REPUBLIQUE DU CAMEROUN Paix – Travail – Patrie *******

UNIVERSITE DE YAOUNDE I FACULTE DES SCIENCES DEPARTEMENT DE Mathématiques ********

CENTRE DE RECHERCHE ET DE FORMATION DOCTORALE EN SCIENCES, TECHNOLOGIE ET GEOSCIENCES laboratoire de mathématiques et applications (LABOMAP)

REPUBLIC OF CAMEROUN Peace – Work – Fatherland *******

UNIVERSITY OF YAOUNDE I FACULTY OF SCIENCE DEPARTMENT OF Mathematics *******

POSTGRADUATE SCHOOL OF SCIENCE, TECHNOLOGY AND GEOSCIENCES laboratory of mathematics and applications (LABOMAP)

Contrôle Optimal dans les Équations Différentielles Stochastiques et Applications en Épidémiologie

THESE de Doctorat/Ph.D de l'Université de Yaoundé 1

Par : **BONGOR DANHREE** Master en Mathématiques et Applications Fondamentales

Sous la direction de Pr KOÏNA RODOUMTA Maître de Conférences, Université de N'Djamena Pr WAMON François Maître de Conférences, Université de Yaoundé 1

Année Académique : 2018

REPUBLIQUE DU CAMEROUN Paix – Travail – Patrie

UNIVERSITE DE YAOUNDE 1

FACULTE DES SCIENCES

DEPARTEMENT DE MATHEMATIQUES

FACULTY OF SCIENCES

ATTESTATION DE CORRECTION

Nous soussignés, membres du jury lors de la soutenance de thèse de Doctorat/Ph.D de Monsieur **BONGOR DANHREE**, étudiant à l'Université de Yaoundé 1 sous le matricule **10V1206**, attestons que la thèse intitulée

« Contrôle optimal dans les équations différentielles stochastiques et applications en épidémiologie », présentée en soutenance publique le Vendredi 22 juin 2018 à 10 heures dans la salle du bloc pédagogique par le candidat, a été corrigée conformément à nos recommandations.

En foi de quoi, la présente attestation lui est établie et délivrée pour servir et valoir ce que de droit.

Président :	ANDJIGA Nicolas Gabriel, Professeur, Université de Yaoundé 1.	f.t.
Rapporteurs :	EMVUDU WONO Yves Sébastien, Maître de Conférences, Université de Yaoundé 1.	
	KOINA RODOUMTA, Maître de Conférences, Université de N'Djamena (Tchad).	
	TEWA Jean-Jules, <i>Maître de Conférences,</i> <i>Université de Yaoundé 1.</i>	the
Membres :	KAMGANG Jean Claude, <i>Maître de Conférences,</i> <i>Université de Ngaoundéré.</i>	
	BOWONG TSAKOU Samuel, <i>Maître de Conférences,</i> <i>Université de Douala.</i>	

Thèse de Doctorat/Ph.D

Sujet:

Contrôle optimal dans les équations différentielles stochastiques et applications en épidémiologie

Par

BONGOR DANHREE,

Master en Mathématiques et Applications Fondamentales Matricule:10V1206

En vue de l'obtention de Doctorat/Ph.D de l'Université de Yaoundé 1 Spécialité: Mathématiques et Applications Fondamentales Option: Modélisation

Directeurs de Thèse:

Pr. EMVUDU Yves, Maître de Conférences, Université de Yaoundé 1Pr. KOÏNA RODOUMTA, Maître de Conférences, Université de N'Djamena

Superviseur de Thèse:, Pr. WAMON François, Maître de Conférences, Université de Yaoundé 1

BONGOR DANHREE

Thèse soutenue publiquement le 22 Juin 2018

DÉDICACE

Je dédie cette thèse de Doctorat/Ph.D à ma famille :

► mon père BONGOR Amos à présent souffrant et allité de maladie et ma feue mère GUEL-WAK Alhéré.

► mon épouse FOULMAPOUL Epéta et mes sept enfants :

HORMO Florisse, ANAH Excelle, DANHREE KAMVI Frobénius, ALHERE Fudicia, DANHREE GLoira-Dieu Christofer, DANHREE AYOUBA Ephraïm et BETNIMRA AKOT Chékina.

REMERCIEMENTS

Je remercie tout d'abord l'Eternel Dieu le pourvoyeur de toute chose.

Mes remerciements les plus chaleureux et les plus sincères sont adressés ensuite à mes encadreurs : Pr EMVUDU Yves, Maître de Conférences à l'Université de Yaoundé 1 et Pr KOÏNA RODOUMTA, Maître de Conférences à l'Université de N'Djaména pour votre disponibilité entière à diriger mes travaux de recherche malgré les diverses occupations administratives dûes aux postes de responsabilité que chacun de vous assume ; pour vos précieux conseils, vos encouragements tout au long de ce travail, vos soutiens matériels, moraux et intéllectuels et pour les corrections ultimes que vous avez apportées dans ce travail de recherche depuis l'année académique 2012-2013.

Ma profonde gratitude et mes vifs remerciements sont adressés au Pr WAMON François, qui a assuré la supervision de ce travail et à tous les Professeurs du Laboratoire de Mathématiques et Applications (LABOMAP) de l'Université de Yaoundé 1 qui oeuvrent à tout instant pour la réussite des activités de recherche dans ce Laboratoire.

Je remercie infiniment le jury, en occurence le Président du jury, Pr ANDJIGA Nicolas Gabriel, ainsi que les membres.

Ma reconnaissance est toute acquise au Pr Samuel BOWONG TSAKOU de l'Université de Douala, Pr Jean Jules TEWA de l'Université de Yaoundé 1 et Pr KAMGANG Jean Claude de l'Université de Ngaoundéré pour leurs expertises brillantes et édifiantes, à tous les Enseignants du Centre de Recherche et de Formation Doctorale en Sciences, Technologie et Géosciences (CRFD/STG) de l'Université de Yaoundé 1 qui se sont donnés pour assurer une formation de qualité à tous les niveaux des Unités de Recherche en général et au niveau de l'Unité de Recherche et de Formation Doctorale en Mathématiques, Informatique, Bioinformatique et Applications (URFD-MIBA) en particulier.

Ma gratitude et ma reconnaissance sont aussi toutes acquises au Gouvernement de la République du Cameroun et au Gouvernement de la République du Tchad qui encouragent et prônent la recherche et l'enseignement supérieur de qualité.

Mes remerciements sont adressés au Centre Africain d'Excellence en Technologies, Information et Communication (CETIC) de l'Université de Yaoundé 1 qui a contribué activement pour la publication des résultats de nos travaux.

Je remercie son Excellence Ambassadeur de la République du Tchad en République du Cameroun. Je n'oublie pas les Enseignants-Chercheurs initiateurs de l'Espace Virtuel Collaboratif Africain en Modélisation et Application (ECOVAMA) qui, grâce à l'Agence Universitaire de la Francophonie, oeuvre pour le renforcement de la capacité des chercheurs, doctorants et qui m'a permis de participer et de faire une communication de nos résultats au colloque international sur la pratique de la modélisation et de la simulation numériques tenu à Brazzaville (Congo) du 11 au 14 mai 2015. Mêmes mots aux Enseignants-Chercheurs initiateurs de l'Ecole Mathématique Africaine (EMA) à N'Djamena (Tchad) et des Doctoriales de Mathématiques à Yaoundé (Cameroun) auxquelles j'y avais présenté un exposé sur l'état d'avancement de nos travaux de recherche.

Je remercie Dr MBANG Joseph pour ces précieux conseils. Je n'oublierai pas Dr DJIDJOU DE-

MASSE Ramses à qui j'adresse une pensée particulière à cause de bons instants que nous avons partagés et pour m'avoir fait profiter de son expérience. Une pensée spéciale pour mes collègues doctorants : YATAT DJEUMEN L. Valaire, KEGNELEZOM Martin, TCHIUNTE TAMEN Alexis. Je ne saurai adresser ma gratitude à mon épouse FOULMAPOUL Epéta, à mon père BONGOR KATEKAR, à ma feue mère GUELWAK BAGZA décédée au moment où cette thèse est en cour de soutenance et à l'E.E.T n°9 mon église locale à Ndjaména pour leurs encouragements et leur soutien matériel, financier, moral et spirituel ; sans oublier mes amis ELWAK AMBI Galion, GUEN-DERGUÉ Moïse et son épouse. Que Dieu vous comble de sa riche bénédiction. Enfin mes remerciements les plus sincères vont à l'endroit de tous mes frères en occurence mon grand-frère BONGOR ZAM Barminas, mes soeurs, oncles, tantes et mes amis qui n'ont jamais manqué de me porter secours lorsque je suis confronté aux difficultés.

Résumé

Dans cette thèse, il s'agit du contrôle optimal des systèmes dynamiques stochastiques ou modèles stochastiques, et de ses applications en épidémiologie. Un modèle stochastique donne non seulement la prédiction des variables de sortie, mais il tient aussi compte des perturbations de nature aléatoire (ou "bruits blancs") de ces variables. Une telle étude ne peut se faire sans avoir au préalable un modèle stochastique approprié qui décrit mieux un phénomène évolutif en épidémiologie. D'où le besoin d'avoir des modèles stochastiques, de les analyser afin de les contrôler. Après avoir posé la problématique relative à notre étude et rappelé des outils mathématiques nécessaires, nous avons abordé théoriquement les concepts du contrôle des équations différentielles stochastiques (EDS) qui revèlent qu'un système dynamique stochastique dont le comportement est inquiétant sans contrôle, peut avoir un comportement acceptable avec le contrôle. En guise des applications en épidémiologie de ces concepts, nous modélisons la dynamique de transmission des infections qui relève du domaine stochastique et non déterministe. Ainsi la dynamique que nous modélisons, prend en compte des bruits blancs aléatoires et donne un modèle stochastique simulable. Notre étude vise à chercher les actions adéquates ou contrôle optimal qui influence la dynamique de la diffusion de l'infection dans une population donnée, afin de reduire le nombre des individus infectés, obtenir un gain en espérance de vies humaines et reduire les dépenses en médicaments. Pour ce faire, nous introduisons un processus de contrôle dans la dynamique stochastique de propagation d'une maladie infectueuse afin de la contraîndre à moindre coût et à un temps record à atteindre le but recherché. Plusieurs modèles des maladies existent déjà, mais la plupart de ceux-là sont déterministes ou ne répondent pas à nos hypothèses de modélisation. Motivés par le fait qu'un modèle déterministe n'est qu'un cas particulier du modèle stochastique qui traduit mieux un phénomene évolutif du monde réel, nous avons besoin des modèles stochastiques. La méthode de la formulation des modèles stochastiques à partir d'un modèle déterministe SIS, SIR ou SEIR existe dans [21, 27, 28, 92]; mais elle est quelquefois fastidieuse à cause de la grande taille des matrices de transition de chaine de Markov que cette méthode emploie. En s'inspirant de cette méthode existante, nous avons utilisé une méthode palliative pour formuler les modèles stochastiques de la dynamique d'une Maladie Sexuellement Transmissible (MST), du VIH/SIDA, de Tuberculose (TB) et du Cancer du Col utérin (CC); et puis les analyser en vue de leur validation. Le contrôle optimal représentant les actions adéquates à agir sur un critère bien défini, introduit dans nos modèles formulés, nous a permis d'influencer leur comportement mis en évidence par les simulations numériques.

Mots clés : Contrôle optimal, Equations Différentielles Stochastiques, Epidémiologie, Modèles Stochastiques des infections, Processus stochastique d'Itô, Analyse mathématique.

Abstract

In this thesis, it is about the optimal control in the stochastic models or in stochastic dynamics systems, and its applications in epidemiology. A stochastic model not only gives the prediction of the exit variables, but it holds as account of the random perturbations (or "random noise") of these variables. Such a survey can't make itself without having a suitable stochastic model that describes an evolution phenomenon better in epidemiology beforehand. From where the need to have the stochastic models, to analyze them in order to control them. After having put the problematic relative to our survey and recalled the necessary mathematical tools, we have approach the concepts of the control in the Stochastic Differential Equations (SDE) that reveal theoretically that a stochastic dynamic system whose behavior is troubling without control, can have an acceptable behavior with control. In manner of the applications in epidemiology of these concepts, us modeling the transmission dynamics of infection that resides in the stochastic domain and not in deterministic domain. Thus, the dynamic that us modeling, takes in account of the uncertain white noises and gives a model stochastic that can be simulated. Our survey aims to look for the adequate actions or to search a optimal control that influence the dynamics of the diffusion infection in a host population, in order to reduce the number of the infected individuals, to get a gain in hope of human lives and to reduce the expenses in purchase of drugs. For it, we introduce a control process in the stochastic dynamics of propagation infection in order to constrain a least cost and to one record time to reach the sought-after objective. Several models of diseases already exist, but most those are deterministic or don't answer our hypotheses of modeling. Motivated by the fact that a deterministic model is a particular case of the stochastic model that translates an evolutive phenomenon of the real world better, we formulated the stochastic models. Method of the stochastic model formulation from deterministic model associated SIS, SIR or SEIR exists in [21, 27, 28, 92]; but it is sometimes trying because the large size of the transition matrixes of Markov's chain that this method uses. While being inspired by this existing method, we used a palliative method to formulate stochastic models of the dynamics of a Sexually Transferable Diseases (STD), of HIV/AIDSinfection, of Tuberculosis (TB) infection and of Cancer Cervix (CC); and to analyze its for their validation. The optimal control representing the adequate actions to act on a well definite criteria, is introduced in our formulated models, allowed us to influence their behavior put in evidence by the numerical simulations.

Key words : Optimal Control, Stochastic Differential Equations, Epidemiology, Stochastic Models of infections, Stochastic Process of Itô, Mathematical analysis.

Table des matières

Liste des figures			9	
Li	ste de	s tables		10
In	trodu	ction G	énérale	11
	0.1	Motiva	ation historique	11
	0.2	Problé	matique	12
	0.3	Object	if et axes de recherche	14
1	Outi	ils Matl	nématiques	17
	1.1	Notati	ons :	17
	1.2	Éléme	nts de l'algèbre linéaire	18
	1.3	Rappe	ls sur Le calcul stochastique	19
		1.3.1	Calcul stochastique	19
		1.3.2	Processus stochastiques (ou aléatoires)	19
		1.3.3	Filtration	20
		1.3.4	Martingale	20
		1.3.5	Processus de Markov	20
		1.3.6	Temps d'arrêt	22
		1.3.7	Mouvement brownien	22
		1.3.8	Intégrale stochastique	22
	1.4	Équati	ons différentielles stochastiques	23
	1.5	Stabili	té stochastique	26
		1.5.1	Stabilité de la solution triviale d'une EDS	27
		1.5.2	Stabilité de l'état d'équilibre aléatoire d'une EDS	28
		1.5.3	Théorèmes de stabilité	29
		1.5.4	Positivité de la solution bornée d'une EDS	30
	1.6	6 Processus de contrôle et processus contrôlé		30
	1.7	Optim	isation	32
		1.7.1	Optimum global et local	32
		1.7.2	Cône tangent et cône normal	34
	1.8	8 Paramètre seuil en épidémiologie		34

		1.8.1	Nombre de reproduction de base	34
		1.8.2	Nombre de reproduction effective	35
2	Con	cepts di	u contrôle optimal des EDS	36
	2.1	Princip	bes de base du contrôle optimal	37
		2.1.1	Principe de Programmation Dynamique (PPD)	37
		2.1.2	Principe du Maximum de Pontryagin (PMP)	37
	2.2	Problè	mes du contrôle optimal à horizon fini	37
		2.2.1	Problème du contrôle optimal des EDO	38
		2.2.2	Problèmes du contrôle optimal des EDS	46
	2.3	Problè	me du contrôle optimal à horizon infini	67
		2.3.1	Fonctionnelle de coût à l'horizon infini	67
		2.3.2	Enoncé et approche de la résolution d'un problème	67
3	Form	nulatio	n d'un modèle stochastique en épidémiologie	69
	3.1	Modèl	es stochastiques formulés selon Allen et son équipe	69
		3.1.1	Méthode de formulation	69
		3.1.2	Exemples : Modèles stochastiques SIS, SIR et SEIR	72
	3.2	3.2 Modélisation de la dynamique stochastique de MST, VIH/ SIDA, TB et CC		
		3.2.1	Modélisation stochastique d'une MST avec traitement	78
		3.2.2	Modélisation stochastique du VIH/SIDA avec traitement	80
		3.2.3	Modélisation stochastique de TB avec traitement	86
		3.2.4	Modélisation de la dynamique du Cancer du Col utérin avec contrôle	91
4	Ana	lyse ma	thématique des modèles formulés	95
	4.1	Analys	se de deux modèles associés de MST	95
		4.1.1	Modèle déterministe de MST	95
		4.1.2	Modèle stochastique de MST	101
	4.2	Analys	se de deux modèles du VIH/SIDA	104
		4.2.1	Modèle déterministe du VIH/SIDA	104
		4.2.2	Modèle stochastique du VIH/SIDA	110
	4.3	Analys	se de deux modèles de TB	115
		4.3.1	Analyse du modèle déterministe de TB	115
		4.3.2	Analyse du modèle stochastique de TB	125
5	Арр	lication	s du contrôle optimal en épidémiologie	133
	5.1	Contrô	ble optimal du traitement d'une MST	133
		5.1.1	Problème du contrôle optimal : suivi thérapeutique	133
	5.2	Contrô	ble optimal de la dynamique aléatoire du VIH	137
		5.2.1	Stratégies du traitement sous ARV du VIH/SIDA	137

		5.2.2	Contrôle optimal des stratégies de traitements sous ARV	. 138
5.3 Contrôle optimal et fréquence du traitement de TB			ble optimal et fréquence du traitement de TB	. 144
		5.3.1	Formulation d'un problème de control optimal	. 145
		5.3.2	Méthode de gradient projeté et modèle stochastique contrôlé de TB	. 147
	5.4	Contrá	ble optimal de la dynamique stochastique du CC	. 149
		5.4.1	Problème du contrôle optimal de la masse cellulaire infectée par HPV	. 150
		5.4.2	Résolution du problème optimal de la masse cellulaire infectée	. 151
6	Sim	ulations	s numériques	155
	6.1	Simula	ation numérique des modèles	. 155
		6.1.1	Simulation numérique des modèles de MST	. 155
		6.1.2	Simulation numérique des modèles du VIH/SIDA	. 158
		6.1.3	Simulation numérique des modèles de TB	. 162
6.2 Simulation numérique et contrôle optimal		ation numérique et contrôle optimal	. 163	
		6.2.1	Simulation numérique et contrôle de MST	. 163
		6.2.2	Simulation numérique et contrôle du VIH/SIDA	. 167
		6.2.3	Simulation numérique et contrôle de TB	. 169
		6.2.4	Simulation numérique et contrôle de HPV	. 171
Co	onclus	sion Gé	nérale	176
Aı	nnexe			179
	Liste	e des pu	blications	. 179
Bi	bliogı	raphie		242

Table des figures

1	Infection des cellules épithéliales du col de l'utérus (Source : FIGURE 3.6/[99]). 12
3.1	Diagramme du modèle déterministe SEIR
3.2	Diagramme du modèle déterministe de MST
3.3	Diagramme du modèle déterministe du VIH/SIDA
3.4	Diagramme du modèle déterministe de TB avec traitement
3.5	Diagramme du modèle stochastique de TB avec traitement
3.6	Evolution du Cancer du Col de l'utérus (Source : [99])
3.7	Diagramme du modèle stochastique de CC avec traitement
6.1	Trajectoires des états de (3.34) et (3.35) de MST sans et avec traitement 156
6.2	Points d'équilibre et simulation du modèle (3.34) dans le plan (I_1, I_2)
6.3	Points d'équilibre endémique aléatoire et trajectoires I_1 et I_2 du modèle (3.35) 157
6.4	Trajectoires des états déterministes 6.4a et stochastiques 6.4b
6.5	Trajectoires des états déterministes et stochastiques dans un même plan 159
6.6	Trajectoires stochastiques non perturbées (3.37) et perturbées (3.48)
6.7	Trajectoires sans traitement du modèle stochastique (3.37)
6.8	Trajectoires sans traitement 6.8a, avec traitement 6.8b du modèle moyen (4.43) 161
6.9	Modèle stochastique de TB sans traitement 6.9a et avec traitement 6.9b 162
6.10	Trajectoires asymptotiques des états du modèle (3.51)
6.11	Trajectoires avec et sans contrôle des états du modèle (3.51) de MST et du contrôle. 164
6.12	Trajectoires avec et sans contrôle des états du modèle (3.51)
6.13	Contrôle optimal $\left(u_{1},u_{2}\right)$ et Ratio "infectés hommes-infectés femmes" vice-versa $% \left(u_{1},u_{2}\right)$. 166
6.14	Trajectoires stochastiques des états du modèle contrôlé (5.11) avec contrôles 167
6.15	Trajectoires des états stochastiques contrôles et de la fonctions valeur
6.16	Simulation numérique du contrôle optimal u et de la fonctionnelle du coût ${\cal F}(u)$. . 169
6.17	Trajectoires des états du modèle stochastique de TB avec ou sans contrôle 170
6.18	Trajectoires des modèles stochastiques contrôlés de CC et du contrôle optimal 172
6.19	Modèle stochastique contrôlé (3.64) avec valeur initiale croissante
6.20	Modèles stochastiques contrôlés (3.57) et (3.64)
6.21	Trajectoires stochastiques du modèle (3.57) et des contrôle optimal

Liste des tableaux

3.1	Distribution de probabilités des changements des états $\Delta X = \Gamma_j \ldots \ldots \ldots$	70
3.2	Distribution de probabilités des changements des états ΔI	74
3.3	Distribution de probabilités des changements d'état $(\Delta S, \Delta I)$	75
3.4	Distibution de probabilités des changements d'état $(\Delta S, \Delta E, \Delta I)$	77
3.5	Classification des différentes stades de l'infection du VIH/SIDA	81
3.6	Description des variables et des paramètres du modèle	82
3.7	Distribution de probabilités de $\Delta X = (\Delta S, \Delta H_1, \Delta H_2, \Delta W_H)^T$	84
3.8	Description des variables et des paramètres du modèle	88
3.9	Distribution de probabilités de $\Delta X = (\Delta S, \Delta L, \Delta I, \Delta T)^T \dots \dots \dots \dots$	90
3.10	Description des variables aléatoires et des paramètres	93
6.1	Valeurs des paramètres dans deux cas	55
6.2	Valeurs des paramètres [70]	58
6.3	Valeurs des paramètres du modèle de TB [70]	62
6.4	Valeurs des paramètres du modèle de CC	71

Introduction Générale

0.1 Motivation historique

Dans de divers domaines tels que la physique, l'astronomie, la biologie, la géologie, la génétique, la finance, l'épidémiologie et autres champs de la science et de l'ingénierie, un phénomène évolutif dans le temps et dans l'espace est un système dynamique qui peut être décrit grâce à la modélisation mathématique par un système d'équations différentielles ou modèle. C'est pour cette raison que Pierre Perrier dans [58] a écrit : "Pour la plupart des systèmes rencontrés dans le monde réel, leur comportement peut être modélisé à l'aide d'une telle équation". Historiquement, la théorie du contrôle optimal dérive du calcul des variations [5, 37, 38, 56]. Au 17^e siècle lorsque les grands mathématiciens de cette époque ont voulu résoudre les problèmes du calcul des variations, ils sont arrivés d'abord à reformuler les énoncés comme des problèmes d'optimisation et par la suite, beaucoup d'idées mathématiques se sont développées pour permettre l'analyse de ces problèmes d'optimisation qui a abouti à la théorie du contrôle optimal. Parmi ces mathématiciens, nous pouvons citer par exemple Euler, Lagrange, Hamilton, Jacobi, Bellman. De 1967-1985, la théorie du contrôle était vue également sous l'angle de la géométrie différentielle avec un pseudo sémi-groupe qui opère sur une variété différentielle [25]. Le concept du contrôle peut être défini comme le pocessus qui consiste à influencer le comportement d'un système dynamique en vue d'atteindre une certaine cible à moindre coût. Dans les années 1950 et 1960, les systèmes dynamiques des engins en ingénierie aérospatiale ont stimulé la théorie du contrôle optimal déterministe. La question que l'on se posait à l'époque, était : comment faire pour optimiser la trajectoire du vol d'un avion ou d'un autre véhicule spatial tel que la fusée ? En économie financière également, il y avais eu le besoin de valoriser le prix des options et d'optimiser le profit (portefeuille) lors des transactions financières; nous voulons faire allusion aux travaux de R. Merton, Black et Scholes entre 1969 et 1973 qui ont stimulé la théorie du contrôle optimal stochastique [84]. La théorie du contrôle optimal vise alors à construire un modèle contrôlé i.e., à partir d'un modèle donné, trouver un modèle souhaité ; optimiser sous certaines contraintes une fonctionnelle de coût ou de gain bien définie. Ainsi, à l'aide de la modélisation mathématique, plusieurs modèles déterministes ont été construits. Ces modèles déterministes ont permis de prédire une valeur bien déterminée associée à chaque variable de sortie du modèle, mais ils ne prennent pas en compte les bruits aléatoires du système dynamique. Pourtant, tout système dynamique est soumis pratiquement à des perturbations de nature aléatoire qui peuvent influencer son comportement. Il était donc intéressant non seulemrnt de prédire une valeur d'une variable de sortie, mais aussi de connaître l'évolution et la diffusion de cette variable. D'où la nécessité de la prise en compte du terme aléatoire (produit par un mouvement Brownien et un «bruit blanc») dans la modélisation des systèmes dynamiques [71]. Nous parlons d'un système différentiel déterministe si la partie aléatoire est omise et du système différentiel stochastique sinon. Un modèle déterministe est alors un cas particulier d'un modèle stochastique qui contient un terme stochastique additionnel. Cependant, des chercheurs ont construit des modèles aléatoires en se servant des outils probabilistes tels que les chaînes de Markov, des processus stochastiques, etc...,. Par ailleurs, tout système dynamique peut avoir une évolution inquiétante sans contrôle optimal. La théorie de contrôle qui, est née dans les années cinquante, continue à faire chemin dans les différents domaines de la recherche actuelle, et permet de modifier cet état inquiétant vers un état acceptable [34]. En épidémiologie, science qui a pour objet l'étude, la prévention et l'éradication des épidémies, la dynamique d'une maladie infecteuse peut être modélisée et contrôlée par cette théorie afin de minimiser la diffusion d'infection au sein d'une population donnée [98]. Considérons par exemple l'infection des cellules épithéliales par le Papilloma Virus Humain ou Human Pavilloma Virus (HPV) (voir l'mage FIGURE 1 ci-dessous) dont 0, 8% des cellules infectées développent le cancer sans aucune mesure de contrôle. Cette dynamique peut donc être modélisée par des EDS et contrôlée par les outils mathématiques basés sur l'un des deux principes fondamentaux d'optimalité énoncés au Chapitre 2.

Exemple ; Image d'un modèle de l'infection par le HPV des cellules

FIGURE 1: Infection des cellules épithéliales du col de l'utérus (Source : FIGURE 3.6/[99]).

0.2 Problématique

La théorie du contrôle a connu un véritable essor dans les années cinquante avec la découverte d'outils fondamentaux à savoir, le Principe de Programmation Dynamique (PPD) de R. Bellman [82] et le Principe du Maximum de Pontryagin (PMP) [80]. Ces deux principes sont fondamentaux en théorie du contrôle et ont donné lieu à plusieurs types d'approches de résolution des problèmes

du contrôle optimal.

Le PMP repose sur la recherche des états stationnaires du système contrôlé et celle des états initiaux permettant de les atteindre de façon optimale [80]. Sa mise en oeuvre dans la résolution des problèmes du contrôle des EDS présente des difficultés notoires [6]. Quant au PPD, il est fondé sur le critère d'optimalité : un contrôle optimal est tel que, quels que soient l'état initial et la mésure initiale, les mesures suivantes doivent constituer une politique optimale par rapport à l'état résultant de la première mesure [82]. Sa mise en oeuvre s'appuie sur deux faits : l'introduction de la version dynamique du problème et l'utilisation des enchaînements des contrôles afin d'obtenir le résultat escompté. Le PPD conduit à une équation aux dérivées partielles du second dégré appelée équation de Hamilton-Jacobi-Bellman (HJB) dont la résolution analytique n'est possible que dans les cas simples. L'équation de HJB peut être résolue numériquement en utilisant deux approches possibles : la discrétisation de HJB par le schéma des différences finies ou éléments finis et la discrétisation du problème de contrôle optimal stochastique qui conduit à la chaîne de Markov. Pour la première approche, le spécialiste du domaine J.P. QUADRAT et son équipe (BENSOUSSAN [2], GOURSAT [60], LIONS [74, 75, 76, 78] et autres) ont mis en oeuvre plusieurs techniques sur le plan théorique et pratique pour la résolution numérique de HJB dégénerée ou non. Ils ont montré que la théorie du contrôle stochastique fournit une solution théorique au problème qui consiste à trouver un contrôle optimal. Cette théorie revèle que le contrôle optimal retroactif ou Feedback n'existe que dans le cas non dégéneré, i.e. le cas où la matrice de diffusion est inversible. Pour le cas dégéneré, les techniques d'identification de diffusion avec saut viennent pallier à cette difficulté. Les méthodes multigrilles (FMGH) ont été étudiées par R.Hoppe et Mariane AKIAN [4] et utilisent l'agorithme d'itération de Howard. La seconde approche utilise la matrice des transitions [52]. Dans ces études menées par les auteurs précités, le contrôle ne figure en particulier que dans le terme déterministe des EDS. Pour le contrôle du processus de diffusion, CHANG M.H. et KRISHNA K. ont proposé une approximation successive de HJB. Fabio C. et Maurizio F. [32] utilisent un schéma numérique d'approximation construit à partir de la version discrète du PPD de Bellman. Ce schéma converge vers la solution de viscosité de HJB. Cette approche de résolution numérique qui consiste à discrétiser la HJB présente des difficultés lorsque l'espace des états est superdimentionnel ($d \ge 4$). Dans un passé récent (2013), ZHENG Qu a axé ses travaux de thèse sur les méthodes numériques max-plus pour la résolution de HJB associée au contrôle des EDO. Les méthodes de max-plus atténuent cette difficulté superdimentionnelle. La méthode de max-plus pour la résolution numérique des problèmes du contrôle optimal des EDO s'applique -t-elle aussi à l'équations de HJB associée au contrôle optimal des EDS? A la même année Ning dans [65] a proposé une méthode numérique du Gradient Stochastique Projeté avec un simple algorithme qui permet de résoudre une classe de problèmes du contrôle optimal stochastique. Cet algorithme utilise un bloc d'itération basée sur le gradient projeté afin de résoudre les équations de l'état et de l'état adjoint par le schéma d'Euler. Cette méthode est a été utilisé pour le cas particulier où le contrôle ne figure que dans le terme déterministe ; mais est-il possible de l'étendre au cas général où le contrôle figure à la fois dans le terme déterministe et le terme stochastique ?

Considérons un processus décrit par une EDS contrôlée. Sous les conditions d'existence et d'unicité des solutions de cette EDS, un problème du contrôle optimal à horizon continu fini ou infinie peut être énoncé. Ce problème du contrôle consiste à trouver une fonction de contrôle optimal qui optimise (minimise ou maximise), sur l'ensemble des contrôles admissibles, l'espérance mathématique d'une fonctionnelle (de coût ou de gain) ; donnant alors la fonction valeur optimale. Cette fonction valeur est obtenue, pour tout état initial donné, par l'optimisation de la fonctionnelle de coût du type espérance mathématique sur l'ensemble des contrôles admissibles. Le but d'un tel problème, est de caractériser cette fonction valeur et de déterminer le contrôle optimal associé. Ainsi donc quelques questions relatives à l'optimum surgissent ; à savoir :

- Existe-t-il un contrôle optimal?
- Existe-t-il quel type de contrôle ? Un contrôle retroactif ou feedback ?
- Comment peut-on déterminer un contrôle optimal s'il en existe ?
- Peut-on déterminer analytiquement ou approcher numériquement un contrôle optimal ?
- Quelle méthode numérique doit-on employer pour approcher un contrôle optimal?
- Comment la fonction valeur se comporte-t-elle ?
- Avec quel code et quel logiciel faut-il simuler numériquement le contrôle et la fonction valeur pour étudier leurs comportements ?
- Comment peut-on formuler un problème pratique avec une application en épidémiologie ?

Des méthodes classiques de résolution d'un problème du contrôle optimal stochastique existent [2, 67, 68, 101]. Notons ici deux faits rélevant de ces méthodes : premièrement, on suppose à priori qu'il existe un contrôle optimal donné qui optimise la fonctionnelle de coût du type espérance mathémaique sur l'ensemble des contrôles admissibles et deuxièmement, si la fonction valeur du problème optimal est régulière alors elle est solution d'une équation aux dérivées partielles (EDP) non linéaire de degré 2. Mais si cette régularité n'est pas vérifiée, alors la solution de viscosité existe pour pallier à cette difficulté . Ainsi donc, toute fonction valeur d'un problème du contrôle optimal stochastique est toujours solution au sens de voscosité d'une EDP non linéaire (voir [75, 77, 78]). C'est ça la caractéristique de la fonction valeur.

Dans le Chapitre 2, nous introduisons les deux outils principaux du contrôle optimal. Quels que soient les méthodes numériques utilisées pour résoudre un problème du contrôle optimal, elles sont fondées sur l'un des deux principes. Ces deux outils vont nous permettre d'atteindre le but recherché par nos problèmes du contrôle optimal formulés dans les Chapitres 2 et 5. Ainsi donc les questions posées précédemment auront leurs réponses.

0.3 Objectif et axes de recherche

L'objectif de cette thèse, est de formuler un problème du contrôle optimal comme question d'optimisation stochastique, le résoudre et l'appliquer en épidémiologie. Ainsi nous pouvons fournir aux thérapeutes ou aux décideurs des lois relatives à la santé publique, des outils mathématiques du contrôle de traitements des maladies à haut risque pour la meilleure prise en charge thérapeutique des patients. Motivés par le fait qu'un modèle déterministe n'est qu'un cas particulier du modèle stochastique, nous nous intéressons d'une part aux systèmes dynamiques stochastiques et d'autre part, nous contrôlons un paramètre approprié de ces systèmes. Partant des concepts du contrôle optimal des systèmes dynamiques stochastiques, nous devons suivre trois axes de recherche complémentaires pour atteindre cet objectif. Le premier axe est la formulation d'un modèle stochastique à partir d'un modèle déterministe associé, en s'inspirant des travaux de Edouard Linda J.S. Allen et de son équipe [21, 27, 28, 92], sur les modèles SIS, SIR et SEIR. Cette formulation est quelquefois fastidieuse, surtout lorsque le modèle déterministe est non linéaire et complexe. L'analyse mathématique des modèles stochastiques formulés est faite en vue de leur validation. Le deuxième axe, le plus important, est de déterminer un contrôle optimal (i.e. les actions adéquates sur un critère bien défini) qui minimise la fonctionnelle de coût du type espérance mathématique afin de contraindre le système dynamique dont le comportement pourrait être inquiétant sans contrôle, à avoir un comportement acceptable. Contrôler donc un système c'est influencer son évolution inquiétante pour accomplir un but désiré. Cela nous amène alors à énoncer des problèmes du contrôle optimal dans les modèles stochastiques et chercher à les résoudre. Le troisième axe enfin, en guise des applications, est par exemple le contrôle de la dynamique de l'infection des maladies épidémiques telles que le VIH/SIDA, la Tuberculose, ... qui ont tué et continuent à faire des milliers des victimes dans la population humaine malgré les traitements existants pour les contenir. De plus, l'OMS, nos gouvernements et les associations pour la lutte contre ces maladies dépensent des sommes colossales d'argent; des dépenses relatives à l'achat des médicaments et à l'offre de traitement fourni par le service médical. Face à une crise épidémiologique due à une pandémie ; les pouvoirs publics doivent prendre instantanément des décisions adéquates afin de réduire la propagation de l'épidémie. La théorie de contrôle optimal permet alors de déterminer les actions adéquates sur un critère bien défini. Cela peut s'illustrer par la récherche du contrôle optimal parmi les mésures admissibles afin de réduire le taux d'incidence de la dynamique de propagation d'une maladie infectieuse dans une population donnée, i.e. réduire le nombre des infectés et obtenir un gain en espérance de vies humaines tout en préservant le pouvoir économique. Nous allons donc formuler des problèmes pratiques du contrôle optimal en introduisant une commande ou un contrôle dans les modèles stochastiques de propagation des maladies infectueuses afin de contraîndre à moindre coût et à un temps record, la dynamique de l'infection à atteindre le but recherché par nos gouvernements en matière d'épidémiologie. Ainsi les problèmes de contrôle des équations différentielles stochastiques sont appliqués aux modèles épidémiques stochastiques SIS, SIR [33], et aux autres modèles stochastiques formulés tels que : le modèle MST de la dynamique des maladies sexuellement transmissibles avec traitement, le modèle $SH_1H_2W_H$ du VIH/SIDA et le modèle SLTR de la tuberculose tous deux en présence d'un traitement et enfin le modèle $SI_UI_TI_BK$ du cancer du col utérin.

Cette thèse, constituée d'une introduction suivie de six chapitres et d'une conclusion, est donc structurée comme suit :

Introduction Générale () qui donne une complète introduction au problématique du sujet, le

situe dans le contexte des travaux de recherche à développer pour atteindre les objectifs visés.

Chapitre 1 fournit quelques outils mathématiques de base comme support aux travaux à développer dans les chapitres suivants. Plus précisement, ces outils mathématiques sont les rappels de quelques notions en calcul stochastique, équations différentielles stochastiques, processus du contrôle optimal stochastique, stabilité aléatoire et optimisation. Il est y aussi rappelée la notion du nombre de reproduction de base, paramètre en épidémiologie mathématique qui apporte une idée sur la dynamique de la transmission d'une maladie infectueuse au sein d'une population donnée et permet d'orienter les stratégies de contrôle de cette infection.

Chapitre 2 donne les concepts de base du contrôle optimal stochastique des équations différentielles continues non linéaires à horizon du temps fini ou infini. Les principes de base à utiliser dans la résolution des problèmes du contrôle optimal sont y énoncés.

Chapitre 3 rapporte la formulation mathématique de quelques modèles stochastiques en épidémiologie. Focalisés sur les modèles stochastiques formulés par Alen et al., nous proposons d'abord comment se fait la transformation des modèles épidémiologique déterministes classiques *SIS*, *SIR*, et *SEIR* en modèles stochastiques dont les variables d'états sont aléatoires. Cette formulation prend en compte l'aspect aléatoire des perturbations auxquelles est soumis naturellement tout système dynamique. Ensuite, cette approche est utilisée pour formuler des modèles stochastiques mathématiques de la dynamique de transmission d'une maladie sexuellement transmissible avec traitement, du HIH/SIDA avec traitement, de tuberculose avec traitement et cancer du col utérin avec contrôle. Quelques modèles stochastiques formulés sont mathématiquement analysés et contrôlés dans les chapitres suivants.

Chapitre 4 est celui dans lequel nous avons développer l'analyse mathématique des mmodèles déterministes et stochastiques associés. Cette analyse est faite précisement pour les modèles déterministes et stochastiques de la dynamique de transmission d'une maladie sexuellement transmissible avec traitement, du VIH/SIDA avec traitement et de tuberculose avec traitement précédement formulés. Dans un premier temps, nous y avons montré l'existence, l'unicité, la positivité des solutions, ainsi que les trajectoires bornés des modèles déterministes précités. Nous avons aussi calculé le nombre de répoduction de base ainsi que les points d'équilibre et L'étude de leur stabilité. Dans le second temps, pour les modèles stochastiques, nous avons montrer la positivité des solutions, les trajectoires bornées et l'existence des solutions. Nous avons aussi calculé les points d'équilibre et étudié leur stabilité. L'effet du traitement a été mis en évidence dans ce chapitre.

Chapitre 5 traite le contrôle optimal des stratégies du traitement pour les modèles stochastiques de transmission d'une maladie sexuellement transmissible, du VIH/SIDA, de tuberculose et cancer du col utérin.

Chapitre 6 fournit les simulations numériques des modèles stochastiques d'une maladie sexuellement transmissible, du VIH/SIDA, de tuberculose et cancer du col utérin avec et sans contrôle des stratégies de traitement. Les simulations numériques comparatives de deux types, stochastique et déterministes, de ces modèles sont effectuées.

Conclusion Générale avec les perspectives envisagées termine cette thèse.

OUTILS MATHÉMATIQUES

Dans ce chapitre, nous rappelons quelques outils mathématiques devant servir de la base d'appui pour l'étude relative à notre sujet de thèse. Pour plus de détails, consulter [8, 10, 11, 12, 44, 93, 97]. Ces outils sont précédés d'une section de notations mathématiques et se terminent par une section sur le paramètre seuil en épidémiologie.

1.1 Notations :

Notons par

 $\mathbb N:$ l'ensemble des entiers naturels et $\mathbb R:$ l'ensemble des nombres réels.

 \mathbb{R}^d : l'ensemble produit de d-uplets des nombres réels. $\mathcal{M}_n(\mathbb{R})$: l'ensemble des matrices carrées réelles de taille n non nul.

 $\mathcal{M}_{n,1}(\mathbb{R})$: l'ensemble des matrices colonnes (n, 1) i.e à *n* lignes et 1 colonnes.

 $\mathcal{M}_{(n \times m)}(\mathbb{R})$: l'ensemble des matrices (n, m) i.e à *n* lignes et *m* colonnes.

 $\mathcal{S}_n(\mathbb{R})$: l'ensemble des matrices symétriques sous-ensemble de $\mathcal{M}_n(\mathbb{R})$.

 $S_n^+(\mathbb{R})$: l'ensemble des matrices symétriques positives sous-ensemble de $\mathcal{M}_n(\mathbb{R})$; i.e les matrices S de $S_n(\mathbb{R})$ vérifiant $X^{\intercal}SX \ge 0$, $\forall X \in \mathcal{M}_{n,1}(\mathbb{R})$.

 $\mathcal{G}l_n(\mathbb{R})$: l'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbb{R})$.

 $\mathcal{S}p_{\mathbb{C}}$: Le spectre ou l'ensemble des valeurs propres dans $\mathbb C$

 I_n est la matrice unité de $\mathcal{M}_n(\mathbb{R})$.

 A^T la transposée de la matrice A de $\mathcal{M}_n(\mathbb{R})$.

 $D_n = diag(\lambda_1, \lambda_2, ..., \lambda_n), \ \lambda_i \in \mathbb{R}, \ i = 1, 2, ..., n.$ la matrice diagonale de $\mathcal{M}_n(\mathbb{R})$

int(U) est l'ensemble des points intérieurs d'un ensemble U.

|.| est la norme euclidienne vectorielle ou matricielle, i.e.

$$|x| = \sqrt{\sum_{i=1}^{d} x_i^2} \quad \forall x = (x_i) \in \mathbb{R}^d \ et \ |M| = \sqrt{\sum_{i=1}^{d} \sum_{j=1}^{m} m_{ij}^2} \quad \forall M = (m_{ij}) \in \mathcal{M}_{(d \times m)}(\mathbb{R})$$

 \mathcal{E} ou Ω : est l'ensemble ou l'espace des états et \mathbb{T} : est l'espace temporel.

 \mathbb{P} : la mesure de probabilité et $\mathcal{P}(\lambda)$: est la loi de Poisson de paramètre $\lambda > 0$.

 $\mathbb E:$ l'opérateur espérance mathématiques.

$$\nabla = \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_d}\right)^T : 1' \text{ opérateur vectoriel gradient par rapport à } x \in \mathbb{R}^d.$$

 $\mathcal{D}^2 = \left(\frac{\partial^2}{\partial x_i \partial x_j}\right) : \text{l'opérateur matriciel Hessien des dérivées partielles du second ordre par raport} \\ \hat{\mathbf{a}} \ x \in \mathbb{R}^d.$

tr : est la trace d'une matrice carrée.

 \mathcal{L} et \mathcal{A} désignent les opérateurs infinitésimaux

1.2 Éléments de l'algèbre linéaire

- Définition de la Racine carrée d'une matrice : Soit A une matrice $(n \times n)$. On dit qu'une matrice R de dimension $(n \times n)$ est une racine carrée de A si $R^2 = A$. On la note : $R = \sqrt{A}$
- Racine carrée d'une matrice symétrique : Soit A_2 une matrice (2×2) telle que :

(1.1)
$$A_2 = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

La racine carrée de A_2 est donnée par la formule :

(1.2)
$$\sqrt{A_2} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}^{\frac{1}{2}} = \frac{1}{\delta} \begin{pmatrix} a + \omega & b \\ b & c + \omega \end{pmatrix}$$

où

$$\omega = \sqrt{ac - b^2}$$
 et $\delta = \sqrt{a + c + 2\omega}$

Remarque 1.2.1. Pour un cas général de la matrice symétique A_n de dimension $(n \times n)$ avec $n \ge 3$, il n'existe pas une formule pour le calcul de $\sqrt{A_n}$ comme (1.2) ci-dessus. Mais lorsque A_n peut se décomposer sous la forme canonique suivante $A_n = P^T D_n P$, alors

$$\sqrt{A_n} = P^T \sqrt{D_n} P = P^T diag(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \cdots, \sqrt{\lambda_n}) P$$

Propriété 1.2.1. (de la racine carrée d'une matrice symétrique positive) La racine carrée d'une matrice symétrique positive existe et est unique ; i.e

$$\forall S \in \mathcal{S}_n(\mathbb{R}), \ \exists! \ R \in \mathcal{S}_n(\mathbb{R}), \ S = R^2$$

Définition 1.2.1. (de exponentielle d'une matrice) Pour toute matrice $A \in \mathcal{M}_n(\mathbb{R})$, la série $\sum_{n=0}^{+\infty} \frac{A^n}{n!}$ est normalement convergente vers $exp(A) = e^A \in \mathcal{M}_n(\mathbb{R})$ i.e

$$\forall A \in \mathcal{M}_n(\mathbb{R}), \ \exists ! \exp(A) \in \mathcal{M}_n(\mathbb{R}), \ \exp(A) = e^A = \sum_{n=0}^{+\infty} \frac{A^n}{n!}$$

Propriété 1.2.2. Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ et $P \in \mathcal{G}l_n(\mathbb{R})$

 $-exp(0) = I_n$

$$\begin{aligned} & \quad \forall (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{R}^n, \\ & \quad exp(diag(\lambda_1, \lambda_2, \dots, \lambda_n) = diag(exp(\lambda_1), exp(\lambda_2), \dots, exp(\lambda_n))) \\ & \quad et \\ & \quad exp(trig(\lambda_1, \lambda_2, \dots, \lambda_n) = trig(exp(\lambda_1), exp(\lambda_2), \dots, exp(\lambda_n))) \\ & - Si \ A = PBP^{-1}, \ alors \ exp(A) = Pexp((B))P^{-1} \\ & - det(exp(A)) = exp(tr(A)) \\ & - \ Sp_{\mathbb{C}}(exp(A)) = exp(tr(A)) \\ & - \ Sp_{\mathbb{C}}(exp(A)) = exp(Sp_{\mathbb{C}}(A)) \\ & - \ Si \ N \in \mathcal{M}_n(\mathbb{R}) \ est \ nilpotente \ d'indice \ p, \ alors \ exp(N) = \sum_{n=0}^{p-1} \frac{N^n}{n!} \\ & - \ exp(A) \ est \ un \ polynôme \ en \ A, \ et \ donc \ commute \ avec \ A. \\ & - \ tr(AB) = \sum_{i=1}^n \sum_{j=1}^n A_{ij}B_{ij} \ si \ A, B \in \mathcal{S}_n(\mathbb{R}). \end{aligned}$$

1.3 Rappels sur Le calcul stochastique

1.3.1 Calcul stochastique

Le calcul stochastique est l'étude des phénomènes aléatoires dépendants du temps comme les systèmes dynamiques stochastiques. À ce titre, il est une extension de la théorie des probabilités.

1.3.2 Processus stochastiques (ou aléatoires)

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un triplet désignant un espace de probabilité et soit (E, \mathcal{E}) un couple désignant un espace mesurable. \mathbb{T} désigne un ensemble quelconque.

Définition 1.3.1. – Un processus stochastique (ou aléatoire) X indexé par \mathbb{T} et à valeurs dans (E, \mathcal{E}) est une famille de variables aléatoires $(X_t)_{t \in \mathbb{T}}$ définies sur le même espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ et à valeurs dans (E, \mathcal{E}) .

- L'espace (E, \mathcal{E}) (ou par abus de langage l'espace E) est appelé l'espace des états.

- Pour tout $\omega \in \Omega$, l'application $t \mapsto (X_t)_t(\omega)$ est appelée trajectoire du processus.

Le processus stochastique est donc une application mesurable X de deux variables, le temps t et l'état ω définie par :

$$\begin{aligned} X: \mathbb{T} \times \Omega \longrightarrow E \\ (t, \omega) \longmapsto X(t, \omega) \end{aligned}$$

Pour tout $t \in \mathbb{T}$, $t \mapsto X_t$ *qui est une variable aléatoire implique que :*

pour tout $t \in \mathbb{T}, \ \omega \longmapsto X(t, \omega)$ est une variable aléatoire

Remarque 1.3.1. – Si $\mathbb{T} \subseteq \mathbb{N}$ alors le processus est à temps discret ;

- Si $\mathbb{T} \subseteq \mathbb{R}$ alors le processus est à temps continu.

Les processus stochastiques sont très utilisés dans les modèles physiques, chimiques, biologiques, statistiques, financiers et épidémiologiques.

1.3.3 Filtration

Un phénomène connu à la date t est rassemblé dans une tribu \mathcal{F}_t , c'est l'information à la date t.

Définition 1.3.2. Soit (Ω, \mathcal{F}) un espace mesurable.

On appelle filtration, une collection $\{\mathcal{F}_t, t \in \mathbb{T}\}$ des sous-tribus emboîtées de \mathcal{F} qui peut s'interpréter comme l'information disponible qui évolue au cours de temps.

Donc $\mathcal{F}_t \subseteq \mathcal{F}$ et $\mathcal{F}_s \subseteq \mathcal{F}_t$ si $s \leq t$

Le quadruplet ($\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P}$) *est appelé espace de probabilité filtré.*

Définition 1.3.3. Un processus $(X_t)_{t \in \mathbb{T}}$ est dit adapté à une filtration $\{\mathcal{F}_t, t \in \mathbb{T}\}$ si X_t est \mathcal{F}_t -mesurable pour tout t.

Un processus $(X_t)_{t\in\mathbb{T}}$ est dit à trajectoire continue (ou simplement processus continu) si $\mathbb{P}(\{\omega \in \Omega; t \longrightarrow X_t(\omega) \text{ est continu }\}) = 1$ c'est-à-dire les applications $t \longrightarrow X_t(\omega)$ sont continues pour presque tout ω

Définition 1.3.4. La filtration naturelle d'un processus $(X_t)_{t \in \mathbb{T}}$ est $\{\mathcal{F}_t^X, t \in \mathbb{T}\}$ telle que $\mathcal{F}_t^X = \sigma(X_s; 0 \le s \le t)$ tribu engendrée par $(X_s; 0 \le s \le t)$

1.3.4 Martingale

Définition 1.3.5. Un processus stochastique $(X_t)_{t \in \mathbb{T}}$ est une martingale si :

$$\mathbb{E}[X_t | \mathcal{F}_s, s < t] = X_s$$

où l'événement conditionnel $[X_t | \mathcal{F}_s, s < t]$ est l'ensemble de l'information disponible à l'instant s, \mathcal{F}_s qui contient toutes les réalisations passées de X_s à la date s, dont l'espérance mathématique conditionnelle de $X_t \mathcal{F}_s$ est égal à X_s .

Théorème 1.3.1. (de Lévy-Doob)

Soit W_t , $0 \le t$ une martingale de variance finie tels que :

- $-W_0 = 0$
- $\mathbb{E}[dW_t|W_s, 0 \le s \le t] = 0 \text{ où } dW_t = W_{t+dt} W_t$

$$-\mathbb{E}[(dW_t)^2|W_s, 0 \le s \le t] = dt$$

Alors W_t est un processus de Wiener standard

1.3.5 Processus de Markov

C'est un processus $(X_t)_{t \in \mathbb{R}_+}$ dont le comportement dans le futur ne dépend que du présent et non du passé c'est-à-dire un processus sans mémoire puisque pour tous r, s et t de \mathbb{R}_+ tels que $t \ge s \ge r \ge 0$, la transition de s à t ne depend que de X_s et ne tient pas compte de X_r

Définition 1.3.6. Un processus $(X_t)_{t \in \mathbb{R}_+}$ est un processus de Markov si pour tout $t \ge s \ge 0$ et pour toute fonction borélienne et bornée $f : \mathbb{R} \longrightarrow \mathbb{R}$, on a :

1.3 Rappels sur Le calcul stochastique

 $\mathbb{E}(f(X_t)|\mathcal{F}_s^X) = \mathbb{E}(f(X_t)|X_s) \text{ presque sûrement avec } \mathcal{F}_s^X = \sigma(X_r; 0 \le r \le s).$ On dit aussi que $(X_t)_{t \in \mathbb{R}_+}$ est un processus de Markov adapté à la filtration \mathcal{F}_s^X . En particulier si $f(x) = \mathbf{I}_B(x)$ avec $B \in \mathcal{B}(\mathbb{R})$ tribu borélienne de \mathbb{R} , alors on a :

$$\mathbb{P}(X_t \in B | \mathcal{F}_s^X) = \mathbb{P}(X_t \in B) | X_s)$$

Définition 1.3.7. Soit $(X_t)_{t \in \mathbb{R}_+}$ est un processus de Markov adapté à la filtration \mathcal{F}_s^X . Pour tous $t > s \ge 0$ et $x \in \Omega$ fixé il existe une mesure de probabilité $\mathbb{P}_{t,s}(\cdot|X_s = x)$ sur $(\Omega, = \mathcal{B}(\Omega))$ tels que $\forall B \in \mathcal{B}(\Omega)$), $\mathbb{P}_{t,s}(\cdot|X_s = x)$ est $\mathcal{B}(\Omega) - mesurable$ et

$$\mathbb{P}(X_t \in B | X_s) = \mathbb{E}(\mathbf{I}_{X(t) \in B} | X_s) = \mathbb{P}_{t,s}(B | X_s) \quad presque \ surment \ (p.s.)$$

L'ensemble { $\mathbb{P}_{t,s}(B|X_s = x)$ } est l'ensemble des probabilités de transition pour le processus de Markov $(X_t)_{t \in \mathbb{R}_+}$.

Alors { $\mathbb{P}_{t,s}(B|X_s = x)$ représente la probabilité pour que, de l'état initial $X_s = x$ au temps s, le processus prenne une valeur dans l'ensemble B au temps t.

Pour tout $t \ge s \ge 0$ et pour toute fonction $\mathcal{B}(\Omega)$ -mesurable bornée $f : \Omega \longrightarrow \mathbb{R}$, on a :

$$\mathbb{P}_{t,s}(B|X_s) \in \{\mathbb{P}_{t,s}(B|X_s=x)\} \iff \mathbb{E}[f(X_t)|\mathcal{F}_s] = \int_{\Omega} f(y)\mathbb{P}_{t,s}(dy|X_s) \quad p.s.$$

Pour tout $n \in \mathbb{N}$, et $t_0 < t_1 < \ldots < t_n$; $B_0, B_1, \ldots, B_n \in \mathcal{B}(\Omega)$, nous avons :

$$\mathbb{P}(X_{t_n} \in B_n, \dots, X_{t_0} \in B_0) = \int_{B_n} \dots \int_{B_0} \mathbb{P}_{t_n, t_{n-1}}(dx_n | X_{n-1} = x_{n-1}) \dots \mathbb{P}_{t_1, t_0}(dx_1 | X_0 = x_0).$$

Les probabilités de transition pour le processus de Markov de (X_t) satisfont à l'équation de Chapman-Kolmogorov ci-dessous :

$$\mathbb{P}_{t,s}(B|X_s = x) = \int_{\Omega} \mathbb{P}_{t,u}(B|X_u = y) P_{u,s}(dy|X_s = x)$$

Théorème 1.3.2.

Soit $X = (X_n)$ une chaîne de Markov sur un domaine Ω donné ayant pour matrice de transition P. Alors

$$\mathcal{P}(X_0 = x_0, X_1 = x_1, \dots, X_n = x_n) = \mu_0(\{x_0\})p(x_0, x_1)p(x_1, x_2)\dots p(x_{n-1}, x_n)$$

où μ_0 désigne la loi se probabilité de la variable aléatoire X_0 . En plus la loi μ_n de X_n vérifie la relation de récurrence connue aussi sous le nom de l'équation de Chapman-Kolmogorov :

$$\mu_{n+1} = \mu_n \mathbf{P} = \mu_0 \mathbf{P}^{n+1}$$

où \mathcal{P} est un opérateur matriciel défini pour tout $x, y \in \Omega$ par

$$\mathcal{P}(X_n = y | X_0 = x) = \mathcal{P}^n(x, y)$$

et pour toute fonction bornée $h: \Omega \longrightarrow \mathbb{R}$ *,*

$$\mathbb{E}[h(Xn)|X_0 = x] = \mathbb{P}^n h(x).$$

avec

$$\mu_n \mathbf{P}(y) = \sum_x \mu_n(x) \mathbf{P}(x, y) \quad et \quad \mathbf{P}h(x) = \sum_y \mathbf{P}(x, y)h(y).$$

1.3.6 Temps d'arrêt

Le temps d'arrêt se rencontre dans un processus arrêté.

Définition 1.3.8. Un temps d'arrêt τ par rapport à une filtration $\{\mathcal{F}_t\}_{t\geq 0}$ est une variable aléatoire $\tau: \Omega \longrightarrow \mathbb{R}_+ = \mathbb{R}_+ \cup \{+\infty\}$ telle que pour tout $t \geq 0$, on ait :

$$\{\tau \le t\} = \{\tau(\omega) \le t\} \in \mathcal{F}_t$$

1.3.7 Mouvement brownien

Le mouvement brownien est un exemple particulièrement simple de processus aléatoire indexé par \mathbb{R} . On peut également le voir comme la limite d'une marche aléatoire lorsque le pas de temps tend vers zéro.

Définition 1.3.9. Un mouvement brownien est un processus stochastique $\{W_t\}_{t \in \mathbb{R}_+}$ à valeurs dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ défini sur un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ tel que :

- 1. $\{W_t\}_t$ est à trajectoire continue
- 2. $\{W_t\}_t$ est à accroissements disjoints independants c'est-à-dire : $\forall t > s > r \ge 0$, les variables aléatoires $(W_t W_s; W_s W_r; W_r)$ sont indépendantes
- 3. $\forall s \geq 0$, $(W_{t+s} W_t)$ est une variable aléatoire de loi gaussienne centré de variance $s : \mathcal{N}(0, s)$

4. $\mathbb{P}(W_0 = 0) = 1$, alors $\{W_t\}_{t \in \mathbb{R}_+}$ est un mouvement brownien standard.

1.3.8 Intégrale stochastique

L'intégrale stochastique la plus importante est l'intégrale d'Itô portant le nom de son inventeur Kiyoshi Itô.

Définition 1.3.10. L'intégrale d'Itô est l'intégrale stochastique de la forme :

(1.3)
$$\int_0^t X_s dW_s$$

où $\{W_t\}_{t\in\mathbb{R}_+}$ est un mouvement brownien et $\{X_t\}_{t\in\mathbb{R}_+}$ un processus stochastique.

Si de plus :

Propriété 1.3.1. Table de multiplication

$$\begin{split} \hline \times & dt & dW_{it} \\ \hline dt & 0 & 0 \\ \hline dW_{jt} & 0 & \delta_{ij}dt \end{split} avec \ \delta_{ij} = \begin{cases} 1 & si \ i = j \\ 0 & si \ i \neq j \end{cases} \\ \mathbb{E}[dW_t] = 0, \qquad \mathbf{E}[dW_t \ dW_s] = \begin{cases} \mathbf{I}_d dt & si \ t = s \\ 0 & si \ t \neq s \end{cases} \end{split}$$

où \mathbf{I}_d est la matrice identique $(d \times d)$.

1.4 Équations différentielles stochastiques

Définition 1.4.1. (Équations différentielles stochastiques (EDS)) Soit un espace de probabilité filtré $(\Omega, \mathcal{F}, \{\mathcal{F}_{t\geq 0}\}, \mathbb{P})$.

On appelle équation différentielle stochastique (EDS), une équation de la forme :

(1.4)
$$\begin{cases} dX_t = f(t, X_t)dt + G(t, X_t)dW_t & t > 0\\ X_0 = x_0 \end{cases}$$

où $x_0 \in \mathbb{R}^d$ est la condition initiale, $X_t = (X_t^1, ..., X_t^d)^T \in \mathbb{R}^d$ un processus aléatoire ddimensionnel, $W_t \in \mathbb{R}^m$ est un mouvement brownien, $f(t, X_t) \in \mathbb{R}^d$, et $G(t, X_t) \in \mathbb{R}^{d \times m}$ sont respectivement des fonctions mesurables vectorielle et matricielle.

Définition 1.4.2. Le processus $\{X_t\}_{t\geq 0}$ est une solution forte s'il est \mathcal{F} -adapté et si

$$\int_{0}^{+\infty} (|f(t, X_t)|^2 + |G(t, X_t)|^2) dt < \infty$$

et X_t défini ci-dessous vérifie l'EDS (1.4)

(1.5)
$$X_t = X_0 + \int_0^{+\infty} f(t, X_t) dt + \int_0^{+\infty} G(t, X_t) dW_t.$$

Définition 1.4.3. Le processus $\{X_t\}_{t\geq 0}$ est une solution faible s'il est \mathcal{H}_t -adapté où \mathcal{H}_t est une filtration de l'espace probabilisé (Ω, \mathcal{F}, P) et si W est un mouvement brownien de dimension m tel que W_t soit une martingale relativement à \mathcal{H}_t enfin si on a presque sûrement :

(1.6)
$$X_t = X_0 + \int_0^{+\infty} f(t, X_t) dt + \int_0^{+\infty} G(t, X_t) dW_t$$

vérifie l'EDS.

Remarque 1.4.1. Lorsque le processus $\{X_t\}_{t\in\mathbb{T}}$ est à l'horizon fini i.e $\mathbb{T} = [t_0, t_f]$, alors Les solutions (1.5) et (1.6) s'ecrivent :

(1.7)
$$X_t = X_0 + \int_{t_0}^{t_f} f(t, X_t) dt + \int_{t_0}^{t_f} G(t, X_t) dW_t$$

1.4 Équations différentielles stochastiques

De plus l'espérance mathématique de ce processus est donnée par :

(1.8)
$$\mathbb{E}[X_t] = \mathbb{E}[X_0] + \mathbb{E}[\int_{t_0}^{t_f} f(t, X_t) dt]$$

car

$$\mathbb{E}\left[\int_{t_0}^{t_f} G(t, X_t) dW_t\right] = 0$$

Nous avons aussi

(1.9)
$$\mathbb{E}[X_{t+\Delta t} - X_t | X_t] = f(t, X_t) \Delta t + 0(\Delta t)$$

et

(1.10)
$$Var[X_{t+\Delta t} - X_t|X_t] = G(t, X_t)G^T(t, X_t)\Delta t + 0(\Delta t)$$

Théorème 1.4.1. Conditions d'existence et de l'unicité d'une solution forte

Soit $L^p_{\mathcal{F}}(\Omega, \mathbb{R}^d)$ l'ensemble des variables aléatoires X à valeurs dans \mathbb{R}^d telle que $\mathbb{E}(|X|^2 < \infty)$ avec $p \in [1; +\infty[$ Les conditions d'existence et d'unicité d'une solution forte de l'EDS (1.4) :

$$|f(t, X_t)| + |G(t, X_t)| \in L^p_{\mathcal{F}}(\Omega, \mathbb{R}^d)$$

alors pour tout $X_0 \in L^p_{\mathcal{F}}(\Omega, \mathbb{R}^d)$ avec $p \ge 1$, il existe une unique solution forte de (1.4) qui vérifie :

$$\begin{cases} \mathbb{E}(\sup_{t \in [0;\infty[} |X_t|^p) \le K(1 - \mathbb{E}(|X_0|^p))) \\ \mathbb{E}(|X_t - X_s|^p)) \le K(1 - \mathbb{E}(|X_0|^p)|t - s|^{\frac{p}{2}}) \quad \forall t, s \in [0;\infty[, K > 0] \end{cases}$$

Remarque 1.4.2. Conditions d'existence et de l'unicité d'une solution faible

En plus des conditions d'existence et d'unicité d'une solution forte, il faut ajouter que l'espace de probabilité filtré qui n'est pas fixé, fait partie de la solution faible.

Rappelons aussi que sous ces conditions sur f et G, nous avons en particulier :

(1.11)
$$\mathbb{E}\left[\sup_{s\in[t,T]}|X_s|^2\right] < +\infty$$

(1.12)
$$\lim_{h \to 0^+} \mathbb{E} \left[\sup_{s \in [t,t+h]} |X_s - x|^2 \right] < +\infty$$

où $X_t = x$ est la condition initiale du processus partant de x en s = t et X_s est la solution de l'EDS (1.4).

Lemme 1.4.1. (*d'Itô*)

Soit $X \in \mathbb{R}^d$ un vecteur aléatoire d-dimensionnel dont le processus $X_t = (X_t^1, ..., X_t^d)^T$ est gouverné par l'EDS (1.4).

Soit $Y_t = h(t, X_t) = (Y_t^1, ..., Y_t^d)^T$ avec $h : \mathbb{R}_+ \times \mathbb{R}^d \longrightarrow \mathbb{R}^d$ deux fois continument dérivables. Alors le lemme d'Itô généralisé est donné :

(1.13)
$$dY_t^k = \frac{\partial h_k}{\partial t} dt + \sum_i^d \frac{\partial h_k}{\partial x^i} dX_t^i + \frac{1}{2} \sum_{i,j}^d \frac{\partial^2 h_k}{\partial x^i \partial x^j} dX_t^i dX_t^j.$$

La formule d'Itô multidimensionnelle s'écrit sous la forme suivante :

(1.14)
$$dY_t = dh = \left(\frac{\partial h}{\partial t} + \sum_{i=1}^{d} f_i \frac{\partial h}{\partial x^i} + \frac{1}{2} \sum_{i,j=1}^{d} (GG^T)_{ij} \frac{\partial^2 h}{\partial x^i \partial x^j}\right) dt + \sum_{i,j=1}^{d} G_{ij} dW_t^j \frac{\partial h}{\partial x^i}.$$

La formule d'Itô unidimensionnelle s'écrit sous la forme suivante :

(1.15)
$$dY_t = dh(X_t, t) = \left(\frac{\partial h}{\partial t} + f\frac{\partial h}{\partial x} + \frac{1}{2}G^2\frac{\partial^2 h}{\partial x^2}\right)dt + G(X_t, t)dW_t\frac{\partial h}{\partial x}.$$

Soient A et L les générateurs ou opérateurs infinitésimaux définis respectivement par :

$$\mathcal{A} = f(x,t)\nabla \cdot +\frac{1}{2}tr\left[(G^{T}G)(x,t)\mathcal{D}^{2}\cdot\right]$$
$$\mathcal{L} = \frac{\partial}{\partial t} + f(x,t)\nabla \cdot +\frac{1}{2}tr\left[(G^{T}G)(x,t)\mathcal{D}^{2}\cdot\right] = \frac{\partial}{\partial t} + \mathcal{A}\cdot$$

La formule d'Itô multidimensionnelle (1.14) devient

(1.16)
$$dY_t = dh(X_t, t) = \left(\frac{\partial h}{\partial t} + \mathcal{A}h\right) dt + \sum_{i,j} G_{ij} dW_t^j \frac{\partial h}{\partial x^i}.$$

Théorème 1.4.2. Soit v = v(t, x) une fonction de classe $C^{1,2}$ à dérivées en x bornées, $t_{\tau}(t, x)$ une fonction continue bornée sur $[0; +\infty[\times \mathbb{R}^d, \text{ et } X_t \text{ la solution de l'EDS (1.4). Si } \mathcal{A}^{\tau} = f(\tau, x)\nabla \cdot +\frac{1}{2}tr\left[(G^TG)(\tau, x)\mathcal{D}^2\cdot\right]$ est l'opérateur associé à cette EDS, alors

$$M_t = v(t, X_t)e^{-\xi(t)} - \int_0^t \left(\frac{\partial v}{\partial t} + \mathcal{A}^{\tau}v - c_{\tau}^0 v\right)(\tau, X_{\tau})e^{-\xi(\tau)}d\tau$$

est une martingale avec $\xi(t)$ l'intégrale définie par

$$\xi(t) = \int_0^t c_s^0(s, X_s) ds$$

Propriété 1.4.1. (*Du générateur infinitésimal* A)

- A est dit elliptique si et seulement si

$$\sum_{i=1}^{d} \sum_{j=1}^{d} (G^{T}G)_{ij}(t,x)\eta_{i}\eta_{j} \ge 0 \ \forall (t,x) \in \mathbb{T} \times \mathbb{R}^{d}, \ \eta \in \mathbb{R}^{d}$$

c'est-à-dire que $(G^TG) \in \mathcal{S}_d^+(\mathbb{R})$ ou que les valeurs propres de G^TG sont positives.

- A est dit uniformément elliptique s'il existe c > 0 tel que

$$\sum_{i=1}^{d} \sum_{j=1}^{d} (G^{T}G)_{ij}(t,x)\eta_{i}\eta_{j} \ge c \mid \eta \mid^{2} \quad \forall (t,x) \in \mathbb{T} \times \mathbb{R}^{d}, \ \eta \in \mathbb{R}^{d}$$

et toutes les valeurs propres de (G^TG) sont strictement positives.

- \mathcal{A} est dit dégénéré si $(G^T G)$ a au moins une valeur propre nulle.

Lemme 1.4.2. (de Gronwall) Soit $g : [0, T] \longrightarrow \mathbb{R}$ une foncton borélienne bornée telle que , pour $a, b \ge 0$,

$$g(t) \le a + b \int_0^t g(s) ds, \quad \forall \ 0 \le t \le T.$$

Alors $g(t) \le ae^{bt} \quad \forall \ t \in [0;T].$

Lemme 1.4.3. Soit $p \ge 2$, $x, y \in \mathbb{R}_+$ et $\varepsilon > 0$ et suffisament petit

$$\begin{split} xy^{p-1} &\leq \frac{\varepsilon^{1-p}}{p} x^p + \frac{(p-1)\varepsilon}{p} y^p \\ x^2 y^{p-2} &\leq \frac{2\varepsilon^{\frac{2-p}{2}}}{p} x^p + \frac{(p-2)\varepsilon}{p} y^p \end{split}$$

Preuve: Les inégalités ci-dessus peuvent être démontrées à l'aide des inégalités de Young : pour p, q > 0 et $\frac{1}{p} + \frac{1}{q} = 1, xy \le \frac{x^p}{p} + \frac{y^p}{q}$.

