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♣ Abstract ♣

We give sufficient conditions for a continuous linear mapping between (pre)-ordered

Banach spaces to be order-bounded in the sens that its maps order-intervals of the

type [a, b] to intervals of the same type. The conditions that make continuous func-

tions between (pre)-ordered Banach spaces order-bounded are generally related to the

properties of the cones considered and are summarized in theorems 3.3.1 and 3.3.2

and in propositions 3.3.3, 3.3.4, 3.3.5. and 3.3.6.

key words: ordered Banach spaces, Banach lattice, positive convex cone, normal

cone, generating cone, proper cone, monotone norm, order-unit, order-bounded.
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♣ Résumé ♣

Le but de ce mémoire est de donner des conditions suffisantes pour qu’une applica-

tion linéaire continue entre deux espaces de Banach ordonnés soit bornée au sens

des relations d’ordre, c’est-à-dire qu’il transforme tout intervalle du type [a, b] en un

intervalle du même type. Les conditions rendant les applications linéaires continues

bornées au sens des relations d’ordre sont en général liées au propriétés des cônes

sous-jacents aux espaces de Banach (pré)-ordonnés considérés et sont résumées dans

les theorèmes 3.3.1 et 3.3.2 et les propositions 3.3.3, 3.3.4 et 3.3.5 et 3.3.6

mots clés: espaces de Banach ordonnés, treillis de Banach, cône convexe positif,

cône normal, cône générateur, cône propre, norme monotone, unité d’ordre, borné au

sens des relations d’ordre.
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♣ Some notations ♣

♠ N = the set of natural numbers

♠ ∃ = there exists

♠ ∀ = for every

♠ ∈= element of

♠ ∪ = union

♠ ∩ = intersection

♠ s.t. = such that

♠ iff=⇐⇒= if and only if

♠ map= mapping

♠ R= the field of real numbers

♠ =⇒= imply

♠
∑

= sum

♠ \ = set minus

♠ R= the field of real numbers

♠ C= the field of complex numbers

♠ F=the field R or the field C

♠ If (P,≤) is a lattice, and a, b ∈ P, then a ∨ b denote the value of the supremum

of the pair {a, b}

♠ L2(X; dµ) = {f |f : X −→ R measurable and
∫
X

|f |2dµ < +∞}

♠ C(X) = {f : X −→ R|f continuous }
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♣ Introduction ♣

The theory of bounded operators on Banach spaces is directly related to the theory

of ordered Banach spaces. The theory of Ordered Banach Spaces is the development

of the structure associated with the classical Banach spaces of real functions. Each

of these function spaces, for example, C(X) or Lp(X; dµ), can be ordered by setting

f ≥ g whenever the function f − g is pointwise positive. This ordering can, however,

be des-

cribed in a more geometric manner which is more convenient for the introduction of

other order relations.

The pointwise positive functions in each of the classical real Banach spaces

form a convex cone P because if f, g ≥ 0, then λf + µg ≥ 0 for all positive λ, µ. In

terms of this cone the ordering f ≥ g is equivalent to the statement that f − g ∈ P .

More generally any cone P induces a pre-order by setting f ≥ g is equivalent to the

statement that f − g ∈ P . properties of the order relation are then determined by

the geometric and topological properties of the cone P . Duality properties are also of

interest. If P is a convex cone in a real Banach space B one can define a cone P?

in the dual B? as the elements of B? which are positive on P , and then B? can be

ordered by P?. If, for example, P is the positive functions in Lp(X, dµ), then P?

can be identified with the positive functions in Lq(X; dµ) whenever 1 ≤ p < +∞

and 1
q

= 1 − 1
p
. There are two kinds of property of a cone P which are essential

for an interesting order structure and for the theory of bounded operators on ordered

Banach spaces. Firstly the cone must not be too large; typically this is expressed by

some sort of pointedness condition, e.g., ±f ∈ P if, and only if, f = 0. Secondly

the cone must not be two small; for example a general f should be decomposable as a
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Contents

difference, f = g − h, of a positive g and a positive h, at least approximately.

These two types of restraint on P are referred to as normality and generation

properties, respectively. Subsequently, we will discuss a whole hierarchy of such con-

ditions. It is easy to see that the larger the cone P , the smaller the cone P?. Alter-

natively stated, a normality restriction on P is equivalent to a generation condition

on P?, and vice-versa. Duality results of this nature play a major role in the general

analysis of ordered spaces and in particular in the theory of bounded operators on Ba-

nach spaces.

There are other more detailed properties of order relations which are also of

interest. For example the classical function spaces are lattices with respect to the or-

der defined by pointwise positivity. Moreover the norm of a function and the norm

of its modulus coincide, and as the modulus increases so does the norm. Spaces with

these properties are called Banach lattices. They have been extensively studied and

possess a rich, well understood, structure. Unfortunately they do not describe all the

commonly encountered examples of ordered Banach spaces.

However, the aim of this work is to study bounded operators on Banach spaces.

Firstly we will recall some essential results both of the classical analysis and algebra.

Secondly we will discuss the general structure of ordered Banach spaces and their or-

dered duals. We examine normality and generation properties of the cone of positive

elements with particular emphasis on monotone properties of the norm. The special

cases of ordered-unit spaces are also examined. Finally we will talk about the theory

of bounded operators on ordered Banach spaces.
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? ? CHAPTER ONE ? ?

PRELIMINARIES

1.1 Preliminaries on the set theory

We will need some elements of the set theory to support our work on the bounded

operators on Banach spaces.

We are going to define some concepts of the set theory which will be useful sub-

sequently.

Definition 1.1.1. (Relation)

Let A be a set. A binary relation R on A is a subset of A2.

Definition 1.1.2. (pre-order)

A binary relation ≤ defined on a set A is a pre-order on the set A if the following

conditions hold:

(i) For all a ∈A, a ≤ a reflexivity.

(ii) For all a, b, c ∈ A, a ≤ b and b ≤ c implies a ≤ c transitivity.

We also say that A is pre-ordered by ≤ .

Definition 1.1.3. (Partial order)

A binary relation≤ defined on a setA is a partial order on the setA if the following

three conditions hold:

(i) For all a ∈A, a ≤ a reflexivity.

(ii) For all a, b ∈ A, a ≤ b and b ≤ a imply a = b antisymmetry.

(iii) For all a, b, c ∈ A, a ≤ b and b ≤ c imply a ≤ c transitivity.

Dissertation of DIPES II, 2018-2019 3



1.1. Preliminaries on the set theory

If, in addition, for every a, b ∈ A a ≤ b or b ≤ a,

then we say ≤ is a total order on A. A set A with a partial order on it is called a

partially ordered set, or more briefly a poset, an if the relation is a total order then we

speak of a totally ordered set, or simply a chain. In a poset A we use the expression

a < b to mean a ≤ b but a 6= b.

Definition 1.1.4. (upper bound, least upper bound, lower bound, the greatest lower

bound) Let A be a subset of a poset P . An element p in P is an upper bound for A

if a ≤ p for every a in A. An element p in P is the least upper bound of A (l.u.b. of

A), or supremum of A (sup A) if p is an upper bound of A, and a ≤ b for every a in

A implies p ≤ b (i.e., p is the smallest among the upper bounds of A). Similarly we

can define what it means for p to be a lower bound of A, for p to be the greatest lower

bound (g.l.b.) of A, also called the infimum of A (inf A).

In the particular case where P = R and ≤ is the natural ordering on R we have the

following result which will be very useful subsequently:

Proposition 1.1.1. (The least upper bound property - The greatest lower bound

property)

(i) if a nonempty subset of R has an upper bound, then it has a unique least upper

bound.

(ii) if a nonempty subset of R has a lower bound, then it has a unique greatest lower

bound.

Proof . See [1], page 36.

Definition 1.1.5. (Lattice) A nonempty poset L is a lattice iff for every a, b ∈ L both

sup {a, b} and inf {a, b} exist (in L).

See [2] for more details on lattices.

Dissertation of DIPES II, 2018-2019 4



1.2. Preliminaries on linear algebra

1.2 Preliminaries on linear algebra

The sets on which we will work will be essentially the vector spaces. The concept of

linear mapping ( linear map ) will be of interest as part of our work.

