to ﬁo

Parameter Description Sensitivity index
D vaccination rate of susceptible —0.4910
1-46 proportion of births with successful vaccination —0.0341
1—v proportion of births without perinatal infection —0.4135

individuals) on the spread of the disease. To this end we consider two age groups:
0 < a <5 (years) and a > 5 (years). The vaccination rate of susceptible p(a) is then

define by:
p(a) = p1 per year; 0 <a <5 (years), (5.101)
po per year; a > 5 (years),
wherein p;; (j = 1,2) is the vaccination rate of susceptible for the specific age group.

Consider the same vaccination rate of susceptible for each age group, that is p; =
90%;(j = 1,...,5) and § = 0.6 (the remaining parameters are given in Table 5.6),
the sensitivity index of the vaccination rate of susceptible for the specific age group
is summarize in Table 5.5. We observe that the much sensitive group is susceptible
individuals with age between 0 and 5 years old (with respect to our set of parameters).

Let us simulate the impact of age group mass vaccination on the spread of the disease.
For this end, consider p; = 0 (i.e. there is not vaccination on the group of susceptibles
with more than 5 years old) and for different values of mass vaccination rate p; on the
group age [0, 5](years old). Figure 5.7 indicates that mass vaccination in infants (with
less than 5 years old) can reduce the spread of the epidemic (specially the spread of the
asymptotic infection of HBV). But, this is not enough to control the infection.

To find better control strategies for HBV infection, we would like to see what param-
eters can reduce the basic reproduction number R given by (5.74). From Fig. 5.8 we
can see that Ry decreases if 1 — 6 (immunization of newborns) increases, or v (propor-
tion of perinatally infected) decreases, or p (immunization of susceptible individuals)
increases. Fig. 5.8(a) shows that combining immunization of susceptible individuals
(at least young adults) and reduction of perinatal infection can reduce Ry to be less
than 1. HBV could be eliminated even if p = 0 and 1 — v is large enough (see Fig.
5.5). Fig. 5.8(b) also shows that combining immunization of newborns and reduction
of perinatal infection is also an efficient intervention. HBV could be eliminated if both

1 —v and 1 — @ are large enough. Fig. 5.8(c) shows that combining immunization of
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Table 5.5: Sensitivity index of vaccination rate for the specific age group to 7%0

Two age groups case: [0, 5](years old) and ]5,w](years old)

Parameter | Description Sensitivity index
p1 vaccination rate of susceptibles age a: 0 < a < 5(years) —0.4590
D2 vaccination rate of susceptibles age a: a > 5(years) —0.0772
1-6 proportion of births with successful vaccination —0.0286
1-v proportion of births without perinatal infection —0.3473

Only one age group case: [0, 5](years old)

Parameter | Description Sensitivity index
p1 vaccination rate of susceptibles age a: 0 < a < 5(years) —0.3347
1-6 proportion of births with successful vaccination —0.0206
1-v proportion of births without perinatal infection —0.2500

both newborns and susceptible individuals can reduce Rg to be less than 1. HBV could

be eliminated if both p and 1 — 6 are large enough. If the transmission coefficient 3(.) is

sufficiently small HBV could also be eliminated. However, it is difficult to control 5(.).

In the light of these results, we find that the control of the epidemic of hepatitis B

virus pass through a reduction or even eradication of perinatal transmission of the disease

(See Figs 5.8(a),(b),(c)). Therefore, although the proportion of perinatal transmission

of the disease is low (as pointed in Zou et al.[222]), this factor should not be neglected in

the transmission of HBV. A control strategy will be a combination of immunization of

newborns, immunization of susceptible individuals (at least young adults), and reduction

of perinatal infection.
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Figure 5.5: The behavior of system for p = 0.5, § = 0.1, v = 0.011 and Ry = 0.8413.
All other parameters are given in Tab. 5.6 and Egs. (5.97)-(5.98).
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Figure 5.6: The behavior of system for p = 0.12, § = 0.6 and Ry = 3.2707. All other
parameters are given in Tab. 5.6 and Eqgs. (5.97)-(5.98).
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Figure 5.7: Impact of the mass vaccination on the spread of the epidemic: p; €
{0,0.5,0.9} for group |0, 5](years old) and p, = 0 for group |5, w](years old). 6§ = 0.6
and all other parameters are given in Tab. 5.6 and Egs. (5.97)-(5.98).
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Figure 5.8: The graphs of the basic reproduction number Ry in terms of some parame-
ters: (a) Ro in terms of 1 — v and p. 1 — 6 is fixed to be 1 — 60 = 0.8, (b) Ry in terms
of 1 =0 and 1 —v. pis fixed to be p = 0.5, (¢) Ry in terms of 1 — 0 and p. 1 — v is
fixed to be 1 — v = 0.89, (d) Ro in terms of 1 —v. p and 1 — 0 fixed to be p = 0.45 and
1 — 6 =0.87. All other parameters are given in Tab. 5.6 and Eqgs. (5.97)-(5.98).

5.2.7 Summary

In this section, we have examined an age-structured model for the transmission of
Hepatitis B virus (HBV) with differential infectivity: symptomatic infection and asymp-
tomatic infection. The rationale for including age-structured can be multiple. According
to CDC and WHO, risk for chronic infection is inversely related to age at infection: ap-

proximately 90% of infected infants and 30% of infected children aged under 5 years
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Table 5.6: Parameters values used in numerical simulation

Parameters Description Values Ref.
p(a) vaccination rate of susceptible 0-1
T natural mortality rate 0.0132/yr ~ WHOI219]
L1, fC HBV-related mortality rate 0.2%/yr CDC|30]

~y rate moving from latent infection to Edmunds et al.[67],
symptomatic infectiousness 6/yr CDC]J30]

0 rate moving from latent to Edmunds et al.[67],
asymptomatic infectiousness 6/yr CDCJ30]

A total number of births variable

b equilibrium birth rate 0.0380/year WHOI219]

1-4 proportion of births with successful

vaccination 0-1

P rate of waning vaccine-induced
immunity 0.1 Edmunds et al.[63]

" rate moving from symptomatic Edmunds et al.[67],
infectiousness to recovered 4.8 /yr CDCJ30]

Yo rate of moving from asymptomatic Edmunds et al.[67],
infectiousness to recovered 0.025/yr CDCJ30]

v proportion of perinatally infected
(from chronicle infectious mothers)  0.11 Edmunds et al.[67]

become chronically infected, compared with 5% of adults. Vaccination is recognized

as the most efficient way of preventing hepatitis B. But the problem of imperfect vac-

cine introduce naturally differential susceptibility. Even if HBV vaccine is very efficient

it does not offer 100% protection against infection. According to WHO, Hepatitis B

vaccine is 95% effective in preventing HBV infection and its chronic consequences.

The main finding of this section can be summarized along the following lines:

v" We discussed the existence and stability of the disease-free and disease-endemic

equilibria of the model in terms of the basic reproduction number R,.

v' We performed sensitivity analysis of the parameters with respect to the basic
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reproduction number R,.

The analytical results and numerical simulations of the model suggest that :

v" Mass vaccination in infants increases the average age of infection in unimmunized
individuals and shifts the average age at infection to older age groups (Edmunds et
al.[67]). This indicates that mass vaccination in infants might be not enough to control
the infection and eradicate the virus (this is also supported by Zou et al.[222]).

v" The control strategy consist in a combination of immunization of newborns, im-
munization of susceptible individuals (at least young adults), and reduction of perinatal

infection.
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Conclusion

This work deals with a recent within-host malaria infection model with multistrain
for the parasites and a spatial modeling of anopheles mosquito dynamics population. In
this work, we also consider population models of infectious disease structured by age.
Namely, Hepatitis B virus (HBV) and Susceptible-Infected-Lost of sight (SIL) models.

The first section of the first true chapter of this work deals with an age-structured
within-host model for multistrain malaria infection. This model incorporates n strains
for the parasite. Using integrated semigroup theory, we provided a global analysis of this
model. The rationale for including multi-strain can be multiple. One reason is to take
into account biological reasons, e.g., consideration of morphological or age classes. The
second is due to the recent study on this subject. Recently, it has been proved that a
deeper understanding of the dynamic growth responses of multiple strain P. falciparum
infections can improve the understanding of the role of parasite interactions in the spread
of drug resistant parasites, perhaps suggesting different treatment strategies [208|. This
model has been conceived from malaria infection, since it is well grounded that malaria
is a multi-strain infection. However other parasitic infections can be considered by this
model, e.g., the model can be extended to the HIV infections [105]. The main finding
of this model is the following:

» To separate the different strains we associated for each strain the i-specific basic
reproduction number Rj. We then find that the basic reproduction number of the
model is defined by Ry = ,max Ry,

» We also find that if Ry §’ 1,, the model exhibits a unique disease-free steady state,
while if Ry > 1 the model has exactly ng disease-endemic steady states, wherein ngp =
Card {i € {1,...,n}: R} > 1}.

» We prove that if the basic reproduction number of the model satisfies Rg < 1, then
the parasite is cleared from the host population. Our global stability result when Ry > 1

can be summarized as a competitive exclusion principle. If Rg > 1, then there exists
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a global asymptotic stable endemic equilibrium. This equilibrium corresponds to the
extinction of all strains, except the strain with the largest threshold (winning strain).

In the first true chapter of this work, we also consider an advection-reaction model
for anopheles mosquito dynamics population. Knowledge of the population dynamics
of the malaria vector is fundamental to the understanding of malaria epidemiology and
the spread of insecticide resistance. Therefore, studies on the population structure of
malaria vectors have important implications for the prediction and assessment of the
effects of many vector control strategies. According to all malaria models, little has been
done with regard to the studies on the population dynamics of malaria vectors. The
aim finding of our analyzes can be summarized along as follows:

» The seasonal spatio-temporal model of anopheles mosquito is consider. This model
takes into account seasonal transmission and the geographical range of malaria. Using
the semigroup approach we derive the existence of the unique bounded non-autonomous
semiflow associated to the seasonal spatio-temporal model.

» To find the behavior of the non-autonomous semiflow associated to the seasonal
spatio-temporal model, we introduce three threshold values R¢, R, and R..

» Then, we find that, if R® < 1, the anopheles mosquito population dies out.

» We also derive persistence results for the seasonal mosquito model. Namely, if R¢, > 1
(resp. R, > 1) then anopheles mosquito uniformly weakly (resp. strongly) persists in
the population.

The second (and the last) true chapter of this work is organized in two sections and
deals with two population models structured by age. The first section is concerned
by a mathematical SIL (Susceptible-Infected-Lost of sight) model for the spread of a
directly transmitted infectious disease. The second section of the chapter is concerned
by and age-structured model for the transmission of hepatitis B virus, with differential
infectivity: symptomatic infection and asymptomatic infection.

The first section considered a model for the spread of a directly transmitted infections
disease in an age-structured population with demographics process, SIL-model. The
disease can be transmitted not only horizontally but also vertically from infected mothers
to their newborns. There are important infective agents such as HBV (hepatitis B virus),
HIV (human immunodeficiency virus) and HTLV (human T-cell leukemia virus) that

can be vertically transmitted. In Africa, the vertical transmission of the disease like HIV
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is in progression nowadays. The aim finding of this section is summarized as follows:

» We formulated the dynamical system with boundary conditions, and then described
the semigroup approach to the time evolution problem of the abstract epidemic system.
» Next we have calculated the basic reproduction ratio and proved that the SIL-model
exhibits a unique disease-free steady state if Ry < 1, and at least one endemic steady
state exists if the basic reproduction ratio Ry is greater than the unity.

» We prove that if the basic reproduction number of the SIL-model satisfies Ry < 1,
then the disease-free steady state is locally asymptotically stable, i.e., the disease died
out from the host population.

» We have shown sufficient conditions which guarantee the local stability of the endemic
steady state; that is the persistence of the disease in the host population. Roughly
speaking, the endemic steady state is locally asymptotically stable if Ry > 1 and if it
corresponds to a very small force of infection.

» Finally, to highlight the impact of the vertical transmission of the disease into the
host population, we provided some illustrations and discussion on the outcome of the
state variables of the model when the vertical transmission rate p takes different values:
0.02, 0.2 and 0.5.

In the second section of the second true chapter of this work, we have examined an
age-structured model for the transmission of Hepatitis B virus (HBV) with differential
infectivity: symptomatic infection and asymptomatic infection. Vaccination is recog-
nized as the most efficient way of preventing hepatitis B. But the problem of imperfect
vaccine introduce naturally differential susceptibility. Even if HBV vaccine is very effi-
cient it does not offer 100% protection against infection. According to WHO, Hepatitis
B vaccine is 95% effective in preventing HBV infection and its chronic consequences.
The main finding of this section can be summarized along the following lines:

» We discussed the existence and stability of the disease-free and disease-endemic equi-
libria of the model in terms of the basic reproduction number R,.

» We performed sensitivity analysis of the parameters with respect to the basic repro-
duction number R,.

» The analytical results and numerical simulations of the model suggest that, mass
vaccination in infants increases the average age of infection in unimmunized individuals

and shifts the average age at infection to older age groups (Edmunds et al.[67]). This
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indicates that mass vaccination in infants might be not enough to control the infection
and eradicate the virus (this is also supported by Zou et al.[222]).

» A optimal control strategy consist in a combination of immunization of newborns, im-
munization of susceptible individuals (at least young adults), and reduction of perinatal

infection.
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AN AGE-STRUCTURED WITHIN-HOST MODEL FOR
MULTISTRAIN MALARIA INFECTIONS*
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Abstract. In this paper we propose an age-structured malaria within-host model taking into
account multistrains interaction. We provide a global analysis of the model depending upon some
threshold 79. When 7g < 1, then the disease-free equilibrium is globally asymptotically stable and
the parasites are cleared. On the contrary, if 7o > 1, the model exhibits the competition exclusion
principle. Roughly speaking, only the strongest strain, according to a suitable order, survives while
the other strains go to extinction. Under some additional parameter conditions we prove that the
endemic equilibrium corresponding to the strongest strain is globally asymptotically stable.

Key words. structured population, competitive exclusion principle, nonlinear dynamical sys-
tems, global stability, Plasmodium falciparum, intrahost model
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1. Introduction. In this paper we consider an age-structured system of equa-
tions modeling the blood stage of multistrain malaria infections. We more specifically
focus upon human malaria caused by the protozoa Plasmodium falciparum, the most
widespread within the tropics and particularly in Sub-Saharan Africa.

According to Read and Taylor [40] natural parasitic infections are often diverse,
including multiple parasite species and/or distinct genotypes of the same species.
Parasites of the Plasmodium genus are no exception. Human infections of multiple
strains or species have been widely reported [6, 49] and it may be typical in highly
endemic regions [27, 29].

Recently, using quantitative PCR methods, Wacker et al. [48] proved and quan-
tified that the interactions between different strains of P. falciparum lead to the
competitive suppression of the weakest one. This feature was already observed for
P. chabaudi, the parasite responsible for rodent malaria (see [6] and the references
therein). Such a competition has a strong influence on the spread of strains and thus
on drug resistance. According to Wacker et al. [48], a deeper understanding of the
dynamic of multiple strain P. falciparum infection can improve the understanding
of the role of parasite interactions in the spread of drug-resistant parasites, perhaps
suggesting different treatment strategies.

In this work we shall focus on the blood stage of the parasite where the aforemen-
tioned competitive suppression has been reported. Before going to the mathematical
model, let us briefly review the features of malaria. The life cycle of malaria parasites
inside the human body consists of two phases: an exoerythrocytic (the liver stage)
and an erythrocytic phase (the blood stage). After an infective bite, a mosquito in-
jects the pathogen in the so-called sporozoites form, which rapidly reaches the liver
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cells. An asymptomatic period follows during which parasites mature and multiply
asexually within the liver cells, yielding to hepatic schizonts. Once hepatic schitzonts
rupture, the parasitized cells release the so-called merozoites into the bloodstream, the
starting point of the blood stage. During this phase, the merozoites enter uninfected
red blood cells (uURBC) to undergo asexual multiplication. After a sequestration pe-
riod of about 48 hours (for P. falciparum) the rupture of the parasitized red bood
cells (pRBC) occurs releasing 8 to 32 free merozoites into the bloodstream ready to
repeat the invasion scheme. The blood stage of the parasites is mainly responsible
for the clinical symptoms of the infection. The rupture of pRBC causes clinical fever.
Moreover P. falciparum infection is the most frequent acquired RBC disorder in the
world (see Buffet et al. [3] and the references therein), that may also lead to severe
symptoms such as anemia or cerebral malaria.

In this paper we consider an age-structured intrahost model for P. falciparum
infection with n different strains for the parasites. The age structure will allow us
to have a good description of the pRBC rupture and of the merozoites release phe-
nomenon. These parameters play an important role in describing the strength of a
strain and thus have important consequences on the spread of the infection. The
model we shall consider is an extension of the model proposed by Iggidr et al. in [26]
by taking into account a continuous age structure. It reads as

dz(t n
dEf ) =A—pox ];53”%
ow;(t,a) 8wj (t a)
(1.1) ot + (/UJ( )+ ,Uz)wj (t,a),
L~ [ @@y (o g g ) = 8350(6)m 0
w;(t,0) = Biz(t)m;(t), j€{1,2,...,n}.

In (1.1), the RBC population is split into two classes: z(t) denotes the concen-
tration of uRBC at time ¢, while w;(t,a) denotes the age-specific concentration of
pRBC at time ¢ and parasitized since a time a by a specific j-strain. Finally m;(t)
denotes the concentration of free specific j-merozoites in the blood stream. We briefly
sketch the interpretation of the parameters arising in (1.1). Parameters fiz, fim, j, re-
spectively, denote the natural death rates for uRBC and for free specific j-merozoites.
Function p;(a) denotes the additional death rate of pRBC due to the j-parasites at
age a and leading to the rupture. The rupture of pRBC at age a results in the release
of an average number 7;(a) of specific j-merozoites into the blood stream, so that
pRBC infected by a specific j-strain then produce, at age a, j-merozoites with the
rate 7;(a)p;(a). Together with this description, the quantity [ r;(a)u;(a)w;(t, a)da
corresponds to the number of specific j-merozoites produced by pRBC at time ¢. Fi-
nally the parameter /3; describes the contact rate between uRBC and free specific
j-merozoites while A denotes the recruitment rate of uRBC from the bone marrow.
In the literature the parameter J; takes the values §; = 0 when the loss of merozoites,
when they enter an RBC, is ignored or takes the value §; = 1 when this loss is not
ignored. System (1.1) is supplemented together with initial data whose properties
will be described below.

There have been numerous works on pathogen within-host dynamics describing
P. falciparum infection. The pioneer work of Anderson [2], focused on describing
parasitemia, has been further developed in several direction including, in particular,
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immune response and oscillations [13, 20, 21, 22, 30, 38]. We also refer to the sur-
vey paper of Molineaux and Dietz [39] and the references therein. However all these
works do not take into account an important characteristic of P. falciparum which
is sequestration of merozoites within the pRBC and their ruptures. Such an issue
has been considered using discrete age-structured systems of equations (see, for in-
stance, [14, 15, 16, 37]) with a constant RBC population assumption. We finally refer
to Iggidr et al. [26] for a mathematical study of a discrete age-structured model with
varying RBC concentration. Note that in this latter work multistrain competitive
interaction is also considered and the authors derived the so-called competitive ex-
clusion principle. In another context, let us mention that the one-strain system (1.1)
(namely, with n = 1) has been rigorously and recently studied by Huang, Liu, and
Takeuchi [23] in the context of the HIV infection model (and with § = 0).

Here we will extend these results to (1.1) by proving that this problem exhibits
the competitive exclusion principle. This work is organized as follows. In section 2,
we describe the main results that will be proved in this work. Section 3 is devoted
to deriving preliminary results and remarks that will be used to study the long-
term behavior of the problem. Section 4 is concerned with the proof of the first
part of Theorem 2.2 below that, roughly speaking, states that when some threshold
(explicitly expressed using the parameters of the system) 7o < 1, then all the strains
asymptotically die out and the parasites cannot survive. Finally, section 5 deals
with the proof of the second part of Theorem 2.2, that, roughly speaking, says that
when Tg > 1 and under some additional assumptions on the different strains, the
competitive exclusion principle holds true, that is, only the strongest strain (using a
suitable order) is asymptotically surviving.

2. Main results. In this section we will state the main results of this work.
In order to deal with system (1.1) we first provide a parameter reduction by in-
troducing the following unknown functions y;(t,a) = w; (t,a)eo #i O - Therefore,
by introducing the vector-valued functions y(t,a) = (y1(t,a),...,yn(t,a))T, m(t) =
(m(t),...,mnp(t))T, as well as the matrices

B =diag (B1,...,0n), 6 =diag (01,...,0,), En=(1,...,1)T € R,
fim = diag (Wm,1,- -, im,n) , pla) = diag (p1(a),...,pu(a)),

system (1.1) rewrites as

dx(t)
dt
Oy(t,a) + Ouy(t,a) = —pzy(t,a),

y(t,0) = Ba(t)m(t),

2~ [ sty t.a)da — (o) - dpe(m)

= A = pga(t) — x(t) E; fm(t),

(2.1)

supplemented together with initial data
(2.2) y(0,.) = yo(.) € L' (0,00; R}, 2(0) = 29 > 0, m(0) = mg € R,
and where we have set p;(a) = r;(a)pj(a)e™ Jo O for j = 1,... n. In (2.2), R%

denotes the positive orthant, namely, R? = {(z1,...,z,)" € R* : z; > 0 Vi =
1,...,n}.
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In what follows we shall discuss the asymptotic behavior of system (2.1)—(2.2)
and we will make use of the following assumption.

Assumption 2.1. We assume that, for each j € {1,2,...,n}, functions p; belong
to LY(0,00,R) while A >0, pz >0, pim,; > 0, 05 € {0,1}, and 3; > 0.

As mentioned in the introduction we shall focus on the competitive exclusion
principle generated by (2.1). Roughly speaking, to achieve such a goal we will provide
an order to separate the different strains of the parasite. Hence let us introduce, for
each strain, the quantity 7; defined by

(2.3) 7§ =2 ( | st - 6) ,

as well as 7o = maxi<i<n T and where function [ = [(a) is defined by
(2.4) l(a) = e =1,

As will be seen below (see Theorem 2.2) the situation when 7y < 1 is rather simple
because the infection asymptotically dies out. When 7y > 1 the situation is much
more involved. We expect that system (2.1)—(2.2) exhibits the competition exclusion
principle that, roughly speaking, says that in the presence of multiple strains only
the strongest can asymptotically survive. The parameters {7 }i=1,..» (see (2.3)) will
be used to quantify the strength of the different strain-specific infections. We will
now introduce some definitions. Let us first of all define the set of strains that can
potentially survive as S defined by

(2.5) S — {ie{t,....,n}: T§ > 1} %f76>17
0 if 7o < 1.
On the set of index {1,...,n} we define an order relation by

idj e TE<T) and i<j & Tg <T.

We would like to emphasize that when the parameters J; are nonzero, the set of
threshold {7; }i=1... . is different from the set of the different strain-specific basic
reproduction numbers. Indeed the strain i—specific basic reproduction number reads
as (see Appendix A for the computation)

Homi (761 — 1) with z = A

2.6 i—1 + >
(2.6) 0 tm,i + 0iBiT s Ha

Hence, when ¢ # 0, the above described order may be different from the one induced
by the strain-specific basic reproduction numbers.
We also denote by max< the maximum operator associated with the order <.

Note that in general the operator max< is multivalued and is defined by
i if 74 > 79,
max<{i,j} = { j if 79 > T4,

{i,j} i TI="T¢.

A subset {i1,...,3p} C {1,...,n} =N, is said to be strictly ordered if there exists
a permutation o of {1,...,p} such that i,y < - < is@p). Let us notice that on
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a strictly ordered set, the operator max< becomes a single-valued map. Let us also
mention that for biological reasons, since we aim to deal with the competitive exclusion
principle for our multistrain model, it is relevant to assume that the different strain
is distinguishable. Hence we shall assume in most parts of this work that the species
that can potentially survive are distinguishable, that is, reformulated by assuming the
set {i € N, : Tj > 1} is strictly ordered.

Before stating our main result let us introduce further notations that correspond
to the stationary states of (2.1) (see Proposition 3.4): z; = L% and for each k € S

(when S # 0)

k

T T -1 _
b= = DD g g (a) = ket

T, = T_Oka me = 5]@ i=1"

where §; ; denotes the usual Kronecker symbol.
For technical reasons in relation to some computations, we shall assume some

relation between the parameters. The set S (when S # () satisfies condition (Q) if

(2.7)

(2.8) (7o — 1) 6:Biwy < Tg pimi Vi € S.

Let us first notice that the above condition is always satisfied when §; = 0. When
6; > 0 the above parameter condition can be rewritten in terms of a limitation of the
strain-specific basic reproduction numbers (see (2.6)). Indeed, if one sets v; = 55%
then condition (Q) is rewriten as

) 1 1+ /1T+4vy; )
Ry < 1 01 VieS.

Using the above notations the main result of this work is the following theorem.

THEOREM 2.2. Let Assumption 2.1 be satisfied. Let xg > 0, mg € R, and
yo € L'(0,00;R") be a given initial datum and let us denote by (x(t), m(t),y(t,.))
the solution of (2.1)—(2.2). Then the following hold true:

(i) f T :=8n{ke{l,...;n}: mox+ [, yor(a)da> 0} =0, then

tlirgo (.’E(t), m(t)v y(tv )) = (va Orr OLl(O,oo;R")) )
wherein the above convergence holds for the topology of R x R™ x L1(0, co; R™).
(ii) Let us assume that the set S is strictly ordered and satisfies the parameter
condition (Q). If J # 0, then setting i = max< J and recalling (2.7) one has

Jim (x(t). m(0), y(t,.)) = (o}, mi. v ()
for the topology of R x R™ x L' (0, 00; R™).

The first part of this result applies in particular when S = (), namely 75 < 1. In
that case all the strains asymptotically die out and the parasites cannot persist. Let
us notice that the condition 75 < 1 can be rewritten in terms of basic reproduction
Ro = max{R},i € N,} as Rp < 1. The second part of the above theorem says
that when different strains are sufficiently strong to survive, then only the strongest
present strain (with respect to the order <) survives in the long term.

Remark 2.3. The parameter condition (@) seems to be only a technical condition
that we cannot overcome. From numerical computations, the equilibrium associated
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TABLE 2.1
Parameter set for (1.1).
Parameters  Description Value and range References
A Production rate of RBC 1.73 x 108 cell.lh=1-ml=1  [1]
B1; B2 Infection rate of uRBC 0.02/24 ml-cell=*-h—1 [1]
Lz Natural death rate of uRBC 0.00833/24 h—1 [1]
1} bm2 Decay rates of malaria parasites 48/24 h—1! [21]
r1; T2 Merozoite mean rate produced by pRBC 16 [1]
6x10° 4x10° 4x10°

-5 strain m, .35 3

.“E’ s strain m, g 3 >

24 zz.s 1

gs g A%

_g g ) m— strain m

3 L S I N strain m,

o4 a >

0.5
% 15 % 2040 60 80
Time (days) Time (days)
Fic. 1. On the left-hand side, superimposed time evolution of the density of merozoites for

strains 1 and 2 alone; on the right-hand side, competitive suppression of strain 2 when the two
strains are mized. Parameter set for (1.1) is described in Table 2.1 while initial distributions are
given in Table 2.2. Here one has R(l) =4.79 and R(Q) = 3.95.

TABLE 2.2
Initial values in model (1.1).