Lemme 1.4.4. Les deux équations différentielles stochastiques d'Itô (EDS_1) et (EDS_2) ci-dessous sont equivalentes :

$$dX_t = f(t, X_t)dt + \sqrt{V} \, dW_t^* \qquad (EDS_1)$$
$$dX_t = f(t, X_t)dt + G \, dW_t \qquad (EDS_2)$$

 $\begin{array}{l} o\hat{u} \ f: \mathbb{T} \times \mathbb{R}^d \longrightarrow \mathbb{R}^d, \ G: \mathbb{T} \times \mathbb{R}^d \longrightarrow \mathbb{R}^{d \times m}, \ et \ V: \mathbb{T} \times \mathbb{R}^d \longrightarrow \mathbb{R}^{d \times d}, \ sont \ tels \ que \ V = GG^T.\\ W_t = (W_t^j)_{j=1,\ldots,m=10}^T; \ et \ W_t^* = (W_t^{*j})_{j=1,\ldots,m=4}^T. \end{array}$

Suivant la même loi de probabilité et sous la condition de Lipschitz, X_t est une solution de (EDS_1) et de (EDS_2) . En plus la solution X_t des (EDS_1) et (EDS_2) possède la même distribution de probabilité.

1.5 Stabilité stochastique

La théorie de la stabilité des systèmes dynamiques suit généralement la stabilité de Lyapunov [40, 45, 59, 89]. Une importante application de cette théorie est la stabilité du contrôle optimal stochastique. La loi du contrôle doit garantir la stabilité du système stochastique dans le sens convenable. Dans cette section, nous donnons des outils nécessaires de cette théorie.

1.5.1 Stabilité de la solution triviale d'une EDS

Considérons l'EDS (1.4) satisfaisant la condition initiale $X_{t_0} = x_0$.

On dit que la solution X_t de (1.4) est stable lorsque pour une petite variation de cette condition initiale dans un domaine borné, la solution X_t varie aussi dans un domaine borné. Lorsque la solution $X_t \equiv 0$, il est nécessaire dans ce cas que $f(t, 0) = G(t, 0) \equiv 0$

Définition 1.5.1. Sous les hypothèses d'existence et de l'unicité de solution de l'EDS (1.4) et soit $f(t,0) = G(t,0) \equiv 0$ pour tout $t \ge t_0$. On appelle solution triviale de (1.4), la solution "nulle" c'est-à-dire $X_t \equiv 0$.

Définition 1.5.2. (*Stabilité faible en probabilité*)

La solution triviale $X_t \equiv 0$ de (1.4) est dite faiblement stable en probabilité si $\forall \varepsilon \in]0; 1[, \forall p > 0$ alors $\exists \delta > 0$ tel que pour tout $t \ge t_0, t_0 \ge 0$ on ait

$$|x_0| \leq \delta \implies P(|X_t| < \varepsilon | X_{t_0} = x_0) > 1 - p$$

Définition 1.5.3. (Stabilité asymptotiquement faible en probabilité)

La solution triviale $X_t \equiv 0$ de (1.4) est dite asymptotiquement faiblement stable en probabilité si elle est faiblement stable en probabilité et $\forall \gamma > 0$, on a

$$|x_0| \leq \delta_0 \implies \lim_{t \to +\infty} P(|X_t| < \gamma | X_{t_0} = x_0) = 1$$

Notons en passant que la faible stabilité ne caractérise pas le comportement de la trajectoire de X_t . En effet, la solution triviale peut être faiblement stable, mais presque toutes les trajectoires de X_t peuvent tantôt quitter son domaine d'attraction $|X_t| \le \varepsilon$. Pour ce faire, la stabilité forte en probabilité (ou stabilité en probabilité), concept que nous définissons à la suite, est plus employée.

Définition 1.5.4. (Stabilité en probabilité)

La solution triviale $X_t \equiv 0$ de (1.4) est dite (fortement) stable en probabilité si $\forall \varepsilon \in]0; 1[, \forall p > 0$ alors $\exists \delta > 0$ tel que pour tout $t \ge t_0, t_0 \ge 0$ on ait

$$|x_0| \le \delta \implies P(\sup_{t \ge t_0} |X_t| < \varepsilon |X_{t_0} = x_0) > 1 - p$$

La définition (1.5.4) signifie qu'avec une perturbation initiale suffisament petite, la trajectoire de X_t demeure dans un petit voisinage de la solution triviale avec une probabilité tendant vers 1.

Définition 1.5.5. (Stabilité asymptotique en probabilité)

La solution triviale $X_t \equiv 0$ de (1.4) est dite (fortement) asymptotiquement stable en probabilité si elle est stable en probabilité et $\forall \gamma > 0$, on a

$$\mid x_0 \mid \leq \delta_0 \implies \lim_{\tau \longrightarrow +\infty} P(\sup_{t \geq t_0 + \tau} |X_t| < \gamma | X_{t_0} = x_0) = 1$$

Définition 1.5.6. (*p*-Stabilité)

La solution triviale $X_t \equiv 0$ de (1.4) est dite p-stable si $\forall \varepsilon > 0, \exists \delta > 0$ tel que pour tout $t \ge t_0, t_0 \ge 0$ l'on ait

 $|x_0| \leq \delta \implies \mathbb{E}[|X_t|^p | X_{t_0} = x_0] < \varepsilon$

Lorsque p = 2, on parle de la stabilité en moyenne quadratique.

Définition 1.5.7. (*p*-Stabilité asymptotique)

La solution triviale $X_t \equiv 0$ de (1.4) est dite asymptotiquement p-stable si elle est p-stable et si pour toute solution X_t on a

$$|x_0| \leq \delta_0 \implies \lim_{t \to +\infty} \mathbb{E}[|X_t|^p | X_{t_0} = x_0] = 0$$

Définition 1.5.8. (*p*-Stabilité exponentielle)

La solution triviale $X_t \equiv 0$ de (1.4) est dite exponentiellement p-stable si pour toute condition initiale $X_{t_0} = x_0 \in \mathbb{R}^d$, $t \ge t_0 \ge 0$, $\exists \alpha > 0, \beta > 0$ tel que l'on ait

$$\mathbb{E}[|X_t|^p | X_{t_0} = x_0] \le \beta |X_{t_0}|^p e^{-\alpha(t-t_0)}$$

Définition 1.5.9. (Stabilité exponentielle presque sûre)

La solution triviale $X_t \equiv 0$ de (1.4) est dite exponentiellement stable presque sûrement (p.s.) si pour toute condition initiale $X_{t_0} = x_0 \in \mathbb{R}^d$, $t \ge t_0 \ge 0$, on ait

$$\limsup_{t \to +\infty} \frac{1}{t} ln |X_t| < 0 \qquad p.s.$$

1.5.2 Stabilité de l'état d'équilibre aléatoire d'une EDS

Considérons l'EDS (1.4) satisfaisant la condition initiale $X_{t_0} = x_0$ et supposons que $f(t, 0) = G(t, 0) \equiv 0$.

On dit que $X_e = x_e$ est un état d'équilibre aléatoire de (1.4) si $f(t, X_e) = G(t, X_e) \equiv 0$.

Définition 1.5.10. (Stabilité en probabilité)

Un état d'équilibre aléatoire X_e de (1.4) est dit stable en probabilité si $\forall \varepsilon \in]0; 1[, \forall p > 0 \text{ alors} \exists \delta > 0$ tel que pour tout $t \ge t_0, t_0 \ge 0$ on ait

$$|x_0 - x_e| \le \delta \implies P(\sup_{t \ge t_0} |X_t| < \varepsilon |X_{t_0} = x_0) > 1 - p$$

Définition 1.5.11. (Stabilité asymptotique en probabilité)

Un état d'équilibre aléatoire X_e de (1.4) est dit asymptotiquement stable en probabilité s'il est stable en probabilité et $\forall \gamma > 0$, on a

$$|x_0 - x_e| \le \delta_0 \implies \lim_{\tau \longrightarrow +\infty} P(\sup_{t \ge t_0 + \tau} |X_t| < \gamma |X_{t_0} = x_0) = 1$$

Thèse de Doctorat/Ph.D

Définition 1.5.12. (*p*-Stabilité)

Un état d'équilibre aléatoire X_e de (1.4) est dit p-stable si $\forall \varepsilon > 0, \exists \delta > 0$ tel que pour tout $t \ge t_0, t_0 \ge 0$ l'on ait

 $|x_0 - x_e| \leq \delta \implies \mathbb{E}[|X_t - X_e|^p | X_{t_0} = x_0] < \varepsilon$

Lorsque p = 2, *on parle de la stabilité en moyenne quadratique.*

Définition 1.5.13. (*p*-Stabilité asymptotique)

Un état d'équilibre aléatoire X_e de (1.4) est dit asymptotiquement p-stable s'il est p-stable et si pour toute solution X_t on a

$$|x_0 - x_e| \leq \delta_0 \implies \lim_{t \to +\infty} \mathbb{E}[|X_t - X_e|^p | X_{t_0} = x_0] = 0$$

Définition 1.5.14. (*p*-Stabilité exponentielle)

Un état d'équilibre aléatoire X_e de (1.4) est dit exponentiellement p-stable si pour toute condition initiale $X_{t_0} = x_0 \in \mathbb{R}^d$, $t \ge t_0 \ge 0$, $\exists \alpha > 0, \beta > 0$ tel que l'on ait

$$\mathbb{E}[|X_t - X_e|^p | X_{t_0} = x_0] \le \beta |X_{t_0} - X_e|^p e^{-\alpha(t-t_0)}$$

Définition 1.5.15. (Stabilité exponentielle presque sûre)

Un état d'équilibre aléatoire X_e de (1.4) est dit exponentiellement stable presque sûrement (p.s.) si pour toute condition initiale $X_{t_0} = x_0 \in \mathbb{R}^d$, $t \ge t_0 \ge 0$, on ait

$$\limsup_{t \to +\infty} \frac{1}{t} \ln |X_t|_{\lfloor X_t = (t, X_{t_0})} < 0 \qquad p.s.$$

1.5.3 Théorèmes de stabilité

Théorème 1.5.1. S'il existe une fonction V(t, x) de classe $C^{0,2}(\mathbb{T} \times \mathbb{R}^d, \mathbb{R})$ vérifisant les inégalités ci-dessous pour toutes constantes $c_1 > 0$, $c_2 > 0$, $c_3 > 0$

$$c_1|x|^p \le V(t,x) \le c_2|x|^p, \quad V(t,x) \le -c_3|x|^p.$$

Alors la solution triviale de (1.4) est exponentiellement stable.

Théorème 1.5.2. Lorsque la solution triviale de (1.4) est exponentiellement p-stable et les fonctions f(t, x) et G(t, x) de (1.4) ont des dérivées prmières et secondes continues et bornées, alors il existe une fonction V(t, x) de classe $C^{0,2}(\mathbb{T} \times \mathbb{R}^d, \mathbb{R})$ vérifisant

$$c_1|x|^p \le V(t,x) \le c_2|x|^p, \quad V(t,x) \le -c_3|x|^p \quad \forall c_1 > 0, c_2 > 0, c_3 > 0$$

et

$$\left|\frac{\partial V(t,x)}{\partial x_i}\right| < c_4 |x|^{p-1}, \quad \left|\frac{\partial^2 V(t,x)}{\partial x_i \partial x_j}\right| < c_4 |x|^{p-2}, \quad i,j = 1, \dots, d \quad \forall \ c_4 > 0.$$

Thèse de Doctorat/Ph.D

Théorème 1.5.3. ([69]) Supposons qu'il existe une fonction $V(t, x) \in C^{1,2}(\mathbb{R}_+ \times \mathbb{R}^d)$ satisfaisant les conditions suivantes pour $K_1 > 0, K_2 > 0$ et p > 0:

$$|V(t,x)| \le K_1 |x|^p \qquad et \qquad \mathcal{L}V(t,x) \le -K_2 |x|^p$$

où \mathcal{A} est un opérateur différentiel associé au modèle stochastique (3.37), opérant sur une fonction $V = V(t, x) \in \mathcal{C}^{1,2}(\mathbb{R}_+ \times \mathbb{R}^d)$ par

$$\mathcal{L}V = \frac{\partial V}{\partial t} + f(t,x)\frac{\partial V}{\partial x} + \frac{1}{2}tr[G^{T}(t,x)\frac{\partial^{2}V}{\partial x^{2}}G(t,x)].$$

Alors la solution triviale de (1.4) est exponentiellement p-stable.

Lorsque p = 2, alors cette solution est exponentiellemnt stable en moyenne quadratique et est globalement asymptotiquement stable.

1.5.4 Positivité de la solution bornée d'une EDS

Définition 1.5.16. Une solution X_t de l'EDS (1.4), est dit positive s'il existe un sous ensemble compact K de \mathbb{R}^d tel que pour tout état initial $X_{t_0} = x_0 \in \mathbb{R}^d$, $t \ge t_0 \ge 0$, on ait

$$\mathbb{P}(X_t \in K | X_0 = x_0) = 1$$

De plus pour tout sous-ensemble ouvert \mathcal{O} de $K \subset \mathbb{R}^d$, et pour τ_0 , le temps limite d'explosion de \mathcal{O} , alors pour tout $x_0 \in \mathbb{R}^d - \mathcal{O}$, on ait

$$\mathbb{E}[X_{\tau_0} = \tau_0 | X_{t_0} = x_0] < +\infty.$$

Théorème 1.5.4. Si l'état initial aléatoire $X_0 = x_0 \in K \subset \mathbb{R}^d_+$ avec K un compact, alors toute la trajectoire de la solution X_t de (1.4) demeure dans K avec une probabilité égale à 1, c'est-à-dire pour tout $t \ge t_0 \ge 0$, on a

$$\mathbb{P}(X_t \in K | X_0 = x_0) = 1$$

1.6 Processus de contrôle et processus contrôlé

Nous définissons ici un processus de contrôle et un processus contrôlé qui évolue et se diffuse sous l'action d'un "controleur". Celui-ci influence le comportemnt d'un processus stochastique en modifiant sa dynamique (son évolution et sa diffusion) à chaque instant par une action ou fonction de contrôle.

Soit $(\Omega, \mathcal{F}, \{\mathcal{F}_{t\geq 0}\}, \mathbb{P})$. un espace de probabilité filtré. Soit $W_t = (W_t^i)_{i=1,\dots,m}^T$ un mouvement bronien à valeurs dans \mathbb{R}^m .

Définition 1.6.1. (*Processus de contrôle*)

On appelle processus de contrôle, tout processus ou fonction $u = (u_t)_{t \in \mathbb{T}}$ progressivement mesurable à valeur dans $U \subset \mathbb{R}^r$. On désigne par U l'ensemble des processus de contrôle.

Un processus de contrôle est dit admissible s'il satisfait à certaines conditions d'admissibilité considerées par le contrôleur.

On désigne par U_{ad} l'ensemble des processus de contrôle admissible.

Définition 1.6.2. (Processus contrôlé et loi de contrôle)

Soient f et G deux fonctions localement lipschitziennes définies respectivement par

$$f: (t, x, u) \in \mathbb{R}_+ \times \mathbb{R}^d \times U \longrightarrow f(t, x, u) \in \mathbb{R}^d$$

et

$$G: (t, x, u) \in \mathbb{R}_+ \times \mathbb{R}^d \times U \longrightarrow G(t, x, u) \in \mathcal{M}_{(d \times m)}(\mathbb{R}).$$

Pour tout processus de contrôle $u \in U$, considérons l'EDS suivante :

$$dX_t = f(t, X_t, u_t)dt + G(t, X_t, u_t)dW_t, \quad X_0 = x.$$

Si cette EDS admet une solution unique $X = X_t$, alors le processus $X = (X_t)_{t \in \mathbb{T}}$ est appelé processus contrôlé dont la dynamique est conduite par l'action du processus de contrôle u. On notera par $X^u = (X_t^u)_{t \in \mathbb{T}}$ le processus controlé par le contrôle u.

Pour tout processus de contrôle $(u_t)_{t\in\mathbb{T}}$ et pour tout processus contrôlé $(X_t^u)_{t\in\mathbb{T}}$, on désigne aussi par u la loi de contrôle. La loi de contrôle rétroactif ou contrôle feedback est définie sur $\mathbb{T} \times \mathbb{R}^d$ et à valeurs dans $U \subset \mathbb{R}^r$ par

$$u_t = u(t, X_t)$$

Définition 1.6.3. (Classification des EDS contrôlées)

Lorsque seul le terme déterministe (ou l'évolution) est soumis à l'action du processus de contrôle u, alors on obtient l'EDS contrôlée (1.17)

(1.17)
$$\frac{dX_t}{dt} = f(t, X_t, u_t) + G(t, X_t) \frac{dW_t}{dt}, \quad t \in \mathbb{T} \quad X_0 = x;$$

Lorsque les deux termes (déterministe et stochastique) sont soumis à l'action du processus de contrôle u, on obtient l'EDS contrôlée (1.18)

(1.18)
$$\frac{dX_t}{dt} = f(t, X_t, u_t) + G(t, X_t, u_t) \frac{dW_t}{dt}, \quad t \in \mathbb{T} \quad X_0 = x;$$

Enfin, lorsque les deux termes sont soumis à l'action de deux contrôles différents u et v respectivement, on obtient (1.19)

(1.19)
$$\frac{dX_t}{dt} = f(t, X_t, u_t) + G(t, X_t, v_t) \frac{dW_t}{dt}, \quad t \in \mathbb{T}; \quad X_0 = x.$$

Tout processus $X = (X_t)_{t \in \mathbb{T}}$ évolutif dans l'espace temporel \mathbb{T} et dans l'espace des états \mathcal{E} et conduit par l'action du processus de contrôle u, peut être décrit à l'aide de la modélisation mathématique, par une EDO (1.20) lorsque sa dynamique ne tient pas compte des perturbations de nature aléatoire appelées bruits blancs aléatoires.

Définition 1.6.4. (EDO contrôlée)

Soit $X_t = X(t) = (X_i(t))_{i=1,\dots,d}^T$ un processus dont la dynamique ne tient pas compte des bruits blancs aléatoires mais tient compte de l'action du processus de contrôle u.

On appelle EDO contrôlée, l'équation

(1.20)
$$\frac{dX_t}{dt} = f(t, X_t, u_t), \quad t \in \mathbb{T}; \quad X_0 = x.$$

Définition 1.6.5.

- Pour toute loi de contrôle $u \in \mathbb{R}^r$, les fonctions f^u et G^u sont définies par :

$$f^{u}(t,x) = f(t,x,u) \quad et \quad G^{u}(t,x) = G(t,x,u)$$

et

$$f^{0}(t,x) = f(t,x,0) = f(t,x)$$
 et $= G^{0}(t,x) = G(t,x,0) = G(t,x)$

– Pour toute loi de contrôle $u \in \mathbb{R}^r$, l'opérateur \mathcal{A}^u est défini par :

$$\mathcal{A}^{u} \cdot = f^{u}(t, x) \nabla \cdot + \frac{1}{2} tr[C^{u}(t, x)\mathcal{D}^{2} \cdot]$$

оù

$$C^{u}(t,x) = [(G^{u})^{T}G^{u}](t,x) = (G^{T}G)(t,x,u)$$

1.7 **Optimisation**

1.7.1 Optimum global et local

Définition 1.7.1. (*Minimum et maximum global*)

Soit $F: \Omega \longrightarrow \mathbb{R}$, une fonction définie sur un ensemble fermé $\Omega \subseteq \mathbb{R}^n$. Alors

- 1. Le point $x^* \in \Omega$ est un minimum global de F sur Ω ssi $F(x^*) \leq F(x), \forall x \in \Omega$
- 2. Le point $x^* \in \Omega$ est un maximum global de F sur Ω ssi $F(x^*) \ge F(x), \forall x \in \Omega$

Un vecteur $x^* \in \Omega$ est un optimum global de F sur Ω s'il est un minimum global ou un maximum global.

Le supremum de F sur Ω est la valeur maximun de F sur Ω définie par :

$$\max_{x \in \Omega} \{F(x)\} = \sup_{x \in \Omega} \{F(x)\}$$

Si $x^* \in \Omega$ est un maximum global de F sur Ω , alors

$$\max_{x \in \Omega} \{F(x)\} = \sup_{x \in \Omega} \{F(x)\} = F(x^*)$$

Le infimum de F sur Ω est la valeur minimun de F sur Ω définie par :

$$\min_{x \in \Omega} \{F(x)\} = \inf_{x \in \Omega} \{F(x)\}$$

Thèse de Doctorat/Ph.D

Si $x^* \in \Omega$ est un minimum global de F sur Ω , alors

$$\min_{x \in \Omega} \{F(x)\} = \inf_{x \in \Omega} \{F(x)\} = F(x^*)$$

Il existe plusieurs points maximums globaux (respectivement ninimums globaux), mais une seule valeur maximale (respectivement minimale).

L'ensemble de tous les points maximums globaux de F sur Ω sera noté

$$\operatorname{Arg}\max_{\Omega}\{F\}$$

et ses éléments par

$$Arg\max_{x\in\Omega}\{F(x)\}=x^*$$

De même l'ensemble de tous les points minimums globaux de F sur Ω sera noté

$$Arg\min_{\Omega}\{F\}$$

et ses éléments par

$$Arg\min_{x\in\Omega}\{F(x)\} = x^{*}$$

Pour tout $x \in \Omega$ *, nous avons*

$$\min_{x \in \Omega} \{F(x)\} = \max_{x \in \Omega} \{-F(x)\}$$

Définition 1.7.2. (*Minimum et maximum local*)

Soit $F: \Omega \longrightarrow \mathbb{R}$, une fonction définie sur un ensemble fermé $\Omega \subseteq \mathbb{R}^n$. Alors

1. Le point $x^* \in \Omega$ est un minimum local de F sur Ω ssi $\exists r > 0$ tel que

$$F(x^*) \leq F(x), \ \forall x \in \Omega \cap \mathcal{B}(x^*, r),$$

où $\mathcal{B}(x^*, r)$ est une boule fermée de centre x^* , de rayon r;

2. Le point $x^* \in \Omega$ est un maximum local de F sur Ω ssi $\exists r > 0$ tel que

$$F(x^*) \ge F(x), \quad \forall x \in \Omega \cap \mathcal{B}(x^*, r)$$

Théorème 1.7.1. (Condition d'optimalité du premier ordre pour l'optimum local) Soit $F : U \longrightarrow \mathbb{R}$, une fonction définie sur un ensemble fermé $U \subseteq \mathbb{R}^n$. Supposons que $u^* \in int(U)$ est un optimum local et que toutes les dérivées partielles de F existent en u^* . Alors $\nabla F(u^*) = 0$

Définition 1.7.3. (Points stationnaires)

Soit $F : U \longrightarrow \mathbb{R}$, une fonction définie sur un ensemble $U \subseteq \mathbb{R}^n$. Supposons que $\tilde{u} \in int(U)$ et qu'il existe un voisinage de \tilde{u} sur lequel F est différentiable. Alors \tilde{u} est un point stationnaire de F si seulement si $\nabla F(u^*) = 0$
1.7.2 Cône tangent et cône normal

Définition 1.7.4. (Fonction distance)

Soit Ω un espace de Banach et C un sous ensemble non vide de Ω . La fonction distance $d_C : \Omega \longrightarrow \mathbb{R}$ est définie par

$$d_C(x) = \inf_{c \in C} \|x - c\|$$

Définition 1.7.5. (*Cône tangent*)

Soit Ω un espace de Banach et C un sous ensemble non vide de Ω . On appelle cône tangent à C en x, l'ensemble $T_C(x)$ de tous les tangentes à C en x. Un vecteur $v \in \Omega$ est tangent à C en x lorsque d(x; v) = 0 où d désigne la métrique distance.

Définition 1.7.6. (Cône normal)

Soit $x \in C$ un sous ensemble non vide de Ω . Notons par Ω^* l'espace dual de Ω . On appelle cône normal à C en x, l'ensemble $N_C(x)$ défini en fonction de $T_C(x)$ par

 $N_C(x) = \{ z \in \Omega^* : z \cdot v \le 0 \ \forall \ v \in T_C(x) \}$

Théorème 1.7.2. Soit F une fonction lipschitzienne par rapport à une variable x. Supposons que F admet un minimum sur C en x. Alors

$$0 \in \partial_x F(x) + N_C(x).$$

Définition 1.7.7. (Variation totale)

La variation totale d'une fonction x(t) *est donnée par*

$$dx(t) = \delta x(t) + \dot{x}(t)dt$$

où $\delta x(t)$ est le changement virtuel de x(t) et dx(t) est la variation totale de x(t) dûe au changement virtuel et au changement du temps dt.

1.8 Paramètre seuil en épidémiologie

1.8.1 Nombre de reproduction de base

Définition 1.8.1. : Le taux ou le nombre de reproduction de base est le nombre moyen d'indidividus infectés, durant toute la période d'infection, par un seul individu infecté se trouvant dans une population constituée complètement des individus susceptibles.

C'est un paramètre seuil que les mathématiciens ont trouvé et mis à la disposition des épidémiologistes pour pouvoir apporter une idée sur la dynamique de transmission d'une maladie et aussi orienter les stratégies visant à contrôler la propagation de cette maladie.

Il se détermine par le rayon spectral de la matrice de la prochaine génération ou par la valeur propre dominante de la matrice jacobienne du système évalué au point d'équilibre sans maladie.

1.8.2 Nombre de reproduction effective

Définition 1.8.2. : Le nombre de reproduction effective est le nombre moyen d'individus que chaque individu infecté infecte en présence du traitement, durant toute la période d'infection.

Il est toujours inférieur ou égal au nombre de reproduction de base. Il permet de mettre en évidence l'effet du traitement sur la dynamique d'une infection.

CONCEPTS DU CONTRÔLE OPTIMAL DES EDS

La théorie du contrôle optimal née dans les années cinquante est présente et très active dans les travaux de recherche actuelles à cause de sa pertinence et son champs d'applications très élargi dans divers domaines scientifiques. En systèmes dynamiques, le contrôle optimal joue le rôle d'influence positive et d'ajustement du comportement drastique et déviant d'un système non contrôlé. A cause de sa problématique révélée dans l'Introduction Générale, un problème du contrôle optimal est difficile à résoudre analytiquement surtout, lorsque le modèle est non linéaire et soumis à des contraintes sur les variables d'état et du contrôle. Cette difficulté s'accroît encore lorsque le modèle est multidimensionnel et soumis à des bruits blancs aléatoires comme les EDS. Basée sur deux principes qui sont le PPD et le PMP, l'étude du contrôle optimal continue à faire tant bien que mal son bonhomme de chemin. Plusieurs travaux de recherche ont porté sur la résolution analytique de l'équation (HJB) obtenue par le PPD, mais très peu de solutions ont été trouvées. Nous citons entre autre, la solution de viscosité introduite préalablement par Grandall et ses collègues [49, 61], les solutions analytiques du contrôle optimal d'une source linéaire des masses oscillatoires étudiées par Bratus et Dimentberg [16]. Etant donnée la complexité intrinsèque du problème, Les chercheurs ont fait récours à des méthodes numériques afin de trouver les solutions approximatives. C'est le cas des travaux de Kushner [39]. Aujourd'hui peu de problèmes du contrôle optimal des EDS sont résolus analytiquement. Zhou (Zhou et al. 2001) a proposé une stratégie du contrôle optimal basée sur l'espérance mathématique stochastique pour les systèmes hamiltoniens et l'équation de (HJB). Mais la difficulté demeure non négligeable dans le cas multidimensionnel avec les simulations numériques.

Dans ce chapitre nous devons rappeler un tant soit peu, les concepts du contrôle optimal des systèmes dynamiques stochastiques non linéaires à temps continu fini ou infini en utilisant la méthode variationnelle [46, 47] qui débouche sur les deux principes. La particularité dans ce travail, est que ces concepts tiennent compte de la forme généralisée des fonctionnelles du problème de contrôle optimal. Nous nous inspirons des travaux de Javier R. Movellan [63], sur le PPD de Bellman et ceux de D. Peng [90] et J. Yong [49], sur le PMP. Etant alors éclairés par ces concepts au sujet du contrôle optimal, ses applications en épidémiologie, pour la dynamique stochastique des maladies infectueuses vont mieux se faire.

36

2.1 Principes de base du contrôle optimal

2.1.1 Principe de Programmation Dynamique (PPD)

Le PPD, appelé également Principe d'optimalité de Bellman, est un principe créé par Bellman lui-même [43, 81, 82, 94]. Il est fondamental dans la théorie du contrôle, et il est appliqué aux processus de diffusion contrôlés à valeurs dans \mathbb{R}^d , $d \ge 1$. L'idée fondamentale de ce principe, est de considérer, pour tout état initial, un problème de contrôle, de caractériser la fonction valeur associée en établissant la relation entre cette fonction et le contrôle optimal cherché.

Le PPD s'énonce par une équation de la programmation dynamique qui conduit à une équation différentielle aux dérivées partielles (EDP) non linéaire du premier ordre dans le contrôle déterministe [61] et second ordre dans le cas stochastique [62, 100]. Cette EDP est appelée équation de Hamilton-Jacobi-Bellman (HJB) et n'est pas souvent résoluble analytiquement. Mais lorsqu'on obtient une solution explicite ou théorique régulière, alors le théorème de vérification valide l'optimalité de cette solution. Si cette régularité n'est pas vérifiée, alors la solution de viscosité vient pallier à cette difficulté. Nous citons [36, 57] pour le cas déterministe et [49, 100] pour le cas stochastique. La question de l'existence de solution de viscosité ne se pose généralement pas, puisqu'on sait à l'avance que la fonction valeur doit être solution de l'équation de HJB. Ce qui intéresse le contrôleur, c'est plutôt la caractérisation, la régularité, la stabilité et l'approximation numérique de cette fonction valeur.

2.1.2 Principe du Maximum de Pontryagin (PMP)

Le PMP, appelé encore Conditions nécessaires d'optimalité, est un principe dont l'origine provient des travaux de Pontryagin et son équipe [80]. Il est aussi fondamental dans la théorie du contrôle optimal. L'idée principal de ce principe est de donner les conditions necessaires d'optimalité (qui peuvent être suffisantes dans certain cas) par perturbation du contrôle optimal sur un intervalle du temps assez très petit. A l'aide du développement en série de Taylor au voisinage de 0 de l'équation d'état et des coefficients de la fonctionnelle de coût, l'équation adjoint de ce principe est obtenue. Pour le PMP, tout contrôle optimal doit donc vérifier un système différentiel du type hamiltonien (du premier ordre dans le cas déterministe et du second ordre dans le cas stochastique) associé au problème optimal.

Dans les sections suivantes, le PPD et PMP sont appliqués à deux classes de problèmes du contrôle optimal : problèmes à horizon fini et problèmes à horizon infini. Avant d'aborder les problèmes du contrôle des EDS, nous étudions brièvement ceux des EDO.

2.2 Problèmes du contrôle optimal à horizon fini

Notons d'abord qu'un problème du contrôle optimal des systèmes dynamiques soumis aux bruits blancs aléatoires, est régi par une EDS contrôlée. Le but d'un problème du contrôle optimal des systèmes, est de mininiser les coûts ; ce qui est équivalent à maximiser les valeurs ou gains. Considérons alors un processus contrôlé régi par un système d'équations différentielles stochastiques (EDS) contrôlé suivant

(2.1)
$$dX_t = f(t, X_t, u_t)dt + G(t, X_t, u_t)dW_t$$

où le vecteur des variables d'état X_t est une variable aléatoire.

Lorsque le contrôle u, en particulier ne figure que dans le terme déterministe, c'est-à-dire que $G(t, X_t, 0) = G^0(t, X_t)$, alors nous avons

(2.2)
$$dX_t = f(t, X_t, u_t)dt + G^0(t, X_t)dW_t, \quad t \in [t_0; T], \ X_{t_0} = x_0.$$

Lorsque ce système n'est pas soumis à des perturbations ou bruits blancs aléatoires c'est-àdire que $G(t, X_t, u_t) = G^0(t, X_t) = 0$ et $X_t = x_t$, alors il se traduit par un système d'équations différentielles ordinaires (EDO) contrôlé suivant

(2.3)
$$\frac{dx_t}{dt} = \dot{x} = f(t, x_t, u_t), \quad t \in [t_0; T], \ x_{t_0} = x_0.$$

où le vecteur des variables d'état x_t est une variable déterministe.

Avant d'étudier les problèmes du contrôle optimal stochastique, permetons-nous d'aborder dans la première Sous-Section 2.2.1, les problèmes du contrôle optimal déterministe avec des exemples à l'appui. L'étude des problèmes du contrôle optimal stochastique est alors faite dans la Sous-Section 2.2.2. Notre souci est de commencer cette étude par des problèmes les plus simples qui vont être généralisés par la suite. La littérature consultée est [5, 46].

2.2.1 Problème du contrôle optimal des EDO

2.2.1.1 Formulation du problème

a) Énoncé du problème avec temps initial fixe

Dans cette sous-section, définissons une fonctionnelle de coût $J_d : \mathcal{U} \longrightarrow \mathbb{R}$ de telle sorte que J_d soit minimisée à l'horizon fini $t \in [t_0; T]$ sur \mathcal{U} pendant que l'équation d'état déterministe (2.3) soit satisfaite.

Un tel problème du contrôle s'énonce comme suit : Trouver un contrôle optimal $u_t = u_t^*$ tels que

$$J[u_t^*] = \min_{u_t \in \mathcal{U}} \{J_d[u_t]\}$$

où

(2.5)
$$J_d[u_t] = g(T, x_T) + \int_{t_0}^T \varphi(\nu, x_\nu, u_\nu) d\nu$$

sous la contrainte donnée par l'équation différentielle déterministe (2.3). Les fonctions $g : [t_0; T] \times \mathbb{R}^d \longrightarrow \mathbb{R}$, et $\varphi : [t_0; T] \times \mathbb{R}^d \times \mathcal{U} \longrightarrow \mathbb{R}$ sont continues et bornées. On définit ensuite une équation d'état cible à atteintre par le système contrôlé au temps terminal T. Cette équation d'état cible s'écrit

(2.6)
$$\psi(T, x_T) = 0$$

où $\psi \in \mathbb{R}^m$ est une fonctionnelle cible et l'état terminal x_T est atteint au temps terminal T. Un exemple d'une telle équation est l'orbite prédéterminée d'un satéllite ; un autre exemple est la trajectoire prédéfinie tendant vers zéro du nombre des individus infectés par une maladie à la fin

d'une période.

L'objectif d'un tel problème, est de trouver un contrôle optimal $u = u^* \in \mathbb{R}$ qui conduit le système dynamique de l'état initial x_0 en t_0 à l'état cible $\psi(T, x_T) = 0$ de telle sorte que la fonctionnelle de coût J_d soit minimisée sur l'ensemble des contrôle \mathcal{U} pendant que l'équation d'état du système soit satisfaite pour tout $(t, x_t, u_t) \in [t_0, T] \times \mathbb{R}^d \times \mathcal{U}$.

Au point *b*) suivant, entreprenons la résolution analytique de ce problème.

b) Approche de la résolution du problème

Le problème du contrôle énoncé ci-haut (2.4)-(2.5) constitue un problème d'optimisation déterministe. En vue de sa résolution, nous pouvons employer la méthode de coefficients multiplicateurs de Lagrange. Considérons alors le coût augmenté défini par

(2.7)
$$\tilde{J}_d(t_0, T, x_t, u_t) = g(T, x_T) + q^{\mathsf{T}} \psi(T, x_T) + \int_{t_0}^T [\varphi(\nu, x_\nu, u_\nu) + p^{\mathsf{T}} (f(\nu, x_\nu, u_\nu) - \dot{x}_\nu)] d\nu$$

où $p \in \mathbb{R}^m$ et $q \in \mathbb{R}^d$ sont les vecteurs de coefficients multiplicateurs de Lagrange.

On définit sur $[t_0, T] \times \mathbb{R}^d \times \mathcal{U} \times \mathbb{R}^m$ le Hamiltonien comme suit

(2.8)
$$H(t, x, u, p) = p^{\mathsf{T}} \cdot f(t, x, u) + \varphi(t, x, u).$$

La condition nécesaire pour que \tilde{J}_d atteint l'optimalité est la variation totale de \tilde{J}_d par rapport à ses variables t_0 , T, x_t et u_t . Cette condition se traduit alors par

(2.9)
$$d\tilde{J}_d = \frac{\partial}{\partial x} (g + \psi^{\mathsf{T}} q)^{\mathsf{T}} dx_T + \frac{\partial}{\partial t} (g + \psi^{\mathsf{T}} q) dT + \psi^{\mathsf{T}} dq + (H(T, x, u, p) - p^{\mathsf{T}} \dot{x}_T) dT$$

$$(H^{t_0} - p_{t_0}^{\mathsf{T}} \dot{x} t_0 dt_0) + \int_{t_0}^T \left[\frac{\partial H^{\mathsf{T}}}{\partial x} \delta x + \frac{\partial H^{\mathsf{T}}}{\partial u} \delta u - p^{\mathsf{T}} \delta \dot{x} + \left(\frac{\partial H}{\partial p} - \dot{x} \right)^{\mathsf{T}} \delta p \right] d\tau = 0$$

où

$$\frac{\partial H}{\partial x} = \left(\frac{\partial H}{\partial x_i}\right)_{i=1...d}^{\mathsf{T}}, \ \frac{\partial H}{\partial u} = \left(\frac{\partial H}{\partial u_i}\right)_{i=1...r}^{\mathsf{T}}, \ \frac{\partial H}{\partial p} = \left(\frac{\partial H}{\partial p_i}\right)_{i=1...m}^{\mathsf{T}}$$

sont des vecteurs colonnes et $H^{t_0} = H(t_0, T, x, u)$. D'autre part, par Définition 1.7.7 paus avers avers

D'autre part, par Définition 1.7.7 nous avons aussi

$$dx_{t_0} = \delta x_{t_0} + \dot{x}_{t_0} dt_0$$
$$dx_T = \delta x_T + \dot{x}_T dT$$

$$-\int_{t_0}^T p^{\mathsf{T}} \delta \dot{x} d\tau = -p_T^{\mathsf{T}} \delta x_T + p_{t_0}^{\mathsf{T}} \delta x_{t_0} + \int_{t_0}^T \dot{p}^{\mathsf{T}} \delta x d\tau$$

En réorganisant les termes de J_d , il s'en suit que

$$(2.10) \qquad \tilde{J}_d = \left[\frac{\partial}{\partial x}(g + \psi^{\mathsf{T}}q) - p_T\right]^{\mathsf{T}} dx_T + \left[\frac{\partial}{\partial t}(g + \psi^{\mathsf{T}}q) + H(T, x, u, p)\right]^{\mathsf{T}} dT + \psi^{\mathsf{T}}dq -H(t_0, x, u, p)dt_0 + p_{t_0}^{\mathsf{T}} dx_{t_0} + \int_{t_0}^{T} \left[\left(\frac{\partial H}{\partial x} + \dot{p}\right)^{\mathsf{T}} \delta x + \frac{\partial H^{\mathsf{T}}}{\partial u} \delta u + \left(\frac{\partial H}{\partial p} - \dot{x}\right)^{\mathsf{T}} \delta p\right] d\tau.$$

Les variables δx_t , δu_t et δp_t sont arbitraires et indépendantes sur l'intervalle de temps $]t_0; T[$; de même dq est arbitraire et indépendante des autres variables et enfin les conditions initiales et terminales sont indépendantes. Nous obtenons les systèmes d'équations et les conditions suivantes qui permettent de déterminer le contrôle optimal :

- L'équation d'état :

(2.11)
$$\dot{x} = \frac{\partial H}{\partial p} = f(t, x, u)$$

- L'équation d'état adjoint :

(2.12)
$$\dot{p} = \frac{\partial H}{\partial x} = -\frac{\partial \varphi}{\partial x} - \frac{\partial f^{\mathsf{T}} p}{\partial x}$$

– La condition d'optimalité :

(2.13)
$$\frac{\partial H}{\partial u} = 0$$

- La condition initiale :

(2.14)
$$-H(t_0, x, u, p) + p_{t_0}^{\mathsf{T}} dx_{t_0} = 0$$

- La condition terminale :

(2.15)
$$[\frac{\partial}{\partial x}(g+\psi^{\mathsf{T}}q)-p_T]^{\mathsf{T}}dx_T + [\frac{\partial}{\partial t}(g+\psi^{\mathsf{T}}q)+H(T,x,u,p)]dT = 0$$

- L'équation d'état cible :

$$\psi(T, x_T) = 0$$

Notons que la condition d'optimalité (2.13) n'est qu'une condition nécessaire mais pas suffisante. En effet cette condition implique l'existence d'un contrôle optimal libre (ne subissant aucune contrainte). S'il existe un contrôle admissible $u \in \mathcal{U}_{ad} \subset \mathbb{R}^r$ où \mathcal{U}_{ad} est borné, alors cette condition d'optimalité n'est pas satisfaite pour $u \in \mathcal{U}_{ad}$. Dans ce cas, la condition d'optimalité est remplacée par le principe (PMP) qui est une condition nécessaire et suffisante.

Théorème 2.2.1. (*Principe du Maximum de Pontryagin (PMP) déterministe*) Le PMP est énoncé comme suit :

(2.16)
$$H(t, x^*, u^*, p^*) = \min_{u \in \mathcal{U}_{ad} \subset \mathbb{R}^r} H(t, x^*, u, p^*)$$

où x^* , u^* et p^* sont les solutions optimales.

A ce problème du contrôle optimal déterministe, ajoutons d'autres hypothèses. Ce sont les hypothèses relatives au temps terminal et à l'état terminal.

c) Problème avec temps terminal fixe et l'état terminal variable

Notons que le temps terminal du problème de contrôle optimal peut être fixe ou variable. La plupart des applications pratiques de ce problème exige que le temps initial et l'état initial soient fixes, i.e. la condition initiale (2.14) explicitée ci-haut soit telle que

$$dt_0 = 0 \quad et \quad dx_{t_0} = 0$$

Lorsque nous fixons le temps terminal et laissons libre l'état terminal, alors nous avons

$$dT = 0 \quad \delta x_T \neq 0$$

Supposons que cet état terminal x_T variable soit égal à une une fonction prédéfinie $\nu(T)$ qui est aussi variable, alors il n'existe pas une équation d'état cible c'est-à-dire $\psi = 0$ et nous avons

$$dx_T = \dot{\nu}(T)dT,$$

et la condition terminale (2.15) devient comme suit

(2.17)
$$\left[\frac{\partial g}{\partial x} - p_T\right]^{\mathsf{T}} \dot{\nu} + \frac{\partial g}{\partial t} + H(T, x, u, p) = 0$$

Lorsque le temps terminal et l'état terminal sont prédéterminés, alors le problème du contrôle est connu sous le nom de Programmation Dynamique et le contrôle optimal résultant est souvent en boucle fermé.

Théorème 2.2.2. (*Principe de Programmation Dynamique (PPD) déterministe de Bellman*) Le PPD est la rélation fonctionnelle suivante

(2.18)
$$\mathcal{V}(t,x_t) = \min_{u \in \mathcal{U}_{ad}} \left[g(T,x_T) + \int_t^T \varphi(\nu,x_\nu,u) d\nu \right]$$

où $V(t, x_t)$ est la fonction valeur relative à la fonctionnelle de coût J_d définie par l'équation (2.5) dans laquelle le temps initial t_0 est changé par t variable. La condition terminale de (2.18) est tel que

$$\mathcal{V}(T, x_T^*) = g(T, x_T^*).$$

Lorsqu'il n'existe aucune contrainte sur les états du système dynamique, alors la seule condition limite est à l'infini. Cela signifie que pour les systèmes stables, $\mathcal{V}(t, x_t) \longrightarrow 0$ quand $|x_t| \longrightarrow +\infty$. S'il existe des contraintes sur les états, alors les conditions limites existent et peuvent être formulées.

La relation fonctionnelle (2.18) établie par le PPD conduit, dans ce cas déterministe, à une EDP du premier ordre appelée équation de Hamilton-Jacobi-Bellman (HJB) déterministe.

Proposition 2.2.1. (Equation de HJB déterministe)

L'équation de HJB déterministe est donnée par

(2.19)
$$\frac{\partial \mathcal{V}(t, x_t)}{\partial t} + \min_{u \in \mathcal{U}_{ad}} \left[H(t, x_t, u, \nabla \mathcal{V}(t, x_t)) \right] = 0$$

Preuve: Soit $(x_t = x_t^*, u_t = u_t^*)$ une paire de solution optimale de l'équation d'état à l'instant t. Alors le PPD appliquée à la fonction valeur $\mathcal{V}(t, x_t^*)$ donne

$$\mathcal{V}(t, x_t^*) = \min_{u_t \in \mathcal{U}_{ad}} \left[g(T, x_T^*) + \int_t^T \varphi(\nu, x_\nu^*, u_\nu) d\nu \right]$$

soit

(2.20)
$$\mathcal{V}(t, x_t^*) = g(T, x_T^*) + \int_t^T \varphi(\nu, x_\nu^*, u_\nu^*) d\nu$$

La dérivée par rappot à t de l'équation (2.20) donne

(2.21)
$$\frac{d\mathcal{V}(t, x_t^*)}{dt} = -\varphi(t, x_t^*, u_t^*)$$

D'autre part, en considérant la fonction valeur $\mathcal{V}(t, x_t^*)$ comme une fonction de deux variables d'état x et du temps t, sa dérivée par la règle de la chaîne, s'écrit comme suit

$$\frac{d\mathcal{V}(t,x_t^*)}{dt} = \frac{\partial\mathcal{V}(t,x_t^*)}{\partial t} + \frac{\partial\mathcal{V}(t,x_t^*)}{\partial x}\dot{x}_t^*$$

qui est équivalente à

(2.22)
$$\frac{d\mathcal{V}(t, x_t^*)}{dt} = \frac{\partial\mathcal{V}(t, x_t^*)}{\partial t} + \frac{\partial\mathcal{V}(t, x_t^*)}{\partial x}f(t, x_t^*, u_t^*)$$

De deux équations (2.21) et (2.22), nous obtenons

$$\begin{aligned} \frac{\partial \mathcal{V}(t, x_t^*)}{\partial t} &= -\varphi(t, x_t^*, u_t^*) - \frac{\partial \mathcal{V}(t, x_t^*)}{\partial x} f(t, x_t^*, u_t^*), \\ \frac{\partial \mathcal{V}(t, x_t^*)}{\partial t} &= -H\left(t, x_t^*, u_t^*, \frac{\partial \mathcal{V}(t, x_t^*)}{\partial x}\right) \end{aligned}$$

soit donc

(2.23)
$$\frac{\partial \mathcal{V}(t, x_t^*)}{\partial t} = -\min_{u \in \mathcal{U}_{ad}} \left[H(t, x_t^*, u, \mathcal{V}(t, x_t^*)) \right]$$

Etant donné que $x_t^* = x_t$, nous retrouvons l'équation de HJB (2.19).

La preuve de la Proposition 2.2.1 montre qu'à partir d'un contrôle optimal minimisant la fonctionnelle de coût sur l'ensemble des contrôles admissibles, nous trouvons la condition nécessaire et suffisante d'optimalité vérifiée par ce contrôle.

2.2.1.2 Exemple d'un problème du contrôle optimal déterministe

Exemple 2.2.1. Contrôle de la dynamique d'une infection

Considérons un problème du contrôle optimal de la dynamique de l'infection cellulaire du système immunitaire. Ce système immunitaire est affecté par la destruction en deux phases des cellules. Une première phase consiste à éliminer uniquement les Cellules T-lymphocytes Cytotoxiques dont le compartiment est désigné par X_1 . Une seconde phase détruit les cellules CD4+ T-cellules dont le compartiment est désigné par X_2 . C'est un simple modèle tiré de la littérature [104] que nous voudrions contrôler par le contrôle $u = u_t$.

(2.24)
$$\dot{x}_t = f(t, x_t, u_t) = -ax_t + bu_t$$

où $x_t = (X_1, X_2)^{\mathsf{T}}, \dot{x}_t = (\dot{X}_1, \dot{X}_2)^{\mathsf{T}}, u = (u_1, u_2)^{\mathsf{T}}, b \in \mathbb{R}$ et $a = \begin{pmatrix} \lambda + \delta_1 & -\beta \\ -\lambda & \delta_2 \end{pmatrix}$ avec λ taux d'infaction β taux de naisegenes de celluler X = X , $\dot{\delta}$ et δ memoriment taux de mortalité des

d'infection, β taux de naissance de cellules X_1 , X_2 ; δ_1 et δ_2 respectivent taux de mortalité des cellules X_1 et X_2 . Notons que β , δ_1 , δ_2 et λ sont des paramètres réels positifs. La matrice a est inversible car $det(a) = \delta_2 \lambda + \delta_1 + \lambda \beta > 0$.

• Considérons les différentes conditions initiales et terminales ci-dessous puis résolvons le problème en appliquant le PMP déterministe :

- Prenons les conditions initiales $t_0 = 0$, $x_0 = 0$ et la condition terminale tels que dT = 0 et $\delta x_T \neq 0$.

On définit, avec $g(x_T) = \frac{1}{2}s_T(x_T - c)^2$ et $\varphi(t, x_t, u_t) = \frac{1}{2}u_t^2$, la fonctionnelle de coût comme suit

$$J_d = \frac{1}{2} \left(s_T (x_T - c)^2 + \int_0^T u^2(\tau) d\tau \right)$$

L'hamiltonien du système est donné par

$$H = \frac{1}{2}u_t^2 + p^{\mathsf{T}} \cdot (-ax_t + bu_t)$$

L'équation d'état adjoint est

$$\dot{p} = -\frac{\partial H}{\partial x} = ap$$

La condition d'optimalité est

$$\frac{\partial H}{\partial u} = u + bp = 0$$

La condition terminale (2.17) s'écrit

$$\left(\frac{\partial g}{\partial x}\right)_{t=T} - p_T = s_T(x_T - c) - p_T = 0$$

Soit donc

$$p_T = s_T(x_T - c)$$

La solution de l'équation d'état adjoint avec la condition terminale est donnée comme suit :

$$p_t = p_T e^{-(T-t)a}$$

La résolution de l'équation d'état tenant compte de la solution de l'équation d'état adjoint et de la condition d'optimalité ci-dessus nous permet d'obtenir

(2.25)
$$x_t = x_0 e^{-ta} - \frac{1}{2} b^2 a^{-1} p_T e^{-Ta} (e^{ta} - e^{-ta})$$

оù

$$e^{ta} = P e^{tD} P^{-1}$$

avec D la matrice diagonale des valeurs propres de a et P la matrice de passage dont les colonnes sont les vecteurs propres de a.

Notons que $e^{ta} - e^{-ta} = 2sh(ta)$. Puisque $x_0 = 0$ et $p_T = s_T(x_T - c)$, nous obtenons finalement les solutions optimales x_t^* , p_t^* et u_t^* des équations d'état, d'état adjoint et du contrôle respectivement comme suit

$$\begin{aligned} x_t^* &= b^2 c s_T sh(ta) [a e^{Ta} + b^2 s_T sh(Ta)]^{-1} \\ p_t^* &= -c s_T a e^{ta} [a e^{Ta} + b^2 s_T sh(Ta)]^{-1} \\ u_t^* &= b c s_T a e^{ta} [a e^{Ta} + b^2 s_T sh(Ta)]^{-1} \end{aligned}$$

- Considérons le temps terminal T fixé tels que dT = 0, $\delta x_T = 0$ et $x_T = c$. Ainsi, la fonctionnelle de coût est modifiée comme suit

$$J_d = \frac{1}{2} \int_0^T u^2(\tau) d\tau$$

En appliquant la condition terminale $x_T = c$ à (2.25), nous obtenons alors

$$p_T = \frac{2c}{b^2} a[(I - e^{-2Ta})]^{-1}$$

où I est la matrice identique et les solutions optimales sont les suivantes :

$$\begin{aligned} x_t^* &= c.sh(ta)[sh(Ta)]^{-1} \\ p_t^* &= -\frac{c}{b^2}ae^{ta}[sh(Ta)]^{-1} \\ u_t^* &= \frac{c}{b}ae^{ta}[sh(Ta)]^{-1} \end{aligned}$$

• Considérons les conditions initiales et terminales définies ci-dessous puis résolvons le problème en appliquant maintenant le PPD déterministe :

 $t_0 = 0, dt_0 = 0, x(t_0) = 0, dT = 0 \text{ et } x(T) \text{ variable.}$ On définit, avec $g(T, x_T) = \frac{1}{2}s_T(x_T)^2$ et $\varphi(t, x_t, u_t) = \frac{1}{2}u_t^2$, la fonctionnelle de coût comme suit

$$J_d = \frac{1}{2}s_T(x_T)^2 + \int_0^T u^2(\tau)d\tau$$

En appliquant le PPD (2.18), la fonction valeur est définie par

$$\mathcal{V}(t, x_t) = \min_{u \in \mathcal{U}_{ad}} \left[\frac{1}{2} s_T(x_T)^2 + \int_0^T u^2(\tau) d\tau \right]$$

L'équation de HJB pour cet exemple est donnée par

(2.26)
$$\frac{\partial \mathcal{V}(t, x_t)}{\partial t} = -\min_{u \in \mathcal{U}_{ad}} \left[\frac{1}{2}u^2 + \frac{\partial \mathcal{V}(t, x_t)}{\partial x} (-ax_t + bu) \right]$$

la condition d'optimalité donne

$$\frac{\partial H}{\partial u} = u + b \frac{\partial \mathcal{V}(t, x_t)}{\partial x} = 0$$

De plus, nous avons

$$\frac{\partial^2 H}{\partial u^2} = 1 > 0$$

d'où nous obtenons le contrôle optimal suivant qui minimise la fonctionnelle de coût

$$u^* = -b\frac{\partial \mathcal{V}(t, x_t^*)}{\partial x}$$

où x_t^* l'état optimal associé au contrôle optimal u^* . En substituant le contrôle optimal u^* dans l'équations de HJB (2.26), nous obtenons

(2.27)
$$\frac{\partial \mathcal{V}(t, x_t^*)}{\partial t} = \frac{1}{2}b^2 \left[\frac{\partial \mathcal{V}(t, x_t^*)}{\partial x}\right]^2 + a\frac{\partial \mathcal{V}(t, x_t^*)}{\partial x}x_t^*$$

avec la condition terminale

$$\mathcal{V}(T, x_T^*) = \frac{1}{2} S_T [x_t^*]^2$$

Motivé par cette condition terminale, supposons alors que

$$\mathcal{V}(t, x_t^*) = \frac{1}{2} S_t [x_t^*]^2$$

En dérivant $\mathcal{V}(t, x_t^*)$ *par rapport à t et par rapport à x, nous obtenons*

$$\frac{\partial \mathcal{V}(t, x_t^*)}{\partial t} = \frac{1}{2} \dot{S}_t [x_t^*]^2 \qquad et \qquad \frac{\partial \mathcal{V}(t, x_t^*)}{\partial x} = S_t x_t^*$$

En substituant ces dérivées dans l'équation différentielle aux dérivées partielles (2.27), nous obtenons l'équation de Riccati

$$\dot{S}_t - 2aS_t - b^2[S_t]^2 = 0, \qquad S_T = s_T$$

dont la solution est

$$S_t = 2s_T a e^{-a(T-t)} [b^2 s_T (1 - e^{-a(T-t)}) + 2a]^{-1}$$

Nous obtenons finalement le contrôle optimal donné par

$$u^* = -bS_t x_t^* = -2bs_T a e^{-a(T-t)} [b^2 s_T (1 - e^{-a(T-t)}) + 2a]^{-1} x_t^*.$$

Notons que d'autre type d'exemples, d'exercices et de problèmes se trouvent dans [5].

2.2.2 Problèmes du contrôle optimal des EDS

Dans cette partie, distinguons deux cas de formulation de tels problèmes : le premier cas où le contrôle ne figure que dans le terme déterministe. Il s'agit, dans ce cas particulier, d'un système dynamique stochastique qui se traduit par l'équation différentielle d'Itô contrôlée (2.2) et puis le second cas où le contrôle se trouve dans les deux termes déterministe et stochastique. Dans ce second cas plus général, il s'agit d'un système dynamique stochastique qui se traduit par l'équation différentielle d'Itô contrôlée (2.1). Chacun de deux cas va être illustré par un exemple.

2.2.2.1 Formulation générale du problème du contrôle stochastique et le PPD

Dans cette partie, notre principal objectif est de contrôler non seulement l'évolution, mais aussi la diffusion d'un système dynamique. Nous y formulons le problème sous sa forme générale et nous présentons le PPD associé à ce problème.

2.2.2.1-a) Formulation et énoncé du problème de contrôle stochastique

Le processus contrôlé X_t , à valeurs dans \mathbb{R}^d , est régi par l'EDS contrôlée (2.1) où les coefficients

$$f:(t,x,u)\in\mathbb{T}\times\mathbb{R}^d\times\mathcal{U}\longrightarrow f(t,x,u)\in\mathbb{R}^d$$

et

$$G: (t, x, u) \in \mathbb{T} \times \mathbb{R}^d \times \mathcal{U} \longrightarrow G(t, x, u) \in \mathcal{M}_{(d \times m)}(\mathbb{R})$$

sont des fonctions mesurables satisfaisant aux conditions suivantes :

$$(2.28) |f(t,x,u) - f(t,y,u)| + |G(t,x,u) - G(t,y,u)| \le C|x-y| C > 0$$

(2.29)
$$|f(t,x,u)| + |G(t,x,u)| \le C(1+|u|+|x|^2) \qquad C > 0$$

Les conditions uniformes de Lipschitz sur f et G nous permettent d'écrire :

$$\mathbb{E}\left[\int_{t}^{T} (|f|+|G|)(s,x,u_{s})ds\right] < +\infty \qquad \forall x \in \mathbb{R}^{d}, \ u \in \mathcal{U}_{ad} \subset \mathcal{U}$$

qui garantit, pour chaque condition initial donnée, l'existence du contrôle optimal $u_s = u^* \ \forall s \in [t,T]$.

Définition 2.2.1. (Fonctionnelle de coût stochastique à l'horizon fini) La fonctionnelle de coût dans ce cas est définie à l'horizon T fini par :

(2.30)
$$\mathcal{J}(t,x,u) = \mathbb{E}\left[\int_t^T e^{-\beta^u(t,s)}\varphi(s,X_s,u_s)ds + e^{-\beta^u(t,T)}g(X_T)\mathbf{1}_{(T<+\infty)}\Big/X_t = x\right],$$

оù

$$\beta^u(t,s) = \int_t^s c_\tau(\tau, X_\tau, u_\tau) d\tau = \int_t^s c_\tau^u(\tau, X_\tau) d\tau \ge 0,$$

 X_t est la solution de l'EDS contrôlée (2.1) à l'instant t,

$$\varphi, c_{\tau} : [t; T] \times \mathbb{R}^d \times \mathcal{U} \longrightarrow \mathbb{R}, \quad g : \mathbb{R}^d \longrightarrow \mathbb{R}$$

avec φ , c_{τ} sont des fonctions mesurables bornées; de plus φ et g satisfont à la conditions de croissance quadratique :

(2.31)
$$|\varphi(t, x, u)| + |g(x)| \le C(1 + |u| + |x|^2) \qquad C > 0$$

$$\mathcal{U}_{ad} = \left\{ u \in \mathcal{U} : \mathbb{E}\left[\int_t^T e^{-\beta^u(t,s)} (1+|u_s|+|X_s|^2) ds\right] < +\infty, X_t = x \in \mathbb{R}^d \right\}$$

Critère 2.2.1. (De minimisation)

Le critère de la minimisation d'une fonctionnelle de coût du type espérance mathématique à l'horizon fini, est donné par la condition :

(2.32)
$$\mathbb{E}\left[\int_{t}^{T} e^{-\beta^{u}(t,s)} |\varphi(s, X_{s}, u_{s})| ds\right] < +\infty$$

Le problème du contrôle optimal consiste à trouver un contrôle optimal $u_s = u^*$ qui minimise la fonctionnelle de coût sur \mathcal{U}_{ad} , donnant alors la fonction valeur \mathcal{V} suivante :

(2.33)
$$\mathcal{V}(t,x) = \min_{u \in \mathcal{U}_{ad}} \mathcal{J}(t,x,u)$$

Si u^* est un contrôle optimal alors nous avons

$$\mathcal{V}(t,x) = \mathcal{J}(t,x,u^*)$$

2.2.2.1-b) Principe de Programmation Dynamique Stochastique

Théorème 2.2.3. (PPD Stochastique)

Pour tout $(t, x) \in [0; T] \times \mathbb{R}^d$ et pour tout temps d'explosion $\theta < +\infty$, la fonction valeur \mathcal{V} vérifie l'équation de minimisation suivante :

(2.34)
$$\mathcal{V}(t,x) = \min_{u \in \mathcal{U}_{ad}} \mathbb{E} \left[\int_{t}^{\theta \wedge T} e^{-\beta^{u}(t,s)} \varphi(s, X_{s}, u_{s}) ds + e^{-\beta^{u}(t,\theta \wedge T)} \mathcal{V}(\theta \wedge T, X_{\theta \wedge T}) \middle/ X_{t} = x \right]$$

Preuve: Sous les conditions d'existence et de l'unicité de la solution de l'EDS contrôlée (2.1), considérons que pour tout contrôle $u \in U_{ad}$, nous avons

$$X_s = X_\tau, \quad s \ge \tau$$

où $\tau = \theta \wedge T$ est un temps d'arrêt du processus contrôlé $X_s^u = X_s$ à valeurs dans [t; T] avec θ un temps d'explosion du processus. L'expression (2.30) de la fonctionnelle de coût devient :

$$\mathcal{J}(t,x,u) = \mathbb{E}\left[\int_{t}^{\tau} e^{-\beta^{u}(t,s)}\varphi(s,X_{s},u_{s})ds + e^{-\beta^{u}(t,\tau)}g(X_{\tau})\mathbf{1}_{(\tau<+\infty)}\Big/X_{t} = x\right]$$

nous avons :

$$\mathcal{J}(\tau, X_{\tau}, u) = g(X_{\tau}) \mathbf{1}_{(\tau < +\infty)}$$

Par conséquent

$$\mathcal{J}(t,x,u) = \mathbb{E}\left[\int_t^\tau e^{-\beta^u(t,s)}\varphi(s,X_s,u_s)ds + e^{-\beta^u(t,\tau)}\mathcal{J}(\tau,X_\tau,u)\Big/X_t = x\right].$$

Puisque

$$\mathcal{J}(t, x, u) \ge \mathcal{V}(t, x) \ et \ \mathcal{J}(\tau, X_{\tau}, u) \ge \mathcal{V}(\tau, X_{\tau}), \forall \tau \in [t; T]$$

alors

$$\mathcal{J}(t,x,u) \ge \mathbb{E}\left[\int_t^\tau e^{-\beta^u(t,s)}\varphi(s,X_s,u_s)ds + e^{-\beta^u(t,s)}\mathcal{V}(\tau,X_\tau)\Big/X_t = x\right]$$

c'est-à-dire :

$$\mathcal{J}(t,x,u) \ge \mathbb{E}\left[\int_{t}^{\theta \wedge T} e^{-\beta^{u}(t,s)}\varphi(s,X_{s},u_{s})ds + e^{-\beta^{u}(t,s)}\mathcal{V}(\theta \wedge T,X_{\theta \wedge T})\Big/X_{t} = x\right]$$

Le passage au minimum sur $u \in \mathcal{U}_{ad}$ des membres de l'inégalité ci-dessus, nous obtenons

(2.35)
$$\mathcal{V}(t,x) \ge \min_{u \in \mathcal{U}_{ad}} \mathbb{E}\left[\int_{t}^{\theta \wedge T} e^{-\beta^{u}(t,s)} \varphi(s, X_{s}, u_{s}) ds + e^{-\beta^{u}(t,s)} \mathcal{V}(\theta \wedge T, X_{\theta \wedge T}) \middle/ X_{t} = x\right]$$

Reciproquement, pour tout $\varepsilon > 0$ et pour tout $\tau \in [t; T]$, supposons que u^{ε} est un contrôle optimal tel que

$$\mathcal{V}(\tau, X\tau) = \mathcal{J}(\tau, X_{\tau}, u^{\varepsilon}) = \mathcal{J}(\tau, X_{\tau}).$$

Nous avons alors

$$\mathcal{J}(\tau, X_{\tau}) \leq \mathcal{V}(\tau, X\tau) + \varepsilon.$$

Pour u une loi de contrôle admissible donnée dans U_{ad} , construisons un processus de contrôle \tilde{u}_s défini pour h > 0 par :

$$\begin{split} \tilde{u}_s &= \begin{cases} u_s & si \ s \in [0; t+h[\\ u_s^{\varepsilon} & si \ s \in [t+h,T] \end{cases} \\ \mathcal{V}(t,x) &\leq \mathcal{J}(t,x,\tilde{u}) \\ &= \mathbb{E}\left[\int_t^{t+h} e^{-\beta^{\tilde{u}}(t,s)}\varphi(s,X_s,\tilde{u}_s)ds + e^{-\beta^{u}(t,t+h)}\mathcal{J}(t+h,X_{t+h},\tilde{u}_{t+h})\Big/X_t = x\right] \\ \mathcal{V}(t,x) &\leq \mathbb{E}\left[\int_t^{t+h} e^{-\beta^{u}(t,s)}\varphi(s,X_s,u_s)ds + e^{-\beta^{u}(t,t+h)}\mathcal{V}(t+h,X_{t+h})\Big/X_t = x\right] + \varepsilon \\ \text{En prenant } \tau = t+h = \theta \wedge T, \text{ nous avons pour tous } u \in \mathcal{U}_{ad}, \ \theta < +\infty, \ \varepsilon > 0 \end{split}$$

$$\mathcal{V}(t,x) \leq \mathbb{E}\left[\int_{t}^{\theta \wedge T} e^{-\beta^{u}(t,s)}\varphi(s,X_{s},u_{s})ds + e^{-\beta^{u}(t,\theta \wedge T)}\mathcal{V}(\theta \wedge T,X_{\theta \wedge T})\Big/X_{t} = x\right] + \varepsilon$$

soit

(2.36)
$$\mathcal{V}(t,x) \leq \min_{u \in \mathcal{U}_{ad}} \mathbb{E}\left[\int_{t}^{\theta \wedge T} e^{-\beta^{u}(t,s)} \varphi(s, X_{s}, u_{s}) ds + e^{-\beta^{u}(t,\theta \wedge T)} \mathcal{V}(\theta \wedge T, X_{\theta \wedge T}) \middle/ X_{t} = x\right].$$

Les deux inéquations (2.35) et (2.36) permettent de conclure. ■

Remarque 2.2.1. *Par passage à la limite de* (2.34) *lorsque* $\theta \rightarrow +\infty$, *et puis par application du théorème de la convergence dominée, nous obtenons*

(2.37)
$$\mathcal{V}(t,x) = \min_{u \in \mathcal{U}_{ad}} \mathbb{E}\left[\int_{t}^{T} e^{-\beta^{u}(t,s)}\varphi(s,X_{s},u_{s})ds + e^{-\beta^{u}(t,T)}\mathcal{V}(T,X_{T})\Big/X_{t} = x\right]$$

Dans ce cas, la version forte de la fonction valeur V est donnée par (2.34) et sa version classique est donnée par (2.37).

Théorème 2.2.4. (Equation de HJB stochastique)

Pour tout $(t, x) \in [0; T] \times \mathbb{R}^d$, la fonction valeur \mathcal{V} (2.33) est solution d'une EDP non linéaire du second ordre appelée équation de HJB définie par :

(2.38)
$$\frac{\partial \mathcal{V}}{\partial t}(t,x) + \min_{u \in \mathcal{U}_{ad}} \left(\mathcal{A}^u \mathcal{V}(t,x) - c_s^u \mathcal{V}(t,x) + \varphi(t,x,u) \right) = 0, \ \forall \ (t,x) \in [0;T[\times \mathbb{R}^d]$$

avec la condition terminale : $\mathcal{V}(T, x) = g(x), \quad \forall \ x \in \mathbb{R}^d$

Preuve: Considérons le temps $\tau = \theta \wedge T = t + h$, h > 0 et $u_s = u \in \mathcal{U}$. D'après le PPD stochastique , nous avons

(2.39)
$$\mathcal{V}(t,x) \leq \mathbb{E}\left[\int_{t}^{t+h} e^{-\beta^{u}(t,s)}\varphi(s,X_{s},u)ds + e^{-\beta^{u}(t,t+h)}\mathcal{V}(t+h,X_{t+h})\Big/X_{t} = x\right].$$

Supposons que \mathcal{V} est régulière c'est-à-dire de classe $\mathcal{C}^{1,2}$. Par la formule d'Itô et l'intégrale de \mathcal{V} entre t et t + h, nous obtenons alors

(2.40)
$$\mathcal{V}(t+h, X_{t+h})e^{-\beta^{u}(t,t+h)} = \mathcal{V}(t,x) + \int_{t}^{t+h} \left(\frac{\partial \mathcal{V}}{\partial t} + \mathcal{A}^{u}\mathcal{V} - c_{s}^{u}\mathcal{V}\right)(s, X_{s})e^{-\beta^{u}(t,s)}ds + M_{t,t+h}$$

où
$$\beta^u(t,s) = \int_t^s c_\nu^u(\nu, X_\nu) d\nu$$

En substituant (2.40) dans (2.39), nous obtenons :

(2.41)
$$0 \leq \mathbb{E}\left[\int_{t}^{t+h} \left(\left(\frac{\partial \mathcal{V}}{\partial t} + \mathcal{A}^{u}\mathcal{V} - c_{s}^{u}\mathcal{V}\right)(s, X_{s}) + \varphi(s, X_{s}, u)\right) ds \middle/ X_{t} = x\right]$$

En divisant les membres de (2.41) par h puis par le passage à la limite lorsque $h \longrightarrow 0$, nous avons

$$0 \leq \lim_{h \to 0} \frac{1}{h} \mathbb{E} \left[\int_{t}^{t+h} \left(\left(\frac{\partial \mathcal{V}}{\partial t} + \mathcal{A}^{u} \mathcal{V} - c_{s}^{u} \right)(s, X_{s}) + \varphi(s, X_{s}, u) \right) ds \middle/ X_{t} = x \right]$$
$$0 \leq \frac{\partial \mathcal{V}}{\partial t}(t, X_{t}) + \mathcal{A}^{u} \mathcal{V}(t, X_{t}) - c_{s}^{u} \mathcal{V}(t, X_{t}) + \varphi(t, X_{t}, u)$$

ceci donne :

$$\min_{u \in \mathcal{U}_{ad}} \left(\frac{\partial \mathcal{V}}{\partial t}(t, X_t) + \mathcal{A}^u \mathcal{V}(t, X_t) - c_s^u \mathcal{V}(t, X_t) + \varphi(t, X_t, u) \right) = 0.$$

D'où nous obtenons finalement l'équation de HJB suivante où $X_t = x$:

$$\frac{\partial \mathcal{V}}{\partial t}(t, X_t) + \min_{u \in \mathcal{U}_{ad}} \left(\mathcal{A}^u \mathcal{V}(t, X_t) - c_s^u \mathcal{V}(t, X_t) + \varphi(t, X_t, u) \right) = 0$$

qui marque la fin de la preuve.