Definition 1.2.1. ( Linear map ) Let V,W be two vector spaces over the same field

F. A mapping T : V −→ W is called a linear mapping if the following two conditions

are satisfied:

(i) T (x+ y) = T (x) + T (y) for all x, y ∈ V .

(ii) T (λx) = λT (x) for all x ∈ V and λ ∈ F.

Definition 1.2.2. ( Linear functional ) A linear functional or linear form ( also called

a one-form or co-vector ) is a linear map from a vector space to its field of scalars.

Definition 1.2.3. ( Algebraic dual space ) Let V be a vector space over a field F.

The ( algebraic ) dual space V ′ is defined as the set of all linear maps Φ : V −→ F.

Definition 1.2.4. ( Norm on a vector space ) A norm on a vector space V is a map

‖ . ‖: V −→ R that satisfies the following conditions:

(i) ‖v‖ ≥ 0, ∀ v ∈ V ;

(ii) ‖v‖ = 0 ⇐⇒ v = 0;

(i) ‖αv‖ = |α|‖v‖, ∀ α ∈ F, ∀ v ∈ V ;

(iv) ‖u+ v‖ ≤ ‖v‖+ ‖v‖, ∀ u, v ∈ V .

Definition 1.2.5. ( Normed vector space ) A vector space V equipped with a norm

‖.‖ is called a normed vector space.

In the situations where more than one vector space appear, we will frequently denote

the norm on V by ‖.‖V .

Definition 1.2.6. ( Order-bounded mapping ) A mapping T : R −→ R is said to be

an order-bounded mapping if it maps bounded intervals [a, b] into intervals of same

type, that is, for every a, b ∈ R, a < b there exists α, β ∈ R, α < β such that:
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1.3. Metric spaces

T ([a, b]) ⊆ [α, β]

Example: every linear map from R to R is order-bounded.

Definition 1.2.7. (Product of a subset by a scalar) Let E be a vector space over a

field F, A a subset of E and λ ∈ F. The product of he set A by the scalar λ, denoted

by λA is the subset of E defined by:

λA = {λa, a ∈ A}

1.3 Metric spaces

As part of our work, we will focus on metric spaces in general and normed vector

spaces in particular.

Definition 1.3.1. (Metric) Let X be a nonempty set. A distance function or a metric

on the set X is a mapping d : X ×X −→ R which assigns to each pair of elements

(x, y) ∈ X ×X a real number d(x, y) having the following properties:

d1. d(x, y) ≥ 0, ∀ x, y ∈ X (Non-negativeness).

d2. d(x, y) = 0 ⇐⇒ x = y, ∀ x, y ∈ X (Identification).

d3. d(x, y) = d(y, x), ∀ x, y ∈ X (Symmetry).

d4. d(x, z) ≤ d(x, y) + d(y, z), ∀ x, y, z ∈ X ( Triangular inequal-

ity).

Given a nonempty set X and a map d : X ×X −→ R, we say that the pair (X, d) is

a metric space if and only if d is a metric on X .

The following proposition gives a fundamental example of a metric space.

Proposition 1.3.1. Let (X, ‖.‖) be a normed vector space and define d : X×X −→

R as d(x, y) = ‖x− y‖

Then (X, d) is a metric space.

Dissertation of DIPES II, 2018-2019 6



1.3. Metric spaces

Proof . We need to prove each of the properties of a distance.

Let x,y,z ∈ X .

(d1) : d(x, y) ≥ 0

(d2) : d(x, y) = 0 ⇐⇒ ‖x− y‖ = 0

⇐⇒ x− y = 0

⇐⇒ x = y

(d3) : d(x, y) = ‖x− y‖ = ‖−(x− y)‖ = ‖y − x‖ = d(y, x)

(d4) : d(x, z) = ‖x− z‖

≤ ‖x− y‖+ ‖y − z‖

= d(x, y) + d(y, z)

The proposition is then proven.

Let x be a point of a metric space (X; d), and assume that r is a real number,

r > 0. We have the following definitions:

Definition 1.3.2.

(i) The open ball centered at x with radius r is the set

B(x; r) = {y ∈ X : d(x, y) < r}.

(ii) The closed ball centered at x with the radius r is the set

B′(x; r) = {y ∈ X : d(x, y) ≤ r}.

(iii) The sphere centered at x with the radius r is the set

S(x; r) = {y ∈ X : d(x, y) = r}.

Let A be a subset of a metric space X .

Definition 1.3.3. (Open sets, closed sets)

(i) A is an open subset of X if and only if for any x ∈ A there is a r > 0 such that

B(x; r) ⊂ A.

(ii) A is closed if the compliment of A in X , {X(A) is an open subset of X .

Dissertation of DIPES II, 2018-2019 7



1.3. Metric spaces

Definition 1.3.4. Let (X, d) be a metric space. If for all n ∈ N, xn ∈ X , we say that

(xn)n is a sequence of elements of X .

Definition 1.3.5. (convergence) A sequence (xn)n in a metric space (X, d) converges

to a point x ∈ X if:

∀ε > 0, ∃N ∈ N | ∀n ∈ N, (n ≥ N) =⇒ (d(xn, x) < ε).

.

Definition 1.3.6. (Cauchy sequence) A sequence (xn)n in a metric space (X, d) is

said to be a Cauchy sequence if:

∀ε > 0,∃N ∈ N | ∀n,m ∈ N, n,m ≥ N =⇒ d(xn, xm) < ε.

Definition 1.3.7. (complete metric space)

A metric space (X, d) is called a complete metric space if every Cauchy sequence in

X is convergent.

Definition 1.3.8. (Banach spaces)

A Banach space is a complete, normed vector space.

Let (X, d) and (Y, d′) be two metric spaces, f : X −→ Y be a mapping, a ∈ X

and A be a nonempty subset of X.

(i) f is said to be continuous at the point a if:

∀ε > 0,∃η > 0 | ∀x ∈ X, d(a, x) < η =⇒ d′(f(x), f(a)) < ε.

(ii) f is continuous on A if f is continuous at every point of A.

Proposition 1.3.2. Let E,F be two normed vector spaces on the same field F,

f : E −→ F be a linear mapping. Then the following conditions are equivalent:

(i) f is continuous.

(ii) There exist a constant c > 0 such that :

‖f(x)‖F ≤ c‖x‖E, for every x ∈ E.

Proof . See [5], page 126.

Dissertation of DIPES II, 2018-2019 8



1.3. Metric spaces

The set of all continuous linear mappings from E to F is denoted by L (E,F ); but

if F = R or C, the set of all continuous linear functionals is denoted by E? and is

called the topological dual space of E.

It is laudable to state the various forms of the HAHN-BANACH theorem that will

be very useful for us later.

Definition 1.3.9. (sub-linear functional) Let E be a real vector space. A functional

p : E −→]−∞,+∞] is sub-linear, if

(i) p(λa) = λp(a), ∀ a ∈ E, ∀ λ ∈ R?
+;

(ii) p(a+ b) ≤ p(a) + p(b), ∀ a, b ∈ E.

This is the first form of the Hahn-Banach Theorem that will be of interest for us

subsequently:

Theorem 1.3.1. (A corollary of the Hahn-Banach theorem) Let p : E −→ R be a

finite-valued sub-linear functional, and a ∈ E. There is a linear functional ω : E −→

R with

ω(a) = p(a) and ω(b) ≤ p(b) for all b ∈ E.

Furthermore, for c ∈ E and λ ∈ R, there exists a linear functional ω : E −→ R with

ω(a) = p(a), ω(c) = λ, and ω(b) ≤ p(b), for all b ∈ E if, and only if ,
p(a)−p(a−tc)

t
≤ λ ≤ p(a+tc)−p(a)

t
, t > 0.

Proof . See [4] page 71-73.

Theorem 1.3.2. ( Multiple Hahn-Banach theorem.) Let pi : E −→] −∞,+∞] be

sub-linear functionals (1 ≤ i ≤ n) with

p1 finite-valued, and suppose that if ai ∈ E (1 ≤ i ≤ n, ) then:∑n
i=1 ai = 0 =⇒

∑n
i=1 pi(ai) ≥ 0.

Proof . See [4] page 71-73.

This is an important application of the multiple Hahn-Banach theorem.