Variables Description Initial Values References
x(0) Population of uRBC 5 x 10° cellmi—!  [1, 4, 21, 37]
w1(0,.); w2(0,.)  Population of pRBC 0 cell.ml—1 [1, 4, 21, 37]
m1(0); mz2(0) Malaria parasite 107 parasiteml™  [1, 4, 21, 37]

with the strongest strain continue to be globally stable even if condition (@) is vio-
lated.

We now provide some numerical simulations to illustrate the dynamics of system
(1.1) in the case of two-strain interactions (n = 2) and using the parameter set de-
scribed in Table 2.1. They highlight the principle of competitive exclusion. According
to [7] the sequestration period for the i-strain satisfies 7; € [44; 52](hours). For numer-
ical simulations we set 71 = 48 and 72 = 50 h while u; = p;(a) is set (following [43])
to

ui(a):=0ifa <7 and 0.98if a > 7.

Using contact rate 81 = B2 = 0.02/24, Figure 1 (left) represents the superimposition
of the time evolution of two strains alone, that is, without interaction while Figure 1
(right) corresponds to the time evolution of competitive interactions between the two
strains. Since the sequestration period for strain 1 is smaller, strain 1 becomes the
strongest and it competitively suppresses strain 2. Let us also notice that the shape of
these curves are qualitatively close to the experimental situations recently obtained by
Wacker et al. in [48]. Let us finally emphasize that using the parameter set described
in Tables 2.1 and 2.2, the weakest strain, namely, strain 2, is quickly suppressed after
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20 days. This duration plays an important role on the transmission of gametocytes
to mosquitoes. Note that such a conclusion has been reached without taking into
account the interactions of the different strains during the liver stage of the disease.
This could have an influence on the time needed to suppress the weakest strain during
the blood stage and thus on the spread of the different strains. This will be studied
in a forthcoming work.

3. Preliminaries. The aim of this section is to derive preliminary remarks on
(2.1)—(2.2). These results include the existence of the unique maximal bounded dis-
sipative semiflow associated with this system. The second part of this section relies
on technical material that will be used to prove our stability results.

3.1. Existence of semiflow and basic properties. In this section we shall
deal with (2.1)—(2.2) using an integrated semigroup approach. This approach has
been introduced by Thieme in [44] in the context of age-structured equations. We
also refer to [11, 28, 32, 34, 35] and [45, 47] (see also the references cited therein).

Let us introduce the Banach space X :=R" x L'(0,00; R™) as well as its positive
cone X, = R’ x L'(0,00; R) and the linear operator A:D(A) c X — X defined
by

¥ —¢' — pap

3.1)  D(A) = {0pe} x W (0,00:R") | 2( O ) _ ( —(0) )
Next consider the Banach space X and its positive cone X defined by
X =RxR"x X and X =Ry xR? x X,
endowed with the usual product norm. Let A : D(A) C X — X be the linear operator
defined by
(3.2) D(A) =R xR" x D (2) , A= diag (—m, —Mm,ﬁ) .
Note that the domain of operator A is not dense in X because of the identity

D(A) =R x R™ x {Ogn} x L'(0,00;R") # X.

Finally let us introduce the nonlinear map F : D(A) — X defined by

o T
F ((l‘, m, Ogn, y)T) - (A - xEZ;BHL/ p(a)y(a)da - 5ﬂxm, BZL'III, OLl(O,oo;]R”)> .
0

By identifying u(t) together with (x(t), m(t), Og~,y(t,.))T and by setting ug = (z0, mo,
Orn, yo(.))T, one obtains that system (2.1)—(2.2) rewrites as the following nondensely
defined Cauchy problem:

du(t) —

(3.3) ke Au(t) + F(u(t)) t > 0 and u(0) = up € D(A) N X .

We first derive that the above abstract Cauchy problem generates a unique glob-
ally defined and positive semiflow. We set Xy = D(A) and Xoy = XoN X4 and the
precise result is the following theorem.

THEOREM 3.1. Let Assumption 2.1 be satisfied. Then there exists a unique
strongly continuous semiflow {U(t) : Xox — Xoy }e>0 such that for each vy € Xo4,
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the map u € C([0,00) : Xoy) defined by uw = U()ug is a mild solution of (3.3),
namely, it satisfies

t t t
/ u(s)ds € D(A) and u(t) = ug + A/ u(s)ds —|—/ F(u(s))ds Vt = 0.
0 0 0
Furthermore {U (t)}+>0 satisfies the following properties:

(i) Let U(t)ug = (x(t), m(t),0pn,y(t,.)"; then the following Volterra integral
formulation holds true:

_ [yola—t)em! ya=t.
it {ﬁx(t —am(t —a)e”"* ifa<t,

coupled with the x(t) and m(t) equations of (2.1).
(ii) For each ug € Xo4+ one has for allt >0

o0
A
o)+ [ EDy(t.ida < oo+ |ETyoll +
0 T

1 A
BTm(r) < Elmo+ ( T E Yol + /T) 1ol

m xX
where we have set P = miny<j<pn fm,; and ||pllmax = maxi<j<n || gl Lo

(i) The semiflow {U(t)}i>0 is bounded dissipative and asymptotically smooth.

Proof. The proof of this result is rather standard. Indeed it is easy to check that
operator A satisfies the Hille-Yosida property. Then standard methodologies apply
to provide the existence and uniqueness of a mild solution for system (2.1)—(2.2) (see,
for instance, [32, 34, 35, 45, 47]).

Next the Volterra integral formulation is also standard in the context of age-
structured equations and we refer to [25, 50] and the references cited therein for more
details.

Estimates stated in (ii) directly follow from the system of equations. Let us
assume for a moment that yo € W11(0,00;R"); then adding up the x equation
together with the y; equations yields

% x Ooo ay(ta)da ) =A—p, (2 OOOEZY(t’a)da),

from where one deduces the first estimate of (ii) when yq is smooth enough. Then a
usual density argument coupled with the continuity of the semiflow with respect to
the initial data yield the conclusion for yo € L(0, oo; R ). Then the second estimate
directly follows from the first one applied to the m; equations.

It remains to prove (iii) and let us notice that the bounded dissipativity of the
semiflow {U(t)}4+>0 is a direct consequence of (ii). To prove the asymptotic smooth-
ness, let B be a forward invariant bounded subset of Xgy. According to the results
in [41] it is sufficient to show that the semiflow is asymptotically compact on B.

Let us consider a sequence of solutions {u, = (zP;mP,0,y?)T},>¢ that is equi-
bounded in Xo4 and let us consider a sequence {t,},>0 such that t, — +oco. Let
us show that the sequence {u,(t,)}p>0 is relatively compact in Xo4. To do so, we
consider the sequence of map {w,(t) = up(t+1p)}p>0. Since z, and m,, are uniformly
bounded in the Lipschitz norm, the Arzela—Ascoli theorem implies that, possibly along
a subsequence, one may assume that x,(t + ¢,) — & and m,(¢ + t,) — m(t) locally
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uniformly for ¢ € R. It remains to deal with the sequence {y(¢y,.)} 5, Let us
denote y,(t,.) = yp(t + tp,.). Using the Volterra integral formulation one gets

(3.4) F.(t.0) yo(a —t +t,)e He(tts) if a >t+t,,
. yo(t,a) =
? Bap(t —a+t,)my(t —a+ty)e H=* if a <t+t,.
Finally since Sz,(t —a +t,)my,(t — a + t,)e”#*® converges as p — oo towards some
function £(¢, a) = BZ(¢t — a)m(t — a)e #=* locally uniformly, one easily concludes that

Yolts) = F5(0,.) = BE(~J(~)e "= in L' (0,00, R").

The result follows. d
Now in order to deal with the subsystem, it will be also convenient to introduce
for each J C N,, the closed subspaces X7 C X and X§ C Xy defined by

X7 = {(x,m,a;y)TeX: m,»—&—/ yi(a)da =0 VieJ} and X§ = X7 n X,.
0

We also introduce X(‘)’+, the positive cone of X7 defined by X6]+ = XJ N Xy If
J =0, then X’ = X, XJ = X,, and Xéﬂ_ = Xo+. Recalling definition (3.2), note
that A(D(A)NXJ) C X7. In the sequel we shall denote by A; : D(A4;) € X7 — X/
the linear Hille-Yosida operator defined by

(3.5) D(Ay)=D(A)NX{, Ayz=Ax Vxc D(A)NXJ.

For each 7 € N,, we also consider
M} = {(x,m,a;y)T € Xog @ my —|—/ yi(a)da > O}.
0

Then the following lemma holds true.
LEMMA 3.2. For each J C N,, and each i € N,,, the subsets X0J+ C Xo4 and Mé
are both positively invariant under the semiflow {U(t)}i>0; in other words,

Ut)ME C M and U(t) X, € Xy, V¢ > 0.

Proof. To prove the above result, let ¢ € N,, be given. Let ug := (2¢; mo; Ogn; yo) €
M be given and let us denote for each t > 0, U (t)uo := (x(t); m(t); Ogn, y(t,.))T, the
orbit passing through ug. Let us set p;(t) = m;(t) + [y vi(t,a)da. It follows that
pi(t) > — max(py, mi)pi(0). That is

o0 o0
mi(t) + / yi(t, a)da > e~ max(tapmi)t (mm‘ + / in(‘l)da) .
0 0

This completes the fact that U(t)M§ C M.
Now, let ug € OM¢. Using the Volterra formulation we easily find that m;(t) =0
for all ¢t > 0 and

[e’e] t
/ yi(t,a)da = By / z(t —a)m;(t — a)e "=*da + e "=||yo;|| 1 = 0.
0 0

Therefore U (t)0M{ C OM{ for all t > 0. This ends the proof of the lemma. 0O
Then coupling Theorem 3.1 together with the results of Hale [17, 18] and Hale
and Waltman [19], one obtains the following proposition.
ProrosiTION 3.3. Let J C N,, be given. There exists a nonempty compact set
Ay C XOJJr such that
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(1) Ay is invariant under the semiflow {U;(t) := U(t)|X61+ hi>o;

(ii) the subset A; attracts the bounded sets of Xd, under the semiflow U;.

Next, the following proposition describes the equilibria of the model.

PrOPOSITION 3.4. Let Assumption 2.1 be satisfied. Assume furthermore that
the set S is strictly ordered. Then system (2.1) (or semiflow {U(t)}1>0 provided by
Theorem 3.1) has exactly 1 + card S stationary states.

(i) The disease-free equilibrium defined by

X T A
Uy = (xf;OR";OR"aOLl(O,oo;]R")) € X(I]\I_zv Ty = /1/_7
xT

is an equilibrium of U and it is the only one when S = ).
(ii) When S # 0 the semiflow U has ezactly card S endemic stationary states

defined for each k € S by

T N, \{k
’U’z = (xlecvmlec70]R’Laer€) € XO+\{ } m1\4(];:,

where the above quantities are defined in (2.7).
The proof of this result follows from straightforward algebra. The details are left
to the reader.

3.2. Technical materials. In this subsection we establish some properties of
the entire solutions of system (2.1). These properties will be useful later to derive the
asymptotic behavior of (2.1) especially when S # 0.

Our first result is concerned with spectral properties of the linearized semiflow
Uy = U] XJ, for some given subset J C N,, at a given stationary point u* € dMj .
Let u* = (z*,m*, Orn,y*)T € X, be a given stationary state of the semiflow U,.
The associated linearized equation at the point u* reads as

du(t
L = (AJ + Bu*)u(t),
dt
where A is the linear operator defined in (3.5) while By~ € £(X{, X”) is the bounded
linear operator defined by:

—2*El'Bm — 2 El fm*

X
s | m | _| /5 r@y(@)da =55 m + am)
u OR" x*ﬂm + :Eﬂm*
y
011(0,00,R7)

LEMMA 3.5. Let J C N, be given. Let us set @ = {A € C: Re (A) > —u,}.
Then the spectrum (A 4+ By+) N Q only consists of a point spectrum and one has

c(Aj+ B, )N = {)\6 Q: AJ(A,U*) :0},
where the function A (., u*) : Q — C is defined by

AJ(/\7U*) = H Xl(Av'r*)v

1€EN, \J

while for each i € N,, and each © € R, the function x;(.,x) : Q@ — C is defined by

Pz [/OO ~(Atpa)
3.6 xi(A,x)=1-— i(a)e Pe)@dg — §;
(3:6) (o) =132 | [
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Proof. Let J C N,, be given. Let us denote by Ag; the part of A; in XgJ. Then
it is the infinitesimal generator of a Cy-semigroup on X denoted by {Ta,, (t)}>o0-
Next it is easy to check that the essential growth rate of this semigroup satisfies
wo,ess(Aog) < —p. Then since operator By~ is compact, the results in [10, 47] apply
and ensure that the essential growth rate of {T(4,1p,.),(t)}+>0, the Co-semigroup
generated by the part of (A; + By+) in X satisfies wp ess((As + Bus)o) < —pa-
Applying the result in [35] (see also [12] and [51]), the latter inequality ensures that
QNo(Ay + Byx) is only composed of a point spectrum of (Ay + By+).

It remains to derive the characteristic equation. However this part is also standard
and we refer, for instance, to [5, 31, 36]. a0

Our next result relies on properties of the entire solutions of system (2.1).

LEMMA 3.6. Let {u(t) = (x(t),m(t),0rn,y(t,.))T }1er be a given entire solution
of the semiflow U. Then x satisfies
(3.7) tlgﬂgx(t) > 0.

Furthermore the following properties hold true:
(i) If there exist i € N,, and to € R such that u(ty) € M, then m;(t) >0Vt € R
and y;(t,a) > 0 for any (t,a) € R x [0, 00).
(ii) Assume that S # (0 and assume there exist i € S and tg € R such that
u(ty) € M. If u(t) — u* as t — oo, where u* is an equilibrium point of U,
then one has u* € {uj : i 4 j}.
(iii) For each i € N,, there exists a constant M; > 1 such that
mi—(t)e_“”“ <yi(t,a) < M;e "**V(t,a) € R x [0,00),
K3

where we have set m; (t) = infs<; m;(s).

Proof. Let us first notice that since w is an entire solution then

(3.8) y(o,a) = pz(oc — a)m(o — a)e "= V¥(o,a) € R x [0, 00).

This expression directly follows from the Volterra integral formulation in Theorem 3.1.

From the estimates provided in Theorem 3.1 and the z equation there exists some
constant C' > 0 such that for each s € R and ¢t > 0 one has

t A
(3.9) z(s)e”C + A/ e~ Ot DAl < x(t + 5) < x(s) + o
0 T

This implies that infeg 2(¢) > 0 and completes the proof of (3.7).

We now turn to the proof of (i). Let us argue by contradiction by assuming that
there exists t; € R such that m;(t1) = 0. Then from the m; equation we deduce that
m;(t) = 0 for all ¢ < t;. Next we infer from (3.8) that [, yi(t,a)da = 0 for any
t < t1. Hence m;(t) + [, yi(t,a)da = 0, a contradiction with the existence of to. On
the other hand, due to (3.9) and (3.7), if there exists (t1,a1) € R x [0, 00) such that
yi(t1,a1) = 0, then m;(t;1 — a1) = 0 and the first part of the argument applies.

Let us now prove (ii). Let us first notice that since m;(to) + [~ yi(to, a)da > 0,
(i) implies that m;(t) > 0 for all t € R and y;(¢,a) > 0 for all (¢,a) € R x [0,00). Next
consider the function T'i(a) = [ pi(s)e#=(*=*)ds and note that I'; € L>(0,00,R)
and satisfies I';(a) — ueI'i(a) + pi(a) = 0 a.e. a > 0. Let us introduce the functional

By [u] (£) = /0 (@)t a)da + mat)
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that satisfies (recalling definition (2.3))

(3.10) d2iful®) _ i () [7({& — 1} vt € R.
dt Ty

Using this computation we will obtain a contradiction by assuming that u(t) — uj as
t — oo for some j < i. Indeed for j = 0, u(t) = u§ as t — oo implies that x(t) — xy
as t — oo. Then since 77 > 1 function ¢ — ®;[u](t) is not decreasing for ¢ large
enough. Hence there exists to € R such that ®;[u](t) > ®;[u](to) for all ¢ > ty. Since
®;[u)(to) > 0, this prevents the component (y;,m;) from converging to (0,0.1) as
t — 00. A contradiction with u(t) — uf.

The same argument holds for j € S with j <. Indeed in such a case x(t) — zJ
as t — oo and since

i i
{76’?:—6—1}:%—1>0,
f 0

the same arguments apply. This completes the proof of (ii).

Finally note that (iii) directly follows from (3.7) and (3.8). This ends the proof
of Lemma 3.6. d

Our next lemma is a computational result that will be used in what follows to
perform Lyapunov arguments.

LEMMA 3.7. Let us assume that the same assumptions of Lemma 3.6 are satisfied.

Let h : (0,00) — [0,00) be the function defined by
(3.11) h(s)=s—1—1Ins.
Let us assume that there exists ig € S such that
(3.12) ltlinlgf m, () > 0.

Then
(i) for each t € R one has

(3.13) { / T (s)l(s)ds} h(yifo(t’ ‘)> € 110,00, R).

(ii) Consider now the map Vi [u] : R — [0, 00) defined by

o0

(3.14) Viglu](t) == Wig (1) + ) fila)yi(t,a)da+ Y dymy(b),

j=1;5740 70 J=13j7i0

where we have set Wi (t) = Vi (t) + Vi, (t) + Vi, (t) and

Va(t) = h<@> s V() = /O " o, (@) h<m> da, Vi, (t) = di, h(mi‘;ft)) ,

Te Yero (@) my,
and
i me j
(3.15)  dy, = L dj = B with j # io,
Hmig Hmj
3.16 o Bj > —pa(s—a) _ igoxéomgo o
(3.16) fya) = | py(s)e ds, and o (a) = SEE [, (@)l(a)da,
mjJa mio a
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Then function t — Vi, [u](t) is of the class C* on R and we have

Vio [u](t) = —% (x(t) — zi2)* + 3;(1? > <7T.370 - 1) Bim;(t)

J=1;j#i0 0
00 B2 piogyio io (T, @ m m; (0
[ [of T ) O],
0 Hmiq ye(;o (a)mio (t) ezoylo (t O)
with
Eméom€7
(317) eio = Ug — 51‘0M
Hmig

Proof. (i) Let us first remark that (3.13) follows from the estimate provided by
Lemma 3.6(iii) as well as (3.12). Indeed function a — [ p;,(s)l(s)ds satisfies

/ / Pio (8)l(s)dsds < 0.

(ii) Next note that function t — V;,[u](¢) is also well defined for each ¢t € R because

of (3.7), Lemma 3.6(i), and finally because of f; € L>°(0, 00) (see definition (3.16)).
It now remains to compute the derivation of t — V; [u](t) (that is obviously of

the class C'! on R since u is an entire solution).

First one has

Vm t) = — + x — Mx——F— — — P, 63 - + Di i t
©) S ) Plomely yeq,(0) Bramio 8)
(3.18) »
x(t
+ (1 - (io)) > Bimy(t)
Yo/ j=tiitio

Second using the y;, equation and integration by parts, simple algebra leads to

_ . Yio (£,0) Ooa{ . Yi, (t, @) a
Vo (1) = m(O)h< 0 ) +/0 o )h< Yy (a )>d '

Moreover we infer from the definition of «;, (see (3.16))

o i [T R o [(3553) (35|«

Next one can also check that

. Oo i Yio (L, a dig i
me (t) :/O dioéioﬁiozeopio(a)l( ) U( )dai o Omio(t)

Yo, (a) Mg,

ylo (t O) dm
yé(z)o (0) M (
+ diy0io Big T (t) + dig fiami -

(3.20) iy 5, By

5| sl taa

Using the fact that

oo Q2 xzo m ; ]
/ upzo (a)l(a)da — ﬁl’omgo - dio 5ioﬁi0x? = O’
0 Hmig
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we infer from (3.18)—(3.20) that

. A 2 oy io ) x(t
Wig () === + ftz + dig pmig — 2———"2K;;, + (dig 0o Big e — Nz)(—io)
Te Hmig e
K, B2 ziom™ A\ xbo x(t) P
+<M7__ 2 (1) S o
mig e e . .
J=1;j7#%0

0 32 gio o i (t, a)m® ma, )y’ (0
_ / e () pio (a)l(a,) h yl;]( ) (%) + h :)0( )yezo( ) da_
0 Hmio Yeio (a)mio (t) MeioYio (tv O)
Since EF;, is an equilibrium of system (2.1) one gets

Wi, (t) = — O _ (z(t) — x?)z + <1 — %) Z Bimy;(t)

(2
ze'z(t) j=Lij#io
% B2 glomlo i (t, a)m’® ma, )y (0
- [T (o) [af el ) g ReUD) ) g,
0 Hmig yetz?o (a’)mio (t) me(;o Yio (t’ O)
with ©;, defined in (3.17). Using the fact that f}(a) — p.fj(a) + djp;(a) = 0 for all
a >0 and (gjdj‘i’%*fj(o): 173 one has

zy

Vig[u](1) = ——22 (a(t) — 20)? + 20§ (W—l)ﬁjmja)

&'z (t) 7 e \T0°

oo 32 gioyio i (t, a)m® o (H)y (0
_ / ’Loxe melo pio (a)l(a) h yZO( a’)melo + h m f( )yelo( ) da.
0 Hmig yecz?o (a’)mio (t) M, Yio (t’ O)

This ends the proof of the lemma. |

4. Proof of Theorem 2.2(i). The aim of this section is to prove the first part
of Theorem 2.2. By using all the above introduced definitions and notations, this
result can be reformulated as follows.

PROPOSITION 4.1. Let Assumption 2.1 be satisfied. Then the following holds
true:

. *
tlgrolo Us(t)z = ug
for each x € X§, and where Us denotes the restriction semiflow U at X§, .

Remember that if S = (), namely, Ty < 1, then X§, = Xo4 and Us = U. This
remark means that when 7y < 1 the disease-free equilibrium is globally attractive.

The proof of this result relies on the construction of a suitable Lyapunov functional
on the entire solution of Ug.

Proof. Let us consider As C X(‘)S ", the global compact attractor of Us provided
by Proposition 3.3. Let z € As be given and let {u(t)}1er C As be an entire solution
of Us such that u(0) = x. Recalling that from Lemma 3.6(iii), inf;cg z(t) > 0, one
may consider the functional V' defined for each entire solutions by

Viul(t) = (j—f) ¥ ; | simada+ idjmj,
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where the positive constants d; and the functions f; are defined, respectively, by
(3.15) and (3.16) while function h is given in (3.11).
Next, using system (2.1) we obtain

TRy B S iy = Bt

Jj=1

—Z(6d+ ) +Zd/ pi(a)y;(t, a)da
- ;/0 fila)e™ =4 (Day; (t, a)e=® + pzet=y;(t, a))da.

Integrating by parts the last integral of the previous equality, using the y; boundary
condition of (2.1) together with fi(a) — psfj(a) + djpj(a) = 0 for all a > 0, one
obtains, recalling {u(t)}icr C X, that

ay MO GO > S,

dt x(t) s

Hence we infer from the definition of S that ¢ — V]u](t) is decreasing along the entire
solutions of Us. To conclude our proof, let {¢,},>0 be an increasing sequence tending
to —oo as m — oo and consider the sequence of map uy (t) = u(t 4 t,). Note that one
has V{u,](t) = V[u](t + ). Up to a subsequence one may assume that u,(t) — u(¢)
as n — oo locally uniformly for ¢ € R, where {u(t)},.p C As is an entire solution of
Us. Since V is decreasing, one obtains that

Vil (t) = lim Vu](t) = sup V]u](t).

t——o0 teR

By setting @ = (z,m,0,¥)7, (4.1) yields to Z(t) = x; while the x equation provides
that m(t) = 0 so that ¥(¢,.) = 0. Hence V[u](t) =0 and 0 < V[u|(t) <0 for t € R
and u(t) = ug. This completes the proof of Proposition 4.1. d

5. Proof of Theorem 2.2(ii). The aim of this section is to prove Theorem
2.2(ii). For this reason, we will assume throughout this section that S # (). The proof
of this result will follow an induction argument. To be more specific we will study the
behavior of the semiflow Ug\ ; for each subset J C S using card J € {1,...,card S}
as the induction parameter.

The precise result we will prove is the following.

THEOREM 5.1. Let us assume that the assumptions of Theorem 2.2 are satisfied.

Assume that S # 0. Then for each J C S the semiflow {Us\ ;(t)}i>0 satisfies, for

each x € XS\],

(i) zfj( )i=JN{i €N, : z€ M} =0, thenz € X§, and

Jim U ()2 =

(ii) if J(x) # 0 we set i = max< J(z) and one has

Jim Usy () = uj.
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Let us first notice that point (i) in the above theorem is a direct consequence of
Theorem 2.2(i) (see Proposition 4.1). As a consequence, it is sufficient to prove (ii)
and let us notice that Theorem 2.2(ii) corresponds to Theorem 5.1 with J = S. As
mentioned above, the proof of this result relies on an induction argument on card J.
In what follows we shall investigate the case where card J = 1 and we will then show
how such a property is inherited.

5.1. Case card J = 1. Let i € S be given. For notational simplicity we
consider the set Yy = X(i\{l} and let us denote {V(t) := Us\(5}(t)}¢>0. We also
consider the sets

No = Yo N M¢ and ONg = Yo \ No = X,

Before constructing a suitable Lyapunov function to study the asymptotic behav-
ior of V (t)x for some x € Ny let us first collect in the following lemma some properties
of the semiflow {V(¢)}i>0.

LEMMA 5.2. Under the assumption of Theorem 5.1, the semiflow {V (t)}i>0
satisfies the following properties:

(i) It is bounded dissipative and asymptotically smooth; No and ONy are both
positively invariant under V.
(i) For each x € 9Ny one has V (t)x — uj.
(iii) The semiflow V is uniformly persistent with respect to the pair (N, ONp) in
the sense that there exists € > 0 such that, for each x € Ny,
liminf d (U (t)x; ONg) > €.
t—o0

Proof. Note that (i) directly follows from Theorem 3.1(ii), (iii) and Lemma 3.2
while (ii) directly follows from Theorem 5.1(i). It remains to prove (iii). To do so we
will apply Theorem 4.2 in [19]. Let us first notice that uf is an unstable stationary
state with respect to the semiflow V. Indeed as an application of Lemma 3.5 we know
that the eigenvalues in Q of the linearized semiflow V' at u§ are given the resolution
of the equation ASM} (X, ug) = 0. On the other hand these eigenvalues contain the
roots of the equation y; (A, ug) = 0 (see (3.6)). Note that function x;(.,ug) satisfies

Xi(0,uf) =1—Tg <0and lim y;(\uf) =1
A—00

that ensures the existence of a strictly positive eigenvalue. The instability of uf with
respect to V follows.

Applying Theorem 4.2 in [19] to complete the proof of Lemma 5.2(iii), it is suf-
ficient to show that W*({ug}) (| No = 0 where we have set W*({u}) = {v € Yo  :
lim; 400 V(t)v = u}. To prove this assertion, let us argue by contradiction by as-
suming that there exists € W*({ug}) () No. Then using the same computations as
in Lemma 3.6(ii), since 7¢ > 1 one obtains that the function

OV (t)x] := /000 Ti(a)y;(t, a)da + m;(t) with T';(a) := /00 pi(s)e*"%ds

is increasing for ¢ large enough. This prevents the function (y;(¢,.), m;(t)) from con-
verging to (0z1,0) and provides a contradiction together with the definition . This
completes the proof of Lemma 5.2. O

As a consequence of Lemma 5.2 and Theorem 3.7 in [33] (see also the monograph
[42]), there exists By, a compact subset of Ny, which is a global attractor for the
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semiflow {V()};>0 in Ny. To complete the proof of Theorem 5.1(ii) in the case
J = {i} it remains to prove that By = {u}}. This will be achieved by constructing a
suitable Lyapunov functional on By. This idea has been used by Magal, McCluskey,
and Webb [36] and Thieme [46].