Corollaire 2.2.1. Lorsque u^* est le contrôle optimal, alors l'équation (2.34) devient :

(2.42)
$$\mathcal{V}(t,x) = \mathbb{E}\left[\int_{t}^{\theta \wedge T} e^{-\beta^{u^{*}}(t,s)}\varphi(s,X_{s}^{*},u_{s}^{*}) + e^{-\beta^{u^{*}}(t,\theta \wedge T)}\mathcal{V}(\theta \wedge T,X_{\theta \wedge T}^{*})\Big/X_{t} = x\right]$$

où θ est le temps d'explosion du processus et X^* est l'état optimal ou solution optimale de l'EDS contrôlée (2.1) partant de x à l'instant t (i.e. $X_t = x$) avec le contrôle u^* .

Sous les hypothèses de la regularité sur V, nous avons aussi

(2.43)
$$\begin{cases} \frac{\partial \mathcal{V}}{\partial t}(t,x) + \left(\mathcal{A}^{u^*}\mathcal{V}(t,x) - c_s^u\mathcal{V}(t,x) + \varphi(t,x,u_t^*)\right) = 0, \ \forall (t,x) \in [0;T[\times \mathbb{R}^d] \\ \mathcal{V}(T,x) = g(x), \quad \forall x \in \mathbb{R}^d \end{cases}$$

Remarque 2.2.2. *Par passage à la limite de* (2.42) *lorsque* $\theta \longrightarrow +\infty$, *et puis par application du théorème de la convergence dominée, nous obtenons*

(2.44)
$$\mathcal{V}(t,x) = \mathbb{E}\left[\int_t^T e^{-\beta^{u^*}(t,s)}\varphi(s,X_s^*,u_s^*)ds + e^{-\beta^{u^*}(t,T)}\mathcal{V}(T,X_T^*)\Big/X_t = x\right]$$

2.2.2.1-c) Approche de résolution de l'équation de HJB

<u>L'approche classique</u> : La résolution d'un problème de contrôle optimal consiste à montrer d'abord l'existence d'une solution régulière de l'équation de HJB, puis appliquer le théorème de vérification pour montrer que cette solution régulière n'est rien d'autre que la fonction valeur optimale. Cette approche de résolution de l'équation de HJB comporte trois étapes :

- Trouver une fonction $Y : \mathbb{R}^d \longrightarrow \mathcal{U}_{ad}$ tel que

$$Y(x) \in \arg\min_{u \in \mathcal{U}_{ad}} \{ \frac{\partial \mathcal{V}}{\partial t}(t, x) + \mathcal{A}^u \mathcal{V}(t, x) - c_s^u \mathcal{V}(t, x) + \varphi(t, x, u) \} = 0$$

- Résoudre le système

(2.45)
$$\begin{cases} dX_t = f(t, X_t, Y(X_t))dt + G(t, X_t, Y(X_t))dW_t \\ X_0 = x_0 \end{cases}$$

- La solution X^* du système (2.45) engendre le contrôle optimal $u_t^* = Y(X_t^*)$ pour la condition initiale x_0 .

Le problème du contrôle optimal qui consiste à optimiser la fonction du coût (2.30) sous la contrainte de l'EDS (2.1) dont la résolution repose sur le PPD de Bellman, donne :

Supposant que u^* est le contrôle optimal cherché, nous avons le système d'équation en u^*

$$\nabla_u \left(f(t, x, u) \nabla \mathcal{V} + \frac{1}{2} tr[(GG^{\mathsf{T}})(t, x, u) \mathcal{D}^2 \mathcal{V}] + \varphi(t, x, u) - c_s^u \mathcal{V} \right)_{u=u^*} = 0$$

où $\mathcal{V} = \mathcal{V}(t, x)$ est la fonction valeur solution de l'EDP non linéaire ou la HJB suivante :

$$\frac{\partial \mathcal{V}}{\partial t} + f(t, x, u^*) \nabla \mathcal{V} + \frac{1}{2} tr[(GG^{\mathsf{T}})(t, x, u^*) \mathcal{D}^2 \mathcal{V}] + \varphi(t, x, u^*) - c_s^{u^*} \mathcal{V} = 0$$

avec la condition terminale $\mathcal{V}(T, X_T) = g(X_T)$.

L'approche de résolution de HJB par les schémas numériques : Notons ici que la résolution analytique de l'équation de HJB est difficile sauf dans les cas spécifiques. C'est pour cette raison que pour approcher l'équation de HJB, nous disposons plusieurs schémas numériques. Le schéma numérique de Kushner par exemple est basé sur les méthodes probabilistes avec la chaine de Markov [41, 52]. D'autres schémas numériques existent et sont obtenus en discrétisant l'équation de HJB en variable temps et en espace par les méthodes des différences finies. C'est le cas de Menaldi [55] qui a utilisé à la fois les méthodes analytiques et probabilistes pour obtenir un schéma numérique dérivant du PPD qui converge vers les solutions classiques. SUN quant à lui, a utilisé les techniques de décomposition du domaine [91]. Les schémas numériques pour résoudre la HJB avec diffusion non dégénérée ont été proposés par Lions et Mercier [79] ; les techniques de multigrille par Akian [3, 4] et Hoppe [83]. Fabio C. et Maurizio F. ont utilisé un schéma numérique d'approximation construit à partir de la version discrète du PPD de Bellman [32]. Ce schéma converge vers la solution de viscosité de HJB. Cette approche de résolution numérique qui consiste à discrétiser la HJB présente des difficultés lorsque l'espace des états est superdimentionnel ($d \ge 4$) surtout non borné. ZHENG Qu a axé récemment ses travaux de thèse sur les méthodes numériques max-plus pour la résolution de HJB associée au contrôle des EDO. Nous pouvons étendre ces méthodes de max-plus aux EDS car elles permettent d'atténuer dans le cas des EDO la difficulté superdimentionnelle. A la même année que Fabio, NING a proposé une méthode numérique du Gradient Stochastique Projeté avec un simple algorithme qui permet de résoudre une classe de problèmes du contrôle optimal stochastique [65]. Cet algorithme utilise un bloc d'itération basée sur le gradient projeté afin de résoudre les équations de l'état et de l'état adjoint par le schéma d'Euler. Cette méthode est utilisée pour le cas particulier où le contrôle ne figure que dans le terme déterministe (voir dans [15] son application au modèle stochastique de la Tuberculose).

Le théorème de vérification est appliqué pour la première fois dans les problèmes du contrôle stochastique en finance par Merton avec le problème d'allocation du portefeuille [84]. Il s'énonce comme suit :

Théorème 2.2.5. (de Vérification du problème de contrôle à horizon fini)

Soit W, une fonction de $C^{1,2}([0,T[\times \mathbb{R}^d) \cap C^0([0,T] \times \mathbb{R}^d))$ à valeurs dans \mathbb{R} , satisfaisant aux hypothèses (h_1) , (h_2) et (h_3) :

- (h_1) : Il existe C > 0 tel que $|\mathcal{W}(t,x)| \le C(1+|x|^2), \quad \forall (t,x) \in [0,T] \times \mathbb{R}^d$;
- (h_2) : si \mathcal{W} vérifie :

$$\begin{cases} \frac{\partial \mathcal{W}}{\partial t}(t,x) + \min_{u \in \mathcal{U}_{ad}} \left(\mathcal{A}^u \mathcal{W}(t,x) - c_s^u \mathcal{W}(t,x) + \varphi(t,x,u) \right) \ge 0, \\ (t,x) \in [0,T[\times \mathbb{R}^d] \\ \mathcal{W}(T,x) \ge g(x), \quad \forall \ x \in \mathbb{R}^d, \end{cases}$$

alors $\mathcal{W}(t,x) \geq \mathcal{V}(t,x), \quad \forall (t,x) \in [0,T[\times \mathbb{R}^d; \bullet(h_3): si \ \mathcal{W}(T,\cdot) = g(\cdot) \ et \ s'il \ existe \ une \ fonction \ mesurable \ u^* = u^*(t,x) \in \mathcal{U} \ pour \ tout$

 $(t,x) \in [0,T] \times \mathbb{R}^d$ tel que

$$\begin{aligned} \frac{\partial \mathcal{W}}{\partial t}(t,X_t) + \min_{u \in \mathcal{U}_{ad}} \left(\mathcal{A}^u \mathcal{W}(t,x) - c_s^u \mathcal{W}(t,x) + \varphi(t,x,u) \right) &= \\ \frac{\partial \mathcal{W}}{\partial t}(t,x) + \left(\mathcal{A}^{u^*} \mathcal{W}(t,x) - c_s^{u^*} \mathcal{W}(t,x) + \varphi(t,x,u^*) \right) = 0, \\ l'EDS \qquad dX_s &= f(s,X_s,u^*)ds + G(s,X_s,u^*)dW_s \end{aligned}$$

avec la condition initiale $X_t = x$ admet une solution unique X_s^* et le processus

$$u^* = (u^*(s, X_s))_{s \in [t,T]} \in \mathcal{U}_{ad}.$$

Alors $\mathcal{W} = \mathcal{V}$ sur $[0, T] \times \mathbb{R}^d$ et u^* est un contrôle optimal markovien.

Preuve: \mathcal{W} étant dans $\mathcal{C}^{1,2}([0,T] \times \mathbb{R}^d, \mathbb{R}, u = u(t,x) \in [0,T] \times \mathbb{R}^d$ et pour tout temps d'arrêt τ à valeur dans $[t; +\infty]$, appliquons la formule d'Itô entre t et $s \wedge \tau$ à \mathcal{W} . Nous obtenons

(2.46)
$$e^{-\beta^{u}(t,s\wedge\tau)}\mathcal{W}(s\wedge\tau,X_{s\wedge\tau}) = \mathcal{W}(t,x) + \int_{t}^{s\wedge\tau} [\nabla\mathcal{W}(\nu,X_{\nu})]^{T}G(\nu,X_{\nu},u_{\nu})dW_{\nu} + \int_{t}^{s\wedge\tau} \left(\frac{\partial\mathcal{W}}{\partial t} + \mathcal{A}^{u}\mathcal{W} - c_{\nu}^{u}\mathcal{W}\right)(\nu,X_{\nu})e^{-\beta^{u}(t,\nu)}d\nu$$

La formule (2.46) étant vraie pour tout temps d'arrêt τ , appliquons-la pour un temps d'arrêt τ_{ρ} défini par

$$\tau_{\rho} = \inf\left\{s \ge t, \int_{t}^{s \wedge \tau} |[\nabla \mathcal{W}(\nu, X_{\nu})]^{T} G(\nu, X_{\nu}, u_{\nu})|^{2} d\nu \ge \rho\right\}.$$

Ceci revient à prendre dans (2.46), $\tau = \tau_{\rho}$. Notons que $\lim_{\rho \to +\infty} \tau_{\rho} = +\infty$. Le processus $\left(\int_{t}^{s \wedge \tau_{\rho}} [\nabla W(\nu, X_{\nu})]^{T} G(\nu, X_{\nu}, u_{\nu}) dW_{\nu}\right)_{s \in [t,T]}$ est une martingale. En prenant l'espérance mathématique conditionnelle si $X_{t} = x$ notée $\mathbb{E}^{x} [\cdot] = \mathbb{E} \left[\cdot / X_{t} = x \right]$, nous avons

$$e^{-\beta^{u}(t,s\wedge\tau_{\rho})}\mathbb{E}^{x}\left[\mathcal{W}(s\wedge\tau_{\rho},X_{s\wedge\tau_{\rho}})\right] = \mathcal{W}(t,x) \\ +\mathbb{E}^{x}\left[\int_{t}^{s\wedge\tau_{\rho}}\left(\frac{\partial\mathcal{W}}{\partial t} + \mathcal{A}^{u}\mathcal{W} - c_{\nu}^{u}\mathcal{W}\right)(\nu,X_{\nu})e^{-\beta^{u}(t,\nu)}d\nu\right]$$

Sous les hypoyhèses (\mathcal{H}_2) et (\mathcal{H}_3) , nous avons

$$\frac{\partial \mathcal{W}}{\partial t}(\nu, X_{\nu}) + \mathcal{A}^{u} \mathcal{W}(\nu, X_{\nu}) - c_{\nu}^{u} \mathcal{W}(\nu, X_{\nu}) + \varphi(\nu, X_{\nu}, u_{\nu}) \ge 0, \quad \forall \ u \in \mathcal{U},$$

d'où

$$e^{-\beta^{u}(t,s\wedge\tau_{\rho})}\mathbb{E}^{x}\left[\mathcal{W}(s\wedge\tau_{\rho},X_{s\wedge\tau_{\rho}})\right] \geq \mathcal{W}(t,x) - \mathbb{E}^{x}\left[\int_{t}^{s\wedge\tau_{\rho}} e^{-\beta^{u}(t,\nu)}\varphi(\nu,X_{\nu},u_{\nu})d\nu\right].$$

Alors par le passage à la limite lorsque $\rho \longrightarrow +\infty$, nous avons (2.47)

$$e^{-\beta^{u}(t,s)}\lim_{\rho\to+\infty}\mathbb{E}^{x}\left[\mathcal{W}(s\wedge\tau_{\rho},X_{s\wedge\tau_{\rho}})\right] \geq \mathcal{W}(t,x) - \lim_{\rho\to+\infty}\mathbb{E}^{x}\left[\int_{t}^{s\wedge\tau_{\rho}}e^{-\beta^{u}(t,\nu)}\varphi(\nu,X_{\nu},u_{\nu})d\nu\right].$$

Nous savons que

$$\int_{t}^{s\wedge\tau_{\rho}} e^{-\beta^{u}(t,\nu)}\varphi(\nu, X_{\nu}, u_{\nu})d\nu \bigg| \leq \int_{t}^{s\wedge\tau_{\rho}} e^{-\beta^{u}(t,\nu)} |\varphi(\nu, X_{\nu}, u_{\nu})| d\nu < +\infty$$

et

$$|\mathcal{W}(s \wedge \tau_{\rho}, X_{s \wedge \tau_{\rho}})| \le C \left(1 + \sup_{s \in [t;T]} |X_s|^2\right)$$

car φ est bornée et satisfait à la condition de croissance quadratique (2.31) et au critère de minimisation (2.32). De même W satisfaisant à la condition (\mathcal{H}_1) , alors $\mathcal{W}(s \wedge \tau_{\rho}, X_{s \wedge \tau_{\rho}})$ est intégrable à l'aide de (1.11). Par le théorème de convergence domminée, nous obtenons :

$$e^{-\beta^{u}(t,s)}\mathbb{E}^{x}\left[\mathcal{W}(s,X_{s})\right] \geq \mathcal{W}(t,x) - \mathbb{E}^{x}\left[\int_{t}^{s} e^{-\beta^{u}(t,\nu)}\varphi(\nu,X_{\nu},u_{\nu})d\nu\right], \quad \forall \ u \in \mathcal{U}.$$

D'où

$$\lim_{s \to T} e^{-\beta^u(t,s)} \mathbb{E}\left[\mathcal{W}(s,X_s)\right] \ge \mathcal{W}(t,x) - \lim_{s \to T} \mathbb{E}\left[\int_t^s e^{-\beta^u(t,\nu)} \varphi(\nu,X_\nu,u_\nu) d\nu \middle/ X_t = x\right], \ \forall \ u \in \mathcal{U}.$$

Par application à nouveau du théorème de convergence dominée puis à cause de la continuité de \mathcal{W} sur $[0;T] \times \mathbb{R}^d$ et de $(\mathcal{H}_2) : \mathcal{W}(T, X_T) \ge g(X_T)$, nous obtenons

$$e^{-\beta^{u}(t,T)}\mathbb{E}[g(X_{T})] \geq \mathcal{W}(t,x) - \mathbb{E}\left[\int_{t}^{T} e^{-\beta^{u}(t,\nu)}\varphi(\nu,X_{\nu},u_{\nu})d\nu \middle/ X_{t} = x\right], \quad \forall \ u \in \mathcal{U},$$

soit donc

$$\mathcal{W}(t,x) \leq \mathcal{V}(t,x), \quad \forall (t,x) \in [0;T] \times \mathbb{R}^d.$$

Pour démontrer l'inégalité dans le sens inverse, utilisons d'une part, la définition de $u^* = u^*(t, x)$ et l'hypothèse (\mathcal{H}_3) :

$$\frac{\partial \mathcal{W}}{\partial t}(t,x) + \left(\mathcal{A}^{u^*}\mathcal{W}(t,x) - c_s^{u^*}\mathcal{W}(t,x) + \varphi(t,x,u^*)\right) = 0,$$

et d'autre part, appliquons la formule d'Itô à $\mathcal{W}(\nu, X_{\nu}^*)$ entre t et s pour tous $t \in [0; T]$ et $s \in [t, T]$ et l'espérance mathématique. Ce qui donne :

(2.48)

$$e^{-\beta^{u}(t,s)}\mathbb{E}[\mathcal{W}(s,X_{s}^{*})] = \mathcal{W}(t,x) - \mathbb{E}\left[\int_{t}^{s} e^{-\beta^{u^{*}}(t,\nu)}\varphi(\nu,X_{\nu}^{*},u_{\nu}^{*})d\nu\Big/X_{t} = x\right], \quad \forall \ u^{*} \in \mathcal{U}_{ad}$$

En faisant tendre $s \longrightarrow T$ dans (2.48), nous obtenons :

$$\mathcal{W}(t,x) = \mathbb{E}\left[\int_{t}^{T} e^{-\beta^{u^{*}}(t,\nu)}\varphi(\nu, X_{\nu}^{*}, u_{\nu}^{*})d\nu + e^{-\beta^{u}(t,T)}g(X_{T}^{*})\Big/X_{t} = x\right] = \mathcal{J}(t, x, u^{*})$$

Puisque $\mathcal{J}(t, x, u^*) \geq \mathcal{V}(t, x)$ avec \mathcal{V} la fonction de valeur classique, nous obtenons donc

$$\mathcal{W}(t,x) \ge \mathcal{V}(t,x), \quad \forall (t,x) \in [0;T] \times \mathbb{R}^d.$$

Nous venons donc de montrer que W = V et u^* est un contrôle optimal markovien. Ce qui marque la fin de la preuve.

2.2.2.1-d) Équation de HJB et solution de viscosité

La question de l'existence de la solution de viscosité ne se pose généralement pas, puisqu'on sait à l'avance que la fonction valeur doit être une solution de l'équation de HJB au sens de viscosité. Ce qui est intéressant maintenant, c'est la caractérisation, la régularité, la stabilité et l'approximation numérique de cette fonction valeur. Le PPD appliqué à un problème du contrôle à l'horizon fini, conduit à une équation de HJB parabolique.

L'équation de HJB du type parabolique s'écrit sous la forme :

(2.49)
$$\frac{\partial \mathcal{V}}{\partial t}(t,x) + \mathcal{H}(t,x,\mathcal{V}(t,x),\nabla\mathcal{V}(t,x),\mathcal{D}^2\mathcal{V}(t,x)) = 0, \quad \forall x \in]0; T[\times \mathbb{R}^d$$

où la fonction \mathcal{H} :]0; $T[\times \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \times \mathcal{S}_d \longrightarrow \mathbb{R}, \mathcal{H} = \mathcal{H}(t, x, p, Q) \in \mathbb{R}$ est croissante par rapport à Q au sens des matrices symétriques.

Lorsque la fonction valeur \mathcal{V} est regulière [66], alors la fonction $\mathcal{W}(t, x) = \mathcal{V}(T-t, x)$ est solution de l'équation de HJB (2.38) du type parabolique avec \mathcal{H} définie par

$$\mathcal{H}(t, x, \nabla \mathcal{V}, \mathcal{D}^2 \mathcal{V}) = \min_{u \in \mathcal{U}_{ad}} \left(\mathcal{A}^u \mathcal{V}(t, x) - c_s^u \mathcal{V}(t, x) + \varphi(t, x, u) \right).$$

Le théorème de vérification valide cette solution \mathcal{W} liée à la fonction valeur par

$$\mathcal{W}(t,x) = \mathcal{V}(T-t,x).$$

Par contre, dans le cas où la fonction valeur n'est pas régulière, ou le cas de dégéréscence, alors la solution convenable de (2.38) est celle de viscosité [75, 36].

2.2.2.2 Problème du contrôle stochastique et le PMP

Dans cette partie, l'évolution et la diffusion du système dynamique sont toujours prises en compte par le processus de contrôle. Considérons le problème du contrôle formulé précédemment dans 2.2.2.1-a) avec la fonctionnelle de coût \mathcal{J} et la fonction valeur \mathcal{V} définies respectivement par (2.30) et (2.33) et présentons cette fois-ci le PMP associé à ce problème avec une condition supplémentaire : g est convexe de classe C^1 .

2.2.2.a) Principe du Maximum de Pontryagin Stochastique

Définition 2.2.2. (Hamiltonien généralisé)

Le Hamiltonien généralisé \mathcal{H}^{ν} associé à l'EDS contrôlé (2.1) est défini par

$$\mathcal{H}^{\nu}:[0;T]\times\mathbb{R}^d\times\mathcal{U}\times\mathbb{R}^d\times\mathcal{M}_{(d\times m)}(\mathbb{R})\longrightarrow\mathbb{R} \ tel \ que$$

$$\mathcal{H}^{\nu} = \mathcal{H}^{\nu}(s, x, u, p, q) = f(s, x, u) \cdot p + tr[G^{\mathsf{T}}(s, x, u)q] - \varphi(s, x, u)e^{-\beta^{u}(t,s)}$$

où \mathcal{H}^{ν} est différentiable pour tout $s \geq t$ avec

$$\mathcal{H}^{\nu}(s, x, u, p, q) = \mathcal{H} = f(s, x, u) \cdot p + tr[G^{\mathsf{T}}(s, x, u)q] - \varphi(s, x, u), \quad \forall \ s = t.$$

Définition 2.2.3. (Équation adjointe du premier ordre)

Pour tout $u \in U$ *, on appelle équation adjointe, l'EDS rétrograde suivante*

(2.50)
$$-dp_t = \nabla \mathcal{H}^{\nu}(s, X_s, u_s, p_s, q_t)ds - q_s dW_s, \quad s \in [t; T] \ p_T = -\nabla g(X_T).$$

Définition 2.2.4. (Équation adjointe du second ordre)

Pour tout $u \in U$ *, on appelle équation adjointe, l'EDS rétrograde suivante*

(2.51)
$$\begin{cases} -dP_s = [\nabla f^{\intercal}(s, x, u)P_s + P_s \nabla f(s, x, u) + \nabla G^{\intercal}(s, x, u)P_t \nabla G(s, x, u) \\ + \nabla G^{\intercal}(s, x, u)Q_t + Q_s \nabla G(s, x, u) + \mathcal{D}^2 \mathcal{H}^{\nu}(s, X_s, u_s, p_s, q_s)]dt - Q_s dW_s, \\ P_T = -\mathcal{D}^2 g(X_T). \end{cases}$$

Théorème 2.2.6. (PMP stochastique première version)

Soit $(\tilde{u}, \tilde{X}) \in \mathcal{U} \times \mathbb{R}^d$ où \tilde{u} est le contrôle minimisant le coût \mathcal{J} sur l'ensemble des contrôles admissibles \mathcal{U}_{ad} et \tilde{X} le processus contrôlé associé. Supposons qu'il existe (\tilde{p}, \tilde{q}) solution de l'EDS rétrograde (2.50) tel que

(2.52)
$$\mathcal{H}^{\nu}(s, \tilde{X}_s, \tilde{u}_s, \tilde{p}_s, \tilde{q}_s) = \max_{u \in \mathcal{U}_{ad}} \mathcal{H}^{\nu}(s, \tilde{X}_s, u, \tilde{p}_s, \tilde{q}_s), \quad \forall s \in [t; T] \quad p.s.$$

et pour tout $s \geq t$

$$(x,u) \longrightarrow \mathcal{H}^{\nu} = \mathcal{H}^{\nu}(s,x,u,\tilde{p},\tilde{q}) \ est \ concave \ \forall \ (x,u) \in \mathbb{R}^d \times \mathcal{U}, \ t \in [0;T].$$

Alors \tilde{u} est un contrôle optimal i.e. $\mathcal{V}(t, x) = \mathcal{J}(t, x, \tilde{u}) = \min_{u \in \mathcal{U}_{ad}} \mathcal{J}(t, x, u).$

Preuve: $\forall u \in \mathcal{U}_{ad}$, notons que $\mathcal{J}(t, x, \tilde{u}) = \mathcal{J}^{\tilde{u}}$ et $\mathcal{J}(t, x, u) = \mathcal{J}^{u}$ alors

$$\mathcal{J}^{\tilde{u}} - \mathcal{J}^{u} = \mathbb{E}\left[\int_{t}^{T} \left(e^{-\beta^{\tilde{u}}(t,s)}\varphi(s,\tilde{X}_{s},\tilde{u}_{s}) - e^{-\beta^{u}(t,s)}\varphi(s,X_{s},u_{s})\right)ds \middle/ X_{t} = x\right] \\ + \mathbb{E}\left[\left(e^{-\beta^{\tilde{u}}(t,T)}g(\tilde{X}_{T}) - e^{-\beta^{u}(t,T)}g(X_{T})\right)\mathbf{1}_{(T<+\infty)}\middle/ X_{t} = x\right],$$

A l'aide de la définition de \mathcal{H}^{ν} et avec $\tilde{\mathcal{H}}^{\nu} = \mathcal{H}^{\nu}(s, \tilde{X}_s, \tilde{u}_s, \tilde{p}_s, \tilde{q}_s)$, nous avons

$$\begin{split} \mathbb{E}\left[\int_{t}^{T} \left(e^{-\beta^{\tilde{u}}(t,s)}\varphi(s,\tilde{X}_{s},\tilde{u}_{s}) - e^{-\beta^{u}(t,s)}\varphi(s,X_{s},u_{s})\right)ds \middle/ X_{t} = x\right] &= -\mathbb{E}\left[\int_{t}^{T} \tilde{\mathcal{H}}^{\nu}ds \middle/ X_{t} = x\right] \\ + \mathbb{E}\left[\left(\int_{t}^{T} \mathcal{H}^{\nu}(s,X_{s},u_{s},p_{s},q_{s})ds + \int_{t}^{T} (f(s,\tilde{X}_{s},\tilde{u}_{s}) - f(s,X_{s},u_{s}))\tilde{p}_{s}ds\right) \middle/ X_{t} = x\right] \\ &+ \mathbb{E}\left[\int_{t}^{T} tr\left[G^{\intercal}(s,\tilde{X}_{s},\tilde{u}_{s}) - G^{\intercal}(s,X_{s},u_{s})\right]\tilde{q}_{s}ds \middle/ X_{t} = x\right] \\ &+ \mathbb{E}\left[\int_{t}^{T} \left(c_{s}^{\tilde{u}}(s,\tilde{X}_{s})e^{-\beta^{\tilde{u}}(t,s)} - c_{s}^{u}(s,X_{s})e^{-\beta^{u}(t,s)}\right)ds \middle/ X_{t} = x\right]. \end{split}$$

D'autre part, nous avons

$$\mathbb{E}^{x}\left[\left(e^{-\beta^{\tilde{u}}(t,T)}g(\tilde{X}_{T})-e^{-\beta^{u}(t,T)}g(X_{T})\right)\mathbf{1}_{(T<+\infty)}\right]=$$

$$(e^{-\beta^{\tilde{u}}(t,T)} - e^{-\beta^{u}(t,T)})\mathbb{E}^{x}\left[g(X_{T})\mathbf{1}_{(T<+\infty)}\right] + e^{-\beta^{\tilde{u}}(t,T)}\mathbb{E}^{x}\left[g(\tilde{X}_{T}) - g(X_{T})\right]$$

g étant convexe, nous avons alors

$$g(\tilde{X}_T) - g(X_T) \le (\tilde{X}_T - X_T)\nabla g(\tilde{X}_T) = -(\tilde{X}_T - X_T)\tilde{p}_T$$

et par conséquent,

$$\mathbb{E}^{x}\left[\left(e^{-\beta^{\tilde{u}}(t,T)}g(\tilde{X}_{T})-e^{-\beta^{u}(t,T)}g(X_{T})\right)\mathbf{1}_{(T<+\infty)}\right] \leq (e^{-\beta^{\tilde{u}}(t,T)}-e^{-\beta^{u}(t,T)})\mathbb{E}^{x}[g(X_{T})\mathbf{1}_{(T<+\infty)}]-e^{-\beta^{\tilde{u}}(t,T)}\mathbb{E}^{x}\left[(\tilde{X}_{T}-X_{T})\tilde{p}_{T}\right].$$

En appliquant la formule d'Itô à $(\tilde{X}_s - X_s)\tilde{p}_s$ entre t et T, puis en prenant l'espérance mathématique conditionnelle $\mathbb{E}^{x}\left[\cdot
ight]$, nous obtenons

$$\mathbb{E}^{x}\left[(\tilde{X}_{T}-X_{T})\tilde{p}_{T}\right] = \mathbb{E}^{x}\left[\int_{t}^{T}(\tilde{X}_{s}-X_{s})d\tilde{p}_{s}+\int_{t}^{T}\tilde{p}_{s}(d\tilde{X}_{s}-dX_{s})\right] \\ +\mathbb{E}^{x}\left[\int_{t}^{T}tr\left[G^{\mathsf{T}}(s,\tilde{X}_{s},\tilde{u}_{s})-G^{\mathsf{T}}(s,X_{s},u_{s})\right]\tilde{q}_{s}ds\right] \\ \mathbb{E}^{x}\left[(\tilde{X}_{T}-X_{T})\tilde{p}_{T}\right] = \mathbb{E}^{x}\left[\int_{t}^{T}(\tilde{X}_{s}-X_{s})\nabla(-\mathcal{H}^{\nu})(s,\tilde{X}_{s},\tilde{u}_{s},\tilde{p}_{s},\tilde{q}_{s})ds\right] \\ +\mathbb{E}^{x}\left[\int_{t}^{T}\left(f(s,\tilde{X}_{s},\tilde{u}_{s})-f(s,X_{s},u_{s})\right)\tilde{p}_{s}ds\right] +\mathbb{E}^{x}\left[\int_{t}^{T}tr\left[G^{\mathsf{T}}(s,\tilde{X}_{s},\tilde{u}_{s})-G^{\mathsf{T}}(s,X_{s},u_{s})\right]\tilde{q}_{s}ds\right].$$
Comme \mathcal{H}^{ν} est concave en x , alors nous avons

С \mathcal{H}^{\prime}

$$-(\tilde{X}_s - X_s)\nabla\mathcal{H}^{\nu}(s, \tilde{X}_s, \tilde{u}_s, \tilde{p}_s, \tilde{q}_s) \ge -\mathcal{H}^{\nu}(s, \tilde{X}_s, \tilde{u}_s, \tilde{p}_s, \tilde{q}_s) + \mathcal{H}^{\nu}(s, X_s, \tilde{u}_s, \tilde{p}_s, \tilde{q}_s)$$

et

$$\mathbb{E}^{x}\left[(\tilde{X}_{T}-X_{T})\tilde{p}_{T}\right] \geq \mathbb{E}^{x}\left[\int_{t}^{T}(\mathcal{H}^{\nu}(s,X_{s},\tilde{u}_{s},\tilde{p}_{s},\tilde{q}_{s})-\mathcal{H}^{\nu}(s,\tilde{X}_{s},\tilde{u}_{s},\tilde{p}_{s},\tilde{q}_{s}))ds\right] \\ +\mathbb{E}^{x}\left[\int_{t}^{T}(f(s,\tilde{X}_{s},\tilde{u}_{s})-f(s,X_{s},u_{s}))\tilde{p}_{s}ds+\int_{t}^{T}tr[G^{\intercal}(s,\tilde{X}_{s},\tilde{u}_{s})-G^{\intercal}(s,X_{s},u_{s})]\tilde{q}_{s}ds\right].$$

Par conséquent, nous avons

$$\mathbb{E}^{x} \left[e^{-\beta^{\tilde{u}}(t,T)} g(\tilde{X}_{T}) - e^{-\beta^{u}(t,T)} g(X_{T}) \mathbf{1}_{(T<+\infty)} \right] \leq \left(e^{-\beta^{\tilde{u}}(t,T)} - e^{-\beta^{u}(t,T)} \right) \mathbb{E}^{x} [g(X_{T}) \mathbf{1}_{(T<+\infty)}]$$

$$+ e^{-\beta^{\tilde{u}}(t,T)} \mathbb{E}^{x} \left[\int_{t}^{T} (\mathcal{H}^{\nu}(s, \tilde{X}_{s}, \tilde{u}_{s}, \tilde{p}_{s}, \tilde{q}_{s}) - \mathcal{H}^{\nu}(s, X_{s}, \tilde{u}_{s}, \tilde{p}_{s}, \tilde{q}_{s})) ds \right]$$

$$+ e^{-\beta^{\tilde{u}}(t,T)} \mathbb{E}^{x} \left[\int_{t}^{T} (f(s, X_{s}, u_{s}) - f(s, \tilde{X}_{s}, \tilde{u}_{s})) \tilde{p}_{s} ds \right]$$

$$+ e^{-\beta^{\tilde{u}}(t,T)} \mathbb{E}^{x} \left[\int_{t}^{T} tr [G^{\mathsf{T}}(s, X_{s}, u_{s}) - G^{\mathsf{T}}(s, \tilde{X}_{s}, \tilde{u}_{s})] \tilde{q}_{s} ds \right]$$

soit enfin pour $\beta^{\tilde{u}}(t,T) \ge \beta^{u}(t,T) \ge 0, \ \forall t \in [0;T]$

$$\mathbb{E}^{x}\left[e^{-\beta^{\tilde{u}}(t,T)}g(\tilde{X}_{T}) - e^{-\beta^{u}(t,T)}g(X_{T})\mathbf{1}_{(T<+\infty)}\right] \leq \mathbb{E}^{x}\left[\int_{t}^{T}\mathcal{H}^{\nu}(s,\tilde{X}_{s},\tilde{u}_{s},\tilde{p}_{s},\tilde{q}_{s})ds\right]$$

$$-\mathbb{E}^{x}\left[\int_{t}^{T}\mathcal{H}^{\nu}(s,X_{s},\tilde{u}_{s},\tilde{p}_{s},\tilde{q}_{s})ds\right] - \mathbb{E}^{x}\left[\int_{t}^{T}(f(s,\tilde{X}_{s},\tilde{u}_{s}) - f(s,X_{s},u_{s}))\tilde{p}_{s}ds\right] \\ -\mathbb{E}^{x}\left[\int_{t}^{T}tr[G^{\intercal}(s,\tilde{X}_{s},\tilde{u}_{s}) - G^{\intercal}(s,X_{s},u_{s})]\tilde{q}_{s}ds\right]$$

De tout ce qui précède, nous tirons l'inégalité

$$\mathcal{J}^{\tilde{u}} - \mathcal{J}^{u} \le 0 \ i.e. \ \mathcal{V}(t, x) = \mathcal{J}^{\tilde{u}} = \min_{u \in \mathcal{U}_{ad}} \mathcal{J}^{u}.$$

Ceci marque donc la fin de cette preuve. ■

Remarquons que Le PMP énoncé à l'origine ne garantissait que la condition nécessaire d'optimalité. Cette condition nécessaire avec une certaine condition de concavité pour le problème optimal sur le Hamiltonien, donne la condition suffisante d'optimalité. Peng en 1990 a fait dans ce sens, une majeure contribution au PMP Stochastique en introduisant l'idée d'un Hamiltonien modifié et le processsus adjoint stochastique du second ordre [90]. Dans cette thèse nous étendons cette notion à une fonctionnelle Hamiltonienne du type généralisée.

Théorème 2.2.7. (Condition nécessaire du PMP Stochastique)[80]

Supposons que les conditions (2.28), (2.29), et (2.31) sur f, G, φ et g sont satisfaites. Soit (x^*, u^*) un couple de la trajectoire optimale et du contrôle optimal minimisant la fonctionnelle de coût sur l'ensemble des contrôles admissibles. Alors il existe un couple de processus stochastique $(p^*, q^*) \in L^2_{\mathcal{F}_t}([0; T], \mathbb{R}^n) \times (L^2_{\mathcal{F}_t}([0; T], \mathbb{R}^n))^m$ satisfaisant à l'équation adjointe du premier

ordre (2.50) tel que

(2.53)
$$0 \in \partial_u(-\mathcal{H}^{\nu}(s, x_s^*, u_s^*, p_s^*, q_s^*)) + N_{\mathcal{U}_{ad}}(u_s^*) \qquad s \in [t; T] \ \mathbb{P}.p.s$$

Théorème 2.2.8. (Condition suffisante du PMP Stochastique)[90]

Supposons que les conditions (2.28), (2.29), et (2.31) sur f, G, φ et g sont satisfaites.

Soit (x^*, u^*, p^*, q^*) un quadruple optimal vérifiant l'équation (2.53). Supposons que $(x, u) \rightarrow \mathcal{H}^{\nu}(t, x, u, p^*, q^*)$ est concave pour tout $s \in [t; T]$ presque sûrement. Alors (x^*, u^*) est un couple optimal solution de problème de minimisation (2.33).

Théorème 2.2.9. PMP seconde version [90]

Soit (x^*, u^*) un couple de solution optimale du problème de minimisation (2.33). Alors il existe (p,q) et (P,Q) satisfaisant aux équations adjointes du premier et second ordre (2.50) et (2.51) respectivement tels que

(2.54)
$$\mathcal{H}^G(s, x^*, u^*) = \max_{u \in \mathcal{U}_{ad}} \mathcal{H}^G(s, x^*, u) \quad \forall s \in [t, T] \ p.s.$$

avec

$$\mathcal{H}^G(s,x,u) = \mathcal{H}^{\nu}(s,x,u,p,q) + \frac{1}{2}tr[G^{\mathsf{T}}(s,x,u)P_sG(s,x,u) - 2G(s,x^*,u^*)]$$

Remarquons pour la seconde version du PMP, le problème optimal du type hamiltonien (2.52) n'admet pas de solution. Ce problème est alors remplacé par (2.54), un autre problème hamiltonien [49]. Les deux exemples 2.2.2 et 2.2.3 ci-dessous illustrent bien ce concept. Exemple 2.2.2. Considérons l'EDS contrôlée tirée de [49]

(2.55)
$$dX_t = u_t dW_t, \quad t \in [0; 1], \ X_0 = 0$$

où u_t est la fonction de contrôle telle que $u_t \in U_{ad} = [0; 1]$ et la fonctionnelle de coût est définie par

$$J[u] = \mathbb{E}\left[\frac{1}{2}(X_1)^2 - \int_0^1 u_t dt\right]$$

Dans cet exemple où f(t, x, u) = 0, G(t, x, u) = u, $\varphi(t, x, u) = -u_t$ et $g(X_t) = \frac{1}{2}(X_t)^2$ convexe, le Hamiltonien associé est donné par

$$\mathcal{H}^{\nu}(t, x, u, p, q) = u(q+1)$$

L'équation adjointe correspondante est alors

(2.56)
$$dp_t = q_t dW_t, \quad t \in [0; 1], \ p_1 = -X_1.$$

Pour tout $t \in [0; 1]$ *, l'intégrale de l'EDS* (2.55) *et celle de* (2.56) *donnent respectivement :*

$$X_t = \int_0^t u_s dW_s \quad et \quad p_t = X_1 + \int_0^t q_s dW_s + \int_0^1 q_s dW_s$$

En combinant les deux intégrales ci-dessus, nous obtenons

$$p_t = \int_0^1 u_s dW_s + \int_0^t q_s dW_s + \int_0^1 q_s dW_s$$

soit

$$p_t = \int_0^1 u_s dW_s + 2 \int_0^t q_s dW_s + \int_1^t q_s dW_s.$$

Du fait que $dp_s = q_s dW_s$ pour $t \ge 0$, nous obtenons finalement

(2.57)
$$p_t = -\int_0^t u_s dW_s - \int_1^t (u_s + q_s) dW_s$$

Pour que le processus stochastique adjoint p_t^* soit adapté à la filtration \mathcal{F}_t , il faut et il suffit qu'on ait

(2.58)
$$u_t^* + q_t^* = 0, \ \forall \ t \in [0; 1], \ \mathbb{P} - p.s.$$

Dès que les hypothèses de Théorème.2.2.7 sont vérifiées, alors nous avons

$$0\in -(q_t^*+1)+N_{[0;1]}(u_t^*), \ \forall \ t\in [0;1], \ \ \mathbb{P}-p.s.$$

Examinons trois cas suivants qui peuvent découler de ce résultat :

- si $u_t^* \in [0; 1[$, alors nous avons $N_{[0;1]}(u_t^*) = \{0\}$ i.e. $q_t^* = -1;$
- si $u_t^* = 0$, alors nous avons $N_{[0;1]}(u_t^*) =] \infty; 0]$ i.e. $q_t^* \le -1;$
- si $u_t^* = 1$, alors nous avons $N_{[0;1]}(u_t^*) = [0; +\infty[$ i.e. $q_t^* \ge -1$.

Supposons maintenant que le cas $0 < u^* < 1$ est vérifié, alors $u_t^* + q_t^* = u_t^* - 1 < 0$ ce qui contredit (2.58).

Si le cas $u_t^* = 0$ est vérifié, alors $u_t^* + q_t^* \le u_t^* - 1 < 0$ ce qui contredit encore (2.58). Seul le dernier cas où $u_t^* = 1$ ne contredit pas (2.58) et est exacte lorque $q_t^* = -1$. D'où $(x_t^*, u_t^*) = (W_t, 1)$ et $(p_t^*, q_t^*) = (-W, -1)$. Le hamiltonien

 $(x,u) \longrightarrow \mathcal{H}^{\nu}(t,x,u,p^*,q^*) = 0$

est concave et $g(x) = \frac{1}{2}x^2$ est convexe, alors nous concluons d'après Théorème 2.2.6 et Théorème 2.2.8 que $u_t^* = 1$ est le contrôle optimal qui minimise J[u].

Exemple 2.2.3. Considérons l'EDS contrôlée toujours tirée de [49]

(2.59)
$$dX_t = u_t dW_t, \quad t \in [0; 1], \ X_0 = 0$$

où u_t est la fonction de contrôle telle que $u_t \in U_{ad} = [-1; 1]$ et la fonctionnelle de coût est définie par

$$J[u] = \mathbb{E}\left[(X_1)^2 + \int_0^1 \left((X_t)^2 - \frac{1}{2} (u_t)^2 \right) dt \right]$$

Dans cet exemple où f(t, x, u) = 0, G(t, x, u) = u, $\varphi(t, x, u) = (X_t)^2 - \frac{1}{2}(u_t)^2$ et $g(X_t) = (X_t)^2$ convexe, le Hamiltonien associé est donné par

$$\mathcal{H}^{\nu}(t, X_t, u_t, p_t, q_t) = u_t q_t + \frac{1}{2} (u_t)^2 - (X_t)^2$$

L'équation adjointe correspondante est alors

(2.60)
$$dp_t = 2X_t + q_t dW_t, \quad t \in [0; 1], \ p_1 = -2X_1.$$

Pour tout $t \in [0; 1]$ *, l'intégrale de l'EDS* (2.59) *et celle de* (2.60) *donnent respectivement :*

$$X_t = \int_0^t u_s dW_s$$

et

$$p_{t} = 2tX_{1} - 4\int_{0}^{t} u_{s}dW_{s} - 4\int_{t}^{1} u_{s}dW_{s} + 2\int_{t}^{1} su_{s}dW_{s} - \int_{t}^{1} q_{s}dW_{s}$$

En combinant les deux intégrales ci-dessus, nous obtenons

$$p_t = -2\int_0^t (2-t)u_s dW_s - \int_t^1 [2(2-s)u_s + q_s] dW_s$$

Pour que le processus stochastique adjoint p_t^* soit adapté à la filtration \mathcal{F}_t , il faut et il suffit qu'on ait

(2.61)
$$2(2-t)u_t + q_t = 0, \ \forall \ t \in [0;1], \ \mathbb{P} - p.s.$$

où $\mathbb{P} - p.s.$ signifie mesure de probabilité \mathbb{P} presque sûrement (p.s.). Dès que les hypothèses de Théorème.2.2.7 sont satisfaites, alors nous avons

$$0\in -(q_t^*+u_t^*)+N_{[-1;1]}(u_t^*), \; \forall \, t\in [0;1], \;\; \mathbb{P}-p.s.$$

Examinons trois cas suivants qui peuvent découler de ce résultat :

- si $u_t^* \in]-1; 1[$, alors nous avons $N_{[-1;1]}(u_t^*) = \{0\}$ i.e. $q_t^* = -u_t^*;$
- si $u_t^* = -1$, alors nous avons $N_{[-1;1]}(u_t^*) =] \infty; 0]$ i.e. $q_t^* \leq -u_t^*;$

- si $u_t^* = 1$, alors nous avons $N_{[-1;1]}(u_t^*) = [0; +\infty[$ i.e. $q_t^* \ge -u_t^*$.

Supposons maintenant que le cas $u^* = -1$ est vrai, alors nous avons $2(2-t)u_t^* + q_t^* \le 2t-3 \le -1$ qui contredit (2.61).

Si le cas $u_t^* = 1$ est vrai, alors nous avons $2(2-t)u_t^* + q_t^* \ge 3 - 2t \ge 1$ contredisant encore (2.61).

Seul le premier cas où $u_t^* \in]-1; 1[$ avec $q_t^* = -u_t^*$ ne contredit pas (2.61).

D'où avec les expressions de X_t et de p_t ci-dessus, nous obtenons $(x_t^*, u_t^*) = (0, 0)$ et $(p_t^*, q_t^*) = (0, 0)$. Le hamiltonien $(x, u) \longrightarrow \mathcal{H}^{\nu}(t, x, u, p^*, q^*) = \frac{1}{2}u^2 - x^2$ n'est pas concave, alors Théorème 2.2.6 et Théorème 2.2.8 ne peuvent pas s'appliquer. Ainsi la condition nécessaire du PMP (2.2.7) seule est satisfaite. C'est pour cette raison que Peng (1990) puis Yong et Zhou (1999), ont défini une nouvelle fonctionnelle hamiltonienne \mathcal{H}^G ; voir Théorème 2.2.9 dont la preuve se trouve dans [49]. Nous trouvons alors un Hamiltonien concave suivante

$$\mathcal{H}^{G}(t, x_{t}^{*}, u) = \frac{1}{2}(2t - 3)u^{2}$$

qui a pour maximum $u^* = 0$. D'où $u^* = 0$ est donc le contrôle optimal minimisant le coût.

Ces exemples concernent les EDS contrôlées très simplifiées. Les équations adjointes utilisées dans ces exemples sont faciles à résoudre. Le PMP stochastique emploie des EDS rétrogrades qui forment un système hamiltonien que l'on devra être capable de résoudre afin de déterminer le contrôle optimal recherché. Avec les EDS généralisées et multidimensiomnelles, la résolution analytique de ce système est très difficile. C'est la résolution mumérique qui est envisagée. Fabio a proposé en 1995 un schéma numérique pour résoudre un problème du contrôle optimal de diffusion par le PPD de Bellman. NING a proposé quant à lui, une méthode numérique du Gradient Stochastique Projeté avec un simple algorithme qui permet de résoudre une classe de problèmes du contrôle optimal stochastique [65]. Cet algorithme utilise un bloc d'itération basée sur le gradient projeté afin de résoudre simultanément les équations d'état et d'état adjoint par le schéma d'Euler. Cette méthode utilisée en particulier dans le cas où le contrôle ne figure que dans le terme déterministe est appliquée en épidémiologie avec le contrôle optimal du traitement dans un modèle stochastique de la Tuberculose (voir [15]). Il est fort possible de l'étendre également au cas général où le contrôle figure à la fois dans le terme déterministe et le terme stochastique.

2.2.2-b) Relation entre le PMP et le PPD

Théorème 2.2.10. Soit \mathcal{V} , la fonction valeur définie sur $\mathcal{C}^{1,3}([0,T[\times\mathbb{R}^d)\cap\mathcal{C}^0([0,T]\times\mathbb{R}^d))$ à valeurs dans \mathbb{R} , donnée par sa version classique (2.37). S'il existe un contrôle optimal admissible $u^* \in \mathcal{U}_{ad}$ et la trajectoire optimale X^* associée, alors \mathcal{V} est solution du système différentiel hamiltonien suivant

(2.62)
$$\mathcal{H}(t, X_t^*, u_t^*, \nabla \mathcal{V}(t, X_t^*), \mathcal{D}^2 \mathcal{V}(t, X_t^*)) = \min_{u \in \mathcal{U}_{ad}} \mathcal{H}(t, X_t^*, u, \nabla \mathcal{V}(t, X_t^*), \mathcal{D}^2 \mathcal{V}(t, X_t^*)),$$

et le couple $(\tilde{p}_t, \tilde{q}_t)$ *tel que*

(2.63)
$$(\tilde{p}_t, \tilde{q}_t) = (\nabla V(t, X_t^*), G^{\mathsf{T}}(t, X_t^*)\mathcal{D}^2 V(t, X_t^*)),$$

est solution de l'équation adjointe rétrograde du premier ordre (2.50).

Preuve: Soit $u^* \in \mathcal{U}_{ad}$ un contrôle optimal admissible et X^* l'état optimal associé. La fonction valeur \mathcal{V} s'écrit

(2.64)
$$\mathcal{V}(t, X_t^*) = \mathbb{E}\left[\int_t^T \left(e^{-\beta^{u^*}(t,s)}\varphi(s, X_s^*, u_s^*) + e^{-\beta^u(t,T)}g(X_T) \middle/ \mathcal{F}_t\right]$$

soit encore

(2.65)
$$\mathcal{V}(t, X_t^*) = \mathbb{E}\left[\int_t^T (e^{-\beta^{u^*}(t,s)}\varphi(s, X_s^*, u_s^*) + e^{-\beta^{u}(t,T)}g(X_T) \middle/ X_t = x\right].$$

D'après le Théorème 2.2.4, $\mathcal{V}(t, X_t^*)$ est solution de l'équation de HJB (2.38). Comme \mathcal{V} est de classe $\mathcal{C}^{1,3}([0, T[\times \mathbb{R}^d) \cap \mathcal{C}^0([0, T] \times \mathbb{R}^d))$, alors elle est aussi solution de (2.43), i.e.

(2.66)
$$\begin{cases} \frac{\partial \mathcal{V}}{\partial t}(t, X_t^*) + \mathcal{H}\left(t, X_t^*, u_t^*, \nabla \mathcal{V}(t, X_t^*), \mathcal{D}^2 \mathcal{V}(t, X_t^*)\right) = 0, \quad \forall (t, X_t^*) \in [0; T[\times \mathbb{R}^d] \\ \mathcal{V}(T, X_T^*) = g(X_T^*), \quad \forall X_T^* \in \mathbb{R}^d \end{cases}$$

qui donne (2.62). Les équations (2.38) et (2.66) nous permettent d'avoir pour tout $x \in \mathbb{R}^d$

$$0 = \frac{\partial \mathcal{V}}{\partial t}(t, X_t^*) + \mathcal{H}\left(t, X_t^*, u_t^*, \nabla \mathcal{V}(t, X_t^*), \mathcal{D}^2 \mathcal{V}(t, X_t^*)\right) \leq \frac{\partial \mathcal{V}}{\partial t}(t, x) + \mathcal{H}\left(t, x, u_t^*, \nabla \mathcal{V}(x), \mathcal{D}^2 \mathcal{V}(x)\right)$$

d'où la condition d'optimalité ci-dessous pour tout \mathcal{V} de $\mathcal{C}^{1,3}$

$$\frac{\partial \mathcal{V}}{\partial x} \left(\frac{\partial \mathcal{V}}{\partial t}(t, x) + \mathcal{H}\left(t, x, u_t^*, \nabla \mathcal{V}(x), \mathcal{D}^2 \mathcal{V}(x)\right) \right)_{x = X_t^*} = 0$$

A l'aide de la définition de \mathcal{H} et celle de \mathcal{H}^g , la condition d'optimalité ci-desssus devient

(2.67)
$$\frac{\partial \mathcal{V}}{\partial x \partial t}(t, X_t^*) f(t, X_t^*, u_t^*) \mathcal{D}^2 \mathcal{V}(t, X_t^*) + \frac{1}{2} tr[(GG^{\mathsf{T}})(t, X_t^*, u_t^*) \mathcal{D}^3 \mathcal{V}(t, X^*)] + \nabla \mathcal{H}^g(t, X_t^*, u_t^*, \nabla \mathcal{V}(t, X_t^*), G^{\mathsf{T}}(t, X_t^*, u_t^*) \mathcal{D}^2 \mathcal{V}(t, X_t^*)) = 0$$

L'application de la formule d'Itô à $\nabla \mathcal{V}(t, X^*)$ et (2.67) donnent

$$\begin{split} d(\nabla \mathcal{V}(t, X_t^*)) &= \\ \left(\frac{\partial \mathcal{V}}{\partial x \partial t}(t, X_t^*) + f(t, X_t^*, u_t^*) \mathcal{D}^2 \mathcal{V}(t, X_t^*) + \frac{1}{2} tr[(GG^{\intercal})(t, X_t^*, u_t^*) \mathcal{D}^3 \mathcal{V}(t, X^*)]\right) dt \\ &- \mathcal{D}^2 \mathcal{V}(t, X_t^*) G(t, X_t^*, u_t^*) dW_t \end{split}$$

ce qui donne finalement

$$d(\nabla \mathcal{V}(t, X_t^*)) =$$

$$\nabla \mathcal{H}^g((t, X_t^*, u_t^*, \nabla \mathcal{V}(t, X_t^*), \mathcal{D}^2 \mathcal{V}(t, X_t^*)G(t, X_t^*))dt - \mathcal{D}^2 \mathcal{V}(t, X_t^*)G(t, X_t^*, u_t^*)dW_t$$

$$\nabla \mathcal{V}(T, X_T^*) = \nabla g(X_T^*)$$

Ceci montre que le couple $(\tilde{p}_t, \tilde{q}_t)$ défini par (2.63) est bien solution de (2.50)

2.2.2.3 Problème particulier et spécifique du contrôle stochastique

Dans cette sous-section nous énonçons un problème particulier où le contrôle ne figure que dans le terme déterministe. Dans ce cas le contrôleur n'a pas des possibilités matérielles de contrôler la diffusion du processus. Nous nous intéressons à ce cas particulier pour étudier également le comportement d'un tel système. Ensuite pour ce même cas, nous traiterons le cas spécifique où le coefficient d'évolution est une fonction qui prend une forme spéciale.

2.2.2.3-a) Problème particulier à l'horizon fini

L'état d'un système dynamique est gouverné par un système particulier d'équations différentielles stochastiques où le contrôle u_t ne figure que dans le terme déterministe $f(X_t, u_t)$ comme suit

$$(2.68) dX_t = f(X_t, u_t)dt + G(X_t)dW_t$$

Définition 2.2.5. (Fonctionnelle de coût à l'horizon fini)

Soient u et $u_t = u(t, X_t)$ respectivement la loi fixe du contrôle et les actions du contrôle au temps t. Supposons que

$$\beta^{u}(t,s) = \beta^{0}(t,s) = e^{-\frac{1}{\tau}(s-t)}, \ \forall \ s \in [t,T], \ \forall \ t \in [0;T].$$

Alors la fonctionnelle de coût définie en (2.30) devient

(2.69)
$$\mathcal{J}(t;x) = \mathbb{E}\left[\int_t^T \left(e^{-\frac{1}{\tau}(s-t)}\varphi(s,X_s,u_s)ds + e^{-\frac{1}{\tau}(T-t)}g(X_T)\right) \middle/ X_t = x\right]$$

où T est le temps terminal, φ est la fonctionnelle instantanée de coût, τ le temps constant pour l'augmentation temporelle de la perte et g est le coût terminal. Notons que $t_{\tau} = \frac{1}{\tau}$ est le taux d'actualisation.

Lemme 2.2.1. Supposons que la fonctionnelle de coût est donnée par :

(2.70)
$$\mathcal{J}(t;x_t) = \mathbb{E}\left[\int_t^T \left(e^{-\frac{1}{\tau}(s-t)}\varphi(s,X_s,u_s)ds + e^{-\frac{1}{\tau}(T-t)}g(X_T)\right) \middle/ X_t = x_t\right]$$

Alors $\mathcal{J}(t; x_t)$ est solution de l'équation différentielle ordinaire suivante

(2.71)
$$\begin{cases} \frac{d\mathcal{J}(t,x_t)}{dt} - \frac{1}{\tau}\mathcal{J}(t;x_t) + \varphi(t;x_t,u_t) = 0, \quad (2.71).1; \\ \mathcal{J}(T,X_T) = g(X_T), \quad (2.71).2; \end{cases}$$

Preuve: L'équation (2.70) peut se réécrire sous la forme suivante

$$\mathcal{J}(t;x_t) = \mathbb{E}\left[\int_t^T e^{-\frac{1}{\tau}(s-t)}\varphi(s,X_s,u_s)ds \middle/ X_t = x\right] + \mathbb{E}\left[g(X_T)e^{-\frac{1}{\tau}(T-t)} \middle/ X_t = x_t\right]$$

En appliquant la propriété de Chasles sur le calcul intégral, l'équation ci-dessus devient

$$\mathcal{J}(t;x_t) = \mathbb{E}\left[\int_t^{t+\varepsilon} e^{-\frac{1}{\tau}(s-t)}\varphi(s,X_s,u_s)ds / X_t = x_t\right] \\ + \mathbb{E}\left[\int_{t+\varepsilon}^T \left(e^{-\frac{1}{\tau}(s-(t+\varepsilon))}\varphi(s,X_s,u_s)ds + e^{-\frac{1}{\tau}(T-(t+\varepsilon))}g(X_T)\right) / X_t = x_t\right]e^{-\frac{1}{\tau}\varepsilon}.$$

soit

(2.72)
$$\mathcal{J}(t;x_t) = \mathbb{E}^x \left[\int_t^{t+\varepsilon} e^{-\frac{1}{\tau}(s-t)} \varphi(s, X_s, u_s) ds \right] + \mathbb{E}^x \left[\mathcal{J}(t+\varepsilon, X_{t+\varepsilon}) e^{-\frac{1}{\tau}\varepsilon} \right]$$

d'où nous avons

(2.73)
$$\frac{1}{\varepsilon} \mathbb{E}^{x} \left[\int_{t}^{t+\varepsilon} e^{-\frac{1}{\tau}(s-t)} \varphi(s, X_{s}, u_{s}) ds \right] = -\frac{1}{\varepsilon} \left(\mathbb{E}^{x} \left[\mathcal{J}(t+\varepsilon, X_{t+\varepsilon}) e^{-\frac{1}{\tau}\varepsilon} \right] - \mathcal{J}(t, x_{t}) \right).$$

Définissons une fonction h dépendant de ε telle que

(2.74)
$$h(\varepsilon) = \mathbb{E}^{x} \left[\mathcal{J}(t+\varepsilon, X_{t+\varepsilon}) \right]$$
$$h(0) = \mathbb{E}^{x} \left[\mathcal{J}(t, X_{t}) \right] = \mathbb{E}^{x} \left[\mathcal{J}(t, x_{t}) \right] = \mathcal{J}(t, x_{t}).$$

Alors l'équation (2.73) devient

(2.75)
$$\frac{1}{\varepsilon} \mathbb{E}^x \left[\int_t^{t+\varepsilon} e^{-\frac{1}{\tau}(s-t)} \varphi(s, X_s, u_s) ds \right] = -\frac{h(\varepsilon) e^{-\frac{1}{\tau}\varepsilon} - h(0)}{\varepsilon}.$$

Par passage à la limite de chaque membre de l'équation (2.75) lorsque $\varepsilon \longrightarrow 0$,

(2.76)
$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \mathbb{E}^x \left[\int_t^{t+\varepsilon} e^{-\frac{1}{\tau}(s-t)} \varphi(s, X_s, u_s) ds \right] = -\lim_{\varepsilon \to 0} \frac{h(\varepsilon) e^{-\frac{1}{\tau}\varepsilon} - h(0)}{\varepsilon}.$$

On obtient

(2.77)
$$\varphi(t, x_t, u_t) = \frac{d(h(\varepsilon)e^{-\frac{1}{\tau}\varepsilon})}{dt}|_{\varepsilon=0} = -\frac{dh(0)}{dt} + \frac{1}{\tau}h(0).$$

Puisque nous avons

$$-\frac{dh(0)}{dt} + \frac{1}{\tau}h(0) = -\frac{d\mathcal{J}(t, x_t)}{dt} + \frac{1}{\tau}\mathcal{J}(t, x_t)$$

alors, l'équation (2.77) permet donc de retrouver l'équation (2.71) recherchée.

Lemme 2.2.2. Soit $\{Y_s\}_{s \ge t}$ un processus conditionné par $\{X_t = x_t\}$ tel que pour $s \ge t$, on ait $Y_s = \mathcal{J}(s, X_s)$. Alors

(2.78)
$$\frac{d\mathbb{E}[Y_t]}{dt} = \frac{d\mathcal{J}(t, x_t)}{dt} = \frac{\partial\mathcal{J}(t, x_t)}{\partial t} + \frac{\partial\mathcal{J}(t, x_t)}{\partial x}f(x_t, u_t) + \frac{1}{2}tr(G^T G)(x_t, u_t)\frac{\partial^2\mathcal{J}(t, x_t)}{\partial x\partial x'}$$

Preuve: Nous avons $Y_s = \mathcal{J}(s, X_s)$ pour $s \ge t$. La formule d'Itô nous permet d'écrire

(2.79)
$$dY_s = \frac{\partial \mathcal{J}(s, X_s)}{\partial t} ds + \frac{\partial \mathcal{J}(s, X_s)}{\partial x} dX_s + \frac{1}{2} tr(G^T G)(X_s, u_s) \frac{\partial^2 \mathcal{J}(s, X_s)}{\partial x \partial x'} ds$$

En posant s = t et prenant l'espérance mathématique de chaque membre dans l'équation (2.79), nous obtenons avec la condition initiale $\{X_t = x_t\}$ le résultat recherché (2.78). **Théorème 2.2.11.** La fonctionnelle de coût \mathcal{J} de loi de contrôle u est une solution d'une EDP du second ordre appelée équation de HJB suivante

(2.80)
$$\begin{cases} \frac{1}{\tau}\mathcal{J}(t,x) = \frac{\partial\mathcal{J}(t,x)}{\partial t} + \mathcal{A}\mathcal{J}(t,x) + \varphi(t,x,u), \\ u = u_t = u(t,x), \\ \mathcal{J}(T,x) = g(x)e^{-\frac{1}{\tau}(T-t)}. \end{cases}$$

Preuve: La démonstration de ce théorème se fait à l'aide des équation (2.71) et (2.78) des lemmes 2.2.1 et 2.2.2 ci-dessus. ■

2.2.3-b) Enoncé d'un problème particulier du contrôle optimal des EDS

Le problème particulier du contrôle s'énonce comme suit :

Pour toute fonctionnelle de coût \mathcal{J}^u et pour toute loi du contrôle u, trouver la fonction valeur optimale :

$$\mathcal{V}(t,x) = \min_{u} \mathcal{J}^{u}(t,x)$$

ce qui revient à résoudre :

$$\mathcal{V}(t,x) = \min_{u} \tau \left\{ \frac{\partial \mathcal{J}^{u}(t,x)}{\partial t} + \mathcal{A}\mathcal{J}^{u}(t,x) + \varphi(t,x,u(x)) \right\}$$

Si la valeur optimale de la loi du contrôle u est atteinte et si $u = u^* = u(x)$, alors nous avons V vérifiant l'équation HJB suivante

2.2.3-c) Problème spécifique du contrôle stochastique

Dans cette partie, l'état du système dynamique est gouverné par un système spécifique d'EDS (2.68) où le contrôle u_t ne figure que dans le terme déterministe défini comme suit

$$f(X_t, u_t) = A(X_t) + B(X_t)u_t$$

Proposition 2.2.2. Pour un temps t arbitraire, si la fonctionnelle de coût \mathcal{J} est définie de la façon suivante

(2.81)
$$\mathcal{J}(t,x) = \mathbb{E}\left[\int_t^T \left(e^{-\frac{1}{\tau}(s-t)}\varphi(X_s,u_s)ds + e^{-\frac{1}{\tau}(T-t)}g(X_T)\right)\Big/X_t = x\right]$$

avec le contrôle $u_s = u(X_s)$ et le coût instantané

$$\varphi(x,u) = g(x) - u^{\mathsf{T}}Qu$$

où Q est une matrice de rang complet. Alors le contrôle optimal u^{*} est donné par

(2.82)
$$u^* = \frac{1}{2}Q^{-1}B^{\mathsf{T}}(x)\frac{\partial \mathcal{V}(t,x^*)}{\partial x}$$

et la fonction valeur optimale \mathcal{V}^* associée à u^* est la solution de l'EDP du second ordre suivante :

(2.83)
$$\frac{1}{\tau}\mathcal{V}(t,x) = \frac{\partial\mathcal{V}(t,x)}{\partial t} + \mathcal{A}^{s}\mathcal{V}(t,x) + g(x) - u^{\mathsf{T}}Qu$$

оù

$$\mathcal{A}^{s}\mathcal{V}(t,x) = [A^{\mathsf{T}} + u^{\mathsf{T}}B^{\mathsf{T}}](x) \cdot \nabla \mathcal{V}(t,x) + \frac{1}{2}tr\Big[(G^{\mathsf{T}}G)(x) \cdot \mathcal{D}^{2}\mathcal{V}(t,x)\Big]$$

Preuve: Dans ce problème spécifique, l'équation de HJB est la suivante :

(2.84)
$$\frac{1}{\tau}\mathcal{V}(t,x) = \min_{u} \left\{ \frac{\partial \mathcal{V}(t,x)}{\partial t} + \mathcal{A}^{s}\mathcal{V}(t,x) + g(x) - u^{\mathsf{T}}Qu \right\}$$

L'équation de HJB (2.84) est déterminée à partir de celle déjà établie dans la sous-section 2.1.2.1 en remplaçant le coût instantané $\varphi(x, u)$ par son expression $g(x) - u^{\mathsf{T}}Qu$ ainsi que f par son expression $A(X_t) + B(X_t)u_t$. avec $X_t = x$.

Pour établir l'expression du contrôle optimal (2.82), posons

(2.85)
$$F(u) = \frac{\partial \mathcal{V}(t,x)}{\partial t} + \mathcal{A}^s \mathcal{V}(t,X) + g(x) - u^{\mathsf{T}} Q u.$$

Nous obtenons le résultat en appliquant la condition du premier ordre du problème d'optimisation $\nabla F(u) = 0$

$$\nabla F(u) = 0 \Longleftrightarrow u = u^* = \frac{1}{2}Q^{-1}B^{\mathsf{T}}(x)\frac{\partial \mathcal{V}(t,x^*)}{\partial x}$$

En substituant maintenant le contrôle optimal u^* dans (2.84), nous obtenons (2.83); ceci marque la fin de la preuve.

Remarque 2.2.3. Lorsque la matrice Q n'est pas du rang complet, alors il existe un nombre infini de contrôles ; c'est le cas d'un problème de contôle dégéneré. Pour pallier à cette difficulté, nous pouvons choisir le pseudo-inverse de la matrice Q. Par exemple pour un problème de contrôle unidimensionnel, si Q = 0, alors la fonction valeur $\mathcal{V}(t, x) = \infty$ ce qui annule l'état à tout instant infinitésimal ($X_t = x = 0$).

Exemple 2.2.4. : Dans cet exemple, supposons que l'état X_t du système dynamique est gouverné par une EDS linéaire (2.86) où le contrôle u_t ne figure que dans le terme déterministe comme suit

(2.86)
$$dX_t = (A_t X_t + B_t u_t) dt + G_t dW_t, \quad t \in [s; T], \quad X_s = x$$

Définissons la fonctionnelle du coût sous la forme

$$J(s, x, u) = \mathbf{E}\left[\int_{s}^{T} \left(\left(X_{t}^{\mathsf{T}}C_{t}X_{t} + u_{t}^{\mathsf{T}}D_{t}u_{t}\right)dt + X_{T}^{\mathsf{T}}RX_{T} \right) \middle/ X_{s} = x \right]$$

оù

$$A_t \in \mathbb{R}^{d \times d}, \ B_t \in \mathbb{R}^{d \times r}, \ C_t \in \mathbb{R}^{d \times d}, \ D_t \in \mathbb{R}^{r \times r}, \ G_t \in \mathbb{R}^{d \times m}, \ R_t \in \mathbb{R}^{d \times d}.$$

 C_t et D_t sont des matrices symétriques définies semi-positives et R_t est définie positive. Choisissons une fonction du contrôle $u_t = u(t, X_t) \in \mathcal{U}_{ad} \subseteq \mathbb{R}^r$. Alors le problème du contrôle optimal consiste à déterminer $u_t = u^*$ tel que

$$\mathcal{V}(s,x) = \min_{u \in \mathcal{U}_{ad}} J(s,x,u)$$

En appliquabt le PPD de Bellman, nous obtenons l'équation de HJB suivante

$$(2.87) \quad \begin{cases} \frac{\partial \mathcal{V}}{\partial s} + \min_{u \in \mathcal{U}_{ad}} \left(x^{\mathsf{T}} C_s x + u^{\mathsf{T}} D_t u + \sum_{i=1}^d (A_s x + B_s u)_i \frac{\partial \mathcal{V}}{\partial x_i} + \frac{1}{2} \sum_{i=1}^d \sum_{j=1}^m (G_s G_s^{\mathsf{T}})_{ij} \frac{\partial^2 \mathcal{V}}{\partial x_i \partial x_j}, \\ \mathcal{V}(T, x) = x^{\mathsf{T}} R x \end{cases}$$

Cherchons une solution de HJB (2.87) sous la forme

$$V(t,x) = x^{\mathsf{T}}S_t x + a_t$$

où $S_t \in \mathbb{R}^{d \times d}$, une matrice symétrique définie positive, et $a_t \in \mathbb{R}$ sont continumment différentiables. Déterminons S_t et a_t tels que V(t, x) vérifie

(2.88)
$$\begin{cases} \frac{\partial V}{\partial t} + x^{\mathsf{T}} C_t x + u^{\mathsf{T}} D_t u + \sum_{i=1}^d (A_t x + B_t u)_i \frac{\partial V}{\partial x_i} + \frac{1}{2} \sum_{i=1}^d \sum_{j=1}^m (G_t G_t^{\mathsf{T}})_{ij} \frac{\partial^2 V}{\partial x_i \partial x_j}, \\ V(T, x) = x^{\mathsf{T}} S_T x + a_T = x^{\mathsf{T}} R x \end{cases}$$

Posons $S_T = R$ et $a_T = 0$.