Theorem 1.3.3. Let B be a real Banach Space. If ω ∈ B? and λ, µ ∈ R then,

Dissertation of DIPES II, 2018-2019 9



1.3. Metric spaces

sup{λω(a) + (1− λ)ω(b) + (µ− λ)ω(c); b, c ≥ 0, ‖a‖+ ‖a− b− c‖ ≤ 1}

= inf{‖η‖? ∨ ‖η − λω‖?; η ∈ B?, η ≥ ω, η ≥ µω}

and the infimum is attained, whenever it’s finite.

Proof . In this proof, B+ is a non empty subset of B such that

(i) B+ is closed;

(ii) ∀ (x, y) ∈ B+ ×B+,∀(λ, µ) ∈ R+ × R+, λx+ µy ∈ B+;

in other words,

λB+ + µB+ ⊆ B+, ∀ λ, µ ≥ 0.

and a ≤ b iff b− a ≥ 0

Let S denote the value of the supremum and I the value of the infimum. Let show that

S ≤ I.

If a, b, c ∈ B, ‖a‖+ ‖a− b− c‖ ≤ 1, η ≥ ω, and η ≥ µω, then

λω(a) + (1− λ)ω(b) + (µ− λ)ω(c)

= λω(a− b− c) + ω(b) + µω(c)

≤ λω(a− b− c) + η(b) + η(c), since η ≥ ω and η ≥ µω.

= λω(a− b− c)− η(−b)− η(−c) + η(a)− η(a)

= λω(a− b− c)− η(a− b− c) + η(a)

= (λω − η)(a− b− c) + η(a)

≤ |λω − η)(a− b− c) + η(a)|

≤ |λω − η)(a− b− c)|+ |η(a)|

≤ ‖λω − η‖?‖a− b− c‖+ ‖η‖?‖a‖

≤ (‖λω − η‖? ∨ ‖η‖?)(‖a− b− c‖+ ‖a‖)

≤ ‖λω − η‖? ∨ ‖η‖? since ‖a− b− c‖+ ‖a‖ ≤ 1.

Thus S ≤ I.

The converse inequality follows by application of the multiple Hahn-Banach theorem

with n = 4 and the pi chosen such that:

p1(b) = S‖b‖, p2(b) = S‖b‖+ λω(b), p3(b) =

ω(b) if −b ∈ B+

+∞ if −b ∈ B+

and
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1.3. Metric spaces

p4 =

µω(b) if −b ∈ B+

+∞ if −b /∈ B+.

Thus, if b1 + b2 + b3 + b4 = 0, one has:
i=4∑
i=1

pi(bi) = +∞ for −b3 /∈ B+ or −b4 /∈ B+

and:
i=4∑
i=1

pi(bi) = S‖b1‖+S‖b2‖+λω(b2)+ω(b3)+µω(b4) = S(‖b1‖+‖b2‖)−{λω(b1)+

(1− λ)ω(−b3) + (µ− λ)ω(−b4) ≥ 0 for −b3 ∈ B+ and −b4 ∈ B+.

Hence by the multiple Hahn-Banach theorem, there exist a linear functional η : B −→

R satisfying:

η ≤ pi for i = 1, 2, 3, 4. In particular, η ∈ B?, ‖η‖? ≤ S, ‖η−λω‖? ≤ S, η ≥ ω, and

η ≥ λω.

Thus S ≥ I. If comes that I = S and also the infimum is attains at the point η.

�

Notation 1.3.1. S(ω, λ, µ) := sup{λω(a) + (1−λ)ω(b) + (µ−λ)ω(c); ‖a‖+ ‖a−

b− c‖ ≤ 1}

and:

I(ω, λ, µ) := inf{‖η‖? ∨ ‖η − λω‖?; η ∈ B?, η ≥ ω, η ≥ µω},

for all ω ∈ B?, λ, µ ∈ R.
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? ? CHAPTER TWO ? ?

ORDERED BANACH SPACES

2.1 Normal generating cone

Definition 2.1.1. ( positive cone )

Let B be a normed vector space and B+ be a nonempty subset of B. B+ is called

a positive cone of B if the following conditions hold:

(i) B+ is closed;

(ii) ∀ (x, y) ∈ B+ ×B+,∀(λ, µ) ∈ R+ × R+, λx+ µy ∈ B+;

in other words,

λB+ + µB+ ⊆ B+, ∀ λ, µ ≥ 0.

Definition 2.1.2. A positive cone B+ of a Banach space B is defined to be proper

or pointed if

B+ ∩ (−B+) = {0B}.

Definition 2.1.3. (pre-ordered Banach space and ordered Banach space) A pre-

ordered Banach space (B,B+, ‖.‖) is a real Banach space B with norm ‖.‖ equipped

with a positive cone B+ of B. If in addition, B+ is proper, we say that (B,B+, ‖.‖)

is an ordered Banach space.

The elements of B will be denoted by a, b, c, ... and for α ∈ R?
+,

Bα will denote the open ball of radius α, i.e.,

Bα = {a ∈ B : ‖a‖ < α}

Associated to each pre-ordered Banach space (B,B+, ‖.‖) there is pre-ordered dual

space (B?,B?
+, ‖.‖?) consisting of the real linear functionals B? = {ω, ξ, η, ...} over

B, s.t. the dual norm:
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2.1. Normal generating cone

‖ω‖? = Sup{| ω(a) | a ∈ B1}

is finite, and the weak? − closed dual cone B?
+ which is defined by:

B?
+ = {ω ∈ B? : ω(a) ≥ 0 ∀a ∈ B+}.

By the definition of the dual cone, one has:

λB?
+ + µB?

+ ⊆ B?
+, ∀ λ, µ ≥ 0.

The norm closed ball of radius α in B? is denoted by B?
α.

Proposition 2.1.1. Let (B,B+, ‖.‖) be an ordered Banach space. The relation ≤

defined on B by setting a ≤ b ⇐⇒ b− a ∈ B+ is a partial order.

Proof . Let a, b, c ∈ B.

(i) a− a = 0 ∈ B+, hence a ≤ a

(i) If a ≤ b, b ≤ a, then, a− b ∈ B+ ∩ (−B+) = {0}. Hence, a = b

(i) Assume a ≤ b and b ≤ c.

One has c − a = (c − b) + (b − a) and since a ≤ b, b ≤ c, it follows that

(c− b), (b− a) ∈ B+ and c− a ∈ B+.

hence, a ≤ b.

�

Thanks to the preceding proposition, if the cones B+ and B?
+ are proper,

then partial order relations are defined on B and on B?, by setting a ≥ b whenever

a− b ∈ B+, and ξ ≥ η whenever ξ − η ∈ B?
+. Thus a ≥ 0 is equivalent to a ∈ B+,

and ξ ≥ 0 is equivalent to ξ ∈ B?
+.

There are two deficiencies in this structure: there is no condition which ensures that

B+ is large enough to introduce an interesting order relation and there is no condition

which ensures that B+ is not too large. The aim of this chapter is to introduce and

analyze such conditions. Further refinements of the conditions will be discussed. We

begin with the weakest possible form of such conditions.
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2.1. Normal generating cone

Definition 2.1.4. Let (B,B+, ‖.‖) be an ordered Banach space. The positive cone

B+ is defined to be weakly generating if B+ −B+ is norm dense in B, i.e., if each

a ∈ B is the norm limit of a sequence{bn− cn}n≥1 of differences of elements bn, cn ∈

B+.

Remark 2.1.1. The generation property has the tendency to make B+ ‘large’ and

the dual cone B?
+ ‘small’. Conversely, the pointedness property requires B+ to be

‘small’ and B?
+ to be ‘large’. This elementary observation is at the root of a series of

duality properties of which the following proposition is the simplest.

Proposition 2.1.2. Let (B,B+, ‖.‖) be an ordered Banach space. The following

conditions are equivalent:

1. B+ is weakly generating.

2. B?
+ is proper.

Proof . 1.=⇒ 2. Assume that B+ in weakly generating.

Let ω ∈ B?. If ω ∈ B?
+ ∩

(
−B?

+

)
, then, there are ω1, ω2 ∈ B?