Let {u(t) = (z(t), m(t),0rn,y(t,.))T }ter C By be a given entire solution of V.
We make the following claim.

CLAaM 5.3. Function m; satisfies inficg m;(t) > 0.

Before proving this claim let us complete the proof of Theorem 5.1 for J = {i}.
Using Claim 5.3 and Lemma 3.7, one can consider the functional V;[u] defined in
Lemma 3.7. Defining ©; as in (3.17) one has

il = - oo (ole) —al) + 2 Y G—O - 1) im0

e JEN,\S 0
> 5Z2xém7él yi(t, a)méi mz(t)yéZ(O)
*/0 e ZOUC) [h(yzxa)mi(t))”‘( m;iyi<t,o>)}d“'

Recalling condition (Q) one obtains that ©; > 0 so that ¢ — V[u](¢) is a bounded and
decreasing map. Finally arguing similarly as the end of the proof of Theorem 2.2(i)
yields u(t) = ur.

It now remains to prove Claim 5.3.

Proof of Claim 5.3. Let us argue by contradiction by assuming that inf;cg m;(t) =
0. Note that due to Lemma 3.6(i), one has m;(t) > 0. Hence let us for instance
assume that liminf, ,_ o, m;(¢t) = 0. Consider a sequence {t,}n>0 tending to —oco as
n — oo such that m;(t,) — 0 as n — co. Consider the sequence of maps {u,(t) :=
u(t + tn)}n>0. Then up to a subsequence, one may assume that u,(t) — u(t) locally
uniformly where @ is an entire solution of V' such that m,;(0) = 0. Lemma 3.6(i) ensures
that (m;(t), 7i(t,.)) = (0,071) This prevents u from belonging to Ny, a contradiction.
A similar argument holds true if one deals with lim inf;_, ; o, m;(t) = 0. This completes
the proof of Claim 5.3. d

5.2. Case card S > 2 and 2 < card J < card S. In this section we assume
that card S > 2. Note that the proof of Theorem 5.1(ii) follows from the above section
when card S = 1. Let J C S be a given subset such that card J > 2. Our induction
hypothesis is concerned with the validity of Theorem 5.1 for each subset J' C S such
that card J' < card J. Consider now the set Yoo = X{;}J as well as the semiflow

V :=Ug\; on Yp. Let us denote i = max<(.J) and let us consider
Ny = Yo N M¢ and 0Ny = Yo \ No.
Let us first notice that to prove Theorem 5.1(ii) for J, it is sufficient to show that

(5.1) lim V(t)z = u] Yz € Ny.

t—o00
Indeed, if & € ONp, then z € X5 with J' = J\ {i}. Since J' C & and card J' <
card J, then V(t)z = Us\ j+(t)x and the asymptotic behavior follows from the induc-
tion hypothesis.
The proof of this section is rather similar to the one provided in the preceding
section. The only difference relies on the proof of the uniform persistence of the
semiflow V' with respect to the pair (Ng, 9Np) because of the dynamics of the semiflow
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on the boundary ONy. Hence to complete the proof of Theorem 5.1(ii) for J we will
only prove the following lemma. The details are left to the reader.

LEMMA 5.4. The semiflow V is uniformly persistent with respect to the pair
(Ng, ONp).

Proof. The proof of this result is an application of Theorem 4.2 in [19] with a
nontrivial dynamics for the boundary semiflow. Let us denote J' = J \ {i}. Then
note that V]an, = Us\ . According to Proposition 3.3 let us consider Ay := Ag\ j,
the global attractor of the semiflow V|sn,. Note that according to the induction
hypothesis the following holds true:

U w@)={u}tu | {u}.

zeAp JjeJ’

Here for each x € Yy4, w(x) denotes the omega-limit set of the point x with respect
to the semiflow V. The application of Theorem 4.2 in [19] relies on some properties
of the set Ay defined by

Ay ={uitu | {u3}.

JjeJ’

Let us first claim the following.
Cram 5.5. For each j € J'U{0} the stationary point u} is unstable with respect
to the semiflow V.
Proof of Claim 5.5. The proof of the above claim relies on Lemma 3.5. Let us
notice that for each j € J'U {0}, function x;(.,u}) (see (3.6)) satisfies
175 ifj=0,

i(0,uf) = i
Xi(0,u3) {I—IO; ifjeJ.
7o

Hence since ¢ = max< J, xi(0,u}) < 0, and since x;(A,u}) — 1 as A — oo, for each
j € J"U {0}, function x;(.,u}) has a strictly positive root. The result follows. O

Then we claim the following.

CramM 5.6.  For each (j, k) € J U {0}, if {u(t)}er is a nontrivial (that is
nonconstant) entire solution of V' such that

. _ . o
tll{rloou(t) =uj and tlggo u(t) = uy,
then j < k.

Proof of Claim 5.6. The proof of this claim relies on the application of Lemma
3.6(i1) as well as a Lyapunov-functional-like argument.

Let us first consider the case where j € J'. Then applying Lemma 3.6(ii) we know
that j < k. It is therefore sufficient to show that there is no homoclinic connection at
uj. Let us argue by contradiction by assuming that

w0 =

Then applying once again Lemma 3.6(ii) we obtain that for each k& € J’ such that
ke,

ye(t,.) =0 and my(t) =0 Vk € J > j.
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Then consider the functional

Vilul(t) = Vi () + Vi, (8) + Ve, () + D /0 h fol@yp(t,a)da+ Y dymy(t).

p=Lp#j p=1;p#j

Using similar arguments and computations (see Lemma 3.7) as the ones provided in
the preceding section and using the fact that, for each k € S\ J’ and each k € J’
such that k> j,

yi(t,.) = 0 and my(t) =0,

one obtains that u(t) = u}, a contradiction.

It remains to consider the case j = 0 and to show that there is no homoclinic
connection at uj. Let us argue by contradiction by assuming that

i o) =
Then let us notice that due to Lemma 3.6(ii) one has
yk(t,.) =0 and my(t) =0, Vk € S.

Then by considering the map

Volul(#) = (%) " ; | si@m@da+ ildjmj’

as well as computations and arguments similar to the proof of Proposition 4.1, one
concludes that

u(t) = ug,

a contradiction that completes the proof of Claim 5.6. ad

As a consequence of Claims 5.5 and 5.6, the set Ay is isolated and has an acyclic
covering. Hence since the semiflow is bounded dissipative and asymptotically smooth,
Theorem 4.2 in [19] applies and to complete the proof of Lemma 5.4, it is sufficient
to show that No N W*({u}}) = 0 for each j € J' U {0}. Similarly to the proof in
section 5.1 this latter property directly follows from the functional

D[V (t)x] := /000 Ti(a)yi(t,a)da + m;(t) with T;(a) := /OO pi(s)e*?ds.

This completes the proof of Lemma 5.4. O

Appendix A. Basic reproduction rate of system (1.1). Here we follow the
methodology of Diekmann and co-workers [8, 9] and Inaba [24] (see also the references
cited therein). Let b;(t) be the density of newly produced j-merozoites at time t. Then
from (1.1) one has

ba(6) = [ @@y t.ade.

Since w; is given by the resolution of the linearized system (1.1) at the disease-free
equilibrium (DFE), the Volterra formulation of the transport equation yields

bi(t) = Bjxf/o p;(a)l(a)m;(t — a)da + /too py.i(a)w; (0, a)da.
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On the other hand, it follows from the m,; component of the linearized system (1.1)
at the DFE that

1 (t) = b (t) — (pm,j + 05852 5)m;(t),

that rewrites as
t
m;(t) = / e_(“m*j"'(sjﬁjzf)(t_s)bj(s)ds + mj(O)e—(#m,j"r‘sjﬁjmf)t_
0

As a consequence b; satisfies the following renewal equation:

t a
b;(t) = ﬁjl“f/ (/ e_(“m*ﬂ'*‘sﬂ'ﬁf"f)(“‘s)pj(s)l(s)ds) b;(t — a)da
0
t

0
+5j$fmj(0)/ pj(a)l(a)e*(“’”ﬂ'+6J'Bj“’f)(t7“)da+/ ri(a)u;(a)w; (0, a)da.
0 t

Due to the above formulation, the j-strain specific basic reproduction number Rg is
calculated as

RI = ﬁjxf/ (/ e_(”mﬂf'%f’@ﬂf)(“_s)pj(s)l(s)ds) da;
0 0

that is,

, B /OO
Ry = —"2LL pi(a)l(a)da.
0 Nm,]+5j/3j‘rf 0 ]( )( )

Now let us notice that sgn (R} — 1) = sgn (7¢ — 1). Indeed it is easy to check that

Ry 1= tmi ().
0 fim.j + 0855 \"°

Moreover one can notice that when §; = 0, R? = 7.
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1. Introduction

During the earliest centuries mankind faces ever moreehgithg environmental and
public health problems, such as emergence of new diseaske emergence of disease
into new regions, and the resurgence diseases (tubergumalaria HIV/AIDS, HBV).
Mathematical models of populations incorporating agecstme, or other structuring of
individuals with continuously varing properties, have ateasive history.

The earliest models of age structured populations, due éopghand Lotka in 1911
[371 and McKendrick in 192639 established a foundation for a partial differential equa-
tions approach to modeling continuum age structure in atvigppopulation. At this
early stage of development, the stabilization of age strean models with linear mor-
tality and fertility processes was recognized, althoudtrigorously establishedf, 36).
Rigorous analysis of these linear models was accomplisitedih 1941 by Feller1q],
in 1963 by Bellman and Cookel], and others, using the methods of Volterra integral
equations and Laplace transforms. Many applications af tiieory have been devel-
oped in demography?[ 27, 33, 43], in biology [1, 2, 3, 10, 24, 48] and in epidemiology
[7,8,17, 18 22,32 13 12.

The increasingly complex mathematical issues involvedinlinearities in age struc-
tured models led to the development of new technologiespaedf the most useful of
these has been the method of semi-groups of linear and eanloperators in Banach
spaces. Structured population models distinguish indalidrom another according to
characteristics such as age, size, location, status aném@. The goal of structured
population is to understand how these characteristicstafie dynamics of these models
and thus the outcomes and consequence of the biologicalahehaiological processes.

In this paper we consider a mathematical S-I-L (Suscetibiiéected-Lost of sight)
model with demographics process, for the spread of a dyr&gethsmitted infectious dis-
ease in an age-structured population. By infected (I) wemigfactious taking a chemo-
prophylaxisin a care center. And by loss of sight (L), we mie&rctious that begun their
effective therapy in the hospital and never return to thephalsfor the spuctrum exami-
nations for many reasons such as long duration of treatregithen, poverty, mentality,
etc... The lost of sight class was previously consider inespapers ass| 15].

In this paper, the infective agent can be transmitted nog bokizontally but also
vertically from infected mothers to their newborns (petah&ransmission). There are im-
portant infective agents such as HBV (hepatitis B virus)/ Khuman immunodeficiency
virus) and HTLV (human T-cell leukemia virus) that can betioadly transmitted. Com-
pared with the pure horizontal transmission case, so farave hot yet so many results
for vertically diseases in structured populations. In édrithe vertical transmission of the
disease like HIV is in progression nowadays.

Worldwide, 1% of pregnant women are HIV-positive. Howesh-Saharan Africa
where 95% of HIV positive women live carries the vast mayonf this burden {6].
Without treatment, approximately 25%-50% of HIV-positiethers will transmit the
virus to their newborns during pregnancy, childbirth, cedstfeeding]. In 2007, over 2
million children worldwide were living with HIV/AIDS, withthe overwhelming majority
again in sub-Saharan Africé§]. Approximately 400,000 infants contract HIV from their
mother every year, which is about 15% of the total global HiZidence {1, 50]. The
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rate of pediatric HIV infections in sub-Saharan Africa rémsaunacceptably high, with
over 1,000 newborns infected with HIV per d&if].

Large simple trials which aim to study therapeutic intetiams and epidemiological
associations of human immunodeficiency virus (HIV) infeatiincluding perinatal trans-
mission, in Africa may have substantial rates of lost of sigh better understanding of
the characteristics and the impact of women and childrarofosight is needed. Accord-
ing to loannidis et al. (], for the impact of lost of sight and vertical transmissiaort
in Malawi, several predictors of lost of sight were identifia this large HIV perinatal
cohort. Lost of sights can impact the observed transmigsitenand the risk associations
in different studies. They (loannidis et al.) also focud tha HIV infection status could
not be determine f036.9% of infant born to HIV-infected mother;.7% with missing
status because of various sample problems3ari{s because they never returned to the
clinic (Lost of sight).

Firstly, the epidemic system is formulated. Then, we wilsclébe the semigroup
approach to the time evolution problem of the abstract epideystem. Next we consider
the disease invasion process to calculate the basic regtioduatio R, then, we prove
that the disease-free steady state is locally asympthtisiable if Ry < 1. Subsequently,
we show that at least one endemic steady state exists if #ie teproduction ratidz,
is greater than unity. By introducing a bifurcation paraaneive show that the endemic
steady state is forwardly bifurcated from the disease-fteady state when the basic
reproduction ratio crosses unity. Finally, we considerdbeditions for the local stability
of the endemic steady states.

2. The model

In this section, we formulate a model for the spread of theatis in a host population.
We consider a host population divided into three subpojmriat the susceptible class, the
infective class (those who are infectious but taking a chgnoyhylaxis) and the lost of
sight class (those who are infectious but not on a chemoptayis) denoted respectively
by S(t,a), I(t,a) and L(t,a) at timet and at specific age. Let 5(.,.) be the contact
rate between susceptible individuals and infectious iddials. NamelyS(a, o) is the
transmission rate from the infectious individuals agetb the susceptible individuals
ageda. All recruitment is into the susceptible class and occursgexific rate\ (a). The
rate of non-disease related deathuig). Infected and lost of sight have additional death
rates due to the diseagg(a) andds(a) respectively. The transmission of the disease
occurs following adequate contacts between a susceptiblénéectious or lost of sight.
r(a) denoted the proportion of individuals receiving an effeetherapy in a care center
and¢(a) the fraction of them who after begun their treatment will rettirn in the hospital
for the examination. After some time, some of them can reituthe hospital at specific
ratey(a).
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The basic system (age-structured SIL epidemic model) véttical transmission can
be formulated as follows by equatiof)(

o 0
(at + a—> S(t,a)
<% + %) I(t,a) = At,a)S(t,a) — (pu(a) + di(a)

5 o +r(a)p(a))I(t,a) +~(a)L(t, a),
(a + %> L(t,a)

r(a)p(a)(t, a) — (u(a) + da(a)
+7(a))L(t, a).

For the boundary conditions of model){ we consider that pregnant lost of sight
women generally return to the clinic for the birth of they nbarn, therefore, we can
assume that there is not lost of sight new born (ilg#,0) = 0). Due to the above
consideration, the initial boundary conditions of modgli§¢ given by:

Aa) = (A(t,a) + p(a))S(t, a),

St0) = [y f(a)[S(ta) (1 =p)(I(t,a) + L(t,a))]da,

I(t,0) = p[5 fla)I(t,a)+ L(t,a))da,

L(t,0) = 0, 2)
S(O,(L) = SDS(G); a€(07a+)7

I(Ova’) = QD[(U/); ae(O,a*),

L(0,a) = ¢r(a); a€(0,a"),

and wheref (a) is the age-specific fertility ratg,is the proportion of newborns produced
from infected individuals who are vertically infected amt < oo is the upper bound of
age. The force of infection(t, a) is given by

At,a) = /Oa Bla,o)(I(t,0) + L(t,0))do.

wheref(a, s) is the transmission rate between the susceptible indilscaged a and in-
fectious or lost of sight individuals ageda™ < oo is the upper bound of age.

Let us note that in the literature the transmission rate, o) can take many forms:
B(a,0) = B = constant (Dietz 1975 [L1]; Greenhalgh 19871[]), 5(a,0) = g(a)
(Gripenberg 19834()]; Webb 1985 {19)), 5(a, ) = g(a)h(c) (Dietz and Schenzle 1985
[14]; Greenhalgh 1988717]; Castillo-Chavez and al. 1988]).

In the following, we consider system$){(2) under following assumption:

Assumption 1. We assume thaf € L*°[(0,a",R;) x (0,a*,R1)] and functions
f, d1, da, v, A, pbelongtoL>(0,a™,Ry).

3. Existence of flow

The aim of this section is to derive premininary remarks ®13(2). These results
include the existence of the unique maximal bounded semdkseciated to this system.
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3.1. Abstract formulation

Let X be the space defined as
X :=L'0,a",R?)

with the norm s
lellx =D leilles
i=1

wherep = (o1, 02, 93)T € X. Let us noteX , the positive cone oX .
It is well known that(X, ||.||x) is @ Banach space. Let : D(A) ¢ X — X bea
operator defined by

Ap = —¢' — pp, ®3)
with the domain

A 1(0)
D(A) = (= (p1,p2,03) € WH(0,a",R3) and ¢2E8§ =
J F@)len(@) + (- p)(gala) + ps(@)]da \ )

pfy F@(e2(0) + a(e))da

hS)

the functionF' : D(A) — X defined by

gOl A - )\[7 90]801
FL ooz | = ALgler — (d +rd)pa + 705 |
©3 rép2 — (d2 +7)ps3
Al ¢] € L1(0,a™,R) is a function such that
a+
Nagl = [ Ba0)lpalo) + eatollde

andW11(0,a™*,R) is a usual Sobolev space.
Let us first derive the following lemma on operatbr

Lemma 1. 1) The operatorA is generator of aCy-semigroup of linear bounded
operators{T'(t) }+>o such that
_ pla—t) if a—t>0 "
T(t)pla) = { Clt—a) if a—t<o JOmtse

and T (t)p(a) = Ogs for t > a™; whereC(t) = (C1(t),C2(t),0) € R3 is the unique
solution of the following Volterra integral equation

Ct)=G(t)+ (¢, 0),
with

a

G(t) = (/}(5)(%(8 — 1)+ (1 —=p)p2(s —t) + p3(s —t))ds ; p/f(S)cpg(s—t)dS; 0) ,

t

o(t,C) = (/0 F($)(Cit =) + (1 = p)Ca(t — 5))ds ; p/o f(s)Ca(t — s)ds ; 0)-
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2) The domainD(A) of operatorA is dense inX and A is a closed operator.

Proof. The proof of this result is rather standard. Standard metiogies apply to pro-
vide item 1 (see Pazy 1983(]). Item 2 is a direct consequence of the fact that the
operatorA is generator of &'y-semigroup of linear bounded operators (see Corollary 2.5
in Pazy 198340)). O

Therefore, one obtains that Systei)-(2) re-writes as the following densely defined
Cauchy problem

dﬂ‘;_l(tt) = Ap(t) + F(e(t)), 4
e(0) = (esior )

3.2. Existence and uniqueness of solutions

We setX,, := D(A) and X the positive cone oK. In general we can not solvé)(
in this strong formulation, ifxy € Xo \ D(A). So, for arbitrarypy € Xy, , we solve it
in the integrated form:

o(t) = <po+A/0 sO(S)der/O F(p(s))ds ;t > 0. (5)

A solution of () is called amild solutionof the initial value problem4). So, in the
following, we are looking for mild solution of abstract Cényeproblem 4).

We can easily find that:

Lemma 2. On Assumptior, the nonlinear operatoF’ from X to X is continuous and
locally Lipschitz.

Using Lemmasdl and?2 the main results of this section reads as (see Theorem 1.4 in
Pazy 1983{().

Theorem 1. Recalling Assumptiod and let Lemmad and 2 be satisfied. Ifp, €
Xo4 := L*(0,a™,R%). Then there exists a unique bounded continuous solytitm
the integrated probler(b) defined or{0, +o0c) with values inXg .

4. Equilibria

4.1. Disease-Free Equilibrium (DFE)

The following proposition gives the characteristics of tisease-free equilibrium
(DFE) of system1)-(2).

Let us introducé(a) = exp (— [ nu(s)ds) the average lifetime of individuals at age
a.
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at

Proposition 1. Let/ f(a)l(a)da < 1 be satisfied. Then, systef){2) has a unique
0
Disease Free Equilibrium (DFE)yg = (So,07,:,0.1), whereSy is given by

+

(6)
So(a) =l(a) [SO(O) +/ A(S)ds} foro<a<at.
o Us)
Proof. : ¢ is an equilibrium of problemd) if and only if
¢ € D(A)andAy + F(p) = 0x. (7)

For the DFE we haves = @3 = 07:1. Hencela,¢| = 07:. From where the result
follows using straightforward computations. |

4.2. Endemic equilibrium (EE)

v is an endemic equilibrium o#j if and only if (7) is satisfied. That is,

pi(a) = ¢1<O>Z<a>e><p(— /Oa)\[a,w]d(r)

“1a) ‘ )
+/(; @exp (—/@ Ao, gp]da) A(s)ds; (8)
0 = [ FEE e (- [ re)e)s) bisea) + As e (9]
+¢2(0)l(a)'1(a) exp (— /0‘1 r(a)gb(a)do) ; 9)
pil0) = 0@ e (- [ (o)
’ Z(Q)FQ(a) — ‘ g)aoc | (s S S)as;
+ [ e (- [(00) rose)ea(s)is (10)
¢1(0) = /Oa f(a)[pi(a) + (1 = p)(p2(a) + ws(a))]da; (1)
a0 = p [ @ + o) (12)
¢3(0) = 0. (13)
where "
Ti(a) = exp(— [y (di(s)+7(s)p(s))ds) ;
Iy(a) = exp(— foa(dg(s) +7(s))ds) .
Let us set\(s) = Als, ¢] for s € [0,a™). Equation 8) re-write as
p1(a) = @1(0)An (A a) +ui(N a). (14)
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Equations §) and Q) give
p2(a) = ¢1(0)A21(A a) + 2(0)Azz(a) + uz(X, a). (15)
Equations {0), (13) and (L4) give
es(a) = ¢1(0)A51(A a) + 2(0)As2(A, a) + us (X, a); (16)
with

A\ @) = I(a) exp (- /O ’ )\(a)do) ;

Api (M, a) = /0 " o1(a, $)A(s) exp (- /0 s)\(a)da) ds:
Azz(a) = l(a)T1(a);
Aana) = [“xaa e (- [ Awyin) as

aF1 a)

and

wna,s) = O F S xalas) = 10) [ 2O @) star.

From equationsl(l) and (L2), we respectively deduce that

(1 _ /0“ Fla)[Ain(X a) + (1 —p) (A2 (A, a) + Az (A, a))]da) ©1(0)
17)

~ (-0 | " (@) Anr(a) + Apa(a)lda = 0 (A):

and

por(0) [ @20 0) + A o)lda
’ (18)

T 2(0) (p / " f(@)[As(a) + Asa(a))da - 1) — u(\);
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where
’Ul(>\) — Aa f((l)[ul(k, a) + (1 — p)(uQ()\7 a) + 7J,3(>\7 a))]da
a®) = p [ f@uao) + w0l

Therefore, we find thap (0) = AAl((/\/\)) ande, (0) = A:((/\)\)); .

AA) =1 —=p)p /Oa f(a)[Agz(a) + Aszz(a)lda x /Oa f(a)[A21(N, a) + Az1(A, a)lda
+ (1 - /Oaf(a)[Au()\va) + (1 =p)(A21 (N, a) + A31()\»a))]da> X
<p / (@) Azala) + Ao (@)da — 1) ;
0
AL = v (V) <p /O (@) An (@) + As(a)lda — 1)
- [ (@) [Asa(a) + Ay (a))da
Az(A) = v2(N) (/Oaf(a)[fhl()\, a) + (1 —=p)(A21(A,a) + Az1(N, a))|da — 1)

— (V) /0 @)A1 (A a) + Asi (A, a)]da.

Equations {5) and (L6) give
prl) = T An(a) + (@) + w(a)
A() (%) (12)
QOg(a) = A()\) A31()\,a) + A(/\) A32(a) + 'U,3()\, a)
Since)(a fo p2(8) + p3(s))ds; then we have
Aa) = H(XN)(a); (20)

whereH is the operator defined from! (0, o™, R) into itself by

/ﬂ[

0
+ 52 () + (s >>] as. @)

(¢, 8) + Az1(p, 5)) +u2(ep, s) + us(ep, s)
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Hence, systemlj-(2) have an endemic equilibrium if and only if the fixed point atjon
(20) has at least one positive solution.

Now let us introduce the following technical assumptiondtentransmission raté
as in Inaba?6, 28, 29:
Assumption 2. 1) 8 € LY (R x R) suchthat3(a,s) = 0forall (a,s) ¢ [o,a™t] x
[0,a™].
2) lim [ |B(a+h.€) = Ba,&)lda =0 for € € R.
—

3) It exists a functiom such thatz(s) > 0 for s € (0,a™) and8(a, s) > £(s) for
all (a,s) € (0,at)2.

On the above assumption, some properties of opefatare given by the following
lemma.

Lemma 3. Let Assumptior2 be satisfied.

(i) H is a positive, continu operator. There exist a closed, bedrehd convex subset
D c L% (0,a™,R) such thatd (D) C D.

(ii) Operator H has a Fréchet derivativél, at the pointy = 0 defined by(22) and
H, := H'(0) is a positive, compact and nonsupporting operator.

Proof. (i) The positivity and the continuity of operatéf are obvious. Lep € L'(0,at,R ),
then

Az1(p,a) <15 An(p,a) < /0 %

up(p,a) < /0“ iE—Z;A(s)ds; uz(p,a) < al|Al|e and

us(p,a) < [[AlloAsi(a) + sup v(s)[lel|2-

s€[0,a

r(s)p(s)ds := Az (a);

Since AAl(%) = ¢1(0); iz((f)) = ¢9(0) and the flow of systemlj-(2) is bounded (The-
orem1), we can findMq > 0 such thaty;(0)] < Mg and|p2(0)| < Mq. Therefore,

|H ()| < M; with

M = [Bllo /Oa {Msz(lJrAza(S) + (A31(s) + Asa(s)) + P ]7(5))+ [1Alloo(Az1(s) + 5) | ds.

SettingD = B (0, M) with B4 (0, M) := {¢ € L'(0,a™,R) : ||¢][z: < M}. Hence
H(D) C D. This end the proof of item (i).

(i) We find that

o)) = [ fla.s) | FEHDAN 0.0 + DA 0.5)0) + Dun(0.5)0)

DA (0)(¢)
A(0)

+DU3(O, S)(’L/)) =+ (AQQ(S) =+ A32(S)) ds.
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whereDuwu denotes the derivative of the functiarand

Du0.0)(0) = | " alasshp(s)ds: Dus(0,a)(up) = / " a(a s)p(s)ds:

DA (0,a) () = /O " vor(a, s)(s)ds; DA (0,a)(w) = /0 " o (a, $)(s)ds:

DAL0)(W) = p /0 " a(@)(a)da.

with
Xor(as) = %?8 ( /Sar<a>¢<a>da) 1)
e 0“’1 o vt = [

[SO / f(o)(o)do — So(0

Hence, operatof read as a kernel operator:

/ f(s) [x21(s,a) + x31(s, a)] ds.