La condition d'optimalité est la suivante

$$\frac{\partial}{\partial u_i} \left(\frac{\partial V}{\partial t} + x^{\mathsf{T}} C_t x + u^{\mathsf{T}} D_t u + \sum_{i=1}^d (A_t x + B_t u)_i \frac{\partial V}{\partial x_i} + \frac{1}{2} \sum_{i=1}^d \sum_{j=1}^m (G_t G_t^{\mathsf{T}})_{ij} \frac{\partial^2 V}{\partial x_i \partial x_j} \right) = 0$$

donnant

$$2D_t u + 2B_t S_t x = 0 \Longleftrightarrow u = -D_t^{-1} B_t^{\mathsf{T}} S_t x.$$

En substituant cette valeur de u et celle de V dans (2.88), nous obtenons

$$x^{\mathsf{T}}\frac{dS_{t}}{dt}x + \frac{da_{t}}{dt} + x^{\mathsf{T}}C_{t}x + x^{\mathsf{T}}S_{t}B_{t}D_{t}^{-1}D_{t}D_{t}^{-1}B_{t}^{\mathsf{T}}S_{t}x + (A_{t}x - B_{t}D_{t}^{-1}B_{t}^{\mathsf{T}}S_{t})^{\mathsf{T}}2S_{t}x + Tr(G_{t}G_{t}^{\mathsf{T}}S_{t}) = 0$$

soit

$$+x^{\mathsf{T}}\left(\frac{dS_t}{dt} + C_t - S_t B_t D_t^{-1} B_t^{\mathsf{T}} S_t + 2A_t^{\mathsf{T}} S_t\right) x \frac{da_t}{dt} + tr(G_t G_t^{\mathsf{T}} S_t) = 0.$$

Il s'en suit que

$$-\frac{dS_t}{dt} = 2A_t^{\mathsf{T}}S_t - S_t B_t D_t^{-1} B_t^{\mathsf{T}}S_t + C_t = 0, \quad S_T = R$$

et

$$\frac{da_t}{dt} + tr(G_t G_t^{\mathsf{T}} S_t) = 0, \quad a_T = 0.$$

Donc le contrôle optimal est donné par

$$u^* = -D_t^{-1} B_t^{\mathsf{T}} S_t x, \qquad t \in [0;T]$$

et

$$a_t = \int_t^T tr(G_s G_s^{\mathsf{T}} S_s) ds$$

donnant le coût minimum suivant

$$\mathcal{V}(s,x) = x^{\mathsf{T}} S_s x + \int_s^T tr(G_t G_t^{\mathsf{T}} S_t) dt, \quad s \in [0;T].$$

2.3 Problème du contrôle optimal à horizon infini

Le cas d'un problème de contrôle à horizon infini est la limite du problème à horizon fini lorsque $T \longrightarrow +\infty$ et $\theta \longrightarrow +\infty$ pour la forte version; et $T \longrightarrow +\infty$ pour la version classique. Dans cette section, nous allons voir comment définit-on la fonctionnelle de coût? Et comment formule-t-on un problème de contrôle à horizon infini? Enfin nous étudions une approche de la résolution de ce problème.

La formulation d'un problème de contrôle optimal à l'horizon infini, passe par la définition d'une fonctionnelle de coût du type espérance mathématique indépendante du temps t d'une part, et par la caractérisation et récherche de la fonction valeur optimale d'autre part.

2.3.1 Fonctionnelle de coût à l'horizon infini

Définition 2.3.1. (Fonctionnelle de coût à l'horizon infini) La fonctionnelle de coût à l'horizon infini est donnée, dans version forte, par :

(2.89)
$$\mathcal{J}^{u}(x) = \lim_{T, \ \theta \longrightarrow +\infty} \mathbb{E}\left[\int_{t}^{\theta \wedge T} e^{-\beta^{u}(t,s)}\varphi(s, X_{s}, u_{s})ds \middle/ X_{t} = x\right].$$

Dans La version classique, elle est donnée en général par :

(2.90)
$$\mathcal{J}^{u}(x) = \lim_{T \longrightarrow +\infty} \mathbb{E}\left[\int_{t}^{T} e^{-\beta^{u}(t,s)}\varphi(s, X_{s}, u_{s})ds \middle/ X_{t} = x\right]$$

et en particulier pour $\beta^u = \frac{1}{\tau}(s-t)$ par :

(2.91)
$$\mathcal{J}^{u}(x) = \lim_{T \longrightarrow +\infty} \mathbb{E}\left[\int_{t}^{T} e^{-\frac{1}{\tau}(s-t)}\varphi(s, X_{s}, u_{s})ds \middle/ X_{t} = x\right]$$

2.3.2 Enoncé et approche de la résolution d'un problème

Un problème du contrôle optimal stochastique à l'horizon infini s'énonce comme suit : Pour toute fonctionnelle de coût \mathcal{J}^u de type espérance mathématique et pour toute loi de contrôle $u \in \mathcal{U}_{ad}$, trouver la fonction valeur optimale

$$\mathcal{V}(x) = \min_{u} \mathcal{J}^{u}(x)$$

Soit pour β^u quelconque, résoudre l'équation de HJB suivante

$$\mathcal{V}(x) = \min_{u \in \mathcal{U}_{ad}} \frac{1}{\beta^u} \left\{ \frac{\partial \mathcal{J}^u(x)}{\partial t} + \mathcal{A}\mathcal{J}^u(x) + \varphi(x, u(x)) \right\}$$

et pour $\beta^u = \frac{1}{\tau}(s-t)$, résoudre

$$\mathcal{V}(x) = \min_{u \in \mathcal{U}_{ad}} \tau \left\{ \frac{\partial \mathcal{J}^u(x)}{\partial t} + \mathcal{A}\mathcal{J}^u(x) + \varphi(x, u(x)) \right\}.$$

L'approche de la résolution de ce problème du contrôle optimal, est toujours l'approche classique qui applique le théorème de vérification. De toutes les approches de résolution des problèmes du contrôle optimal, seules les approches numériques sont efficaces. La discrétisation de HJB dans un domaine non borné n'est pas possible. Pour pallier à cette difficulté, Fabio utilise les technique de troncature (voir [32]).

A l'horizon infini, le théorème de vérification peut être aussi énoncé; mais puisque nous voulons l'appliquer en épidémiologie avec les systèmes dynamiques de l'infection des maladies dont le contrôle doit se faire à l'horizon fini.

L'équation de HJB du type elliptique s'écrit sous la forme :

(2.92)
$$\mathcal{H}(x,\mathcal{V}(x),\nabla\mathcal{V}(x),\mathcal{D}^{2}\mathcal{V}(x)) = 0, \quad \forall x \in \Omega = \mathbb{R}^{d}$$

où la fonction \mathcal{H} : $\mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \times \mathcal{S}_d \longrightarrow \mathbb{R}$, $\mathcal{H} = \mathcal{H}(x, s, p, Q) \in \mathbb{R}$ est croissante par rapport à Q au sens des matrices symétriques.

Le PPD appliqué à un problème du contrôle à l'horizon fini, conduit à une équation de HJB elliptique.

Par exemple, dans La version forte, la fonction valeur \mathcal{V} indépendante du temps, est solution de l'équation de HJB elliptique :

(2.93)
$$\mathcal{H}(x,\mathcal{V}(x),\nabla\mathcal{V}(x),\mathcal{D}^{2}\mathcal{V}(x)) = 0$$

avec

$$\mathcal{H}(x,\mathcal{V}(x),\nabla\mathcal{V}(x),\mathcal{D}^{2}\mathcal{V}(x)) = \min_{u} \frac{1}{\beta^{u}} \left\{ -\mathcal{V}(x) + \mathcal{A}\mathcal{V}(x) + \varphi(x,u) \right\}$$

Conclusion

Dans ce chapitre, les approches de la résolution des problème du contrôle optimal sont de deux groupes : sont du premier groupe, celles qui regardent les problèmes se ramenant à des problèmes d'optimisation et qui consistent à discrétiser les équations issues de l'optimisation (ce sont par exemple des méthodes max-plus et la méthode du gradient stochastique projeté); et du second groupe, celles qui sont axées sur l'un des deux principes de bases, PPD ou PMP et qui consistent à discrétiser les conditions nécessaires d'optimalité ainsi que les équations d'état des EDS contrô-lées. Mais toute discrétisation directe de l'équation de HJB est impossible lorsque le domaine des états n'est pas borné.

FORMULATION D'UN MODÈLE STOCHASTIQUE EN ÉPIDÉMIOLOGIE

La méthode de formulation stochastique utilisée dans nos travaux, est tirée de celle de Linda J.S. Allen et son équipe (Edward J. Allen, Robert S. Mc Cormack et autres) introduite à partir des années 1999 pour les modèles SIS, SIR et SEIR en épidémiologie. Cette méthode a été ensuite développée par ses auteurs jusqu'à 2006 pour finalement aboutir en 2011 à la construction des modèles stochastiques équivalents. Dans ce chapitre, nous présentons, avec des exemples à l'appui, cette méthode de formuation d'un modèle stochastique à partir de son associé déterministe bien connu. Grâce à cette méthode, nous retrouvons les modèles SIS, SIR et SEIR formulés par Linda J.S. Allen et son équipe [7], [26], [27], [28], et [92] ; puis, nous formulons les modèles stochastiques des maladies telles que MST quelconque, VIH/SIDA, Tuberculose et Cancer du col d'utérus en présence du traitement. La question que nous pouvons nous poser à l'instant est que les modèles stochastiques formulées sont-ils valides et à quoi servent-ils ? l'analyse mathématique de ces modèles faite dans Chapitre 4 suivant permet de les valider et de voir que malgré le traitement existant, le nombre des infectés ne cesse de croître ; d'où la nécessité de les contrôler. La finalité de ce chapitre est donc de servir de bases aux applications du contrôle optimal dans les systèmes dynamiques stochastiques.

3.1 Modèles stochastiques formulés selon Allen et son équipe

3.1.1 Méthode de formulation

Dans l'espace $\mathcal{E} = \mathbb{R}^d$, notons par $X(t) = (X_1(t), X_2(t), ..., X_d(t))^{\intercal}$, le vecteur de variables d'état d'un phénomène non perturbé dont la dynamique est modélisée par un système d'Equations Différentielles Ordinaires (EDO) : c'est un modèle déterministe

(3.1)
$$\frac{dX}{dt} = f(t, X(t)) \quad , \quad X(0) = X_0 \quad t \ge 0$$

où $f = (f_1, f_2, ..., f_d)^{\mathsf{T}}$

Pour un intervalle de temps de longueur Δt très petit, l'EDO (3.1) peut être approchée grâce à la méthode d'Euler par la formule suivante sous forme des composantes :

(3.2)
$$X_{n+1,i} = X_{n,i} + f_i(t_n, X_n) \Delta t$$
où $t_n = n\Delta t$ et $X_{n;i} \simeq X_i(t_n)$ i = 1; 2;; d et n = 0; 1; 2;La relation (3.2) s'écrit sous la forme vectorielle suivante :

(3.3)
$$X_{n+1} = X_n + f(t_n, X_n)\Delta t \qquad n = 0; 1; 2; \dots$$

Faisons les hypothèses suivantes :

- Supposons qu'il existe au total m $(m \ge d)$ possibilités de changements d'état d'une variable aléatoire X_i pendant ce petit intervalle de temps Δt
- Supposons que le changement d'état de *i* à *j* de la variable aléatoire X_i a pour densité de probabilité $p(t; X_i)$ de composantes $p_j(t, X_i)$
- De plus supposons que, les probabilités de ces changements d'état de i à j pour la variable aléatoire X_i sont définies par :

(3.4)
$$p_j \Delta t = p_j(t, X_i) \Delta t$$
 $j = 1; 2;m$

Désignons par $\delta_{j,i}$, les valeurs prises par une variable aléatoire X_i qui change d'état de i à j. alors les composantes $f_i(t, X(t))$ de f(t, X(t)) sont telles que :

(3.5)
$$f_i(t, X(t)) = \sum_{j=1}^m \delta_{j,i} p_j(t; X) \quad i = 1; 2; ...; d.$$

Soit $\Gamma = (\Gamma_1, \Gamma_2, ..., \Gamma_j, ..., \Gamma_m)$ un vecteur aléatoire de m-changements aléatoires des états Γ_j de *i* à *j*. Les probabilités P_j associées à ces changements sont données à l'ordre $0((\Delta t))$ sur la TABLE 3.1 ci-dessous.

TABLE 3.1: Distribution de probabilités des changements des états $\Delta X = \Gamma_j$

Changements aléatoires d'état possibles $\Delta X = \Gamma_j$	Probabilités P_j
$\Gamma_j = [\delta_{j,1} \ \delta_{j,2} \ \dots \ \delta_{j,d}]^{\intercal} ; j = 1, 2,, m-1$	$p_j \Delta t + 0(\Delta t)$
$\bar{\Gamma}_j = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^{T}$	$1 - \sum_{j=1}^{m-1} p_j \Delta t + 0(\Delta t)$

l'espérance mathématique et la variance des changements aléatoires d'état durant un petit intervalle de temps sont données respectivement par :

(3.6)
$$\mathbb{E}(\Delta X(t)) = \sum_{j=1}^{m} p_j \Gamma_j \Delta t = f(t, X(t)) \Delta t$$

(3.7)
$$\mathbb{E}(\Delta X(t)(\Delta X(t))^{\mathsf{T}}) = \sum_{j=1}^{m} p_j \Gamma_j(\Gamma_j)^{\mathsf{T}} \Delta t = V(t, X(t)) \Delta t$$

En effet pour Δt petit, l'espérance mathématique et la variance de $\Gamma_{j,i}$ sont approchées respectivement par : $\mathbb{E}(\Gamma_{j,i}) = \delta_{j,i}p_j\Delta t$ $et \quad \mathbb{V}ar(\Gamma_{j,i}) = \delta_{j,i}^2p_j\Delta t$

$$\mathbb{E}[\sum_{j=1}^{m} \Gamma_{j,i}] = \sum_{j=1}^{m} \mathbb{E}(\Gamma_{j,i}) = \sum_{j=1}^{m} \delta_{j,i} p_j \Delta t = f_i(t, X(t)) \Delta t \quad i = 1, 2, \dots d.$$

La relation (3.2) donne $\Delta X_{n,i} = X_{n+1,i} - X_{n,i} = f_i(t_n, X_n) \Delta t$ ce qui implique :

(3.8)
$$\mathbb{E}(\Delta X_n) = f(t_n, X_n) \Delta t = \mathbb{E}[\sum_{j=1}^m \Gamma_j]$$

On obtient alors pour Δt petit :

$$\Delta X_n \sim \sum_{j=1}^m \Gamma_j$$

Le modèle déterministe à temps discret donné par la rélation (3.3) est donc formulé comme suit :

(3.10)
$$X_{n+1} = X_n + \sum_{j=1}^m \Gamma_j \quad n = 0, 1, 2, \dots$$

Par ailleurs, la densité de probabilité $p(t, X_t)$ est solution de l'équation de Kolmogorov progressive ou équation de Fokker-Planck (3.11) suivante :

(3.11)
$$\frac{\partial p(t, X_t)}{\partial t} = -\sum_{i=1}^d \frac{\partial [p(t, X_t) f_i(t, x)]}{\partial x_i} + \frac{1}{2} \sum_{i=1}^d \sum_{i=1}^d \frac{\partial^2 [p(t, X_t) V_{ij}(t, x)]}{\partial x_i \partial x_j}$$

Où V_{ij} est le $(i, j)^e$ élément de la matrice $V = \sum_{j=1}^m p_j \Gamma_j (\Gamma_j)^{\intercal}$ et f_i est le i^e élément du vecteur

$$f = \sum_{j=1}^{m} p_j \Gamma_j$$

L'equation (3.11) correspond au système d'EDS (3.12) suivant :

(3.12)
$$\begin{cases} dX_t = f(t, X_t)dt + \sqrt{V(t, X_t)}dW_t^*, & (t, X_t) \in \mathbb{T} \times \mathbb{R}^d. \\ X_0 = x \end{cases}$$

qui est équivalent (voir [27]) au système d'EDS (3.13) suivant avec $GG^T = V$:

(3.13)
$$\begin{cases} dX_t = f(t, X_t)dt + G(t, X_t)dW_t, & (t, X_t) \in \mathbb{T} \times \mathbb{R}^d. \\ X_0 = x \end{cases}$$

En effet, ces deux équations différentielles stochastiques sont obtenues en faisant les approximations normales dans (3.10) des m changements aléatoires Γ_j d'une part et les approximations de Poisson de ces m changements aléatoires dans (3.9) d'autre part afin d'appliquer le théorème de Limite Centrale : les m changements aléatoires Γ_j sont approchés par m variables aléatoires normales

Formulation d'un modèle stochastique en épidémiologie **3.1 Modèles stochastiques formulés selon Allen et son équipe**

 $\eta_j \sim \mathcal{N}(0,1), \ j = 1, 2, ..., m$, ou par des variables de Poisson $u_j \sim \mathcal{P}(p_j \Delta t), \ j = 1, 2, ..., m$. Nous obtenons alors le modèle stochastique discret sous forme des composantes d'une part :

(3.14)
$$X_{n+1,i} = X_{n,i} + f_i(t_n, X_n)\Delta t + \sum_{j=1}^m \delta_{j,i}\sqrt{p_j\Delta t} \ \eta_j, \ i = 1, 2, ..., d \ n = 0, 1, 2, ...$$

Lorsque $\Delta t \rightarrow 0$, la solution du modèle stochastique discret (3.14) converge fortement (en moyenne quadratique) vers celle de l'EDS d'Itô (3.12).

D'autre part, nous obtenons

$$\Delta X_{n,i} = \sum_{j=1}^{m} \delta_{j,i} u_j, \quad n = 1; 2; \dots, \quad avec \ u_j \sim \mathcal{P}(p_j \Delta t)$$

soit

(3.15)
$$\Delta X_{n,i} = \sum_{j=1}^{m} \delta_{j,i} p_j \Delta t + \sum_{j=1}^{m} \delta_{j,i} \sqrt{p_j \Delta t} \,\omega_j, \ n = 1; 2; \dots, \ i = 1, 2, \dots, d$$

(

où

$$\omega_j \sim \mathcal{N}(0;1)$$

Lorsque $\Delta t \longrightarrow 0$, la solution du modèle stochastique discret (3.15) converge vers celle de l'EDS d'Itô (3.13).

3.1.2 Exemples : Modèles stochastiques SIS, SIR et SEIR

Les modèles déterministes SIS, SIR et SEIR sont des modèles classiques conçus en 1927 par Kermack-Meckendrich [103]. Allen et ses co-auteurs ont étendu ces modèles en construisant des modèles stochastiques associés avec des matrices de transition de Markov ayant souvent une large dimension. Nous illustrons, par des exemples, la méthode décrite dans la sous section précédante qui n'emploie pas la chaine de Markov avec sa matrice de transition de grande taille pour retrouver les modèles stochastiques SIS, SIR et SEIR de L.J. S Allen [7].

Notations : à la date $t \ge 0$, notons pour les modèles déterministes SIS, SIR et SEIR par :

- N = N(t): le nombre total de la population étudiée;
- S = S(t): le nombre des individus sains susceptibles à l'infection;
- E = E(t): le nombre des individus infectés non-actifs (ou des latents);
- I = I(t): le nombre des individus infectés actifs (ou des infectieux);
- R = R(t): le nombre des individus rétablis (ou guéris).

A la date du temps $t \ge 0$, notons pour les modèles stochastiques SIS, SIR et SEIR que :

- $N_t = N(t)$: la variable aléatoire donnant le nombre total de la population étudiée;
- $S_t = S(t)$: la variable aléatoire donnant le nombre des individus susceptibles ;
- $E_t = E(t)$: la variable aléatoire donnant le nombre des individus infectés non-actifs (ou des latents);

Formulation d'un modèle stochastique en épidémiologie **3.1 Modèles stochastiques formulés selon Allen et son équipe**

- $I_t = I(t)$: la variable aléatoire donnant le nombre des individus infectés actifs (ou des infecteux);
- $R_t = R(t)$: la variable aléatoire donnant le nombre des individus rétablis (ou guéris).

Les paramètres d'interactions dans les deux types de modèles déterministe et stochastique sont donnés par :

- β : le taux moyen de transmission de l'infection
- *b* : le taux moyen de natalité
- δ : le taux moyen de mortalité naturelle
- $-\gamma$: le taux moyen de rétablissement ou de guérison
- α : le taux moyen de transition d'infection de l'état latent à l'état infectieux.

3.1.2.1 Modèle stochastique SIS

Considérons maintenant le système d'équations différentielles ordinaires ci-dessous décrivant la dynamique du modèle déterministe SIS de variables d'état S et I:

(3.16)
$$\begin{cases} \frac{dS}{dt} = -\beta \frac{SI}{N} + (b+\gamma)I\\ \frac{dI}{dt} = \beta \frac{SI}{N} - (b+\gamma)I \end{cases}$$

où S = S(t), I = I(t) et N = S(t) + I(t)

Posons $X_t = (S_t, I_t) \in \mathbb{R}^+ \times \mathbb{R}^+$ un vecteur ayant d = 2 variables d'état. Notons en passant que puisque le taux de natalité est égal au taux de mortalité selon [7]), alors le nombre de la population totale N = S(t) + I(t) est constant à tout instant t et le modèle déterministe (3.16) ci-dessus se reduit à une équation d'inconnue I suivant :

(3.17)
$$\frac{dI}{dt} = \beta \frac{(N-I)I}{N} - (b+\gamma)I$$

Considérons deux états d'infection I(t) = i et $I(t + \Delta t) = j$ au temps t et $t + \Delta t$ respectivement. Soit ΔI , la variable aléatoire donnant le nombre des infectés durant un intervalle de temps petit Δt . Alors $\Delta I = I(t + \Delta t) - I(t)$

Supposons qu'il y a au total m = 3 changements des états possibles de i à j:

 $i \longrightarrow j = i-1, \quad i \longrightarrow j = i+1 \quad et \quad i \longrightarrow j = i.$

Notons par P_j la probabilité de changements d'état de I(t) = i à $I(t + \Delta t) = j$.

$$P_{j} = Prob(\Delta I = j/I(t) = i) = \begin{cases} b(i)\Delta t + 0(\Delta t) &, & j = i+1\\ d(i)\Delta t + 0(\Delta t) &, & j = i-1\\ 1 - [b(i) + d(i)]\Delta t + 0(\Delta t) &, & j = i\\ 0(\Delta t) &, & j \neq i-1; i; i+1 \end{cases}$$

où $b(i) = \beta \frac{(N-i)i}{N}$ et $d(i) = (b+\gamma)i$

les probabilités associées à ces changements des états sont données à l'ordre $0(\Delta t)$ sur la TABLE 3.2 ci-dessous.

Etat	Etat	changements des états	Probabilités
i	j	$\Delta I = (I = j/I = i)$	P_j
Ι	I+1	1	$\beta \frac{(N-I)I}{N} \Delta t$
I	I-1	-1	$(b+\gamma)I\Delta t$
I	Ι	0	$1 - \left[\beta \frac{(N-I)I}{N} + (b+\gamma)I\right]\Delta t$

TABLE 3.2: Distribution de	probabilités des	changements de	es états ΔI

L'espérance mathématique et la variance sont données respectivement par

$$\mathbb{E}(\Delta I) = \left[\beta \frac{(N-I)I}{N} - (b+\gamma)I\right]\Delta t = f(I)\Delta t$$
$$\mathbb{E}(\Delta I(\Delta I)^T) = \left[\beta \frac{(N-I)I}{N} + (b+\gamma)I\right]\Delta t = V(I)\Delta t$$

d'où

$$\sqrt{V(I)} = \sqrt{\beta \frac{(N-I)I}{N} + (b+\gamma)I}$$

Le modèle stochastique associé au modèle déterministe (3.17) s'écrit alors :

(3.18)
$$\frac{dI}{dt} = \beta \frac{(N-I)I}{N} - (b+\gamma)I + \sqrt{\beta \frac{(N-I)I}{N} + (b+\gamma)I} \frac{dW}{dt}$$

Du fait que S = N - I et $\frac{dS}{dt} = -\frac{dI}{dt}$, nous obtenons finalement le modèle modèle stochastique SIS associé au modèle déterministe (3.16) :

(3.19)
$$\begin{cases} dS = -\left(\beta \frac{SI}{N} - (b+\gamma)I\right) dt - \sqrt{\beta \frac{SI}{N} + (b+\gamma)I} dW \\ dI = \left(\beta \frac{SI}{N} - (b+\gamma)I\right) dt + \sqrt{\beta \frac{SI}{N} + (b+\gamma)I} dW \end{cases}$$

3.1.2.2 Modèle stochastique SIR

Considérons cette fois-ci le modèle déterministe SIR ci-dessous de variables d'état S, I et R:

(3.20)
$$\begin{cases} \frac{dS}{dt} = -\lambda_I S + b(I+R) \\ \frac{dI}{dt} = \lambda_I S - (b+\gamma)I \\ \frac{dR}{dt} = \gamma I - bR \end{cases}$$

où S = S(t), I = I(t) R = R(t), N = S(t) + I(t) + R(t) et $\lambda_I = \beta \frac{I}{N}$.

Posons $X = (S, I, R) \in \mathbb{R}^3_+$ un vecteur ayant d = 3 variables d'état. Notons que le nombre de la population totale N = S(t) + I(t) + R(t) étant constant à tout instant t, le modèle déterministe (3.20) ci-dessus se reduit à un système de deux équations à deux inconnues S et I suivant :

(3.21)
$$\begin{cases} \frac{dS}{dt} = -\lambda_I S + b(N-S) \\ \frac{dI}{dt} = \lambda_I S - (b+\gamma)I \end{cases}$$

Formulons les modèles stochastiques correspondants à (3.21) puis à (3.20) comme le cas du modèle SIS ci-dessus.

Supposons que $\{S_t, I_t\}, t \in \mathbb{R}_+$ est un processus aléatoire donnant respectivement le nombre des susceptibles et des infectés, alors $\{S_t\}, \{I_t\} \in \{0, 1, ..., N\}$.

Considérons deux états $(S_t = s, I_t = i)$ et $(S_{t+\Delta t} = t, I_{t+\Delta t} = j)$ au temps t et $t + \Delta t$ respectivement. Les changements des états $(\Delta S, \Delta I)$ ont pour probabilités notées

$$P_j = Prob\{(\Delta S, \Delta I) = (t, j) | (S_t, I_t) = (s, i)\}.$$

Il existe 5 changements des états possibles dont les probabilités à l'ordre $0(\Delta t)$ sont données sur la TABLE 3.3.

Etat	Etat	changements des états	Probabilités
(s,i)	(t,j)	$(\Delta X) = (\Delta S, \Delta I)$	P_{j}
(s,i)	(s-1, i+1)	$(-1,1)^T$	$\lambda_I S \Delta t$
(s,i)	(s, i - 1)	$(0,-1)^T$	$\gamma I \Delta t$
(s,i)	(s+1, i-1)	$(1,-1)^T$	$bI\Delta t$
(s,i)	(s + 1, i)	$(1,0)^T$	$b(N-S-I)\Delta t$
(s,i)	(s,i)	$(0,0)^T$	$1 - (\lambda_I S + \gamma I + b(N - S))\Delta t$

TABLE 3.3: Distribution de probabilités des changements d'état ($\Delta S, \Delta I$)

L'espérance mathématique et la variance de ΔX sont données respectivement par :

$$\mathbb{E}(\Delta X) = \begin{pmatrix} -\lambda_I S + b(N - S) \\ \lambda_I S - (b + \gamma)I \end{pmatrix} \Delta t = f(t, X) \Delta t$$

$$Var(\Delta X) \simeq \mathbb{E}((\Delta X)(\Delta X)^T) = \begin{pmatrix} p_1 + p_3 + p_4 & -p_1 - p_3 \\ -p_1 - p_3 & p_1 + p_2 + p_3 \end{pmatrix} \Delta t = V(t, X) \Delta t$$

tels que $p_1 = \lambda_I S$, $p_2 = \gamma_I$, $p_3 = bI$ et $p_4 = b(N - S - I)$.

d'où

$$V = \begin{pmatrix} \lambda_I S + b(N - S) & -\lambda_I S - bI \\ -\lambda_I S - bI & \lambda_I S + (b + \gamma)I \end{pmatrix}$$

En appliquant la formule (1.2) donnant la racine carrée de la matrice V, on trouve

(3.22)
$$\sqrt{V} = \frac{1}{\delta} \left(\begin{array}{cc} \lambda_I S + b(N - S) + \omega & -\lambda_I S - bI \\ -\lambda_I S - bI & \lambda_I S + (b + \gamma)I + \omega \end{array} \right)$$

où

$$\omega = \sqrt{\lambda_I S[b(N - S - I) + \gamma I] + bI[b(N - S - I) + \gamma (N - S)]},$$

$$\delta = \sqrt{2\lambda_I S + (b+\gamma)I + b(N-S) + 2\omega} \quad et \qquad \lambda_I = \beta \frac{I}{N}$$

Le modèle modèle stochastique associé au modèle déterministe (3.21) s'écrit alors :

(3.23)
$$\begin{cases} dS = -(\lambda_I S - b(N - S)) dt + \frac{1}{\delta} [\lambda_I S + b(N - S) + \omega] dW_1 - \frac{1}{\delta} (\lambda_I S + bI) dW_2 \\ dI = (\lambda_I S - (b + \gamma)I) dt - \frac{1}{\delta} (\lambda_I S + bI) dW_1 + \frac{1}{\delta} [\lambda_I S + (b + \gamma)I + \omega] dW_2 \end{cases}$$

avec $W = (W_1, W_2)^T$ est un mouvement brownien ou processus de Wiener.

Comme nous avons R = N - S - I et dR = -dS - dI,

on obtient donc le modèle modèle stochastique SIR associé au modèle déterministe (3.20) :

(3.24)
$$\begin{cases} dS = -(\lambda_I S - b(N - S)) dt + \frac{1}{\delta} [\lambda_I S + b(N - S) + \omega] dW_1 - \frac{1}{\delta} (\lambda_I S + bI) dW_2 \\ dI = (\lambda_I S - (b + \gamma)I) dt - \frac{1}{\delta} (\lambda_I S + bI) dW_1 + \frac{1}{\delta} [\lambda_I S + (b + \gamma)I + \omega] dW_2 \\ dR = (\gamma I - bR) dt - \frac{1}{\delta} (bR + \omega) dW_1 - \frac{1}{\delta} (\gamma I + \omega) dW_2 \end{cases}$$

3.1.2.3 Modèle stochastique SEIR

FIGURE 3.1: Diagramme du modèle déterministe SEIR.

Considérons la dynamique d'une épidémie dont le diagramme est représenté par la FIGURE 3.1. Son modèle déterministe SEIR est donné ci-dessous sous la forme d'EDO (3.25) avec quatre variables d'état S, E, I et R:

$$(3.25) \qquad \begin{cases} \frac{dS}{dt} = -\lambda_I S\\ \frac{dE}{dt} = \lambda_I S - \alpha E\\ \frac{dI}{dt} = \alpha E - \gamma I\\ \frac{dR}{dt} = \gamma I \end{cases}$$

où S = S(t), E = E(t), I = I(t) R = R(t), N = S(t) + E(t) + I(t) + R(t) et $\lambda_I = \beta \frac{I}{N}$.

Posons $X = (S, E, I, R) \in \mathbb{R}^3_+$ un vecteur ayant d = 4 variables d'état. Notons que le nombre de la population totale N = S(t) + E(t) + I(t) + R(t) étant constant à tout instant t, le modèle déterministe (3.25) ci-dessus se reduit à un système de tois équations à trois inconnues S, E et I suivant :

(3.26)
$$\begin{cases} \frac{dS}{dt} = -\lambda_I S \\ \frac{dE}{dt} = \lambda_I S - \alpha E \\ \frac{dI}{dt} = \alpha E - \gamma I \end{cases}$$

Formulation d'un modèle stochastique en épidémiologie **3.1 Modèles stochastiques formulés selon Allen et son équipe**

Supposons que $\{S_t, E_t, I_t\}, t \in \mathbb{R}^+$ est un processus aléatoire donnant respectivement le nombre des susceptibles, des latents et des infectés, alors $\{S_t\}, \{E_t\}, \{I_t\} \in \{0, 1, ..., N\}$.

Considérons deux états $(S_t = s, E_t = e, I_t = i)$ et $(S_{t+\Delta t} = t, E_{t+\Delta t} = k, I_{t+\Delta t} = j)$ au temps t et $t + \Delta t$ respectivement. Les changements des états $(\Delta S, \Delta E, \Delta I)$ ont pour probabilités notées

$$P_j = Prob\{(\Delta S, \Delta E, \Delta I) = (t, k, j) | (S_t, E_t, I_t) = (s, e, i)\}.$$

Il existe 4 changements des états possibles dont les probabilités à l'ordre $0(\Delta t)$ sont données sur la table 3.4 :

Etat	Etat	changements des états	Probabilités
(s, e, i)	(t,k,j)	$(\Delta X) = (\Delta S, \Delta E, \Delta I)$	P_j
(s, e, i)	(s-1, e+1, i)	$(-1, 1, 0)^T$	$\lambda_I S \Delta t$
(s, e, i)	(s, e-1, i+1)	$(0, -1, 1)^T$	$\alpha E \Delta t$
(s, e, i)	(s, e, i-1)	$(0, 0, -1)^T$	$\gamma I \Delta t$
(s, e, i)	(s,e,i)	$(0, 0, 0)^T$	$1 - (\lambda_I S + \alpha E + \gamma I)\Delta t$

TABLE 3.4: Distibution de probabilités des changements d'état ($\Delta S, \Delta E, \Delta I$)

L'espérance mathématique et la variance de ΔX sont données respectivement par :

$$\mathbb{E}(\Delta X) = \begin{pmatrix} -\lambda_I S \\ \lambda_I S - \alpha E \\ \alpha E - \gamma I \end{pmatrix} \Delta t = f(t, X) \Delta t$$
$$Var(\Delta X) \simeq \mathbb{E}((\Delta X)(\Delta X)^T) = \begin{pmatrix} \lambda_I S & -\lambda_I S & 0 \\ -\lambda_I S & \lambda_I S + \alpha E & 0 \\ 0 & -\alpha E & \alpha E + \gamma I \end{pmatrix} \Delta t = V(t, X) \Delta t$$

d'où

$$V = \begin{pmatrix} \lambda_I S & -\lambda_I S & 0\\ -\lambda_I S & \lambda_I S + \alpha E & 0\\ 0 & -\alpha E & \alpha E + \gamma I \end{pmatrix}$$

Cherchons $\sqrt{V} = G$ la racine carrée de la matrice V tel que $GG^T = V$. Selon la remarque 1.2.1, nous obtenons

(3.27)
$$G = \sqrt{V} = \begin{pmatrix} -\sqrt{\lambda_I S} & 0 & 0\\ \sqrt{\lambda_I S} & -\sqrt{\alpha E} & 0\\ 0 & \sqrt{\alpha E} & \sqrt{\gamma I} \end{pmatrix}$$

Le modèle modèle stochastique associé au modèle déterministe (3.26) s'écrit alors :

(3.28)
$$\begin{cases} dS = -\lambda_I S dt - \sqrt{\lambda_I S} dW_1 \\ dE = (\lambda_I S - \alpha E) dt + \sqrt{\lambda_I S} dW_1 - \sqrt{\alpha E} dW_2 \\ dI = (\alpha E - \gamma I) dt + \sqrt{\alpha E} dW_2 - \sqrt{\gamma I} dW_3 \end{cases}$$

avec $W = (W_1, W_2, W_3)^T$ est un mouvement brownien ou processus de Wiener. Comme nous avons R = N - S - E - I alors dR = -dS - dE - dI. On obtient finalement le modèle modèle stochastique SEIR associé au modèle déterministe (3.25) :

$$(3.29) \begin{cases} dS = -\lambda_I S dt - \sqrt{\lambda_I S} dW_1 \\ dE = \lambda_I S dt - \alpha E + \sqrt{\lambda_I S} dW_1 - \sqrt{\alpha E} dW_2 \\ dI = (\alpha E - \gamma I) dt + \sqrt{\alpha E} dW_2 - \sqrt{\gamma I} dW_3 \\ dR = \gamma I dt + \sqrt{\gamma I} dW_3 \end{cases}$$

3.2 Modélisation de la dynamique stochastique de MST, VIH/ SIDA, TB et CC

En se servant de la méthode de formulation des modèles stochastiques utilisée par Linda J.S. Allen et son équipe (Edward J. Allen, Robert S. Mc Cormack et autres)[7], [26], [27], [28], et [92], nous formulons les modèles stochastiques à partir des modèles déterministes de la dynamique de la transmission d'une Maladie Sexuellement Transmissible (MST), du VIH/SIDA, de la Tuberculose (TB) et du Cancer du Col d'utérus (CC) en présence de traitement tirés de [29, 30, 35, 70].

3.2.1 Modélisation stochastique d'une MST avec traitement

Une maladie sexuellement transmissible MST à durée d'incubation très courte (cas par exemple de la gonococcie génitale), se propage dans un groupe isolé des sujets de deux sexes : masculin et feminin désignés par les chiffres 1 et 2 respectivement. Ses modes de contamination sont uniquement les rapports hétérosexuels : Un sujet S_i , i = 1, 2. susceptible de contamination qui entretient un rapport sexuel avec un sujet $I_{j\neq i}$ selon un taux de contact β_i se retrouvera dans la classe des infectés avec une force de transmission λ_i , i = 1, 2. Suposons que cette MST n'est pas mortelle pour une très courte période d'infection (en nombre de jours); et qu'un sujet infecté I_i est soigné avec un taux de traitement τ_i , pour i = 1, 2. et avec $\tau_2 \ge \tau_1$ car le cas d'infection feminine est assez asymptomatique. Supposons enfin dans cette étude que la mortalité naturelle est nulle pour ces sujets jusqu'à un temps fini T (en jours). Le groupe de sujets étant isolé et le taux de natalité étant égal au taux nul de mortalité, alors le nombre total $N_i = S_i + I_i$, i = 1, 2. est constant.

La dynamique de la transmission de MST dont le diagramme est représenté par la FIGURE 3.2, a pour modèle mathématique déterministe suivant :

(3.30)
$$\otimes \begin{cases} \frac{dS_1}{dt} = -\lambda_1 S_1 + \tau_1 I_1, \\ \frac{dI_1}{dt} = \lambda_1 S_1 - \tau_1 I_1, \\ \frac{dS_2}{dt} = -\lambda_2 S_2 + \tau_2 I_2, \\ \frac{dI_2}{dt} = \lambda_2 S_2 - \tau_2 I_2, \end{cases}$$

Formulation d'un modèle stochastique en épidémiologie 3.2 Modélisation de la dynamique stochastique de MST, VIH/ SIDA, TB et CC

FIGURE 3.2: Diagramme du modèle déterministe de MST.

où

(3.31)
$$\lambda_1 = \beta_1 \frac{I_2}{S_1 + I_1}$$

(3.32)
$$\lambda_2 = \beta_2 \frac{I_1}{S_2 + I_2}$$

Théorème 3.2.1. Le modèle stochastique de la dynamique de tansmission de l'infection de MST avec traitement est donné sous la forme compacte par :

(3.33)
$$\otimes \begin{cases} dS_1 = -(\lambda_1 S_1 - \tau_1 I_1) dt - \sqrt{\lambda_1 S_1 + \tau_1 I_1} dW_1, \\ dI_1 = (\lambda_1 S_1 - \tau_1 I_1) dt + \sqrt{\lambda_1 S_1 + \tau_1 I_1} dW_1. \\ dS_2 = -(\lambda_2 S_2 - \tau_2 I_2) dt - \sqrt{\lambda_2 S_2 + \tau_2 I_2} dW_2, \\ dI_2 = (\lambda_2 S_2 - \tau_2 I_2) dt + \sqrt{\lambda_2 S_2 + \tau_2 I_2} dW_2. \end{cases}$$

Preuve: Le modèle stochastique (3.33) se déduit de (3.30) comme la formulation du modèle stochastique SIS (3.19) à partir du déterministe (3.16) selon Allen. ■

Corollaire 3.2.1. Soient $N_1 = S_1 + I_1$ et $N_2 = S_2 + I_2$ les nombres totaux des sujets masculins et feminins respectivement. Alors le modèle déterministe (3.30) et le modèle stochastique (3.33) de l'infection (MST) sont donnés respectivement sous les formes suivantes

(3.34)
$$\begin{cases} \frac{dI_1}{dt} = \beta_1 \frac{I_2}{N_1} (N_1 - I_1) - \tau_1 I_1 \\ \frac{dI_2}{dt} = \beta_2 \frac{I_1}{N_2} (N_2 - I_2) - \tau_2 I_2. \end{cases}$$

et

(3.35)
$$\begin{cases} dI_1 = \left(\beta_1 \frac{I_2}{N_1} (N_1 - I_1) - \tau_1 I_1\right) dt + \sqrt{\beta_1 \frac{I_2}{N_1} (N_1 - I_1) + \tau_1 I_1} dW_1 \\ dI_2 = \left(\beta_2 \frac{I_1}{N_2} (N_2 - I_2) - \tau_2 I_2\right) dt + \sqrt{\beta_2 \frac{I_1}{N_2} (N_2 - I_2) + \tau_2 I_2} dW_2. \end{cases}$$

3.2.2 Modélisation stochastique du VIH/SIDA avec traitement

Dans cette sous section, nous donnons d'abord l'épidémiologie du VIH/SIDA, puis nous allons modéliser La dynamique de la transmission du VIH/SIDA en présence du traitement aux antirétral (ARV). Lorsque cette dynamique ne tient pas compte des perturbations de nature aléatoire, le processus est modélisé par un système d'EDO (3.36) appelé modèle déterministe du VIH/SIDA avec traitement. A partir de ce modèle déterministe, nous formulons le modèle stochastique correspondant grâce à la méthode décrite par Linda J.S. Allen et son équipe (Edward J. Allen, Robert S. Mc Cormack et autres) [7, 26, 27, 28, 92].

3.2.2.1 Épidémiologie du VIH/SIDA

Le virus responsable de cette épidémie est le Virus d'Immunodéficience Humaine (VIH). Il s'implante à l'intérieur de la cellule et s'attaque au système immunitaire humain le rendant inéfficace face à des maladies et infections qui pourraient être guéries chez un individu non infecté au VIH. Le Syndrôme d'Immunodéficience Acquise (SIDA) est le stade avancé de l'infection au VIH. Il a été découvert en 1981 aux Etats-Unis chez les hommosexuels. Le VIH possède un noyau contenant un matériel génétique, des enzymes virales, des protéines. Son matériel biologique composé d'acide ribonucléique (ARN) qui conditionne l'action biologique du VIH (son développement, sa reproduction, ses différentes mutations, etc...). Il se transmet par les liquides biologiques (sang et sécrétions sexuelles). Sa propagation inter-humaine est dûe principalement :

- à des rapports sexuels non protégés ;
- aux passages du virus lors des transfusions sanguines ou au cours de la grossesse de la mère contaminée à l'enfant;
- aux partages de matériel injectable souillé.

Grâce à une enzyme appelée transcriptase inverse, cet ARN est transcrit en ADN (acide desoxyribonucléique) pro viral permettant l'intégration du génome viral dans celui de la cellule infectée. Il existe deux groupes de VIH à l'origine : le VIH 1 présent dans le monde et le VIH 2 localisé principalement en Afrique du fait des erreurs commises lors de la transcriptase inverse. Ces deux groupes de VIH se ressemblent en apparence mais il y a plus de 50 % de différences entre leurs matériels génétiques.

L'immunité est l'ensemble des mécanismes biologiques permettant à un organisme de maintenir la cohérence des cellules et tissus qui le constituent et d'assurer son intégrité en éliminant les substances étrangères et les agents infectueux auxquels il est exposé [50]. Le système immunitaire est composé des lymphocites du sang qui se décomposent eux-même en trois types de cellules : Les cellules T, les cellules B et les cellules NK. Les cellules T sont des molécules très spécialisées dans la reconnaissance des agents infectueux. On y trouve les cellules CD4, principales cibles du VIH. Les cellules CD4 jouent un rôle central dans la régulation du système immunitaire. Les différentes étapes de l'infection au VIH sont données par TABLE 3.5 ci-dessous.

Différentes stades de l'infection	Quantité de CD4
primo-infection	> 500
phase asymptomatique	200 <taux 500<="" <="" cd4="" de="" td=""></taux>
Sida	<200

TABLE 3.5 :	Classification	des différentes	stades de l'infection	du VIH/SIDA
1110000.0.0.	Clubbilleution	aco anterenceo	bludeb de l'infection	

Pour les stratégies de contôle de l'infection du VIH, nous avons des médicaments antirétroviraux(ARV), le dépistage, la fidélité, l'abstinence sexuelle, la prudence ou les préservatifs. La politique de l'ONUSIDA vis-à-vis de cette pandémie dans les populations où la prévalence du VIH est élevée repose tantôt sur une stratégie double contre une double épidémie : une stratégie de soins aux personnes vivant avec le VIH/SIDA et la stratégie Traitement de brève durée sous la surveillance directe ou DOTS. Les deux stratégies ne tiennent guère compte l'une de l'autre.

Plusieurs modèles mathématiques ont été formulés pour décrire la dynamique de diffusion du VIH. Certains de ces modèles décrivent l'interaction du virus sur le système immunitaire humain et permettent de tester la sensibilité de ce système immunitaire en présence d'un traitement. Le modèle de base, le plus simple est celui qui décrit la dynamique du VIH dans les cellules T contenant les CD4⁺ princpales cibles du virus (voir [64, 73]). D'autres modèles plus complexes ont été étudiés, et tiennent compte de la reponse des cellules CTL, l'effet des médicaments, les résistances développées par le virus face aux médicaments, et bien d'autres facteurs (voir par exemple [9, 13, 14, 20, 24, 42, 95, 102]). Ces modèles ont été représentés par un système d'EDO. Il existe des modèles mixtes déterministe-stochastique d'infection du VIH, formulés à partir des matrices de transition de chaine de Markov en temps continu. Ce type des modèles a permis d'explorer l'inefficacité du système immunitaire au stade de SIDA. Il y a aussi les modèles représentés par le système d'EDS, mais rares sont les EDS d'Itô auxquelles la méthode numérique d'Euler peut s'appliquer facillement.

3.2.2.2 Modèle de la dynamique de la transmissionn du VIH/SIDA

Sur le diagramme FIGURE 3.3, désignons par S, H_1 , H_2 et W_H respectivement le compartiment des non infectés ou susceptibles, des séropositifs ou des infectés au VIH, des malades de SIDA et des infectés sous ARV [29, 30].

La dynamique de la transmissionn du VIH/SIDA dont le diagramme est représenté par la FI-GURE 3.3, a pour modèle mathématique déterministe suivant :

$$(3.36) \qquad \begin{cases} \frac{dS_t}{dt} = \Lambda - (\mu + \lambda_H)S_t, \\ \frac{dH_{1t}}{dt} = \lambda_H S_t - (\mu + \sigma + \tau_1)H_{1t}, \\ \frac{dH_{2t}}{dt} = \sigma H_{1t} - (\mu + \delta_H + \tau_2)H_{2t} + \sigma\theta W_{Ht}, \\ \frac{dW_{Ht}}{dt} = \tau_1 H_{1t} + \tau_2 H_{2t} - (\mu + \sigma\theta)W_{Ht}, \end{cases}$$

FIGURE 3.3: Diagramme du modèle déterministe du VIH/SIDA.

où λ_H est définie par :

$$\lambda_{H} = \beta_{H} \frac{H_{1t} + \eta_{2}H_{2t} + \eta_{H}W_{Ht}}{N} \ avec \ N = S_{t} + H_{1t} + H_{2t} + W_{Ht}.$$

Les variables et les paramètres du modèle sont décrits sur la TABLE 3.6.

Variables aléatoires	Description	Unités
$S_t = S(t)$	Nombre des individus (ind.) susceptibles	ind.
$H_{1t} = H_1(t)$	Nombre des individus infectés du HIV	ind.
$H_{2t} = H_2(t)$	Nombre des individus malades de SIDA	ind.
$W_{Ht} = W_H(t)$	Nombre des individus sous ARV	ind.
Paramètres	Description	Unités
Λ	Nombre de Recrutement	ind. an ^{-1}
μ	Taux de mortalité naturelle	ind. an ^{-1}
σ	Taux de progression de l'état infecté	ind. an ^{-1}
	du HIV à l'état malade du SIDA	
θ	Facteur de modification de progression de	
	l'infection du stade VIH au stade SIDA	
β_H	Taux de contraction effective du VIH/SIDA	ind. an ^{-1}
λ_H	Force d'infection du VIH/SIDA	
δ_H	Taux de mortalité causée par le VIH/SIDA	ind. an ^{-1}
$\eta_2 \ et \ \eta_H$	Facteurs de Modification	
$\tau_1 \ et \ \tau_2$	Taux de Traitement des infectés du VIH et	ind. an ^{-1}
	des malades de SIDA respectivement	

Théorème 3.2.2. Le modèle stochastique de la dynamique de transmission de l'infection du VIH/SIDA avec traitement est donné sous la forme compacte par :

$$(3.37) dX_t = f(t, X_t)dt + G(t, X_t)dW_t,$$

où $X_t = (S_t, H_{1t}, H_{2t}, W_{Ht})^T$ est un vecteur aléatoire de dimension 4 ayant pour composantes $S_t, H_{1t}, H_{2t}, W_{Ht}$;

 $W_t = (W_t^j)_{j=1,\dots,m=10}^T$ defini sur un espace de probabilité filtré $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, P)$ est un processus Brownien ou Wiener de dimension 10;

 $f(t, X_t) = (f_i(t, X_t))_{i=1,\dots,d=4}^T$ est la fonction vectorielle d'évolution de composantes $f_i(t, X_t)$ définies par

(3.38)
$$\begin{cases} f_1(t, X_t) = \Lambda - (\mu + \lambda_H)S_t, \\ f_2(t, X_t) = \lambda_H S_t - (\mu + \sigma + \tau_1)H_{1t}, \\ f_3(t, X_t) = \sigma H_{1t} - (\mu + \delta_H + \tau_2)H_{2t} + \sigma\theta W_{Ht}, \\ f_4(t, X_t) = \tau_1 H_{1t} + \tau_2 H_{2t} - (\mu + \sigma\theta)W_{Ht}, \end{cases}$$

enfin le bruit matriciel $G = G(t, X_t)$ de dimension (4×10) est tel que

$$(3.39) \qquad G(t, X_t) = \begin{pmatrix} G_{11} & G_{12} & G_{13} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & G_{23} & G_{24} & G_{25} & G_{26} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & G_{35} & 0 & G_{37} & G_{38} & +G_{39} & 0 \\ 0 & 0 & 0 & 0 & 0 & G_{46} & 0 & G_{48} & G_{49} & G_{410} \end{pmatrix},$$

avec

(3.40)
$$G_{11} = \sqrt{\Lambda}, \quad G_{12} = -\sqrt{\mu S_t}, \quad G_{13} = -G_{23} = -\sqrt{\lambda_H S_t}, \quad G_{24} = -\sqrt{\mu H_{1t}}, \\ G_{25} = -G_{35} = -\sqrt{\sigma H_{1t}}, \quad G_{26} = -G_{46} = -\sqrt{\tau_1 H_{1t}}, \quad G_{37} = -\sqrt{(\mu + \delta_H) H_{2t}}, \\ G_{38} = -G_{48} = -\sqrt{\tau_2 H_{2t}}, \quad G_{39} = -G_{49} = \sqrt{\sigma \theta W_{Ht}}, \quad et \quad G_{410} = \sqrt{\mu W_{Ht}}.$$

Preuve: Soit $\Delta X = (\Delta S, \Delta H_1, \Delta H_2, \Delta W_H)^T$ un vecteur des changements aléatoires des états durant un intervalle de temps petit Δt . Soit P_j les probabilités de ces changements des états. Supposons qu'il ait m changements des états possibles, j = 1, 2..., m.

Considérons deux états X^j (état initial de X) et X^{j+1} (état intermediaire de X) qui se produisent au temps t et $t + \Delta t$ respectivement. Alors, posons $\Delta X^j := X^{j+1} - X^j$, nous avons

$$P_j = Prob(\Delta X^j) = Prob\{X^{j+1}|X^j\}.$$

Pour le modèle déterministe (3.36), il existe onze (m = 11) changements des état possibles qui sont résumés sur la TABLE 3.7, y compris l'état invariant.

Les calculs de l'espérance mathématique et de la variance des variables discrète ΔX à l'ordre $0(\Delta t)$, nous permettent alors d'avoir les résultats (3.41) et (3.42) ci-dessous :

(3.41)
$$\mathbf{E}(\Delta X) = \sum_{j=1}^{m=10} P_j \Delta X^j = f(t, X) \Delta t,$$

Changements des	Probabilités	Description des changements des
états possibles (ΔX^j)	$P_j = Prob(\Delta X^j)$	états durant Δt petit
$\Delta X^1 = \left(\begin{array}{rrrr} 1 & 0 & 0 \end{array}\right)^T$	$P_1 = \Lambda \Delta t$	1 recrue entre dans S
$\Delta X^2 = \left(\begin{array}{rrrr} -1 & 0 & 0 \end{array}\right)^T$	$P_2 = \mu S_t \Delta t$	1 mort quitte S
$\Delta X^3 = \left(\begin{array}{rrrr} -1 & 1 & 0 & 0 \end{array}\right)^T$	$P_3 = \lambda_H S_t \Delta t$	1 infecté quitte S et entre dans H_1
$\Delta X^4 = \left(\begin{array}{ccc} 0 & -1 & 0 & 0 \end{array}\right)^T$	$P_4 = \mu H_{1t} \Delta t$	1 mort quitte H_1
$\Delta X^5 = \left(\begin{array}{cccc} 0 & -1 & 1 & 0 \end{array}\right)^T$	$P_5 = \sigma H_{1t} \Delta t$	1 malade quitte H_1 et entre dans H_2
$\Delta X^6 = \left(\begin{array}{cccc} 0 & -1 & 0 & 1 \end{array}\right)^T$	$P_6 = \tau_1 H_{1t} \Delta t$	1 rétabli quitte H_1 et entre dans W_H
$\Delta X^7 = \left(\begin{array}{ccc} 0 & 0 & -1 & 0 \end{array}\right)^T$	$P_7 = (\mu + \delta_H) H_{2t} \Delta t$	1 mort quitte H_2
$\Delta X^8 = \left(\begin{array}{ccc} 0 & 0 & -1 & 1 \end{array}\right)^T$	$P_8 = \tau_2 H_{2t} \Delta t$	1 rétabli quitte H_2 et entre dans W_H
$\Delta X^9 = \left(\begin{array}{ccc} 0 & 0 & 1 & -1 \end{array}\right)^T$	$P_9 = \sigma \theta W_{Ht} \Delta t$	1 malade quitte W_H et entre dans H_2
$\Delta X^{10} = \left(\begin{array}{ccc} 0 & 0 & 0 & -1 \end{array}\right)^T$	$P_{10} = \mu W_{Ht} \Delta t$	1 mort quitte W_H
$\Delta X^{11} = \left(\begin{array}{cccc} 0 & 0 & 0 \end{array}\right)^T$	$P_{11} = 1 - \sum_{j=1}^{10} P_j$	aucun changement d'état durant Δt
$\Delta \overline{X^j}, \ j \neq 1, \cdots 11$	$P_j = 0$	pour tout autre cas

TABLE 3.7: Distribution de probabilités de $\Delta X = (\Delta S, \Delta H_1, \Delta H_2, \Delta W_H)^T$

$$Var(\Delta X) = \mathbf{E}[(\Delta X)(\Delta X)^T] - \mathbf{E}(\Delta X) \cdot \mathbf{E}(\Delta X)^T \simeq \mathbf{E}[(\Delta X)(\Delta X)^T]$$

(3.42)
$$Var(\Delta X) = \sum_{j=1}^{m=10} P_j(\Delta X^j)(\Delta X^j)^T = V(t, X)\Delta t$$

 $p_i = \frac{P_i}{\Delta t}, \ i = 1, 2, ..., 10..$ Alors, nous trouvons que :

$$\mathbf{E}(\Delta X) = \begin{pmatrix} \Lambda - (\mu + \lambda_H)S_t \\ \lambda_H S_t - (\mu + \sigma + \tau_1)H_{1t} \\ \sigma H_{1t} - (\mu + \delta_H + \tau_2)H_{2t} + \sigma\theta W_{Ht} \\ \tau_1 H_{1t} + \tau_2 H_{2t} - (\mu + \sigma\theta)W_{Ht} \end{pmatrix} \Delta t,$$

$$\mathbf{E}((\Delta X)(\Delta X)^T) = \begin{pmatrix} v_1 & -p_3 & 0 & 0\\ -p_3 & v_2 & -p_5 & -p_6\\ 0 & -p_5 & v_3 & -p_8 - p_9\\ 0 & -p_6 & -p_8 - p_9 & v_4 \end{pmatrix} \Delta t,$$

où $v_1 = p_1 + p_2 + p_3 = \Lambda + (\mu + \lambda_H)S_t$, $v_2 = p_3 + p_4 + p_5 + p_6 = \lambda_H S_t + (\mu + \sigma + \tau_1)H_{1t}$,

$$v_3 = p_5 + p_7 + p_8 + p_9 = \sigma H_{1t} + (\mu + \delta_H + \tau_2)H_{2t} + \sigma\theta W_{Ht}, \quad et$$

Notons par

 $v_4 = p_6 + p_8 + p_9 + p_{10} = \tau_1 H_1 + \tau_2 H_{2t} + (\mu + \sigma \theta) W_{Ht}.$

Nous en déduisons que

$$(3.43) V(t,X) = \begin{pmatrix} v_1 & -\lambda_H S_t & 0 & 0\\ -\lambda_H S_t & v_2 & -\sigma H_{1t} & -\tau_1 H_{1t} \\ 0 & -\sigma H_{1t} & v_3 & -\tau_2 H_{2t} - \sigma \theta W_{Ht} \\ 0 & -\tau_1 H_{1t} & -\tau_2 H_{2t} - \sigma \theta W_{Ht} & v_4 \end{pmatrix}.$$

Il est évident que $X_{t+\Delta t} = X_t + \Delta X$. Supposons que

$$X_t = f(t, X_t) t + \sqrt{V(t, X_t)} W_t^*$$

 ΔX est alors un processus normalement distribué de moyenne arithmétique $f(t, X_t)\Delta t$ et de variance $\sqrt{V(t, X_t)\Delta t}$

$$\Delta X = f(t, X_t) \Delta t + \sqrt{V(t, X_t) \Delta t} \, \Delta W_t^*$$

où $\{W_t^*\}_{t\geq 0}$ un processus de mouvement Brownien standard avec paramètres de bruit $\mathbf{E}(\Delta X)$ et $Var(\Delta X)$,

(3.44)
$$\Delta X = X_{t+\Delta t} - X_t = f(t, X_t)\Delta t + \sqrt{V(t, X_t)\Delta t}\Delta W_t^*$$

En divisant les membres de (3.44) par Δt puis en passant à la limite lorsque $\Delta t \longrightarrow 0$, alors X_t converge fortement vers la solution de l'équation différentielle stochastique (3.45).

(3.45)
$$dX_t = f(t, X_t)dt + \sqrt{V(t, X_t)}dW_t^*$$

Introduisons dans cette partie de preuve, le lemme 1.4.4 énoncé au Chapitre 1 pour simplifier le modèle (3.45) (voir [7, 27]).

Maintenant, par ce Lemme 1.4.4 nous trouvons facilement que le modèle (3.45) est équivalent à (3.37) :

$$dX_t = f(t, X_t)dt + G(t, X_t)dW_t$$

Pour déterminer la matrice G vérifiant $GG^T = V$, examinons alors les différents événements de changements d'état pour chaque composante du vecteur $\Delta X = (\Delta S, \Delta H_1, \Delta H_2, \Delta W_H)$.

Supposons que ces changements aléatoires des états suivent la loi de Poisson \mathcal{P} . Nous avons :

(3.46)
$$\begin{cases} \Delta S = u_1 - u_2 - u_3 \\ \Delta H_1 = u_3 - u_4 - u_5 - u_6 \\ \Delta H_2 = u_5 - u_7 - u_8 + u_9 \\ \Delta W_H = u_6 + u_8 - u_9 - u_{10} \end{cases}$$

avec

$$u_1 \sim \mathcal{P}(\Lambda \Delta t), \quad u_2 \sim \mathcal{P}(\mu S_t \Delta t), \quad u_3 \sim \mathcal{P}(\lambda_H S_t \Delta t), \quad u_4 \sim \mathcal{P}(\mu H_{1t} \Delta t),$$
$$u_5 \sim \mathcal{P}(\sigma H_{1t} \Delta t), \quad u_6 \sim \mathcal{P}(\tau_1 H_{1t} \Delta t), \quad u_7 \sim \mathcal{P}((\mu + \delta_H) H_{2t} \Delta t),$$

$$u_8 \sim \mathcal{P}(\tau_2 H_{2t} \Delta t), \quad u_9 \sim \mathcal{P}(\sigma \theta W_{Ht} \Delta t), \quad et \ u_{10} \sim \mathcal{P}(\mu W_{Ht} \Delta t).$$

Nous savons que lorsque $U \sim \mathcal{P}(\Gamma)$ alors $U \simeq \Gamma + \sqrt{\Gamma}W$.

Le système (3.46) devient

$$(3.47) \begin{cases} \Delta S = \Lambda \Delta t + \sqrt{\Lambda \Delta t} W_1 - \mu S_t \Delta t - \sqrt{\mu S_t \Delta t} W_2 - \lambda_H S_t \Delta t - \sqrt{\lambda_H S_t \Delta t} W_3, \\ \Delta H_1 = \lambda_H S_t \Delta t + \sqrt{\lambda_H S_t \Delta t} W_3 - \mu H_{1t} \Delta t - \sqrt{\mu H_{1t} \Delta t} W_4 - \sigma H_{1t} \Delta t - \sqrt{\sigma H_{1t} \Delta t} W_5 - \tau_1 H_{1t} \Delta t - \sqrt{\tau_1 H_{1t} \Delta t} W_6, \\ \Delta H_2 = \sigma H_{1t} \Delta t + \sqrt{\sigma H_{1t} \Delta t} W_5 - (\mu + \delta_H) H_{2t} \Delta t - \sqrt{(\mu + \delta_H) H_{2t}} W_7 - \tau_2 H_{2t} \Delta t - \sqrt{\tau_2 H_{2t} \Delta t} W_8 + \sigma \theta W_{Ht} \Delta t + \sqrt{\sigma \theta W_{Ht} \Delta t} W_9, \\ \Delta W_H = \tau_1 H_{1t} \Delta t + \sqrt{\tau_1 H_{1t} \Delta t} W_6 + \tau_2 H_{2t} \Delta t + \sqrt{\tau_2 H_{2t} \Delta t} W_8 - \sigma \theta \Delta t - \sqrt{\sigma \theta \Delta t} W_9 - \mu W_{Ht} \Delta t - \sqrt{\mu W_{Ht} \Delta t} W_{10}, \end{cases}$$

où

$$W_j \sim \mathcal{N}(0, 1) \quad pour \ j = 1, 2, ..., 10.$$

Lorsque $\Delta t \longrightarrow 0$, (3.47) converge vers l'équation différentielle stochastique d'Itô (3.37) :

$$dX_t = f(t, X_t)dt + G(t, X_t)dW_t.$$

Ceci marque la fin de la preuve. ■

3.2.2.3 Modèle stochastique perturbé du VIH/SIDA

Motivés par le fait qu'un modèle déterministe admet plusieurs modèles stochastiques associés, nous allons donc raffiner le modèle stochastique (3.37) du VIH/SIDA. Ainsi, supposons qu'il existe des perturbations aléatoires proportionnelles aux écarts aléatoires $S_t - S_t^*$, $H_{1t} - H_{1t}^*$, $H_{2t} - H_{2t}^*$ et $W_{Ht} - W_{Ht}^*$ qui n'influencent pas le terme déterministe. Alors nous obtenons un modèle stochastique perturbé (3.48) suivant :

(3.48)
$$dX_t = f(t, X_t)dt + G(X_t - X_t^*)$$

où $X_t^* = (S_t^*, H_{1t}^*, H_{2t}^*, W_{Ht}^*)$ est l'équilibre endémique aléatoire.

Le modèle stochastique perturbé (3.48) va faciliter l'analyse mathématique du modèle stochastique (3.37) car ces deux modèles sont équivalents lorsque le nombre de reproduction de base R_0^{τ} du modèle déterministe associé est supérieur à l'unité.

3.2.3 Modélisation stochastique de TB avec traitement

Dans cette Sous-section, abordons d'abord l'épidémiologie de la Tuberculose (TB), puis modélisons la dynamique de la transmission de TB en présence du traitement. Lorsque cette dynamique ne tient pas compte des perturbations de nature aléatoire, le processus est modélisé par un système d'EDO (3.49) appelé modèle déterministe de TB avec traitement. A partir de ce modèle déterministe, nous formulons un modèle stochastique (3.51) correspondant comme c'est fait dans la sous-section précédente pour la dynamique de l'infection du VIH/SIDA.

3.2.3.1 Épidémiologie de TB

La bactérie responsable de la tuberculose chez l'être humain est le Myobacterium Tuberculosis ou le bacille de la Tuberculose ou encore le bacille de Koch qui a été découvert, en 1882 à Berlin, par Docteur Robert Koch [22, 31]. L'infection de TB se contracte principalement par l'inhalation des bactéries diffusées par la toux ou l'eternuement d'un individu malade. l'agent vecteur de cette infection se loge ensuite au niveau des poumons d'un individu exposé susceptible de contamination et le système immunitaire de celui-ci contrôle et maintient l'infection à l'état latent ; sinon il y a le risque que cette infection se developpe vers l'état actif. La tuberculose est l'une des causes de mortalité la plus elevée. Ainsi l'Organisation Monndiale de la Santé (OMS) a choisi une journée mondiale de Tuberculose qui se celèbre chaque année le 24 mars pour commemorer non seulement cette découverte, mais aussi pour rendre public son rapport mondial sur la lutte contre cette maladie. Lorsque le vaccin contre la TB a été découvert en 1921, les Etats ont célébré la fin du fléau, mais cette maladie continue à faire beaucoup de victime dans notre millénaire malgré le taitement existant [31]. Il existe le vaccin antituberculeux ou Bacille Calmette Guérin (BCG) pour le traitement préventif de la tuberculose, et les médicaments tels que Rifampicine, Isoniazide, Pyrazinamide etc...pour le traitement curatif. On suppose que seuls les individus infectés à l'état actif peuvent transmettre l'infection, la surveillance de ceux-ci à observer les règles d'hygiène, à adopter un comportement positif vis-à-vis des susceptibles (qui eux aussi doivent prendre de précaution), à suivre le traitement jusqu'à le terminer le plus tôt possible (à moins d'un an), constitue des mesures adéquates de contrôle.

3.2.3.2 Modèle stochastique de la dynamique de TB

Une population est composée de quatre compartiments : suceptibles (S), infectés latents (L), infectés actifs T et rétablis R (voir FIGURE 3.4).

FIGURE 3.4: Diagramme du modèle déterministe de TB avec traitement.

La dynamique de la transmission de TB dont le diagramme est représenté par la FIGURE 3.4, a pour modèle mathématique déterministe suivant :

(3.49)
$$\frac{dX_t}{dt} = f(t, X_t),$$

où $X_t = (S_t, L_t, T_t, R_t)^{\intercal} \in \mathbb{R}^4$ et $f = f(t, X_t)$ a pour composantes $f_i = f_i(t, X_t)$, $i = 1 \dots 4$ définies par

(3.50)
$$\begin{cases} f_1 = \Lambda - (\mu + \lambda_I)S_t, \\ f_2 = n\lambda_I S_t - (\mu + \sigma + \lambda_r)L_t + \rho R_t, \\ f_3 = (1 - n)\lambda_I S_t + (\sigma + \lambda_r)L_t - (\mu + \delta_T + \tau)T_t, \\ f_4 = \tau T_t - (\mu + \rho)R_t. \end{cases}$$

La force d'infection λ_I est définie par :

$$\lambda_I = \beta_T \frac{T_t + \eta_T R_t}{N} \quad avec \quad N = S_t + L_t + T_t + R_t.$$

La force de réinfection λ_r est définie par :

$$\lambda_r = \beta_T \frac{\eta_r T_t}{N}.$$

Supposons que la modélisation de la dynamique de transmission de TB, prend en compte les bruits aléatoires (voir FIGURE 3.5) qui sont traduits par un terme stochastique ou une équation

Variables	Description	
$S_t = S(t) = S$	Nombre des individus (ind.) susceptibles	
$L_t = L(t) = L$	Nombre des individus infectés de TB à l'état latent	ind.
$T_t = T(t) = T$	Nombre des individus infectés de TB à l'état actif	ind.
$R_t = R(t) = R$	Nombre des individus rétablis	ind.
Paramètres	Description	Unités
Λ	Taux de Recrutement des susceptibles	ind. an ^{-1}
μ	Taux de mortalité naturelle	ind. an ^{-1}
σ	Taux de progression de l'état infecté latent à l'état infecté actif de TB	ind. an ^{-1}
ρ	Taux de réinfection des retablis	ind. an ^{-1}
<i>n</i> Proportion des susceptibles infectés qui entrent dans (L)		ind. an ^{-1}
β_T	Nombre de contact effectif des susceptibles avec le vecteur de TB	ind. an ^{-1}
λ_I	Force d'infection de TB en présence de traitement	
δ_T	Taux de mortalité causée par la TB	ind. an ^{-1}
η_r	Proportion des individus réinfectés par les infectés actifs	ind. an ^{-1}
η_T	Proportion des retablis infectés par les infectés actifs	ind. an ^{-1}
τ	Taux de Traitement de TB	ind. an ^{-1}

TABLE 3.8: Description des variables et des paramètres du modèle

FIGURE 3.5: Diagramme du modèle stochastique de TB avec traitement.

mathématique $\xi = G(t, X_t) \frac{dW_t}{dt}$ qui vient se superposer à l'équation (3.49) et donner le modèle stochastique (3.51) ci-dessous.