+ such that ω =

ω1 = −ω2; this implies that ω(a) = 0 for all a ∈ B+. Let a ∈ B; since B+ is

weakly generating, there are two sequences (bn) and (cn) of elements of B+ such that

a = bn−cn for all n. By the linearity of ω, one has: ω(a) = ω(bn)−ω(cn) = 0−0 = 0.

2.=⇒ 1. This is an application of the Hahn-Banach theorem. (See [4])

Proposition 2.1.3. Let (B,B+, ‖.‖) be an ordered Banach space. The following

conditions are equivalent:

1. B?
+ is weakly generating.

2. B+ is proper.

Proof . See [4]

now, we turn to the analysis of stronger properties of generation and pointedness.

Definition 2.1.5. Let (B,B+, ‖.‖) be a pre-ordered Banach space. The cone B+ is

defined to be generating if:
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2.1. Normal generating cone

B = B+ −B+

Definition 2.1.6. Let (B,B+, ‖.‖) be a pre-ordered Banach space. The cone B+ is

defined to be normal if there is an α ≥ 1 such that:

c ≤ a ≤ b =⇒ ‖a‖ ≤ α{‖b‖ ∨ ‖c‖}.

Proposition 2.1.4. Let (B,B+, ‖.‖) be a pre-ordered Banach space. If B+ is normal,

then B+ is proper.

Proof . Assume that B+ is normal. Let a be an element of B+ ∩ (−B+) .

One has 0 ≤ a ≤ 0.

Since B+ is α−normal for some α > 0, it comes that

‖a‖ ≤ α{‖0‖ ∨ ‖0‖} = 0.

Hence a = 0. �

Remark 2.1.2. Normality is a condition of compatibility between the order and the

topology. Later, we will see that normality is equivalent to the requirement that order-

bounded sets are norm-bounded.

Normality and generation for B?
+ are defined analogously. Again there is a duality

between these properties for B+ and B?
+. But before giving this, we first establish

a uniformity of the generation property which allows a more precise indexation of

generation and a subsequent closer comparison with normality.

Proposition 2.1.5. Let (B,B+, ‖.‖) be a pre-ordered Banach space. The following

conditions are equivalent:

1. B+ is generating;

2. There is an α ≥ 1 such that each a ∈ B has a decomposition a = b − c with

b, c ∈ B+ and ‖b‖ ∨ ‖c‖ ≤ α‖a‖.

Proof . 2. =⇒ 1. By definition.

1. =⇒ 2. condition 1. implies:

B1 ⊆
⋃
α≥1

(Bα ∩B+ −Bα ∩B+)
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2.1. Normal generating cone

Hence by the Baire category theorem there exists a β ≥ 1 such that:

B1 ⊆ Bβ ∩B+ −Bβ ∩B+. The proof is then completed by estimating that:

B1 ⊆ Bα ∩B+ −Bα ∩B+ for all α > β. Since this type of estimate will be used

several times in the sequel we present it in a suitably general form. But first recall that

a subset C ⊂ B is said to be σ− convex if the conditions cn ∈ C, λn ≥ 0,
∞∑
n=1

λn = 1,

together with the existence of c =
∞∑
n=1

λncn always imply that c ∈ C. For example

Bβ,Bβ ∩B+, Bβ ∩B+ −Bβ ∩B+ are all σ−convex subsets of B.

Lemma 2.1.1. If C ⊂ B is a σ − convex subset such that B1 ⊂ C, then B1 ⊆ αC

for all α > 1

Proof . For a ∈ B1 and 0 < δ < 1, choose a1 ∈ C such that ‖a − a1‖ < δ.

δ−1(a− a1) ∈ B1 and one can choose a2 ∈ C such that ‖δ−1(a− a1)− a2‖ < δ. By

iteration one finds an ∈ C such that ‖δ−n+1a−
n∑

m=1

δ−n+mam‖ < δ. Therefore setting

λm = (1− δ)δm−1 one has

‖a− (1− δ)−1
n∑

m=1

λmam‖ < δn for every n ∈ N?.

Passing to the limit as n tends to +∞, we find

a = (1− δ)−1
+∞∑
m=1

λmam.

Hence, the series
∑
m≥1

λmam converges, λm ≥ 0 for every m ≥ 1,
+∞∑
m=1

λm = 1, am ∈

C, and C is σ−convex.

Hence,

b =
∑
m≥1

λmam ∈ C.

Hence, a ∈ (1− δ)−1C.

It remains to prove that (1− δ)−1C ⊆ αC, for every α > 1. Let c ∈ C.

(1− δ)−1c = αα−1(1− δ)−1c.

And,

α−1(1− δ)−1 = (1− α−1(1− δ)−1))0 + α−1(1− δ)−1c ∈ C. �
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2.1. Normal generating cone

In comparing normality and generation properties of B+, it is of interest to keep

of the index α of uniformity.

Definition 2.1.7. Let (B,B+, ‖.‖) be a pre-ordered Banach space and α ≥ 0. The

cone B+ is defined to be α+ − generating if each a ∈ B has a decomposition

a = b− c with b, c ∈ B+ and ‖b‖+ ‖c‖ ≤ α‖a‖.

Definition 2.1.8. Let (B,B+, ‖.‖) be an ordered Banach space and β ≥ 0. The cone

B+ is defined to be α∨ − generating if each a ∈ B has a decomposition a = b − c

with b, c ∈ B+ and ‖b‖ ∨ ‖c‖ ≤ β‖a‖.

Remark 2.1.3. If B+ is α− generating, then α ≥ 1, by the triangle inequality.

Definition 2.1.9. Let (B,B+, ‖.‖) be a pre-ordered Banach space and α, β ≥ 0.

The cone B+ is defined to be approximately α+−generating if it is α′+−generating

for all α′ > α and approximately β∨ − generating if it is β′∨ − generating for all

β′ > β.

Similarly we introduce two types of normality.

Definition 2.1.10. Let (B,B+, ‖.‖) be a pre-ordered Banach space and α, β ≥ 0.

(i) The cone B+ is defined to be α∨ − normal if c ≤ a ≤ b always implies

‖a‖ ≤ α(‖a‖ ∨ ‖c‖)

(ii) The cone B+ is defined to be β+ − normal if c ≤ a ≤ b always implies

‖a‖ ≤ β(‖a‖+ ‖c‖)

To generalize the duality properties contained in propositions 2.1.2. and 2.1.3, we

need theorem 1.3.3:

If (B,B+, ‖.‖) is a pre-ordered Banach space, then, the normality property of the

cone B+ is characteristic of the generation property of its dual cone and vice versa

as the following theorem is showing us.
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2.1. Normal generating cone

Theorem 2.1.1. Let (B,B+, ‖.‖) be a pre-ordered Banach space. Then, the follow-

ing conditions are equivalent:

1.B+ is β+ − normal.

2. B?
+ is β∨ − generating.

Proof . One has:

S(ω, λ, 0) = sup{ω(a)− ω(c); b, c ≥ 0, ‖a‖+ ‖a− b− c‖ ≤ 1},

= sup{ω(a− c); b, c ≥ 0, ‖a‖+ ‖a− b− c‖ ≤ 1},

= sup{ω(d); a ≥ d, b ≥ 0, ‖a‖+ ‖d− b‖ ≤ 1},

= sup{ω(d); a ≥ d, d ≥ h ≥ 0, ‖a‖+ ‖h‖ ≤ 1},

= sup{ω(a); b ≤ a ≤ c, ‖b‖+ ‖c‖ ≤ 1}.

and :

I(ω, λ, 0) = inf{‖η‖? ∨ ‖η − ω‖?; η ∈ B?, η ≥ ω, η ≥ 0}

= inf{‖η‖? ∨ ‖ξ‖?; η ∈ B?, η ≥ 0, ξ ≥ 0ω = η − ξ}

= inf{‖η‖? ∨ ‖ξ‖?; η ∈ B?, η, ξ ≥ 0, ω = ξ − η}

Hence:

sup{ω(a); b ≤ a ≤ c, ‖b‖ + ‖c‖ ≤ 1} = inf{‖η‖? ∨ ‖ξ‖?; η ∈ B?, η, ξ ≥ 0, ω =

ξ − η} and the infimum is attained. But this is just a statement of the equivalence of

β+ − normality of B+ and β∨ − generation of B?
+ :

-Let B+ be β+ − normal. Let ω ∈ B?. As the infimum is attained, there exists η, ξ ≥

0 : ω = ξ − η and :

‖η‖? ∨ ‖ξ‖? = sup{ω(a); b ≤ a ≤ c, ‖b‖+ ‖c‖ ≤ 1}

≤ sup{ω(a) : ‖a‖ ≤ 1}[B+isβ+ − normal]

≤ ‖ω‖?