+

mw)@ = [ xosusds (22)
where the kerne\(a, s) is defined by

Sf(S) / Bla,m) (x21(n,5) + Xs1(n, 5)) dn

X(CM S) =

(a,0)(A22(0) + Aza(0))do. (23)

The positivity of H is obvious. Let us show the compactness of the operdtoon
Assumption2. Lety € L' ande > 0. From Assumptior®; there existp = p(e) > 0

such that, forth| < p we havefoa+ |B(a + h,§) — B(a,§)|da < e. Is thereforeh € R
+

such thath| < p. ||m Ho(w) — Ho(¥)|| 1 = / |Ho () (a + h) — Ho(v)(a)|da. Itis
easily checked that 0

+

[Ho(¢)(a + h) = Ho(¢)(a)] < [[¢]]L1 /Oa B(a+h,s) = Bla, s)|C1(s)ds;

where

Ci(a) = <||A||w+AAl((00))> <1+/0a iﬁii?igr(swds)

%(Am( )+ Aszz(a / ’ fla <1+ /0 ' ig?jgg r(s)¢(s)ds> da.
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+
Since(\h| <p= [y IBla+h,s)—B(a,s)|da < e), it comes that

lTnHo(¢) = Ho(¥)[Lr < 6</Oa C1(a)da)||¢|u-

LetB a bounded subset @f' such that) € B. Then

+

llmnHo(¢) = Ho(¥)[[Lr < € (/ Ol(a)da) x sup{||e||:}-

0 ©EB
Applying the Riesz-Fréchet-Kolmogorov theorem Bp(B) we conclude thatiy(B) is
relatively compact. From wher#, si a compact operator.
Now, let us check thatl, is a nonsupporting operator. We define the operatpre
(L'(0,a™,R4))* (dual space of.}(0,a™, R )) by

+

(o) = / () [ Dus(0, $)() + 8(5) Duus (0, 5)]ds:

wheree is the positive function given by Assumpti@and (Fy; ¢) is the value offy €
(L*(0,a*,Ry))* aty € L'(0,at,Ry). Thenfory € L(0,a™, R, ) we haveHy () >
(Fo;¢) -e(withe = 1 € L'(0,a™,R,)). Fromwherdd] ™ (v) > (Fy;¢) (Fose)" -e Vn €
N. Hence for all, € N*; F € (L1(0,a*,R.))* \ {0} andy € L1(0,a™,R,) \ {0} we
have(F; Hi (1)) > 0. Therefore Hy is a nonsupporting operator. O

The main results of this section reads as

Theorem 2. Let Assumptior2 be satisfied. Let us note, = p(H,) the spectral radius
of operatorH.

1) If Ry < 1, system1)-(2) has a unique DFE defined l§§);

2) If Ry > 1, in addition to the DFE, systeml)-(2) has at least one endemic
equilibrium.

Proof. The operato#? always has\ = 0 as fixed point. This corresponds to the perma-
nent DFE for systeml{-(2). For the rest, we are looking for the positive fixed pointte t
operatorH . From LemmaB we know that there exists a closed, bounded and convex sub-
setD of Ll(o, a™, R, ) which is invariant by the operatdi. Moreover, from Lemma,

H has a Fréchet derivativié, at the poin andH, = DH (0) is a compact and nonsup-
porting operator. Therefore, there exists a unique p@séigenvectot), corresponding

to the eigenvalu®, = p(H,) of Hy. Using the same arguments as for the Krasnoselskii
fixe point theoremd4], it comes that ifRy = p(Hy) > 1, then the operatail has at least
one positive fixed poinh* € L1(0,a*, R, ) \ {0}, corresponding to the EE of system
D-3).

Let us suppose thdty = p(Hy) < 1. If the operatorH has a positive fixe point*
LY(0,a™, R )\ {0} then\* = H()\*). Letus notice thatl — Hy € L'(0,a™,R;)\{0};
hence\* < Hy(X\*). Let Fy € (L(0,a™,Ry))* \ {0} be the positive eigenfunctional
corresponding to the eigenvalily = p(Hy) of Hy (Sawashima44]). Therefore

0 < (Fo; Ho(X") = X") = (Fo,; Ho(\")) — (Fo; A") ;5
= p(Ho) (Fo; \*) — (Fo; A");
= (p(Ho) — 1) (Fo; A") .
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From where(p(Hy) — 1) (Fp; \*) > 0. Since(Fy; A*) > 0, it follows thatp(Hp) > 1;
which is a contradiction. O

5. Stability analysis for equilibrium

In order to investigate the local stability of the equililm solutiong.S*(a); I*(a); L*(a))
we rewrite (1)-(2) into the equation for small perturbations. Let

(S(t,a),I(t,a),L(t,a)) = (S*(a),I"(a), L™ (a)) + (x(t,a),y(t, a), 2(t, a)).

Then from system1) we have

<% + %) x(t, a)

—A(t,a)(S™(a) + z(t, a))

—(p(a) + A*(a))z(t, a); (24)
<% + %) y(t,a) = At a)(z(t,a) + S*(a)) + X (a)z(t,a)
—(u(a) + di(a) + r(a)p(a))y(t, a); (25)

(2420

and from @) we also have

r(a)g(a)y(t,a) — (u(a) + da(a))z(t,a);  (26)

<

—~
o+
I

z(t,0) = foa+f(a)[:r(t,a) + (1= p)(y(t,a) + 2(t,a))|da;
pfy fla)(y(t,a) + 2(t, a))da; (27)
0;

with A(a,t) = /(; Bla,s)(y(t,s) + z(t,s))ds and \*(a) = /Oa Bla,s)(I"(s) +

L*(s))ds.
Let us noteu(t) = (x(t), y(t), z(t))”. Then from equation2¢), (25) and @6) we have

d
Zu®) = Au(t) + G(u(?)); (28)
whereA is the operator defined bg). The nonlinear ternd’ is defined by
—P(uz,us)(ur +S5*) — (\* + p)uy
G(u) = Plug,us)(ur + S*) + Xuy — (p+dy + rdp)us |
rous — (p+ d2)us
andP is linear operator defined ot x L' by

P (uz, u3)(a) = /O " Bla, 5)(ua(s) + us(s))ds. (29)
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The linearized equation o26) aroundu = 0 is given by

d
U = (A+Cu(t); (30)

where the linear operatd¥ is the Fréchet derivative @f(u) atu = 0 and it is given by
—P(uz,uz)S* — (N + p)us
Clu) = P(ug,us)S* + X up — (pu+ dy + ro)us
rouy — (1 + da)us
Now let us consider the resolvent equationfbﬂ— C:
(z—(A+C))y = 0; veD(A), veX, zeC. (31)

Applying the variation of constant formula t81) we obtain the following equations:

(@) = T(a)(a)e [w1<o>+ /OG(T11(5)191(5)—le(S)PWL%)(S))dS] (32)

Yala) = {wzw) + [ ' oy 0a(s) 4 A (o) + Pwl,wg)(s)sws))ds}
xT'y(a)l(a)e™*; (33)
P3(a) = Ta(a)l(a)e™** {1/13(0) +/O W(ﬁg(s) +r(s)¢(s)w2(s))ds} .(34)

with II(a) = exp (—/0 X‘(J)da) i Thi(s) = ﬁ
Equations 82)-(33) and 35)-(34) respectively gives

andTlg(s) = 9% (S)TH(S).

1/)2(&) = Fl(a)l(a)efza |:’lﬂ2(0) + Tgl(a)wl(()) + /Oa T23(Z, a, S)P(l/)l, 'po)(S))dS

—|—/0 T24(z,a,s)191(s)ds+/0 T25(z,s)192(s)ds] (35)
and

P3(a) =Ta(a)l(a)e™* [ng(a)lpg(O) + T31(a)1(0) + 3(0) + /Oa Ts3(z,a, 8)P(¢1,2)(s))ds

+/Oa T34(z,a, s)01(s)ds + /Oa T35(z, a, s)02(s)ds + /Oa Ts6(2, a, 5)193(8)d8:| ;
(36)

where

a) = aH(s)*s s; Z,a,8) = < aH(U)*aU
o) = [ R s Do) = s [ gy o

I'y(s)
w50 (mm - /By e)

—_
—_
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Tos(25) = — . Ty(a) = /0 L3 ) (5T (5)ds,

I(s)T1(s)’ Ta(s)
Tys(a) = /0 ?;Ez;r(s)cb(s)ds, Tyo(z0) = (Z)z ot
Ts3(z,a,8) = /’l ?;EZ; r(o)p(o)Tas(z,0,s)do,
,T34(257 a, 3) — /a ?;EZ; T(U)¢(U)T24 (Z, ag, S)d07
o @ Fl(O')
Ts(2, a,8) = Ts (2, 5) / F Gr(e)o(o)d
Sincey € D(A); it comes that

wo = [ " @ (a) + (- p)(ala) + s a))da (37)
6:0) = p / " F(@)(2(0) + gs(a))da; (38)
P3(0) = 0. (39)

Equations 86)-(39); (32)-(35-(40)-(37) and (35)-(40)-(38) respectively lead to
¥3(a) = Ta(a)l(a)e™™" [Tsz(a)¢z(0) + T31(a)y1(0) + + /0 ) Ts3(2, a, s)P(h1, ¢2)(s))ds

+ /Oa T54(z,a,8)01(s)ds + /Oa T35(z, a, s)92(s)ds + /Oa T36(27s)193(s)ds} ; o
40

(B11(2) = 1)1(0) + (1 = p) Bra(2)12(0) + /Oa Bis(z,a)P(¢1,¢2)(a)da
+ /‘1 Bi4(z,a)V1(a)da + /a Bis(z, a)V2(a)da + /a Big(z, a)V3(a)da = 0;
(41)
and

PB21(2)¥1(0) + (pBaz(z) — 1)12(0) +p/0a Ba3(z,a)P (11, 2)(a)da

—I—p/ B24(z,a)191(a)da+p/
0 0

Bas(2, a)da(a)da + p /0 " Bas(z. a)s(a)da = 0:
42)

a

with

Bii(z) = /Oa f(a)l(a)e™** [II(a) + (1 — p)(T'1(a)T21(a) + T'2(a)T31(a)] da;
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Bia(z / F(@)l(@)e* [y (a) + Ta(a)Tia(a)] das

Bis(z,a) :/ f(s)l(s)e™ ™ [=Tia(a)II(s) + (1 = p)(T1(s)T2s(2, 5, a) + T'a(s)T33(2, 5, )] ds;

Bu(z,a) = /“ F(s)l(s)e™ [T (a)I(s) + (1 = p)(L1(s)T2a(z, 5, ) + Ta(s) T4 (2, 5,0))] ds;

Bus(z,a) / F($)I(s)e=" [Ty () Tos (2, @) + (1 — p)Ta(s)Tas (2, 5, a)] ds:
Bug(z,a) = (1 — / F()1(5)e==*T () Tio (2, 5)ds;
Boa (= / F@)l(@)e [T (a)To1 (a) + To(a) Ty (a)]da
Bas(z / F(@)l(a)e [T (a) + T(a)Ta(a)]da;
Bas(z, a) / F()I(s)e"* [T () Tos (2, 5, @) + Ta(s)Tsa 2, 5, a))ds;
Bou(2,a) / F()I(s)e™"* [T () Toa(z, 5, @) + Ta(s)Tsa(z, 5, a))ds;

Bos(z,a) = Tos(z, a)/ F(8)l(s)e*°[I'1(s)Ta5(z,a) + T'a(s)T35(z, s, a)]ds;

Baz,) = Tao(z,0) [ () Ta(s)e s,

System 41)-(42) is a linear system with respecta (0) andy»(0), hence

0(0) = /0 " et (2, )Py, ) (a)da + /0 " dets(z, a)01 (a)da +
+/0 det13(z,a)¥2(a)da +/0 det14(z, a)V3(a)da; (43)
¥2(0) = /Oa detor(z,a)P(¢1,2)(a)da + /0’1 detas(z,a)V1(a)da
+/0 detas(z,a)¥2(a)da +/O detas(z, a)d3(a)da; (44)
where
det11(z,a) = ;—; [(pB22(z) — 1)Bis(z,a) — p(1 — p)B12(2)Bas(z,a)];
deti2(z,a) = ;—; [(pBaa(z) — 1)B14(z,a) — p(1 — p)B12(2) B24(z,a)] ;
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detiy(,0) =~ [(PBaa(z) = DBis(2.) — p(1 = p)Bra(2) Bas(z,0)

detia(,@) = 20 [(9Baa(z) = DBo(z.) — p(1 = p)Bra(2) Bao(z, )
detas(2:0) = L2 [(B21(2) Big(2.0) — (B (2) = DBas(z, )
detza(2:0) = L [(Ba1(2)Bua(z.0) - (Bu(2) — DBz, )
detan(z.0) = L [(Ba1(2)Bs(2.0) - (Bu(2) = DBas(z, )
detaa(z.0) = L [(B21(2)Bio(z.0) — (B (2) = DBao(z, )

det = (B11(2) — 1)(pB22(2) — 1) — p(1 — p)Ba1(2) B12(2).
From equations29)-(35)-(40)-(43)-(44) it follows that
P, t)(n) = (I = V)" [(U00)(n) + (W) () + (Vas)(m)] ;. (45)

whereV,, U,, W, andY, are the Volterra operator define (0, a*, R) into itself by

+ ot

(Usp)(a) = / " 6.(n.a)pla)da; (Vap)(a) = / xe(m, a)p(a)da;
(46)

+

(thp)(a)=/0a E.(n,a)p(a)da; (W.p)( / K.(n,a)p

where
Xz (1, ) = Ci%(n)det11(z,a) + C5° (n)detar (2, a)
(47)
/ B(n, s e *°[[1(s)Ta3(z, 8,a) + Ta(s)T33(z, s, a)]ds;
O.(n, ) = Ci*(n)det12(2, a) + CL(n)detaz(z, a)

/ B(n, $)l(s)e **[I1(s)T2a(z, s,a) + T'a(8)T34(2, s, a)]ds;
K.(n,a) = Ci*(n)det13(z, a) + C5° (n)detas (2, a)

/ B, 5)I(s)e=** [T ()Tas (=, 5, ) + Ta(s)Tas (2, 5, a)]ds;

E.(n,a) = Ci¢(n)det14(2, a) + CL(n)detays(z, a) + /‘1 B(n, s)l(s)e™*°Ta(s)T56(z, s, a)ds;
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and

Ci(n) = /Oa B(n, a)l(a)e **[[1(a)Tzi(a) + T2(a)Tz1(a)]da;

o) = / B(n, a)l(a)e=**[T'1(a) + Ta(a)Tiz(a)lda;

Let us recall some definitions related toCg-semi-group{7'(t)}+>o on a Banach
space with infinitesimal generat@t. Thetypeor the growth boundof the semi-group
{T'(t)}+>0 is the quantity:

wo(R) ==
inf{fa € R: IM > 1 suchthat|T(¢)|| < Me* vt > 0}
o TN

t—0 t

Thespectral bounaf the Cy-semi-group{T'(¢) }+>o is the quantity:
s(R) = sup{RcA: A€ o,(R)},
whereo,(R) denote the point spectrum &f.
Wow, we conclude that

Lemma 4. Recalling Assumptionsand2. Then
1) The perturbated operatot + C has a compact resolvent and

0(A+C)=0,(A+C)={2z€C: 1eo,(V.)};

wheres (A) ando, (A) denote the spectrum dfand the point spectrum of respectively.
2) Let{U(t)}+>0 be theCy-semigroup generated by + C. Then{U(¢)},¢ >0

is eventually compact and
wo(A+C)=s(A+C).
Proof. 1) From equations3?), (43) and @6) we find that
Yi(a) = Ila)l(a)e™**¢1(0) + Ji(V1)(a) + K1 (1, d2)(a);
with

Jl(ﬁl)(a) == H T11 ) _Zsﬁl(s)ds

K1(91,92)(a) = H a)T11(s)S*(s)e (I — V)~ *

NN

[(U=01)(s) + (W202)(s) + (Y2103)(s)]ds.

11 IS a compact operator if and only Jf; and K; are compact. Sincd, is a \Volterra
operator with continue kernel, we deduce thiais a compact operator ai'. Using the
same arguments as for the proof of the compactness of opéfgt.emma3), we can

ARIMA



Age-structured SIL model 41

show that the operatofs., W, andY, are compact for alt € C. Letus set := {z €

C: 1€ 0,(V2)}. Hence, ifz € C\ L then,K; is a compact operator frofa' x L to L.

In the same way, we can show thaf(a) andi3(a) are represent by a compact operators.
Therefore, the resolvent of + C' is compact. From where(A + C) = o,(A + C) (see
Kato, p.187 1)) i.e. C\ X C p(A+C) andp(A+ C) denotes the resolvent gf+ C. In
otherwords O o(A + C) = 0,(A + C). SinceV, is a compact operator, we know that
o(V.)\{0} = 0,(V2)\ {0}. If z € &, then it existg), € L'\ {0} such thal/, ¢, = ..

Let us set

61(a) = TI(a)l(a)e—=" [ /0 ’

+
eza

det11(z,a).(a)da — /Oa m¢z(s)ds} ;

+

¢o(a) = (a)l(a)e** [/Oa detai(z,a).(a)da — /O“ 71“1(63)1(8)

za

(A" (s)¢(s) + 5*(8)1/)2(5))618} ;

za

¢3(a) =Ta(a)l(a)e™** /: T ¢ 7(8)p(s)ha(s)ds.

(s)i(s)
Then(¢1, ¢, ¢3)T is an eigenvector ofi + C associated to the eigenvalue Hence,
z€0(A+C)=0,(A+C)ie. X Co(A+C) =0,(A+ C). This end the proof of
item 1.

2) Fory € X, let us set
Ci (=P (t2,13)S*, P(th2,¥3)S*,0)7;
Cotp = (=N 4 @)1, N1 — (u+ dy + rd)arnhs — (u+ do)is) ;.

ThenC' = C,+C5. The operatori+C; generated a nilpoteidty-semigroup{ Sz (¢) }+>o,
from where{S(t) },>0 is norm continuous. Using Assumptioh&nd?2, we find thatC4
is compact operator oX. From Theorem 1.30 of Nagel(1986)7 it comes that”; is
generator of a norm continuod$-semigroup{ S (¢) }+>o. Therefore,S,(t) + S2(t) is
a Cy-semigroup generated by 4+ C and it is norm continuous (Spectral theorem P.87
Nagel 7). O

Let us remark that ifug(A + C') < 0, the equilibriumu = 0 of system 28) is
locally asymptotically stable (linearized stability, Weth985[.9]). Therefore, to study
the stability of equilibrium states, we have to know the stue of the seE := {z € C:

1 €0,(V)}. Since||V,||Lr — 0if 2 — 400, I — V; isinversible for the large values of
R.z.

By theorem of Steinberg(1968)]], the functionz »— (I — V,)~! is meromorphic in
the complex domain, and hence the Eeis a discrete set whose elements are poles of
(I —V,)~! of finite order.

In the following, we will use elements of positive operatoedry.
For the positivity of operatoV, we make the following assumption
Assumption 3.

+

/Oa (d1(0) + r(@)o(0))do < exp ( /

+

)\*(J)da) ; (48)

whereX* (o) = [ B(o.n)(I* (n) + L*(n))dn.
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Lemmab. Let AssumptioR be satisfied. Then
1) The operatol,, z € R, is nonsupporting with respect o' (0, «*, R, ) and

lim p(V.) =400 ; lim p(V;)=0.

22— —00 z——+00
2) There exists a uniqug € R N X such that

p(Vy)=1 and 20=0 if p(Vp)=1,
z0<0 if p(Vo) <1

3) 20 > sup{Rez: z€ X\ {20}}.

Proof. 1) Let z € R. Unconditionally,V, is a positive operator whei*(a) = 0
(case of DFE). When\*(a) > 0, V; is a positive operator onck; (s)7s3(z,a,s) +
I2(s)T33(2,a,s) > 0forall0 < a < s < a™. To have the previous inequality, it suffices
that inequality 48) of Assumption3 holds. We can checked that

Vap 2 (fos0) - € (49)

wherey € LY(0,at,Ry); e =1 ¢ LY(0,at,Ry) andf, is a positive linear functional
defined by

<fa> = m /O " /a : e*ZWS);E—Zi (Fll(a) - H(la) /a ) 11}1((‘;)) )\*(o)da) dsda;

with m = inf(a,s)e[o,a+)2 ﬁ(a, 8). From @9), we show thai/zn+1¢ > <fz7 ¢> <fz7 €>n -e
forall n € N. Sincef, is positive operator and € L'(0,a™,R.) \ {0}, we have
(F, VM) > 0V € (LY(0,a™,Ry))* \ {0} Voo € L1(0,a™,R;) \ {0}. ThatisV, is
nonsupporting.

Let F., be the eigenfunctional df, that corresponds to the eigenvajy@’. ). Taking
the duality pairing into inequality4©), we have

p(Va) (Fzoh) = ([, ) (Fe) .

Taking+y = e and sinceF’, is positive, it follows thato(V.) > (f.,e) — +oc when
z — —oo. From where lim p(V.) = +o0. since||V;||,: — 0 whenz — +oo, we
2 ——00

~—

deduce that lirJrrl p(V.) = 0. This end the proof of item 1.

2) Leth : R — C; z — p(V.). The kernely, defined by 47) is strictly decreasing
with respect toz € R. Let 21,20 € R such thatz; < 2z, theny,, < x., thatis
V., > V,,. SinceV,, andV,, are compact and nonsupporting operators we deduce from
Marek(1970) Bd] that p(V.,) > p(V.,). Therefore, the functioh is strictly decreasing.
The limits of the functiom(z) = p(V,) at —oo and+co give that there exist a unique
zo € RN X such thap(V,,) = 1. If p(Vp) > 1thenh(0) > h(z) i.e. zo < 0 (strictly
decreasing of) and the other cases is show in the same way. This end the @irdem
2.

3)Letz € ¥, then there exists, € L! such thatl,+), = ¢),. Let |+, | be a function
defined byj¢,|(s) := |1, (s)|. The definition ofV, leads to

=] = Vit | < VR, [t (50)
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Let Fr,. be the positive eigenfunction associated to the eigenvalug,.) of Vi, ..

From (60) we deduce thatFg, ., [v:]) < (Fr.z, Ve.:|¥:]) = r(VR.2) (Fr.2, [¢:]).

The positivity of Fg, , implies thatr(Vg, ,) > 1 thatish(R.z) > h(zo) i.e. z0 < Rez.

To end the proof, let us show that:4f = R.z thenz = z,.

We know thalv,| < Vg, .|v.| = V., |¥.|. Letus suppose thap.| < V., |v.|; taking the
pairing product with the dual functiof, corresponding to the eigenvalp@’.,) = 1, one
has(Fy, [¢-]) > (Fo, |1-|), which is a contradiction. Hende,| = V., |¢.|. Therefore
[v.| = cyo wherec is constant not equal to zero (Sawashima 1984)[and v is the
eigenfunction corresponding idVs,) = 1. S0t (a) = c1po(a)e’® for a reel function
o; moreoven Vo, | = |ib.| = cibg = cVi b, Substitutingy. (a) = cibg(a)e’® into

the equality|V.v.| = ¢V, 10 one has

/Oa /“ B(n, S)Z(S)(E_Zo(s—a)[FI(S)T23(S, a) + Fg(s)ng(s, a)|o(a)dsda =

)

a+ a+
/ / B(n, s)l(s)ef(z‘]“(s*”’)lmz) [Fl(s)ng(s, a) + FQ(S)T33(S, a)]em(“)lbg(a)dsda
0 a

(51)

with
[ m )

S

fgg(a, S) =

S's)( 11
I(s) \Ti(s) TI(s)

Tua.s) = [ HGr0)6(0) (a0

Applying two times, Lemma 6.12 of Heijmans(1986)], to the relation §1) it comes
that(s — a)Imz + a(a) = bforall 0 < a < s < a* whereb is a constant. From the
equalityV, v, = v, one has:™®V, vy = 1pe’*@ i.e. b = a(a). From wherelmz = 0,
thatisz = zg. O

From the above result, we can state the threshold critesdalmws:
Proposition 2. Recalling Assumptio8. Then equilibriunm(S*, I*, L*) is locally asymp-
totically stable ifp(V)) < 1 and unstable ip(Vp) > 1.

Proof. From Lemméb (items 2. and 3.), we conclude thatip{ R.z; 1 € o,,(V.)} = 2.
Hences(A + C) = sup{Rcz; 1 € 0,(V2)} < 0if p(Vo) < 1, ands(A + C) =
sup{Rcz; 1 € o, (V2)} > 0if p(Vp) > 1. O

In the following, let us noté&/ the operatol/, corresponding to the case (o) = 0
(DFE) andVj the operatoiV;, corresponding to the case€ (o) > 0 (EE). It is easily
checked that

Xola,s) = x(a,s); (52)

wherey(a, s) is the kernel of the Volterra operatéf, defined by £3).
Now, the main results for the local stability of our epidemmodel reads as

Theorem 3. Let Assumptiond and 2 be satisfied. LeR, := p(Hy) be the spectral
radius of the operatori, defined by%2). Then,
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1) If Ry = p(Hp) < 1 then, the unique equilibrium oflf-(2) (DFE) is locally
asymptotically stable.

2) If Ry = p(Hy) > 1 then, the DFE is unstable.

3) If Ry = p(Hy) > 1 then, in addition to the DFE systerh){(2) has at least one

endemic equilibrium (EE). Moreover,i{1;") < 1 and AssumptioB holds, then the EE
is locally asymptotically stable.

Proof. For the DFE, one ha3*(c) = 0. Hence, from §2) it comes thatp(H,) =

p(V) := p(Vp) (for A* = 0). From Prop.2 we deduce that: ib(Hy) = p(Vo) < 1, the
DFE is locally asymptotically stable; and unstable(fi;) = p(V5) > 1. This end the
proof of items 1. and 2.

The case of EE is a direct consequence of PPop. (I

Remark 1.

(%) To emphasize the impact of vertical transmission on theagpof the disease, let us
observe that the next generation operatfyy can be rewrite as follows

+ at

Ho(w)(o) = | " O shi(s)ds + | xolasuteas

where the kernelg®(.,.) andx¢(p, ., .) are

s = [T ) (ann.5) + x50
xo(p,a,s) = pzzzg;’) /Oa B(a,0)(Aza (o) + Aszz(o))do.

It is easy to see that when the proportion of infected newd@zero p = 0), then
the kernelx®(0,.,.) = 0. Therefore, the vertical transmission of the disease diapli
positively the spread of the disease.

(%) As a special case, we here briefly consider the proportemaiking assumption,
that is, the transmission ratg can be written asi(a,s) = (81(a)B2(s) (see Dietz and
Schenzle]4]; Greenhalgh,198823)). In this case, the basic reproductive numigey is
explicitly given by:

+ at

Ry := p(Hyp) = /0 X% (s, 8)ds +/O Xo (D, s, s)ds. (53)

And the same conclusion follows as for ited)( Thus the vertical transmission of the
disease really has an impact on the dynamics and the spretie afisease into the host
population. We also refer to Figures4 for some illustrations of the state variables of
system 1)-(2) whenp takes different value$).02; 0.2 and0.5.
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6. Numerical analysis

In this section, we propose a numerical scheme for our modkgaves some illustra-
tions.

We adopt a finite differences scheme which is progressiveraérol in time and
regressive of order 1 in age. Our model has a structure obtleing partial differential
equation on the real axe:

ou  Ou
= . 4
TR R ACL) (54)
For equation$4), the numerical scheme is defined by:
u;”'l —ul ui —ud
At Ay = ) (55)

wherei andn are the index of age and time discretization respectivehd &' :=
w(ty, ;).
We recall that, generally, all explicit numerical schemedrditionally stable (Stricwerdaf]).