Proposition 3.2.1. Soit $X_t = (S_t, L_t, T_t, R_t)^T$ un vecteur aléatoire 4-dimensionnel des états S_t, L_t, T_t, R_t ; et soit $W_t = (W_t^j)_{j=1,\dots,m=10}^T$ un processus Brownien 10-dimension defini sur un espace de probabilité filtré $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t>0}, P)$.

Le modèle stochastique de l'infection de TB en présence du traitement est donné sous la forme compacte par :

$$(3.51) dX_t = f(t, X_t)dt + G(t, X_t)dW_t,$$

où $f(t, X_t) = (f_i(t, X_t))_{i=1,\dots,d=4}^T$ est la fonction vectorielle d'évolution de composantes $f_i(t, X_t)$ définies en (3.50), et le bruit $G = G(t, X_t)$ est une matrice de dimension (4×10) telle que

$$(3.52) G(t, X_t) = \begin{pmatrix} G_{11} & G_{12} & G_{13} & G_{14} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & G_{23} & 0 & G_{25} & G_{26} & G_{27} & 0 & 0 & 0 \\ 0 & 0 & 0 & G_{34} & 0 & G_{36} & 0 & G_{38} & G_{39} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & G_{47} & 0 & G_{49} & G_{410} \end{pmatrix},$$

avec

$$G_{11} = \sqrt{\Lambda}, \ G_{12} = -\sqrt{\mu S_t}, \ G_{13} = -G_{23} = -\sqrt{n\lambda_I S_t}, \ G_{25} = -\sqrt{\mu L_t}, \ G_{14} = -G_{34} = -\sqrt{(1-n)\lambda_I S_t}, \ G_{26} = -G_{36} = -\sqrt{(\sigma+\lambda_r)L_t}, \ G_{27} = -G_{47} = \sqrt{\rho R_t}, \ G_{38} = -\sqrt{(\mu+\delta_T)T_t}, \ G_{39} = -G_{49} = -\sqrt{\tau T_t}, \ et \ G_{410} = -\sqrt{\mu R_t}.$$

Preuve: Pour le modèle déterministe (3.49), il existe onze changements des états possibles qui sont résumés ainsi que les probabilités correspondantes sur la TABLE 3.9, y compris l'état invariant.

Les calculs de l'espérance mathématique et de la variance des variables discrètes ΔX en négligeant $(\Delta t)^2$, les termes d'ordre 2 nous permettent alors d'avoir f(t, X) et V(t, X) pour ensuite

Changements des états (ΔX^j)	Probabilités $P_j = Prob(\Delta X^j)$
$\Delta X^1 = \left(\begin{array}{rrrr} 1 & 0 & 0 \end{array}\right)^T$	$P_1 = \Lambda \Delta t$
$\Delta X^2 = \left(\begin{array}{ccc} -1 & 0 & 0 & 0 \end{array}\right)^T$	$P_2 = \mu S_t \Delta t$
$\Delta X^3 = \begin{pmatrix} -1 & 1 & 0 & 0 \end{pmatrix}^T$	$P_3 = n\lambda_I S_t \Delta t$
$\Delta X^4 = \left(\begin{array}{rrrr} -1 & 0 & 1 & 0 \end{array}\right)^T$	$P_4 = (1-n)\lambda_I S_t \Delta t$
$\Delta X^5 = \left(\begin{array}{ccc} 0 & -1 & 0 & 0 \end{array}\right)^T$	$P_5 = \mu L_t \Delta t$
$\Delta X^6 = \left(\begin{array}{cccc} 0 & -1 & 1 & 0 \end{array}\right)^T$	$P_6 = (\sigma + \lambda_r) L_t \Delta t$
$\Delta X^7 = \left(\begin{array}{ccc} 0 & 1 & 0 & -1 \end{array}\right)^T$	$P_7 = \rho R_t \Delta t$
$\Delta X^8 = \left(\begin{array}{ccc} 0 & 0 & -1 & 0 \end{array}\right)^T$	$P_8 = (\mu + \delta_T) T_t \Delta t$
$\Delta X^9 = \left(\begin{array}{ccc} 0 & 0 & -1 & 1 \end{array}\right)^T$	$P_9 = \tau T_t \Delta t$
$\Delta X^{10} = \left(\begin{array}{ccc} 0 & 0 & 0 & -1 \end{array}\right)^T$	$P_{10} = \mu R_t \Delta t$
$\Delta X^{11} = \left(\begin{array}{ccc} 0 & 0 & 0 \end{array}\right)^T$	$P_{11} = 1 - \sum_{j=1}^{10} P_j$
$\Delta X^j \ j \neq 1, \cdots, 11$	$P_j = 0$

TABLE 3.9: Distribution de probabilités de $\Delta X = (\Delta S, \Delta L, \Delta I, \Delta T)^T$

déterminer G tel que $GG^T = V$.

(3.54)
$$\mathbf{E}(\Delta X) = \sum_{j=1}^{m=10} P_j \Delta X^j = f(t, X) \Delta t,$$

$$Var(\Delta X) = \mathbf{E}[(\Delta X)(\Delta X)^{T}] - \mathbf{E}(\Delta X) \cdot \mathbf{E}(\Delta X)^{T} \simeq \mathbf{E}[(\Delta X)(\Delta X)^{T}]$$

(3.55)
$$Var(\Delta X) = \sum_{j=1}^{m=10} P_j(\Delta X^j)(\Delta X^j)^T = V(t, X)\Delta t$$

Alors, nous trouvons que :

$$f(t,X) = \begin{pmatrix} \Lambda - (\mu + \lambda_I)S_t \\ n\lambda_I S_t - (\mu + \sigma + \lambda_r)L_t + \rho R_t \\ (1 - n)\lambda_I S_t + (\sigma + \lambda_r)L_t - (\mu + \delta_T + \tau)T_t \\ \tau T_t - (\mu + \rho)R_t \end{pmatrix}$$

et

(3.56)
$$V(t,X) = \begin{pmatrix} v_1 & -n\lambda_I S_t & -(1-n)\lambda_I S_t & 0\\ -n\lambda_I S_t & v_2 & -(\sigma+\lambda_r)L_t & -\rho R_t\\ -(1-n)\lambda_I S_t & -(\sigma+\lambda_r)L_t & v_3 & -\tau T_t\\ 0 & -\rho R_t & -\tau T_t & v_4 \end{pmatrix}.$$

où

$$v_{1} = \Lambda + (\mu + \lambda_{I})S_{t}, \quad v_{2} = n\lambda_{I}S_{t} + (\mu + \sigma + \lambda_{r})L_{t} + \rho R_{t},$$
$$v_{3} = (1 - n)\lambda_{I}S_{t} + (\sigma + \lambda_{r})L_{t} + (\mu + \delta_{T} + \tau)T_{t}, \quad et \ v_{4} = \tau T_{t} + (\mu + \rho)R_{t}.$$

Par la même procédure de la preuve précédente nous retrouvons l'EDS (3.51) avec l'expression de *G* donnée dans (3.52). ■

3.2.4 Modélisation de la dynamique du Cancer du Col utérin avec contrôle

Dans cette Sous-section, nous abordons d'abord l'épidémiologie du Cancer du Col d'utérus (CC), avant de modéliser sa dynamique de transmission en présence d'une chimiothérapie. L'évolution de cette maladie est visualisée par une photographie tirée de [99](voir FIGURE 3.6). Lorsque sa dynamique ne tient pas compte des perturbations de nature aléatoire, le processus est modélisé par un système d'EDO appelé modèle déterministe de CC avec traitement. A partir d'un modèle déterministe se trouvant dans [54], nous formulons un modèle stochastique correspondant.

3.2.4.1 Épidémiologie du CC

FIGURE 3.6: Evolution du Cancer du Col de l'utérus (Source : [99]).

Le Cancer du Col d'utérus (CC) est un cancer sexuellement transmissible très fréquent chez les femmes. Cette infection est causée exclusivement par le virus de la famille papilloma-virus. Le papilloma-virus humain ou Human Pavilloma-Virus (HPV) infecte la peau ou les muqueuses des cellules épithéliales et se propage par dissimulation de ces cellules au moment de l'épluchage. On distingue les HPV à bas risque, agents de lésions bénignes et les HPV à haut risque qui sont responsables du cancer [48, 54]. Dans le monde, près de deux tiers des femmes ayant une activité sexuelle sont infectées par le HPV, mais seulement entre 1 et 2 % d'entre elles développent le CC. Chaque année, le CC fait près d'un millier des décès chez les femmes contaminées. Selon le Centre International de Recherche sur le Cancer, les statistiques faites en 2015, le CC est responsable dans le monde d'environ 250 000 à 300 000 décès et 500 000 nouveaux cas par an dont 80% dans les pays en développement. On a estimé qu'une femme meurt de CC toutes les deux minutes dans le monde et que 8 sur 10 des formes de ce cancer se trouvent dans les pays en voie du développement.

La prévention du CC se fait par le dépistage des lésions précancereuses qui emploie la pratique régulière d'un frottis. Cette pratique consiste à prélever quelques cellules du col de l'utérus et de les analyser au microscope. Les symptômes du CC se manifestent généralement par les saignements, les infections, les pertes vaginales, les douleurs pelviennes,.... Ces symptômes ne sont pas spécifiques au CC, ils peuvent être observés lors des maladies autres que le CC; c'est le cas par exemple d'une simple infection vaginale. Un examen gynécologique reste un moyen efficace pour le dépistage du CC.

Le traitement du CC est souvent chirurgical, radiothérapeutique ou chimiothérapeutique. Depuis juillet 2007 le vaccin contre le CC exite, il s'agit de : Gardasil (R) de Sanofi Pasteur MSD. Ce vaccin est proposé entre 15 et 23 ans sous reserve que les jeunes femmes n'aient pas eu plus d'un partenaire sexuel. Le vaccin du CC ne protège pas totalement contre le HPV, mais le frottis reste incontournable, c'est-à-dire que le maintien du dépistage du CC pour les femmes âgées entre 25 et 65 accompagné de la vaccination est indispensable.

3.2.4.2 Modèle stochastique contrôlé du Cancer du Col de l'utérus

Une population cellulaire est composée de cinq compartiments : suceptibles (S), infectés resistants (I_R) , infectés traités I_T , infectés non traités I_U et infectés rétablis R. Une quantité K de stock des médicaments. Ce modèle est construit à partir du modèle déterministe de la transmission de l'infection avec l'émergence de resistance durant le traitement tiré de [54].

FIGURE 3.7: Diagramme du modèle stochastique de CC avec traitement.

Les variables d'état et les paramètres sont décrits sur la TABLE 3.10.

La dynamique du cancer du col d'utérus dont le diagramme est représenté par la FIGURE 3.7, a pour modèle mathématique stochastique suivant :

(3.57)
$$dY = \mu^R(t, Y, \pi)dt + \sigma^R(t, Y, \pi)d\tilde{W},$$

Variables aléatoires	Description
S	Masse des cellules susceptibles
I_R	Masse des cellules infectées resistants
I_T	Masse des cellules infectées traitées
I_U	Masse des cellules infectées non traitées
R	Masse des cellules rétablies
K	Quantité de stock des médicaments chimiothérapiques
$\pi = \pi(t)$	Fonction du contrôle des cellules infectées sous chimiotherapie
Paramètres	Description
γ_U	Taux de rétablissement des cellules infectées non traitées
γ_T	Taux de rétablissement des cellules infectées traitées
γ_R	Taux de rétablissement des cellules resistantes
α	Taux de resistance
β	Taux de transmission de l'infection
δ_T	Taux de transmission de l'infection traitée
	i.e. avec sensibilité médicamenteuse
δ_R	Taux de transmission de l'infection resistante
	i.e. avec resistance médicamenteuse

TABLE 3.10: Description des variables aléatoires et des paramètres

où $Y = (S, I_U, I_T, I_R, R, K)^{\intercal}$ désigne l'état du système avec $dY = (dS, dI_U, dI_T, dI_R, dR, dK)^{\intercal}$; $\tilde{W} = (\tilde{W}_j)_{j=1,\dots,8}^T$ est un processus Brownien ou un processus de Wiener; $\mu^R(t, Y, \pi)$ est le coefficient déterministe ayant pour composantes $\mu_i^R(t, Y, \pi)$, $i = 1, \dots 6$ définies par

(3.58)
$$\begin{cases} \mu_{1}^{R}(t,Y,\pi) = -\beta S(I_{U} + \delta_{T}I_{T} + \delta_{R}I_{R}), \\ \mu_{2}^{R}(t,Y,\pi) = (1-\pi)\beta S(I_{U} + \delta_{T}I_{T}) - \gamma_{U}I_{U}, \\ \mu_{3}^{R}(t,Y,\pi) = \pi\beta S(I_{U} + \delta_{T}I_{T}) - \gamma_{T}I_{T} - \alpha I_{T}, \\ \mu_{4}^{R}(t,Y,\pi) = \beta S\delta_{R}I_{R} - \delta_{R}I_{R} + \alpha I_{T}, \\ \mu_{5}^{R}(t,Y,\pi) = \gamma_{U}I_{U} + \gamma_{T}I_{T} + \gamma_{R}I_{R}, \\ \mu_{6}^{R}(t,Y,\pi) = -\pi\beta S(I_{U} + \delta_{T}I_{T} + \delta_{R}I_{R},) \end{cases}$$

et $\sigma^R(t, Y, \pi)$ est la matrice du bruit aléatoire donnée par

$$(3.59) \qquad \sigma^{R}(t,Y,\pi) = \begin{pmatrix} -\sigma_{1}^{R} & -\sigma_{2}^{R} & -\sigma_{3}^{R} & 0 & 0 & 0 & 0 & 0 \\ 0 & \sigma_{2}^{R} & 0 & 0 & -\sigma_{5}^{R} & 0 & 0 & 0 \\ \sigma_{1}^{R} & 0 & 0 & 0 & 0 & -\sigma_{6}^{R} & 0 & -\sigma_{8}^{R} \\ 0 & 0 & \sigma_{3}^{R} & 0 & 0 & 0 & -\sigma_{7}^{R} & \sigma_{8}^{R} \\ 0 & 0 & 0 & \sigma_{5}^{R} & \sigma_{6}^{R} & \sigma_{7}^{R} & 0 \\ -\sigma_{1}^{R} & 0 & 0 & -\sigma_{4}^{R} & 0 & 0 & 0 & 0 \end{pmatrix},$$

avec

(3.60)
$$\begin{aligned} \sigma_1^R &= \pi^2 \sqrt{\beta S(I_U + \delta_T I_T)}, \quad \sigma_2^R &= (1 - \pi)^2 \sqrt{\beta S(I_U + \delta_T I_T)}, \quad \sigma_3^R &= \sqrt{\beta S \delta_R I_R}, \\ \sigma_4^R &= \pi^2 \sqrt{\beta S \delta_R I_R}, \quad \sigma_5^R &= \sqrt{\gamma_U I_U}, \quad \sigma_6^R &= \sqrt{\gamma_T I_T}, \quad \sigma_7^R &= \sqrt{\gamma_R I_R}, \quad \sigma_8^R &= \sqrt{\alpha I_T}. \end{aligned}$$

Lorsqu'aucune masse cellulaire infectée n'est guérie après le traitement à cause de la forte résistance, alors l'état R n'apparait pas dans le système (3.57). Ainsi le modèle (3.57) ci-dessus devient

(3.61)
$$dX = \mu(t, X, \pi)dt + \sigma(t, X, \pi)dW,$$

où $X = (S, I_U, I_T, I_R, K)^{\intercal}$ désigne l'état du système avec $dX = (dS, dI_U, dI_T, dI_R, dK)^{\intercal}$; $W = (W_j)_{j=1,\dots,7}^T$ est un mouvement Brownien ; $\mu(t, X, \pi)$ et $\sigma(t, X, \pi)$ sont donnés respectivement par

(3.62)
$$\mu(t, X, \pi) = \begin{pmatrix} -\beta S(I_U + \delta_T I_T + \delta_R I_R) \\ (1 - \pi)\beta S(I_U + \delta_T I_T) - \gamma_U I_U \\ \pi\beta S(I_U + \delta_T I_T) - \gamma_T I_T - \alpha I_T \\ \beta S\delta_R I_R - \delta_R I_R + \alpha I_T \\ -\pi\beta S(I_U + \delta_T I_T + \delta_R I_R) \end{pmatrix} \in \mathbb{R}^5;$$

et

$$(3.63) \qquad \sigma(t, X, \pi) = \begin{pmatrix} -\sigma_1 & -\sigma_2 & -\sigma_3 & 0 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 & -\sigma_5 & 0 & 0 \\ \sigma_1 & 0 & 0 & 0 & 0 & -\sigma_6 & -\sigma_7 \\ 0 & 0 & \sigma_3 & 0 & 0 & 0 & \sigma_7 \\ -\sigma_1 & 0 & 0 & -\sigma_4 & 0 & 0 & 0 \end{pmatrix} \in \mathcal{M}_{(5\times7)}(\mathbb{R}),$$

où $\sigma_1 = \sigma_1^R$, $\sigma_2 = \sigma_2^R$, $\sigma_3 = \sigma_3^R$, $\sigma_4 = \sigma_4^R$, $\sigma_5 = \sigma_5^R$, $\sigma_6 = \sigma_6^R$, $\sigma_7 = \sigma_8^R$; avec la condition initiale $X(0) = (S_0, I_{U_0}, 0, 0, K_0)$ i.e. $S_0 = S(0) > 0$, $I_{U_0} = I_U(0) > 0$, $I_T(0) = I_R(0) = R(0) = 0$ et $K_0 = K(0) > 0$. Notons que

$$\Pi = \{ \pi(t) : 0 \le \pi(t) \le 1, t \in [0; T_f], \pi(t) \text{ mesurable} \}.$$

Si le coefficient de diffusion (3.63) ne contient pas la variable du contrôle, i.e. $\pi(t) = 0$ dans $\sigma(t, X, \pi)$; alors, nous avons $\sigma_1 = \sigma_4 = 0$, $\sigma_2 = \sqrt{\beta S(I_U + \delta_T I_T)}$ et dans ce cas particulier, $\sigma(t, X, \pi) = \sigma(t, X, 0) = G(t, X)$. le modèle (3.61) devient

$$(3.64) dX = \mu(t, X, \pi)dt + G(t, X)dW,$$

où $\mu(t, X, \pi)$ est définie par (3.62) et G(t, X) définie comme suit :

$$(3.65) G(t,X) = \begin{pmatrix} 0 & -\sigma_2 & -\sigma_3 & 0 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 & -\sigma_5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\sigma_6 & -\sigma_7 \\ 0 & 0 & \sigma_3 & 0 & 0 & 0 & \sigma_7 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \in \mathcal{M}_{(5\times7)}(\mathbb{R}).$$

Si $\sigma(t, X, \pi) \equiv G(t, X) \equiv 0$, nous obtenons le modèle déterministe ci-dessous étudié dans [54]

$$\frac{dX}{dt} = \mu(t, X, \pi).$$

ANALYSE MATHÉMATIQUE DES MODÈLES FORMULÉS

Dans ce chapitre, nous faisons l'analyse mathématique des modèles stochastiques (3.33) de MST, (3.37) du VIH/SIDA et (3.51) de TB ainsi que celle des modèles déterministes (3.30), (3.36), et (3.37) associés. Par cette analyse, nous validons les modèles stochastiques formulés qui vont nous servir de base aux applications du contrôle stochastique dans le Chapitre 5 prochain.

4.1 Analyse de deux modèles associés de MST

4.1.1 Modèle déterministe de MST

Considérons le modèle déterministe (3.30) de MST qu'on peut réécrire.

(4.1)
$$\otimes \begin{cases} \frac{dS_1}{dt} = -\beta_1 \frac{I_2}{S_1 + I_1} S_1 + \tau_1 I_1, \\ \frac{dI_1}{dt} = \beta_1 \frac{I_2}{S_1 + I_1} S_1 - \tau_1 I_1, \\ \frac{dS_2}{dt} = -\beta_2 \frac{I_1}{S_2 + I_2} S_2 + \tau_2 I_2, \\ \frac{dI_2}{dt} = \beta_2 \frac{I_1}{S_2 + I_2} S_2 - \tau_2 I_2. \end{cases}$$

4.1.1.1 Existence et unicité de solution

Le Lemme 4.1.1 et le Théorème 4.1.1 ci-dessous proviennent de [23] et résultent de Appendice A de Thieme [85]. Ces résultats sont ensuite appliqués à notre modèle.

Lemme 4.1.1. Soit $F : \mathbb{R}^d_+ \longrightarrow \mathbb{R}^d$, $F(x) = (F_1(x), F_2(x), \cdots, F_d(x))^T$, $x = (x_1, x_2, \cdots, x_d)$ continue et admet des dérivées partielles $\frac{\partial F_k}{\partial x_i}$ qui existent et continues sur \mathbb{R}^d_+ pour $i, k = 1, 2, \cdots, d$. Alors F est Localement Lipschitzienne continue sur \mathbb{R}^d_+ .

Théorème 4.1.1. Soit $F : \mathbb{R}^d_+ \longrightarrow \mathbb{R}^d$, $F(x) = (F_1(x), F_2(x), \dots, F_d(x))^T$, $x = (x_1, x_2, \dots, x_d)^T$ continue et localement lipschitzienne et satisfaisant pour $i = 1, \dots, d$., $F_i(x) \ge 0 \forall x \in \mathbb{R}^d_+$, $x_i = 0$. Alors pour tout $x_0 \in \mathbb{R}^d_+$, il existe l'unique solution de $\frac{dx(t)}{dt} = F(x(t))$, $x(0) = x_0$ à valeurs dans \mathbb{R}^d_+ et définie pour tout $t \in [0; T]$ avec $T \in [0; +\infty]$. Si $T < +\infty$ alors $\sup_{t \in [0; T[} \sum_{i=1}^d x_i(t) = +\infty$.

L'existence et l'unicité de solutions du modèle (4.1) sont prouvées par les résultats suivants :

Théorème 4.1.2. Soit pour chaque i = 1, 2, l'on a $S_i^0, I_i^0 \in \mathbb{R}_+$. Alors il existe T > 0 et pour chaque i = 1, 2, les fonctions continuellement différentiables $S_i, I_i : [0;T] \longrightarrow \mathbb{R}$ tels que le couple (S_i, I_i) soit solution de $\begin{cases} \frac{dS_i}{dt} = -\beta_i \frac{I_{3-i}}{S_i+I_i}S_i + \tau_i I_i, \\ \frac{dI_i}{dt} = \beta_i \frac{I_{3-i}}{S_i+I_i}S_i - \tau_i I_i \end{cases}$, avec les conditions initiales $(S_i, I_i)(0) = (S_i^0, I_i^0)$.

De plus si pour chaque i = 1, 2., la fonction $F^i : \mathbb{R}^2_+ \longrightarrow \mathbb{R}^2$, $F^i(x^i) = (F^i_1(x^i), F^i_2(x^i))^T = (-\beta_i \frac{I_{3-i}}{x_1^i + x_2^i} x_1^i + \tau_i x_2^i, \beta_i \frac{I_{3-i}}{x_1^i + x_2^i} x_1^i - \tau_i x_2^i)^T$, $x^i = (x_1^i, x_2^i)$ vérifie les hypothèses du Théorème 4.1.1, alors la solution (S_i, I_i) est unique.

Preuve: La preuve de ce résultat utilise Théorème 4.1.1. Pour ce faire, considérons pour chaque i = 1, 2., la fonction $F^i : \mathbb{R}^2_+ \longrightarrow \mathbb{R}^2$ définie par

$$F^{i}(x^{i}) = \begin{pmatrix} F_{1}^{i}(x^{i}) \\ F_{2}^{i}(x^{i}) \end{pmatrix} = \begin{pmatrix} -\beta_{i} \frac{I_{3-i}}{x_{1}^{i} + x_{2}^{i}} x_{1}^{i} + \tau_{i} x_{2}^{i} \\ \beta_{i} \frac{I_{3-i}}{x_{1}^{i} + x^{2}} x_{1}^{i} - \tau_{i} x_{2}^{i} \end{pmatrix}, \quad \forall x^{i} = (x_{1}^{i}, x_{2}^{i}) \in \mathbb{R}_{+}^{2}$$

Pour chaque i = 1, 2., la fonction F^i est contine et admet des dérivées partielles d'ordre 1 cidessous :

$$\frac{\partial F_1^i}{\partial x_1^i} = -\frac{\partial F_2^i}{\partial x_1^i} = -\beta_i \frac{I_{3-i}}{(x_1^i + x_2^i)^2} x_2^i;$$

et

$$\frac{\partial F_1^i}{\partial x_2^i} = -\frac{\partial F_2^i}{\partial x_2^i} = -\beta_i \frac{I_{3-i}}{(x_1^i + x_2^i)^2} x_1^i + \tau_1$$

qui sont toutes continues sur \mathbb{R}^2_+ . Selon Lemme 4.1.1, les F^i sont donc localement Lipschitzienne continue sur \mathbb{R}^2_+ . Soit T > 0; pour que toutes les hypothèses du Théorème 4.1.1 soient vérifiées, il reste à montrer pour chaque i, k = 1, 2. que $F_k^i(x^i) \ge 0 \quad \forall x^i \in \mathbb{R}^2_+, \ x_k^i = 0$.

En effet soit $x_1^i = S_i = 0$ et $x_2^i = I_i > 0$, alors $\forall i = 1, 2., F_1^i(x^i) = \tau_i I_i \ge 0$, pour i = 1, 2. Maintenant soit $x_1^i = S_i > 0$ et $x_2^i = I_i = 0$, alors $\forall i = 1, 2., F_2^i(x^i) = \beta_i I_{3-i} \ge 0$ pour i = 1, 2. Ainsi par le Théorème 4.1.1, nous concluons que pour $x_0^i = (S_i^0, I_i^0) \in \mathbb{R}^2_+$, il existe pour tout $t \in [0; T], T > 0$ une unique solution $x_t^i = (S_i(t), I_i(t))$ du système

$$\frac{dx^{i}}{dt} = F^{i}(x^{i}), \ x^{i}(0) = x_{0}^{i} \iff \begin{cases} \frac{dS_{i}}{dt} = -\beta_{i} \frac{I_{3-i}}{S_{i}+I_{i}} S_{i} + \tau_{i} I_{i}, \\ \frac{dI_{i}}{dt} = \beta_{i} \frac{I_{3-i}}{S_{1}+I_{i}} S_{i} - \tau_{i} I_{i} \end{cases} \quad (S_{i}, I_{i})(0) = (S_{i}^{0}, I_{i}^{0}).$$

Ceci marque la fin. ■

Corollaire 4.1.1. Soit $F : \mathbb{R}^4_+ \longrightarrow \mathbb{R}^4$, $F(x) = (F^1 \otimes F^2)(x) = (F^1(x^1), F^2(x^2))^T$, $x = (x^1, x^2) = (x^1_1, x^1_2) \times (x^2_1, x^2_2)$ où F^1 et F^2 sont précédemment définies. F vérifie les hypothèses du Théorème 4.1.1 i.e. elle est Localement Lipschitzienne continue sur \mathbb{R}^4_+ et pour i = 1, 2., on a $F^i(x) \ge 0 \forall x \in \mathbb{R}^4_+$, $x^i = 0$. Alors il existe une solution unique $(S_1, I_1) \times (S_2, I_2)$ du modèle (4.1).

4.1 Analyse de deux modèles associés de MST

4.1.1.2 Positivité de solution et trajectoires bornées

Dans cette Sous-Section, nous allons montrer que pour toute donnée initiale positive, les solutions existantes sont positives et ont des trajectoires bornées.

Théorème 4.1.3. Soit $X_0 = (S_1^0, I_1^0) \times (S_2^0, I_2^0) \in \mathbb{R}^4_+$ la donnée initiale positive satisfaisant (4.1). Alors toutes solutions $(S_1(t), I_1(t)) \times (S_2(t), I_2(t))$ du modèle (4.1) sont positives et ont des trajectoires bornées pour tout $t \in [0; T]$.

Preuve: Supposons que pour i = 1, 2., l'on a $S_i(0) = S_i^0 > 0$, $I_i(0) = I_i^0 > 0$. Selon Théorème 4.1.2, il existe $T^* > 0$ et pour i = 1, 2., les fonctions $S_i(t)$ et $I_i(t)$ forment un couple solution $(S_i(t), I_i(t)), t \in [0; T^*]$. Par conséquent $(S_1(t), I_1(t)) \times (S_1(t), I_1(t)), t \in [0; T^*]$ est l'unique solution du modèle (4.1) selon le Corollaire (4.1.1.1).

Considérons la plus grande date à laquelles les nombres des sujets S_i et I_i demeurent positifs. Notons par \hat{T} cette date définie comme suit

$$\hat{T} = \sup \left\{ t \in [0; T^*] : S_i(s) > 0, \ I_i(s) > 0, \ I_{3-i}(s) > 0, \ \forall s \in [0, T], \ i = 1, 2. \right\}$$

Alors sur l'intervalle de temps $[0; \hat{T}]$, nous pouvons estimer les valeurs de S_i et I_i . Utlisant la positivité de $S_i(t)$ et $I_i(t)$ sur $[0; \hat{T}]$, nous pouvons minorer $\frac{dI_i}{dt}$ tel que l'on ait :

$$\frac{dI_i}{dt} = \beta_i \frac{I_{3-i}}{S_i + I_i} S_i - \tau_i I_i \ge -\tau_i I_i.$$

D'où

$$\frac{dI_i}{dt} \ge -\tau_i I_i \iff I_i(t) \ge I_i(0)e^{-\tau_i t} > 0.$$

So it donc $I_i(t) \ge I_i(0)e^{-\tau_i t} > 0$ et par analogie $I_{3-i}(t) \ge I_{3-i}(0)e^{-\tau_{3-i} t} > 0$.

Maintenant, pour $t \in [0; \hat{T}]$, prouvons que $S_i(t) > 0$. En effet, pour i = 1, 2., la positivité de $S_i(t)$ et $I_i(t)$ sur $[0; \hat{T}]$, nous permet de minorer $\frac{dS_i}{dt}$ tel que l'on ait :

$$\frac{dS_i}{dt} = -\beta_i \frac{I_{3-i}}{S_i + I_i} S_i + \tau_i I_i \ge -\beta_i \frac{I_{3-i}}{S_i + I_i} S_i.$$

Par ailleurs, nous avons :

$$\frac{d}{dt}(S_i + I_i) = \frac{dS_i}{dt} + \frac{dI_i}{dt} = 0$$

i.e. que $S_i + I_i = N_i$ indépendant de t. D'où le résultat

$$\frac{dS_i}{S_i} \ge -\beta_i \frac{I_{3-i}}{N_i} dt \iff S_i(t) \ge S_i(0) exp\left\{-\frac{\beta_i}{N_i} \int_0^t I_{3-i}(s) ds\right\} > 0.$$

Donc, pour $i = 1; 2., S_i(t) > 0$ et $I_i(t) > 0$ pour tout $t \in [0; \hat{T}]$. Pour la suite, supposons qu'il existe $t > \hat{T}$ tels que l'on ait encore $S_i(t) > 0$ et $I_i(t) > 0$; ceci contredit la définition de \hat{T} qui mentionne que pour $i = 1; 2., S_i(t) > 0$ et $I_i(t) > 0$ pour tout $t \in [0; T^*] \subset [0; \hat{T}]$. Donc pour i = $1; 2., S_i(t) > 0$ et $I_i(t) > 0$ pour tout $t \in [0; T]$. Par conséquent, $(S_1(t), I_1(t)) \times (S_2(t), I_2(t)) \in$ \mathbb{R}^4_+ . Il reste à montrer que pour $t \in [0; T]$, $S_i(t)$ et $I_i(t)$ ont toujours des trajectoires bornées. En effet, $S_i(t) + I_i(t)$ étant constante pour $t \in [0; T]$, alors la matrice jacobienne $J_F(x) = (D^2F^i)(x)$ est linéaire en $x = (x^1, x^2) \in \mathbb{R}^4_+$ et par conséquent, F est localement bornée sur $x \in \mathbb{R}^4_+$. Donc $F = (F^1, F^2)$ admet des dérivées partielles continues et bornées sur tout compact $\Omega \subset \mathbb{R}^4_+$.

4.1.1.3 Point d'équilibre sans maladie et Equilibre endémique

Lemme 4.1.2. Soient $N_1 = S_1 + I_1$ et $N_2 = S_2 + I_2$. Le modèle (3.30) qui est le même que (4.1), admet un point d'équilibre sans MST ou disease free equilibre noté $E_{DFE} = (N_1 = S_1, 0) \times (N_2 = S_2, 0)$ dont la projection dans le plan (I_1, I_2) donne $E_O = (0; 0)$.

Preuve: Pour $N_1 = S_1 + I_1$ et $N_2 = S_2 + I_2$, utilisons le corollaire (3.2.1) : le modèle (3.30) qui est le même que (4.1) se ramène à (3.34) qui a $(I_1 = 0, I_2 = 0)$ comme point d'équilibre sans maladie. Par conséquent, nous avons $(S_1 = N_1, S_2 = N_2)$. Donc nous obtenons

$$E_{DFE} = (N_1 = S_1, 0) \times (N_2 = S_2, 0).$$

La projection de E_{DFE} sur le plan (I_1, I_2) donne $E_O = (0; 0)$.

Définition 4.1.1. [87, 88]

Le nombre de reproduction de base est le nombre d'infections secondaires causées par un individu infecté se retrouvant dans une population constituée essentiellement tous des susceptibles.

Lemme 4.1.3. Le nombre de reproduction de base R_0 du modèle (3.30) est donné par

(4.2)
$$R_0 = \sqrt{\frac{\beta_1 \beta_2}{\tau_1 \tau_2}}$$

Preuve: Selon la méthode de Van den Driessche et James Watmough décrite dans [72] pour le calcul de R_0 , nous obtenons pour le (3.30) les matrices :

$$F = \begin{pmatrix} 0 & \beta_1 \\ \beta_2 & 0 \end{pmatrix}, \quad V = \begin{pmatrix} \tau_1 & 0 \\ 0 & \tau_2 \end{pmatrix} \quad et \quad V^{-1} = \begin{pmatrix} \frac{1}{\tau_1} & 0 \\ 0 & \frac{1}{\tau_2} \end{pmatrix}$$

alors la matrice de la prochaine génération est :

$$FV^{-1} = \left(\begin{array}{cc} 0 & \frac{\beta_1}{\tau_2} \\ \frac{\beta_2}{\tau_1} & 0 \end{array}\right)$$

 FV^{-1} admet deux valeurs propres $\pm \sqrt{\frac{\beta_1\beta_2}{\tau_1\tau_2}}\,$. Alors

$$R_0 = \rho(FV^{-1}) = \sqrt{\frac{\beta_1\beta_2}{\tau_1\tau_2}}$$

est donc le résultat.

Lemme 4.1.4. Soient $N_1 = S_1 + I_1$ et $N_2 = S_2 + I_2$. Le modèle (4.1), admet un point d'équilibre endémique noté $E_E = (N_1 - I_1^*, I_1^*) \times (N_2 - I_2^*, I_2^*)$ dont sa projection dans le plan (I_1, I_2) donne $E_O = (0; 0)$ et $E_I = (I_1^*; I_2^*)$ tels que

(4.3)
$$I_1^* = \frac{\beta_1 (1 - \frac{1}{R_0^2}) N_1 N_2}{\beta_1 N_2 + \tau_1 N_1}$$

(4.4)
$$I_2^* = \frac{\beta_2 (1 - \frac{1}{R_0^2}) N_1 N_2}{\beta_2 N_1 + \tau_2 N_2}$$

où $R_0^2 = \frac{\beta_1 \beta_2}{\tau_1 \tau_2}$ avec R_0 défini par (4.2) dans le Lemme 4.1.3.

Preuve: Pour $N_1 = S_1 + I_1$ et $N_2 = S_2 + I_2$, utilisons alors le corollaire (3.2.1) : le modèle (3.30) de variable d'état $(S_1, I_1) \times (S_2, I_2)$ se ramène à (3.34) de variable d'état (I_1, I_2) dont le point d'équilibre vérifie le système

(4.5)
$$\begin{cases} \beta_1 \frac{I_2}{N_1} (N_1 - I_1) - \tau_1 I_1 = 0\\ \beta_2 \frac{I_1}{N_2} (N_2 - I_2) - \tau_2 I_2 = 0. \end{cases}$$

qui admet une seule solution non nulle $(I_1 = I_1^*, I_2 = I_2^*)$ qui correspond à l'équilibre endémique de (3.34). Il s'en suit que $E_E = (N_1 - I_1^*, I_1^*) \times (N_2 - I_2^*, I_2^*)$ est le point d'équilibre cherché.

Stabilité de DFE et Equilibre endémique 4.1.1.4

Considérons le modèle (3.34) dont le champ des vecteurs associé est

$$C(I_1, I_2) = \begin{pmatrix} C_1(I_1, I_2) = \beta_1 \frac{I_2}{N_1} (N_1 - I_1) - \tau_1 I_1 \\ C_2(I_1, I_2) = \beta_2 \frac{I_1}{N_2} (N_2 - I_2) - \tau_2 I_2 \end{pmatrix}$$

où $N_1 = S_1 + I_1$ et $N_2 = S_2 + I_2$

Définition 4.1.2. Le champ $C(I_1, I_2)$ est dit vertical lorsque $C_1(I_1, I_2) = 0$ De même $C(I_1, I_2)$ est dit horizontal lorsque $C_1(I_1, I_2) = 0$

 $C(I_1; v(I_1))$ est le champ vertical et $C(I_1, h(I_1))$ le champ horizontal avec v et h sont définis respectivement par

$$v(I_1) = \frac{\tau_1 N_1 I_1}{\beta_1 (N_1 - I_1)} \quad et \quad h(I_1) = \frac{\beta_2 N_2 I_1}{\beta_2 I_1 + \tau_2 N_2}$$
$$C(0, I_2) = (\beta_1 I_2, -\tau_2 I_2) \quad et \quad C(I_1, 0) = (-\tau_1 I_1, \beta_2 I_1)$$

Définition 4.1.3. le nombre moyen des sujets masculins contaminés par un sujet feminin au cours

de traitement est donné par le rapport $\frac{\beta_1}{\tau_2}$. De même Le nombre moyen des sujets feminins contaminés par un sujet masculin au cours de traitement est donné par le rapport $\frac{\beta_2}{\tau}$.

Théorème 4.1.4. Soit $(S_1(t), I_1(t)) \times (S_2(t), I_2(t))$ la solution de (3.30). Alors nous avons le résultat ci-dessous lorsque $R_0 < 1$:

$$\lim_{t \to +\infty} (S_1(t), I_1(t)) \times (S_2(t), I_2(t)) = (N_1, 0) \times (N_2; 0) = E_{DFE}$$

i.e. que le nombre des sujets infectés I_i , i = 1, 2. tend vers 0 lorsque $t \rightarrow +\infty$: l'épidémie disparait. L'équilibre sans maladie E_{DFE} est globalement asymptotiquement stable.

Preuve: Nous allons utiliser le principe de comparaison. Ainsi, le modèle (3.34) peut alors s'exprimer comme suit

(4.6)
$$\begin{pmatrix} \frac{dI_1}{dt} \\ \frac{dI_2}{dt} \end{pmatrix} \le (F - V) \begin{pmatrix} I_1 \\ I_2 \end{pmatrix}$$

4.1 Analyse de deux modèles associés de MST

où F et V sont deux matrice utilisées très haut dans la détermination du R_0 telles que $F - V = \begin{pmatrix} -\tau_1 & \beta_1 \\ \beta_2 & -\tau_2 \end{pmatrix}$ ayant respectivement pour trace et déterminant comme suit

$$tra(F - V) = -(\tau_1 + \tau_2) < 0 \ et \ det(F - V) = \tau_1\tau_2 - \beta_1\beta_2 > 0$$

Si $R_0 < 1$, i.e. $det(F-V) = \tau_1 \tau_2 - \beta_1 \beta_2 > 0$ alors toutes les deux valeurs propres la matrice F-V sont à parties réelles négatives. En posant $I(t) = (I_1(t), I_2(t))^T$, on a donc $I(t) \le I(0)e^{(F-V)t}$ et il s'en suit que

$$\lim_{t \to +\infty} I(t) = \lim_{t \to +\infty} (I_1(t), I_2(t))^T = (0, 0)$$

car

$$\lim_{t \longrightarrow +\infty} e^{(F-V)t} = 0.$$

Par conséquent

$$\lim_{t \to +\infty} (S_1(t), I_1(t)) \times (S_2(t), I_2(t)) = (N_1, 0) \times (N_2, 0).$$

Ceci marque la fin de cette preuve.

Théorème 4.1.5. Soit $(S_1(t), I_1(t)) \times (S_2(t), I_2(t))$ la solution de (3.30). Alors nous avons le résultat ci-dessous lorsque $R_0 > 1$:

$$\lim_{t \to +\infty} (S_1(t), I_1(t)) \times (S_2(t), I_2(t)) = (N_1 - I_1^*, I_1^*) \times (N_2 - I_2^*; I_2^*) = E_E$$

i.e. lorsque $t \longrightarrow +\infty$, le nombre des infectés masculins I_1 tend vers I_1^* et le nombre des infectés feminins I_2 tend vers $I_2^* = v(I_1^*) = h(I_1^*)$: l'épidémie prend un regime stationnaire. L'équilibre endémique E_E est localement asymptotiquement stable.

Preuve: Soit $(S_1(t), I_1(t)) \times (S_2(t), I_2(t))$ la solution de (3.30). Puisque $N_i = S_i + I_i$ pour i = 1; 2., considérons en particulier le modèle (3.34) dont $E_I = (I_1^*, I_2^*)$ est le point d'équilibre endémique. Sa matrice jacobienne $J(E_I)$ a pour trace

$$tr[J(E_I)] = -\left(\frac{\beta_1\beta_2N_2(R_0^2 - 1)}{R_0^2(\beta_2N_1 + \tau_2N_2)} + \frac{\beta_1N_1\beta_2(R_0^2 - 1)}{R_0^2(\beta_1N_2 + \tau_1N_1)} + \tau_1 + \tau_2\right)$$

qui est négative lorsque $R_0^2 > 1$. Le calcul du déterminant donne :

$$det[J(E_I)] = \tau_2(R_0^2 - 1)\frac{\beta_1 N_2 + \tau_1 N_1}{N_1 + N_2}$$

qui est positif lorsque $R_0^2 > 1$. Si $R_0 > 1$ alors toutes les valeurs propres de $J(E_I)$ sont à parties réelles négatives. Ce qui implique que le point d'équilibre endémique $E_I = (I_1^*, I_2^*)$ du modèle (3.34) est localement asymptotiquement stable.

$$\lim_{t \to +\infty} (S_1(t), I_1(t)) \times (S_2(t), I_2(t)) = \lim_{t \to +\infty} ((N_1 - I_1)(t), I_1(t)) \times ((N_1 - I_1)(t), I_2(t))$$
$$= (N_1 - I_1^*, I_1^*) \times (N_2 - I_2^*; I_2^*) = E_E$$

 $\operatorname{car}\lim_{t \longrightarrow +\infty} (I_1(t), I_2(t)) = (I_1^*, I_2^*) = E_I \blacksquare$

4.1.2 Modèle stochastique de MST

Considérons le modèle stochastique (3.33) de la dynamique d'une MST. Ce modèle peut encore s'écrire sous la forme suivante

(4.7)
$$\otimes \begin{cases} dS_1 = -\left(\beta_1 \frac{I_2}{N_1} S_1 - \tau_1 I_1\right) dt - \sqrt{\beta_1 \frac{I_2}{N_1}} S_1 + \tau_1 I_1 dW_1, \\ dI_1 = \left(\beta_1 \frac{I_2}{N_1} S_1 - \tau_1 I_1\right) dt + \sqrt{\beta_1 \frac{I_2}{N_1}} S_1 + \tau_1 I_1 dW_1, \\ dS_2 = -\left(\beta_2 \frac{I_1}{N_2} S_2 - \tau_2 I_2\right) dt - \sqrt{\beta_2 \frac{I_1}{N_2}} S_2 + \tau_2 I_2 dW_2, \\ dI_2 = \left(\beta_2 \frac{I_1}{N_2} S_2 - \tau_2 I_2\right) dt + \sqrt{\beta_2 \frac{I_1}{N_2}} S_2 + \tau_2 I_2 dW_2. \end{cases}$$

4.1.2.1 Équilibre trivial et équilibre endémique aléatoire

Le modèle stochastique (4.7) de MST admet un équilibre trivial aléatoire

$$E_T = [(S_1, I_1) \times (S_2, I_2) = (0, 0) \times (0, 0)]$$

L'équilibre aléatoire sans MST n'est rien d'autre que l'équilibre trivial.

Un point d'équilibre endémique aléatoire EE est atteint lorsque

$$\begin{cases} \beta_1 \frac{S_1}{N_1} I_2 - \tau_1 I_1 = 0, \\ \beta_2 \frac{S_2}{N_2} I_1 - \tau_2 I_2 = 0, \end{cases}$$

d'où nous avons les équations d'équilibre endémique aléatoire suivantes

$$\begin{cases} I_1 = \frac{\beta_1}{\tau_1} \frac{S_1}{N_1} I_2, \\ I_2 = \frac{\beta_2}{\tau_2} \frac{S_2}{N_2} I_1 \end{cases}$$

Nous ne connaissons pas à priori le nombre des individus infectés $I_i(t)$, i = 1, 2. attendu à un instant futur t. Mais le nombre moyen des infectés à cet instant t est désigné par l'espérance mathématique de la variable aléatoire I_i , i.e. $\mathbb{E}[I_i = I_i(t)]$. Une approximation de $\mathbb{E}[I_i = I_i(t)]$ nous permet d'obtenir l'expression de $I_i(t)$ ci-dessous donnant le nombre des individus infectés au temps t et qui se rapproche suffisamment du nombre moyen $\mathbb{E}[I_i = I_i(t)]$,

(4.8)
$$I_1(t) = \frac{I_1(0)[\beta_1\beta_2(N_2 - I_2^*) - \tau_1\tau_2N_2]}{I_1(0)\tau_1\tau_2(N_2 - I_2^*) + [Z_1 - \tau_1\tau_2N_2]e^{-\alpha_1t}}$$

où

$$Z_1 = \beta_1 \beta_2 (1 - I_1(0)) (N_2 - I_2^*), \quad \alpha_1 = \beta_1 \frac{I_2^*}{I_1^*} - \tau_1$$

et

(4.9)
$$I_2(t) = \frac{I_2(0)[\beta_1\beta_2(N_1 - I_1^*) - \tau_1\tau_2N_1]}{I_2(0)\tau_1\tau_2(N_1 - I_1^*) + [Z_2 - \tau_1\tau_2N_1]e^{-\alpha_2t}}$$

où

$$Z_2 = \beta_1 \beta_2 (1 - I_2(0)) (N_1 - I_1^*), \quad \alpha_2 = \beta_2 \frac{I_1^*}{I_2^*} - \tau_2$$

4.1 Analyse de deux modèles associés de MST

Pour les expressions (4.8) et (4.9), examinons les cas suivants : • si $R_0 \leq 1$, alors $\tau_1 \geq \frac{\beta_1 \beta_2 S_2}{\tau_2 N_2} = \beta_1 \frac{I_2^*}{I_1^*}$ et $\tau_2 \geq \frac{\beta_1 \beta_2 S_1}{\tau_1 N_1} = \beta_2 \frac{I_1^*}{I_2^*}$, car $S_i \leq N_i$, i = 1, 2. De plus nous avons

$$\lim_{t \to +\infty} I_i(t) = I_i^{**} = 0, \ i = 1, 2,$$

i.e., l'infection de MST évolue puis disparait par la suite : l'équilibre endémique aléatoire cohabite avec l'équilibre aléatoire sans MST ;

• si $R_0 > 1$, alors $\tau_1 < \frac{\beta_1 \beta_2 S_2}{\tau_2 N_2}$ et $\tau_2 < \frac{\beta_1 \beta_2 S_1}{\tau_1 N_1}$. Nous avons dans ce cas,

$$\lim_{t \to +\infty} I_1(t) = I_1^{**}$$

et

$$\lim_{t \to +\infty} I_2(t) = I_2^{**}$$

où I_1^{**} et I_2^{**} sont des équilibres endémiques aléatoires donnés par

(4.10)
$$\begin{cases} I_1^{**} = \frac{\beta_1 \beta_2 (N_2 - I_2^*) - \tau_1 \tau_2 N_2}{\beta_1 \beta_2 (N_2 - I_2^*)}, \\ I_2^{**} = \frac{\beta_1 \beta_2 (N_1 - I_1^*) - \tau_1 \tau_2 N_1}{\beta_1 \beta_2 (N_1 - I_1^*)} \end{cases}$$

i.e., l'infection de MST évolue puis devient endémique en I_i^{**} , i = 1, 2..

Puisque I_1 dépend toujours de I_2 et vice versa, nous pouvons donc nous poser la question suivante :

quel sera au temps $t = t^*$ fixé, le nombre des infectés $I_i(t^*)$, i = 1, 2 de cette MST qu'on espère obtenir ?

Pour repondre à cette question, cherchons la probabilité pour qu'un sujet susceptible S_i , i = 1, 2. soit infecté de MST et la probabilité pour qu'un sujet infecté I_i , i = 1, 2. soit guéri de MST au temps t.

4.1.2.2 Probabilité d'infection et de guérison

Étant donné que cette MST n'est pas mortelle et que le taux de mortalité naturelle et le taux de natalité sont nuls durant la courte période (en jours) de l'infection, au sein de la population étudiée, nous avons alors la probabilité de mortalité p_{mo}^i et la probabilité de naissance p_{na}^i sont égales et nulles (i.e., $p_{mo}^i = p_{na}^i = 0$ i = 1, 2.). Notre modèle MST n'a donc que deux changements possibles de variables d'état : devenir infecté et guérir de cette infection grâce au traitement.

Désignons par p_{in}^i et p_{gu}^i respectivement la probabilité pour qu'un sujet sain S_i , i = 1, 2. soit infecté de MST et la probabilité pour qu'un sujet infecté I_i , i = 1, 2. soit guéri de MST au temps t.

(4.11)
$$p_{in}^1 = \frac{1}{2} \left(\frac{\beta_1 I_2 (N_1 - I_1)}{\beta_1 I_2 (N_1 - I_1) + \tau_1 N_1} \right) \quad et \quad p_{in}^2 = \frac{1}{2} \left(\frac{\beta_2 I_1 (N_2 - I_2)}{\beta_2 I_1 (N_2 - I_2) + \tau_2 N_2} \right)$$

(4.12)
$$p_{gu}^{1} = \frac{1}{2} \left(\frac{\tau_{1}I_{1}N_{1}}{\beta_{1}I_{2}(N_{1} - I_{1}) + \tau_{1}I_{1}N_{1}} \right) \ et \ p_{gu}^{2} = \frac{1}{2} \left(\frac{\tau_{2}I_{2}N_{2}}{\beta_{2}I_{1}(N_{2} - I_{2}) + \tau_{2}I_{2}N_{2}} \right)$$

Remarquons que les probabilité p_{in}^i et p_{gu}^i dépendent encore du nombre des infectés I_i , i = 1, 2 et que la loi de probabilité uniforme est vérifiée

$$\sum_{i=1}^{2} (p_{in}^{i} + p_{gu}^{i}) = 1 \iff 1 - (p_{in}^{1} + p_{in}^{2}) = p_{gu}^{1} + p_{gu}^{2}$$

Pour repondre à notre question posée ci-haut, supposons que $I_1(n)$ et $I_2(n)$ sont respectivement le nombre des infectés masculins et celui des infectés feminins à l'instant t = n, avec $n = 0, 1, \ldots, n_T = t^*$. Les suites $I_1(n)$ et $I_2(n)$ sont alors des chaînes de Markov de matrices de transition respectives :

$$P_{1} = \begin{pmatrix} 1 - p_{gu}^{1} & p_{gu}^{1} \\ p_{in}^{1} & 1 - p_{in}^{1} \end{pmatrix} \qquad et \qquad P_{2} = \begin{pmatrix} 1 - p_{gu}^{2} & p_{gu}^{2} \\ p_{in}^{2} & 1 - p_{in}^{2} \end{pmatrix}$$

Soit $\mu_n^1 = \mathbb{P}(I_1 = I_1(n))$ et $\mu_n^2 = \mathbb{P}(I_2 = I_2(n))$. D'après le Théorème 1.3.2, nous avons

$$\mu_{n+1}^{i} = \mu_{n}^{i} \mathbf{P}_{i} \iff \mu_{n+1}^{i} = (1 - p_{gu}^{i})\mu_{n}^{i} + p_{in}^{i}(1 - \mu_{n}^{i}), \quad i = 1, 2.$$

Notons que μ_n^i est stationnaire lorsque $\mu_{n+1}^i = \mu_n^i = \mu = \frac{p_{in}^i}{p_{in}^i + p_{gu}^i} = 2p_{in}^i$. Alors

$$\mu_n^i = \mu + (\mu_0^i - \mu)(1 - p_{gu}^i - p_{in}^i)^n, \ i = 1, 2.$$

Supposons qu'il y a eu un seul cas d'infection au temps initial n = 0, i.e. $\mu_0^i = 1$. Par conséquent,

$$\mu_n^i = \mu + (1 - \mu)(1 - p_{gu}^i - p_{in}^i)^n, \ i = 1, 2. \ n = 1, \dots, n_T = t$$

Nous obtenons

$$\mu_n^i = 2p_{in}^i + \frac{1}{2^n} \left(1 - 2p_{in}^i\right), \ i = 1, 2. \ n = 1, \dots, n_T = t^*$$

i.e. pour $n = 1, ..., n_T = t^*$,

$$I_1(n) = \frac{1}{2^n} \left(\frac{\beta_1 I_2(N_1 - I_1)2^n + \tau_1 N_1}{\beta_1 I_2(N_1 - I_1) + \tau_1 N_1} \right)$$

et

$$I_2(n) = \frac{1}{2^n} \left(\frac{\beta_2 I_1(N_2 - I_2)2^n + \tau_2 N_2}{\beta_2 I_1(N_2 - I_2) + \tau_2 N_2} \right)$$

Enfin pour $I(n) = (I_1(n), I_2(n))$ le nombre des individus infectés de MST attendu à l'instant t = n est

$$I(n) = \frac{1}{4^n} \left(\frac{\beta_1 I_2(N_1 - I_1)2^n + \tau_1 N_1}{\beta_1 I_2(N_1 - I_1) + \tau_1 N_1} \right) \left(\frac{\beta_2 I_1(N_2 - I_2)2^n + \tau_2 N_2}{\beta_2 I_1(N_2 - I_2) + \tau_2 N_2} \right), \quad n = 1, \dots, t^*.$$

4.2 Analyse de deux modèles du VIH/SIDA

4.2.1 Modèle déterministe du VIH/SIDA

4.2.1.1 Positivité de solutions et trajectoires bornées

Le modèle déterministe (3.36) est épidémiologiquement plausible si le lemme ci-dessous est satisfait.

Lemme 4.2.1. Soit $X_0 = (S(0), H_1(0), H_2(0), W_H(0))$ un état initial positif donné i.e $X_0 \in \mathbb{R}^4_+$. Alors les solutions $X(t) = (S_t, H_{1t}, H_{2t}, W_{Ht})$ du modèle (3.36) demeurent positives i.e. $X(t) \in \mathbb{R}^4_+$ pour tout t > 0.

Preuve: Soit $X_0 = (S(0), H_1(0), H_2(0), W_H(0) \in \mathbb{R}^4_+$ un état initial donné. Posons

$$\bar{t} >= \sup \{t > 0 : S(t) > 0, H_1(t) > 0, H_2(t) > 0, W_H(t) > 0\}.$$

Ainsi $\bar{t} > 0$. Considérons la première équation de (3.36) :

$$\frac{dS}{dt} = \Lambda - \lambda_H S - \mu S$$

Alors nous avons

(4.13)
$$\frac{d}{dt} \left[S(t) exp\left\{ \mu t + \int_0^t \lambda_H(\tau) d\tau \right\} \right] \ge \Lambda \exp\left\{ \mu t + \int_0^t \lambda_H(\tau) d\tau \right\}.$$

Le passage à l'integrale de 0 à t^+ donne

$$S(\bar{t}) \exp\left\{\mu\bar{t} + \int_0^{\bar{t}} \lambda_H(\tau)d\tau\right\} - S(0) \ge \int_0^{\bar{t}} \Lambda \exp\left\{\mu x + \int_0^x \lambda_H(\tau)d\tau\right\} dx$$
$$S(\bar{t}) \ge S(0) \exp\left\{-\left(\mu\bar{t} + \int_0^{\bar{t}} \lambda_H(\tau)d\tau\right)\right\}$$
$$+ \exp\left\{-\left(\mu\bar{t} + \int_0^{\bar{t}} \lambda_H(\tau)d\tau\right)\right\} \cdot \int_0^{\bar{t}} \Lambda \exp\left\{\mu x + \int_0^x \lambda_H(\tau)d\tau\right\} dx > 0$$

. D'où nous obtenons $S(\bar{t}) > 0$ i.e. que S(t) > 0 pout tout t > 0. De la manière similaire, nous pouvons prouver que $H_1(t) > 0$, $H_2(t) > 0$, $W_H(t) > 0$ pout tout t > 0. Ceci marque la fin de la preuve.

Lemme 4.2.2. Toutes les trajectoires décrites par les solutions $X(t) = (S_t, H_{1t}, H_{2t}, W_{Ht} \in \mathbb{R}^4_+$ du modèle (3.36) sont bornées, i.e que pour tout $\varepsilon > 0$ le domaine borné

$$\Omega_{\varepsilon} = \left\{ X_t = (S, H_1, H_2, W_H) \in \mathbb{R}^4_+ : N \le \frac{\Lambda}{\mu} + \varepsilon \right\}$$

des solutions X_t est positivement invariant.

4.2 Analyse de deux modèles du VIH/SIDA

Preuve: Le nombre total de la population à la date t est N_t tels que :

$$N_t = S(t) + H_1(t) + H_2(t) + W_H(t)$$
 et $\frac{dN_t}{dt} = \Lambda - \mu N_t - \delta_H H_2(t).$

Il s'en suit que

$$\frac{dN_t}{dt} < \Lambda - \mu N_t$$

Posons $M_t = \Lambda - \mu N_t$. Alors nous obtenons

$$\frac{dM_t}{dt} = -\mu \frac{dN_t}{dt} \ge -\mu M_t \Longrightarrow M_t \ge M_0 e^{-\mu t}.$$

Comme $M_t = \Lambda - \mu N_t$ et $M_0 = \Lambda - \mu N_0$, alors nous obtenons pour tout $\varepsilon > 0$:

$$N_t \le \frac{\Lambda}{\mu} + N_0 e^{-\mu t} + \varepsilon.$$

Lorsque $t \to +\infty$ alors $N_t \longrightarrow N_{\infty} \leq \frac{\Lambda}{\mu} + \varepsilon$. Donc toute trajectoire de (3.36) est bornée. Montrons maintenant que le domaine Ω_{ε} est positivement invariant. En effet, soit h une application $\mathbb{R}^4_+ \longrightarrow \mathbb{R}$ qui à $x = (S, H_1, H_2, W_H)$ associe $h(x) = S + H_1 + H_2 + W_H$ h is différentiable et son gradient est $\nabla h = (1, 1, 1, 1), \quad \forall x \in \mathbb{R}^4_+$.

De plus, $\forall x \in h^{-1}(\frac{\Lambda}{\mu} + \varepsilon)$, le produit scalaire de deux fonctions vectorielles d et h est tel que :

$$\langle d(x), \nabla(h(x)) \rangle = \dot{S} + \dot{H}_1 + \dot{H}_2 + \dot{W}_H \quad avec \quad d(x) = \left(\dot{S}, \dot{H}_1, \dot{H}_2, \dot{W}_H\right)$$

soit

$$\langle d(x), \nabla(h(x)) \rangle = \dot{N} = \Lambda - \mu N - \delta_H H_2.$$

Mais $\forall x \in h^{-1}(\frac{\Lambda}{\mu} + \varepsilon)$, $N = \frac{\Lambda}{\mu} + \varepsilon$ ainsi pour $\varepsilon > 0$, nous avons

$$\forall x \in h^{-1}(\frac{\Lambda}{\mu} + \varepsilon), \quad \langle d(x), \nabla(h(x)) \rangle = \dot{N} = -\mu\varepsilon - \delta_H H_2 \le 0$$

Grâce donc au théorème de Barrière, nous concluons que Ω_{ε} est positivement invariant.

4.2.1.2 Existence et unicité de solution du modèle

Théorème 4.2.1. Soit $S(0), H_1(0), H_2(0), W_H(0) \in \mathbb{R}$. Alors il existe T > 0 et des fonctions continuellement différentiables $S, H_1, H_2, W_H : [0; T[\longrightarrow \mathbb{R} \text{ tels que } X_t = (S, H_1, H_2, W_H) \text{ soit solution du modèle déterministe (3.36) avec état initial <math>X_0 = (S(0), H_1(0), H_2(0), W_H(0)) \in \mathbb{R}^4$ *i.e. que la solution* $X_t \in \mathbb{R}^4$ de (3.36) avec état initial X_0 existe et cette solution est unique.

Preuve: Pour la preuve de ce lemme, nous utilisons le lemme 4.1.1 [23] et le théorème classique de Picard-Lindelöf [85]. Dès que le modèle déterministe est autonome, il suffit de montrer que la fonction $f : \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ définie par $f(x) = (f_1(x), f_2(x), f_3(x), f_4(x))^T$ est Localement Lipschitzienne en $x = (S, H_1, H_2, W_H)^T$; avec les expressions de f_i , $i = 1, \dots, 4$. données par (3.38). Puisque toute solution de (3.36) est positive et bornée et selon le lemme 4.1.1, f est Localement Lipschitzienne continue sur \mathbb{R}^d_+ , alors par le théorème de Picard-Lindelöf [85], il existe une solution unique $x_t = (S_t, H_{1t}, H_{2t}, W_{Ht})^T \in \mathbb{R}^{d=4}_+$ de (3.36) avec l'état initiale $x_0 \in \mathbb{R}^{d=4}_+$ pour tout $t \in [0; T]$.
4.2.1.3 Existence des points d'équilibre : DFE et Equilibre Endémique

Lemme 4.2.3. [29] Le modèle déterministe (3.36) admet un seul point d'équilibre sans VIH/SIDA àu Disease Free Equilibrium (DFE) noté $X^0 = (\frac{\Lambda}{\mu}, 0, 0, 0)^T$. Lorsque $R_0^{\tau} > 1$ alors (3.36) admet un point d'équilibre endémique noté $X^* = (S_t^*, H_{1t}^*, H_{2t}^*, W_{Ht}^*)^T$ tels que

(4.14)
$$\begin{cases} S_t^* = \frac{\Lambda \kappa}{\mu \kappa + (\mu + \sigma + \tau_1)(R_0^{\tau} - 1)}, \\ H_{1t}^* = \frac{R_0^{\tau} - 1}{\kappa} S_t^*, \\ H_{2t}^* = \pi_2 H_{1t}^*, \\ W_{Ht}^* = \pi_H H_{1t}^*. \end{cases}$$

où R_0^{τ} est le taux de reproduction de base du modèle (3.36) et est défini par

(4.15)
$$R_0^{\tau} = \frac{\beta_H (1 + \eta_2 \pi_2 + \eta_H \pi_H)}{\mu + \sigma + \tau_1},$$

(4.16)
$$\pi_2 = \frac{\sigma(\mu + \sigma\theta + \theta\tau_1)}{(\mu + \delta_H)(\mu + \sigma\theta) + \mu\tau_2},$$

(4.17)
$$\pi_H = \frac{\sigma \tau_2 + \tau_1 (\mu + \delta_H + \tau_2)}{(\mu + \delta_H)(\mu + \sigma \theta) + \mu \tau_2}$$

(4.18)
$$\kappa = 1 + \pi_2 + \pi_H.$$

Preuve: Il est évident de montrer l'existence et l'unicité de DFE (Disease-Free Equilibrium), $X^0 = (\frac{\Lambda}{\mu}, 0, 0, 0)$.

Supposons que $R_0^{\tau} > 1$. Un point d'équilibre endémique $X^* = (S^*, H_1^*, H_2^*, W_H^*)$ est tel que :

(4.19)
$$\begin{cases} \Lambda - \lambda_H^* S^* - \mu S^* = 0, \quad (4.19.1) \\ \lambda_H^* S^* - (\mu + \sigma + \tau_1) H_1^* = 0, \quad (4.19.2) \\ \sigma H_1^* + \sigma \theta W_H^* - (\mu + \delta_H + \tau_2) H_2^* = 0, \quad (4.19.3) \\ \tau_1 H_1^* + \tau_2 H_2^* - (\mu + \sigma \theta) W_H^* = 0, \quad (4.19.4). \end{cases}$$

où

$$\lambda_H^* = \beta_H (\frac{H_1^*}{N^*} + \eta_2 \frac{H_2^*}{N^*} + \eta_H \frac{W_H^*}{N^*}).$$

Du système (4.19), les expressions de H_2^* et W_H^* en fonction de H_1^* sont données par,

$$H_2^* = \pi_2 H_1^* \quad et \quad W_H^* = \pi_H H_1^*.$$

Alors nous avons

(4.20) $\lambda_H^* = \beta_H (1 + \eta_2 \pi_2 + \eta_H \pi_H) \frac{H_1^*}{N^*},$

et

(4.21)
$$N^* = S^* + \kappa H_1^*;$$

 π_2 , π_H et κ sont définis respectivement en (4.16),(4.17) et (4.18). En substituant (4.20) dans (4.19.2), nous avons soit $H_1^* = 0$, soit

(4.22)
$$\frac{S^*}{N^*} = \frac{\mu + \sigma + \tau_1}{\beta_H (1 + \eta_2 \pi_2 + \eta_H \pi_H)}.$$

En substituant (4.20), puis (4.21) dans (4.19.2), nous avons $H_1^* = 0$ ou

(4.23)
$$H_1^* = \frac{1}{\kappa} \left[\frac{\beta_H (1 + \eta_2 \pi_2 + \eta_H \pi_H)}{\mu + \sigma + \tau_1} - 1 \right] S^* = \frac{(R_0^\tau - 1)}{\kappa} S^*.$$

En substituant enfin (4.20) puis (4.22) et (4.23) dans (4.19.1), nous obtenons

(4.24)
$$S^* = \frac{\Lambda \kappa}{\mu \kappa + (\mu + \sigma + \tau_1)(R_0^{\tau} - 1),}$$

où R_0^{τ} est déterminée par la méthode de P. Van den Driessche et James Watmough [72].

4.2.1.4 Stabilité de DFE et d'équilibre endémique

Théorème 4.2.2. L'unique point d'équilibre sans VIH/SIDA X^0 du modèle déterministe (3.36) est localement et globalement asymptotiquement stable si $R_0^{\tau} \leq 1$ et instable si $R_0^{\tau} > 1$.

Preuve: La stabilité locale du DFE est évidente car elle est une conséquence de la méthode de Van den Driessch et James Watmough pour le calcul du nombre de reproduction de base [72] : le DFE est localement stable si $R_0^{\tau} < 1$ et instable si $R_0^{\tau} > 1$. De plus la stabilité globale entraine la stabilité locale. Pour ce faire, nous étudions uniquement la stabilité globale du point d'équilibre sans VIH/SIDA X^0 du modèle déterministe (3.36).

Cette preuve utilise alors le théorème de Castillo-Chavez (2002) [18] que nous avons rappelé en Appendice 6.2.4 comme Théorème .0.1. Ecrivons le modèle (3.36) comme suit :

(4.25)
$$\begin{cases} \frac{dY}{dt} = F(Y, Z) \\ \frac{dZ}{dt} = G(Y, Z), \quad G(Y, 0) = 0 \end{cases}$$

où $Y=S\in\mathbb{R}_+$, $Z=(H_1,H_2,W_H)\in\mathbb{R}^3_+;$

$$F(Y,Z) = \left(\Lambda - \lambda_H S - \mu S \right) \quad et \quad G(Y,Z) = \left(\begin{array}{c} \lambda_H S - (\mu + \sigma + \tau_1)H_1 \\ \sigma H_1 + \sigma \theta_t W_H - (\mu + \delta_H + \tau_2)H_2 \\ \tau_1 H_1 + \tau_2 H_2 - (\mu + \sigma \theta_t)W_H \end{array} \right).$$

Ainsi, le DFE devient $X^0 = \varepsilon^0 = (Y^*, 0)$ avec $Y^* = \frac{\Lambda}{\mu}$.

Considérons $F(Y,0) = (\Lambda - \mu S)$ et vérifions si les conditions C 1 et C 2 du théorème de Castillo-Chavez (2002) sont satisfaites :

$$\mathbf{C} \mathbf{1} : F(Y^*, Z) = F(Y^*, 0)$$

$$\mathbf{C} \mathbf{2} : G(Y, Z) = AZ - \widehat{G}(Y, Z) \quad \text{où} \quad A = \begin{pmatrix} \beta_H - (\mu + \sigma + \tau_1) & \eta_2 \beta_H & \eta_H \beta_H \\ \sigma & -(\mu + \delta_H + \tau_2) & \sigma \theta_t \\ \tau_1 & \tau_2 & -(\mu + \sigma \theta_t) \end{pmatrix}$$

est une matrice dont les éléments non-diagonaux sont positifs et puis

$$\widehat{G}(Y,Z) = \begin{pmatrix} \beta_H H_1 - \lambda_H S + \eta_2 \beta_H H_2 + \eta_H \beta_H W_H \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \beta_H (H_1 + \eta_2 H_2 + \eta_H W_H) (1 - \frac{S}{N}) \\ 0 \\ 0 \end{pmatrix}$$

est un vecteur de composentes :

$$\widehat{G}_1(Y,Z) = \beta_H (H_1 + \eta_2 H_2 + \eta_H W_H) (1 - \frac{S}{N}), \quad \widehat{G}_2(Y,Z) = 0 \ et \ \widehat{G}_3(Y,Z) = 0.$$

Il s'en suit que $\widehat{G}(Y, Z) \ge 0$ pour $(Y, Z) \in \Omega_{\varepsilon}$. Ainsi donc les conditions **C 1** et **C 2** sont satisfaites. D'où l'équilibre sans maladie en présence du traitement est globalement asymptotiquement stable si $R_0^{\tau} < 1$.

Théorème 4.2.3. L'unique point d'équilibre endémique X^* du modèle déterministe (3.36) est localement asymptotiquement stable si $R_0 > 1$.