≤ β‖ω‖?sinceβ ≥ 1.
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2.1. Normal generating cone

Hence, B?
+ is β∨ − generating.

-Let the cone B?
+ be β∨−generating. Let a, b, c ∈ B such that c ≤ a ≤ b. We want to

prove that ‖a‖ ≤ β(‖b‖+ ‖c‖).

For all ω ∈ B?, there exists η, ξ ∈ B?
+ such that ω = ‖η‖? − ‖ξ‖? and β‖ω‖? ≥

‖η‖? ∨ ‖ξ‖? ≥ I(ω, 1, 0) = S(ω, 1, 0).

For ‖b‖ + ‖c‖ 6= 0, b ≤ a ≤ c implies b
‖b‖+‖c‖ ≤

a
‖b‖+‖c‖ ≤

c
‖b‖+‖c‖ . In addition,

‖ b
‖b‖+‖c‖‖+ ‖ c

‖b‖+‖c‖‖ ≤ 1.

So, ω( a
‖b‖+‖c‖) ≤ β‖ω‖. By the Hahn-Banach theorem, there is an ϕ ∈ B? such

that ‖ϕ‖ = 1 and ϕ(a) = ‖a‖. Taking ω = ϕ, ‖a‖ ≤ β(‖b‖ + ‖c‖). Moreover, the

implication is also true if ‖b‖+ ‖c‖ = 0.

�

Theorem 2.1.2. Let (B,B+, ‖.‖) be a pre-ordered Banach space. Then the follow-

ing conditions are equivalent:

1.B+ is α∨-normal.

2. B?
+ is α+−generating.

Proof . See [6] page 226.

Theorem 2.1.3. Let (B,B+, ‖.‖) be an ordered Banach space. Then the following

conditions are equivalent:

1.B+ is approximately β∨-generating.

2. B?
+ is β+-normal.

Proof . =⇒). Assume that B+ is approximately β∨-generating. We need to show that

B?
+ is β+-normal. Let a=b-c with b, c ∈ B+ and ‖b‖ ∨ ‖c‖ ≤ β

′‖a‖ with β
′
> β).

Thus, if ξ ≤ ω ≤ η, then,

ξ(b)− η(c) ≤ ω(a) ≤ η(b)− ξ(c).
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Therefore:

|ω(a)| ≤ |ξ(b)− η(c)| ∨ |η(b)− ξ(c)|

≤ (|ξ(b)|+ |η(c)|) ∨ (|η(b)|+ |ξ(c)|)

≤ (‖ξ‖?‖b‖+ ‖η‖?‖c‖) ∨ (‖η‖?‖b‖+ ‖ξ‖?‖c‖)

≤ [(‖ξ‖? + ‖η‖?)(‖b‖ ∨ ‖c‖)] ∨ [(‖ξ‖? + ‖η‖?)(‖b‖ ∨ ‖c‖)]

= (‖ξ‖? + ‖η‖?)(‖b‖ ∨ ‖c‖)

≤ β
′
(‖ξ‖? + ‖η‖?)‖a‖

which implies that :

‖ω‖? ≤ β
′
(‖ξ‖?+‖η‖? Since this is valid for all β

′
> 0), the cone B?

+ is β+−normal.

⇐= .) See [4]

2.2 Monotone norms

Let (B,B+, ‖.‖) be a pre-ordered Banach space and α ≥ 0

Definition 2.2.1. The norm ‖.‖ is defined to be α - monotone if 0 ≤ a ≤ b always

implies that ‖a‖ ≤ α‖b‖.

Proposition 2.2.1. If B+ 6= {0} and if the norm is α - monotone, then α ≥ 1.

Proof . Let B+ 6= {0} and ‖.‖ α− monotone. There exists a ∈ B+ such that a 6= 0.

we have:

0 ≤ a ≤ a.

As ‖.‖ is α−monotone, one has:

‖a‖ ≤ α‖a‖.

This implies α ≥ 1 since a 6= 1.

�

Proposition 2.2.2. Let (B,B+, ‖.‖) be a pre-ordered Banach space

(1) If B+ is α+−normal, then ‖.‖ is α−monotone

(2) If B+ is αV−normal, then ‖.‖ is α−monotone.

Dissertation of DIPES II, 2018-2019 20



2.2. Monotone norms

Proof . (1) Suppose B+ is α+−normal.

If 0 ≤ a ≤ b, then ‖a‖ ≤ α(‖0‖+ ‖b‖) for B+ is α+−normal.

In other words, 0 ≤ a ≤ b always implies ‖a‖ ≤ α‖b‖.Hence ‖.‖ is α−monotone.

(2) Suppose B+ is α∨− normal. One has 0 ≤ a ≤ b =⇒ ‖a‖ ≤ α(‖0‖ ∨ ‖b‖) =

α‖b‖. Thus ‖.‖ is α+−normal

� .

Proposition 2.2.3. If ‖.‖ is α−monotone, then B+ is (α+ 1
2
)-normal or (2α+ 1)∨-

normal.

Proof . Suppose ‖.‖ is α-monotone then 0 ≤ a ≤ b always implies that ‖a‖ ≤ α‖b‖.

Let c ≤ a ≤ b; this implies a − c ∈ B+, b − a ∈ B+. Then, a − c ∈ B+, b − a =

(b− c) + (c− a) ∈ B+

ie a− c ∈ B+, (b− c)− (a− c) ∈ B+

ie 0 ≤ a− c ≤ b− c; hence ‖a− c‖ ≤ α‖b− c‖.

If ‖b‖ ≤ ‖c‖, one has:

‖a‖ = ‖(a− c) + c‖

≤ ‖a− c‖+ ‖c‖

≤ α‖b− c‖+ ‖c‖

≤ α‖b‖+ α‖c‖+ ‖c‖

≤ 2α‖c‖+ ‖c‖

= (2α + 1)(‖b‖ ∨ ‖c‖) (2.1)

If ‖c‖ ≤ ‖b‖, one has:

‖a‖ ≤ α‖b‖+ ‖c‖+ ‖c‖

≤ α(‖b‖+ ‖b‖) + ‖b‖

≤ (2α + 1)‖b‖ = (2α + 1)(‖b‖ ∨ ‖c‖).

(2.2)

Hence, c ≤ a ≤ b always implies ‖a‖ ≤ (2α + 1)(‖b‖ ∨ ‖c‖). �
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Proposition 2.2.4. If B+ is normal, then there exists an equivalent monotone norm.

Proof. Suppose B+ be normal. We are looking for an equivalent monotone norm.

Since B+ is normal, there is an α ≥ 1 such that c ≤ a ≤ b always implies

‖a‖ ≤ α(‖b‖ ∨ ‖c‖).

Now define the function ‖a‖+ = inf{‖b‖+ ‖c‖; c ≤ a ≤ b} for each a ∈ B.

We prove that ‖.‖+ is a norm.

N1.) Clearly, for every a ∈ B ‖a‖+ ≥ 0.

N2.)‖a‖+ = 0 ⇐⇒ inf{‖b‖+ ‖c‖; c ≤ a ≤ b} = 0

⇐⇒ ∀ε,∃c ≤ a ≤ b s.t. ‖b‖+ ‖c‖ < ε

⇐⇒ ∀n ∈ N∗,∃cn ≤ a ≤ bn s.t. ‖bn‖+ ‖cn‖ <
1

n
=⇒ bn −→ 0, and cn −→ 0, as n −→ +∞.

(2.3)

bn − a, a− cn ∈ B+ for every n ∈ N. bn − a −→ −a in B and a− cn −→ a in B

imply a = −a, i.e. a = 0.

N3.) Let a ∈ B an λ ∈ R.

‖λa‖ = inf{‖b‖+ ‖c‖; c ≤ λa ≤ b} = infA where A = {‖b‖+ ‖c‖; c ≤ λa ≤ b};

‖a‖ = infB where B = {‖b‖+ ‖c‖; c ≤ a ≤ b}.