To ensure the stability of the schent) the necessary condition is the famous Courant-

Friedrichs-Lewy (CFL) condition given as follow:
At
— < 1.
Aa

For a given age step discretizatidw, the restrictionA¢ < Aa is necessary for the time

step discretisatiof\t.

We are able now to give the solution of the problef+(2) on some time interval
[0, T'] using the above numerical scheme.

The age-specific reproduction raté:) is taken to be

@) {%sm2 (M) if 15 <a <45
a) =

(56)

0 if not.

The fecundity functionf(.) is stated here in units of 1 / years for easier readability and
assumes that from agé to 45 years a woman will generally give birth to three children,

a+ . . .
sincef, f(a)da =3, wherea™ = 80 is the largest age allowed for the simulation.
We also consider a low value of recruitmeit )

2 [ w(a—17) . .
Aa) = %sm (4—3) if 17 <a < 60;
0 if not.

This recruitment assume that the total number of recruitrattimet is approximately
ot
equal two, thatigf;’ A(a) = 2.15
The transmission coefficief., .) is assume to be
— 14 — 14 .
B sin? (M> sin? <M> , if a,s € [14,60];

Hlass) = £ 1

0 if not.
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Figure 1: (L8 Transmission coefficiert(., .) when the transmission constaht= 1073.
(1b) Fecundity functionf(.) .

Table 1: Numerical values for the parameters of the model

Parameters Description Estimated value

Bo Transmission constant Variable

P Vertical tranmission rate  Variable

1 Natural death rate 0.0101/r

r Rate of effective therapy 1/yr*

¢ Rate at witch infectious ~ 0.75/yr
become loss of sight

v Rate at witch lost of sight  0.02/yr
return to the hospital

dy Death rate of infectious 0.02/yr

dsy Death rate of lost of sight  0.2/yr

Note: Source of estimates.
1 Assumed.

wherein the nonnegative constaft (transmission constant) will be variable. Figure
illustrates the transmission coefficiett(for 3, = 10~%) and the fecundity functiorf.
The other parameters of our system are arbitrarily chosanTablel).

We provide numerical illustrations for different valuesseftical transmissiop: 0.02,
0.2 and0.5

In Figure2, the vertical transmission rate of the disease is fixed tp be0.02. We
observe that infectious individuals (infected and lostight) are between 17 and 70 of
age. The number of young infectious (namely infectious &ijea < 17) is negligible,
because the value of vertical transmission gaitelow.

In figure 3, the vertical transmission rate of the disease is fixed tp be 0.2. We
observe that much of the infectious individuals (infected #st of sight) are between
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17 and 70 of age. Let us also observe that the number of infectndividuals with age
between 17 and 70 is approximately the same than the numliefiecfious individuals
with age between 17 and 70 when= 0.02 (see Figs2-3). But now, there are also
infectious individuals with age < 17 which was not the case when= 0.02.

The same observation is given by Figdrerhere the vertical transmission rate of the
disease is fixed to be= 0.5. Hence Figure&-4 emphasize that the vertical transmission
of the disease really has an impact on the dynamics and teadpf the disease into the
host population. See also Tatdléor the impact of the vertical transmission of the disease
on the spread of the epidemic.
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Figure 2: The transmission constant and the vertical trégsssom rate are fixed to be
Bo = 1072 andp = 0.02. The other parameters are given by Tahlg2a) Distribution
of Infected individuals. Zb) Distribution of Lost of sight. Zc) Distribution of infected
newborn. 2d) Distribution of Infected and Lost of sight individuals@f80 years of time
observation.
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Figure 3: The transmission constant and the vertical trégssom rate are fixed to be
Bo = 1072 andp = 0.2. The other parameters are given by Tablg3a) Distribution
of Infected individuals. $b) Distribution of Lost of sight. §c) Distribution of infected
newborn. 8d) Distribution of Infected and Lost of sight individuals@f80 years of time

observation.

Table 2: Impact of the vertical transmission of the disease.

Vertical transmission rat@) Rate increase over the case whes 0

p=0.02
p=202
p=0.5

1.8%
17.5%
43.8%

Total cases (I+L) when p = 0: 954.85 cases. (i.e. when the vertical transmission of the disease is

neglected in the host population.
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Figure 4: The transmission constant and the vertical trégssom rate are fixed to be
Bo = 1072 andp = 0.5. The other parameters are given by Tablg4a) Distribution
of Infected individuals. 4b) Distribution of Lost of sight. 4c) Distribution of infected
newborn. 4d) Distribution of Infected and Lost of sight individuals@f80 years of time
observation.

7. Conclusion

In this paper, we consider a mathematical model for the sppéa directly transmit-
ted infections disease in an age-structured population démographics process. The
disease can be transmitted not only horizontally but alsticadly from adult individuals
to their children. The dynamical system is formulated wittubdary conditions.

We have described the semigroup approach to the time evolptoblem of the ab-
stract epidemic system. Next we have calculated the bgsiodaction ratio and proved
that the disease-free steady state is locally asymptiytistble if Ry < 1, and at least
one endemic steady state exists if the basic reproductilinRg is greater than the unity.
Moreover, we have shown that the endemic steady state isfdiywbifurcating from the
disease-free steady stateryf = 1. Finally we have shown sufficient conditions which
guarantee the local stability of the endemic steady stategRly speaking, the endemic
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steady state is locally asymptotically stable if it corrasgs to a very small force of in-
fection.

However the global stability of the model still an interagtopen problem. Moreover,
biologically appropriate assumptions for the unique exist of an endemic steady state
is also not yet know.
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1 Introduction

Hepatitis B virus (HBV) infection is widespread in many adf the world, espe-
cially in Africa, Southeast Asia, the Middle East, South &¥elstern Pacific islands,
the interior Amazon River basin, and certain parts of thelibaan (Centers for Dis-
ease Control and Prevention (CDC [7])). By the estimatiothefWorld Health Or-
ganization (WHO [38]), about 2 billion people have been itddcwith HBV. An
estimate of 600,000 persons die each year due to the aculeamic consequences
of the virus (WHO [38]).

Hepatitis B is transmitted through body fluids like bloodns®, and vaginal se-
cretions. One of the most important factors influencing ttedability of developing
of HBV is age. Acute HBV infection causes chronic (long-t¢infection in 30-90%
of persons infected as infants or young children and in leas 6% of adolescents
and adults (Shepard et al. [34], Goldstein et al. [22]). Asparsuffering from a HBV
infection can progress to a symptomatic infection or to anrgtomatic infection.
(McMahon et al. [31]).

According to CDC [7] and WHO [38], risk for chronic infectios inversely
related to age at infection: approximately 90% of infectefdmts and 30% of in-
fected children aged under 5 years become chronically iefecompared with 5%
of adults. This difference in the evolution of infectionrimtiuces naturally differential
susceptibility.

Many mathematical models have been proposed to investigateansmission
dynamics of HBV in various countries and regions in the wochvering many top-
ics: sexual transmission of HBV which includes heterogeseaunixing with respect
to age and sexual activity [2]; relation between the agefattion with HBV and the
development of the carrier state [12]; HBV transmissionémealoping countries [30,
13,40]; the long-term effectiveness of the vaccinatiorj;[détermined the prevalence
of infection [32]. Age-structured models have also beemusenodel the transmis-
sion dynamics of HBV by some researchers (see for instanceuds et al. [12],
McLean and Blumberg [30], Zhao, Xu, and Lu [41], Zou, Ruan Zhdng [42,43]).

Mathematical models can provide a powerful tool for invgeting the dynamics
and control of infectious diseases. Optimal control thgangvides a valuable tool
to begin to assess the trade-offs between vaccination aathtent strategies. Op-
timal control is a mathematical technique derived from th&waus of variations.
Anyhow we can give suggestions to the public health autlesriatbout the effects
of a particular control policy with respect to others, andhis context the analysis
and simulation of mathematical models may become a powtrdliin the hands of
the above authorities. Several HBV intervention optiorai¢c controls) do exist.
Individual with HBV infection require a special treatmeatdvercome the infection.
As for preventive measures, vaccination strategies camhgaer to reduce the size
of the epidemic. There have been numerous works on optinraraloof the epi-
demics (see for example Emvudu et al. [16,15], Bowong [6]ldeet al. [33] and
references cited therein). In the context of optimal cdrif@ge-structured popula-
tions Anita [3] consider optimal harvesting in single egoatcase. Da Prato et al.[8]
treated boundary control involving the birth rate for a LatidcKendrick equation.
Barbu et al. [4] also examined a boundary control problenhait application to an
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epidemic model. For work involving optimal control of ingé@ting species see Fis-
ter et al. [21] and references cited therein. For the exégtesf an optimal control
of age-structured dynamics, see Ekerland variationatjpi@ [17]. Reader may also
consult Feichtinger et al. [20] for the necessary optiradnditions.

This paper builds on the existing works mentioned above disclie gaps ob-
served in these works. In view of the usefulness and the ruimeestigation on the
spread of HBV within a population and taking into account attwious age struc-
ture, the perinatal infection of HBV and death directly tethto HBV infection, we
propose an age-structured model for the transmission diggsashHBV with differ-
ential infectivity: symptomatic and asymptomatic HBV iofions. We do an in-depth
optimal control for an age-structure HBV dynamics whichhe awuthor knowledge
has not been addressed in the literature.

The rest of the paper is organized as follows. In Section Zpweulate the model
without optimal intervention strategies and present théheraatical analysis of the
model. More precisely, we formulate the model, show theterie of semi flow,
compute the basic reproduction number, compute and stegtdbility of steady
states (free and endemic) and perform the sensitivity aisabyf the initial model pa-
rameters to determine the impact of control-related parars@n outbreak severity.
In Section 3, we introduce three intervention strategiascination effort of young
susceptible individuals, the effort to prevent perinatééction and the treatment of
people with HBV symptomatic infection. Using optimal casittheory (see [20,4,21]
and refs. cited therein) and numerical simulations, werdetee the cots-effective
balance of three interventions methods which minimizes H&8¥ted deaths as well
as the costs associated with intervention. Finally, we sctiee effectiveness of bal-
ancing multiple intervention methods (or vaccination ofigg adults) relative to the
two other optimal strategies of one intervention methochal@ireatment of symp-
tomatic infections or prevention of perinatal infectionSpnclusion and discussions
end the paper in Section 4.

2 Model formulation and mathematical analysis
2.1 The model

Herein, we propose an age-structured model to study thertriasion dynamics of
HBV with differential infectivity: symptomatic and asynghatic HBV infections.
We divide the total population into seven sub classes: tlopgstion of suscep-
tible to infectionS(t,a), those immune following vaccinatio¥i(t,a), latently in-
fected progressing to symptomatic HBV infectidnét), latently infected progress-
ing to asymptomatic HBV infections:(t), symptomatic HBV infectionb(t), asymp-
tomatic HBV infection<C(t) and recovered from HBV infections with protective im-
munity R(t).

First of all, let us answer the following questiomhy consider an age-structured
for susceptible and immune classds® well know that symptomatic and asymp-
tomatic HBV infections are age-dependent. Indeed, the ghility to progress to
symptomatic infection at ageis given by [41]:
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a(a) = 0.9153552- 0.706004 *78771%, 1)

Hence, we find that risk of asymptomatic HBV infection is irsedy related to
age at infection (see Fig. 1).
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Fig. 1: Probability to move to symptomatic infection at age

We now briefly describe the model. We define the force of indedby A (t,a) :=
B(a)(l(t) + tC(t)) as the product of transmission rafia), and the number of in-
fectious individuals at time. 7 is the reduced transmission rate. Then infected in-
dividuals move to the exposed class in two groups at rat@A (t,a)S(t,a) and
(1—a(a))A(t,a)S(t,a) for symptomatic and asymptomatic infections respectively
Thatis [’ a(a)A (t,a)S(t,a)daand [3°(1— a(a))A (t,a)S(t,a)daare the number of
infected individuals progressing to symptomatic and aggmptic infections respec-
tively at timet; whereinw is the upper bound of age of people in the model. Suscep-
tible individuals are immune by vaccination at rg{@) and the immunity to HBV is
assumed to wane at rafe Rates moving from latent infection classes to infectious
classes arg and & for symptomatic and asymptomatic infections respectiviebr
symptomatic and asymptomatic classgsand uc are HBV-related death ratep,
andy, are rates of recovery from HBY(a) andy; are the natural mortality rates of
the host population. Now, let us describe the dynamics ohtveborns. We define
the proportion of newborns with successful vaccinatioriby 6)b as the product of
proportion of birth with successful vaccination-¥ and the equilibrium birth rate.
Among the proportion of newborns without successful vaatam 6b, some of them
will be infected by their carrier mother at rateand would move to an asymptomatic
infection. That isb8(1 — vC(t)) is the proportion of susceptible newborns at titme
andbOvC(t) is the proportion of newborns with perinatal infection ateit.
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Table 1: Parameters values used in numerical simulation

Parameters  Description Values Ref.
p(a) vaccination rate of susceptible 0-1
U1 natural mortality rate 0.0132/yr WHOI39]
W, U HBV-related mortality rate 0.2%lyr CDCI[7]
T Reduced transmission rate 0.16 Edmunds et al.[13]
y rate moving from latent infection to
symptomatic infectiousness 6/yr Edmunds et al.[13], CDCJ[7]
) rate moving from latent to
asymptomatic infectiousness 6/yr Edmunds et al.[13], CDCJ[7]
b equilibrium birth rate 0.0380/year WHO[39]
1-6 proportion of births with successful vaccination 0-1
[1/] rate of waning vaccine-induced immunity 0.1 Edmunds et al.[14]
Vi rate moving from symptomatic infectiousness
to recovered 4.8lyr Edmunds et al.[13], CDC[7]
Vo rate of moving from asymptomatic infectiousness
to recovered 0.025/yr Edmunds et al.[13], CDCJ[7]
% proportion of perinatally infected
(from chronicle infectious mothers) 0.11 Edmunds et al.[13]

Then, age-structured model for the transmission of HBV &cdbed by the fol-
lowing system:

0S(t.a) | oSt.a)

= QUV(taa) - (/\ (taa) +Hi+ p(a))S(t,a),

ot Ja
ov(t, a)+5V(;a) p(a)S(t,a) — (Y+ up)V(t,a),
dLI _ A(t,a)S(t,a)da— (1 + y)Li(t),
/ At @)St,a)da+bovC(t) - (i +O)Le(t), ()
d(lji(tt): i(0) = (v +pa+ p)1 (),
d%t) = OL¢(t) — (Yo + M1+ He)C(L),
dR(t)

—— = nl(t) +1CH) — mR(1),
with the initial and boundary conditions

St,0) = 6b(1—VvC(t)); S(0,a)=S(a); V(t,00=(1—6)b; V(0,a)=Vo(a),
Li(0) = Lio; Lc(0) =Leo; 1(0)=1lg; C(0)=Co; R(0)=Ro. .

The model parameters are described in Table 1.

In order to deal with system (2) we first provide a parametducéon by intro-
ducing the following unknown functiorst,a) = S(t,a)et1?, v(t,a) =V (t,a)et?.
Therefore, by introducing the vector-valued functmr(l@ (L ( t),Le(t),1(t),C(t)" =
(W) g V(6 = (S ) V()T = (Y1,y2)Ts & = (1,0), 1n = (1,...,1) € R",
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e=(0,0,1,1) and the usual scalar product.) as well as the matrices

00 a(a) 10(a)
Fl(a) _ <_p(a) Y ) , Fz(a) _ 001- a(a) T(l_a(a))

p(a —y 00 O 0 ’
00 O 0
—y 0 0 0 (4)
0-8 O bov 10
B=ly o —(m+m) O ’E1_<00>’
0 9 0 —(1+ He)
Fa=(0,0,y1,¥2),

system (2) rewrites as
dy(t,a)  dy(t,a) _

—B(a){e u(t))Ery(t,a) +Fu(a)y(t,a),

ot ot
S0 = [“1@p(@ eyt ) R(@).ut)da+ (R diag—pu)) uv), (6)
dR(t)

gt = (Fau(t)) — tR(),
supplemented together with boundary condition and intéia

Y(t,0) = (6b(L— vus(t); (1 O)b)" ©
{ y(o?) = yO() € Ll(ov vaz)a U(O) =Up € R47 R(O) =Ry,

whereinl (a) := e 12 is the survival function which is the proportion of indivials
who survive to age.

In what follows, we shall discuss the asymptotic behaviosystem (5)-(6) and
we will make use of the following assumptions.

Assumption 1 We assume that: i, ui, Uc, v, Vi, Vo, W, 6, v, d are nonneg-
ative constants, () is nonnegative function whilg(.) u(.) and a(.) belong to
LT (0, w,RY).

2.2 Existence of semiflow

We shall deal with the integrated semigroup approach inted by Thieme [35].
We also refer to Djidjou et al. [9] (see also references ihgre

Let us introduceX = R2 x L1(0, w,R?) as well as its positive con¥, = R? x
L(0, w,R2) and the linear operatdk: D(A) c X — X defined by

DA~ (0} w00, A(% )= (). o

Next consider the Banach spaXe= R* x R x X andX, =R x R x X, en-
dowed with the usual product norif||. LetA: D(A) € X — X be the linear operator
defined by

D(A) = R* xR x D(A), A:diag(—ul,ﬂ). @8)
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Note that the domain of operatéris not dense itX because of the identity
D(A) = R® x {0z} x L}(0,w,R?) # X.
Finally, let us introduce the nonlinear mip D(A) — X defined by

F ((u,R0g2,y)") = .
( Jo’1(a)B(a)(e1,y(a))F(a)uda+ Fsu )
(Fa,u) — 1R :
(6b(1—vus); (1 0)b;Fi(a)y — B(a)(e u)Ery)

By identifying ¢ (t) together with(u(t), R(t),0g2,y(t,.))" and by settingpo =
(Uo,Ro,0g2,Yo(.))T, one obtains that system (5)-(6) rewrites as the following-n
densely defined Cauchy problem:

dzi) AP(t)+F(p(t),t>0 and ¢(0)=¢docDANX,.  (9)

We setXo=D(A), Xor = XoNX,, o = {¢ € Xo. : ||¢|| < b/u1} and the precise
result is the following theorem.

Theorem 2 Let Assumption 1 be satisfied. Then there exists a uniquegbgroontin-
uous semiflovfU (t) : Xo — Xo};~o Such that for eackpo € <7, the mapp € ¢ ([0, w), )
defined byp =U(. )¢o is a mild solution of(9), namely, it satlsf|e$O ¢ (s)dse D(A)
and¢(t) = go+A [3 ¢ (s)ds+ S F(@(s))ds Vt > 0. Furthermore{U (t) },-, satisfies
the following properties: -

(i) Let U(t)¢o = (u(t),R(t),0g2,y(t,.))T; then the following Volterra integral for-
mulation holds true:

eJatFl —B(a){eu(o) Eldoyo( t); ifa>t,
V(L) =\ g8 Ri0)-BloNeut)Edoy (4 0): ifa <t.

withy(t —a,0) = [Bb(1— vus(t —a)); (1— 6)b] .
(ii) For each¢o € <7 one has for allt> 0

(16.00)+RO+ [ 1(@)(12.y(2)da < :’1

(i) The nonempty compact sef is invariant under the semiflow U, and the subset
&/ attracts the bounded sets of Xunder the semiflow U.

Proof The proof of this result is rather standard. Indeed it is éassheck that op-
eratorA satisfies the Hille-Yosida property. Then standard metlumgies apply to
provide the existence and uniqueness of a mild solutionyfstesn (5)-(6) (see, for
instance, Refs. [28, 35,26, 9]). Next the Volterra intedoamulation is also standard
in the context of age-structured equations and we refer tg Bg] and the references
cited therein for more details. Estimates stated in (ii¢clity follow from the system
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of equations. Let us assume for a moment gt W1(0, w, R?); then adding up
the equations of system (5) yield&) < b— pyv(t), that is

b b
v(t §+e“1t(v0—), 10
0= - - (10)
whereinv(t) = (14,u(t)) + R(t) + [5°1(a)(12,y(t,a))da From where one deduces
estimate (ii). It remains to prove (iii) and this is a direohsequence of (10).

2.3 Mathematical analysis
2.3.1 The disease-free steady state and reproductive numbe
The disease-free steady stat&®s= (0,0, ORz,sO(.),vo(.))T , Where
L@ =b [9; J§(g+p(m)dn | wf;effé‘(wp(n))dndg} (@) =b—L(a).

For the computation of the basic reproduction number, wehesaext generation
operator approach as described by Diekmann-Heesterbet{1@], Inaba[27] and
Djidjou-Ducrot[9] to define the basic reproduction numh@g, as the number of
secondary infections that one infectious individual wottéate over the duration of
the infectious period, provided that everyone else is qigie.

In the early stage of the epidemic, the dynamics of the pojonlaan be described
by the linearized equation at the disease-free steady BfatSince the linearized
equations for infective population does not include otlhiap®pulations, we find that

Ho

V11V33 V22Va4

1/2
LIy S(He+bBY) ( VA +6(,)£/c—b9v)>2 45%00v.7:\
V11V33 V22Vaq )

2 V3aVia

(11)
whereinz = [§°B(a)a(a)l (a)s’(a)da, A =T [3° B(a)(1—a(a))l(a)s’(a)da, vi1 =
Ui+ VY Voo = U1+ O; Va3 = Y1 + W + U1; andvag = Vo + He + 1.

Remark 1

1. We can also follow van den Driessche and Watmough[36],btaiio that the basic
reproduction number, defined as the expected number of dagoinfections pro-
duced by an index case (Anderson and May[1]), is given by

o SUtetbOY) |yt

. (12)
V22Va4 V11V33
In fact, simple calculation shows thaty < 1(= 1,> 1) is equivalent to@o <1(=
1,>1).

2. Actually, it's more easier to interpret the terry than the termzo. In fact, ac-
cording to (12), we can observe that the first fraction in th $s the number of
secondary infections induced by asymptomatic infectiortsthe other is the num-
ber of secondary infections induced by symptomatic infei
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2.3.2 Global stability of the disease-free steady state.

We have the following result about the global stability af tisease-free steady state.

Theorem 3 Under Assumption 1, the disease-free steady &3ie globally asymp-
totically stable ifZy < 1 and unstable iy > 1.

Proof Since{TA0 (t)}t>0 the semigroup generated By the part ofA in D(A) satis-
fies||Ta,(t)|| < Me !, vt >0, for some constaridl > 0. It follows thatwesd Ao),

the essential growth of rate qfTa,(t) },.q is, < —pu. Let {T(A0+DF(E°>)(t)}t>0

be the lineaiCo-semigroup generated KA+ DF(EO))0 the part ofA+ DF (E°) :
D(A) € X — X in D(A). SinceDF (E?) is a compact bounded linear operator, it fol-
lows that (Ref. [11] an references thereingd A+ DF (E®)) < —p;.

Now, let us assume tha#o > 1. Letw = (W )j=1,..4 € R% u= (U)i=1..4 € R4
and using the linearized equation of system (5) at the distrae steady state, let us
consider the resolvent equation:

(zl—¥Y)w=u, ze CandRe(z) > — 1. (13)
with

-vi1 0 74 G
0 —vop ¢ Jc+DbOBv

V= y 0 —vs3 0
0 o 0 —Vaq
Then, one has
(I -T@))w= ( i )T : (14)
Z+Vi )iy 4
whereT (z), z€ C, is 4x 4 matrix defined by:
0 0 Z%}f\él Z+\I|1é
0 0 Z—(H/lczz E}ZC—:—VZZV 15
T(Z) - Z+)\/I 0 0 0 ( )
33 5
0 =5- TV 0 0

Let us observe that the basic reproduction ra#@is the spectral radius, denoted
by r (T(0)), of the generation operatdr(0). (See Ref. [26] and references therein).
Then, we claim that (see Appendix A for the proof):

Claim There exists a uniqua > —Vmin := —Min(Vii );_y 234 such that (T(z)) =1

andzp > 0if r(T(0)) >1;2=0ifr(T(0)) =1;,20<0 if r(T(0)) <1, anditisthe
dominant characteristic root, as

20 > sup{Re(2) : € 5°\ {20} };

where>?:= {ze C: (I - T(2)) is not inversiblg is the spectrum of".
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Therefore, the disease-free steady state is locally astioglly stable if%y =
r(T(0)) < 1 and unstable i#Zo =r (T(0)) > 1.

The second part of the proof deals with the global stabilityhe disease-free
steady state. Let us considef C Xy, , the global attractor df provided by Theorem
2. Let (uo, Ro,0g2,Y0) € «/ be given and le{¢ (t) = (u(t),R(t),0p2,Y(t,.)) };cr be
the entire solution o) passing trougliug, Ry, Og2,Y0). Sinces(0,.) < so( ) for all
(U0, Ro,Og2,Yo) € <7, we deduce tha(t,.) < s°(.) for allt € R. One may consider the
functionalV defined for each entire solutions Yy ¢] (t) = d.u(t), where the positive

constant vectod € R? is defined byd; = y‘fﬁl, dy = u‘z‘fa, ds = m and
_ 1
4 = St _
Next, using system (5) we obtain
av t
VIO < (1) e uty. (16)

Hence, we infer from the definition ofy, thatt — V [¢] (t) is decreasing along the
entire solutions o). To conclude our proof, left,}n>~0 be an increasing sequence
tending to— asn — 4o and consider the sequence of niaft) = ¢ (t +tn). Note

that one had/ [¢n] (t) =V [¢](t +tn). Up to a subsequence one may assume that
Pn(t) — @(t) asn — +oo locally uniformly fort € R, where{@(t) }icr C 7 is an en-

tire solution ofU. SinceV is decreasing, one obtains thag] (t) = tHmmv (] (t) =

supv (9] (V).
By settingd = (0,R,0g2,9), (16) yields tol(t) = 0 while § = (s°(.),\°(.))T.

HenceV [§] (1) =0 and 0< V[$](t) <O fort € R and ¢(t) = E°. This end the
proof of Theorem 3.

2.3.3 Disease-endemic steady states.

The existence and uniqueness of the disease-endemic stestdyed in Theorem 4
and proved in Appendix B.

Theorem 4 Let Assumption 1 be satisfied agfd > 1, then there is a unique disease-
endemic steady stat&* of systen{5)-(6).

Now, we investigate the stability of the unique endemic dyestate. The lin-
earized system (5) at the endemic steady sEite- (u*,R*,{Og2},y*(.)) can be
written as

d¢( )

=Ap(t) +Fed(t), (17)
with ¢ (t) = (u(t), R, Og2, y(t, .)) and where the linear operats is given by

(U080 () = .
@B ey (@) Fa(@ult)dar (€1 (@)B(a) e, y(t.a) @ da Fult)
(Fa.u(t) — paR() .

(—bBvua(t); 0;Fi(a)y(t, a) — B(a) (e u)Ery(t, @) — B(a){ ,U(t)>E1Y*(a)218)
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Since the linearized stability principle holds for the agrictured population
system (5) (Ref. [37]), the endemic steady state is localyngptotically stable if
the trivial equilibrium¢ = 0 of the linearized system (17) is locally asymptotically
stable, while the endemic steady state is unstalge=i0 is unstable in (17).