Preuve: Dès que le DFE est globalement asymptotiquement stable, il est alors évident que le point d'équilibre endémique soit unique.

Supposons que $R_0^{\tau} > 1$, alors l'infection du VIH/SIDA persiste au sein de la population à l'équilibre endémique. Le théorème de Castillo Chavez (2004) [19] permet de prouver la stabilité locale asymptotique de X^* . Faisons le changement des variables suivant afin d'appliquer le Théorème .0.2 de Castillo Chavez (2004) [19] en Appendice 6.2.4. Ce théorème résulte de la théorie du centre de variété ou Centre Manifold Theory [17]. Pour ce faire, posons

$$S = x_1, \ H_1 = x_2, \ H_2 = x_3 \ et \ W_H^* = x_4.$$

Alors, $X = (x_1, x_2, x_3, x_4)^T$, $N = x_1 + x_2 + x_3 + x_4$, et $\lambda_H = \beta_H \frac{x_1 x_2 + \eta_2 x_3 x_1 + \eta_H x_4 x_1}{x_1 + x_2 + x_3 + x_4}$. Le modèle (3.36) devient $\frac{dX}{dt} = \dot{X} = (\dot{x_1}, \dot{x_2}, \dot{x_3}, \dot{x_4})^T = (f_1, f_2, f_3, f_4)^T$ tels que :

(4.26)
$$\begin{cases} \dot{x}_1 = f_1 = \Lambda - \beta_H \frac{x_2 + \eta_2 x_3 + \eta_H x_4}{x_1 + x_2 + x_3 + x_4} x_1 - \mu . x_1 \\ \dot{x}_2 = f_2 = \beta_H \frac{x_2 + \eta_2 x_3 + \eta_H x_4}{x_1 + x_2 + x_3 + x_4} x_1 - (\mu + \sigma + \tau_1) x_2 \\ \dot{x}_3 = f_3 = \sigma x_2 + \sigma \theta_t x_4 - (\mu + \delta_H + \tau_2) x_3 \\ \dot{x}_4 = f_4 = \tau_1 x_2 + \tau_2 x_3 - (\mu + \sigma \theta_t) x_4 \end{cases}$$

Ce système nous permet de vérifier si les assertions A_1 et A_2 du théorème de Castillo-Chavez (2004) [19] sont satisfaites :

La matrice jacobienne $J_{X^0}(\beta_H)$ du système (4.26) en X^0 est donnée par :

(4.27)
$$J_{X^{0}}(\beta_{H}) = \begin{pmatrix} -\mu & -\beta_{H} & -\eta_{2}\beta_{H} & -\eta_{H}\beta_{H} \\ 0 & \beta_{H} - (\mu + \sigma + \tau_{1}) & \eta_{2}\beta_{H} & \eta_{H}\beta_{H} \\ 0 & \sigma & -(\mu + \delta_{H} + \tau_{2}) & \sigma\theta \\ 0 & \tau_{1} & \tau_{2} & -(\mu + \sigma\theta) \end{pmatrix}$$

 $J_{X^0}(\beta_H)$ admet au moins une valeur propre simple à partie réelle positive. La valeur dominante de ces valeurs propres correspond à R_0^{τ} donné par (4.15). L'assertion **A 1** est donc vérifiée.

Soit β_H^* un paramètre de bifurcation. Alors sa détermination par la résolution de $R_0^{\tau} = 1$ donne :

$$\beta_H^* = \beta_H = \frac{\mu + \sigma + \tau_1}{1 + \eta_2 \pi_2 + \eta_H \pi_H}$$

La théorie du centre de variété [17] peut être utilisée pour l'analyse du système (4.26) lorsque $\beta_H^* = \beta_H$. Ainsi la matrice jacobienne $J_{X^0}(\beta_H^*)$ du système (4.26) en X^0 lorsque $\beta_H^* = \beta_H$ admet une valeur propre nulle. Pour vérifier l'assertion **A 2**, notons par $u = (u_1, u_2, u_3, u_4)^T$ le vecteur propre droit de $J_{X^0}(\beta_H^*)$ associé à la valeur propre nulle. Alors on obtient le système linéaire :

(4.28)
$$J_{X^0}(\beta_H^*)u = 0$$

qui a pour solution $u = (u_1, u_2, u_3, u_4)^T$ tels que :

$$u_{1} = -\frac{\beta_{H}^{*}}{\mu}(u_{2} + \eta_{2}u_{3} + \eta_{H}u_{4}), \quad u_{2} = \frac{\beta_{H}^{*}}{(\mu + \sigma + \tau_{1}) - \beta_{H}^{*}}(\eta_{2}u_{3} + \eta_{H}u_{4}),$$
$$u_{3} = u_{3} > 0, \ et \ u_{4} = \frac{\tau_{1}(\mu + \delta_{H} + \tau_{2}) + \sigma\tau_{2}}{\sigma(\mu + \sigma\theta_{t} + \theta_{t}\tau_{1})}u_{3}.$$

Maintenant, notons par $v = (v_1, v_2, v_3, v_4)^T$ le vecteur propre gauche de $J_{X^0}(\beta_H^*)$ associé à la valeur propre nulle. Alors on obtient le système linéaire :

(4.29)
$$v^T J_{X^0}(\beta_H^*) = 0$$

qui a pour solution $v = (v_1, v_2, v_3, v_4)^T$ tels que :

$$v_1 = 0, \ v_2 = \frac{1}{(\mu + \sigma + \tau_1) - \beta_H^*} (\sigma v_3 + \tau_1 v_4), \ v_3 = v_3, \ v_4 = \frac{1}{\mu + \sigma \theta_t} (\beta_H^* \eta_2 v_2 + \sigma \theta_t v_3), \ v_3 > 0.$$

Les calculs des coefficients $a = \sum_{k,i,j=1}^{n} v_k u_i u_j \frac{\partial^2 f_k}{\partial x_i \partial x_j} (X^0)$ et $b = \sum_{k,i=1}^{n} v_k u_i \frac{\partial^2 f_k}{\partial x_i \partial \eta} (X^0)$ donnent respectivement les résultats

(4.30)
$$a = -\frac{2\mu(\beta_T^*)^2}{\Lambda} u_3^2 v_3[(1-n)\mu + \alpha)\frac{\mu + \alpha + n\beta_T^*}{(\mu + \alpha)\beta_T^*} - n\eta_r \frac{\mu}{\mu + \alpha}] < 0$$

(4.31)
$$b = \frac{(1-n)\mu + \alpha}{\mu + \alpha} u_3 v_3 > 0$$

Les signes des coefficients a et b i.e. a < 0 et b > 0 permettent d'affirmer à la lumière de l'assertion A 2-(iv) du théorème de Castillo-Chavez (2004) [19] que l'équilibre endémique X^* est localement asymptotiquement stable si $R_0^{\tau} > 1$.

4.2.2 Modèle stochastique du VIH/SIDA

4.2.2.1 Positivité bornée des solutions

Considérons le modèle stochastique du VIH/SIDA (3.37) et soit un ensemble défini comme suit

$$\Omega = \{ (S, H_1, H_2, W_H) \in \mathbf{R}^4_+; N = S + H_1 + H_2 + W_H < \frac{\Lambda}{\mu} \}.$$

Alors, nous avons le résultat suivant [30] :

Théorème 4.2.4. Soit $X_0 = (S(0), H_1(0), H_2(0), W_H(0)) \in \Omega$. Notons par

 $X(t) = (S(t), H_1(t), H_2(t), W_H(t))$ (pour $t \ge 0$), la trajectoire du modèle stochastique (3.37) passant par X_0 . Alors X(t) demeure dans l'ensemble Ω , pour tout $t \ge 0$, avec la probabilité égale à 1.

Preuve: du Théorème 4.2.4

Soit $N(t) = S(t) + H_1(t) + H_2(t) + W_H(t)$, la variable aléatoire donnant le nombre total de la population à la date t. Nous avons

$$dN(t) =$$

$$(\Lambda - \mu N(t) - \delta_H H_2) dt - (G_1 dW_1(t) + G_2 dW_2(t) + G_4 dW_4(t) + G_7 dW_7(t) + G_{10} dW_{10}(t)).$$

Dès que

$$\xi(X(t), dW(t)) = G_1 dW_1(t) + G_2 dW_2(t) + G_4 dW_4(t) + G_7 dW_7(t)) + G_{10} dW_{10}(t) < 0,$$

et si $X(u) \in \mathbf{R}^4_+$ pour tout $0 \le u \le t$ presque sûrement (p.s.), nous obenons l'inéquation suivante :

$$dN(u) < (\Lambda - \mu N(u)) dt \qquad \forall \ u \in [0; t] \ p.s.$$

Alors $N(u) < \frac{\Lambda}{\mu}$. Soit donc $S(u), H_1(u), H_2(u), W_H(u) \in]0; \frac{\Lambda}{\mu}[$ pour tout $u \in [0; t]$ p.s.

Dès que f et G sont localement continues et Lipschitziennes, alors pour chaque valeur initiale donnée X_0 , il existe une unique solution locale X(u) sur tout intervalle fixé [0; t]. Montrons que cette solution X(t) est globale pour $t \in [0; \tau_e]$; où τ_e est le temps d'explosion.

Soit $\rho_0 > 0$ tel que $S(0), H_1(0), H_2(0), W_H(0) > \rho_0$ et pour $\rho \le 0$ définissons le temps d'arrêt par :

$$\tau_{\rho} = \inf\{t \in [0; \tau_{e}[, S(t) < \rho \text{ ou } H_{1}(t) < \rho, H_{2}(t) < \rho \text{ ou } W_{H}(t) < \rho\}.$$

Nous avons $\lim_{\rho \longrightarrow 0} \tau_{\rho} = \tau_0$ avec

$$\tau_0 = \{t \in [0; \tau_e[, S(t) < 0 \text{ ou } H_1(t) < 0, H_2(t) < 0 \text{ ou } W_H(t) < 0\}.$$

Considérons maintenant la fonction U définie pour $X = (S, H_1, H_2, W_H)$ par

$$U = -ln(\frac{\Lambda}{\mu}S) - ln(\frac{\Lambda}{\mu}H_1) - ln(\frac{\Lambda}{\mu}H_2) - ln(\frac{\Lambda}{\mu}W_H).$$

En utilisant la formule d'Itô appliquée à un problème multidimensionnel sur l'intervalle $[0; \min(t, \tau_{\rho})]$, nous avons pour tout s

$$dU(X(s)) = \left[\frac{\partial U(X(s))}{\partial s} + \sum_{i=1}^{4} f_i(s, X(s)) \frac{\partial U(X(s))}{\partial X_i(s)} + \frac{1}{2} \sum_{i,j=1}^{4} (GG^T)_{ij} \frac{\partial^2 U(X(s))}{\partial X_i \partial X_j}\right] ds$$
$$+ \sum_{i=1}^{4} \sum_{j=1}^{10} G_{ij} dW_j(s) \frac{\partial U(X(s))}{\partial X_i},$$

avec

$$G = (G_{ij})_{i = 1, 2, ..., 4.; j = 1, 2, ..., 10.}; et (GG^{T})_{ij} = \sum_{k=1}^{10} G_{ik} G_{kj}$$

soit

$$\begin{split} dU(X) &= [4\mu + \tau_1 + \tau_2 + \sigma + \sigma\theta + \delta_H + \lambda_H] ds - [\Lambda \frac{(2S-1)}{2S^2} + \lambda_H \frac{(2H_1 - 1)}{2H_1^2} \\ &+ \sigma(H_1 + \theta W_H) \times \frac{(2H_2 - 1)}{2H_2^2} + (\tau_1 H_1 + \tau_2 H_2) \frac{(2W_H - 1)}{2W_H^2}] ds \\ &+ [(\mu + \lambda_H) \frac{1}{2S} (\mu + \sigma\theta) \frac{1}{2W_H} (\mu + \sigma + \tau_1) \frac{1}{2H_1}] ds - \frac{1}{S} (G_1 dW_1 - G_2 dW_2 - G_3 dW_3) \\ &- \frac{1}{H_1} (G_3 dW_3 - G_4 dW_4 - G_5 dW_5 - G_6 dW_6) - \frac{1}{H_2} (G_5 dW_5 - G_7 dW_7 - G_8 dW_8 \\ &+ G_9 dW_9) - \frac{1}{W_H} (G_6 dW_6 + G_8 dW_8 - G_9 dW_9 - G_{10} dW_{10}). \end{split}$$

D'où, nous trouvons que pour $s \in [0; t]$ presque sûrement,

(4.32)
$$dU(X(s)) \leq [7\mu + \delta_H + 2\tau_1 + \tau_2 + 2\sigma(1+\theta) + \beta_H \frac{\Lambda}{\mu} (1+\eta_2+\eta_H)] dt + \frac{1}{S} (G_2 dW_2 + G_3 dW_3) + \frac{1}{H_1} (G_4 dW_4 + G_5 dW_5 + G_6 dW_6) + \frac{1}{H_2} (G_7 dW_7 + G_8 dW_8) + \frac{1}{W_H} (G_9 dW_9 + G_{10} dW_{10}).$$

En intégrant l'inequation (4.32), nous obtenons que

$$(4.33) \qquad U(X(t)) \le Ct + \int_0^t \frac{1}{S} (G_2 dW_2(s) + G_3 dW_3(s)) + \int_0^t \frac{1}{H_1} (G_4 dW_4(s) + G_5 dW_5(s) + G_6 dW_6(s)) + \int_0^t \frac{1}{H_2} (+G_7 dW_7(s) + G_8 dW_8(s)) + \int_0^t \frac{1}{W_H} (G_9 dW_9(s) - G_{10} dW_{10}(s)),$$

où

$$C = 7\mu + \delta_H + 2\tau_1 + \tau_2 + 2\sigma(1+\theta) + \beta_H \frac{\Lambda}{\mu} (1+\eta_2+\eta_H).$$

En prenant l'espérance mathématique des termes de (4.33) ceci devient

$$\mathbf{E}[U(X(t))] \le Ct + (\mathbf{E}[\int_0^t \frac{1}{S}(G_2 dW_2(s) + G_3 dW_3(s))]$$

$$+\mathbf{E}\left[\int_{0}^{t} \frac{1}{H_{1}}(G_{4}dW_{4}(s) + G_{5}dW_{5}(s) + G_{6}dW_{6}(s))\right]$$
$$+\mathbf{E}\left[\int_{0}^{t} \frac{1}{H_{2}}(G_{7}dW_{7}(s) + G_{8}dW_{8}(s))\right] + \mathbf{E}\left[\int_{0}^{t} \frac{1}{W_{H}}(G_{9}dW_{9}(s) - G_{10}dW_{10}(s))\right]\right).$$

Maintenant, introduisons dans cette preuve le lemme suivant provenant de [86].

Lemme 4.2.4. La variation quadratique de l'intégrale stochastique $\int_0^t Y(s)dW(s) \operatorname{est} \int_0^t Y^2(s)ds \leq Ct$. Alors la loi forte de grand nombre pour les martingales locale implque que :

(4.34)
$$\lim_{t \to +\infty} \frac{1}{t} \int_0^t Y(s) dW(s) = 0 \quad p.s.$$

En apliquant le Lemme 4.2.4, nous avons :

$$\mathbf{E}\left[\int_{0}^{t} \frac{1}{S} (G_{2}dW_{2}(s) + G_{3}dW_{3}(s))\right] = 0;$$

$$\mathbf{E}\left[\int_{0}^{t} \frac{1}{H_{1}} (G_{4}dW_{4}(s) + G_{5}dW_{5}(s) + G_{6}dW_{6}(s))\right] = 0;$$

$$\mathbf{E}\left[\int_{0}^{t} \frac{1}{H_{2}} (+G_{7}dW_{7}(s) + G_{8}dW_{8}(s))\right] = 0;$$

$$\mathbf{E}\left[\int_{0}^{t} \frac{1}{W_{H}} (G_{9}dW_{9}(s) - G_{10}dW_{10}(s))\right] = 0.$$

Alors, nous avons pour tout $t \ge 0$:

(4.35)
$$\mathbf{E}[U(X(\min(t,\tau_{\rho})))] \le C\min(t,\tau_{\rho}) \le Ct.$$

Dès que $V(X(min(t, \tau_{\rho}))) > 0$, alors

$$\begin{aligned} \mathbf{E}[V(X(\min(t,\tau_{\rho})))] &= \mathbf{E}[V(X(\min(t,\tau_{\rho})))\mathbf{1}_{(\tau_{\rho} \leq t)}] + \mathbf{E}[V(X(\min(t,\tau_{\rho}))\mathbf{1}_{(\tau_{\rho} > t)})] \\ &\geq \mathbf{E}[V(X(\min(t,\tau_{\rho}))\mathbf{1}_{(\tau_{\rho} \leq t)}], \end{aligned}$$

où $\mathbf{1}_A$ est la fonction charactéristique de A.

Il existe quelques composantes de $X(\tau_\rho)$ égales à $\rho,$ par conséquent

$$U(X(\tau_{\rho})) \ge -ln(\frac{\mu\rho}{\Lambda}).$$

D'où

$$\mathbf{E}[U(X(\min(t,\tau_{\rho}))] \ge -ln(\frac{\mu\rho}{\Lambda})\mathbf{P}(\tau_{\rho} \le t).$$

L'inéquation (4.32) et lemme 4.2.4 give, pour tout $t \ge 0$

(4.36)
$$\mathbf{P}(\tau_{\rho} \le t) \le \frac{-Ct}{\ln(\frac{\mu\rho}{\Lambda})}$$

En prenant $\rho \longrightarrow 0$ dans (4.36), nous obtenons $t \ge 0$

$$\mathbf{P}(\tau \le t) = 0.$$

Donc $\mathbf{P}(\tau = \infty) = 1$. comme $\tau_{\rho} \ge \tau$ alors $\tau_{\rho} = \tau = \infty$ p.s. Ceci met fin à la preuve du théorème.

4.2.2.2 Stabilité du point d'équilibre aléatoire

Théorème 4.2.5. [29, 30]

Le modèle stochastique (3.37) admet un point d'équilibre aléatoire sans VIH/SIDA (Disease-Free random Equilibrium) $[X^0 = \left(\frac{\Lambda}{\mu}, 0, 0, 0\right)]$ qui est exponentiellement p-stable si $p \ge 2$ et globale-ment asymptotiquement stable.

Preuve: Par translation, nous pouvons toujours ramener un point d'équilibre endémique aléatoire X_e à $X_e = 0$ comme le cas dans [105].

L'existence de X^0 , un point d'équilibre aléatoire sans VIH/SIDA est prouvée par un changement de variable ci-dessous pour le modèle stochastique (3.37).

(4.37)
$$\widetilde{S}_t = \frac{\Lambda}{\mu} - S_t.$$

Par conséquent, le modèle stochastique (3.37) s'écrit

(4.38)
$$d\widetilde{X}_t = \widetilde{f}(t, \widetilde{X}_t)dt + \widetilde{G}(t, \widetilde{X}_t)d\widetilde{W}_t,$$

où $\widetilde{X} = (\widetilde{S}, H_1, H_2, W_H), \ \widetilde{W} = (W_i), i = 2, 3, ..., 10.,$

(4.39)
$$\widetilde{f}(t,\widetilde{X}_t) = \begin{pmatrix} \widetilde{\lambda}_H(\frac{\Lambda}{\mu} - \widetilde{S}_t) - \mu \widetilde{S}_t \\ \widetilde{\lambda}_H(\frac{\Lambda}{\mu} - \widetilde{S}_t) - (\mu + \sigma + \tau_1)H_{1t} \\ \sigma H_{1t} - (\mu + \delta_H + \tau_2)H_{2t} + \sigma \theta W_{Ht} \\ \tau_1 H_{1t} + \tau_2 H_{2t} - (\mu + \sigma \theta)W_{Ht} \end{pmatrix},$$

Le bruit $\widetilde{G}=\widetilde{G}(t,\widetilde{X}_t)$ est une matrice (4×9) donnée par

$$(4.40) \qquad \qquad \widetilde{G} = \begin{pmatrix} \widetilde{G}_{12} & \widetilde{G}_{13} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \widetilde{G}_{23} & G_{24} & G_{25} & G_{26} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & G_{35} & 0 & G_{37} & G_{38} & +G_{39} & 0 \\ 0 & 0 & 0 & 0 & G_{46} & 0 & G_{48} & G_{49} & G_{410} \end{pmatrix},$$

avec

$$\widetilde{G}_{12} = \sqrt{\mu \widetilde{S}}, \ \widetilde{G}_{13} = \widetilde{G}_{23} = \sqrt{\widetilde{\lambda}_H (\frac{\Lambda}{\mu} - \widetilde{S})}, \ \widetilde{\lambda}_H = \beta_H \frac{H_1 + \eta_2 H_2 + \eta_H W_H}{(\frac{\Lambda}{\mu} - \widetilde{S}) + H_1 + H_2 + W_H}.$$

L'existence d'un point d'équilibre aléatoire sans maladie du modèle (4.66) donne celui de (3.37). En effet, Notons par $\widetilde{X}(0) \equiv 0 \in \mathbf{R}^4$. Les égalités $\widetilde{f}(t,0) = 0$ et $\widetilde{G}(t,0) = 0$ sont verifiées pour $t \geq 0$. Ainsi $\widetilde{X}(0)$ est un point d'équilibre aléatoire sans maladie du modèle (4.66), alors nous avons

$$\tilde{S} = 0, \ H_1 = 0, \ H_2 = 0, \ W_H = 0,$$

4.2 Analyse de deux modèles du VIH/SIDA

donnant $S = \frac{\Lambda}{\mu}$, $H_1 = 0$, $H_2 = 0$, $W_H = 0$, i.e., $X^0 = (\frac{\Lambda}{\mu}, 0, 0, 0)$ est un point d'équilibre aléatoire sans maladie du modèle (3.37).

Maintenant, considérons la fonction de Lyapunov :

(4.41)
$$V = \frac{1}{2p} \left[K \left(\frac{\Lambda}{\mu} - S \right)^p + K_1 H_1^p + K_2 H_2^p + K_3 W_H^p \right]$$

avec $K > 0, K_1 > 0, K_2 > 0, K_3 > 0, p \ge 2$. Alors

$$\mathcal{A}V = -\left[\frac{K\Lambda\mu}{\Lambda-\mu S}(\frac{\Lambda}{\mu}-S)^{p}+K_{1}(\mu+\sigma+\tau_{1})H_{1}^{p}+K_{2}(\mu+\delta_{H}+\tau_{2})H_{2}^{p}+\right.$$

$$+K_{3}(\mu+\sigma\theta)W_{H}^{p}]+K\mu S(\frac{\Lambda}{\mu}-S)^{p-1}+K\lambda_{H}S(\frac{\Lambda}{\mu}-S)^{p-1}+K_{1}\lambda_{H}SH_{1}^{p-1}+$$

$$+K_{2}\sigma H_{1}H_{2}^{p-1}+K_{2}\sigma\theta W_{H}H_{2}^{p-1}+K_{3}\tau_{1}H_{1}W_{H}^{p-1}+K_{3}\tau_{2}H_{2}W_{H}^{p-1}+$$

$$+\frac{1}{4}(p-1)[K\sum_{i=1}^{3}G_{i}^{2}(\frac{\Lambda}{\mu}-S)^{p-2}+K_{1}\sum_{i=2,\ i\neq3}^{6}G_{i}^{2}H_{1}^{p-2}+K_{2}\sum_{i=6}^{9}G_{i}^{2}H_{2}^{p-2}+$$

$$+K_{3}(G_{5}^{2}W^{p-2}+G_{9}^{2}W_{H}^{p-2}+G_{10}^{2}W_{H}^{p-2})]$$

L'application du lemme 1.4.3 et du théorème 1.5.3, nous permet d'obtenir finalement

$$\mathcal{A}V \le -K\mu(\frac{\Lambda}{\mu} - S)^p - K_1(\mu + \sigma + \tau_1)H_1^p - K_2(\mu + \delta_H + \tau_2)H_2^p - K_3(\mu + \sigma\theta)W_H^p]$$

Tous les coefficients $(\frac{\Lambda}{\mu} - S)^p$, H_1^p , H_2^p et W_H^p de $\mathcal{A}V$ sont négatifs (c'était nécessaire à démontrer). Par conséquent, $X^0 = (\frac{\Lambda}{\mu}, 0, 0, 0)$ est exponentiellement p-stable $(p \ge 2)$.

Pour, p = 2, nous disons que X^0 est exponentiellement stable en moyenne carrée. Dans le sens de Lyapunov, X^0 est globalement asymptotiquement stable. Ceci marque la fin de la preuve de ce théorème.

4.2.2.3 Nombre de reproduction effective et effet du traitement

L'effet du traitement sur la dynamique stochastique du VIH/SIDA peut être mis en évidence grâce au nombre de reproduction effective qui se détermine à partir du modèle moyen du modèle stochastique du VIH/SIDA (3.37). Notons les valeurs moyennes des variables d'état du modèle (3.37) par :

$$n_S = \mathbf{E}[S], \ n_{H_1} = \mathbf{E}[H_1], \ n_{H_2} = \mathbf{E}[H_2] \ et \ n_{W_H} = \mathbf{E}[W_H]$$

où $\mathbf{E}[.]$ est l'opérateur désignant l'espérance mathématique.

Alors ces valeurs moyennes des variables d'état vérifient le système (4.43) suivant connu comme

modèle moyen de la dynamique stochastique du VIH/SIDA :

(4.43)
$$\begin{cases} \frac{dn_{S}}{dt} = \Lambda - \beta_{H} \mathbf{E}[S\phi_{X}] - \mu n_{S}, \\ \frac{dn_{H_{1}}}{dt} = \beta_{H} \mathbf{E}[S\phi_{X}] - (\mu + \sigma + \tau_{1})n_{H_{1}}, \\ \frac{dn_{H_{2}}}{dt} = \sigma n_{H_{1}} - (\mu + \delta_{H} + \tau_{2})n_{H_{2}} + \sigma \theta n_{W_{H}}, \\ \frac{dn_{W_{H}}}{dt} = \tau_{1} n_{H_{1}} + \tau_{2} n_{H_{2}} - (\mu + \sigma \theta) n_{W_{H}}, \end{cases}$$

où

$$\phi_X = \frac{H_1 + \eta_2 H_2 + \eta_H W_H}{S + H_1 + H_2 + W_H}.$$

Ce modèle moyen a les propriétés suivantes :

- le modèle moyen (4.43) admet un point d'équilibre sans maladie $P^0 = (n_S^0, n_{H_1}^0, n_{H_2}^0, n_{W_H}^0)^T = \left(\frac{\Lambda}{\mu}, 0, 0, 0\right)^T$ qui est globalement asymptotiquement stable si R_0^s , nombre de reproduction de base du modèle moyen, est inferieur à 1.
- Le nombre de reproduction effective R_{ef} du modèle moyen (4.43) est donné par

(4.44)
$$R_{ef} = \frac{\mathbf{E}[S\phi_X]}{n_{H_1}(1 + \eta_2 \pi_2 + \eta_H \pi_H)} R_0^{\tau},$$

où R_0^{τ} est le nombre de reproduction de base du modèle déterministe (3.36) avec traitement.

– Le nombre des séropositifs croit si $R_{ef} > 1$ et il décroit si $R_{ef} < 1$. Lorsque le nombres des séropositifs augmente, alors le nombre des individus susceptibles de contracter le VIH diminue jusqu'à atteindre une valeur critique. Cette valeur critique est donnée par la condition $R_{ef} = 1$ (voir FIGURE 6.8).

4.3 Analyse de deux modèles de TB

4.3.1 Analyse du modèle déterministe de TB

4.3.1.1 Positivité de solutions et trajectoires bornées

Lemme 4.3.1. Soit $X_0 = (S(0), L(0), T(0), R(0))$ un état initial positif donné i.e $X_0 \in \mathbb{R}^4_+$. Alors les solutions $X(t) = (S_t, L_t, T_t, R_t)$ du modèle (3.49) demeurent positives i.e. $X(t) \in \mathbb{R}^4_+ \ \forall t > 0$.

Preuve: Soit $X_0 = (S(0), L(0), T(0), R(0)) \in \mathbb{R}^4_+$ un état initial donné. Posons

$$\bar{t} >= \sup \{t > 0 : S(t) > 0, L(t) > 0, T(t) > 0, R(t) > 0\}.$$

Ainsi $\bar{t} > 0$. Considérons la première équation de (3.49) :

$$\frac{dS}{dt} = \Lambda - \lambda_I S - \mu S$$

Alors nous avons

(4.45)
$$\frac{d}{dt} \left[S(t) exp \left\{ \mu t + \int_0^t \lambda_I(\tau) d\tau \right\} \right] \ge \Lambda \exp \left\{ \mu t + \int_0^t \lambda_I(\tau) d\tau \right\}.$$

Le passage à l'integrale de 0 à t^+ donne

$$S(\bar{t}) \exp\left\{\mu\bar{t} + \int_{0}^{\bar{t}}\lambda_{I}(\tau)d\tau\right\} - S(0) \ge \int_{0}^{\bar{t}}\Lambda\exp\left\{\mu x + \int_{0}^{x}\lambda_{I}(\tau)d\tau\right\}dx$$
$$S(\bar{t}) \ge S(0) \exp\left\{-\left(\mu\bar{t} + \int_{0}^{\bar{t}}\lambda_{I}(\tau)d\tau\right)\right\}$$
$$+ \exp\left\{-\left(\mu\bar{t} + \int_{0}^{\bar{t}}\lambda_{I}(\tau)d\tau\right)\right\} \cdot \int_{0}^{\bar{t}}\Lambda\exp\left\{\mu x + \int_{0}^{x}\lambda_{I}(\tau)d\tau\right\}dx > 0$$

. D'où nous obtenons $S(\bar{t}) > 0$ i.e. que S(t) > 0 pout tout t > 0. De la manière similaire, nous pouvons prouver que L(t) > 0, T(t) > 0, R(t) > 0 pout tout t > 0. Ceci marque la fin de la preuve.

Lemme 4.3.2. Toutes les trajectoires décrites par les solutions $X(t) = (S_t, L_t, T_t, R_t \in \mathbb{R}^4_+ du modèle (3.49) sont bornées, i.e que pour tout <math>\varepsilon > 0$ le domaine borné

$$\Omega_{\varepsilon} = \left\{ X_t = (S, L_1, T_2, R) \in \mathbb{R}^4_+ : N \le \frac{\Lambda}{\mu} + \varepsilon \right\}$$

des solutions X_t est positivement invariant.

Preuve: Le nombre total de la population à la date t est N_t tels que :

$$N_t = S(t) + L(t) + T(t) + R(t) \quad et \quad \frac{dN_t}{dt} = \Lambda - \mu N_t - \delta_T T(t).$$

Il s'en suit que

$$\frac{dN_t}{dt} < \Lambda - \mu N_t$$

Posons $M_t = \Lambda - \mu N_t$. Alors nous obtenons

$$\frac{dM_t}{dt} = -\mu \frac{dN_t}{dt} \ge -\mu M_t \Longrightarrow M_t \ge M_0 e^{-\mu t}$$

Comme $M_t = \Lambda - \mu N_t$ et $M_0 = \Lambda - \mu N_0$, alors nous obtenons pour tout $\varepsilon > 0$:

$$N_t \le \frac{\Lambda}{\mu} + N_0 e^{-\mu t} + \varepsilon.$$

Lorsque $t \to +\infty$ alors $N_t \longrightarrow N_{\infty} \leq \frac{\Lambda}{\mu} + \varepsilon$. Donc toute trajectoire de (3.49) est bornée. Montrons maintenant que le domaine Ω_{ε} est positivement invariant. En effet, soit *h* une application $\mathbb{R}^4_+ \longrightarrow \mathbb{R}$ qui à x = (S, L, T, R) associe h(x) = S + L + T + R

h is différentiable et son gradient est $\nabla h = (1, 1, 1, 1), \quad \forall x \in \mathbb{R}^4_+.$

De plus, $\forall x \in h^{-1}(\frac{\Lambda}{\mu} + \varepsilon)$, le produit scalaire de deux fonctions vectorielles d et h est tel que :

$$\langle d(x), \nabla(h(x)) \rangle = \dot{S} + \dot{L} + \dot{T} + \dot{R} \quad avec \quad d(x) = \left(\dot{S}, \dot{L}, \dot{T}, \dot{R}\right)$$

soit

$$\langle d(x), \nabla(h(x)) \rangle = N = \Lambda - \mu N - \delta_T T.$$

Mais $\forall x \in h^{-1}(\frac{\Lambda}{\mu} + \varepsilon)$, $N = \frac{\Lambda}{\mu} + \varepsilon$ ainsi pour $\varepsilon > 0$, nous avons

$$\forall x \in h^{-1}(\frac{\Lambda}{\mu} + \varepsilon), \quad \langle d(x), \nabla(h(x)) \rangle = \dot{N} = -\mu\varepsilon - \delta_T T \le 0$$

Grâce donc au théorème de Barrière, nous concluons que Ω_{ε} est positivement invariant.

4.3.1.2 Existence et unicité de solutions

Théorème 4.3.1. Soit $S(0), L(0), T(0), R(0) \in \mathbb{R}$. Alors il existe T > 0 et des fonctions continuellement différentiables $S, L, T, R : [0; T[\longrightarrow \mathbb{R}$ tels que $X_t = (S(t), L(t), T(t), R(t))$ soit solution du modèle déterministe (3.49) avec état initial $X_0 = (S(0), L(0), T(0), R(0)) \in \mathbb{R}^4$ i.e. que la solution $X_t \in \mathbb{R}^4$ de (3.49) avec état initial X_0 existe et cette solution est unique.

Preuve: La preuve de ce résultat utilise Théorème 4.1.1. Pour ce faire, considérons la fonction $F : \mathbb{R}^4_+ \longrightarrow \mathbb{R}^4$, définie par $F(x) = (F_1(x), F_2(x), F_3(x), F_4(x))^T$, $\forall x = (S, L, T, R)^T$ tels que :

$$F(x) = \begin{pmatrix} \Lambda - (\mu + \lambda_I)S_t, \\ n\lambda_I S_t - (\mu + \sigma + \lambda_r)L_t + \rho R_t, \\ (1 - n)\lambda_I S_t + (\sigma + \lambda_r)L_t - (\mu + \delta_T + \tau)T_t, \\ \tau T_t - (\mu + \rho)R_t. \end{pmatrix}$$

Alors La fonction F est continue et admet des dérivées partielles du premier ordre ci-dessous :

$$\begin{split} \frac{\partial F_1}{\partial S} &= -\frac{\beta_T (T + \eta_T R) (L + T + R)}{(S + L + T + R)^2} - \mu; \quad \frac{\partial F_1}{\partial L} &= \frac{\beta_T S (T + \eta_T R)}{(S + L + T + R)^2}; \\ \frac{\partial F_1}{\partial T} &= -\frac{\beta_T S (S + L + R - \eta_T R)}{(S + L + T + R)^2}; \quad \frac{\partial F_1}{\partial R} &= -\frac{\beta_T S (S + L + R - T)}{(S + L + T + R)^2}; \\ \frac{\partial F_2}{\partial S} &= \frac{\beta_T [n (T + \eta_T R) (L + T + R) + \eta_T T L]}{(S + L + T + R)^2}; \quad \frac{\partial F_2}{\partial L} &= -\frac{\beta_T [n S (T + \eta_T R) + \eta_T T (S + T + R)]}{(S + L + T + R)^2} - (\mu + \sigma); \\ \frac{\partial F_2}{\partial T} &= -\frac{\beta_T [n S (S + L + R - \eta_T R) - \eta_T L (S + L + R)]}{(S + L + T + R)^2}; \quad \frac{\partial F_2}{\partial R} &= \frac{\beta_T [n S (S + L + R - T)] + \eta_T L T}{(S + L + T + R)^2} + \rho; \\ \frac{\partial F_3}{\partial S} &= \frac{\beta_T [(1 - n) (T + \eta_T R) (L + T + R) - \eta_T T L]}{(S + L + T + R)^2}; \quad \frac{\partial F_3}{\partial L} &= -\frac{\beta_T [(1 - n) S (T + \eta_T R) + \eta_T (S + T + R)]}{(S + L + T + R)^2} + \sigma; \\ \frac{\partial F_3}{\partial T} &= \frac{\beta_T [(1 - n) S (S + L + R - \eta_T R) + \eta_T L (S + L + R)]}{(S + L + T + R)^2} - (\mu + \delta_T + \tau); \quad \frac{\partial F_3}{\partial R} &= \frac{\beta_T [(1 - n) S (\eta_T (S + L + R) - T)] - \eta_T L T}{(S + L + T + R)^2}; \\ \frac{\partial F_4}{\partial S} &= \frac{\partial F_4}{\partial L} = 0; \quad \frac{\partial F_4}{\partial T} = \tau; \quad \frac{\partial F_4}{\partial R} = -(\mu + \rho). \end{split}$$

qui sont toutes continues sur \mathbb{R}^4_+ . Selon Lemme 4.1.1, F est donc localement Lipschitzienne continue sur \mathbb{R}^4_+ . Soit T > 0; pour que toutes les hypothèses du Théorème 4.1.1 soient vérifiées, il reste à montrer pour chaque $i = 1, \dots, 4$. que $F_i(x) \ge 0 \quad \forall x \in \mathbb{R}^4_+, x_i = 0$. En effet, soit $x_1 = S = 0$ et $x_2 = L > 0, x_3 = T > 0$ et $x_4 = R > 0$ alors, $F_1(x) = \Lambda > 0$; $x_2 = L = 0$ et $x_1 = S > 0, x_3 = T > 0$ et $x_4 = R > 0$ alors, $F_2(x) = \frac{\beta_T nS(T + \eta_T R)}{S + T + R} + \rho R > 0$; $x_3 = T = 0$ et $x_1 = S > 0$ L > 0 et $x_4 = R > 0$ alors, $F_3(x) = \frac{\beta_T (1 - n)\eta_T SR}{S + L + R} + \sigma L > 0$; soit enfin $x_4 = R = 0$ et $x_1 = S > 0$ $x_2 = L > 0$ et $x_3 = T > 0$ et $x_1 = S > 0$.

Ainsi par le Théorème 4.1.1, nous concluons que pour $x_0 = (S(0), L(0), T(0), R(0)) \in \mathbb{R}^4_+$, il existe pour tout $t \in [0; T], T > 0$ une unique solution $x_t = (S(t), L(t), T(t), R(t))$ du système $\frac{dx}{dt} = F(x), x(0) = x_0$ équivalent au modèle déterministe (3.49) avec condition initiale $X_0 = (S(0), L(0), T(0), R(0)) = x_0$. Ceci marque la fin.

4.3.1.3 Existence du DFE et Calcul du nombre de reproduction de base

Proposition 4.3.1. Le modèle déterministe (3.49) admet un seul point d'équilibre sans TB (Disease Free Equilibrium) $X^0 = (\frac{\Lambda}{\mu}, 0, 0, 0)^T$ et son taux de reproduction de base R_0 est donné par :

$$R_0 = \frac{\beta_T(\mu + \rho + \tau \eta_T)[(1 - n)\mu + \sigma]}{(\mu + \sigma)[(\mu + \rho)(\mu + \delta_T) + \mu\tau] + \mu\rho\tau}$$

Preuve: Il est évident de trouver l'unique point d'équilibre sans maladie (Disease Free Equilibrium) $X^0 = (\frac{\Lambda}{\mu}, 0, 0, 0)^T$. Pour trouver l'expression de R_0 , appliquons la méthode de Van Den Driessche et de James Watmough pour notre modèle déterministe (3.36). Nous avons

$$\mathcal{F} = \begin{pmatrix} 0 \\ n\lambda_I S_t \\ (1-n)\lambda_I S_t \\ 0 \end{pmatrix} \text{ et, } \mathcal{V} = \begin{pmatrix} \lambda_I S_t + \mu S_t - \Lambda \\ \lambda_r L_t + (\mu + \sigma)L_t - \rho R_t \\ (\mu + \delta_T + \tau)T_t - \lambda_r L_t - \sigma L_t \\ (\mu + \rho)R_t - \tau T_t \end{pmatrix}$$
$$F = \begin{pmatrix} 0 & n\beta_T & n\eta_T \beta_T \\ 0 & (1-n)\beta_T & (1-n)\eta_T \beta_T \\ 0 & 0 & 0 \end{pmatrix} \text{ et, } V = \begin{pmatrix} \mu + \sigma & 0 & -\rho \\ -\sigma & \mu + \delta_T + \tau & 0 \\ 0 & -\tau & \mu + \rho \end{pmatrix}$$

Posons :

$$k_1 = \mu + \sigma, \quad k_2 = \mu + \delta_T + \tau, \quad et \quad k_3 = \mu + \rho$$

Ainsi ,
$$V^{-1} = \frac{1}{k_1 k_2 k_3 - \sigma \rho \tau} \begin{pmatrix} k_2 k_3 & \rho \tau & \rho k_2 \\ \sigma k_3 & k_1 k_3 & \sigma \rho \\ \sigma \tau & \tau k_1 & k_1 k_3 \end{pmatrix} et$$

$$FV^{-1} = \frac{\beta_T}{k_1 k_2 k_3 - \sigma \rho \tau} \begin{pmatrix} \sigma n(k_3 + \eta_T \tau) & k_1 n(k_3 + \eta_T \tau) & n(\sigma \rho + k_1 k_3 \eta_T) \\ \sigma (1 - n)(k_3 + \tau \eta_T) & k_1 (1 - n)(k_3 + \eta_T \tau) & (1 - n)(\sigma \rho + k_1 k_3) \\ 0 & 0 & 0 \end{pmatrix}$$

Les valeurs propres de FV^{-1} sont :

$$R_1 = R_2 = 0 \ et \ R_3 = \beta_T \frac{(\mu + \rho + \eta_T \tau)[(1 - n)\mu + \sigma]}{k_1 k_2 k_3 - \sigma \rho \tau}$$

Donc le taux de reproduction de base R_0 du modèle déterministe (3.36) de l'infection de TB en présence du traitament est :

(4.46)
$$R_0 = \beta_T \frac{(\mu + \rho + \eta_T \tau)[(1 - n)\mu + \sigma]}{k_1 k_2 k_3 - \sigma \rho \tau}$$

avec

$$k_1k_2k_3 - \sigma\rho\tau = (\mu + \sigma)[(\mu + \rho)(\mu + \delta_T) + \mu\tau] + \mu\rho\tau.$$

D'où la fin de la preuve. ■

4.3.1.4 Existence et unicité de l'équilibre endémique

Lemme 4.3.3. Si $R_0 > 1$ alors le modèle déterministe (3.49) admet un unique point d'équilibre endémique $X^* = (S^*, L^*, T^*, R^*)^T$ tels que

(4.47)
$$\begin{cases} S^* = \frac{\Lambda}{\mu + \lambda_I^*}, \\ L^* = \frac{\Lambda \lambda_I^* \{ n[(\mu + \rho)(\mu + \delta_T) + \mu\tau] + \rho\tau \}}{(\mu + \lambda_I^*) \{ (\mu + \sigma + \lambda_r^*)[(\mu + \rho)(\mu + \delta_T) + \mu\tau] + \mu\rho\tau \}}, \\ T^* = \frac{\Lambda \lambda_I^*(\mu + \rho)[(1 - n)\mu + \sigma + \lambda_r^*]}{(\mu + \lambda_I^*) \{ (\mu + \sigma + \lambda_r^*)[(\mu + \rho)(\mu + \delta_T) + \mu\tau] + \mu\rho\tau \}}, \\ R^* = \frac{\Lambda \lambda_I^* \tau[(1 - n)\mu + \sigma + \lambda_r^*]}{(\mu + \lambda_I^*) \{ (\mu + \sigma + \lambda_r^*)[(\mu + \rho)(\mu + \delta_T) + \mu\tau] + \mu\rho\tau \}}. \end{cases}$$

avec λ_I^* lié à λ_r^* par la relation (4.50) vérifie l'équation du second degré :

(4.48)
$$a_2(\lambda_I^*)^2 + a_1\lambda_I^* + a_0 = 0$$

(4.49)

$$\begin{cases}
 a_{2} = \eta_{r}(\mu + \rho)(\mu + \rho + \tau), \\
 a_{1} = (\mu + \rho + \tau\eta_{T}) \Big\{ (\mu + \sigma)(\mu + \rho + \tau) + n\delta_{T}(\mu + \rho) + \mu\tau \Big\} \\
 + \eta_{r}(\mu + \rho)[(\mu + \rho)(\mu + \delta_{T}) + \mu\tau - \beta_{T}(\mu + \rho + \eta_{T}\tau)], \\
 a_{0} = (\mu + \rho + \tau\eta_{T}) \Big\{ (\mu + \sigma)[(\mu + \rho)(\mu + \delta_{T}) + \mu\tau] + \mu\rho\tau \Big\} (1 - R_{0}).
\end{cases}$$

(4.50)
$$\lambda_I^* = \frac{\mu + \rho + \tau \eta_T}{\eta_r (\mu + \rho)} \lambda_r^*$$

Preuve: Un point $X^* = (S^*, L^*, T^*, W_T^*)$ de l'espace des états est un point d'équilibre endémique si seulement s'il est solution du système (4.51) :

$$\int \Lambda - \lambda_I^* S^* - \mu S^* = 0,$$
 (4.51.1)

(4.51)
$$\begin{cases} n\lambda_I^* S^* - (\mu + \sigma + \lambda_r^*)L^* + \rho R^* = 0, \\ (1 - \pi)\lambda^* S^* + (\sigma + \lambda^*)L^* - (\mu + \delta_T + \sigma)T^* = 0 \end{cases}$$
(4.51.2)

$$(1-n)\lambda_I^* S^* + (\sigma + \lambda_r^*)L^* - (\mu + o_T + \tau)I^* = 0,$$

$$(4.51.3)$$

$$\tau T^* - (\mu + \rho)R^* = 0.$$

$$(4.51.4)$$

L'équation (4.51.1) donne :

$$S^* = \frac{\Lambda}{\mu + \lambda_I^*}$$

L'expression de R^* en fonction de T^* dans (4.51.4) donne :

En substituant S^* et R^* par leurs expressions respectives ci-dessus dans (4.51.2), on trouve celle de L^* en fonction de T^* définie par :

(4.53)
$$L^* = \frac{n\Lambda\lambda_I^*(\mu+\rho) + \rho\tau(\mu+\lambda_I^*)T^*}{(\mu+\lambda_I^*)(\mu+\rho)(\mu+\sigma+\lambda_r^*)}$$

En substituant S^* et L^* par leurs expressions dans (4.51.3), on trouve T^* défini par :

$$T^* = \frac{\Lambda \lambda_I^* (\mu + \rho) [(1 - n)\mu + \sigma + \lambda_r^*]}{(\mu + \lambda_I^*) \{(\mu + \sigma + \lambda_r^*) [(\mu + \rho)(\mu + \delta_T) + \mu\tau] + \mu\rho\tau\}}$$

En substituant l'expression de T^* ci-dessus dans (4.53) et dans (4.52), on trouve L^* et R^* définis respectivement par :

$$L^* = \frac{\Lambda \lambda_I^* \{ n[(\mu + \rho)(\mu + \delta_T) + \mu\tau] + \rho\tau \}}{(\mu + \lambda_I^*) \{ (\mu + \sigma + \lambda_r^*)[(\mu + \rho)(\mu + \delta_T) + \mu\tau] + \mu\rho\tau \}}$$
$$R^* = \frac{\Lambda \lambda_I^* \tau[(1 - n)\mu + \sigma + \lambda_r^*]}{(\mu + \lambda_I^*) \{ (\mu + \sigma + \lambda_r^*)[(\mu + \rho)(\mu + \delta_T) + \mu\tau] + \mu\rho\tau \}}.$$

D'où les résultats recherchés en (4.47). En substituant ces résultats de (4.47) dans la relation cidessous

$$N^* = S^* + L^* + T^* + R^* = \frac{\beta_T(\mu + \rho + \tau \eta_T)}{\lambda_I^*(\mu + \rho)} T^*$$

puis en éliminant λ_r^* grâce à la relation (4.50), on obtient l'équation (4.48) avec un coefficient $a_2 > 0$.

Si $R_0 > 1$ c'est-à-dire $a_0 < 0$ alors d'après la règle du signe de Descartes, cette équation (4.48) admet une solution positive

$$\lambda_I^* = \frac{-a_1 + \sqrt{a_1^2 - 4a_2a_0}}{2a_2},$$

elle est à partie réelle positive et elle correspond à l'équilibre endémique recherché X^* dont les coordonnées sont déterminées en y substituant λ_I^* et λ_r^* .

Si $R_0 = 1$ c'est-à-dire $a_0 = 0$, alors l'équation (4.48) admet une solution nulle correspondant à X^0 l'unique point d'équilibre sans TB et admet l'autre solution à partie réelle négative si $a_1 > 0$ correspondant à l'équilibre endémique biologiquement non pertinent ou à partie réelle positive si $a_1 < 0$ correspondant à l'unique point endémique recherché.

Si $R_0 < 1$ c'est-à-dire $a_0 > 0$, alors $a_2 a_0 > 0$ et comme le discriminant de (4.48) est positif c'està-dire que $a_1^2 - 4a_2 a_0 > 0$, il s'en suit que l'équation (4.48) admet deux solutions réelles négatives qui correspondent à deux points d'équilibres non pertinents.

4.3.1.5 Valeur critique de R_0

Lemme 4.3.4. La valeur critique R_0^C du nombre de reproduction de base R_0 est telle que

$$R_0^C = 1 - \frac{a_1^2}{4\eta_r(\mu+\rho)(\mu+\rho+\tau\eta_T)\{(\mu+\sigma)[(\mu+\rho)(\mu+\delta_T)+\mu\tau]+\mu\rho\tau\}}$$

Preuve: Cette valeur critique R_0^C du taux de reproduction de base R_0 se détermine lorsque le discriminant de l'équation (4.48) est nul c'est-à-dire que $a_1^2 - 4a_2a_0 = 0$; soit l'équation :

$$a_1^2 - 4a_2(\mu + \rho + \tau\eta_T) \Big\{ (\mu + \sigma)[(\mu + \rho)(\mu + \delta_T) + \mu\tau] + \mu\rho\tau \Big\} (1 - R_0) = 0$$

qui donne $R_0 = R_0^C$. Ceci marque la fin de la preuve.

4.3.1.6 Stabilité des points d'équilibres

Théorème 4.3.2. *l'unique point d'équilibre* X^0 *sans TB du modèle déterministe* (3.49) *est localement et globalement asymptotiquement stable lorsque* $R_0 < 1$ *et instable lorsque* $R_0 > 1$.

Preuve: La stabilité locale du DFE est évidente car elle est une conséquence de la méthode de Van den Driessch et James Watmough pour le calcul du nombre de reproduction de base [72] : le DFE $X^0 = (\frac{\Lambda}{\mu}, 0, 0, 0)$ est localement stable si $R_0 < 1$ et instable si $R_0 > 1$.

Pour démontrer la stabilité globale de X^0 , appliquons le théorème de Castillo Chavez (2002) [18]. Pour le modèle (3.49), définissons

(4.54)
$$\begin{cases} \dot{X}_t = F(X_t, Y_t) \\ \dot{Y}_t = G(X_t, Y_t), & tel \ que \ G(X_t, 0) = 0 \end{cases}$$

où $X_t = S_t$, $Y_t = (L_t, T_t, R_t)$ et $X^0 = (S^*, 0, 0, 0)$ avec $S^* = \frac{\Lambda}{\mu}$

$$F(X_t, Y_t) = \left(\Lambda - \lambda_I S_t - \mu S_t\right) \text{ et } G(X_t, Y_t) = \begin{pmatrix} n\lambda_I S_t - (\mu + \sigma + \lambda_r)L_t + \rho R_t \\ (1 - n)\lambda_I S_t + (\sigma + \lambda_r)L_t - (\mu + \delta_T + \tau)T_t \\ \tau T_t - (\mu + \rho)R_t \end{pmatrix}.$$

On a $G(X_t, 0) = 0$ et $F(X_t, 0) = \left(\Lambda - \mu S_t\right).$

Vérifions maintenant si les conditions C 1 et C 2 du Théorème .0.2 de Castillo-Chavez (2002) [18] rappelé en Appendice 6.2.4, sont satisfaites :

C 1
$$F(S^*, Y) = F(S^*, 0)$$

C 2 $G(X_t, Y_t) = AY_t - \hat{G}(X_t, Y_t), \qquad \hat{G}(X_t, Y_t) \ge 0 \text{ pour tout } (X_t, Y_t)$

où

$$A = \begin{pmatrix} -(\mu + \sigma) & n\beta_T & n\eta_T\beta_T + \rho \\ \sigma & (1 - n)\beta_T - (\mu + \delta_T + \tau) & (1 - n)\eta_T\beta_T \\ 0 & \tau & -(\mu + \rho) \end{pmatrix},$$
$$\widehat{G}(X, Y) = \begin{pmatrix} \widehat{G}_1(X, Y) \\ \widehat{G}(X, Y)_2 \\ \widehat{G}_3(X, Y) \end{pmatrix} = \begin{pmatrix} n\beta_T T_t - n\lambda_I S_t + \lambda_r L_t + n\eta_T\beta_T R_t \\ (1 - n)\beta_T T_t - (1 - n)\lambda_T S_t - \lambda_r L_t + (1 - n)\eta_T\beta_T R_t \\ 0 \end{pmatrix}.$$

En factorisant les composantes de la matrice colonne $\widehat{G}(X,Y)_i$, i = 1; 2; 3., on trouve :

$$\begin{cases} \widehat{G}_1(X_t, Y_t) = \beta_T [n(T_t + \eta_T R_t)(1 - \frac{S_t}{N}) + \eta_T \frac{T_t}{N} L_t] \ge 0\\ \widehat{G}_2(X_t, Y_t) = \beta_T [(1 - n)(T_t + \eta_T R_t)(1 - \frac{S_t}{N}) - \eta_T \frac{T_t}{N} L_t]\\ \widehat{G}_3(X_t, Y_t) = 0 \end{cases}$$

$$\widehat{G}_2(X_t, Y_t) = \beta_T[(1-n)(1-\frac{S_t}{N})(T_t + \eta_T) - \eta_r \frac{T_t}{N} L_t] \ge 0$$

d'où

$$\eta_r \le (1-n)(1-\frac{S_t}{N})(1+\frac{\eta_T R_t}{T_t})\frac{N}{L_t}$$

Ainsi donc les conditions (C_1) et (C_2) sont satisfaites si nous avons

$$\eta_r \le (1-n)(1-\frac{S_t}{N})(1+\frac{\eta_T R_t}{T})\frac{N}{L_t}.$$

Par conséquent X^0 est globalement asymptotiquement stable si

$$\eta_r \le (1-n)(1-\frac{S_t}{N})(1+\frac{\eta_T R_t}{T})\frac{N}{L_t}$$

Cette inégalité traduit la valeur maximale que peut prendre le paramètre η_r de réinfection des individus rétablis afin que le phénomène de bifurcation de l'équilibre soit retardé. Ceci marque la fin de la preuve.

Théorème 4.3.3. Le point d'équilibre endémique X^* du modèle déterministe (3.49) est localement asymptotiquement stable si $R_0 > 1$.

Preuve: Supposons que $R_0 > 1$, alors l'infection de TB persiste au sein de la population à l'équilibre endémique. Le Théorème .0.2 de Castillo Chavez (2004) [19] en Appendice 6.2.4, permet de prouver la stabilité locale asymptotique de X^* . Faisons le changement des variables suivant afin d'appliquer le théorème de Castillo Chavez (2004) [19] qui résulte de la théorie du centre de variété ou Centre Manifold Theory [17]. Pour ce faire, posons $S = x_1$, $L = x_2$, $T = x_3$ et $R = x_4$. Alors, nous avons

$$\lambda_I = \beta_T \frac{x_3 + \eta_T x_4}{N}, \lambda_r = \beta_T \frac{\eta_r x_3}{N}$$
, avec $N = x_1 + x_2 + x_3 + x_4, X = (x_1, x_2, x_3, x_4)^T$, et $\frac{dX}{dt} = (f_1, f_2, f_3, f_4)$ tels le modèle (3.49) devient comme suit :

$$(4.55) \begin{cases} \dot{x}_1 = f_1 = \Lambda - \beta_T \frac{x_1 x_3 + \eta_T x_4 x_1}{x_1 + x_2 + x_3 + x_4} - \mu . x_1 \\ \dot{x}_2 = f_2 = n \beta_T \frac{x_1 x_3 + x_4 x_1}{x_1 + x_2 + x_3 + x_4} + \rho x_4 - \eta_r \beta_T \frac{x_2 x_3}{x_1 + x_2 + x_3 + x_4} - (\mu + \alpha) x_2 \\ \dot{x}_3 = f_3 = (1 - n) \beta_T \frac{x_1 x_3 + x_4 x_1}{x_1 + x_2 + x_3 + x_4} + \eta_r \beta_T \frac{x_2 x_3}{x_1 + x_2 + x_3 + x_4} + \alpha x_2 - (\mu + \delta_T + \tau_3) x_3 \\ \dot{x}_4 = f_4 = \tau_3 x_3 - (\mu + \rho) x_4 \end{cases}$$

La matrice jacobienne $J_{X^0}(\beta_T)$ au point d'équilibre sans maladie X^0 du système (4.55) est donnée par :

(4.56)
$$J(X^{0}) = \begin{pmatrix} -\mu & 0 & -\beta_{T} & -\eta_{T}\beta_{T} \\ 0 & -(\mu+\sigma) & n\beta_{T} & n\eta_{T}\beta_{T}+\rho \\ 0 & \sigma & (1-n)\beta_{T}-(\mu+\delta_{T}+\tau) & (1-n)\eta_{T}\beta_{T} \\ 0 & 0 & \tau & -(\mu+\rho) \end{pmatrix}$$

 $J_{X^0}(\beta_T)$ admet au moins une valeur propre simple à partie réelle positive. La valeur dominante de ces valeurs propres correspond à R_0 donné par (4.15). L'assertion **A 1** est donc vérifiée.

Soit β_T^* un paramètre de bifurcation. Alors sa détermination par la résolution de $R_0 = 1$ donne :

$$\beta_T = \beta_T^* = \frac{(\mu + \sigma)(\mu + \delta_T + \tau)(\mu + \rho) - \sigma\rho\tau}{(\mu + \rho + \eta_T \tau)[\sigma + (1 - n)\mu]}$$

La théorie du centre de variété [17] peut être utilisée pour l'analyse du système (4.56) lorsque $\beta_T = \beta_T^*$. Ainsi la matrice jacobienne $J_{X^0}(\beta_T^*)$ du système (4.56) en X^0 lorsque $\beta_T = \beta_T^*$ admet une valeur propre nulle. Pour vérifier l'assertion **A 2**, notons par $u = (u_1, u_2, u_3, u_4)^T$ le vecteur propre droit de $J_{X^0}(\beta_H^*)$ associé à la valeur propre nulle. Alors on obtient le système linéaire :

(4.57)
$$J_{X^0}(\beta_T^*)u = 0$$

qui a pour solution $u = (u_1, u_2, u_3, u_4)^T$ tels que :

$$u_{1} = -\frac{\beta_{T}^{*}(\mu + \rho + \eta_{T}\tau)}{\mu(\mu + \rho)}u_{3}, \qquad u_{2} = \frac{n\beta_{T}^{*}(\mu + \rho + \eta_{T}\tau) + \rho\tau}{(\mu + \sigma)(\mu + \rho)}u_{3}, \qquad u_{3} = u_{3} \quad et$$
$$u_{4} = \frac{\tau}{\mu + \rho}u_{3} = \frac{\sigma + [(1 - n)\beta_{T}^{*} - (\mu + \delta_{T} + \tau)]}{(1 - n)\eta_{T}\beta_{T}^{*}}u_{3} \qquad u_{3} > 0$$

Maintenant, notons par $v = (v_1, v_2, v_3, v_4)^T$ le vecteur propre gauche de $J_{X^0}(\beta_T^*)$ associé à la valeur propre nulle. Alors on obtient le système linéaire :

(4.58)
$$v^T J_{X^0}(\beta_T^*) = 0$$

qui a pour solution $v = (v_1, v_2, v_3, v_4)^T$ tels que :

$$v_1 = 0, \quad v_2 = \frac{\sigma}{\mu + \sigma} v_3, \quad v_3 = v_3, \quad v_4 = \frac{\sigma \rho + [(1 - n)(\mu + \rho) + \sigma n]\eta_T \beta_T^*}{(\mu + \sigma)(\mu + \rho)} v_3, \quad v_3 > 0$$

Les calculs du paramètre $a = \sum_{k,i,j=1}^{n} v_k u_i u_j \frac{\partial^2 f_k}{\partial x_i \partial x_j} (X^0)$ donnent le résultat (4.59) :

$$(4.59) \ a = \frac{-2\beta_T^* \mu u_3^2 v_3}{\Lambda(\mu+\sigma)} \{ [(1-n)\mu+\sigma](1+Q) + \alpha_2 [n^2 + (1-n)^2(\mu+\sigma) - \eta_r((1-n)(\mu+\sigma) - n\sigma)] \}$$

où $Q = \alpha_4 [1 + \eta_T (1 + \alpha_2 + \alpha_4)]$, soit $Q = \frac{\tau[(\mu + \sigma)(\mu + \rho)(1 + \eta_T) + \eta_T [n\beta_T^*(\mu + \rho + \eta_T \tau) + \tau(\mu + \sigma + \rho)]}{(\mu + \sigma)(\mu + \rho)^2}.$

En effet, les dérivées partielles non nulles de f_i i = 1, 2, 3, 4. en X^0 pour $\beta_T = \beta_T^*$ sont :

$$\frac{\partial^2 f_2}{\partial x_3^2} = \frac{-2n\beta_T^*\mu}{\Lambda}, \quad \frac{\partial^2 f_2}{\partial x_4^2} = \frac{-2n\beta_T^*\eta_T\mu}{\Lambda}, \quad \frac{\partial^2 f_3}{\partial x_3^2} = \frac{-2(1-n)\beta_T^*\mu}{\Lambda}, \quad \frac{\partial^2 f_3}{\partial x_4^2} = \frac{-2(1-n)\eta_T\beta_T^*\mu}{\Lambda}, \quad \frac{\partial^2 f_3}{\partial x_4^2} = \frac{-2(1-n)\eta_T\beta_T^*\mu}{\Lambda}, \quad \frac{\partial^2 f_2}{\partial x_3 \partial x_4} = \frac{-n\beta_T^*\mu}{\Lambda}(1+\eta_T), \quad \frac{\partial^2 f_2}{\partial x_2 \partial x_3} = -\frac{\beta_T^*\mu}{\Lambda}(1-n-\eta_r), \quad \frac{\partial^2 f_2}{\partial x_2 \partial x_4} = \frac{-(1-n)\eta_T\beta_T^*\mu}{\Lambda}, \quad \frac{\partial^2 f_2}{\partial x_3 \partial x_4} = \frac{-(1-n)\beta_T^*\mu}{\Lambda}(1+\eta_T).$$
D'où nous obtenons

D'où nous obtenons

$$a = -\frac{2n\mu\beta_T^*}{\Lambda}v_2[u_3^2 + \eta_T u_4^2 + (n+\eta_r)u_2u_3 + \eta_T u_2u_4 + (1+\eta_T)u_3u_4]$$

$$-\frac{2(1-n)\mu\beta_T^*}{\Lambda}v_3[u_3^2 + \eta_T u_4^2 + (1-n-\eta_r)u_2u_3 + \eta_T u_2u_4 + (1+\eta_T)u_3u_4]$$

Posons $u_1 = \alpha_1 u_3$, $u_2 = \alpha_2 u_3$, $u_4 = \alpha_4 u_3$ où

$$\alpha_1 = -\frac{\beta_T^*(\mu + \rho + \eta_T \tau_3)}{\mu(\mu + \rho)}, \quad \alpha_2 = \frac{n\beta_T^*(\mu + \rho + \eta_T \tau) + \rho\tau}{(\mu + \sigma)(\mu + \rho)}, \quad et \ \alpha_4 = \frac{\tau}{\mu + \rho}.$$

Alors l'expression de *a* devient

$$a = \frac{-2\beta_T^* \mu u_3^2}{\Lambda} \{ [nv_2 + (1-n)v_3] [1 + \alpha_4 (1 + \eta_T (1 + \alpha_2 + \alpha_4))] + \alpha_2 [n^2 v_2 + (1-n)^2 v_3 - \eta_r ((1-n)v_3 + nv_2)] \}$$

En substituant v_2 par son expression dans celle de a ci-dessus, nous retrouvons finalement le résultat (4.59).

Les calculs du paramètre $b = \sum_{k=1}^{n} v_k u_i \frac{\partial^2 f_k}{\partial x_i \partial \eta} (X^0)$ donnent le résultat :

(4.60)
$$b = \frac{1}{(\mu + \sigma)(\mu + \rho)} u_3 v_3 \Big\{ \sigma n(\mu + \rho + \eta_T \tau) + (\mu + \sigma)[(1 - n)(\mu + \rho) + \tau] \Big\} > 0$$

En effet, les dérivées partielles non nulles de f_i i = 1, 2, 3, 4. en x^* pour $\beta_T = \beta_T^*$ sont :

$$\frac{\partial^2 f_2}{\partial x_3 \partial \beta_T^*} = n, \quad \frac{\partial^2 f_2}{\partial x_4 \partial \beta_T^*} = n\eta_T, \quad \frac{\partial^2 f_3}{\partial x_3 \partial \beta_T^*} = 1 - n, \quad \frac{\partial^2 f_3}{\partial x_4 \partial \beta_T^*} = (1 - n)\eta_T$$

Ce qui nous permet d'obtenir l'expression positive (4.60) de b.

Le signe de *a* est tel que :

$$\operatorname{si} \eta_r > \frac{(1+Q)[(1-n)\mu + \sigma] + \alpha_2[n^2 + (1-n)^2(\mu + \sigma)]}{(1-n)(\mu + \sigma)} \text{ alors } a > 0$$

Donc pour a > 0 et b > 0, il y a de bifurcation et nous pouvons affirmer à la lumière de l'assertion A 2-(iv) du théorème de Castillo-Chavez (2004) [19] que l'équilibre endémique X^* subit une bifurcation en arrière lorsque $R_0 = 1$.

Si la condition sur le paramètre de réinfection η_r ci-dessus n'est pas vraie, alors l'équilibre endémique X^* du modèle (3.49) est localement asymptotiquement stable lorque $R_0 > 1$ car il ne subit pas une bifurcation en arrière dans ce cas.

4.3.2 Analyse du modèle stochastique de TB

4.3.2.1 Existence et unicité des solutions

Considérons Ω , la region définie par

$$\Omega = \{ (S_t, L_t, T_t, R_t) \in \mathbf{R}^4_+; N = S_t + L_t + T_t + R_t \le \frac{\Lambda}{\mu} \} \in \mathbf{R}^4_+.$$

Alors, nous avons le résultat suivant :

Théorème 4.3.4. Soit $(S_0, L_0, T_0, R_0) = (S(0), L(0), T(0), R(0)) \in \Omega$ une valeur initiale donnée. Alors il existe une solution unique $X_t = (S_t, L_t, T_t, R_t)$ pour $t \ge 0$ du modèle stochastique (3.51) telle que

$$P\{X_t = (S_t, L_t, T_t, R_t) \in \Omega\} = 1$$

Preuve: Soit $N_t = S_t + L_t + T_t + R_t$, la variable aléatoire donnant le nombre total de la population au temps t. Nous avons

$$dN_t = (\Lambda - \mu N_t - \delta_T T_t) dt - \xi_{\langle G, dW_t \rangle}$$

où

$$\xi_{\langle G, dW_t \rangle} = (\sqrt{\mu S_t} + \sqrt{\mu L_t} + \sqrt{(\mu + \delta_T)T_t} + \sqrt{\mu R_t} - \sqrt{\Lambda})d\varpi(t)$$

avec $\varpi = W_i$ i = 1, ..., 10. car les W_i ont la même loi de probabilité, la loi normale. Montrons que si $X_t = (S_t, L_t, T_t, R_t) \in \mathbf{R}^4_+$ pour tout $t \in [0; t_{\epsilon}]$, alors on a $N_t < \frac{\Lambda}{\mu}$ P-presque sûrement (P-ps). En effet, si $X_t \in \mathbf{R}^4_+$ pour tout $t \in [0; t_{\epsilon}]$, alors N_t est tel que :

$$dN_t = (\Lambda - \mu N_t - \delta_T T_t - \xi_{\langle G, dW(t) \rangle}) dt \leq \Lambda - \mu N_t \qquad P - ps.$$

Par le lemme de Gronwall, on obtient :

$$N_t \le \frac{\Lambda}{\mu} + (N_0 - \frac{\Lambda}{\mu})e^{-\mu t} \qquad P - ps.$$

Et comme par hypothèse $(S_0, L_0, T_0, R_0) \in \Omega$ i.e $N_0 - \frac{\Lambda}{\mu} \leq 0$, on a alors $N_t < \frac{\Lambda}{\mu}$ P - ps. Les termes $f(t, X_t)$ et $G(t, X_t)$ du modèle stochastique (3.51) étant localement Lipschitziens, il existe donc l'unique solution locale $X_t = (S_t, L_t, T_t, R_t)$ pout tout $t \in [0; t_{\epsilon}]$ fixé. Par conséquent, l'unique solution locale $X_t = (S_t, L_t, T_t, R_t) \in \mathbf{R}^4_+$. Montrons maintenant qu'elle est globale P-presque sûrement c'est-à-dire $t_{\epsilon} = \infty$.