If c ≤ λa ≤ b and u = ‖b‖+ ‖c‖ λa− c, b− λa ∈ B+

If λ > 0, then a− c
λ
, b
λ
− a ∈ B+ implies c

λ
≤ a ≤ b

λ
; implies infB ≤ 1

λ
(‖b‖+ ‖c‖)

ie λinfB ≤ ‖b‖+ ‖c‖ and so λinfB ≤ infA.

If λ < 0, −a + c
λ
∈ B+,−b

λ
+ a ∈ B+ implies b

λ
≤ a ≤ c

λ
; =⇒ infB ≤ 1

|λ|(‖b‖ +

‖c‖);=⇒−λinfB ≤ ‖b‖+ ‖c‖; =⇒−λinfB ≤ infA.

If λ = 0, 0infB ≤ infA.

It comes that |λ|infB ≤ infA, for each λ in R.

If c ≤ a ≤ b, a− c ∈ B+, b− a ∈ B+

If λ > 0 , λa− λc ∈ B+

λb− λa ∈ B+
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2.2. Monotone norms

ie λc ≤ λa ≤ λb implies ‖λa‖+ ≤ |λ|(‖b‖ + ‖c‖) ie 1
|λ|‖λa‖+ ≤ ‖b‖ + ‖c‖;

1
|λ|‖λa‖+ ≤ ‖a‖+ ‖λa‖+ ≤ ‖λa‖+ .

If λ = 0, ‖λ‖+ ≤ |λ|‖a‖+.

We have shown that ‖λa‖+ = |λ|‖a‖+.

N4). Let a, a′ ∈ B+

If c ≤ a ≤ b, c′ ≤ a′ ≤ b′ then a − b, b − a, a′ − c′, b′ − a′ ∈ B+ implies

a + a′ − (c + c′) ∈ B+, b + b′ − (a + a′) ∈ B+ c + c′ ≤ a + a′ ≤ b + b′

implies ‖a + a′‖+ ≤ ‖b + b′‖ + ‖c + c′‖ ≤ ‖b‖ + ‖c‖ + ‖b′‖ + ‖c′‖ implies

‖a+ a′‖+ ≤ ‖a‖+ ‖a′‖. We have shown that ‖.‖ is a norm on B.

Now, we prove that ‖‖+ is monotone.

0 ≤ a ≤ b implies ‖a‖ ≤ α‖b‖ ≤ α2(‖c‖+ ‖d‖) ∀c ≤ b ≤ d =⇒ ‖a‖ ≤ α2‖b‖+ =⇒

‖a‖+ ≤ ‖a‖ ≤ ‖b‖+.

Let’s prove that ‖.‖ and ‖.‖+ are equivalent. ∀ a ∈ B+, ‖a‖+ ≤ 2‖a‖ ≤ 2α‖a‖+ the

proof is then finished.

Definition 2.2.2. A Banach lattice is an ordered Banach space which possesses an

equivalent monotone norm.

Definition 2.2.3. The cone B+ is defined to be α− dominating if each a ∈ B has a

decomposition a = b− c with b, c ∈ B+ and ‖b‖ ≤ α‖a‖.

Definition 2.2.4. The cone B+ is defined to be approximately α− dominating if it

is α′−dominating for all α′ > α. Subsequently we also use the terminology (approxi-

mately) dominating in place of (approximately ) 1-dominating
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? ? CHAPTER THREE ? ?

BOUNDED OPERATORS

3.1 Absolutely monotone norms

In this section we consider a more stringent notion of monotonicity for the norm,

absolute monotonicity. This is of interest for several reasons. First, the norms and dual

norms of the classical function spaces, and ofC?-algebras, have this property. Second,

absolute monotonicity of an equivalent norm and its dual norm are characteristics

of normal generation cones. Third, the concept is useful in the theory of bounded

operators on Banach spaces.

Let (B,B+, ‖.‖) be a pre-ordered Banach space and α ∈ R+.

Definition 3.1.1. The norm is defined to be α-absolutely monotone if for all a, b ∈

B+, −b ≤ a ≤ b implies ‖a‖ ≤ α‖b‖.

Note that −b ≤ a ≤ b requires b ≥ 0 and taking a = b ∈ B+ − {0}, one has

α ≥ 1.

Next we define the dual concept.

Definition 3.1.2. The cone B+ is defined to be α− absolutely dominating if for each

a ∈ B there is a b ≥ 0 such that −b ≤ a ≤ b and ‖a‖ ≤ α‖b‖.

More generally, one has:

Definition 3.1.3. The cone B+ is defined to be approximately α-absolutely domi-

nating if it’s α′-absolutely dominating for all α′ > α.

Subsequently we use the simplified terminology absolutely monotone for 1-absolutely

monotone and (approximately) absolutely dominating for (approximately) 1-absolutely

dominating. The duality between these concepts is as follow.
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Theorem 3.1.1. The following conditions are equivalent:

1.‖.‖ is α−absolutely monotone;

2-B?
+ is α−absolutely dominating.

Moreover the following conditions are also equivalent:

1’-B+ is approximately α−absolutely dominating.

2’-‖.‖? is α−absolutely monotone.

Proof . See [6 page 233] for the proof. �

3.2 Interior point and order-unit spaces

Definition 3.2.1. An element u of the cone B+ is defined to be an interior point if

B+ contains an open neighborhood of u, i.e., if there is an ε > 0 such that:

{a; ‖u− a‖ < ε} ⊆ B+

The set of interior points of B+ is denoted by intB+.

Proposition 3.2.1. If u ∈ intB+, b ∈ B+ and λ > 0, then λu+ b ∈ intB+.

Proof . Let ε > 0 such that u+ B ε
|λ|
⊆ B+.

Let a ∈ Bε.

λu+ b+ a = λ(u+ λ−1a) + b

λ−1a ∈ B ε
λ

=⇒ u+ λ−1a ∈ u+ B ε
λ
⊆ B+

=⇒ u+ λ−1a, b ∈ B+.

since this is true for all a ∈ Bε, it follows that :

λu+ b+ Bε ⊆ B+; =⇒ λu+ b ∈ intB+. �

Definition 3.2.2. Let u ∈ B+. u is defined to be an order-unit if

B =
⋃
λ≥0

[−λu, λu]

Where the order-interval [c, b] is defined by :

[c, b] = {a ∈ B : c ≤ a ≤ b}
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3.2. Interior point and order-unit spaces

Proposition 3.2.2. If u ∈ intB+, then there is an ε > 0 such that for all λ ∈ R, for

all a ∈ B,

λ ≥ ‖a‖
ε

=⇒ a ∈ [−λu, λu].

Proof . u ∈ intB+ =⇒ ∃ε > 0 |

{a ∈ B : ‖u− a‖ < ε} ⊆ B+.

Assume λ ∈ R, a ∈ B and λ ≥ ‖a‖
ε

. We need to prove that a ∈ [−λu, λu] i.e.

u± a

ε
∈ B+.

On has:

‖u− (u± a
λ
)‖ = ‖a‖

λ
< 1

λ
λε = ε.

Then u± a
λ
∈ {b ∈ B : ‖u− b‖ < ε} ⊆ B+; =⇒ u± a

λ
∈ B+.

�

This is a theorem of characterization of an order-unit.

Theorem 3.2.1. Let u ∈ B. The following conditions are equivalent:

1. u ∈ int B+;

2. u is an order-unit.

Proof . (1.=⇒2.) This follows from proposition 2.3.2.

(2.=⇒ 1.) Let u be an order-unit.

then,

B =
⋃
λ≥0

[−λu, λu]

By the Baire category theorem, there is an λ0 > 0 such that B1 ⊆ [−λ0u, λ0u].