In order to see the linearized stability by calculating tesalvent spectrum, let
us consider the resolvent equation for the linearized dpera

(zl—(A+F))w=u, weD(A), ueX, zeC.
Letw= (.),%.),Li,Lc,C,1,R) andu= (us(.), ua(.), Uz, Us, Us, U, U7). Then we have

S(a) = —(z+B(a)(I" + 1C") + p(a))S(a) + Yv(a)

—B(a)s'(a)(1 +1C) + w(a), (19)

V(a) = —(z+¢)V(a) + p(a)s(a) + uz(a),
A = (I*+TC*)/0wa(a)I(a)B(a)sTa)da (20)
+(I + r(f) /Owa(a)l (a)B(a)s* (a)da— (1 + y)Li + Us, (21)

A = (1" +1C°) /Ow(l— a(a))(@)B(a)5a)da-+bovC + us

+(1+1C) /Ow(l— a(a))l(a)B(a)s’(a)da— (p +J)L, (22)
ZEZ VEi—(V1+I11+Il|)|_j-U5, (23)
2C = 8Le— (Yo + 1+ He)C+ Ug, (24)
R= yil +%C— R+ uy,

§0) = —bBvC; V{0) =0. (25)

Equations (20) and (19), coupling with (25), respectivelyeg
-a
Wa) = [ (pl0) + uz(0))e * ¥ (a- 0)8l0)do,
0
and
@) = —bOvCe /6 (@HBM(I*+1C)+p(n)dn
+J51us(0) +Y¥(0) ~ B(0)s (0) (I + TC) e [e =B HTCTwpm)dn g,
From (23) and (24) it comes that

Li=2(z+vag) =8, Lo=3(z+Vaa) — . (26)
Substituting (26) into system (21)-(22) we have
(1-B@)(1,07 = (X1, x2)"; (@7

whereB(z), z€ C is 2x 2 matrix defined by

B(Z) = (E;E§§ Bz(z?ﬁngev ) ) (28)

V22Va4
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W

yJo' a(@)(2)B(a)s" (a)da. Bo(2) = 3 Jo’(1-a(a))l(a)B(a)s’ (a)da

@iz Tz and

whereinB;(z) =

y(I* +1C°) o’ a(a)l(a)B(a)s'(a)da | us

X (z+v11)(Z+V33) Z+ vz’
B (1" +1C*) [’(1—a(a))l(a)B(a)s'(a)da Ug
X2 = + .
(Z+V22)(Z+Vaa) Z+Vay

We can observe th&(0) < H, whereH is the next generation operator at the en-
demic steady state given by (48). Sirtdas also irreducible, its spectral radius is the
Frobenius eigenvalue corresponding to the unique postiigenvector. 1{%y > 1,

H has a positive fixed point (see Theorem 4), that(i$) = 1. Hence from Perron-
Frobenius Theorem we obtain thgB(0)) < r(H) = 1. Let =* be the spectrum of
A+ Fe. By using the same argument as the proof of Claim 2.3.2, wevkhat the
dominant characteristic root i6* is given as the unique real rootdfB(z)) = 1 and

it is less than zero if(B(0)) < 1. Then it follows that the endemic steady state is lo-
cally asymptotically stable. Therefore, we obtain thedwihg result on the stability
of the disease-endemic steady state.

Theorem 5 Let Assumption 1 be satisfied aggh > 1, then the disease-endemic
steady stat&* of systen(5) is stable.

2.3.4 Numerical illustrations

Numerical simulations are based on some main parametedsousterived in Zhao,
Xu, and Lu[41]; Zou, Zhang and Ruan[42] for HBV infection.
We first have the transmission coefficighta) given by

~ [0.13074116-0.01362534a+ 0.00046463° — 0.00000488%; 0 < a < 47.5,
Bla)= { B(475); a> 475

(29)
The remaining parameters are given by (30) and Table 1.

o
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Fig. 2: The behavior of system fgr= 0.12, 6 = 0.6 and %y = 1.4796. All other
parameters are given in Tab. 1 and Egs. (29)-(1).
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Using a constanp for p(a) (vaccination rate at ags®, we simulate the behavior
of the model.

We observe the behavior of the system o= 0.12. In Figure 2,6 = 0.6 such
thatZo = 1.7499> 1 (%o = 1.7522> 1). This indicates that hepatitis B is endemic
in the host population.

2.3.5 Sensitivity analysis

We carried out the sensitivity analysis to determine theehaabustness to parameter
values. That is to help us know the parameters that are mistmial in determin-
ing disease dynamics. A Latin Hypercute Sampling (LHS) sehéMarino et al.
[29]; Blower et al. [5]) samples 1000 values for each inpuap@eter using a uniform
distribution over the range of biologically realistic vahy listed in Table 2 with de-
scriptions and references given in Table 1. Using the sysfatifferential equations
that describe (2) and a time period of 500 months, 1000 mahellations are per-
formed by randomly pairing sampled values for all LHS pargargee Four outcome
measures are calculated for each run: the maximum and in¢abfsthe symptomatic
and asymptomatic infected population over the model’s span. Partial Rank Cor-
relation Coefficients (PRCC) and correspondpgalues are computed. An output is
assumed sensitive to an input if the corresponding PRCGsdien-0.50 or greater
than+0.50, and the correspondirgvalue is less than 5%.

To examine the impact of the mass group vaccination of stibtei.e. for a
specific age group of susceptible individuals) on the spoédble disease, we con-
sider two age groups: € a <5 (years) andh > 5 (years). The vaccination rate of
susceptiblep(a) is then defined by:

p1 per year; 0< a <5 (years)
p(a) = { 0 per year;a> 5 (years) (30)
whereinps is the vaccination rate of susceptible for the specific agemr

The sensitivity results suggest that maximum monthly symmgitic and asymp-
tomatic infections and the total size of symptomatic infatbutcome measures are
sensitive to changes in the parametersy,, Uc, v, 0, 6, v, y1 andy.

The sensitivity results suggest that the control of theepid of hepatitis B virus
pass through a combination of immunization of newborns, imization of suscepti-
ble individuals (at least young adults), and reduction oiiffagal infection. Therefore,
although the proportion of perinatal transmission of theedse is low, this factor
should not be neglected in the transmission of HBV. HBV calkb be eliminated
if the transmission coefficien(.) is sufficiently small. However, it is difficult to
control B3(.).

3 Optimal intervention strategies
3.1 Extended model with intervention methods

Several HBV treatment and intervention options do existe freatment of HBV
asymptomatic infections is not considered here againstiaagcial trade-off. On the
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Table 2: Sensitivity analysis of the model without controls

LHS-PRCC sensitivity analysis

Parameter| Parameter ranges PRCC values
Min Max Maximum Maximum Total size of

symptomatic asymptomatic  of all infected
infection infection classes

p1 0.001 0.99 -0.87 -0.70° -0.83

I 0.001 0.05 -0.87 -0.69 -0.82

Hc 0.001 0.05 -0.86' -0.68 -0.82

y 0.001 0.99 -0.86° -0.68 -0.81¢

o 0.01 0.8 -0.86° -0.67" -0.82

6 0.001 05 -0.86° -0.67" -0.83

1% 0.001 0.3 -0.86" -0.68 -0.83

Vi 0.01 0.3 -0.87 -0.70° -0.84

Vo 0.01 0.05 -0.87 -0.70° -0.84

LAsterisks indicate the correspondipgvalues which represent the significance of a nonzero PRCC:
denotes g-value bellow 0.001

other hand, individual with HBV symptomatic infections vé@ a special treatment
to overcome the infection. As for preventive measures, @eTination strategies can
be consider: the immunization of young adults (at leastesutifnle with the age less
than 5 years old) and the reduction of perinatal infectidroSe interventions are also
supported by the sensitivity analysis.

Three interventions strategies, called controls, araigeinto our initial model.
Controls are represented as functions of time and assigeesbmable upper and
lower bounds. First, vaccination effort moves susceptibtividuals agea to im-
mune class at rati (t,a) at timet. Second, the effort to prevent perinatal infection
is at rateh,(t) at timet (i.e. the screening of pregnant women for a potential asymp-
tomatic HBV during each pregnancy). Thillgs(t) is the proportion of people with
HBV symptomatic infection who receive treatment at tim&hose receiving a treat-
ment are assume to have an increased rate of recojery i) and a decreased rate
of death due to HBV [ < ).

Using the same parameter and class names as model (2) aediTaé system
describing our model with controls is:
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0St.3) | 0SLA) _ ¢ ) (At.a) 4+ + pla)(1+ ha(t,a)S(t.a),

ot doa
dvét{ 3, av(;;a) = p(a)(L+hy(t,a))S(t.a) — (Y+ p)V(t.a),

d'gt(t) = (1(t) + TC(t)) o (t) — (L1 + y)Li(t),
dl:jcit(t):(I(t)+TC(t))q2(t)+b6v(1—h2(t))(1 ha(t,0))C(t) — (H1+d)Lc(t),
OLU — YLi(t) — pial () — (v + f) (L= ha(t)1 (1) — (74 + ) ha(t)1 1),
g%l:adu—m+m+mﬁm7

d%@ = Va(1— ha())1 (1) + Faha() (1) + C(t) — (),

S(t,0) = 6(1—hy(t,0))b(1 - v(1—hp(t)C(t); V(t,0) = (1 - 6(1—hy(t,0))b,

(31)
with gy (t) = fo’ a(a)B(a)S(t,a)daandgy(t) = [o’(1—a(a))B(a)S(t,a)da
Settingy(t,.) = (V(t,.); S(t.,))T andx(t) = (Li(t),I(t),Le(t),C(t))" system (31)
becomes

(6 +da)y(t,a) =f(t,a,y(t,a),hi(t,a)) :=f(t,a)
X(t) = g(t,x(t), qy(t), ho(t), hs(t )) =9(t), (32)
y(t,00=¢(t); y(0,.) =y°():=(V(0,.);50,))"

(
x(0) = x%:= (L;(0),1(0),L¢(0),C(0

whereing(t) = (d(t), g2(t)) T andg (t) = [(1 - 6(1— hy(t,0)))b, B(1— hy(t,0))b(1— v(1— ha(t))C(t))).
Moreover,f(t,a) is given by the right-hand side of (31) for t&, S)-compartment;
gt) == (gi(t )),T 1...4 With g1, g2, g3 andgs given by the the right-hand side of (31)

for thel, I, L; andC- -compartment respectively.

3.2 Optimal control problem

A successful scheme is one which reduces HBV-related deaths minimal cost.
We assume that the control scheme is optimal if it minimibesabjective functional

I, heshe) = [ " Loft.x . ha)dt + A " A “Litayhdad,  (33)
with
Lo(t, X, ho, hg) =B[fithg(t)I (t) + (1 —hs(t)) I (t) + HcC(t)] + Bshs(t)1 (t)
+ Agh3(t) + Boha(1)C(t) + A2 (1),
L(t,a,y,h1) =Bi(a)hy(t,a)(S(t,a) + Li(t) + Le(t) +C(t)) + Ar(a)hi(t, a),
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and whereB, By, By, B3, A1, A2, Az are balancing coefficients transforming the inte-
gral into cost expended over a finite periodlgfmonths (See Tab. 3). The first sum
in the first integral, multiply byB, is the cost of death due to HBV and the remaining
expressions (for both integrals) are costs for implemanidbr the three controls.
Quadratic expressions of the controls are included to atdioon-linear costs po-
tentially arising at high treatment levels. The tefim+ L. + C) in the cost function

is due to the fact that individuals i@ and the two latent classes probably would be
vaccinating without any effect on them, but those vaccoretiwould cost.

Table 3: Cost coefficients in objective functional

Parameter  Value

B 2000 USD per human death

B1 50 USD per vaccinated individual

B, 195 USD per perinatal infection prevention

Bs 800 USD per month of treatment

A 10 USD per (vaccination rate)

A2 10 USD per (perinatal infection prevention ré&te)
A3 10 USD per (proportion off treated§

The problem now is to findh;, h3, h%) satisfying

J(hy, Mg, hg) = minJ(hy, hz, h), (34)

on the control set
% ={((h1,h2,h3)) € L®(2) : 0 < hy(.,a) < himaxd(@);0 < ha(.) < homax 0 < hz(.) < hamax},

where2 := [(0,T) x (0,w)] x (0, T¢) x (0, Ts); hamax hamaxare given positive con-
stants andhymax(.) is given measurable positive function.

3.3 The necessary optimality condition

To deal with necessary optimality condition, we will make ud the results in Fe-
ichtinger et al. [20] and references cited therein. We ohiie the following adjoint
functions (Ay (t,a),As(t,a)); (AL (1), A1(t), AL (t),Ac(t)), considered as row-vector
functions (whiley, x are column-vectors). We also define the following functiona

Ho(t, h2, ha) = Lo(t, X, h2,h3) + g1 (t) A (1) + Ga(t)Ar (1) 4+ ga(t) AL (t) + Ga(t) Ac(t).
(35)
Below A\, denotes differentiation with respect to the variabléntroducing the
following distributed Hamiltonian (see [20])

H(t,a hi, hp,hg) = Ho(t,ho, hg) + L(t,a,hy) + &(t,a) - f(t, @), (36)
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we find that the adjoint system is given by

—(G+da)& (t,a) = AyL(t,a)+ & (t,a) - Ayf(t,a),

¢(Tr,a)=0; &(t,w) =0,
AL = ) =% ) —dHo. ). Mo

Li = a; 9 ' Le = 3. a
AL (Te) = Ai(Te) = AL (Ty) = Ac(Ts) =0,

that is

— (G + 0a)Av = — (Y + H1)Av + PAs,
—(0t+da)As = p(a)(1+hy(t,a))Av — (A(t,a) + o+ p(a) (1 +ha(t,@)))As
_ +Bi(a)hsi(t,a),
—AL = — (M1 +Y)AL + YA,
—Ar = Biyhg(t) +B(1—ha(t)) t + Bsha(t) +qu(t) Ay
(b (1 he() (i A+ ha() (7 i )A + GO,
—AL = — (UL + )AL, + OAc,
—Ac = Buc + Bahy(t) +q1(t)/\Li + (ga(t) + (1 — ha(t))bOV)AL,

—(Y2+ t1+ Hc)Ac,
(37)
with the boundary conditions
Av(Ts,a) = As(Tr,a) = 0;Av (t, w) = As(t, ) =0, (38)
AL (Te) = A (T) = A (Ts) = Ac(T¢) =0.

Note that the final time boundary conditions (transvergaliinditions) are zero since
there is no dependence on the states at the final time in teetolg functional.

Furthermore, if(hj, 3, h3) in % is an optimal control minimizing (33), then it is
characterized by

h; (t,a) = max(0,min (h(t,a), himax(@))) ,
h3(t) = max(0, min (Ra(t), homay) ) » (39)
h5(t) = max(0, min (R(t), hama) )
wherein

- _ p(a)(As(t,a) — Av(t,a))S(t,a) —Ba(a)(S(t,a) + Li(t) + Le(t) +C(t))

hi(t,a) = () ,

. bOV(1— hy(t,0))C(t)AL, (t) — BoC(t)

ha(t) = A ;

focry = At —va— i)l (OA) — B(f — )1 (t) —Bsl ()

3(t) = .

2A3

The control characterizatidif comes fromlW 0 whenever 6< hj(t,a) < himax(@)
and taking bounds into account, and S|m|IarIy for the cdating andhs.

The state system of differential equations and the adjgistiesn of differential
equations together with the control characterization alfokm the optimality system
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to be solved numerically. Since the state equations hatialicbnditions and the
adjoint equations have final time conditions, we cannotestthe optimality system
directly by only sweeping forward in time. Thus, an iterat&lgorithm, "forward-
backward sweep method”, is used (see Emvudu et al. [15, tA]lanmhart et al. [23]).

3.4 Existence of an optimal control

We first give some useful notations for this section. Giveroatl vectorh :=
(hy,ha,h3) € %, the corresponding state variables is denotesvbynd the corre-
sponding adjoint variables by. We also define the mapping : L1(21) x L1(2;) x
LY(22) — L®(21) x L®(22) x L®(22) by £ (H1,Ha, Ha) = (L1H1, LoHz, LoHs)
with

0, if Hi <O,

D%Hi: Hi; ifOSHi<himax; i:1a2a37

himax, if Hi > himax7

andgl = (Ova) X (07 (A)), c@z = (Oan)
Denoting by.2" := 2 x 23, we also define the norf- || (- as follows: for

(Y, X) := (¥i,X)i=1,2;j=1,-.4 € Z,

4
X 9\ = + t,a)dadt+ / Xj|(t)dt,
1029l = [, (vl +el) 6.2 3 Lo, 10

In the same way, ce define the northd| =2, || |l [ lL=(2), |- [IL2(,) and
|| ’ HLW(EZi) (I =1 2)
We embed our optimal problem in the spdcé.2) by defining the following
functional
J(h), ifheZ,

s (b= {M the (40)

To prove the existence of the optimal control, let us inthe following
lemma.

Lemma 6 Let Ts be sufficiently small.
1. The map ke 7 — w" € LY(.2") is Lipschitz in the following ways:

W = WY|1( 2y < TiCallh = Vili1(9),
W =Wl 27) < TrCollh—VllLo(2).

forallh,ve 7.
2. For he %, the adjoint syster(87) has a weak solutioA" in L*(.2") such that

A" = Allim() < TiCal =V,

forallh,ve 7.
3. The functional # (h) is upper semicontinuous with respect td2) convergence.
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Proof See C.

It seen easily that the functiongl : 2 — (—o, o] is lower semi-continuous with
respect to strong® convergence not with respect to welakconvergence. Thus, in
general it does not attain its infimum ¢& Thus we have to circumvent this situation
by using the Ekerland variational principle (see [17]): for 0, there existdy in
L1(2) such that

S (he) < inf 7 (h)+e, (41)
 (he) = min{ 7 (0 + Ve|lhe = hilu o} (42)
Note that, by (42), the perturbed functional
Je(h)= 7 (h)+ Vel lhe —hl| 19

attains its infimum ah;. By the same argument as in Section 3.3, and using the

projection map¥ on % , we find that
Lemma 7 If he is an optimal control minimizing the functiong¥, (h), then
he =2 (F‘l(Wth\ fnf hp(whe AMe) 4 fns ha(w'e, A") + \{)\”ég)
3
wherer; € L*(21); T5,T§ € L°°(Qz ), with |75 (-, | <1, |r()| <1(i=2,3),and

~ /\h A he : _ B e th e he
P (e A1) — 2L e

: bV (L fy(we, AMe) (-, 0))CTeALY — BoCP

e hey ’ Lc

ho(whe ANe) = : 7

h e yhey — (Vl+i:l'_Vl_ﬂl)lh‘g)‘lhg—B(ﬂl—Ill)lhs—Bs;Ih‘g
hg(whs, ANe) = : .

We are now ready to prove the existence and uniqueness oftamabgontroller.
Namely, we have the following theorem.

Theorem 8 Assume that the balancing coefficidatis constant parameteiq(a) =

A1). iF > (1/A1+1/A2+1/A3) is sufficiently small, there exists one and only one
optimal controller K in 22 minimizing_# (h).

Proof Let us start with the uniqueness. Defige: % — % by

y(h) =7 (l”\]l(\Nh’)\ h>7 ﬁ2<\NhaA h)a ﬁ3(vvhv/\h)) 5
whereinw andA" are state and adjoint solutions correspondinly. tdsing the Lip-
schitz properties of" andA" (see Lemma 6), foh,v e %, we find that

PAL- AN By (SHLMHLECY)  pAL-AY)S By (S/+LY+LY+CY)
21 - 2h

|Z1(h1) — L1(V)||Le(2y) =

_ TG
2 [N =VllLe(2)

L*(21)
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By the same argument, we also find that

TiCryj .
1L () = L)l < " [Ih=V|Le(e), =23

Therefore,
3
1
|7 (h) = Z (V)||Le(2) < TiCaal[h=V[L=(2) ) 51 (43)
(@) ( g%

where the constar;; depends on thé® bounds on the state and adjoint solu-
tions and Lipschitz constants.%f (1/A1+1/A2+1/A3) < 1, then the map” has a
unique fixed poinh*.

To prove that this fixed point is an optimal controller, we disiee approximate
minimizersh, from Ekerland variational principle. From Lemma 7 and thatcac-
tion property of%, we have

| R e e T )|
2 23 /o2
[ (awhe, A%), Ra(we, A1), g, m) -
<h1(V\P£ )\hg \fntlg_ \[Tlé h3 Whg hg) \fﬂ‘s)
23 L®(2)
Ve 1
< <VESN —. 44
_‘ 221 || (ay) 2Ai Lw(gz)_fi;ZAi (44)
Consequently, from (43)-(44), we have
Hh*—thwa)f ) )
|7 0) 2 (Rawre. A1) + G Rowe AT+ G2 Rawre A7) 4 G5 )| <
|7 (h*) = Z (he)|Lo 0
|| 7 (he) = 2 (Rawhe A%e) - 58 Po(whe Ae) + 7 (e, Ae) + 2575 ) o)

< TiCua||h* — hel[Lo(2) Siq 25 + VET 1 25

SinceT; 57, 5 is sufficiently small, it comes

31
h* —he|| ooy < VE |[1-TiC1 S — .
I e||L=(2) < [ f 11;12/\i i;Z)\i
thushg — h* in L*(2) and by (41) (ag — 0)

S (h) = inf _7(h).

he
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Fig. 3: Optimal balance of multiple controls. Using the ghoantrols, the proportions
of people receiving treatment and people being vaccinatedteown in the first two

frames, while the proportion of immune newborns from pedehimfection is shown

in the third frame. See Table 4 for the costs of differenttetyees.

3.5 Numerical simulations

Cost coefficients are fixed within the objective functiorg8) and the optimal sched-
ule of the three controls ov@i = 130 months is simulated.

As Figure 3 illustrates, optimal results provide clearlyfetient strategies for
relative application of immunization of newborns from patal infection, vacci-
nation of young adults and treatment of infected individudlhe optimal control
schemes shows that vaccinating at maximum rates initialyptimal in preventing
deaths regardless of the population’s ratio of asymptant@8ymptomatic infections
(see proportion of people being vaccinated, Fig. 3). Vaattm of young adults can
greatly reduce the total number of infected individuals &ndrucial to apply dur-
ing the first few months of the disease detection. Even in bsemce of the other
controls (treatment of symptomatic infection and immuti@a of newborns from
perinatal infection), immediate vaccination of young asluémains a cost-effective
method of minimizing death by preventing severe infections

Optimal three-part intervention strategies provide cdesible reductions in the
severity of the projected outbreaks (see Fig. 4). HBV destreduced by 81.9%
during the outbreak period. Significant reduction of gretitan 55% (resp. 13%) is
also achieved in peak number of symptomatic (resp. asyngitoninfections.

Let us notice that the optimal control problem can be fortaado find the opti-
mal strategy of each intervention method when used alorgurAgg only one of the
three controls is feasible, we set the remaining two costlidentically zero in the
system (31) and in the objective functional (33). Using peeters value in Tab. 1 and
cost coefficients in Tab. 3, the optimal schedule of eachnietgion method is deter-
mined numerically. In the absence of vaccination of youngitacand immunization
of newborns from perinatal infection, the optimal quantfyreatment nearly triples
due to an increased number on symptomatic infections. Fijsplays the corre-
sponding asymptomatic and symptomatic infected populatresulting from each
of the optimal single intervention strategies as well as¢hoorresponding to the
optimal strategy balancing all three controls.

In optimal schedule of treatment alone reduces the numbdeaths by 5.5%
(cost 991.3 USD). The optimal applications of vaccinatidryaung adults alone
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Fig. 4: Dynamics of two infected classes (symptomatic aryngsomatic). Dotted
curves correspond to outbreak dynamics without contraid $urves indicates the
alleviated outbreak dynamics with multiple controls stggt Solid curves indicate a
considerable reduction in the size of the infectious classe
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Fig. 5: Dynamics of two infected classes (symptomatic angiasomatic) of one
control and multiple controls. Comparing the optimal sigis for each single con-
trol, the strategy comprise of only vaccination of young leglis most effective in
reducing the size of both infected classes during the cakbngile also reducing the
death toll. In the absence of the other two controls, prévertf perinatal infections
does little to reduce the size of the epidemic for both irddatlasses. The treatment
of symptomatic infections is effective in decreasing ttze ©if symptomatic infected
classes. According to our model, the optimal strategy lzatgnthe three controls
is close to the strategy comprise of only vaccination of ypadults. (Color figure
online).
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and immunization of newborns from perinatal infection @aaduce the number of
deaths by 79.8% (cost 3.76270° USD ) and 0.02% (cost 428.6 USD), respectively.
The prevention of perinatal infection (only) has no effenttbe outbreack of the
disease. The optimal strategy balancing of three contmwlsgccination of young
adults) is considerably more effective in reducing both H®lated death and total
infections than the treatment of symptomatic infectiongt. tBe strategy of three con-
trols (or vaccination) is approximately 386 times much egiee than the treatment
of symptomatic infections (but 15 times more effective idueing both HBV-related
death and total infections than the treatment only).

Table 4: Costs of intervention strategies.

Intervention:  Prevent perinatal ~ Treatment of symptomatic cWetion of ~ Three intervention
infection infection young adults strategies

Costs (USD): 428.6 991.3 3.76%1C° 3.8335¢10°

4 Conclusion and Discussions

Hepatitis B virus (HBV) infection is endemic in many partstioé world. One of the
characteristics of HBV transmission is the age structurthefhost population and
the vertical transmission of the disease (perinatal irdadrom carrier mothers).

In this paper, we proposed an age-structured model foraineitnission dynamics
of HBV with differential infectivity: symptomatic and asystomatic infections. We
discussed the existence and stability of the disease-fieteliaease-endemic equilib-
ria of the model in terms of the basic reproduction number erformed sensitiv-
ity analysis of the parameters. Then, we consider threeviem¢ion options (called
controls): vaccination of young adults, prevention of HB¥®tipatal infections and
treatment of symptomatic HBV infections. The analyticaluis and numerical sim-
ulations of the model suggest that a optimal control stsaiega combination of
immunization of young adults (at least susceptible withabe less than 5 years old)
and treatment of HBV symptomatic infections.

We also observe that mass vaccination in infants incredmsegaverage age of
infection in unimmunized individuals and shifts the average at infection to older
age groups (see Fig. 6). This indicates that mass vacamnatimfants might be not
enough to control the infection and eradicate the virus (halso supported by Zou
et al.[42]). Different immunization programs can be evéddaby considering the
prevalence of carriers after the implementation of immatian.

A Proof of Claim 2.3.2

The positive operatdF (0) has the Perron-Frobenius properties, roughly speaKifw,is irreducible and
r (T (2)) is decreasing for reale (—Vmin, +-o). Moreover, lim_, .1 (T(2)) = +wand lim_, 1 (T(2)) =
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Fig. 6: Dynamics of susceptible individuals without any wohand with vaccination
strategy only. Mass vaccination in infants (with maximunbofears old) increases
the average age of infection in unimmunized individualsl¢Ctigure online).

0; then the first half of the proposition is the direct conseme of this monotonicity af (T (z)). Next we
show the dominant property @. For anyz € 5° \ {20}, there is an vectogs,, such thafT (z)y; = ;.
Then we havey,| = |T(z)y;| < T(Rez)|yx|. The eigenspace corresponding to the eigenvalli¢R.z))
is one-dimensional subspacelst spanned by a strictly positive functiorfai,,. We obtain that

1 (T(Re2)) [Frez, [W2l] = [FRez, T(Re2) |Wz|] > [Frez, [ W],

where we write the value dir,; at Y; as|[Fr.z, {/;]. Hence we have (T (Rez)) > 1 andRez < zy because
r(T(2)) is strictly deceasing for € (—p1,+0) andr (T (Rezo)) = 1. This end the proof of Claim 2.3.2.
B Proof of Theorem 4

The coordinates dt* satisfied

sa) = gb(l_vc)e*f(Ja(ﬁ(U)(HTCHP(U))dU

G / *\(n)e A BO1+1C)tp@)do g, 45)
0
| +1C (@
Li = “Hy/o B(@)a(a)l(a)h(,C,a)da
|+1C (@ bovC
L = “Hé/o Bla)(1-a@)l(@n(l.C.adat .
-~ y(l +1C) ®
= Gt /0 B(@a(@)l(@n(l,C,a)da, (46)
_ 8+t 0
C= 1)t et v ‘/0 B(a)(1—a(a))l(a)h(l,C,a)da
5bovC
(U1+0)(H1+ He+Y2)’ (47)
V@) = b1-8)e 4+ [ pim)sime ¥ Tan,
R_ vl +y.C
p

whereinh(l,C, a) is the right-hand side of (45).