Soit $n_0 > 0$, un entier suffisament grand tel que $(S_0, L_0, T_0, R_0) \in [\frac{1}{n_0}; n_0]^4$. Posons $E_t = \{S_t, L_t, T_t, R_t\}$ et pour tout entier $n \ge n_0$, définissons le temps d'arrêt

$$t_n = \inf\{ t \in [0; t_{\epsilon}] / \min E_t \in [0; \frac{1}{n}] \text{ ou } \max E_t \in [n; +\infty[\}.$$

 $(t_n)_{n>0}$ est une suite croissante convergente ; notons par $t_{\infty} = \lim_{n \to \infty} t_n$ alors $t_{\infty} \leq t_{\epsilon}$. Montrons ensuite que $t_{\infty} = \infty$ pour qu'on ait $t_{\epsilon} = \infty$. Pour cela, supposons par absurde que $t_{\infty} < \infty$, il existe $\theta > 0$ tel que pour tout $p \in]0$; 1[on ait $P\{t_{\infty} \leq \theta\} > p$. Par conséquent, il existe un entier $n_1 \geq n_0$ tel que pour tout ensemble $A_n = \{t_n \leq \theta\}$, on a

$$(4.61) P\{A_n\} > p \quad n \ge n_1.$$

Considérons la fonction V définie sur \mathbf{R}^4_+ et à valeurs dans \mathbf{R}_+ telle que

$$V(X_t) = -ln(\frac{\mu S_t}{\Lambda}) - ln(\frac{\mu L_t}{\Lambda}) - ln(\frac{\mu T_t}{\Lambda}) - ln(\frac{\mu R_t}{\Lambda}) \quad \forall X_t = (S_t, L_t, T_t, R_t) \in \mathbf{R}_+^4$$

En utilisant la formule d'Itô multidimensionnelle sur l'intervalle $[0; \min(\tau_n; \theta)]$, nous avons pour tout $t \ge 0$

$$dV(X_t) = \frac{\partial V(X_t)}{\partial t} + \sum_{i=1}^4 f_i(t, X_t) \frac{\partial V(X_t)}{\partial X_t^i} + \frac{1}{2} \sum_{i,j=1}^4 (GG^T)_{ij} \frac{\partial^2 V(X_t)}{\partial X_t \partial X_t^j} dt + \sum_{i=1}^4 \sum_{j=1}^{10} G_{ij} dW_t^j \frac{\partial V(X_t)}{\partial X_t^i},$$

avec

$$G = (G_{ij})_{i = 1, 2, ..., 4.; j = 1, 2, ..., 10.}; et (GG^T)_{ij} = \sum_{k=1}^{10} G_{ik}.G_{kj}.$$

Ce qui donne

$$\begin{split} dV(X_t) &= 2[4\mu + \sigma + \delta_T + \tau]dt + \frac{5}{4}(\lambda_I + \lambda_r)dt + \frac{1}{2}[\mu\frac{1}{S_t} + (\mu + \sigma)\frac{1}{L_t} \\ &+ (\mu + \delta_T + \tau)\frac{1}{T_t} + (\mu + \rho)\frac{1}{R_t}]dt - \frac{1}{2}\{\Lambda\frac{(4S_t - 1)}{S_t^2} \\ &+ (n\lambda_I S_t + \rho R_t)\frac{(4L_t - 1)}{L_t^2} + [(1 - n)\lambda_I S_t + (\sigma + \lambda_r)L_t]\frac{(4T_t - 1)}{L_t^2} \\ &+ \tau T_t\frac{(4R_t - 1)}{L_t^2}\}dt - \frac{1}{S_t}(G_{11}dW_t^1 + G_{12}dW_t^2 + G_{13}dW_t^3 + G_{14}dW_t^4) \\ &- -\frac{1}{L_t}(G_{23}dW_t^3 + G_{25}dW_t^5 + G_{26}dW_t^6 + G_{27}dW_t^7) \\ &- \frac{1}{T_t}(G_{34}dW_t^4 + G_{36}dW_t^6 + G_{38}dW_t^8 + G_{39}dW_t^9) \\ &- \frac{1}{R_t}(G_{47}dW_t^7 + G_{49}dW_t^9 + G_{410}dW_t^{10}). \end{split}$$

D'où, nous obtenons l'inéquation suivante :

$$\begin{aligned} dV(X_t) &\leq Mdt - \frac{1}{S_t} (G_{11}dW_t^1 + G_{12}dW_t^2 + G_{13}dW_t^3 + G_{14}dW_t^4) - \frac{1}{L_t} (G_{23}dW_t^3 + G_{23}dW_t^3) \\ &+ G_{25}dW_t^5 + G_{26}dW_t^6 + G_{27}dW_t^7) - \frac{1}{T_t} (G_{34}dW_t^4 + G_{36}dW_t^6 + G_{38}dW_t^8 + G_{39}dW_t^9) - \frac{1}{R_t} (G_{47}dW_t^7 + G_{49}dW_t^9 + G_{410}dW_t^{10}) \\ &+ P - p.s. \end{aligned}$$

avec

$$M = \frac{5}{2} [4\mu + \sigma + \delta_T + \tau + \frac{1}{2} \beta_T (1 + \eta_T + \eta_r)] > 0.$$

Ce qui implique par intégration que

$$\int_{0}^{t_{n}\wedge\theta} dV(X_{t}) \le M \int_{0}^{t_{n}\wedge\theta} dt - \left[\sum_{k=1}^{4} \left(\int_{0}^{t_{n}\wedge\theta} \frac{G_{1k}}{S_{t}} dW_{t}^{k}\right) + \sum_{k=3,k\neq4}^{7} \left(\int_{0}^{t_{n}\wedge\theta} \frac{G_{2k}}{L_{t}} dW_{t}^{k}\right)\right]$$

(4.62)
$$- \left[\sum_{k=4,k\neq7}^{9} \left(\int_{0}^{t_{n}\wedge\theta} \frac{G_{3k}}{T_{t}} dW_{t}^{k}\right) + \sum_{k=7,k\neq8}^{10} \left(\int_{0}^{t_{n}\wedge\theta} \frac{G_{4k}}{R_{t}} dW_{t}^{k}\right)\right],$$

où $t_n \wedge \theta = \min(t_n; \theta)$.

En prenant l'espérance mathématique de tous les termes de l'inéquation (4.62), on obtient

(4.63)
$$\mathbf{E}[V(X_{t_n \land \theta})] \le \mathbf{E}[V(X_0)] + M\theta.$$

Soit un ensemble $A_n = \{t_n \leq \theta\}$. Notons par \mathbb{I}_{A_n} la fonction indicatrice de A_n et par \mathbb{I}_{CA_n} celle du complémentaire $\mathbb{C}A_n$. On a alors

$$\mathbf{E}[V(X_{t_n \wedge \theta})] = \mathbf{E}[V(X_{t_n \wedge \theta})\mathbb{I}_{A_n}] + \mathbf{E}[V(X_{t_n \wedge \theta})\mathbb{I}_{CA_n}].$$

D'après la définition de la fonction V, on a $V(X_{t_n \land \theta}) \ge 0$.

Donc

$$\mathbf{E}[V(X_0)] + M\theta \ge \mathbf{E}[V(X_{t_n \land \theta})\mathbb{I}_{A_n}] + \mathbf{E}[V(X_{t_n \land \theta})\mathbb{I}_{\mathcal{C}A_n}] \ge \mathbf{E}[V(X_{t_n})\mathbb{I}_{A_n}].$$

Par continuité, il existe au moins une des composantes de X_{t_n} est égale à n ou à $\frac{1}{n}$. Il s'en suit que

$$V(X_{t_n}) \ge \min\left\{-ln\left(\frac{\mu n}{\Lambda}\right); -ln\left(\frac{\mu}{\Lambda n}\right)\right\} = \min\left\{ln(\frac{\Lambda}{\mu n}); ln(\frac{\Lambda n}{\mu})\right\},\$$

et par conséquent

$$\mathbf{E}[V(X_0)] + M\theta \ge \mathbf{E}[V(X_{t_n \land \theta})\mathbb{I}_{A_n}] \ge P\{A_n\} \times \min\{ln(\frac{\Lambda}{\mu n}); ln(\frac{\Lambda n}{\mu})\},\$$

d'où

(4.64)
$$P\{A_n\} = P\{t_n \le \theta\} \le \frac{\mathbf{E}[V(X_0)] + M\theta}{\min\{ln(\frac{\Lambda}{\mu n}); ln(\frac{\Lambda n}{\mu})\}}$$

Par passage de la limite lorsque $n \longrightarrow +\infty$ dans linéquation (4.64), trouve que

$$0$$

c'est une contraction, alors $t_{\infty} = \infty$ c'est-à-dire que $P\{t_{\infty} = \infty\} = 1$.

Par ailleurs, $t_{\infty} \leq t_{\epsilon}$, nous concluons que $t_{\infty} = t_{\epsilon} = \infty$ P - p.s.

4.3.2.2 Stabilité stochastique du point d'équilibre sans TB

Proposition 4.3.2. Le modèle stochastique (3.51) admet un point d'équilibre aléatoire sans TB (Disease-Free random Equilibrium) $[X^0 = \left(\frac{\Lambda}{\mu}, 0, 0, 0\right)]$ qui est p-exponentiellement stable si $p \ge 2$ et globalement asymptotiquement stable.

Preuve: Par translation, nous pouvons toujours ramener un point d'équilibre aléatoire X_e à $X_e = 0$ comme le cas dans [105].

L'existence de X^0 , un point d'équilibre aléatoire sans TB est prouvée par un changement de variable ci-dessous pour le modèle stochastique (3.51)

(4.65)
$$\widetilde{S}_t = \frac{\Lambda}{\mu} - S_t.$$

Par conséquent, le modèle stochastique (3.51) s'écrit

(4.66)
$$d\widetilde{X}_t = \widetilde{f}(t, \widetilde{X}_t)dt + \widetilde{G}(t, \widetilde{X}_t)d\widetilde{W}_t,$$

où $\widetilde{X} = (\widetilde{S}_t, L_t, T_t, R_t), \quad \widetilde{W} = (W_i), i = 2, 3, ..., 10.,$

(4.67)
$$\widetilde{f}(t,\widetilde{X}_t) = \begin{pmatrix} \widetilde{\lambda}_I(\frac{\Lambda}{\mu} - \widetilde{S}_t) - \mu \widetilde{S}_t \\ n\widetilde{\lambda}_I(\frac{\Lambda}{\mu} - \widetilde{S}_t) - (\mu + \sigma + \widetilde{\lambda}_r)L_t + \rho R_t \\ (1 - n)\widetilde{\lambda}_I(\frac{\Lambda}{\mu} - \widetilde{S}_t) + (\sigma + \widetilde{\lambda}_r)L_t - (\mu + \delta_T + \tau)T_t \\ \tau T_t - (\mu + \rho)R_t \end{pmatrix}$$

Le bruit $\widetilde{G} = \widetilde{G}(t, \widetilde{X}_t)$ est une matrice (4×9) donnée par

$$(4.68) \qquad \qquad \widetilde{G} = \begin{pmatrix} \widetilde{G}_{12} & \widetilde{G}_{13} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \widetilde{G}_{23} & 0 & G_{25} & G_{26} & G_{27} & 0 & 0 & 0 \\ 0 & 0 & \widetilde{G}_{34} & 0 & G_{36} & 0 & G_{38} & G_{39} & 0 \\ 0 & 0 & 0 & 0 & 0 & G_{47} & 0 & G_{49} & G_{410} \end{pmatrix}$$

$$avec \quad \widetilde{G}_{12} = -\sqrt{\mu}\widetilde{S}_t, \quad \widetilde{G}_{13} = \sqrt{\widetilde{\lambda}_I(\frac{\Lambda}{\mu} - \widetilde{S}_t)}, \quad \widetilde{G}_{23} = n\sqrt{\widetilde{\lambda}_I(\frac{\Lambda}{\mu} - \widetilde{S}_t)}, \quad \widetilde{G}_{34} = (1-n)\sqrt{\widetilde{\lambda}_I(\frac{\Lambda}{\mu} - \widetilde{S}_t)},$$
$$\widetilde{\lambda}_I = \beta_T \frac{T_t + \eta_T R_t}{(\frac{\Lambda}{\mu} - \widetilde{S}_t) + L_t + T_t + R_t}, \quad \widetilde{\lambda}_r = \beta_T \frac{\eta_r T_t}{(\frac{\Lambda}{\mu} - \widetilde{S}_t) + L_t + T_t + R_t}.$$

L'existence d'un point d'équilibre aléatoire sans maladie du modèle (4.66) donne celui de (3.51). En effet, Notons par $\widetilde{X}(0) \equiv 0 \in \mathbb{R}^4$. Les égalités $\widetilde{f}(t,0) = 0$ et $\widetilde{G}(t,0) = 0$ sont verifiées pour $t \geq 0$. Ainsi $\widetilde{X}(0)$ est un point d'équilibre aléatoire sans maladie du modèle (4.66), alors nous avons

$$\widetilde{S}_t = 0, \ L_t = 0, \ T_t = 0, \ R_t = 0,$$

donnant $S_t = \frac{\Lambda}{\mu}$, $L_t = 0$, $T_t = 0$, $R_t = 0$, *i.e.*, $X^0 = (\frac{\Lambda}{\mu}, 0, 0, 0)$ est un point d'équilibre aléatoire sans maladie du modèle (3.51).

Maintenant, considérons la fonction de Lyapunov :

(4.69)
$$V = \frac{1}{2p} \left[K \left(\frac{\Lambda}{\mu} - S_t \right)^p + K_1 L_t^p + K_2 T_t^p + K_3 R_t^p \right]$$

avec $K > 0, K_1 > 0, K_2 > 0, K_3 > 0, p \ge 2$. Alors

$$\mathcal{A}V = -[K_{1}(\mu + \sigma + \lambda_{r})L_{t}^{p} + K_{2}(\mu + \delta_{T} + \tau)T_{t}^{p} + K_{3}(\mu + \rho)R_{t}^{p}] + K_{1}n\lambda_{I}S_{t}L_{t}^{p-1} + K_{1}\rho R_{t}L_{t}^{p-1} + K_{2}(1 - n)\lambda_{I}S_{t}T_{t}^{p-1} + K_{2}(\sigma + \lambda_{r})L_{t}T_{t}^{p-1} + K_{3}\tau T_{t}R_{t}^{p-1} + \frac{1}{4}(p + 1)[KG_{11}^{2}(\frac{\Lambda}{\mu} - S_{t})^{p-2} + KG_{12}^{2}(\frac{\Lambda}{\mu} - S_{t})^{p-2} + K\frac{1}{n}G_{23}^{2}(\frac{\Lambda}{\mu} - S_{t})^{p-2} + K_{1}G_{23}^{2}L_{t}^{p-2} + K_{1}G_{23}^{2}L_{t}^{p-2} + K_{2}G_{34}^{2}T_{t}^{p-2} + K_{2}G_{36}^{2}T_{t}^{p-2} + K_{3}G_{49}^{2}R_{t}^{p-2} + K_{1}G_{25}^{2}L_{t}^{p-2} + K_{1}G_{36}^{2}L_{t}^{p-2} + K_{2}G_{38}^{2}T_{t}^{p-2} + K_{1}G_{49}^{2}T_{t}^{p-2} + K_{3}G_{47}^{2}R_{t}^{p-2} + K_{3}G_{410}^{2}R_{t}^{p-2}]$$

L'application du lemme 1.4.3 et du théorème 1.5.3, nous permet d'obtenir finalement

$$\mathcal{A}V \leq -[K_1(\mu + \sigma + \lambda_r)L_t^p + K_2(\mu + \delta_T + \tau)T_t^p + K_3(\mu + \rho)R_t^p]$$

 $\mathcal{A}V \leq 0$ (c'était nécessaire à démontrer). Par conséquent, $X^0 = (\frac{\Lambda}{\mu}, 0, 0, 0)$ est *p*-exponentiellement stable $(p \geq 2)$.

Pour, p = 2, nous disons que X^0 est 2-exponentiellement stable. Dans le sens de Lyapunov, X^0 est globalement asymptotiquement stable. Ceci marque la fin de la preuve de ce théorème.

4.3.2.3 Stabilité stochastique du point d'équilibre endémique

Lorsque que $R_0 > 1$, alors Le modèle déterministe (3.49), admet un unique point d'équilibre endémique biologiquent pertinent X^* globalement stable. L'existence du un point d'équilibre endémique aléatoire $[X^* = (S^*, L^*, T^*, R^*)]$ est garantit par la condition $R_0 > 1$ presque sûrement. Pour ce faire, supposons que le bruit aléatoire du sysème dynamique de TB est de nature à perturber cet équibre c'est-à-dire les variables d'état S_t , L_t , T_t , et R_t du terme stochastique $G(t, X_t)$ perturbent autour de S^* , L^* , T^* , et R^* respectivement. Alors le modèle (3.51) devient

(4.71)
$$dX_t = f(t, X_t)dt + G(t, X_t - X^*)dW_t,$$

qui peut être centré à X^* par le changement de variables

(4.72)
$$Y_1 = S_t - S^*$$
, $Y_2 = L_t - L^*$, $Y_3 = T_t - T^*$, $Y_4 = R_t - R^*$,

Le système linéarisé de (4.71) autour de $X^* = (S^*, L^*, T^*, R^*)$ prend la forme

(4.73)
$$dY_t = f^y(Y_t)dt + G^y(Y_t)d\xi_t,$$

où $f^y(Y_t) = \mathcal{J}_f(X^*) \cdot Y_t$ avec $\mathcal{J}_f(X^*)$ la matrice jacobienne de f en X^* ; $Y_t = Y = (Y_1, Y_2, Y_3, Y_4)^T$; $\xi_t = (W_t^i)_{i=2,\dots 10}$;

$$f^{y}(Y_{t}) = \begin{pmatrix} -\partial_{11} & \partial_{12} & \partial_{13} & \partial_{14} \\ \partial_{21} & -\partial_{22} & \partial_{23} & \partial_{24} \\ \partial_{31} & \partial_{32} & -\partial_{33} & \partial_{44} \\ 0 & 0 & \tau & -(\mu+\rho) \end{pmatrix} \begin{pmatrix} Y_{1} \\ Y_{2} \\ Y_{3} \\ Y_{4} \end{pmatrix}$$

,

où

$$\begin{aligned} -\partial_{11} &= \mu + \lambda_{I}^{*} (1 - \frac{S^{*}}{N^{*}})], \quad \partial_{12} = -\lambda_{I}^{*} \frac{S^{*}}{N^{*}}, \quad \partial_{13} = (\lambda_{I}^{*} - \beta_{T}) \frac{S^{*}}{N^{*}} \quad \partial_{14} = (\lambda_{I}^{*} - \beta_{T} \eta_{T}) \frac{S^{*}}{N^{*}}, \\ \partial_{21} &= n\lambda_{I}^{*} (1 - \frac{S^{*}}{N^{*}}) + \lambda_{r}^{*} \frac{L^{*}}{N^{*}}, \quad -\partial_{22} = n\lambda_{I}^{*} \frac{S^{*}}{N^{*}} + \lambda_{r}^{*} \frac{L^{*}}{N^{*}} + \mu + \rho, \\ \partial_{23} &= -n(\lambda_{I}^{*} - \beta_{T}) \frac{S^{*}}{N^{*}} + (\lambda_{r}^{*} - \beta_{T} \eta_{r}) \frac{L^{*}}{N^{*}}, \quad \partial_{24} = -n(\lambda_{I}^{*} - \beta_{T} \eta_{T}) \frac{S^{*}}{N^{*}} + \lambda_{r}^{*} \frac{L^{*}}{N^{*}} + \rho, \\ \partial_{31} &= (1 - n)\lambda_{I}^{*} (1 - \frac{S^{*}}{N^{*}}) - \lambda_{r}^{*} \frac{L^{*}}{N^{*}}, \quad \partial_{32} = -(1 - n)\lambda_{I}^{*} \frac{S^{*}}{N^{*}} + \lambda_{r}^{*} (1 - \frac{L^{*}}{N^{*}}) + \sigma, \\ &-\partial_{33} &= (1 - n)(\lambda_{I}^{*} - \beta_{T}) \frac{S^{*}}{N^{*}} + (\lambda_{r}^{*} - \beta_{T} \eta_{r}) \frac{L^{*}}{N^{*}} + \mu + \delta_{T} + \tau, \\ &\partial_{34} &= -(1 - n)(\lambda_{I}^{*} - \beta_{T} \eta_{T}) \frac{S^{*}}{N^{*}} - \lambda_{r}^{*} \frac{L^{*}}{N^{*}}; \end{aligned}$$

et

$$G^{y}(Y_{t}) = \begin{pmatrix} G_{12}^{y} & G_{13}^{y} & G_{14}^{y} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & G_{23}^{y} & 0 & G_{25}^{y} & G_{26}^{y} & G_{27}^{y} & 0 & 0 & 0 \\ 0 & 0 & G_{34}^{y} & 0 & G_{36}^{y} & 0 & G_{38}^{y} & G_{39}^{y} & 0 \\ 0 & 0 & 0 & 0 & 0 & G_{47}^{y} & 0 & G_{49}^{y} & G_{410}^{y} \end{pmatrix}$$

avec

.

(4.74)
$$\begin{array}{l} G_{12}^{y} = -\sqrt{\mu Y_{1}}, \quad G_{13}^{y} = -G_{23}^{y} = -\sqrt{n\lambda_{I}Y_{1}}, \quad G_{14}^{y} = -G_{34}^{y} = -\sqrt{(1-n)\lambda_{I}Y_{1}}, \\ G_{25}^{y} = -\sqrt{\mu Y_{2}}, \quad G_{26}^{y} = -G_{36}^{y} = -\sqrt{(\sigma+\lambda_{r})Y_{3}}, \quad G_{27}^{y} = -G_{47}^{y} = \sqrt{\rho Y_{4}}, \\ G_{38}^{y} = -\sqrt{(\mu+\delta_{T})Y_{3}}, \quad G_{39}^{y} = -G_{49}^{y} = -\sqrt{\tau Y_{3}}, \quad et \quad G_{410}^{y} = -\sqrt{\mu Y_{4}}. \end{array}$$

Théorème 4.3.5. Le modèle stochastique (3.51) admet un point d'équilibre endémique aléatoire $[X^* = (S^*, L^*, T^*, R^*)]$ 2-exponentiellement stable et globalement stable si les conditions (i), (ii) suivantes sont satisfaites :

$$(i): R_0 > 1 \quad et \quad (ii): \begin{cases} \partial_{11} > \frac{1}{2}(\omega_1 + \kappa_1\beta_T(1+\eta_T)\frac{\Lambda}{\mu}), \\ \partial_{22} > \frac{1}{2}(\omega_2 + \mu), \\ \partial_{33} > \frac{1}{2}(\omega_3 + \beta_T\frac{\Lambda}{\mu}(\frac{c_2}{c_3} + 1) + \kappa_2), \\ \mu + \rho > \frac{1}{2}(\omega_4 + \kappa_3). \end{cases}$$

où, pour toutes les constantes réelles $c_i > 0$, i = 1, ..., 4, on a

$$\begin{aligned} \kappa_1 &= 1 + n \frac{c_2}{c_1} + (1 - n) \frac{c_3}{c_1}; \quad \kappa_2 &= \sigma(\frac{c_2}{c_3} + 1) + \tau(\frac{c_4}{c_3} + 1) + \mu + \delta_T; \quad \kappa_3 &= \rho(\frac{c_2}{c_4} + 1) + \mu; \\ et \quad \omega_i > 0, \quad i = 1, \dots, 4 \text{ tels que} \end{aligned}$$

$$\begin{split} \omega_1 &= 2\lambda_I^* \frac{S^*}{N^*} + \frac{c_2}{c_1} (n\lambda_I^* (1 - \frac{S^*}{N^*}) + \lambda_r^* \frac{L^*}{N^*}) + \frac{c_3}{c_1} (1 - n)\lambda_I^* (1 - \frac{S^*}{N^*}) \\ \omega_2 &= n\lambda_I^* (1 - \frac{S^*}{N^*}) + n\beta_T (1 + \eta_T) \frac{S^*}{N^*} + 3\lambda_r^* \frac{L^*}{N^*} + \rho + \frac{c_3}{c_2} (\lambda_r^* + \sigma) \\ \omega_3 &= \frac{c_1}{c_3} \lambda_I^* \frac{S^*}{N^*} + \frac{c_2}{c_3} (n\beta_T \frac{S^*}{N^*} + \lambda_r^*) + (1 - n) (\lambda_I^* (1 - \frac{S^*}{N^*}) + \beta_T \eta_T \frac{S^*}{N^*}) + \lambda_r^* \\ +\sigma \\ \omega_4 &= \frac{c_1}{c_4} \lambda_I^* \frac{S^*}{N^*} + \frac{c_2}{c_4} (n\beta_T \eta_T \frac{S^*}{N^*} + \lambda_r^* \frac{L^*}{N^*} + \rho) + \frac{c_3}{c_4} (1 - n)\beta_T \eta_T \frac{S^*}{N^*}. \end{split}$$

Preuve: la solution triviale $Y_t = 0$ du système linéarisé (4.73) correspond à l'équilibre X^* dont l'existence est garantie par la condition (i).

Considérons maintenant la fonction de Lyapunov définie par

$$V^{y}(Y) = \frac{1}{2} \sum_{i=1}^{4} c_{i} Y_{i}^{2}$$
 avec $c_{i} > 0$ $i = 1, ..., 4.$

$$\begin{aligned} \mathcal{A}V^{y}(Y) &= -c_{1}\partial_{11}Y_{1}^{2} - c_{2}\partial_{22}Y_{2}^{2} - c_{3}\partial_{33}Y_{3}^{2} - c_{4}(\mu + \rho)Y_{4}^{2} \\ &+ \sum_{i=1}^{3}\sum_{j=1, i\neq j}^{4}c_{i}\partial_{ij}Y_{i}Y_{j} + \frac{1}{2}\sum_{i,j=1}^{4}tr(G^{y}G_{ij}^{yT}\frac{\partial^{2}V^{y}(Y)}{\partial Y_{i}\partial Y_{j}} \\ &= -c_{1}[\mu + \lambda_{I}^{*}(1 - \frac{S^{*}}{N^{*}})]Y_{1}^{2} - c_{2}[n\lambda_{I}^{*}\frac{S^{*}}{N^{*}} + \lambda_{r}^{*}\frac{L^{*}}{N^{*}} + \mu + \rho]Y_{2}^{2} \\ &- c_{3}[(1 - n)(\lambda_{I}^{*} - \beta_{T})\frac{S^{*}}{N^{*}} + (\lambda_{r}^{*} - \beta_{T}\eta_{r})\frac{L^{*}}{N^{*}} + \mu + \delta_{T} + \tau]Y_{3}^{2} \\ &- c_{4}(\mu + \rho)Y_{4}^{2} + \sum_{i=1}^{3}\sum_{j=1, i\neq j}^{4}c_{i}\partial_{ij}Y_{i}Y_{j} + \frac{1}{2}\sum_{i,j=1}^{4}tr(G^{y}G_{ij}^{yT}\frac{\partial^{2}V^{y}(Y)}{\partial Y_{i}\partial Y_{j}}, \end{aligned}$$

$$\sum_{i=1}^{3} \sum_{j=1, i \neq j}^{4} c_i \partial_{ij} Y_i Y_j = \sum_{i=1}^{3} \sum_{j=1, i \neq j, \partial_{ij} > 0}^{4} c_i \partial_{ij} Y_i Y_j + \sum_{i=1}^{3} \sum_{j=1, i \neq j, \partial_{ij} < 0}^{4} c_i \partial_{ij} Y_i Y_j$$

$$\leq \frac{1}{2} \sum_{i=1}^{3} \sum_{j=1, i \neq j, \partial_{ij} > 0}^{4} c_{i} \partial_{ij} (Y_{i}^{2} + Y_{j}^{2}) + \sum_{i=1}^{3} \sum_{j=1, i \neq j, \partial_{ij} < 0}^{4} c_{i} \partial_{ij} Y_{i} Y_{j}$$

$$\leq \frac{1}{2} \sum_{i=1}^{3} \sum_{j=1, i \neq j, \partial_{ij} > 0}^{4} c_{i} \partial_{ij} (Y_{i}^{2} + Y_{j}^{2})$$

$$\leq \frac{1}{2} \{ [2\lambda_{I}^{*} \frac{S^{*}}{N^{*}} + \frac{c_{2}}{c_{1}} (n\lambda_{I}^{*}(1 - \frac{S^{*}}{N^{*}}) + \lambda_{r}^{*} \frac{L^{*}}{N^{*}}) + \frac{c_{3}}{c_{1}} (1 - n)\lambda_{I}^{*}(1 - \frac{S^{*}}{N^{*}})]c_{1}Y_{1}^{2}$$

$$+ [n\lambda_{I}^{*}(1 - \frac{S^{*}}{N^{*}}) + n\beta_{T}(1 + \eta_{T}) \frac{S^{*}}{N^{*}} + 3\lambda_{r}^{*} \frac{L^{*}}{N^{*}} + \rho + \frac{c_{3}}{c_{2}} (\lambda_{r}^{*} + \sigma)]c_{2}Y_{2}^{2}$$

$$+ [\frac{c_{1}}{c_{3}}\lambda_{I}^{*} \frac{S^{*}}{N^{*}} + \frac{c_{2}}{c_{3}} (n\beta_{T} \frac{S^{*}}{N^{*}} + \lambda_{r}^{*}) + (1 - n)(\lambda_{I}^{*}(1 - \frac{S^{*}}{N^{*}}) + \beta_{T}\eta_{T} \frac{S^{*}}{N^{*}}) + \lambda_{r}^{*}$$

$$+ \sigma]c_{3}Y_{3}^{2} + [\frac{c_{1}}{c_{4}}\lambda_{I}^{*} \frac{S^{*}}{N^{*}} + \frac{c_{2}}{c_{4}} (n\beta_{T}\eta_{T} \frac{S^{*}}{N^{*}} + \lambda_{r}^{*} \frac{L^{*}}{N^{*}} + \rho)$$

$$+ \frac{c_{3}}{c_{4}} (1 - n)\beta_{T}\eta_{T} \frac{S^{*}}{N^{*}}]c_{4}Y_{4}^{2} \}$$

$$= \frac{1}{2} \{ \omega_{1}c_{1}Y_{1}^{2} + \omega_{2}c_{2}Y_{2}^{2} + \omega_{3}c_{3}Y_{3}^{2} + \omega_{4}c_{4}Y_{4}^{2} \},$$

$$\frac{1}{2} \sum_{i,j=1}^{4} tr(G^{y}G^{yT})_{ij} \frac{\partial^{2}V^{y}(Y)}{\partial Y_{i}\partial Y_{j}} =$$

$$\frac{1}{2} \{ c_1(G_{12}^2 + G_{13}^2 + G_{14}^2) + c_2(G_{23}^2 + G_{25}^2 + G_{26}^2 + G_{27}^2) \\
+ c_3(G_{34}^2 + G_{36}^2 + G_{38}^2 + G_{39}^2) + c_4(G_{47}^2 + G_{49}^2 + G_{410}^2) \} \\
= \frac{1}{2} \{ (\kappa_1 \lambda_I + c_1 \rho) Y_1 + c_2 \mu Y_2 + (\lambda_r (c_2 + c_3) + \kappa_2) Y_3 + \kappa_3 Y_4 \} \\
\leq \frac{1}{2} \{ [\kappa_1 \beta_T \frac{\Lambda}{\mu} (1 + \eta_T) + \rho] c_1 Y_1^2 + c_2 \mu Y_2^2 + [\beta_T \frac{\Lambda}{\mu} (\frac{c_2}{c_3} + 1) \\
+ \kappa_2] c_3 Y_3^2 + \kappa_3 Y_4^2 \}.$$

Il s'en suit que

$$\mathcal{A}V^{y}(Y) \leq -\left[\partial_{11} - \frac{1}{2}(\omega_{1} + \kappa_{1}\beta_{T}(1+\eta_{T})\frac{\Lambda}{\mu})\right]c_{1}Y_{1}^{2} - \left[\partial_{22} - \frac{1}{2}(\omega_{2} + \mu)\right]c_{2}Y_{2}^{2} -\left[\partial_{33} - \frac{1}{2}(\omega_{3} + \beta_{T}\frac{\Lambda}{\mu}(\frac{c_{2}}{c_{3}} + 1) + \kappa_{2})\right]c_{3}Y_{3}^{2} - \left[\mu + \rho - \frac{1}{2}(\omega_{4} + \kappa_{3})\right]c_{4}Y_{4}^{2}.$$

D'après la condition (*ii*)., nous avons donc $\mathcal{A}V^{y}(Y) \leq 0$ marquant la fin de la preuve.

APPLICATIONS DU CONTRÔLE OPTIMAL EN ÉPIDÉMIOLOGIE

Dans ce chapitre, nous appliquons le contrôle optimal à la dynamique stochastique des maladies infectueuses. Les modèles stochastiques des maladies infectueses de MST, du VIH/SIDA, de TB, et du CC formulés dans le chapitre 3 nous servent de base d'applications du contrôle optimal en épidémiologie.

5.1 Contrôle optimal du traitement d'une MST

5.1.1 Problème du contrôle optimal : suivi thérapeutique

Considérons la dynamique stochastique de l'infection d'une MST modélisée dans le chapitre 3 par l'EDS (3.35). Pour agir sur ce modèle stochastique donné en vue d'un suivi régulier et permanent du traitement, choissons d'y introduire deux fonctions de contrôle u_1 et u_2 . Le contrôle u_1 représente l'action de suivi du traitement sur la proportion des hommes infectés sous traitement et Le contrôle u_2 représente l'action de suivi du traitement sur la proportion des femmes infectées sous traitement. L'action de suivi du traitement est alors quantifiée en pourcentage sur l'ensemble [0, 1].

Le modèle stochastique contrôlé de MST est alors donné par

(5.1)
$$\begin{cases} dI_1 = \left[\beta_1 \frac{I_2}{N_1} (N_1 - I_1) - (\tau_1 + u_1) I_1\right] dt + \sqrt{\beta_1 \frac{I_2}{N_1} (N_1 - I_1) + (\tau_1 + u_1) I_1} dW_1 \\ dI_2 = \left[\beta_2 \frac{I_1}{N_2} (N_2 - I_2) - (\tau_2 + u_2) I_2\right] dt + \sqrt{\beta_2 \frac{I_1}{N_2} (N_2 - I_2) + (\tau_2 + u_2) I_2} dW_2. \\ (I_1(0), I_2(0)) = (I_1^0, I_2^0) \end{cases}$$

et est équivalent, pour $I = (I_1, I_2)^{\mathsf{T}}$ et $u = (u_1, u_2)^{\mathsf{T}}$, à (5.2) ci-dessous

(5.2)
$$dI = f(t, I, u)dt + G(t, I, u)dW$$

où

$$f(t, x, u) = (f_1, f_2) = (f_k)_{k=1;2.}$$

et

$$G = G(t, x, u) = diag(G_1, G_2) = diag(G_k)_{k=1;2}$$

5.1 Contrôle optimal du traitement d'une MST

tels que

$$f_k = \beta_k I_{3-k} - \beta_k \frac{I_{3-k}I_k}{N_k} - (\tau_k + u_k)I_k, \quad k = 1; 2.$$

et

$$G_k = \sqrt{\beta_k I_{3-k} - \beta_k \frac{I_{3-k} I_k}{N_k} + (\tau_k + u_k) I_k} \quad k = 1; 2.$$

Considérons l'ensemble des fonctions de contrôles admissibles donné par

$$\mathcal{U}_{ad} = \{ (u_1(\cdot), u_2(\cdot)) \in (L^{\infty}([0, T]))^2; u_1(t), u_2(t) \in [0, 1], \forall t \in [0, T] \}.$$

Notre objectif est de minimiser le nombre des nouveaux cas d'infection. La fonctionnelle du coût est alors définie par

$$J[u_1, u_2] = \mathbb{E}\left[\int_0^T \left(I_1 + I_2 + \frac{1}{2}(a_1u_1^2 + a_2u_2^2)\right)dt\right]$$

où a_1 et a_2 sont des paramètres constants positifs ou "poids" relatifs au coût de traitement contrôlé par u_1 et u_2 respectivement.

Le problème du contrôle optimal (u_1^*, u_2^*) est caractérisé par la fonction valeur optimale

$$\mathcal{V}(t,x) = \min_{(u_1,u_2)\in\mathcal{U}_{ad}} J[u_1,u_2] = J[u_1^*,u_2^*].$$

Définition 5.1.1. Le Hamiltonien généralisé \mathcal{H}^{ν} associé à l'EDS contrôlé (5.1) est défini par

$$\mathcal{H}^{\nu}: [0;T] \times \mathbb{R}^2 \times \mathcal{U}_{ad} \times \mathbb{R}^2 \times \mathcal{M}_{(2 \times 2)}(\mathbb{R}) \longrightarrow \mathbb{R} \quad tel \; que$$
$$\mathcal{H}^{\nu} = \mathcal{H}^{\nu}(t,x,u,p,q) = f(t,x,u) \cdot p + tr[G^{\intercal}(t,x,u)q] - \varphi(t,x,u)$$

soit

$$\mathcal{H}^{\nu} = \phi(t, x_1, x_2) + \psi(t, x_1, x_2, u_1, u_2)$$

$$\phi(t, x_1, x_2) = p_1 \left(\beta_1 \frac{x_2}{N_1} (N_1 - x_1) - x_1 \tau_1\right) + p_2 \left(\beta_2 \frac{x_1}{N_2} (N_2 - x_2) - x_2 \tau_2\right) - (x_1 + x_2)$$

et

$$\psi(t, x_1, x_2, u_1, u_2) = q_1 G_1 + q_2 G_2 - (p_1 x_1 u_1 + p_2 x_2 u_2) - \frac{1}{2} (a_1 u_1^2 + a_2 u_2^2).$$

Définition 5.1.2. Pour tout $u \in U_{ad}$, on appelle équation adjointe, l'EDS rétrograde suivante

(5.3)
$$dp_t = -\nabla \mathcal{H}^{\nu}(t, I_t, u_t, p_t, q_t) dt + q_t dW_t, \quad p_T = 0.$$

où $\nabla \mathcal{H}^{\nu}=(\delta \mathcal{H}_{1}^{\nu},\delta \mathcal{H}_{2}^{\nu})=(\delta \mathcal{H}_{k}^{\nu})_{k=1;2}$ tels que pour k=1;2, on ait

$$\delta \mathcal{H}_{k}^{\nu} = -p_{kt} \left(\beta_{k} \frac{I_{3-k}}{N_{k}} + u_{k} + \tau_{k} \right) + p_{3-k} \beta_{3-k} \frac{N_{3-k} - I_{3-k}}{N_{3-k}} + q_{k} \Gamma_{k} + q_{3-k} \Upsilon_{k} + 1$$

avec

$$\Gamma_k(I_{1t}, I_{2t}) = \frac{-\beta_k I_{3-k} + (u_k + \tau_k) N_k}{2\sqrt{\beta_k I_{3-k}(N_k - I_{kt}) + (u_k + \tau_k) I_{kt} N_k}}, \quad k = 1; 2$$

5.1 Contrôle optimal du traitement d'une MST

et

$$\Upsilon_k(I_{kt}, I_{3-k}) = \frac{\beta_k(N_k - I_{kt})}{2\sqrt{\beta_k I_{kt}(N_k - I_{kt}) + (u_k + \tau_k)I_{kt}N_k}}, \quad k = 1; 2.$$

Cherchons une solution (p_t^*, q_t^*) de l'équation adjointe (5.3) sous la forme

$$p_t^* = \Phi(t, u(t))I_t^*$$

soit en notation des coordonnées

(5.4)
$$p_{kt}^* = \Phi_k(t, u_t) I_{kt}^*, \quad k = 1; 2.$$

avec conditions terminales $\Phi_k(T; u) = -1$ pour tout u, et $I_{kT}^* = 0$, k = 1; 2. En appliquant la formule d'Itô à l'équation (5.4), nous obtenons

$$dp_{kt}^{*} = \frac{\partial}{\partial t} \left(\Phi_{k}(t, u_{t}) I_{kt}^{*} \right) dt + \frac{\partial}{\partial x_{k}} \left(\Phi_{k}(t, u_{t}) I_{kt}^{*} \right) dI_{kt}^{*} + \frac{1}{2} \frac{\partial^{2}}{\partial x_{k}^{2}} \left(\Phi_{k}(t, u_{t}) I_{kt}^{*} \right) dI_{kt}^{*} dI_{kt}^{*}, \quad k = 1; 2.$$

soit

(5.5)
$$dp_{kt}^* = \left(I_{kt}^* \frac{\partial \Phi_k}{\partial t} + 2f_k \Phi_k\right) dt + 2G_k \Phi_k dW_{kt}.$$

Par idendification des coefficients des expressions de dp_{kt} données par (5.5) et (5.3), nous obtenons pour k = 1; 2

(5.6)
$$-\delta \mathcal{H}_{k}^{\nu} = \left[\frac{\partial \Phi_{k}}{\partial t} - 2\left(\frac{\beta_{k}}{N_{k}}I_{3-k}^{*} + \tau_{k} + u_{k}\right)\Phi_{k}\right]I_{kt}^{*} + 2\beta_{k}\Phi_{k}I_{3-k}^{*},$$

et

$$(5.7) q_k = 2G_k \Phi_k.$$

Les équations (5.6) étant linéaires en I_k^* , k = 1; 2. $(I_k^* \neq I_{3-k}^*)$, alors l'optimalité est atteinte lorsque les coeficients de I_k^* s'annulent. Ainsi nous obtenons le système de deux équations différentielles ordinaires suivantes :

$$\frac{\partial \Phi_k}{\partial t} - 2\left(\frac{\beta_k}{N_k}I_{3-k}^* + \tau_k + u_k\right)\Phi_k = 0, \quad k = 1;2$$

qui admettent pour tout $(t, u_t) \in [0; T] \times [0; 1]$ des solutions ci-dessous :

(5.8)
$$\Phi_k(t, u_t) = \Phi_k(0, u_0) \exp\left[2\int_0^t \left(\frac{\beta_k}{N_k}I_{3-k}^* + \tau_k + u_k\right)ds\right], \quad k = 1; 2.$$

En tenant compte des conditions terminales $\Phi_k(T, u) = -1$ et $I_{kT}^* = 0$, nous avons

(5.9)
$$\Phi_k(t, u_t) = -\exp\left[-2\int_t^T B_k(u_s)ds\right], \quad k = 1; 2$$

avec

$$B_k = \frac{\beta_k}{N_k} I_{3-k}^* + \tau_k + u_k > 0, \quad k = 1; 2.$$

Car si $B_k(u_s) = 0$ alors $\Phi_k(t, u_{kt}) = -1$, i.e. que Φ_k est une constante qui ne dépend pas des contrôles u_k ; ce qui ne présente aucun intérêt.

D'où nous obtenons

(5.10)
$$-1 < \Phi_k(t, u(t)) < 0.$$

D'autre part, et à l'aide de (5.7), nous avons

$$\partial_{u}(-\mathcal{H}^{\nu}) = \begin{pmatrix} \frac{1}{2} \frac{q_{1}^{*}}{G_{1}} I_{1}^{*} + p_{1}^{*} I_{1}^{*} + a_{1} u_{1}^{*} \\ \frac{1}{2} \frac{q_{2}^{*}}{G_{2}} I_{2}^{*} + p_{2}^{*} I_{2}^{*} + a_{2} u_{2}^{*} \end{pmatrix} = \begin{pmatrix} I_{1}^{*} \Phi_{1}(t, u_{1t}^{*}) + p_{1}^{*} I_{1}^{*} + a_{1} u_{1}^{*} \\ I_{2}^{*} \Phi_{2}(t, u_{2t}^{*}) + p_{2}^{*} I_{2}^{*} + a_{2} u_{2}^{*} \end{pmatrix}$$

soit

$$\partial_u(-\mathcal{H}^\nu) = \partial_u\left(-\mathcal{H}_1^\nu, -\mathcal{H}_2^\nu\right) = \partial_u(-\mathcal{H}_k^\nu)_{k=1;2}$$

où

$$\partial_u (-\mathcal{H}_k^{\nu}) = -\left(-I_k^* \Phi_k(t, u_{1t}^*) - p_k^* I_k^* - a_k u_k^*\right), \quad k = 1; 2.$$

D'après le théorème 2.2.7 du PMP appliqué au modèle stochastique de MST, nous avons

$$0 \in \partial_u(-\mathcal{H}_k^{\nu})(t, I^*, u^*, p^*, q^*) + N_{[0,1]}(u_{kt}^*) \qquad s \in [0; T] \ \mathbb{P}.p.s.$$

En examinant alors les différents cas ci-dessous, nous avons

– si pour k=1,2., $u_k^*=0,$ alors $N_{[0,1]}(u_{kt}^*)=]-\infty;0]$ et nous avons

$$-I_k^* \Phi_k(t, u_{1t}^*) - p_k^* I_k^* - a_k u_k^* \le 0 \Longrightarrow \Phi_k(t, u_k^*) \ge \frac{-a_k u_k^*}{I_k^* (I_k^* + 1)} = 0$$

ce qui contredit (5.10);

- si pour $k = 1, 2., u_k^* = 1$, alors $N_{[0,1]}(u_{kt}^*) = [0; +\infty[$ et nous avons

$$-I_k^* \Phi_k(t, u_{1t}^*) - p_k^* I_k^* - a_k u_k^* \ge 0 \Longrightarrow \Phi_k(t, u_k^*) \ge \frac{-a_k}{I_k^* (I_k^* + 1)} < 0$$

ce qui vérifie (5.10);

- L'autre cas satisfaisant est le cas où $0 < u_k^* < 1$, k = 1; 2. Dans ce cas, $N_{[0,1]}(u_{kt}^*) = \{0\}$ et nous avons

$$-I_k^* \Phi_k(t, u_{1t}^*) - p_k^* I_k^* - a_k u_k^* = 0 \Longrightarrow 0 < u_k^* = \frac{-p_k^* \left(I_k^* + 1 \right)}{a_k} < 1.$$

Donc, nous obtenons

$$u_k = \frac{-p_k^* \left(I_k^* + 1 \right)}{a_k} \in]0; 1], \quad k = 1; 2.$$

Les composantes $\mathcal{H}\nu_k, \ k = 1; 2$ du hamiltonien \mathcal{H}^{ν}

$$(I_k, u_k) \longrightarrow \mathcal{H}_k^{\nu}(t, I, u, p^*, q^*) = -\frac{1}{2}u_k^2 - I_k$$

sont concaves et g(x) = 0 est convexe, alors nous concluons d'après Théorème 2.2.7 et Théorème 2.2.8 que le contrôle optimal qui minimise $J[u_1, u_2]$ est donc

$$u_k^* = \frac{-\Phi_k I_k^* \left(I_k^* + 1 \right)}{a_k}, \ k = 1; 2.,$$

où Φ_k est donné par la relation (5.9).

5.2 Contrôle optimal de la dynamique aléatoire du VIH

5.2 Contrôle optimal de la dynamique aléatoire du VIH

Dans cette section, nous faisons une application du contrôle optimal dans les EDS. Cette application concerne le contrôle optimale de la dynamique stochastique de l'infection du VIH/SIDA en présence du traitement antirétroviral associé à d'autre mesures préventives en vue d'optimiser les stratégies thérapeutiques de cette infection.

5.2.1 Stratégies du traitement sous ARV du VIH/SIDA

Le SIDA, Syndrome Immuno-Déficient Aquis est la phase avancée du VIH, Virus de l'Immunodéficience Humaine. Selon la classification des phases de l'infection du VIH en 1995 par Center for Disases Control (CDC) basé en Atlanta (U.S.A), il y a trois phases d'infection du VIH : primo infection où la quantité des cellules CD4⁺ est supérieure à $500/mm^3$; phase asymptomatique correspondant au stade du VIH où la quantité des cellules CD4⁺ se situe entre $200/mm^3$ et $500/mm^3$; enfin la phase du SIDA où la quantité des cellules CD4⁺ est inférieure à $200/mm^3$. Le VIH/SIDA est la principale cause de mortalité et de morbidité de l'humanité. Malgré les mesures de traitement existantes, nous ne cessons d'enrégistrer de nouveaux cas d'infection au VIH.

Les mesures préventives de cette infection sont entre autres, le dépistage systématique de tout individu ne connaissant pas sa sérologie. Il faut donc faire un dépistage élargi et soutenu qui peut se faire dans les centres médicaux privés, centres hospitaliers publiques, les centres médicaux biologistes, les infirméries, les structures de préventions sanitaires, les structures associatives impliquées en matière de prévention sanitaires, etc.... Aller à la rencontre des personnes qui n'ont pas l'accès au système de soins. La prévention combinée à savoir abstinence, fidélité et prudence avec le préservatif pour les individus susceptibles de contaminer l'infection d'une part; le traitement antirétroviral très précoce en cas de contamination pour les séropositifs les plus susceptibles de transmettre l'infection d'autre part.

Les mesures curatives du traitement du VIH/SIDA demeurent le traitement aux ARV qui présente toujours un intérêt thérapeutique efficace, même dans les cas des résistances. Le suivi à la messagérie des patients sous ARV par les thérapeutes est une des stratégies de traitements en vue d'un contrôle optimal. L'envoi d'un SMS (Short Message Service) à chaque patient sous ARV par les contrôleurs pour s'assurer qu'il prend effectivement son traitement. Cette stratégie du suivi à la messagerie au cours du traitement, a été expérimentée entre mai 2007 et octobre 2008 au Kenya, et a donné des résultats encouragents selon © 1996 - 1010 Destination Santé SAS. Selon cette même source, le SMS a été expédié à 273 individus placés pour la première fois sous ARV. Un groupe de contrôleurs, qui a pour consigne de suivre systematiquement et de manière standard 265 patients, dans le cadre de consultations médicales, a expédié des SMS à certains patients et n'a pas envoyé des SMS aux autres. L'action d'observer cette règle de messagerie s'est avérée optimale chez 62 % des patients recevant les SMS, et 50 % seulement pour les autres. Le résultat important de cette expérience est que la charge virale de 57 % des patients suivis par SMS, est devenue indétectable, contre seulement 48 % de ceux suivis sans SMS. Dans ce chapitre, nous agissons simplement sur les proportions des patients sous ARV avec des stratégies optimales de traitement et du suivi par les SMS afin que la charge virale des patients soit indétectable comme le cas du suivi de l'observance des patients qui ont reçu les SMS au Kenya. Ainsi nous pouvons réduire le nombre de nouveaux cas d'infection au VIH/SIDA.

Considérons la dynamique stochastique d'un modèle du VIH/SIDA modélisée dans le chapitre 3 par l'EDS (3.37) dans laquelle nous choisissons d'introduire trois fonctions de contrôle u_0 , u_1 et u_2 . Nous agissons sur la proportion des patients du VIH/SIDA sous ARV avec SMS-stratégie qui consiste à suivre le traitement avec un Service de Message Court ou Short Message Service (SMS) ; aussi avec HTC-stratégie ou HIV-Testing Counseling qui est une technique de dépistage du VIH et du Conseil éducatif, de sensiblisation sur le changement de comportements des personnes qui courent le risque etc... . Ces stratégies permettent de réduire le nombre de nouveaux cas d'infection. HTC-stratégie parmi les individus susceptibles, a des effets mesurables, par exemple compter les primo-séropositifs qui sont considérés comme des susceptibles benignes ; ce sont des individus susceptibles testés positifs qui sont infectés récemment mais ne pouvant pas transmettre l'infection. Ils sont mis immédiatemnt sous ARV. Le contrôle u_0 représente la proportion des primo-positifs sous ARV ; le contrôle u_1 représente la proportion des patients infectés du VIH ou séropositifs sous ARV qui ont reçu le SMS. Le contrôle u_2 représente la proportion des malades du SIDA sous ARV qui ont reçu le SMS. On désigne par τ_1 la proportion des séropositifs sous traitement aux ARV, et par τ_2 celle des sidéens. Ces contrôles sont quantifiées sur l'ensemble [0, 1].

5.2.2 Contrôle optimal des stratégies de traitements sous ARV

Le modèle stochastique de la dynamique de transmission de l'infection du VIH/SIDA sous ARV avec SMS et HTC, est donné sous la forme compacte par :

(5.11)
$$dX_t = f(t, X_t, u_t)dt + G(t, X_t, u_t)dW_t,$$

où $X_t = (S_t, H_{1t}, H_{2t}, W_{Ht})^T$ est un vecteur aléatoire de dimension 4 ayant pour composantes $S_t, H_{1t}, H_{2t}, W_{Ht}$; $u_t = (u_0, u_1, u_2)$ est le vecteur des contrôles ;

 $W_t = (W_t^j)_{j=1,\dots,m=11}^T$ est un processus Brownien de dimension 11 et est defini sur un espace de probabilité filtré $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t>0}, P)$;

 $f(t, X_t, u_t)$, la fonction vectoriell d'évolution de composantes $(f_i(t, X_t, u_t))_{i=1,...,d=4}^T$, est définie par :

(5.12)
$$f(t, X_t, u_t) = (f_i(t, X_t, u_t))^T = \begin{pmatrix} \Lambda - (\mu + u_0 + \lambda_H)S_t \\ \lambda_H S_t - (\mu + \sigma + u_1\tau_1)H_{1t} \\ \sigma H_{1t} - (\mu + \delta_H + u_2\tau_2)H_{2t} + \sigma\theta W_{Ht} \\ u_0 S_t + u_1\tau_1H_{1t} + u_2\tau_2H_{2t} - (\mu + \sigma\theta)W_{Ht} \end{pmatrix};$$

enfin le bruit matriciel $G = G(t, X_t, u_t)$ de dimension (4×11) est tel que

$$(5.13) \ G(t, X_t, u_t) = \begin{pmatrix} G_{11} & G_{12} & G_{13} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & G_{111} \\ 0 & 0 & G_{23} & G_{24} & G_{25} & G_{26} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & G_{35} & 0 & G_{37} & G_{38} & +G_{39} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & G_{46} & 0 & G_{48} & G_{49} & G_{410} & G_{411} \end{pmatrix},$$

avec

$$G_{11} = \sqrt{\Lambda}, \quad G_{12} = -\sqrt{\mu S_t}, \quad G_{13} = -G_{23} = -\sqrt{\lambda_H S_t}, \quad G_{24} = -\sqrt{\mu H_{1t}},$$
$$G_{25} = -G_{35} = -\sqrt{\sigma H_{1t}}, \quad G_{26} = -G_{46} = u_1 \sqrt{\tau_1 H_{1t}},$$

(5.14)

$$G_{37} = -\sqrt{(\mu + \delta_H)H_{2t}}, \quad G_{38} = -G_{48} = u_2\sqrt{\tau_2 H_{2t}}, \quad G_{39} = -G_{49} = \sqrt{\sigma\theta W_{Ht}},$$

$$G_{410} = \sqrt{\mu W_{Ht}} \quad et \quad G_{411} = -G_{111} = u_0\sqrt{S_t}$$

où

$$\lambda_H = \lambda_H(X_s) = \beta_H \frac{H_{1s} + \eta_2 H_{2s} + \eta_H W_{Hs}}{S_s + H_{1s} + H_{2s} + W_{Hs}}$$

Propriété 5.2.1.

(P₁): Les applications f et G sont mesurables (par rapport à la tribu de Borel), et satisfont à la condition uniforme de Lipschitz et à la condition de la croissance quadratique, i.e. il existe une constante C > 0 independante de x et u tels que pour $\Phi = f$ ou $\Phi = G$, nous ayons

(5.15)
$$\begin{cases} |\Phi(t,x,u) - \Phi(t,\hat{x},\hat{u})| \le C(|x-\hat{x}| + |u-\hat{u}|), \ t \in [0;T] \ x, \hat{x} \in \mathbb{R}^4 \ u, \hat{u} \in \mathbb{R}^3, \\ C|x+u| \le C(1+x^2+u^2), \forall \ x \in \mathbb{R}^4; \forall \ u \in \mathbb{R}^3. \end{cases}$$

(P₂): A l'horizon du temps fini $T \in]0; +\infty[$, nous avons

(5.16)
$$\mathbb{E}\left[\int_{t}^{T} (|f(s,0,u)|^{2} + |G(s,0,u)|^{2}) ds\right] < +\infty, \ \forall t \in [0;T]; \forall u \in \mathbb{R}^{3}.$$

Considérons l'ensemble des fonctions de contrôles admissibles donné par

$$\mathcal{U}_{ad} = \left\{ u = (u_0, u_1, u_2) \in (\mathbb{R})^3; u_0; u_1, u_2 \in [0, 1] \right\}$$

Notre objectif est de minimiser le nombre des nouveaux cas d'infection. La fonctionnelle du coûi est alors définie par

$$\mathcal{J}(t, x, u_0, u_1, u_2) = \mathbb{E}\left[\int_t^T \left(\lambda_H(X_s)S_s + \frac{B_0}{2}u_0^2 + \sum_{k=1}^2 \frac{B_k}{2}(1-u_k)^2\right)ds + \frac{1}{2}(X_T)^2/X_t = x\right],$$

où B_0 , B_1 , B_2 sont des paramètres positifs représentant les poids relatifs respectivement au coût des trois critères considerés; $u = (u_0, u_1, u_2) \in [0; 1]^3$ est une fonction vectorielle de contrôle; t est la date initiale à laquelle l'état initial est $x = X_t$ et T est le temps terminal fixé auquel l'état terminal de la période de contrôle est X_T .

Le problème optimal est caractérisé par la fonction valeur suivante

$$\mathcal{V}(t,x) = \min_{(u_1,u_2)\in\mathcal{U}_{ad}} \mathcal{J}(t,x,u_0,u_1,u_2) = \mathcal{J}(t,x,u_0^*,u_1^*,u_2^*), \ X_t = x$$

Par application du PPD de Bellman, le Théorème 2.2.4 donne

Définition 5.2.1. Pour tout $(t, x) \in [0; T] \times \mathbb{R}^4$, la fonction valeur \mathcal{V} est solution d'une EDP du second ordre appelée équation de HJB associée à l'EDS contrôlée (5.1) et est définie par

(5.17)
$$\min_{(u_1,u_2)\in\mathcal{U}_{ad}}\left(\frac{\partial\mathcal{V}}{\partial t}(t,x) + \mathcal{A}^u\mathcal{V}(t,x) + \varphi^u(t,x)\right) = 0, \quad \forall \ (t,x)\in[0;T]\times\mathbb{R}^4$$

avec la condition terminale $\mathcal{V}(T, x) = 0$ et

$$\mathcal{A}^{u}\mathcal{V}(t,x) = f(t,x,u)\nabla\mathcal{V}(t,x) + \frac{1}{2}tr[(GG^{\mathsf{T}})(t,x,u)\mathcal{D}^{2}\mathcal{V}(t,x)],$$
$$\varphi^{u}(t,x) = \lambda_{H}(x)S_{t} + \frac{B_{0}}{2}u_{0}^{2} + \sum_{k=1}^{2}\frac{B_{k}}{2}(1-u_{k})^{2}$$

Théorème 5.2.1. (Caractérisation du contrôle optimal)

Soit $u^* = (u_0^*, u_1^*, u_2^*) \in U_{ad}$ un contrôle optimal dont les composantes $u_{i\,i=0;1,2}^*$ donnent les niveaux optimaux des différentes mesures avec S^* , H_1^* , H_2^* , and W_H^* les états correspondants. Alors u^* is caractérisation par ses composantes comme suit

(5.18)
$$u_0^* = \min\left\{ \max\left(0, \frac{S(\mathcal{V}_{x_1} - \mathcal{V}_{x_4})}{S(\mathcal{V}_{x_1x_1} + \mathcal{V}_{x_4x_4}) + B_0}\right), 1 \right\}$$

(5.19)
$$u_1^* = \min\left\{ \max\left(0, \frac{\tau_1 H_1(\mathcal{V}_{x_2} - \mathcal{V}_{x_4})}{\tau_1 H_1(\mathcal{V}_{x_2x_2} - 2\mathcal{V}_{x_2x_4} + \mathcal{V}_{x_4x_4}) - B_1}\right), 1\right\}$$

(5.20)
$$u_2^* = \min\left\{ \max\left(0, \frac{\tau_2 H_2(\mathcal{V}_{x_3} - \mathcal{V}_{x_4})}{\tau_2 H_2(\mathcal{V}_{x_3 x_3} - 2\mathcal{V}_{x_3 x_4} + \mathcal{V}_{x_4 x_4}) - B_2}\right), 1 \right\}$$

où \mathcal{V} est solution de l'équation (5.17) tels que les dérivées partielles d'ordre 1 et 2 sont données par :

$$\mathcal{V}_{x_1} = \frac{\partial \mathcal{V}}{\partial S}, \quad \mathcal{V}_{x_2} = \frac{\partial \mathcal{V}}{\partial H_1}, \quad \mathcal{V}_{x_3} = \frac{\partial \mathcal{V}}{\partial H_3}, \quad \mathcal{V}_{x_4} = \frac{\partial \mathcal{V}}{\partial W_H},$$
$$\mathcal{V}_{x_1x_1} = \frac{\partial^2 \mathcal{V}}{\partial S^2}, \quad \mathcal{V}_{x_2x_2} = \frac{\partial^2 \mathcal{V}}{\partial H_1^2}, \quad \mathcal{V}_{x_3x_3} = \frac{\partial^2 \mathcal{V}}{\partial H_2^2}, \quad \mathcal{V}_{x_4x_4} = \frac{\partial^2 \mathcal{V}}{\partial W_H^2},$$
$$\mathcal{V}_{x_2x_4} = \frac{\partial^2 \mathcal{V}}{\partial H_1 W_H}, \quad \mathcal{V}_{x_3x_4} = \frac{\partial^2 \mathcal{V}}{\partial H_2 W_H}.$$

Preuve: Posons

$$\mathcal{H}(u) = \mathcal{H}(t, x, u, \nabla \mathcal{V}, \mathcal{D}^2 \mathcal{V}) = \frac{\partial \mathcal{V}}{\partial t}(t, x) + \mathcal{A}^u \mathcal{V}(t, x) + \varphi^u(t, x)$$
$$\mathcal{H}(u) = \sum_{k=1}^4 f_k(t, x, u) \frac{\partial \mathcal{V}}{\partial x_k} + \frac{1}{2} \sum_{k=1}^4 v_k^u(t, x) \frac{\partial^2 \mathcal{V}}{\partial x_k^2} - \frac{1}{2} \sum_{k=1}^4 \sum_{l=1}^4 w_{kl}^u(t, x) \frac{\partial^2 \mathcal{V}}{\partial x_k \partial x_l} + \varphi^u(t, x)$$

où

$$v_1^u(t,x) = \Lambda + (\mu + u_0^2 + \lambda_H)S, \quad v_2^u(t,x) = \lambda_H S + (\mu + \sigma + u_1^2 \tau_1)H_1$$
$$v_3^u(t,x) = \sigma H_1 + (\mu + \delta_H + u_2^2 \tau_2)H_2 + \sigma \theta W_H,$$

$$\begin{aligned} v_4^u(t,x) &= u_0^2 S + u_1^2 \tau_1 H_1 + u_2^2 \tau_2 H_2 + (\mu + \sigma \theta) W_H. \\ w_{12}^u(t,x) &= w_{21}^u(t,x) = \lambda_H S, \ w_{23}^u(t,x) = w_{32}^u(t,x) = \sigma H_1, \\ w_{24}^u(t,x) &= w_{42}^u(t,x) = u_1^2 \tau_1 H_1, \ w_{34}^u(t,x) = w_{43}^u(t,x) = u_2^2 \tau_2 H_2 + \sigma \theta W_H \end{aligned}$$

La fonction $\mathcal{H}(u)$ doit être minimale en $u^* = (u_0^*, u_1^*, u_2^*)$, contrôle optimal cherché. Ainsi, nous avons

$$\nabla_{u}\mathcal{H}(u^{*}) = \begin{bmatrix} S\left(-\mathcal{V}_{x_{1}} + \mathcal{V}_{x_{4}} + (\mathcal{V}_{x_{1}x_{1}} + \mathcal{V}_{x_{4}x_{4}} + \frac{B_{0}}{S})u_{0}^{*}\right) \\ \tau_{1}H_{1}\left(-\mathcal{V}_{x_{2}} + \mathcal{V}_{x_{4}} + (\mathcal{V}_{x_{2}x_{2}} - 2\mathcal{V}_{x_{2}x_{4}} + \mathcal{V}_{x_{4}x_{4}} - \frac{B_{1}}{\tau_{1}H_{1}})u_{1}^{*}\right) \\ \tau_{2}H_{2}\left(-\mathcal{V}_{x_{3}} + \mathcal{V}_{x_{4}} + (\mathcal{V}_{x_{3}x_{3}} - 2\mathcal{V}_{x_{3}x_{4}} + \mathcal{V}_{x_{4}x_{4}} - \frac{B_{2}}{\tau_{2}H_{2}})u_{2}^{*}\right) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

qui implique que

(5.21)
$$\begin{cases} -\mathcal{V}_{x_1} + \mathcal{V}_{x_4} + (\mathcal{V}_{x_1x_1} + \mathcal{V}_{x_4x_4} + \frac{B_0}{S})u_0^* = 0, \\ -\mathcal{V}_{x_2} + \mathcal{V}_{x_4} + (\mathcal{V}_{x_2x_2} - 2\mathcal{V}_{x_2x_4} + \mathcal{V}_{x_4x_4} - \frac{B_1}{\tau_1H_1})u_1^* = 0, \\ -\mathcal{V}_{x_3} + \mathcal{V}_{x_4} + (\mathcal{V}_{x_3x_3} - 2\mathcal{V}_{x_3x_4} + \mathcal{V}_{x_4x_4} - \frac{B_2}{\tau_2H_2})u_2^* = 0 \end{cases}$$

ou $H_k = 0$, k = 1; 2 correspond l'équilibre sans maladie (Disease-Free-Equilibrium). Par la résolution du système (5.21), nous obtenons

(5.22)
$$u_0^* = \frac{S(\mathcal{V}_{x_1} - \mathcal{V}_{x_4})}{S(\mathcal{V}_{x_1x_1} + \mathcal{V}_{x_4x_4}) + B_0}$$

(5.23)
$$u_1^* = \frac{\tau_1 H_1(\mathcal{V}_{x_2} - \mathcal{V}_{x_4})}{\tau_1 H_1(\mathcal{V}_{x_2 x_2} - 2\mathcal{V}_{x_2 x_4} + \mathcal{V}_{x_4 x_4}) - B_1}$$

(5.24)
$$u_2^* = \frac{\tau_2 H_2(\mathcal{V}_{x_3} - \mathcal{V}_{x_4})}{\tau_2 H_2(\mathcal{V}_{x_3x_3} - 2\mathcal{V}_{x_3x_4} + \mathcal{V}_{x_4x_4}) - B_2}$$

Nous pouvons imposer les bornes de ces contrôles tels que $0 \le u_0 \le 1, 0 \le u_1 \le 1$, et $0 \le u_2 \le 1$ et obtenir (5.18), (5.19), (5.20) respectivement. Ceci marque la fin de la preuve.

Théorème 5.2.2. *Pour un contrôle optimal u**, *alors l'équation (5.17) devient une équation aux dérivées partielles (EDP) du second ordre non linéaire suivante*

(5.25)
$$\begin{cases} \frac{\partial \mathcal{V}}{\partial t}(t,x) + \mathcal{A}^{u^*}\mathcal{V}(t,x) + \varphi^{u^*}(t,x) = 0, \quad (t,x) \in [0,T] \times \mathbb{R}^4, \\ \mathcal{V}(T,x_T) = g(x_T) = \frac{1}{2}(x_T)^2 \end{cases}$$

qui admet une solution sous la forme $\mathcal{V}(t,x) = e^{-rt}\phi(t,x)$ tel que tout $(t,x) \in [0,T] \times \mathbb{R}^4$, l'on ait

(5.26)
$$\mathcal{V}(t,x) = \begin{cases} e^{-r(T-t)} \mathbb{E}^{x}[g(x_{T})], & si \quad \rho(t,x) = 0, \\ e^{-rT} \mathbb{E}^{x}[g(x_{T})] - \mathbb{E}^{x} \left[\int_{t}^{T} e^{-rs} \rho(s,x) ds \right] & si \quad \rho(t,x) \neq 0, \end{cases}$$
où ϕ et ρ sont liées par une autre EDP parabolique du second ordre comme dans [53] :

$$\left(\frac{\partial}{\partial t} + \mathcal{A}^{u^*} - r\right)\phi(t, x) = \rho(t, x), \quad (t, x) \in [0, T] \times \mathbb{R}^4,$$

i.e.

$$\phi(t,x) = e^{-r(T-t)} \mathbb{E}^x[\phi(T,x_T)] - \mathbb{E}^x\left[\int_t^T e^{-r(s-t)}\rho(s,x)ds\right].$$

Preuve: Notons d'abord que l'équation (5.25) est une EDP de type parabolique. Ce type d'EDP est souvent difficile à résoudre analytiquement. Dans la littérature (voir par exemple [11, 53, 74, 75, 76, 77]) grâce au théorème de vérification, une PDE parabolique admet une solution régulière $\mathcal{V} = v(T - t, x)$ généralement. Pour notre problème optimal, recherchons une forme explicite de la fonction v. Pour le cas d'une EDP uni-dimensionnelle ci-dessous

(5.27)
$$\begin{cases} \frac{\partial \hat{\mathcal{S}}}{\partial t}(t,x_i) + \mathcal{A}_i^{u^*} \hat{\mathcal{S}}(t,x_i) - r \hat{\mathcal{S}}(t,x_i) = 0, \quad (t,x_i) \in [0,T] \times \mathbb{R}, \ i = 1, \cdots 4 \\ \hat{\mathcal{S}}(T,x_i) = \psi(x_i(T)) \end{cases}$$

avec r est une constante positive. Grâce à la formule de Feynman-Kac, sa solution est donnée par

$$\hat{\mathcal{S}}(t, x_i) = e^{-r(T-t)} \mathbb{E}^x [\psi(x_i(T))].$$

En nous inspirant de cette solution du cas uni-dimensionnel, nous pouvons résoudre l'EDP (5.25) de dimension 4.

Substituant les contrôles u_0^* , u_1^* , u_2^* par leur expression (5.18), (5.19), (5.20) respectivement dans l'équation (5.17), nous obtenons l'EDP non linéaire du second ordre (5.25).