Let’s prove that:

{a; ‖u− a‖ < 1
λ0
} ⊆ B+
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3.2. Interior point and order-unit spaces

b ∈ {a; ‖u− a‖ < 1

ε
} =⇒ ‖b− u‖ < 1

λ0
=⇒ ‖λ0(u− b)‖ < 1

⇐⇒ λ0(u− b) ∈ B1

⇐⇒ λ0b− λ0u ∈ B1

=⇒ λ0u− λ0b ∈ [−λ0u, λ0u]

⇐⇒ λ0u− λ0b+ λ0u, λ0u− λ0u+ λ0b ∈ B+

=⇒ λ0b ∈ B+

=⇒ b ∈ B+

We have shown that :

B(u, 1
λ0

) ⊆ B+

Hence u ∈ intB+

�

To define what we call an order-unit space, we need the following result:

Proposition 3.2.3. If int B+ is non-empty, then B+ is generating and, for each u ∈

int B+,

‖a‖u = inf{λ > 0 : a ∈ [−λu, λu]}

defines a semi-norm on B.

Proof . Let u ∈ int B+.

State 1. Let’s show that B+ is generating.

As u ∈ int B+, u is an order-unit. Hence,

B =
⋃
λ≥0

[−λu, λu]
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3.2. Interior point and order-unit spaces

Therefore, if a ∈ B, then there is a λ0 > 0 such that a ∈ [−λ0u, λ0u]

It follows that a+ λ0u, λ0u ∈ B+.

Furthermore, a = a+ λ0u− λ0u

Hence B+ is generating.

State 2. Let’s show that the mapping

‖.‖ : B −→ R+

a 7−→ ‖a‖u = inf{λ > 0 : a ∈ [−λu, λu]}
is a semi-norm on B.

N1) Let a ∈ B and α ∈ R, α 6= 0. For λ > 0, one has:

αa ∈ [−λu, λu] ⇐⇒ λu± αa ∈ B+

=⇒ λu± ‖α‖a ∈ B+

=⇒ λ

‖α‖
u± a ∈ B+

⇐⇒ a ∈ [− λ

‖α‖
u,

λ

‖α‖
u]

=⇒ ‖a‖u ≤
λ

‖α‖

Hence |α|‖a‖u ≤ ‖αa‖u
and,

a ∈ [−λu, λu] ⇐⇒ λu± a ∈ B+

⇐⇒ ‖α‖λu± αa ∈ B+

⇐⇒ αa ∈ [−‖α‖λu, ‖α‖λu]

=⇒ ‖αa‖u ≤ ‖α‖λ

=⇒ ‖αa‖u
‖α‖

≤ λ

Hence, ‖αa‖u ≤ |α|‖a‖u
It follows that

‖αa‖u = |α|‖a‖u and the equality is also satisfied for α = 0.

N2) Let λ, µ > 0, a ∈ [−λu, λu], b ∈ [−µu, µu]
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3.3. Ordered-bounded operators

On has :

λu± a, µu± b ∈ B+ =⇒ (λ+ µ)u± (a+ b) ∈ B+

=⇒ a+ b ∈ [−(λ+ µ)u, (λ+ µ)u]

=⇒ ‖a+ b‖u ≤ λ+ µ

Hence, ‖a+ b‖u ≤ ‖a‖u + ‖b‖u

�

Remark 3.2.1. B1 ⊆ [−λ0u, λ0u] =⇒ ‖a‖u ≤ λ0‖a‖

Definition 3.2.3. Now a pre-ordered Banach space (B,B+, ‖.‖) is defined to be an

order-unit if B+ contains an interior point u and ‖.‖=‖.‖u

This is a very good way to see an order-unit space.

Theorem 3.2.2. Let (B,B+, ‖.‖) be a pre-ordered Banach space. The following

conditions are equivalent:

1. (B,B+, ‖.‖) is a pre-ordered Banach Space.

2. B1 = [−u, u] for some u ∈ B+.

3.3 Ordered-bounded operators

In this section, (A ,A+, ‖.‖A ) and (B,B+, ‖.‖B) will denote pre-ordered Banach

spaces, L = L (A ,B) the space of bounded linear operators S : A −→ B

equipped with the norm ‖.‖ defined by:

‖u‖ = sup{‖u(x)‖B, x ∈ A , ‖x‖A ≤ 1}

for all u ∈ L , and,

L+ = {S;S ∈ L , SA+ ⊆ B+}

Definition 3.3.1. An element S : A −→ B ∈ L is defined to be an order-bounded

operator if for every a, b ∈ A such that a ≤ b, there exists c, d ∈ B such that:
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3.3. Ordered-bounded operators

S([a, b]) ⊆ [c, d]

with

S([a, b]) = {s(x), x ∈ [a, b]}.

We start our theory by defining a positive closed convex cone on the Banach space L .

Proposition 3.3.1. L+ is a closed subset of L .

Proof . I By the definition of L+,L+ ⊆ L .

I Let u ∈ L , (un)n≥0 a sequence of elements of L+ which converges to u ∈ L .

We have to show that u ∈ L+.

un
L−→ u ⇐⇒ ∀ε > 0,∃N ∈ N : ∀n ∈ N, n ≥ N =⇒ ‖un − u‖ < ε,

⇐⇒ ∀ε > 0,∃N ∈ N : ∀n ∈ N, n ≥ N =⇒ sup{‖un(x)− u(x)‖B, ‖x‖A ≤ 1} < ε,

⇐⇒ un −→ u.

(uniformly on I as n→∞ where I denote the closed ball of center 0 with radius 1.)

For all n ≥ 0, un is continuous on I and un −→ u uniformly on I as n → ∞. So u

is continuous on I . In particular, u is continuous at the point 0. Since u is linear and

continuous at 0, u is continuous on A. Hence u ∈ L .

I Let’s show that uA+ ⊆ B+.

Let a ∈ A+. We know that (un(a))n≥0 converges to u(a) in B since uniform con-

vergence implies pointwise convergence. For all n ≥ 0, un(a) ∈ B+ since (un) is

a sequence of elements of L+. Since B+ is a closed subset of B, u(a) ∈ B+. We

have shown that u(a) ∈ B+, for all a ∈ A+. In other words, we have shown that

uA+ ⊆ B+. Hence, L+ is a closed subset of L .

�

Proposition 3.3.2. L+ is a convex cone of L

Proof . Let λ, µ ≥ 0.

We have to show that :

λL+ + µL+ ⊆ L+. Let s1, s2 ∈ L+, s = λs1 + µs2.

.) Clearly, s ∈ L .
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3.3. Ordered-bounded operators

.) For all a ∈ A+

s(a) = λs1(a) + µs2(a) ∈ B+ since s1(a), s2(a) ∈ B+ is a convex cone of B. The

belonging of s1(a) and s2(a) to B+ is dues to the fact that s1, s2 ∈ L+.

�

Definition 3.3.2. Operators S ∈ L+ will be referred to as positive operators.

We now turn to some properties to control the size of the cone L+

Proposition 3.3.3. If A+ is weakly generating and B+ is proper, then L+ is proper.

Proof . Assume that A+ is weakly generating and B+ is proper.

We have to prove that L+ is proper.

Let S ∈ L+ ∩ (−L+) that is S ∈ L+ and −S ∈ L+. Let a ∈ A. Since A+ is

weakly generating, there is (bn)n≥0, (cn)n≥0 sequences of elements of A+ such that

bn − cn
A−→ a.

Since S is bounded, s(bn−cn)
B−→ S(a) i.e, S(bn)−S(cn)

B−→ S(a) because S is linear.

S(bn)− S(cn),−S(bn) + S(cn) ∈ B+ implies S(bn)− S(cn) = 0A, because B+

is proper.

Hence,

S(bn)− S(cn)
B−→ 0 and S(bn)− S(cn)

B−→ S(a).

The uniqueness of the limit in B implies S(a) = 0B. Since this is true for all a ∈ A ,

we conclude that S = 0. We have proved that L+ is proper.

Proposition 3.3.4. If S1, S2 ∈ L+ and a1 ≤ a ≤ a2, then S1a1 − S2a2 ≤ (S1 −

S2)a ≤ S1a2 − S2a1.