Using equations (46) and (47) we have the following fixed peiuationH (I,C)T = (1,C)T; where
H(1,C)T = (Ha(1,C),Ha(1,C) )T andHs (1,C); Ha(1,C) are respectively the right-hand side of equations
(46) and (47).
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Thus the equilibrium points are fixed pointstéfgiven by
H(.0)T=(.0)". (48)

The equation (48) implies that at the endemic steady statefbeted population simply reproduce itself.
Therefore we can caHl the next generation operator at the endemic steady statefalhiis used to show
the stability of the endemic steady state in Section 2.3.3.

We use (48) to prove existence and uniqueness of an endenilibegon point. Then we use a
theorem for the existence and uniqueness of a positive figied pf a multi-variable function (see Hethcote
and Thieme [24], Theorem 2.1).

In factH(l,C) is continuous, bounded function. Sinleg®,0,.) = () (the disease-free steady state)
andH infinitely differentiable, then the Jacobian at poif10) is given by

YA VA
(+y)(m+i+va)  (Haty) (bt +ya)

H'(0,0) =
SHe 3(He+bbv)
(1 +0) (M +Hetyo)  (H1+0)(Ha+Hc+Y2)

Thus the functiorH (1,C) is monotone non-decreasing ad¢0,0) = (0,0). Note thatp(H’(0,0)) = %o >
1. Thanks the graph theory, we claim th#{0,0) is irreducible because the associated graph of the matrix
is strongly connected.

Let us now prove thal is strictly sub linear, i.e.H(rl,rC) > rH(I,C), for any(I,C) > 0 andr
(0,1). For instance

rH4(1,C) _ r 5’ B(a)(1—a(a)l(a)h(l,C,a)da <r<i
Hi(r,rC) [’ B(a)(1—a(a))l(a)h(rl,rC,a)da ~ '

and the same argument gives tééf}ﬂ'—% < 1. In this way we end the proof of Theorem 4.

C Proof of Lemma 6

1. Letus sew" := (S, V" LM, 1M, LN CM) and the same for". Using the Volterra integral formulation and
system (31), we find that
118" = i1 (2 + IV =VY[[11(9y) < TeCal| W' = W[ 15y + [N =Vl[ 10 + M2 (,0) Vi (., 0) 1 2,))-
We also find that
(1L 17,8, = (LY, 1Y, LE.CY) L 2y) < TeCs(| W' =W [l a5y + I Ih= VI a0y + [P (,0) = va (-, 0) 1 2,))-
Then, forTs sufficiently small,

(W —wW[| 15y < THCallh=VlL2(9)-

The same arguments can be apply for the second estimate of itendl for item 2. It remains to check
item 3.

3. We suppose thdt, := (hin, hon,hzn) — h:= (hy,hz,h3) in Ll(,@. Possibly along a subsequence
(using the same notatior)Z — h? a.e. on2 by (see [18], p.21). By Lebesgue’s dominated convergence
theorem, it comes lijL ||| 1) = [|N?[[ 1(). We have the similar arguments fgv?|| 1 ). These
handle the convergence of the squared terms in our functional

Next, we illustrate the convergence of one term in the fometi,

[IB1(h1nS™ — 1 S)[11(2,) < [1Billeo 2 [1hn = Dl 1 2) + 1B || [hamad o [ — W[ 1)
< Co(Te)l[n —hllL1( o)
Therefore,
[Z (hn) = 7 (W) < Co(Tt)[n = hl[ 1 o)
Hence we have the lower semi-continuity; (h) <liminf . 7 (hn).
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Abstract This paper deals with the problem of optimal control for the transmission dynamics
of tuberculosis (TB). A TB model which considers the existence of a new class (mainly in the
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1 Introduction

Tuberculosis (TB) is a disease caused by infection with Mycobacterium tuberculosis, which
most frequently affects the lungs (pulmonary TB). At present, about 95 % of the estimated 8
million new cases of TB occurring each year are in developing countries, where 80 % occur
among people between the ages of 15 and 59 Dye et al. (1999). In Sub-Saharan Africa, TB
is the leading cause of mortality, and in developing countries it accounts for an estimated
2 million deaths which accounts for a quarter of avoidable adult deaths Raviglione et al.
(1997). TB was assumed to be on its way out in developed countries until the number of
TB cases began to increase in the 1980s. With this return, we face the paradox of a well-
known bacteria, fully treatable with efficient and affordable drugs according to internationally
recommended guidelines, which yet causes increasing human suffering and death. As the
world is experiencing the devastating effect of HIV/AIDS epidemic, it is now necessary to
ask why we have so far failed to control TB and define the limits of the global TB control
programs Raviglione (2002). Currently, half of the people living with HIV are TB co-infected
and three quarters of all dually infected people live in Sub-Saharan Africa. In Cameroon for
example, it is estimated that in the absence of effective epidemiology statistics, there are
100 new cases for 100,000 habitants per year Bercion and Kuaban (1998). As it is the case
in many subsaharian African countries, the fight against tuberculosis (TB) in Cameroon
is difficult due to the interaction with the Human Immunodeficiency Virus (HIV) Global
Tuberculosis Control (2005) and particularly with the poor socio-economic conditions. We
note that, the statistic studies Boulahbal and Chaulet (2004) prove that many infectious
patients do not take their treatment until the end due to a brief relief or a long time for
complete treatment. Otherwise, some of those individuals can transmit the disease without
presenting any symptom. In this work, we call them lost of sight individuals. In Cameroon,
for example, for a national program of fight against TB , there is about 10 % of infectious
individuals who do not end their treatment and become lost of sight individuals. Lost of sight
individuals are very dangerous for human health, because they are able to transmit the disease
very quickly and discreetly.

In the literature, there are many TB mathematical models Feng and Castillo-Chavez
(1998), Blower et al. (1996), Bowong et al. (2010). The study of these models has an impact in
the control process of the disease. Most of those models are SEIR-models; for those models,
one supposes that the population is subdivided into four epidemiological classes: suscepti-
ble individuals, latently infected individuals (those who are infected but not infectious yet),
infectious and the recovered or cured individuals. The particularity of those type of models is
that, the rate at which susceptible individuals become latently infected or infectious is a func-
tion of infectious individuals number in a population at that time. The class of loss of sight
individuals class (L) has already been taken into account by some authors Tewa and Bowong
(2009), Bowong et al. (2010). Tewa and Bowong (2009) studied an SEIL-tuberculosis model
in which they took into account the low and fast progression of susceptibles to latently infected
and infectious classes, respectively. This model also takes into account infectious individuals
on chemoprophylaxis, and they introduce a constant rate to become cured individuals. In
(2010), Bowong deals with the problem of optimal control for the transmission dynamics
of tuberculosis for an SEI-tuberculosis model using state-dependent Riccati equations. The
feedback control is proved to be capable to reduce the number of individuals with active TB.

This paper considers the optimal control problem of the dynamic transmission of tubercu-
losis. We present a SEIL-tuberculosis model [based on the model presented in Tewa and
Bowong (2009)] that incorporates the control mechanism, representing the case finding
efforts. This is incorporated by adding a control term so that the rate at which infectious
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individuals become lost of sight individuals will be reduced. Our model also presents the
essential biological and epidemiological features of the disease such as exogenous reinfec-
tion and chemoprophylaxis of latently infected individuals. The model is shown to exhibit
the phenomenon of backward bifurcation, where a stable disease-free equilibrium coexists
with one or more stable endemic equilibria when the associated basic reproduction number
is less than unity. Comparing to existing results Bowong (2010), our work differs from these
studies in that we completely analyse a SEIL-tuberculosis model that incorporates the con-
trol mechanism and we address the question of controlling the disease, our policy based on
decreasing the number of people going to the class of lost of sight individuals. We first for-
mulate a mathematical model taking into account our control mechanism. Then, we perfect
a mathematical analysis of the controlled model where we compute the basic reproduction
ratio of the controlled system. We then define a cost function so that we could deduce the
optimal control function. A huge part of this work is to compute the solutions numerically
and then draw a conclusion about the efficiency of the control. Numerical simulation shows
that the proposed optimal algorithm permits the reduction of the number of lost of sight
individuals accounting the control effort.

2 The model

We consider a population of N people. We assume that latently infected individuals (inactive
TB) have a variable (typically long) latency period. At any given time, an individual is in
one of the following four states: susceptible, latently infected (i.e., exposed to TB but are not
infectious yet), infectious (i.e., have active TB but are in a care center) and lost of sight (i.e.,
have active TB but are not in a care center). We will denote these states by S, E, [ and L. Every
recruitment is into the susceptible class, and occurs at a constant rate A. The transmission
of tuberculosis occurs following an adequate contact between a susceptible individual and
an infectious individual or between a susceptible individual and a lost of sight who is still
infectious. On an adequate contact with infectious or lost of sight, a susceptible individual
becomes infected but not infectious yet. This individual remains in the latently infected class
for some latent period. Since we do not know if lost of sight individuals are recovered, died or
are still infectious, we assume that a fraction § of them is still infectious and can transmit dis-
ease to susceptible. We use the standard mass balance incidence expressions 8S7 and 86SL
to indicate the successful transmission of tuberculosis due to nonlinear contact dynamics in
the population. After receiving an effective therapy, individuals leave the infectious class I
to the latently infected class E at the rate r,. We assume that chemoprophylaxis of latently
infected individuals reduce their reactivation at a constant rate 1. Another assumption is that
among the fraction 1 — r; of infectious who did not recover, some of them who had begun
their treatment would not return to the hospital for the examination of sputum at a constant
rate ¢ and enter the class of lost of sight L. After some times, some of them will continue
to suffer from the disease and will return to the hospital at a constant rate y. The constant
rate for non-disease related death is p, thus 1/ is the average lifetime. Infectious and lost to
follow-up have additional death rates due to TB-induce mortality with constant rates d; and
dy, respectively. A fraction p of the newly infected individuals are assumed to undergo fast
progression directly to the infectious class, while the remainder are latently infected and enter
the latent class. Once latently infected with TB, an individual will remain so for unless reacti-
vation occurs. To account for treatment, we define r; E as the fraction of infected individuals
receiving effective chemoprophylaxis. We assume that chemoprophylaxis of latently infected
individuals E reduces their reactivation at rate ;. Thus, a fraction (1 — r) E of infected indi-
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Fig. 1 Flow diagram of the model without control

viduals who does not receive chemoprophylaxis becomes infectious with arate k, so that 1 /k
is the average latent period. Thus, individuals leave the class E to I at the rate k(1 — ry).
Thus, the corresponding transfer diagramis given by Fig. 1 [see Tewa and Bowong (2009)].
We have N = § + E + I + L individuals.
The above scheme leads to the following differential system:

S=A—puS—BU+35L)S;
E=8(0—-p)I+8L)S+rl—[u+k(l—r)]E;
I =Bp +8L)S+k(1—r)E+yL
—[r+pn+d + @1 —-r)ll;
L=®1—=r)]—(y+u+d)L.

2.1 The control and its policy

The aim of the control is to decrease the total number of the lost of sight patients during
a period of time 7. The strategy of control we adopt consists of introducing one control
parameter v(¢) representing the effort made to take the infectious patients in a health center
in charge systematically.
Having introduced the functions v(¢), we obtain the following compartmental model.
The Fig. 2 leads us to the following differential system:

S=A—puS—BU+38L)S;

E =B~ p)I +8L)S + 2l — [+ k(1 = r)]E:

I =Bp(I+8L)S +k(l—r)E+yL (1)
o mntp+di+ 00 -v)d =)l
L=d1—-v)1—r)]—(y+u+d)L.

with initial conditions (S§(0); E(0); 1(0); L(0)) € ]Ri.
Remark 2.1 The functions v(¢) are assumed to be integrable in the sense of Lebesgue,

bounded with (0 < wv(t) < 1). When the control functions are near to 1, the control is
very strict.
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Fig. 2 Flow diagram of the model with control

3 Mathematical analysis of the model with control

System (2) can be written in the following compact form:

{S= @(S) — S(n, Y);

Y = S(n. Y)B + A(1)Y. 2)

where S is a state representing the compartment of susceptible individuals, ¥ = (E, I, L)Tis
the vector representing the state compartment of different infected individuals (latently
infected individuals, infectious, lost of sight individuals). ¢(S) = A — uS is a function
that depends on S € Ry, n = (0, 8, ,38)T, B =({—p,p,0)and (,) is the usual scalar
product in R3 and A is a Metzler Berman and Plemmons (1994) 3 x 3 non-constant matrix
defined as

—A r 0
A(t) = | k(1 —ryp) —Az 12
0 dp(—v@)( —r2) —A3

where

Ay =p+k(d—ry),
Ay=r+pu—d +¢(—v()—r),
Az =y +u+d.

Remark 3.1 The dynamic of the susceptibles is asymptotically stable. In other words, for the
system

$ = p(S):
there exists a unique equilibrium Sy = % such that

©(S) >0 for0 < S < S,
©(S) <0 forSy < S. 3)

3.1 Positive invariance of the non-negative orthant

We have the following result:
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Proposition 3.2 The non-negative orthant Ri is positively invariant for the system (2).

Proof The system (2) can be written as

$=¢(S) = Sn 1), W
Y = (SBn" + A@)Y.
The first equation of system (4) implies that

KS(t) = KSOe—K(t—to) + Al — e—K(t—to))’

fort > tg; where K = u+ (I +38L).For I > 0; L > 0 and Sy > 0 it comes that

S(t) > 0 Vt > 9. As consequence, R is invariant for the system S = o(S)—S(n,Y).
Since § > 0, the matrix (SBn" + A(r)) is a Metzler matrix. And it is well known that linear
Metzler matrices let invariant the non-negative orthant. This proves the positive invariance
of the non-negative orthant Ri for the system (2) O

3.2 Boundedness of trajectories

Adding all equations of model (2), one has
Nt)=A—u(S+E+1+L)—dl—dL.
Thus, one can deduce that
N(@) < A — uN(@).

Integrating the previous inequality we obtain
A —ut
N(t) < — +e MN(0).
i

Therefore,

lim N(t) < So.

t—+00

It is straightforward to prove that for € > 0 the simplex
4 A
Qe=1(S,E,I,LL)eRL ;N(t) = — +€,
i

is a compact invariant set for the system (2) and that this set is absorbing. So, we limit our
study to this simplex.

3.3 Basic reproduction ratio

The basic reproduction ratio is the average number of secondary cases produced by a single
infective individual which is introduced into an entirely susceptible population. We are going
to compute the basic reproduction ratio of the system with control, and then deduce the basic
reproduction ratio of the system without control.

Proposition 3.3 The basic reproduction ratio Ry(v) of system (1), with the control function
v, is given by

BSo
Ro3z(v)

Ro(v) = (Ro1 + 8 Rp2(v)); ®)
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where

Rog = (n+da+y)(pu+k(l—r1)),
Ro2(v) = ¢(1 —v)(1 —r2)(p + k(1 —r1)),
Ro3(v) = rou(u +dz) + (u + k(1 —r) [y (n +dy)
+(u +d2)(n+dy + ¢ (1 —v)(1 —r2))].

Proof The system (2) has an evident equilibrium (Sp, 0, 0, 0) where there is no disease. This
equilibrium is the disease free equilibrium (DFE). We calculate the basic reproduction ratio,
Ry (v), using the Van Den Driesseche and Watmough next generation approach Driessche
(2002) and the techniques reported in Refs. Luenberger (1979), Diekmann et al. (1990). In
order to compute the basic reproduction ratio, it is important to distinguish new infections
from all other class transitions in the population. The infected classes are I, E and L. We can
write system (2) as

¥ =Fx) = V) =Fx)— VYV x) -V (x) (6)

where x = (E, I, L, S), F is the rate of new infections in each class,V" is the rate of transfer
into each class by all other means and V™ (x) is the rate transfer out of each class. Hence,

F(x) = (B(1 — p) +8L)S, Bp(I +8L)S,0,0)T,

and

A E —rpl
Ayl — k(1 —r)E —yL
AL —¢(1 —v)(1 —rp)l
0

V(x) =
The Jacobian matrices of F and V at the disease free equilibrium DFE can be partitioned
as
DF(DFE) = |:F 0] and DV(DFE) = |:V 0]

00 00

where F and V correspond to the derivatives of DF and DV with respect to the infected
classes:

0 g —p)So 88(1 = p)So

F={0  BpSo 5BpSo

0 0 0
and

Aq —r) 0

V={-k(1-rp) Ar —Y

0 —p(l—v)(1 —r2) A3z
The basic reproduction ratio is defined, following Van den Driessche and Watmough Driess-
che (2002), as the spectral radius of the next generation matrix, F v-L O

From Ry (v), we deduce R (0) (basic reproduction ratio of the system without control) by
taking v = (0, 0). We are going to compare Ry(v) and Ry (0).
Let us assume that

Hl: (u+d)(u+y+nr) <dl(u+d)u+d+y)+rnup+d +y)]
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Assumption H1 can be interpreted as: The number of secondary cases generated by an
individual in infection state 1 is less than or equal to the number of secondary cases generated
by an individual in infection state L.

Proposition 3.4 We have Ro(v) < Ro(0) (i.e., the basic reproduction ratio of the system
with control is less than or equal to the one without control) if and only if assumption HI is
satisfied.

Proof 1t is easily checked that

BSolpu — k(1 —r1)]p(l —r2)v
d
[+ k(L= r)IRo2(0)Roa(v) (A Tty +12)
—S§[(u+d)(n+y +dy) +rop(p+y +d)ll

Ro(v) — Ro(0) =

This ends the proof. O
3.4 Equilibria

The equilibrium (S, Y) on system (2) can be obtained by setting the right hand side of all the
equations in model (2) equal to zero, that is,

P(S) = S(n.¥) = 0; -
S(n, Y)B+ A()Y = 0.

From the second equation of (7), one has Y = S(—A~!(¢))(n, Y)B. And replacing in (1, ¥)
yields

n,Y)=S(n, (A )B)(n,Y). (8)

The case (n, Y) = 0 implies ¢(S) = 0 and A(#)Y = 0. Since A is non-singular, this gives
the disease free equilibrium PY = (S0, 0,0,0).

The case (n,Y) # 0 implies $* = R(f?v). From (7), we have Y* = (E*, I*,L")T =
(—A~L (1) Bo(S*).

After calculations, we obtained that with Ry(v) > 1, the model (2) has a unique endemic
equilibrium P*(v) = (S*(v), E*(v), I*(v), L*(v)) which is in the non-negative orthant Ri
given by

S () = —2_.
~ Ro(v)’
E* () = 214 (1— ! );
Ro,2(v) Ro(v)
0-A ) &)
2
I*(v) = (1— );
Ro2(v) Ro(v)
L*(v) = 03(v)A (1_ 1 );
Ro2(v) Ro(v)
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where

Q1 =nrnply+unt+d)+ @2+ pn+d)d—p)y
+(1 = p)(u+d)lr2 +pn+di +¢(1 —r)l;
0> =0 —=pk(d —r)(u+d2) + 1A = p)yk(l —ry)
+p(1 +pu+d) [+ k(1 —rpl;
Q3(v) = ¢(1 —v)k(1 —r1) + (1 —v)up.

Lemma 3.5 Tewa and Bowong (2009) When Ry(v) > 1, model (2) has a unique endemic
equilibrium defined by (9).

Remark 3.6 Without control, it is shown in Tewa and Bowong (2009) that

e If Ro(0) < 1, the disease free equilibrium P? is globally asymptotically stable on the
non-negative orthant RI. This means that, the disease naturally dies out in the host
population.

e If Ry(0) > 1, then the positive endemic equilibrium P*(0) of model (2) is globally
asymptotically stable on the set €2..

4 Optimal control

The classical epidemiological requirement of making R less than unity is not longer suffi-
cient, although necessary, for effectively controlling the spread of TB in a community.

4.1 Definition of the cost function

The system (2) can be represented by the following nonlinear structure, having state-
dependent coefficients:

X =T+ D{(X)X + Bjv(1); (10)

where X = (S, E, I, L)T; T = (A,0,0,0)T; By =[0,0, (1 —r2), —¢(1 —r2))" and

—n— B +8L) 0 0 0
D) = | A= PU L) —p =kl —r) r 0
! B(I +5L) k(1 —r)  —p—dy— ¢ —rp) y
0 0 o1 —rp) —u—dy—y

Remark 4.1 The factorization of state system (2) to the form (10) is not unique, specially for
the term D1 (X)X. The controllability issue of such technique is fully discussed in Cloutier
et al. (1996).

Proposition 4.2 The system (10) can be written as
Y = Dy(Y)Y + Bov(1); (11

Di(X) T

where Y = (X, 1)T and By = [By, 017 are R> vectors. Dy = |:0 0

]isanS

state-dependent matrix.
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Proof 1t is easy to prove this proposition as follows: the system (10) is equivalent to the
following state-dependent system

(1)1 5] () (%)

Let A be the cost associated to the control v(7); t € [0, 77]. A represents the necessary
means to realize the control defined by v. Our cost function is the following:

O

Ly
J(v) = l/[L(z)2 + Av()?] dr
=5 .
0

The cost function is defined having in mind that, we are going to penalize the number of
lost of sight individuals. This justifies the presence of the term L. The functional J can be
rewritten as

iy
J(v) = /[IIY(I)II%V + vl dr; (12)
0

where [|[Y(D)13, = YOTWOY @); [lv)13 = v TV (O)v(t); V() = 5 and

00O0O0 0
00O0O 0
Wi)y={0 0 0 O 0 |is a5 x 5 matrix.
0001/20
00O0O0 0

The matrices W and V are the ponderosity matrices.

Remark 4.3 The matrix W is positive, but not necessarily definite. The matrix V is positive
definite. For example, if W = 0 the cost function is always minimal for v = 0.

The problem now is to find v* satisfying
J(v*) = ngn J(v) (13)
Where 2 is the control set defined by
Q = {v e L*0,ty) : v measurable,0 < v(t) < 1,1 € [0, 17]}. (14)

4.2 Existence of an optimal control

The existence of the optimal control can be obtained using a result in Refs. Fleming and
Rishel (1975), Hattaf and Yousfi (2011).

Theorem 4.4 There exists an optimal control v* such that

J(v*) = m&n J(v).

Proof To use an existence result in Fleming and Rishel (1975), we must check the following
properties:
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(a) The set of controls and corresponding state variables is non-empty;

(b) The control set 2 defined by (14) is convex and closed;

(c) The right hand side of the state system (1) is bounded by a linear function in the state
and control variables;

(d) The integrand of the objective functional (12) is concave on £2;

(e) There exist constants ¢, ca > 0, and ¢3 > 1 such that the integrand L£(L, v) of the
objective functional satisfies

L(L(t),v(t)) > c2 + cr|v(®)|?,
forall r € [0, 17].

In order to verify these conditions, we use a result by Hattaf and Yousfi (2011) to give the
existence of solutions of system (1), which gives condition (a). The control set €2 is convex
and closed by definition, which gives condition (b). Since our state system is linear in v,
in the sense that system (1) can be represented by Eq. (10): X =T+ Di(X)X + Bv(1).
Then the right hand side of system (1) satisfies condition (c). The integrand of the objective
functional (12) is defined by £(L, v) = 3 (L? +Av?), with v € Q. The second-order Fréchet
derivative of L is positive on €2, then £ is concave on 2. It is easily checked that

1
L(L(t), v(t)) > E(Lm2 + 2v()?).

This ends the proof. O

4.3 Resolution of the optimal problem

The theorem below gives the form of the optimized functional.

Theorem 4.5 Bowong (2010), Willard and Randal (2002), Rafikov and Balthazar (2008)
The feedback control

v(t) = -V ' B TF()Y (1), (15)

minimizes the functional (12), where the positive definite matrix F (t) is evaluated through
the solution of the matrix formulation of the Riccati differential equation Brogan (1991):

{ F=—W—DJ(Y)F — FDy(Y) + FB,V~'B] F;

F(ty) =0. (16)

Proof Let us consider the feedback control (15) with matrix F defined by (16), minimizing
the functional

Iy
Jw) = /[C(Y) IR dr; (17)
0

where the function C(Y) needs to be determined. According to the Dynamic Programming
rules Wyse et al. (2007), one knows that if the minimum of functional J; exists and if V is
a smooth function of the initial conditions, then it satisfies the following Hamilton—Jacobi—
Bellman equation

av
d—tL +CW) + [ =0.
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Considering a Lyapunov functional
VL(Y) = YTF(n)Y, (18)

where F(¢) is a symmetric positive definite matrix which satisfies the differential Riccati
equation (16). The time derivative of the function Vi (Y), evaluated in the optimal state-
trajectory with control given by (15), is

Vi(Y)=YTFO)Y+YTF@)Y + YTFQ1)Y,
= YT[DJF(t) + F(t) + F(t)D2]Y + v B F(1)Y + Y F(1) Bv,
= Y'[F(t) + DIF(t) + F(t)D2 — 2F (1) B,V ' B} F(1)1Y, (19)

and

oIy = v Vo),
=Y'F()B,V'B) F(1)Y. (20)

Substituting Vi and ||v(t)||%, into the Hamilton—Jacobi—Bellman equation (17) yields
YY[F(t) + DYF(t) + F(t)D, — F(t)ByV ™' BIF(1)]Y + C(Y) = 0. (1)

Taking into account the fact that F'(¢) satisfies the differential Riccati equation (16), the
equation (21) becomes

—YTwy +C(y) =0;
1.€.,
C) =Y D)l

We can conclude that, the control function (15) minimizes the functional

Iy
Ji(w) = /[||Y(r>||%v + 1)y ] dr.
0
Note that for the positive function C(y) and positive definite matrix V, the time derivative
of the function (18), evaluated in the optimal trajectory of system (11), is given by
V) = =1IY 1l = IOl

and it is negative definite. Thus, the function (18) is a Lyapunov function, and the controlled
system (11) is asymptotically stable. O

Remark 4.6 As we are finding our optimal control v* into €2, it comes from theorem (4.5)
that

v*(¢) = min{max{a; —V (1) ' Ba(t)" F()Y (1)}; b} forallz € [0, t7]

where a, b € [0, 1]. We can also note that, this choice of v* in the set €2 is not unique.

@ Springer I bMAC



Optimal control using state-dependent Riccati equation 203

4.4 Determination of the control function

In this section, we are going to show step by step, how to determine the optimal functions
numerically.

Remark 4.7 The main difficulty here for the optimal control is that we have initial condition
for system (11) and final condition for the associated Riccati differential equation (16).

To overcome this difficulty, we proceed as follows:

Step 1 We choose a control function v(¢) = v°(¢) in the set 2. However, this choice is not
a random process, it depends on the strategy we need to adopt. For example, in this
paper, we adopt a strategy which is very strict at the beginning of the control. We
choose

ui(t) =>b vt el0,tr].

Step 2 Then, with this choice of the control function v(¢), we determine the solution
(S(t), E(t), I1(t), L(t)) of the Cauchy problem associated to system (2).