Proof . Let S1, S2 ∈ L+ and a1 ≤ a ≤ a2. One has:

(S1−S2)a−(S1a1−S2a2) = S1(a−a1)+S2(a2−a) ∈ B+ since a−a1, a2−a ∈ A+

and S1, S2 ∈ L+.

one also has:

(S1a2 − S2a1)− (S1 − S2)a = S1(a2 − a) + S2(a− a1) ∈ B+ �

Definition 3.3.3. A bounded linear operators S : A −→ B is said to be order-

bounded if it maps order-intervals [a, b] into order-intervals of the same type, i.e. for

every a, b ∈ A, a ≤ b there exists α, β ∈ B, α ≤ β such that
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3.3. Ordered-bounded operators

S([a, b]) = [α, β]

Remark 3.3.1. The above proposition shows that the difference S = S1 − S2 of

two positive operators is order-bounded. But there are many examples of bounded

operators which are not order-bounded, even under fairly stringent conditions on A

and B. Our aim is to find sufficient conditions for a bounded operator to be order-

bounded. One weak result in this direction is the following.

Proposition 3.3.5. If A+ is normal and intB+ 6= ∅, then every S ∈ L (A ,B) is

order-bounded.

Proof . See [6] page 238

Corollary 3.3.1. The bounded operators on an order-unit space are order-bounded.

Proposition 3.3.6. If A+ is generating and B+ is normal, then every order-bounded

linear operator S : A −→ B is bounded.

Proof . If S is not bounded, there exists an ∈ A1 with ‖San‖ ≥ 4n. Since A+ is α−

generating for some α, one has an = a
′
n − a

′′
n with a

′
n, a

′′
n ∈ A+ ∩Aα. Replacing an

by −an if necessary, it may be assumed that ‖Sa′
n‖ > 22n−1.

Let a =
∑

2−na
′
n. If S is order-bounded, S maps [0, a] into an interval [b1, b2] so that

b1 ≤ 2−na
′
n for all n. But this contradicts the normality of B+: since B+ is normal,

there is an β > 0 such that

2−n‖Sa′
n‖ ≤ β(‖b1‖ ∨ ‖b2‖) for all n. So the sequence (2−n‖Sa′

n‖)n is bounded by

β(‖b1‖ ∨ ‖b2‖). Contradiction because 2−n‖Sa′
n‖ > 2n−1 for all n. �

Corollary 3.3.2. If A+ is generating, then every order-bounded linear functional

over A , S : A −→ R is bounded. If particular, positive linear functionals over A

are bounded.

Next we discuss properties of the pre-ordered space (L ,L+, ‖.‖) throughout we

assume A+ 6= A ,B+ 6= {0}.

Theorem 3.3.1. The cone L+ is normal if, and only if, A+ is generating and B+ is

normal.
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3.3. Ordered-bounded operators

Proof . Suppose L+ is α∨− normal (α ≥ 1). For ω ∈ A ? and b ∈ B − {0B}, let

ω ⊗ b be the rank-one operator with action (ω ⊗ b)(a) = ω(a)b.

If ω ∈ A ?
+ and b1 ≤ b ≤ b2 ∈ B, one has:

for all a ∈ A+,

(ω ⊗ b)(a) − (ω ⊗ b1)(a) = ω(a)b − ω(a)b1 = ω(a)(b − b1) ∈ B+ for ω(a) ∈

R+, b− b1 ∈ B+ and B+ is a positive cone.

[ω⊗ b2−ω⊗ b](a) = ω⊗ b2(a)−ω⊗ b(a) = ω(a)b2−ω(a)b = ω(a)(b2− b) ∈ B+.

Then ω ⊗ b1 ≤ ω ⊗ b ≤ ω ⊗ b2.

‖(ω ⊗ b)(a)‖B = ‖ω(a)b‖B

= |ω(a)|‖b‖B

≤ ‖ω‖?‖b‖B‖a‖A

This implies ‖ω ⊗ (b)‖? ≤ ‖ω‖?‖b‖B
For ‖a‖A ≤ 1, |ω(a)|‖b‖B = ‖ω(a)b‖B = ‖(ω ⊗ b)(a)‖B. This implies :

‖ω‖?‖b‖B ≤ ‖ω ⊗ b‖?

and then,

‖ω‖?‖b‖B = ‖ω ⊗ b‖?

≤ α(‖ω ⊗ b1‖? ∨ ‖ω ⊗ b2‖?)

= α‖ω‖?(‖b1‖ ∨ ‖b2‖),

This implies ‖b‖B ≤ α(‖b1‖ ∨ ‖b2‖) ie B+ is α∨-normal. But if b ∈ B+ and ω1 ≤

ω ≤ ω2 in A ? then

‖ω1 ⊗ b‖? ≤ ‖ω ⊗ b‖? ≤ ‖ω2 ⊗ b‖?.

Thus ‖ω⊗ b‖? ≤ α(‖ω1⊗ b‖?∨‖ω2⊗ b‖?) ie ‖ω‖?‖b‖ ≤ α‖b‖(‖ω1‖?∨‖ω2‖?). Thus

A ?
+ is α∨− normal and A+ is approximately α+-generating, according to the theorem

2.1.3.

conversely suppose A+ is α+-generating and B+ is β∨-normal.

Consider S1 ≤ S ≤ S2 in L and a ∈ A . Then a = a1 − a2, a1, a2 ∈ A+ and

‖a1‖+ ‖a2‖ ≤ α‖a‖.
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3.3. Ordered-bounded operators

Now S1aj ≤ Saj ≤ S2aj .

So ‖Saj‖ ≤ β(‖S1aj‖ ∨ ‖S2aj‖) ≤ β‖aj‖(‖S1‖? ∨ ‖S2‖?),

and consequently,

‖Sa‖ ≤ ‖Sa1‖+ ‖Sa2‖

≤ αβ‖a‖(‖S1‖ ∨ ‖S2‖); =⇒ ‖S‖ ≤ αβ(‖S1‖ ∨ ‖S2‖)

Thus L+ is (αβ)∨− normal. �

Remark 3.3.2. In the preceding theorem, if, for example, one chooses A = B,

then the theorem states that the cone L+(B) of positive bounded linear operators is

normal, if and only if, B+ is normal and generating.

The preceding theorem and proposition 3.3.6 lead us directly to the following the-

orem which is at the heart of our work.

Theorem 3.3.2. If the cone L+(A ,B) of all positive bounded linear operators

S : A −→ B is normal, then, every bounded operator S : A −→ B is order-

bounded.

Proof . Suppose that the cone L+(A ,B) of all positive bounded linear operators

S : A −→ B is normal, then, thanks to the preceding theorem, A+ is generating and

B+ is normal. It follows from proposition 3.3.6, every bounded operator S : A −→

B is order-bounded. �
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♣ Pedagogical purpose ♣

As part of the drafting of the Dissertation of DIPES II, we have been asked to give the

pedagogical interest of our work. Recalling that the theme submitted for our study is

entitled "On Bounded Operators on Banach Spaces". It’s an important topic for both

the teacher and student:

3.4 for the teacher

♣ It provides a new way to understand bounded operators which is not the classi-

cal ones.

♣ It allows to cultivate the spirit of creativity and research.

♣ It allows interdisciplinarity.

♣ It allows to become familiar with the latex programming software which makes

a very good layout and is therefore very useful for typing of evaluation texts.

3.5 for the students

♣ It helps the students to notice that there is a theory which generalize order-

bounded mappings.

♣ It provides students with experimented teachers.

♣ It accustoms students to the spirit of scientific research.
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♣ Conclusion ♣

Our work had the aim of finding sufficient conditions making a bounded operator be-

tween pre-(ordered) Banach spaces order-bounded. To achieve this, we gave in Chap-

ter 1, the preliminaries needed to understand the problem. In Chapter 2, we defined,

for every Banach space, an order relation associated with a proper cone of this space,

which induces on the dual Banach space an order relation of the same type; we then

studied the properties of the cone underlying pre-ordered Banach spaces. In chapter

3, we studied sufficient conditions for a linear operator bounded in the sense of the

norm to be bounded in the sense of order relations. Those conditions are mostly condi-

tions on the positive cones of the Banach spaces considered. The theory of pre-ordered

bounded operators on Banach spaces is the generalization of the result of the classi-

cal analysis of continuous functions from R to R that stipulate that every continuous

function maps an interval [a, b] to an interval of de same type. Unfortunately, the find-

ings of this dissertation are limited to sufficient conditions of a continuous mapping to

be order-bounded. Future research on bounded operators on Banach spaces should

focus in particular on necessary and sufficient conditions for a continuous function

between Banach spaces to be order-bounded.
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