Step 3 The knowledge of v(r) = v°(¢) and (S(¢), E(¢), I(¢), L(¢)) allows us to determine
the solution F'(¢) of the state-dependent Riccati equation defined by system (16). This
leads us to the control functions defined in (15) by v* := =V (1) "' Bo(t) TF(1)Y (1).

Step 4 On one hand, we have the chosen control function v¢, and on the other hand, we
have the control function v*. We take a convex combination of those functions as
follows:

v(t) = (1 — L) ve(t) + iv"‘(t)
Iy ty

forz € [0, t7].
Step 5 This process is repeated (Steps 2, 3 and 4), and iterations are stopped when the values
at the unknown iteration are very closed to the ones at the present iteration.

5 Numerical simulations

We are going to study an optimal strategy of our TB model and the basic reproduction ratio
Ro(u) and Ry(0) with control and without control numerically.

We will illustrate that the optimal control strategies depend on the parameters ¢ and 8, which
denote respectively the rate of progression from infectious to lost of sight and the rate of the
disease transmission. The values of parameters are given by Table 1.

We solve the state equation (2) with the chosen functions v(¢ using the Runge—Kautta for-
ward scheme of order 4. Then, we solve the state-dependent Riccati equation (16) using the
backward Runge—Kutta scheme of order 4. We deduce v* from system (15).

For those simulations, we take 7y = 5 years as control period.

Figure 3: The transmission coefficient § = 0.002 is chosen to assure that the reproduction
ratio Rop without control is less than 1. The rate at which infectious become lost of sight
¢ = 0.0022 is chosen here small enough to show that the control of lost of sight individuals
would not really be necessary (Fig. 3a).

Figure 3b: the average basic reproduction ratio is about 0.1344 without control and about
0.1330 with the control of lost of sight individuals. Both of the previous reproduction
ratio are approximately equal, this is due to the fact that our control is not rigorous
enough.
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Table 1 Table of parameter values National Institute of Statistics (2007), WHO (2004), CNPFAT (2001)

Parameters  Description Estimated values Source
A Recruitment rate of 2 (year)_1 National Institute of Statistics (2007)
susceptible individuals
B Transmission coefficient variable Assumed
Natural death rate 0.019896 (year)*1 National Institute of Statistics (2007)
dy Death rate of the infectious 0.02272 (year)*1 CNPFAT (2001)
do Death rate for the lost of sight ~ 0.20 (year)_1 CNPFAT (2001)
8 Fraction of lost of sight thatis 1 (year)~! Assumed
till infectious
¢ Rate at which infectious variable Assumed
become lost of sight
p Proportion of newly infected 0.3 (year)_1 CNPFAT (2001)

individuals that have fast
progression to the
infectious class

r Rate of effective 0 (year)f1 CNPFAT (2001)
chemoprophylaxis of
individuals

1) Rate of effective 0.8182 (year)_1 CNPFAT (2001)

chemoprophylaxis of
infectious individuals

y Rate at which the lost of sight  0.01 (year)_1 Assumed
return to the hospital to
continue the treatment

k Rate of progression from 0.005 (year)*1 WHO (2004)
latently infected to
infectious

Figure 3f: for L(0) = 40, the average number during 7y = 5 years of lost of sight is about
24.1143 individuals without control. This average number is approximately the same with
control (24.1230), because the rate at which infectious become lost of sight ¢ = 0.0022 is
chosen here very small.

The Figs. 3c, d and e respectively represent the time evolution of susceptibles S(z), latently
infected E(¢) and infectious 7 (¢).

Figure 4: We take the transmission rate 8 = 0.003 to assure that the reproduction ratio R
without control is less than 1. The rate at which infectious become lost of sight ¢ is assumed
here to be ¢ = 0.1.

Figure 4a: The associated control function v is strict during the two first years.

Figure 4b: The average basic reproduction ratio is about 0.2286 without control of lost of
sight individuals and about 0.2167 with the control.

Figure 4f: for L(0) = 40, the average number during 7y = 5 years of lost of sight is about
28.0065 individuals without control and about 24.5704 with the control of lost of sight
individuals. In a period of five years of control (1 = 5), we succeed in keeping about 10 %
of infectious individuals in a care center with the control strategy.

The Figs. 4c, d and e respectively represent the time evolution of susceptibles S(¢), latently
infected E(¢) and infectious 7 ().

Figure 5: here, the transmission rate of the disease is § = 0.02, and the rate at which
individuals become lost of sight is ¢ = 0.5.
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Fig. 3 The influence of the control with 8 = 0.002 and ¢ = 0.0022. All the other parameter values are as in

Table 1

Figure 5a: for the chosen value of the rate at which individuals become lost of sight (¢), the
associated control function v is strict for the third first years of the control period.
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Fig. 4 The influence of the control with 8 = 0.003 and ¢ = 0.1. All the other parameter values are as in

Table 1

Figure 5b: the average basic reproduction ratio is about 0.2226 without control of the lost of
sight individuals and about 0.1584 with the control.
Figure 5f: for L(0) = 40, the average number during the five years of control period of the
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Fig. 5 The influence of the control with § = 0.02 and ¢ = 0.5. All the other parameter values are as in
Table 1

lost of sight is about 42.3987 individuals without the control of the lost of sight individuals
and about 24.5510 with the control. In a period of five years (s = 5) of control, we succeed
in keeping about 42% of infectious individuals in a care center.
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Fig. 6 The influence of the control with § = 0.02 and ¢ = 0.7. All the other parameter values are as in
Table 1

The Figs. 5c, d and e respectively represent the time evolution of susceptibles S(¢), latently
infected E(¢) and infectious I ().

Figure 6: for this simulation, the transmission rate of the disease is 8 = 0.02 and the rate
at which individuals become lost of sight is ¢ = 0.7.
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Figure 6a: for the chosen value of the rate at which individuals become lost of sight (¢), the
associated control function v is strict for the third and the half first years of the control period.
Figure 6b: the average basic reproduction ratio is about 2.5307 without the control of the lost
of sight individuals and about 1.5776 with the control.

Figure 5f: for L(0) = 40, the average number during the 5 years of the control period of the
lost of sight is about 55.1286 individuals without the control of the lost of sight individuals
and about 24.6178 with the control. In a period of five years (1 = 5) of control, we succeed
in keeping about 55 % of infectious individuals in a care center.

The Figs. 6¢, d and e respectively represent the time evolution of susceptibles S(¢), latently
infected E(¢) and infectious I ().

6 Conclusion

This has considered the problem of optimal control of the transmission dynamic of TB.
A model considering a new class has been investigated and analyzed. An optimal control
strategy has been presented and the results show how important it is to control the lost of
sight class which is very crucial to the study of the disease. Numerical simulations have been
given to illustrate the effectiveness and efficiency of the proposed control scheme. In Africa,
it is very important to keep infectious individuals in a care center in order to complete their
treatment and avoid the quick transmission of the disease. Our control strategy helps to do
so, though other control strategies could be investigated.
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Abstract—The populations of prey and predator interact I. INTRODUCTION

with prey harvesting. When there is no predator, the Th idemiological loaical del
logistic equation models the behavior of the preys. For eére are many epiaemiological or ecological models

interactions between preys and predators, we use the[6]: [7], [8], [9], [10], [11], [S] in the literature and
generalized Holling response function of type Ill. This @lso many models which encompass the two fields
function which models the consumption of preys by [3], [4], [8]. [9], [10], [11], [12]. Dynamic models for
predators is such that the predation rate of predators infectious diseases are mostly based on compartment
increases when the preys are few and decreases whemstructures that were initially proposed by Kermack and

influence of a SIS infectious disease in the community. The other researchers.

epidemiological SIS model with simple mass incidence is The main auestions reaardin obulation dvhamics
chosen, where only susceptibles and infectious are counted. q 9 g pop y

We assume firstly that the disease spreads only among theCONCeM the effects of infectious diseases in regulating

prey population and secondly that it spreads only among Nnatural populations, decreasing their population sizes,
the predator population. There are many bifurcations as: reducing their natural fluctuations, or causing destabi-
Hopf bifurcation, transcritical bifurcation and saddle-node lizations of equilibria into oscillations of the population
bifurcation. The results indicate that either the disease states. With the Holling function response of type I, it
dies out or persists and then, at least one population can js well known that the predators increase their searching
disappear because of infection. For some particular choices activity when the prey density increases.

of the parameters however, there exists endemic equilibria
in which both populations survive. Numerical simulations
on MATLAB and SCILAB are used to illustrate our

Generally, ifxz denotes the density of prey population,
the Holling function of type | isp;(x) = r « wherer is

results the intrinsic growth rate of preys. The Holling function of
' . Bwyzx
KeywordsPredator; Prey; Infectious disease; Response type Ilis ¢o(z) = oz wherew, andw, denote
function; Bifurcation; Global Stability respectively the time taking by a predator to search and
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capture preysB is the predation rate per unit of time. Inintrinsic growth rate of preys] is the natural death rate
the models considered in this work, the Holling functionf predatorsk is the capacity of environment to support
of type Il is used for interactions between predatotsie growth of preysh, is the rate of preys’s harvesting,
and preys éa(z) = — mx? [2], wherem and andj are the recover rgte?s of infected preys and infected
. ar?+bxr+1. . predators respectively) is the adequate contact rate
a are positive constants,is an arbitrary constant. Thisy . een susceptible preys and infected preys whike

function models the consumption of preys by predatortﬁe adequate contact rate between susceptible predators

It is well known that with this function, the predation,, infected predators. We also assume that infected
rate of predators increases when the preys are

f Yedators still can catch preys at a different rgtehan

f’ind decreasgs When.they rga_ch their satiety (a pred Bind ones. The parametgr can be thought to be less
increases his search_lng activity when the prey _dens{Wan m, if the disease affects the ability in hunting of
increases). The functions,, ¢, and¢; are respectively g predators or larger than, if we want to emphasize
allso rgferred toas Lotka—\_/olterra, Michaelis-Menten angl. ' yhe interactions with infected predators cause the
sigmoidal re_s_po_nse fgnctlons_, Generally, there are m IGEys to die for the disease even if they are not caught.
macroparasitic infections which can affect only Prey?, andb are positive constants, > 0 andri; > 0 denote

Only preda_tors or both preys and predators. O_ur gogl e adequate predation rate between predators and preys.
this paper is to analyze the influence of a SIS mfectlo%sand & denote the conversion coefficients, can be
disease which spreads only in one of the two populations, - e (conversion of prey's biomass into predator's

]:I'he mlcl)dﬁls cogsilde.redhanlc.i analyzeT\:I/l here are diﬁerB mass) or positive (bad effect of the infected preys for
rom all the models In the literature. Moreover, we u e predator population due to disease).

_numerlcal simulations on MATLAB and SCILAB to Trough the linear transformation and time scaling
illustrate our results. Tz oy w -
(X7 Z, Y,VI/,T) - R ) T7776ﬁlk t y the f0||OW-

Il. THE MODEL FORMULATION ing simplified systems are obtained from (sl) and (s2),

The model (s1) is obtained from the classic Lotka-
\olterra model with simple mass action when the disease

spreads only inside the prey population. In this model, | %= pa(l—2) —p(a)y —Azz+yz—h,

Z=Xdxz—vz—mip(2)y,

the infected preys do not reproduce and there is no dis-{ ~ (1)
ease related mortality. The model (s2) is obtained when| ¥ = p@ - mep(2)y —dy,
the disease spreads only inside the predator population\ * = %y = 0;z 20,
These models are respectively
a1 ma’y 5 &= pr(l —x) = p(x)y —mplr)w = h,
CE LR R S y=pa)y—dy —dyw+ pw, )
+52 — hi, w=ep(Tw+dyw—mw,
- Ty 22 x>0y > 0w >0,
z'::)\a:z—ﬁz—#, (s1)
o, aztbztl where the parameters are defined as follow
. cmxy Moz=y ~
V=55 5.3 —dy, ) o o N s
>6wc ibg+1>0az +bz+1 T _ e 7?726}17& A
r=U, 220,y ~>U, p_ém];jQ’nl_EﬁL7’72_ém7 1_6’[’%];37 _,C_mjév
~ 2 =2 g m me ms d
Tr=r 1—2)3;— maiy — 7711;(4) ’Y:%amlz ~17m2:~~,m3:~~7d:?~27
"k az? +br+1 ar+br+1 cmk _m _emo o _emo ek
_ oé 1€ é 1) pn+d
L 5:~~~7/’(‘:7762Ta51:7au1:7a
) éma’y ~ - ~ émk &mk? & mk emk?2
Y= - _ —dy—dyw+ iw, (s2) = . 22
ar? +br +1 a=ak®,b=bk,p(r) = —5——.
Szt ~ ~ ax?+bxr+1
. 611' J; %75 + 1> 0 Systems (1) and System (2) are new and different from
- Yy y Z U, w=U

all the models in the literature. These models without
where the variableg and w denotes respectively thedisease give us the same system which has been analyzed
infected preys and infected predators,denotes the without disease in [1].
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I1l. RESULTS

bdx

—d = 0. We deducers and thenBs. The condition

. . 1 .
A. Results for the Model (1) with Disease only in Prefpr existence ofBy is p(z) = mf(p(as) —d) > 0 ie

Population
pr(l—x)— M
(1 +m)p(x) —md

ma(p(n) — d)ui(n)

Let us setu;(z) = , Ry =

2
p(x) —d >0 <= ad<1andz €|xs,+o0l.

Concerning the stability of these equilibria, the fol-
lowing theorem hold.
Theorem 2:Let’s consider System (1).

a(p(n) — d)?ui(n) + b(An — ) (p(n) — d)ur(n) + (An — 7).

the basic reproduction number, and

1—1/1—4ﬁ 1 14
B B B

y L2 = 9 y

(4)

z1

N}

Y 1 .
T, =—,20=—,20 € R,
z 2 0 2 0

the expressions of the positive real valugsz1, z2, x..

Theorem 1:The equilibrium points of System (1),

according to the values of the parameters, are given as

follow :

o« Whenh; > g then there is no equilibrium point.

o When h;
By(x0,0,0) which is a double point ifd #

and triple point ifd =

a+2b+4 a+2b+4

e Whenh; < = andad > 1, then the equilibria are

Bi(x1,0,0) and By(z2;0;0).

e When h; < =; ad < 1 and z3 = =z, then
Bi(x1,0,0) is a double point ands(xz2,0,0) ex-
ists.

e When by < B; ad < 1 and 3 = x4, then
Bi(x1,0,0) is simple andBy(z2,0,0) is a double
point.

e Whenh; < B; ad < 1 and z3 €]zy; 22, then

Bl($17070); BQ(LUQ,0,0) and B3(x370>y3) exist,
- p$3(1 — .%’3) — h1
= pi > 0.

o Whenh; < Prad<1 andzs € [0; z1[U]zo; +00],
then B;(x1,0,0) and Bs(z2,0,0) exist.
« When h; < T ad < 1; x4 €n;x2f, 2 >

whereys

and Ry > 1, then By(z1,0,0);

Bs(x2,0,0) and By(z4, 24, y4) €Xist, wherer, > 0,
z4 > 0 andyy > 0.

(=:3)
max | x3; —

g, then the unique equilibrium is

The equilibriaBy and B; are always unstable.
The equilibriumB, is stable if one of the following

conditions is satisfied h; < g, X > xo and
p(r2) < d, or hy < g, } < x9, p(z2) = d and

p"(22) < 0.

The equilibriumBj5 is stable if one of the following
conditions is satisfiedh; < % ad < 1, x3 €|x1; x|
andzxs = %, orhy < g, ad < 1, z3 €]r1; 32, T3 <
Y

— andd > ,Orh1<8,ad<1,x3€

a+2b+4 1 4

- PR and xo(z3) < 0,
where yo(z3) is the eigenvalue ofs.

The equilibrium pointB4(z4, 24, y4) IS asymptoti-
cally stable if and only if the following conditions
hold : ay < 0; asa; +ag > 0 andaiag > 0, where

Jx1; zaf, 3 < 1, d<

ag = p(1 —2x4) — p'(x4)ys — Aza
+Axg — 7y — map'(24)ya,

a1 = — [p(1 — 2x4) — p'(w4)ys — Az4] X

[Azg =~ —map/(24)ya]

—Amip(24)ys — p(x4)p' (4)ya,
ap = — [p(1 — 2z4) — p'(w4)ys — Az4] X
Ay — v — mip'(24)ys] + Amap(@s)p’ (24)yazs
+p' (x4)yamip(za)(Azg — )
+p(za)p (T4)ya(Azs — v — map’(24)ya).

(5)

Proof : The eigenvalues of the jacobian matiXBy)
arex; = 0; x2 = Azg —y and 3z = p(xg) — d.

a)

b)

Proof : These equilibria are obtained by setting the

right hand side of (1) equals to zero. Fpre= 0 one has

equationpz? — pz + hy = 0. Then we haveB,, B; and
Bs. Forz = 0, one hagp(z) = d <= (1 —ad)x? —

Biomath 1 (2012), 1210231, http://dx.doi.org/10.11145/j.biomath.2012.10.231

If % < % ord < pEnp i p(zo), then
x2 > 0 or x3 > 0 and By is unstable.

If } >3 andd = ! = p(xo), then
xe2 < 0 and x3 = 8. Hence, the stability of
By is given by the center manifold theorem.
The translation(u, us, u3) = (x — x9,2,9)
brings the singular pointBy to the origin.
In the neighborhood of the origin and, since
hy B, System (1) has a new form. The
Jacobian matrixJ(By) is not diagonalizable
and the passage matrix to the Jordan’s basis is
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c)

d)

P:

-1 1 b1)

0
0 —1 |. By the transformation
1

0
0 0

(Ul,’l)g,’l)3)T = Pil(ul,UQ,Uig)T, the system
becomes:

01 = vy + P (z0)(v1v3 — v3)

11
X
+p ( 0) (U% + U% — 21}1?)3)?)2

m IIO
PO 0 4 O, e, ),

vy = v3 + ' (z0) (v1v3 — v3)

/!
"Jﬂ@% + 05 — 2v103)v2
m /! 0
0034 0| 0n. ) 1)
/!
0

b3 = X2v3 — AM(v1v3 — v3) + mp( >v2v§
+O(|(v1,va,v3)[*). b2)

(6)

We can now find that the center manifold is
given by W¢ = {w3 = 0}. Therefore, the
system (6) is topologically equivalent, around
the origin, to the following system:

/!
0 = v2+p ng)U%v2+O(‘(U17U2)|4)7
v = O(|(vy,v2)[Y),
b3 = O(|(vi,v2)[*).

Then, the singular poinBy is unstable.

If % = % andd =
a

x2 = 0 and x3 = 0. Applying the center b3)

manifoldltheory as previoushi, is unstable.
i
If - =

= p(=zp), then

3 andd > = p(=zg), we

havexys, = 0 and x3 g 0. Applying the center
manifold theory as previously3, is unstable.

The stability of B; is obtained with jacobian matrix.
The stability of B is obtained using the center manifold
theorem. Taking into account the fact thgts) = d, one
find that the characteristic polynomial of the linearized
system around the singular poiB% is

Q) = (x—Azz+7) [-x*+ (p(1 — 2z3) — p'(w3)ys)X]

—d(x — Az3 +7)p (23)ys-

The discriminant ofQ(x) is

As(h1) = (p(1 — 23) — P (w3)ys)? — 4dp/ (x3)y3. (7)

a)

b)

Biomath 1 (2012), 1210231, http://dx.doi.org/10.11145/j.biomath.2012.10.231

If z3 > 7, then the eigenvalug, = Az3—~ >
0. Hence,Bs is unstable.
If x5 < %, theny; < 0.

When As(h;) = 0 the Jacobian matrix aBs
has a double eigenvalue

lan) o= L2 2L, g

olIf d> , thenz > %. From where

a+ 20+ . .
xo(h1) < 0. Therefore, the singular poinBs
is stable.

If d , then: Wh h 0
o < =y en enyo(h1) <

+
(resp. xo(h1) > 0) the singular pointB; is
stable (resp. unstable).

When A3z > 0 the eigenvalues of the Jacobian
. VA
matrix atBs arex; < 0, x2 = xo(h1) — T?’

and xs = xo(h1) + . We have,x2x3 =

dp’(hl)yg >0andys + x3 = Xo(hl), where
Xo(h1) is defined by (8).

VA

o lfd> —un—
Bs is sctlaJBIg.) 4

o Ifd < s 4,then:Wher1><0(h1) <0
(resp.xo(h1) > 0) the singular pointBs is
stable (resp. unstable).

, then the singular point

If Az < 0, then the eigenvalues of the Jacobian
matrix at Bs are xy; < 0, x2 = xo(h1) —
—A3

;

i and xs = xo(h1) + 1 , Where

2
. . 1
Xo(h1) is defined by (8). Ifd > panp Tl
a
then the singular poinB; is stable. Ifd <

—— and hi1) < 0 then, the singular
o254 2Ndxo(h) X 9

point B3 is stable. Ifd < ———— and

) a+2b+4
xo(h1) > 0 then, the singular point is unstable.

If d < and xo(h1) = 0 then,

the real gentral and stable spaces are respec-
tively defined byE° = ((1,0,0);(0,0,1)) and

B = <<1’ -1- 4/ (s)ys pl(x?’)yg)>. Then

. X% X1 )
applying the center manifold theorem it comes
that the singular poinBj3 is unstable.

The stability of B4 is obtained using the Routh-Hurwitz
conditions.
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B. Results for the Model (2) with Disease only inside « The equilibriaCy and C; are always unstable.

Predator Population « The equilibriumCs is stable ifh; < g andp(zs) <
Let us setuQ( ) = ¢ {ﬂ —p(m)] and ve(x) = d. o ] ) )
D) dle o The equilibrium(s is stable if and only if one of
(p(z) — . Let 25 the eventual positive root of these conditions is satisfiedh; < Z ad <1, z3 €
{7_10 ] ]ml;@[andygz(si(ﬂ—d) orh1< cad < 1,
1 €
equatlonp(x5) = - and the functiongs(z) = px(1 — I N T 53 M1 —d), d> p(a:o), or
) — p(x)us(r) — mp(a)vs (@), L\e .
HypotheS|s 1: The attack of non-infected predators  p; < g ad < 1, x3 €]x1; 12, y3 < = (& _ d),
. : : L e
!s more émportant than the one of the infected predators d < p(xo), Eo(a3) < 0,
lL.e.e= z <L « The singular poinCy(xg, ys, we) IS asymptotically
Theorem 3:The equilibria of System (2), wherey; stable if and only if the following conditions are
x1 and xzo are given by (4), according to the values of  satisfied :by < 0; boby + by > 0 and byby > 0,
the parameters, are given as follow. where
o Whenh; > B, then there is no equilibrium point. bo = p(1 — 2x6) — p'(z6)(ys + M ws)
. . —i—p(l‘ﬁ) d — dwg;
o« Whenh; = =, thenC ;0;0) is a double point if
e i by = — (p(1 — 21) — /() (s + )
d+#+ ——— and triple point ifd = —————. (p(z6) — d — dwe) + 51UJ6(M )
a+2b+4 a+2b+4 _ _
o« Whenh; < P andad > 1, thenCy(x1;0;0) and plea)p(@6)ye = emp(zo)p(vs)ws;
Ca(2;0;0) eXipSt- by = ep(xg)p (x6)we [dys — 1+ m (p(ae) — d — dwg)]
e« Whenhy, < =5 ad < 1 andazy = x;, then —d1mp(we)p (v6)yswe
C1(x1;0;0) is a double point and’y(z;0;0) ex- —b1we(p — 6ye) (p(1 — 226) — p'(z6) (ys + 77%50)6)) :
ists.

« When h; < B; ad < 1 and z3 = x4, then Proof: The stability ofCy is deduce as foB, in theorem
Cy(z1;0;0) exists andCy(z2;0;0) is a double 2. The jacobian matrix always has a positive eigenvalue.
point.7 ’ Y Then, C; is unstable. We obtain the stability 6f, and

C3 applying the same arguments as 8 and Bs in

theorem 2. The stability of” is obtained using the

Routh-Hurwitz conditions.

e« When h; < B; ad < 1 and z3 €lzy;x3],

then the equilibria ar€’; (x1;0;0); Ca(x2;0;0) and
pm3(1 —x3) — hy

Cs(xs; whereys = > 0.
3(3; ys; ) y3 d IV. HOPFBIFURCATION
« Whenhy < 55 ad < 1 andas € [0;21[U]s; +o0], Let us introduce the following parameters
then the equilibria ar€’;(x1;0;0) andCy(x2; 0; 0). p3 )
e« When h; < g; ad < 1. 2% > 1 46 € o bz +2[ax3+(b a)x3+}’ (10)
€

d
Jz1; x2[N]as; +0of; 2o > a3 O hy < %’ ae < and .

(o \)2

1, g €lzi;ae[Nlzs;as); v2 > x3; 21 < w5, II=— [p(g)(x3)+p(3)(m3)} —M. (11)
then the equilibria ar€; (1; 0; 0); Ca(z2; 0;0) and 16 4v/=As(hio)
Ca(ze;ys; we), Y6 = uz(xe) andwg = vo(xg). Recalling (4), the flow of System (1) and System (2)

Proof : The equilibriaCy, C, C» andCs are obtained respectively undergo a supercritical Hopf bifurcation
in the same way as in theorem 1, setting the right haggoundhio given by the following result
side of the system equals to zero. Equilibridip exists ~ Theorem 5:(Hopf bifurcation) Leth; < §; ad < 1;
when the previous conditions are satisfied. x3 €]z, min (2, /\) [. Thanks to Hypothesis 1. Then, a
Concerning the Stability analysis of these equilibriaynique stable curve of periodic solution bifurcates from
the following theorem holds. the singular pointB; andCs into the regiong; > hjg
Theorem 4:Let’s consider the System (2) and supf II < 0 or hy < hyg if II > 0. The singular points
pose that Hypothesis 1 holds. Bs and C5 are stable forh; < hjp and unstable for

Biomath 1 (2012), 1210231, http://dx.doi.org/10.11145/j.biomath.2012.10.231 Page5of 7
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h1 > hyg. This correspond to supercritical stable Hopf 05
bifurcation.
Proof : The proof can be obtained as in [13].

0.3

0.2
0.1
0.0

2 (infected preys)

V. NUMERICAL SIMULATIONS

x (non infected preys) (a)

2 (infected preys)

. o 25 > . Infected preys (2) (b)

00 02 04 06 08
= x2 and X (non infected preys) (b)

stable.

Fig. 1. Phase portraits of System (1) for < B,
p(z2) < d. B1 and B, are unstable. The axis = % i

Oy 2

(1 _
h1 < Py gl 3 . The case (b) correspondsh@ > p)\ 1 )\)
and 2 < . lllustration of saddle-node bifurcation phenomenon

VI. CONCLUSION

Our goal was to analyze the modifications on a preda-
*(b) tor prey model (generalized Gause model) witg prey har-

Fig. 2. Phase portraits of System (1). The case (a) correspoRgssting and Holling response type lI-:
toh < 2: ) < 4y andp(z2) < d. The case (b) corresponds to

ax? z+1’

to account for a disease spreading among one of the
- Unstability of By and B2.  two species. The simple epidemiological model SIS has
been chosen, where only susceptibles and infectives are
counted. The results indicate that either the disease dies
out, leaving only neutral cycles of generalized Gause
model, or one species disappears and all individuals
in the other one eventually become infected. For some
particular choices of the parameters however, endemic
equilibria in which both populations survive seem to
arise.

A
>1/2 andd =

yugm

hy =P L
4’ a+2b+4

X090

(@) T e (b)

Fig. 3. Phase portraits of System (2) for < P andd > p(z2).
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