Maintenant, considérons l'EDP (5.25) que nousvoulons résoudre analytiquement en faisant les trois hypothèses ci-dessous en vue de surmonter les difficultés et de faciliter la résolution du problème en le décomposant à des sous problèmes :

• Suppose que $\varphi^{u^*}(t,x) = 0, \ \forall (t,x) \in [0,T] \times \mathbb{R}^4$. Alors l'EDP (5.25) devient

(5.28)
$$\begin{cases} \frac{\partial \mathcal{V}}{\partial t}(t,x) + \mathcal{A}^{u^*}\mathcal{V}(t,x) = 0, \quad (t,x) \in [0,T] \times \mathbb{R}^4, \\ \mathcal{V}(T,x_T) = g(x_T) \end{cases}$$

Soit $x = X_s$ le processus qui satisfait à l'EDS (5.11) définie sur l'intervalle [t;T] tel que les conditions aux limites soient $x = X_t = X(t)$ et $x_T = X_T = X(T)$. Notons que

$$f(t,x,u) = f^{u}(t,x) = (f^{u}_{i}(t,x))_{i=1,\dots,4} et G(t,x,u) = G^{u}(t,x) = (G^{u}_{ij}(t,x))_{i=1,\dots,4}^{j=1,\dots,11}.$$

Par l'application de la formule d'Itô multidimensionnelle à $\mathcal{V} = \mathcal{V}(t, x)$, solution de (5.28), nous avons

$$d\mathcal{V} = \underbrace{\left(\frac{\partial \mathcal{V}}{\partial t}(t,x) + \mathcal{A}^{u^*}\mathcal{V}(t,x)\right)}_{=0} dt + \sum_{i=1}^{4} \sum_{i=1}^{11} \frac{\partial \mathcal{V}}{\partial x_i} G^u_{ij}(t,x) dW^j_t$$

Thèse de Doctorat/Ph.D

Alors, nous obtenons

(5.29)
$$d\mathcal{V} = \sum_{i=1}^{4} \sum_{i=1}^{11} \frac{\partial \mathcal{V}}{\partial x_i} G^u_{ij}(t, x) dW^j_t.$$

En intégrant (5.29) de t à T puis en tenant compte des conditions aux limites, nous avons maintenant

$$g(x_T) = \mathcal{V}(t, x) + \sum_{i=1}^{4} \sum_{i=1}^{11} \int_t^T \frac{\partial \mathcal{V}}{\partial x_i} G^u_{ij}(s, x) dW^j_s.$$

L'espérance mathématique si x = X des deux membres d'équations ci-dessus donne

$$\mathbb{E}^{x}[g(x_{T})] = \mathcal{V}(t, x) + \sum_{i=1}^{4} \sum_{i=1}^{11} \underbrace{\mathbb{E}^{x}\left[\int_{t}^{T} \frac{\partial \mathcal{V}}{\partial x_{i}} G^{u}_{ij}(s, x) dW^{j}_{s}\right]}_{=0},$$

alors nous obtenons finalement \mathcal{V} donné par

$$\mathcal{V}(t,x) = \mathbb{E}^x[g(x_T)]$$

• Maintenant, suppose que $\varphi^{u^*}(t,x) > 0$ tel que $\mathcal{V}(t,x) = c\varphi^{u^*}(t,x)$, où $c < 0 \forall (t,x) \in [0,T] \times \mathbb{R}^4$. Alors l'EDP (5.25) est une forme générale de (5.27) avec $r = -\frac{1}{c}$ donnée comme suit

(5.30)
$$\begin{cases} \frac{\partial \mathcal{V}}{\partial t}(t,x) + \mathcal{A}^{u^*}\mathcal{V}(t,x) - r\mathcal{V}(t,x) = 0, \quad (t,x) \in [0,T] \times \mathbb{R}^4, \\ \mathcal{V}(T,x_T) = g(x_T) \end{cases}$$

Nous en déduisons que la solution de (5.30) est donnée donc par

$$\mathcal{V}(t,x) = e^{-r(T-t)} \mathbb{E}^x[g(x_T)]$$

• Enfin, supposons que $\varphi^{u^*}(t,x) > 0$ et $\mathcal{V}(t,x)$ une inconnue, $\forall (t,x) \in [0,T] \times \mathbb{R}^4$. Alors $\mathcal{V}(t,x)$ vérifie l'EDP (5.25). En appliquant la formule d'Itô à $\mathcal{V}(s,x)$ pour tout $(s,x) \in [t,T] \times \mathbb{R}^4$, nous obtenons

$$d\mathcal{V}(s,x) = \left(\frac{\partial \mathcal{V}}{\partial t}(s,x) + \mathcal{A}^{u^*}\mathcal{V}(s,x)\right) dt + \sum_{i=1}^4 \frac{\partial \mathcal{V}}{\partial x_i}(s,x)G_{ij}dW_s^j.$$

L'intégrale de t à T de l'équation ci-dessus et tenant compte des conditions aux limites, nous avons

(5.31)
$$g(x_T) = \mathcal{V}(t,x) + \int_t^T \left(\frac{\partial \mathcal{V}}{\partial t}(s,x) + \mathcal{A}^{u^*}\mathcal{V}(s,x)\right) ds + \int_t^T \nabla \mathcal{V}(s,x) G^{u^*}(s,x) dW_s.$$

Cherchons la solution inconnue sous la forme $\mathcal{V}(t,x) = e^{-rt}\phi(t,x)$ avec la condition terminale $\mathcal{V}(T,x_T) = e^{-rT}\phi(T,x_T) = g(x_T)$ où r > 0. Ainsi (5.31) devient

$$e^{-rT}\phi(T,x_T) = e^{-rt}\phi(t,x) + \int_t^T e^{-rs} \left(\frac{\partial\phi}{\partial t} + \mathcal{A}^{u^*}\phi - r\phi\right)(s,x)ds$$

Thèse de Doctorat/Ph.D

5.3 Contrôle optimal et fréquence du traitement de TB

$$+\int_t^T e^{-rs} (\nabla \phi G^{u^*}) dW_s.$$

L'espérance mathématique si x = X des deux membres d'équations ci-dessus donne

$$\mathbb{E}^{x}[g(x_{T})] = e^{-rt}\phi(t,x) + \mathbb{E}^{x}\left[\int_{t}^{T} e^{-rs}\left(\frac{\partial\phi}{\partial t} + \mathcal{A}^{u^{*}}\phi - r\phi\right)ds\right] + \underbrace{\mathbb{E}^{x}\left[\int_{t}^{T} e^{-rs}\nabla\phi(s,x)G^{u^{*}}dW_{s}\right]}_{=0},$$

alors

(5.32)
$$\phi(t,x) = e^{-r(T-t)} \mathbb{E}^x[\phi(T,x_T)] - e^{rt} \mathbb{E}^x \left[\int_t^T e^{-rs} \left(\frac{\partial \phi}{\partial t} + \mathcal{A}^{u^*} \phi - r\phi \right)(s,x) ds \right]$$

Dès que ϕ satisfait à l'EDP (5.30), i.e.

$$\frac{\partial \phi}{\partial t} + \mathcal{A}^{u^*} \phi - r\phi = 0$$

alors, nous obtenons

(5.33)
$$\phi(t,x) = e^{-r(T-t)} \mathbb{E}^x[\phi(T,x_T)]$$

ainsi donc, la solution de PDE (5.25) est donnée par

(5.34)
$$\mathcal{V}(t,x) = e^{-r(T-t)} \mathbb{E}^x[g(x_T)].$$

Si ϕ ne satisfait pas à l'EDP (5.30), i.e.

$$\frac{\partial \phi}{\partial t} + \mathcal{A}^{u^*}\phi - r\phi = \rho \neq 0$$

ainsi, nous obtenons plutôt

(5.35)
$$\phi(t,x) = e^{-r(T-t)} \mathbb{E}^x[\phi(T,x_T)] - e^{rt} \mathbb{E}^x \left[\int_t^T e^{-rs} \rho(s,x) ds \right]$$

Enfin, la solution de l'EDP (5.25) est donnée comme (5.26). Ceci marque la fin de la preuve. ■

Connaissant une expression de la fonction value \mathcal{V} , alors nous pouvons réécrire autrement les expressions de $u^* = (u_0^*, u_1^*, u_2^*)$ données par (5.18),(5.19), (5.20) respectivement. Quelques difficultés existent pour représenter graphiquement la solution analytique \mathcal{V} de l'EDP (5.25) ainsi que le contrôle optimal u^* . Ainsi, nous pouvons les approcher numeriquement grâce aux schémas numériques.

5.3 Contrôle optimal et fréquence du traitement de TB

Dans cette section, nous considérons un modèle stochastique de tuberculose (TB) formulé et analysé dans les Chapitre 3 et 4 respectivement. L'introduction d'une fonction de contrôle dans ce modèle donne une nouvelle dynamique de TB avec contrôle pour laquelle un problème optimal consiste à minimiser le nombre des tuberculeux actifs. La méthode du gradient projeté permet de déterminer numériquemnt le contrôle optimal ainsi que la fonction du coût associée.

5.3.1 Formulation d'un problème de control optimal

Soit $(\Omega, \mathcal{F}, {\mathcal{F}_t}_{t\geq 0}, P)$ un espace de probabilité complet de filtration ${\mathcal{F}_t}_{t\geq 0}$ produite par un mouvement brownien ${W_t}_{t\geq 0}$ de dimension 10. Soit $\mathcal{T} > 0$ un nombre réel fixé appelé horizon fini du temps t. Notons par $L^2(\Omega, \mathcal{F}_{\mathcal{T}}, \mathbf{R})$ l'espace de variables aléatoires. $\mathcal{F}_{\mathcal{T}}$ -measurable à valeur réel et de carrée intégrable et par $L^2_{\mathcal{F}}(0; \mathcal{T}, \mathbf{R})$ un espace de processus \mathcal{F}_t - adaptés à valeur réel et de carrée intégrable tels que $\mathbf{E}[\int_0^{\mathcal{T}} |X_t|^2 dt] < +\infty$.

Soit $K \in \mathcal{U}_{ad}$ un compact convexe sous ensemble de $L^2(0, \mathcal{T})$. Considérons un problème du contrôle optimal qui consiste à minimiser le coût $\mathcal{J}(.,.)$, la fonction objective définie pour le temps $t \in [0, \mathcal{T}]$, l'état $X \in \mathbb{R}^4$ et la fonction du contrôle $u \in \mathcal{U}_{ad}$ par :

(5.36)
$$\mathcal{J}(X,u) = \int_0^T \mathbf{E}[\varphi(X_t, u_t)]dt + \int_0^T h(u_t)dt,$$

relative à l'état $X_t \in \mathbf{R}^4$ du modèle de TB défini en général par :

(5.37)
$$\begin{cases} dX_t = f(t, X_t, u_t)dt + G(t, X_t, u_t)dW_t, & t \in [0; \mathcal{T}] \\ X_0 = X(0) \in \mathbf{R}^4 \end{cases}$$

et en particulier par :

(5.38)
$$\begin{cases} dX_t = f(t, X_t, u_t)dt + G(t, X_t)dW_t, & t \in [0; \mathcal{T}] \\ X_0 = X(0) \in \mathbf{R}^4 \end{cases}$$

où $u = u_t : \tau \longmapsto u(t)\tau$, pour tout taux τ de (3.38).

Cette partie concerne l'étude du cas particulier où le contrôle n'apparait pas dans le terme stochastique. Le contrôle est dit optimal si la dose médicamenteuse atteind sa valeur optimale positive, i.e. $u = u_{op} > 0$. Si cette valeur optimale n'est pas atteinte, i.e. $u \in [-1; 0[\cup]0; u_{op}[$, alors le contrôle est dit moins efficace ; il est dit sans effet lorsque u = 0 et enfin, le contrôle est dit efficace lorsque la valeur optimale est dépassée) i.e. $u \in [u_{op}, 1]$. Le but est donc de contrôler les féquences du traitement afin de réduire le nombre de nouvaux cas. Le problème du contrôle optimal se traduit par :

Trouver un contrôle optimal admissible $u = u^*$ tel que

(5.39)
$$\mathcal{J}(X, u^*) = \min_{u \in K \subset \mathcal{U}_{ad}} \mathcal{J}(X, u)$$

ie.
$$\mathcal{J}(X, u^*) \leq \mathcal{J}(X, u) \ \forall u \in K \subset \mathcal{U}_{ad}$$

Soit $F(u) = \mathcal{J}(X, u)$, alors le problème du contrôle optimal (5.39) devient un problème d'optimisation

(5.40)
$$F(u^*) = \min_{u \in K \subset \mathcal{U}_{ad}} F(u),$$

où F(u) est une fonction convexe.

Proposition 5.3.1. Soit, H un espace de Hilbert, muni d'une norme $\|.\|$ induite par le produit scalaire $(\cdot|\cdot)$ et soit $K \subset H$ un sous ensemble compact non vide et convexe. Alors pour tout $u \in H$,

1. il existe un unique $\tilde{u} \in K$ *tels que*

$$||u - \tilde{u}|| = \min_{v \in K} ||u - v|| \text{ pour tout } v \in K,$$

où $\tilde{u} = P_K(u)$ est la projection orthogonale de u sur K.

2. *ũ est caractérisé par*

$$\tilde{u} = P_K(u) \iff (\tilde{u} - u \mid v - \tilde{u}) \ge 0$$

Preuve:

- l'existence de ũ ∈ K est vérifiée car K est compact. Supposons que H soit de dimension finie. Considérons K ∩ B(u; ||u − v||) l'intersection de K avec une boule B. Sur ce compact, la fonction v → ||u − v|| est continuue. De toute suite minimisante nous pouvons extraire une suite convergente, de limite ũ. L'unicité vient de convexité de K et du théorème de Pythagore.
- 2. Pour la caractérisation de \tilde{u} ; supposons que $\tilde{u} = P_K(u)$ alors nous avons pour tout $v \in K$

$$||u - \tilde{u}|| = \min_{v \in K} ||u - v|| \Longrightarrow ||u - \tilde{u}|| \le ||u - v||.$$

So t $v \in K$, posons $v_{\varepsilon} = \tilde{u} + \varepsilon(v - \tilde{u}) \ \varepsilon \ \in]0; 1[v_{\varepsilon} \in K$ qui implique que

$$|u - \tilde{u}||^{2} \leq ||u - v_{\varepsilon}||^{2} = ||u - \tilde{u}||^{2} + \varepsilon^{2} ||v - \tilde{u}||^{2} + 2\varepsilon(\tilde{u} - u | v - \tilde{u})$$
$$||u - \tilde{u}||^{2} \leq ||u - \tilde{u}||^{2} + \varepsilon^{2} ||v - \tilde{u}||^{2} + 2\varepsilon(\tilde{u} - u | v - \tilde{u}).$$

Divisant par ε nous obtenons

$$0 \le \varepsilon \|v - \tilde{u}\|^2 + 2(\tilde{u} - u \mid v - \tilde{u})$$
$$\implies (\tilde{u} - u \mid v - \tilde{u}) \ge 0.$$

Reciproquement, Supposons que $(\tilde{u} - u \mid v - \tilde{u}) \ge 0$

$$0 \ge (u - \tilde{u} \mid v - \tilde{u}) = (u - \tilde{u} \mid v - u + u - \tilde{u})$$
$$0 \ge ||u - \tilde{u}||^2 + (u - \tilde{u} \mid v - u).$$

En appliquant l'inégalité de Cauchy-Schwarz, nous avons

$$0 \ge \|u - \tilde{u}\|^2 - \|u - \tilde{u}\|\|v - u\|$$
$$\implies \|v - u\| \ge \|\tilde{u} - u\|.$$

D'où la fin de cette preuve. ■

Proposition 5.3.2. L'algorithme du gradient stochastique consiste à faire varier la variable u du problème d'optimization (5.40) grâce à la formule de récurrence d'une suite convergente $(u_n)_{n\geq 0}$ de limite u:

$$u_{n+1} = u_n + q_n(-\nabla F(u_n))$$

où $q_n > 0$ avec $\lim_{n \to +\infty} q_n = q$ et ∇ désigne le gradient. 1. Initialisation : $u_0 \in H$ 2. $u = u_n$ est pour $n \ge 0$ a) Calculer $\omega_n = -\nabla F(u_n)$ Choisir $q_n \ge 0$ tel que $F(u_n - q_n \omega_n) \le F(u_n - q\omega_n) \forall q > 0$ $u_{n+1} = u_n + q_n \omega_n$ b) Calculer $v_{n+1} = P_K(v_{n+1})$ c) Tester la convergence de l'itération $\varepsilon_n = ||u_{n+1} - u_n||$: $- si \varepsilon_n < \varepsilon$ arrêter $- sinon : u = u_{n+1}$ et répeter l'itération.

5.3.2 Méthode de gradient projeté et modèle stochastique contrôlé de TB

Proposition 5.3.3. Considérons $H = \mathcal{U}$ un espace de Hilbert et $\mathcal{U}_{ad} \subset \mathcal{U}$ un sous ensemble fermé convexe. Soit P_K l'opérateur projection sur K defini sur \mathcal{U} par $P_K(\omega) = P_K \omega \in K$; $\forall \omega \in \mathcal{U}$, alors le problème (5.40) admet l'unique solution u ou contrôle optimal tel que

(5.41)
$$u = u(\cdot) = P_K[u - q(\cdot | F'(u))].$$

Preuve: $H = \mathcal{U}$ est un espace de Hilbert et $\mathcal{U}_{ad} \subset \mathcal{U}$ un sous ensemble fermé convexe. la condition nécessaire et suffisante d'optimalité du problème (5.40) est donnée par

$$(F'(u) \mid v - u) \ge 0 \quad \forall \ v \in K.$$

Soit P_K la projection opérateur sur K defini sur \mathcal{U} par $P_K(\omega) = P_K \omega \in K$; $\forall \omega \in \mathcal{U}$, tel que nous ayons

$$(P_K\omega - \omega \mid P_K\omega - \omega) = \min_{u \in K \subset \mathcal{U}_{ad}} (u - \omega \mid u - \omega) \ \forall \ \omega \in \mathcal{U}.$$

Il est équivalent à

$$(P_K\omega - \omega \mid v - P_K\omega) \ge 0 \quad \forall \ v \in K \Longleftrightarrow \omega = P_K\omega.$$

Il s'en suit que la solution u de (5.40) est donnée par

$$u = u(\cdot) = P_K[u - q(\cdot | F'(u))].$$

En effet, la condition d'optimalité donne

$$(F'(u) \mid v - u) \ge 0 \quad \forall \ v \in K,$$

alors pour tout q > 0 nous avons

$$q(\cdot \mid F'(h)) \mid v - u) \ge 0 \Longrightarrow (q(\cdot \mid F'(h)) \mid v - u) \ge 0$$
$$\Longrightarrow (u - u + q(\cdot \mid F'(h)) \mid v - u) \ge 0.$$

Avec $\omega = u - q(\cdot \mid F'(h)),$ la dernière implication donne

$$(u - \omega \mid v - u) \ge 0 \iff u = P_K \omega$$
$$(u - \omega \mid v - u) \ge 0 \iff u = P_K [u - q(\cdot \mid F'(h))].$$

D'où la fin de cette preuve. ■

Pour obtenir les résultats numériques du problème de contrôle optimal de la fréquence de traitement de TB, nous définissons le schéma d'itération suivant pour n = 0, 1, ...

(5.42)
$$\begin{cases} (v \mid u_{n+\frac{1}{2}}) = (v \mid u_n) - q_n(v \mid F'_n(u_n)), & \forall v \in \mathcal{U} \\ u_{n+1} = P_K(u_{n+\frac{1}{2}}), \end{cases}$$

où F'_n est la fonctionnelle approchée à la n^{ieme} itération de F.

La convergence de ce schéma, et le calcul de F'_n . sont largement prouvés et effectués dans [65]. Pour $u(\cdot)$ un contrôle optimal et $X(\cdot)$, l'état optimal correspondant et pour $v(\cdot) \in \mathcal{U} \subset L^2(0,T)$ tels que $v^p = u(\cdot) + qv(\cdot)$, 0 < q < 1, on a alors pour tout $v \in L^2(0,T)$,

(5.43)
$$F'_{n}(u)(v) = \lim_{q \to 0} \frac{F_{n}(u+qv) - F_{n}(u)}{q} = \mathbf{E}[\int_{0}^{\mathcal{T}} \varphi'(X)\mathcal{D}(X)(v)dt] + \int_{0}^{\mathcal{T}} h'(u)dt,$$

où

$$\mathcal{D}(X)(v) = \left[\int_0^t f'_X(s, X, u)\mathcal{D}(X)(v) + f'_u(s, X, u)v\right]ds + \int_0^t G'_X(s, X)\mathcal{D}(X)(v)dW_s,$$

et puis

$$d(\mathcal{D}(X)(v)) = [f'_X(t, X, u)\mathcal{D}(X)(v) + f'_u(t, X, u)v]dt + G'_X(t, X)\mathcal{D}(X)(v)dW_t.$$

On définit une fonctionnelle adjointe p, \mathcal{F}_t -adaptée et définie par

(5.44)
$$\begin{cases} -dp = [\varphi'(X) + pf'X(t, X, u) - pG'_X(t, X)(G'_X(t, X))^{tr}]dt + pG'_X(t, X)dW_t, \\ p(\mathcal{T}) = 0 \end{cases}$$

telle que $\mathbf{E}[\int_0^{\mathcal{T}} |p_t|^2 dt] < +\infty.$

Le terme droit de l'équation (5.43) permet d'obtenir finalament $F'_n(u)(v)$ à partir de (5.44),

(5.45)
$$F'_{n}(u)(v) = \int_{0}^{\mathcal{T}} \mathbf{E}[p(f'(t, X, u) + h'(u)]vdt,$$

Thèse de Doctorat/Ph.D

La Méthode du Gradient stochastique projeté appliquée au contrôle du modèle stochastic de TB, consiste donc à considérer le système (5.46) de deux équations (5.38) et (5.44) afin de le résoudre numériquement,

(5.46)

$$\begin{cases}
dX_t = f(t, X_t, u_t)dt + G(t, X_t)dW_t, & t \in [0; \mathcal{T}] \quad X_0 = X(0) \in \mathbf{R}^4; \\
-dp = [\varphi'(X_t) + pf'_X(t, X_t, u_t) - pG'_X(t, X_t)(G'_X(t, X))^{tr}]dt + pG'_X(t, X_t)dW_t, & p(\mathcal{T}) = 0
\end{cases}$$

La résolution numérique de (5.46) utilise le schéma d'itération (5.47) ci-dessous pour n = 0, 1, ... et puis le schéma d'Euler pour les deux équations de (5.46) (voir [65]),

(5.47)
$$\begin{cases} (v \mid u_{n+\frac{1}{2}}) = (v \mid u_n) - q_n(v \mid \mathbf{E}[p_n(f'_u(t, X_n, u_n))] + h'(u_n)), & \forall v \in \mathcal{U} \\ u_{n+1} = P_K(u_{n+\frac{1}{2}}), \end{cases}$$

où X_n , u_n et p_n sont représentent les pas des fonctions construites.

Les simulations numériques du contrôle optimal u et de la fonction valeur F(u) correspondante (voir FIGURE 6.16), des modèles stochastiques contrôlés de TB (voir FIGURE 6.17) utilisent l'algorithme suivant

Algorithme 5.3.1. [65] :

Etape 1 Choisir le contrôle initial arbitraire

Pour $n = 0, 1, \dots$, soit $u = u_n$, faire l'itération bouclée de Etape 1 à Etape 5;

- Etape 2 Utiliser le schéma d'Euler implicite pour la discrétisation en temps de l'EDS (5.38)
- Etape 3 Utiliser le schéma d'Euler implicite pour la discrétisation en temps de l'équation adjointe; (5.44)
- *Etape* 4 *Utiliser le schéma d'itération* (5.47) *de la méthode de gradient pour mettre à jour le contrôle*;

$$\begin{cases} u_{n+\frac{1}{2}}^m = u^m - q_n(\mathbf{E}[p^m(f'_u(t^m, X^m, u^m))] + h'(u^m)), \quad m = 0, 1, \cdots, m_{max} \\ u_{n+1}^m = P_K(u_{n+\frac{1}{2}}); \end{cases}$$

Etape 5 Calculer $e_n = ||u_n - u_{n+1}||$. Si e_n est assez petit sortir. Sinon; poser $u = u_{n+1}$ répéter l'itération bouclée de Etape 2 à Etape 5.

5.4 Contrôle optimal de la dynamique stochastique du CC

Dans cette section, nous caractérisons une fonction de contrôle optimal dans une EDS. Un problème optimal où le contrôle ne figure que dans le terme déterministe de l'EDS est formulé dans le chapitre 4. Notre objectif dans ce problèmes est de déterminer un contrôle optimal qui minimise le nombre total de la masse cellulaire infectés par le HPV, virus vecteur du cancer du col de l'utérus, avec une émergence des cas de résistance au traitement et avec rétablissement ou non des cellules infectées. Nous utilisons le PMP pour la résolution de ce problème.

0.

5.4.1 Problème du contrôle optimal de la masse cellulaire infectée par HPV

Soit $(\Omega, \mathcal{F}, \mathcal{F}_t, P)$ un espace de probabilité filtré avec la filtration $\mathcal{F}_t = \sigma\{W(s) : 0 \le s \le t\}$, i.e. l'ensemble des informations est générées par W(t).

Nous formulons alors un problème du contrôle optimal comme suit :

Un problème du contrôle optimal qui consiste à minimiser le nombre total de la masse cellulaire infectée par le HPV, virus vecteur de l'infection du cancer du col d'utérus, est formulé de la manière suivante : Il existe un contrôle optimal π^* tel que

$$(5.48) J(\pi^*) = \min_{\pi \in \Pi} J(\pi)$$

soumis au système stochastique contrôlé (3.64) formulé dans Chapitre 3, avec $J(\pi)$ la fonctionnelle de coût définie par

(5.49)
$$J(\pi) = \mathbb{E}\left[\int_0^{T_f} f(t, X, \pi)dt + g(X(T_f))\right],$$

où T_f , temps terminal correspondant à la fin de l'épidémie, est défini par

$$T_f = \inf\{t : (I_U + I_T + I_R)(t) = K_{T_f} \ll 1\};$$

 $f:[0,T_f]\times\mathbb{R}^5\times\Pi\longrightarrow\mathbb{R}$ et $g:\mathbb{R}^5\longrightarrow\mathbb{R}$ sont respectivement le coût instantané et le coût terminal tels que

$$f(t, X, \pi) = \gamma_U I_U + \gamma_T I_T + \gamma_R I_R$$

et pour tout $X(t) = (S(t), I_U(t), I_T(t), I_R(t), K(t)) \in \mathbb{R}^5$,

$$g(X(t)) = \frac{1}{2}[I_{U_0} - (I_U + I_T + I_R)(t)] \quad with \quad g(X(0)) = 0, \text{ and } g(X(T_f)) = \frac{1}{2}[I_{U_0} - K_{T_f}].$$

Lemme 5.4.1. Les fonctions μ , G, f, g sont continûment différentiable par rapport à X and leur dérivées partielles μ_X , G_X , f_X , g_X , sont continues en $(X, \pi) \in \mathbb{R}^5 \times \Pi$ et uniformement bornées. Enfin, μ , G, f_X , g_X sont bornées par $C(1 + |X| + |\pi|)$, $C < +\infty$.

Preuve: La fonction vectorielle $\mu : (\cdot, X, \cdot) \mapsto \mu(\cdot, X, \cdot)$ telle que

 $\mu(\cdot, X, \cdot) = (\mu_i(\cdot, X, \cdot))_{i=1,\dots 5} \in \mathbb{R}^5 \text{ est continue et differentiable en } x \in \mathbb{R}^5 \text{ car toutes ses composantes } \mu_i : (\cdot, X, \cdot) \longmapsto \mu_i(\cdot, X, \cdot) \in \mathbb{R}, \quad i = 1, 2, 3, 4, 5, \text{ sont continues et différentiables en } x \in \mathbb{R}^5.$ Idem pour la fonction matricielle $G : (\cdot, X, \cdot) \longmapsto G(\cdot, X, \cdot) = (G_{ij}(\cdot, X, \cdot))_{i=1,\dots 5, j=1,\dots 7} \in \mathcal{M}_{(5 \times 7)}(\mathbb{R}) \cong \mathbb{R}^{5 \times 7}.$ Alors μ_i et G_{ij} admettent des dérivées partielles du second orbre en $x \in \mathbb{R}^5$, qui sont continues. Alors, μ et G sont continûment différentiables en $x \in \mathbb{R}^5$ et leur dérivées partielles μ_X , et G_X respectives, sont continues.

 $f: (\cdot, X, \cdot) \longmapsto f(\cdot, X, \cdot) = \beta S(I_U + \delta_T I_T + \delta_R I_R) \in \mathbb{R}$ et $g: (X) \longmapsto g(X) = I_U(0) - (I_U + I_T + I_R)(t) \in \mathbb{R}$ admettent des dérivées partielles respectives f_X et g_X continues.

Lemme 5.4.2. La fonctionnelle coût définie par (5.49) avec

$$f(t, X, \pi) = (\gamma_U I_U + \gamma_T I_T + \gamma_R I_R)(t),$$

est la même que la fonctionnelle coût du type de Mayer suivant

(5.50)
$$J(\pi) = \mathbb{E}\left[h(X(T_f))\right].$$

 $h(X(t)) = 2g(X(t)) + S_0 - S(t) \ et \ h(X(T_f) = (S_0 + I_{U_0} - K_{T_f}) - S(T_f) \ et \ h(X(0)) = 0.$

Notons que minimiser le nombre total de la masse cellulaire infectée donnée par (5.49) revient à minimiser la masse finale des cellules susceptibles $S(T_f)$ dès que $S_0 + I_{U_0} - K_{T_f}$ est fixe.

Preuve: Nous avons $g(X(t)) = \frac{1}{2}[I_{U_0} - (I_U + I_T + I_R)(t)].$ Pour tout (t, X, π) , l'application de la formule d'Itô à g(X(t)), donne

$$dg(X(t)) = \left[-\beta S(I_U + \delta_T I_T + \delta_R I_R) + (\gamma_U I_U + \gamma_T I_T + \gamma_R I_R)\right] dt$$
$$-\frac{1}{2} \left[\sigma_2 dW_2 + \sigma_3 dW_3 - \sigma_5 dW_5 - \sigma_6 dW_6\right],$$

alors, en prenant l'espérance mathématique

$$\mathbb{E}[g(X(T_f))] = g(X(0)) - \mathbb{E}\left[\int_0^{T_f} \beta S(I_U + \delta_T I_T + \delta_R I_R) dt\right] \\ + \mathbb{E}\left[\int_0^{T_f} (\gamma_U I_U + \gamma_T I_T + \gamma_R I_R) dt\right] \\ - \frac{1}{2} \mathbb{E}\left[\int_0^{T_f} \sigma_2 dW_2 + \int_0^{T_f} \sigma_3 dW_3 - \int_0^{T_f} \sigma_5 dW_5 - \int_0^{T_f} \sigma_6 dW_6\right].$$

En effet, g(X(0)) = 0,

$$\mathbb{E}\left[\int_{0}^{T_{f}}\sigma_{2}dW_{2} + \int_{0}^{T_{f}}\sigma_{3}dW_{3} - \int_{0}^{T_{f}}\sigma_{5}dW_{5} - \int_{0}^{T_{f}}\sigma_{6}dW_{6}\right] = 0,$$

 $\int_{0}^{T_{f}} \beta S(I_{U} + \delta_{T}I_{T} + \delta_{R}I_{R})dt = S_{0} - S(T_{f}) \text{ combiné à (5.49), nous obtenons le résultat (5.50):}$

$$\mathcal{V}(t,x) = \min_{u \in \mathcal{U}_{ad}} J[u] = J[u^*].$$

Ceci marque la fin de la preuve. ■

5.4.2 Résolution du problème optimal de la masse cellulaire infectée

Définition 5.4.1. Pour tous $p(t) = (p_S(t), p_U(t), p_T(t), p_R(t), p_K(t))^T \in \mathbb{R}^5$ et $q(t) = ((q_S^j q_U^j q_T^j q_R^j q_K^j)_{j=1,\dots,7}^T) \in \mathcal{M}_{5\times7}(\mathbb{R})$, le Hamiltonien \mathcal{H} associé à l'EDS contrôlé (3.64) est défini par

$$\mathcal{H}: [0, T_f] \times \mathbb{R}^5 \times \Pi \times L^2(0, T_f, \mathbb{R}^{5 \times 5}) \times (L^2(0, T_f, \mathbb{R}^{5 \times 5}))^7 \longrightarrow \mathbb{R}$$

tel que

(5.51)
$$\mathcal{H}(t,X(t),\pi(t),p(t),q(t)) = \langle p(t),\mu(t,X,\pi) \rangle + \sum_{j=1}^{7} \langle q^j(t),G^j(t,X) \rangle$$

où q^j et G^j sont, respectivement la j^{me} colonne des matrices q and G. $\langle \cdot, \cdot \rangle$ et $| \cdot |$ désignent le produit scalaire et la norme associée dans tout espace euclidien. soit

(5.52)
$$\mathcal{H}(t, X, \pi, p, q) = \phi(t, X, p, q) + \pi \psi(t, X, p)$$

avec ϕ et ψ définies respectivement par

(5.53)

$$\phi(t, X, p, q) = \beta S[(p_U - p_S)(I_U + \delta_T I_T) + (p_R - p_S)\delta_R I_R] - p_U \gamma_U I_U - p_T \gamma_T I_T - p_R \delta_R I_R - (p_T - p_R)\alpha I_T - (q_S^2 - q_U^2)\sigma_2 - (q_S^3 - q_R^3)\sigma_3 - q_U^5\sigma_5 - q_T^6\sigma_6 - (q_T^7 - q_R^7)\sigma_7,$$

et

(5.54)
$$\psi(t, X, p) = \beta S[(p_T - p_U - p_K)(I_U + \delta_T I_T) - p_K \delta_R I_R].$$

Définition 5.4.2. (Equation adjointe rétrograde)

Soit (X^*, π^*) une paire de solution du problème optimal (5.49) soumis à l'EDS (3.64). Alors il existe un processus adjoint $(p(t), q(t)) \in L^2(0, T_f, \mathbb{R}^{5 \times 5}) \times (L^2(0, T_f, \mathbb{R}^{5 \times 5}))^7$ qui est une solution de l'équation adjointe rétrograde du premier ordre adjoint suivante

(5.55)
$$\begin{cases} dp(t) = -\nabla \mathcal{H}(t, X(t), \pi(t), p(t), q(t))dt + q(t)dW \\ p(T_f) = \nabla h(X^*(T_f)), \end{cases}$$

оù

$$abla \mathcal{H} = (\mathcal{H}_S, \mathcal{H}_U, \mathcal{H}_T, \mathcal{H}_R, \mathcal{H}_K)^T$$

avec

$$(5.56) \begin{cases} \mathcal{H}_{S} = \pi\beta[(p_{T} - p_{U} - p_{K})(I_{U} + \delta_{T}I_{T}) - p_{K}\delta_{R}I_{R}] - \beta[(p_{S} - p_{U})(I_{U} + \delta_{T}I_{T}) \\ -(p_{S} - p_{R})\delta_{R}I_{R}] - (q_{S}^{2} - q_{U}^{2})\frac{\sigma_{2}}{2S} - (q_{S}^{3} - q_{R}^{3})\frac{\sigma_{3}}{2S}, \\ \mathcal{H}_{U} = \beta S[\pi(p_{T} - p_{U} - p_{K}) - (p_{S} - p_{U})] - p_{U}\gamma_{U} \\ -(q_{S}^{2} - q_{U}^{2})\frac{\sigma_{2}}{2(I_{U} + \delta_{T}I_{T})} - q_{U}^{5}\frac{\sigma_{5}}{2I_{U}}, \\ \mathcal{H}_{T} = \beta S\delta_{T}[\pi(p_{T} - p_{U} - p_{K}) - (p_{S} - p_{U})] - p_{T}\gamma_{T} - (p_{T} - p_{R})\alpha \\ -(q_{S}^{2} - q_{U}^{2})\frac{\delta_{T}\sigma_{2}}{2(I_{U} + \delta_{T}I_{T})} - q_{T}^{6}\frac{\sigma_{6}}{2I_{T}} - (q_{T}^{7} - q_{R}^{7})\frac{\sigma_{7}}{2I_{T}}, \\ \mathcal{H}_{R} = \beta S\delta_{R}[-\pi p_{K} - (p_{S} - p_{R})] - p_{R}\delta_{R} - (q_{S}^{3} - q_{R}^{3})\frac{\sigma_{3}}{2I_{R}}, \\ \mathcal{H}_{K} = 0. \end{cases}$$

Théorème 5.4.1. (Caractérisation du contrôle optimal)

Soit π^* un contrôle optimal solution du problème optimal (5.48) et soit X^* la trajectoire optimale correspondante, solution de l'EDS (3.64). Alors π^* est caractérisé pour tout $v \in \Pi$ par

(5.57)
$$\mathbb{E}\int_{0}^{T_{f}} \langle \frac{\partial \mathcal{H}}{\partial \pi}(t, X^{*}(t), \pi^{*}(t), p(t), q(t)), v - \pi(t) \rangle dt \geq 0.$$

Thèse de Doctorat/Ph.D

Aussi, nous avons

(5.58)
$$\left\langle \frac{\partial \mathcal{H}}{\partial \pi}(t, X^*(t), \pi^*(t), p(t), q(t)), v - \pi^*(t) \right\rangle \ge 0 \quad \forall v \in \Pi, \ P.a.s.$$

De plus, le contrôle optimal π^* est donné par le système suivant comme dans [54] où

$$\frac{\partial \mathcal{H}}{\partial \pi}(t, X^*(t), \pi^*(t), p(t), q(t)) = \beta S[(p_T - p_U - p_K)(I_U + \delta_T I_T) - p_K \delta_R I_R].$$

(5.59)
$$\pi^* = \begin{cases} 0 & \text{if } p_T > p_U + p_K \\ w & \text{if } p_T = p_U + p_K \\ 1 & \text{if } p_T < p_U + p_K \end{cases}$$

où w est défini par

$$w = 1 - \frac{\beta p_R I_R (I_U + \delta_T I_T + \delta_R I_R) + p_K \gamma_U I_U}{\beta S p_K (I_U + \delta_T I_T)}$$

Preuve: Soit π^* un contrôle optimal solution du problème optimal $(5.48): J[\pi^*] = \min_{\pi \in \Pi} J[\pi]$, avec $J[\pi]$ défini par (5.50). Soit $X^*(t)$ la trajectoire optimale du système contrôlé (3.64) associée à π^* . On prend π tel que $\pi^* + \pi \in \Pi_{ad}$.

Choisissons $\pi^{\varepsilon}(t) = \pi^{*}(t) + \varepsilon \pi(t)$ où $\varepsilon \in [0, 1]$ tel que Π_{ad} soit convexe, ainsi $\pi^{\varepsilon} \in \Pi_{ad}$. Notons par X^{ε} la trajectoire de (3.64) correspondant à π^{ε} , alors $X^{\varepsilon} = X^{*} + \varepsilon X_{1}$. d'après le Lemme 5.4.1, nous avons :

$$\lim_{\varepsilon \to 0} \sup_{t \in [0, T_f]} \frac{1}{\varepsilon} \mathbb{E} |X^{\varepsilon}(t) - X^*(t) - \varepsilon X_1(t)|^2 = 0$$

où X_1 est une solution de l'équation variationnelle suivante

(5.60)
$$\begin{cases} dX_1 = [\langle \mu_X(t, X^*, \pi^*), X_1 \rangle + \langle \mu_\pi(t, X^*, \pi^*), \pi \rangle] dt + [\langle G_X(t, X^*), X_1 \rangle] dW \\ X_1(0) = 0 \end{cases}$$

Du fait que $J[\pi^{\varepsilon}] - J[\pi^*] \geq 0,$ il est facile de montrer que

$$\mathbb{E}[h(X^{\varepsilon}(T_f)) - h(X^*(T_f))] \ge 0.$$

Par la formule de Taylor pour l'intégrale d'Itô, nous avons

$$\begin{split} J[\pi^{\varepsilon}] - J[\pi^*] &= \varepsilon \mathbb{E}[h_X(X^*(T_f))(X_1(T_f) + X^{\varepsilon}(t) - X^*(t) - \varepsilon X_1(t))] + \varepsilon \mathbb{E}[h_X(X^*(T_f)) \\ &+ \theta \varepsilon (X_1(T_f) + X^{\varepsilon}(t) - X^*(t) - \varepsilon X_1(t))] - h_X(X^*(T_f))(X_1(T_f) + X^{\varepsilon}(t) \\ &- X^*(t) - \varepsilon X_1(t)) \ge 0 \end{split}$$

où $\theta \in [0, 1]$.

Ainsi, nous obtenons l'inéquation variationnelle suivante

(5.61) $\mathbb{E}[h_X(X^*(T_f))(X_1(T_f))] \ge 0$

Thèse de Doctorat/Ph.D

où $X_1(T_f)$ est donné par l'équation variationnelle (5.60).

Pour (X^*, π^*) la paire optimale, alors il existe (p(t), q(t)) qui est l'unique solution de l'équation adjointe (5.55).

Par application de la formule d'Itô à $\langle p(t), X_1(t) \rangle$ et en tenant compte de l'inéquation variationnelle (5.61), nous pouvons écrire

(5.62)
$$\mathbb{E}\int_0^{T_f} \langle \mathcal{H}_{\pi}(t, X^*(t), \pi^*(t), p(t), q(t)), \pi(t) \rangle dt \ge 0.$$

Avec $\pi = \frac{1}{\varepsilon}(\pi^{\varepsilon} - \pi^{*})$ et $\pi^{\varepsilon} = v$ si $t \in [\tau, \tau + \varepsilon]$, nous obtenons le résultat (5.58).

Caractérisons maintenant le contrôle optimal π^* comme dans (5.59). En effet, pour toute fonction de contrôle $\pi \in \Pi = [0, 1]$, la fonction du temps ψ ne peut pendre que des valeurs positives ou négatives sur un intervalle de temps quelconque, et ne peut prendre la valeur nulle sur un intervalle de temps sauf pour en un nombre fini $t = t_i \in [0, T_f]$. Ainsi, la relation (5.58) permet d'écrire que $\pi^* = 0$ si $p_T > p_U + p_K$, $\pi^* = 1$ si $p_T < p_U + p_K$ et $\pi^* = w$ si $p_T = p_U + p_K$, où w est à déterminer. Nous avons le cas de singularité pour la détermination du contrôle π si $\psi = 0$ sur un intervalle de temps $[\tau; \tau + \varepsilon]$. Dans ce cas de singularité, notre problème optimal ne fournit pas une solution instructive sur $[\tau; \tau + \varepsilon]$.

Suposons que $p_T = p_U + p_K$ et déterminons alors w. Pour ce faire, nous avons $\psi(t, \cdot, \cdot) = -\beta \delta_R S(t) p_K(t) I_R(t)$. Ensuite,

si de plus, il existe un intervalle $[t_0, t_1] \subset [0, T_f]$ tel que $p_K(t)\delta_R = 0$, pour tout $t \in [t_0, t_1]$. Alors, nous avons $\psi(t, \cdot, \cdot) = 0$ pour tout $t \in [t_0, t_1]$. Ainsi, $p_T(t) = p_U(t) + p_K(t)$ implique que $dp_T(t) = dp_U(t)$ pour tout $t \in [t_0, t_1]$. En utilisant la deuxième et la troisième équation du système (5.55), et en identifiant les coefficients $dp_T(t)$ avec ceux de $dp_U(t)$, nous avons alors : $\mathcal{H}_T = \mathcal{H}_U$ et $q_T^j(t) - q_U^j(t) = q_K^j(t) = 0$, $j = 1 \cdots 7$ pour tout $t \in [t_0, t_1]$, i.e.

 $p_S(t) = p_T(t) = p_U(t) = p_R(t) = p_K(t) = 0, q_U^j(t) = q_T^i(t), i = 1; 3; 4, \text{ et pour } j = 1; \dots; 7.,$ $q_K^j(t) = 0 = q_S^2(t) = q_U^2(t) = q_T^2(t) = q_U^5(t) = q_T^5(t) = q_U^6(t) = q_T^6(t) = q_T^7(t) = q_T^7(t) = q_R^7(t) = 0.$ Par conséquent p(t) = 0 qui est contradictoire avec $p(t) \neq 0.$

D'où, $p_K(t)\delta_R \neq 0 \quad \forall t \in [0; T_f]$ alors, nous avons $\psi(t, \cdot, \cdot) < 0$ ou $\psi(t, \cdot, \cdot) > 0 \quad \forall t \in [0; T_f]$. Ainsi donc, the contrôle optimal est non-singulier et est un contrôle optimal Feed-back.

$$w = 1 - \frac{\beta p_R I_R (I_U + \delta_T I_T + \delta_R I_R) + p_K \gamma_U I_U}{\beta S p_K (I_U + \delta_T I_T)}.$$

Ceci marque la fin de la preuve. ■

SIMULATIONS NUMÉRIQUES

Dans ce chapitre, nous faisons dans la Section 6.1, les simulations numériques des modèles formulées en absence du contrôle optimal. Et puis dans la Section 6.2, nous faisons les simulations numériques des modèles contrôlés ou non, des fonctions de contrôle, voire des fonctions valeurs pour les chapitres 3, 4 et 5.

6.1 Simulation numérique des modèles

6.1.1 Simulation numérique des modèles de MST

Cas	Paramètres	N_1	N_2	T	β_1	β_2	$ au_1$	$ au_2$	R_0
n°1	Valeurs	2 000	3 000	120	0,6	0,8	0,2	0,3	$R_0 = 2,8284 > 1$
	Unités	hs	fs	jrs	$\% \ {\rm jrs}^{-1}$	$\% {\rm jrs}^{-1}$	$\% {\rm jrs}^{-1}$	$\% {\rm jrs}^{-1}$	
n°2	Valeurs	2 000	3 000	120	0,6	0,8	0,8	0,9	$R_0 = 0,8165 < 1$
	Unités	hs	fs	jrs	$\% \text{ jrs}^{-1}$	$\% {\rm jrs}^{-1}$	$\% {\rm jrs}^{-1}$	$\% \text{ jrs}^{-1}$	

TABLE 6.1: Valeurs des paramètres dans deux cas

Considérons une MST qui sévit dans une population composée de 5000 personnes sexuellement actives dont 2000 hommes (hs) et 3000 femmes (fs). Le mode de contamination de cette infection par des rapports hétérosexuels est décrit dans le Chapitre 3. A partir d'un couple des personnes infectées i.e. $I_1(0) = I_2(0) = 1$ et en absence du traitement i.e. $\tau_1 = \tau_2 = 0$, cette MST peut évoluer et atteindre toute la population (voir Figure 6.1a : $\beta_1 = 0.6$ et $\beta_2 = 0.8$ avec R_0 infini). En présence du traitement, deux situations épidémiologiques peuvent se présenter : Lorsque $R_0 > 1$, alors le nombre des personnes infectées croit puis devient stationnaire, i.e. que la MST persiste dans la population malgré le traitement existant. Ainsi, le point d'équilibre endé-

mique est localement asymptotiquement stable. C'est le cas des Figures 6.1c et 6.1d obtenues à la même condition initiale $I_1(0) = 2$; $I_2(0) = 5$ avec les données n°1 de Table 6.1; ainsi que 6.1b obtenue avec $I_1(0) = I_2(0) = 1$, $\beta_1 = 0, 6$; $\beta_2 = 0, 5$; $\tau_1 = 0, 3$; $\tau_2 = 0, 2$ donnant toujours $R_0 = 2,2361 > 1$. Une telle situation nécessite une nouvelle stratégie du contrôle.

Lorsque $R_0 < 1$, alors la MST évolue et disparait par la suite (voir Figures 6.1e et 6.1f construites

avec les données n°2 de Table 6.1 et la condition initiale $I_1(0) = 2$; $I_2(0) = 5$.

FIGURE 6.1: Trajectoires des états de (3.34) et (3.35) de MST sans et avec traitement

6.1 Simulation numérique des modèles

Dans le plan (I_1, I_2) , le modèle déterministe (3.34) est simulé en indiquant le point d'équilibre sans MST E_0 et les point d'équilibre endémique E_E dont les coordonnées sont déterminées et fournies par Matlab (A la mêm condition initiale $I_1(0) = I_2(0) = 1$, voir Figure 6.2a avec $R_0 = 8,6603$ pour $\beta_1 = 2$; $\beta_2 = 3$; $\tau_1 = 0,2$; $\tau_2 = 0,4$ et Figure 6.2b avec $R_0 = 37,1484$ $\beta_1 = 0,92$; $\beta_2 = 0,9$; $\tau_1 = 0,02$; $\tau_2 = 0,03$). Quant à la Figure 6.3, elle montre la stabilité endémique aléatoire du modèle stochastique de MST (3.35). Le bruit aléatoire force les trajectoires des états I_1 et I_2 à osciller autour des équilibres endémiques I_1^* et I_2^* du modèle (3.34) (voir Figure 6.3a et Figure 6.3b simulées respectivement avec $I_1(0) = I_2(0) = 3$; $\beta_1 = 0,5$; $\beta_2 = 0,711$; $\tau_1 = 0,5$; $\tau_2 = 0,3$ donnant $R_0 = 1,5395$, et $I_1(0) = I_2(0) = 3$; $\beta_1 = 0,5$; $\beta_2 = 0,7$; $\tau_1 = 0,5$; $\tau_2 = 0,3$ donnant $R_0 = 1,5275$).

FIGURE 6.2: Points d'équilibre et simulation du modèle (3.34) dans le plan (I_1, I_2) .

FIGURE 6.3: Points d'équilibre endémique aléatoire et trajectoires I_1 et I_2 du modèle (3.35).

6.1.2 Simulation numérique des modèles du VIH/SIDA

Paramètres	μ	σ	θ	δ_H	η_2	η_H	$\Lambda, \beta_H, \tau_1, \tau_2$
Valeurs	0,02	1/33	0,001	0,01	1, 2	0,001	Estimées
Unités	an^{-1}	an^{-1}	an^{-1}	an^{-1}	an^{-1}	an^{-1}	an^{-1}

TABLE 6.2: Valeurs des paramètres [70]

Où Λ , β_H , τ_1 et τ_2 sont des paramètres variables dont les valeurs sont estimées ci-dessous dans les différents cas de figures avec la condition initiale $X(0) = (S(0), H_1(0), H_2(0), W_H(0))$.

Que ce soit dans le cas déterministe comme dans le cas stochastique, lorsque le nombre de reproduction de base est supérieur à l'unité, alors le système a une évolution inquiétante avec la croissance vertigineuse du nombre des infectés. Pour X(0) = (20, 2, 2, 0); $\Lambda = 23$; $\beta_H = 0, 35$; $\tau_1 = 0, 08$; $\tau_2 = 0, 02$ avec $R_0^{\tau} = 4,6609 > 1$ et les autres paramètres de Table 6.2, nous obtenons la Figure 6.4 qui met en évidence cette situation chaotique pour laquelle l'infection du VIH/SIDA évolue de manière croissante malgré la présence de traitements. Cette situation exige une nouvelle stratégie de contrôle. Ainsi ce mauvais état d'évolution peut être influencé par la présence du contrôle optimal dans la dynamique stochastique conformément notre objectif qui vise à contrôler le modèle stochastique, la généralisation du modèle déterministe associé.

FIGURE 6.4: Trajectoires des états déterministes 6.4a et stochastiques 6.4b respectivement des modèles (3.36) et (3.37) du VIH/SIDA avec traitement.

Les trajectoires déterministes et stochastiques des états sont représentées dans un même plan pour X(0) = (20, 2, 2, 0), $\Lambda = 14$; $\beta_H = 0, 4$; $\tau_1 = 0, 04$; $\tau_2 = 0, 02$; avec $R_0 = 7,6709$, (voir Figure 6.5). Pour une évolution de courte durée (à partir de l'état inital au temps t = 0), les trajectoires déterministes et stochastiques sont approximativement les mêmes lorsque $R_0^{\tau} > 1$. Mais lorsque le temps t devient plus grand, alors il existe des écarts entres les trajectoires déterministes

FIGURE 6.5: Trajectoires des états déterministes et stochastiques dans un même plan des modèles (3.36) et (3.37) du VIH/SIDA avec traitement.

6.1 Simulation numérique des modèles

et stochastiques. Ces écarts sont dûs au bruit blanc aléatoire produit par le mouvement brownien. Ce bruit aléatoire supplémentaire force les trajectoires à osciller autour d'un point d'équilibre aléatoire (point d'équilibre sans maladie ou point d'équilibre endémique).

La figure 6.6 montre que les modèles stochastique non perturbé (3.37) et perturbé (3.48) du VIH/SIDA ont approximativement les mêmes trajectoires lorsque $R_0^{\tau} = 4,6609 > 1$. FIGURE 6.7

FIGURE 6.6: Trajectoires stochastiques non perturbées (3.37) et perturbées (3.48).

représente les trajectoires des états stochastiques S, H_1 , H_2 et W_H du modèle (3.37) en absence du traitement $\tau_1 = \tau_2 = 0$ avec différentes conditions initiales et $\Lambda = 30$; $\beta_H = 0,25$ donnant $R_0^{\tau} = 10,994$. Figure 6.7a avec conditions initiales X(0) = (500;1;0;0), et Figure 6.7b avec X(0) = (500;18;8;0), décrivent une situation de crise épidémique où le nombre des séropositifs H_1 et le nombre des sidéens H_2 croient plus rapidement. Cependant, le nombre S des susceptibles décroit faute du contrôle optimal.

Pour $n_{X_0} = \mathbf{E}[X_0] = (600; 1; 0; 0), \Lambda = 5, \beta_H = 0, 35$, FIGURE 6.8 met en évidence l'effet du traitement dans la dynamique stochastique du VIH/SIDA modélisée par (3.37). Que ce soit sans traitement i.e. $\tau_1 = \tau_2 = 0$ (Figure 6.8a et avec traitement $\tau_1 = 0.08$; $\tau_2 = 0.02$ (Figure 6.8b, le nombre moyen n_S des individus susceptibles de contracter le VIH décroit jusqu'à une valeur critique donnée par la condition $R_{ef} = 1$ et le nombre moyen n_{H_1} des séropositifs croit si $R_{ef} > 1$ puis décroit si $R_{ef} < 1$. Cette valeur critique varie en fonction du traitement : elle est faible ou négligeable sans traitement et significative avec le traitement. Le nombre de reproduction effective R_{ef} mesure ici l'impact du traitement. Malgré la présence du traitement qui a un effet curatif positif, certains facteurs comme le comportement sexuel non contrôlé, le non respect de la dose médicamenteuse, ..., font que cette infection continue à faire de nombreuses victimes dans notre société. La nécessité d'associer au traitement qui un moyen de contrôle, d'autres stratégies de contrôle optimal, est importante et constitue le principal objectif visé dans cette thèse.

FIGURE 6.7: Trajectoires sans traitement du modèle stochastique (3.37)

FIGURE 6.8: Trajectoires sans traitement 6.8a, avec traitement 6.8b du modèle moyen (4.43).

6.1.3 Simulation numérique des modèles de TB

Paramètres	μ	σ	ρ	δ_T	η_r	η_T	$\Lambda, \beta_T, \tau, n$
Valeurs [70]	0,02	1/33	0,04	0,2	0,1	0,06	Estimées
Unités	an^{-1}	an^{-1}	an^{-1}	an^{-1}	an^{-1}	an^{-1}	an^{-1}

 TABLE 6.3: Valeurs des paramètres du modèle de TB [70]

FIGURE 6.9: Modèle stochastique de TB sans traitement 6.9a et avec traitement 6.9b Modèle stochastique seul 6.9c ; déterministe et stochastique 6.9d.

Avec les données de la TABLE 6.3 où Λ , β_T , τ et n, paramètres dont les valeurs sont estimées dans les différents cas ci-dessous, les trajectoires des états du modèle stochastique de TB sans et avec traitement sont représentées respectivement par les Figures 6.9a et 6.9b pour $X(0) = (S(0), L(0), T(0), R(0)) = (40, 15, 20, 1); \Lambda = 12; n = 0.8; \beta_T = 0.8; \tau = 0$ donnant $R_0^{\tau} = 2.4797 > 1$ pour FIGURE 6.9a et $X(0) = (50, 5, 2, 1), \Lambda = 12, \beta_T = 0.8, \tau = 0.08,$

6.2 Simulation numérique et contrôle optimal

n = 0.4 donnant $R_0^{\tau} = 2.7803 > 1$ pour 6.9b.

Les modèles déterministes et stochastiques de TB sont simulés numériquement par 6.9c et 6.9d de FIGURE 6.9 avec $X(0) = (10, 1, 0, 0), \Lambda = 12, \beta_T = 0, 8, \tau = 0, 8, n = 0, 4$. en vue de les comparer. L'analyse mathématique faite au Chapitre 4 revèle que le bruit aléatoire, terme de diffusion du modèle stochastique (3.51), peut forcer les états S, L, T et R à osciller autour du point d'équilibre $X^0 = (\frac{\Lambda}{\mu}; 0; 0; 0)$ sans TB ou autour du point d'équilibre endémique $X^* = (S^*; L^*; T^*; R^*)$. Ainsi, les trajectoires stochastiques des états du modèle (3.51) présentent un comportement asymptotique autour de l'équilibre endémique (Figure 6.10a) et autour de l'équilibre sans TB (Figure 6.10b).

FIGURE 6.10: Trajectoires asymptotiques des états du modèle (3.51).

De ce qui précède, si $R_0 > 1$, alors la dynamique de l'infection de TB évolue fortement avec la croissance du nombre des infectés (FIGURE 6.9b, 6.9c, 6.9d) et 6.10a obtenues avec $R_0 > 1$). Sous la condition $R_0 > 1$, le traitement seul n'est pas efficace pour contrôler cette dynamique. Nous avons alors associé au traitement une stratégie supplémentaire de contrôle. Ainsi donc, dans la Sous-section 6.2, les simulations numériques prennent en compte le contrôle optimal de la dynamique stochastique des infections.

6.2 Simulation numérique et contrôle optimal

6.2.1 Simulation numérique et contrôle de MST

Face à une épidémie persistante avec $R_0 > 1$, le traitement dont l'effet curatif est non négligeable doit s'accompagner d'autre stratégie. Par exemple, le suivi des patients de MST qui ont reçu le traitement, est un contrôle de l'efficacité du traitement. Agir par les actions du suivi sur chacune des proportions des patients sous traitement, c'est influencer la dynamique du modèle. L'action du contrôle permet alors de réduire relativement le nombre des infectés (FIGURE 6.11 et 6.12).

FIGURE 6.12: Trajectoires avec et sans contrôle des états du modèle (3.51).

6.2 Simulation numérique et contrôle optimal

Avec un suivi thérapeutique, contrôle régulier et permanent u_1 et u_2 des proportions respectives τ_1 et τ_2 d'hommes et des femmes infectés sous contrôle, la dynamique de MST peut être influencée et stoppée comme le montrent les Figures 6.11a, 6.11c, 6.11e pour $R_0 = 1,0583$ avec $N_1 = 2000$, $N_2 = 3000$, $q_1 = 1$ $q_2 = 2$, $a_1 = 5000$ $a_2 = 3000$ $\beta_1 = 0, 2$ $\beta_2 = 0, 4$ $\tau_1 = 0, 1$ $\tau_2 = 0, 4$ $u_1(0) = 0, 2$ $u_2(0) = 0, 4$ à des différents états initiaux $(I_1(0), I_2(0)) = (500, 600)$; (500, 600); (5, 8) respectifs en tenant compte de la plus grande infectivité chez les femmes. Idem pour les Figures 6.12a, 6.12c, 6.12e et les contrôles correspondants qui sont obtenues à des conditions initiales différentes $(I_1(0), I_2(0)) = (500, 600)$; (500, 600); (5, 8) et $(u_1(0) u_2(0)) = (0, 3, 0, 4)$; (0, 4, 0, 5); (0, 4, 0, 6) respectives. FIGURE 6.13c, 6.13d avec $a_1 = 50000$ $a_2 = 30000$, donnent les ratio $\frac{I_1}{I_2}$ et $\frac{I_2}{I_1}$ dans les cas : $R_0 \simeq 1$ pour $\beta_1 = 0, 7$ $\beta_2 = 0, 8$ $\tau_1 = 0, 26$ $\tau_2 = 0, 4643$ $u_1(0) = u_2(0) = 0, 3$ et $R_0 = 1,0583 > 1$ pour $\beta_1 = 0, 7$ $\beta_2 = 0, 8$ $\tau_1 = 0, 2$ $\tau_2 = 0, 4$ $u_1(0) = 0, 3$ $u_2(0) = 0, 4$. Le contrôle le plus actif lorsque $R_0 > 1$, est celui des femmes à cause de leur grande infectivité par rapport aux hommes.

(a) Contrôle (u_1, u_2) avec $R_0 \simeq 1$

(b) Contrôle (u_1, u_2) avec $R_0 > 1$

FIGURE 6.13: Contrôle optimal (u_1, u_2) et Ratio "infectés hommes-infectés femmes" vice-versa

6.2.2 Simulation numérique et contrôle du VIH/SIDA

Considérons le modèle contrôlé (5.11) où les contrôles u_0 , u_1 et u_2 mesurent respectivement à la date t, la proportion des nouveaux cas, des séropositifs H_1 et des sidéens H_2 qui sont sous ARV et ont reçu un SMS. Ces contrôles sont simulés par la Figure 6.14b, 6.15c, 6.15e. La fonction valeur est aussi représentée par figure 6.15d et 6.15f.

FIGURE 6.14c décrit une décroissance relative du nombre des séropositifs sous ARV qui ont reçu un SMS par rapport au nombre de ceux sous ARV uniquement. Tandis que 6.14d montre que le nombre des patients sidéens sous ARV qui ont reçu un SMS et le nombre de ceux sous ARV uniquement, décroient approximativement. FIGURE 6.15a décrit une réduction considérable de nouveaux positifs sous ARV. Cette stratégie du contrôle donne ce résultat encourageant et bénéfique pour les patients du VIH/SIDA, malgré le coût dû à l'achat des ARV et de téléphone. Nos données sont celles de la Table 6.2 avec $\Lambda = 18$, $\beta_H = 0, 25 \tau_1 = 0, 05 \tau_2 = 0, 09$ et autres $B_1 = 300$, $B_2 = 400$, r = 5, $u_0(0) = 0$, $u_1(0) = u_2(0) = 1$, S(0) = 500, $H_1(0) = 18 H_2(0)$) = 10 et $W_H(0) = 0$.

FIGURE 6.15: Trajectoires des états stochastiques contrôles et de la fonctions valeur

6.2.3 Simulation numérique et contrôle de TB

Considérons le problème du contrôle optimal 5.40 sous le modèle (5.38) dt TB où le contrôle u mesure la fréquence du traitement. Grâce à Matlab avec l'algorithme 5.3.1, le coût F(u) et le contrôle optimal u peuvent être simulés et évalués pour un contrôle initial u_0 choisi. FIGURE 6.16a, 6.16b (respectivement 6.16c, 6.16d) donnent une illustration numérique du contrôle optimal u; (respectivement de la fonctionnelle du coût F(u)). La projection orthogonale d'un point minimum de F(u) sur le compact [-1; 1], donne une valeur numérique du contrôle optimal $u^* = u_{op}$; par exemple le point • mnimum de F(u) représenté sur 6.16c, est évalué à $F(u^*) = 2.7066$ donnant $u^* = 0$ pour $u_0 = 1$ (voir 6.16c). Ainsi, pour les différentes valeurs de u_0 , alors 6.16d donne : $F(u^*) = 2.7073$ et $u^* = 0.03606$ pour $u_0 = 0.2$; $F(u^*) = 2.9166$ et $u^* = 0.01607$ pour $u_0 = 0.5$; $F(u^*) = 3.3071$ et $u^* = 0.0000$ pour $u_0 = 0.8$; enfin, $F(u^*) = 3.6673$ et $u^* = 0$ pour $u_0 = 1$.

FIGURE 6.16: Simulation numérique du contrôle optimal u et de la fonctionnelle du coût F(u)

Grâce à l'algorithme 5.3.1 qui utilise le schéma d'Euler pour discrétiser les EDS, nous simulons numériquement les états du modèle contrôlé (5.38) où le contrôle u du taux de traitement est déja

6.2 Simulation numérique et contrôle optimal

représenté ci-haut. Ces simulations numériques utilisent les données de la Table 6.3 où $\tau = 0,08$, n = 4 et les deux paramètres Λ , β_T , prennent des valeurs données dans les différents cas des figures ($\Lambda = 2$, $\beta_T = 0,08$ pour Figure 6.17a, 6.17b et $\Lambda = 5$, $\beta_T = 0,8$ pour la Figure 6.17b, 6.17c); et autres données telles que les conditions initiales S(0) = L(0) = T(0) = R(0) = 1, $u(0) = u_0 = 0,08$ et les fonctions $\varphi(x,u) = (x^2 + u^2)exp(\frac{-t}{x^2 + u^2})$, $h(x) = x^2$ avec m = 0.05, $e_m < 10^{-7}$, $p_0 = 0.01$.

Par ces résultats numériques, nous montrons donc que le contôle optimal admissible dans la dynamique de TB, permet de réduire considérablement et rapidement (moins d'une année) le nombre des infectés actifs T du modèle (5.38).

FIGURE 6.17: Trajectoires des états du modèle stochastique de TB avec ou sans contrôle

6.2.4 Simulation numérique et contrôle de HPV

Paramètres	δ_T	δ_R	α	$\beta, \ \gamma_U = \gamma_T = \gamma_R$
Valeurs [54]	0.6	0.9	0,001	[0; 1]
Unités	mois ⁻¹	mois^{-1}	$mois^{-1}$	$mois^{-1}$

 TABLE 6.4: Valeurs des paramètres du modèle de CC

Considérons le modèle stochastique contrôlé (3.57) de l'infection du col d'utérus par le HPV en présence de la chimiothérapie. Lorsque cette chimiothérapie connait une forte résistance, alors il est difficile voire même impossible que les cellules infectées se rétablissent. Dans ce cas, la variable d'état R du modèle devient une constante négligeable en terme de probabilité et par conséquent les modèles (3.57) et (3.61) sont équivalents. De plus, comme le contrôle ne concerne uniquement le terme déterniniste de (3.61), alors les trois modèles (3.57), (3.61) et (3.64) sont encore équivalentents. Dans le cas d'une faible resistance, R évolue sous l'effet du contrôle sans influencer l'évolution des autres états du modèle (voir les Figures 6.18a, 6.18b, et 6.18e, et 6.18f).

Le problème (5.48) du contrôle optimal de CC résolu dans le chapitre précédent, porte sur le modèle (3.64) qui ignore la variable R. Lorsque la trajectoire de l'état R du modèle (3.57) n'est pas considéré par la simulation numérique, alors nous obtenons celles des états contrôlés S, I_U , I_T , I_R et K de (3.61).

Pour les simulations, utilisons les données de la Table 6.4 où β , $\gamma_U = \gamma_T = \gamma_R$ prennent des valeurs estimées dans les différents cas ci-dessous. Ainsi, à la même condition initiale $X(0) = (20, 1, 0, 0, 0), \pi(0) = 0, 6$ et $\gamma_U = \gamma_T = \gamma_R = 0, 3$, les trajectoires des états de (3.57) (respectivement de (3.64)) sont décrites par les Figures 6.18a et 6.18b (respectivement 6.18e et 6.18f) pour $\beta = 0.05$ et $\beta = 0.5$ respectivement. Les figures 6.18c et 6.18d représentent le contrôle optimal pour $\beta = 0.2$ et $\beta = 0.5$ respectivement.

Pour X(0) = (50, 1, 0, 0, 0), $\gamma_U = \gamma_T = \gamma_R = 0,001$ et $\pi(0)$ prenant les valeurs croissantes dans $\{0,0; 0,1; 0,3; 0,5; 0,8; 1\}$, alors FIGURE 6.19 montre qu'avec un contrôle initial adéquat, le nombre de la masse cellulaire infectée non traitée diminue pendant que celui de la masse cellulaire traitée augmente (Figures 6.19a, et 6.19b en font une belle illustration). En cas d'une forte résistance, il n'y a pas de retablissement des cellules infectées, alors $\gamma_U = \gamma_T = \gamma_R = 0$ et par conséquent l'état R du modèle devient une constante négligeable ou nulle ; par exemple avec $X(0) = (200, 1, 0, 0, 0), \gamma_U = \gamma_T = \gamma_R = 0, \beta = 0,002$ et autres données de Table 6.4, nous obtenons Figures 6.20a pour $\pi = 0, 1$, et 6.20b pour $\pi(0) = 0.9$.

FIGURE 6.21 décrit enfin les trajectoires des états S, I_U , I_T , I_R et K de (3.64) ainsi que le contrôle optimal π : 6.21a et 6.21b- avec $\gamma_U = \gamma_T = \gamma_R = 0,01$; $\pi(0) = 0.5$;

6.21c et 6.21d- $\gamma_U = \gamma_T = \gamma_R = 0, 6 et 0, 3; \beta = 0, 5 et 0, 2 \pi(0) = 0.6;$

6.21e et 6.21f- $\gamma_U = \gamma_T = \gamma_R = 0.6$ et 0, 3; $\beta = 0, 5$ et 0, 04; $\pi(0) = 0, 8$ et 0, 9; respectivement.

FIGURE 6.19: Modèle stochastique contrôlé (3.64) avec valeur initiale croissante

FIGURE 6.20: Modèles stochastiques contrôlés (3.57) et (3.64)

FIGURE 6.21: Trajectoires stochastiques du modèle (3.57) et des contrôle optimal

Conclusion Générale

Dans cette thèse qui traite le sujet du contrôle optimal dans les équations différentielles stochastiques et de ses applications en épidémiologie, se trouvent quelques résultats scientifiques intéressants. Il s'agit de la formulation d'un modèle stochastique à partir de son associé déterministe, un modèle classique existant ; de l'analyse mathématique d'un modèle stochastique en utilisant un changement des variables aléatoires à l'aide des transformations affines qui conservent les lois de probabilité de ces variables et fournissent de nouveaux modèles stochastiques raffinés et équivalents au modèle stochastique du départ ; enfin des applications du contrôle optimal qui, basées soit sur le Principe du Maximum de Pontryagin (PMP), soit sur le Principe de la Programmation Dynamique (PPD) de R. Bellman, sont effectuées dans quelques modèles stochastiques épidémiques formulés tous du type des équations différentielles stochastiques d'Itô. Ainsi, nous avons formulé et analysé mathématiquement un modèle stochastique d'une Maladie Sexuellement Transmissible (MST) en présence du traitement dans lequel le contrôle de l'efficacité du traitement par un suivi thérapétique regulier et permanent est appliqué en utilisant les conditions nécessaires et suffisantes faibles du PMP (voir Théorème 2.2.6 et Théorème 2.2.8). Nous avons formulé et analysé aussi un modèle stochastique de la dynamique de transmission de l'infection du VIH/SIDA en présence du traitement aux ARV [30] dans lequel est effectué, en vue de réduire les nouveaux cas, le contrôle optimal du traitement associé aux deux autres stratégies à savoir alerte rapide par SMS et dépistage de la sérologie et Conseils ou HIV-Testing and Counseling (HTC) des patients sous ARV; cette application du contrôle optimal emploie le PPD qui aboutit à une équation de HJB du second ordre. Cette HJB est ensuite discrétisée et résolue numériquement grâce aux schémas numériques introduits par Krishner. Le modèle stochastique de la dynamique de l'infection de Tuberculose (TB), en présence du traitement et dans une population de quatre classes épidémiologiques, est également formulé et analysé. Dans ce modèle stochastique de TB, le contrôle des fréquences du traitement est effectué afin de minimiser le nombre des tuberculeux actifs ; la méthode du gradient stochastique projeté associée au PMP a permis de déterminer numériquement le contrôle optimal ainsi que la fonctionnelle du coût associée. Pour cette étude relative au contrôle des féquences du traitement de TB, nous pouvons dire que le contrôle optimal est sans effet si la dose médicamenteuse initiale administrée aux patients est respectée et évaluée dans l'ordre de 80 % à 100 %. D'autre part, lorsque cette dose initiale est dans l'ordre de 50 %, alors le contrôle proposé et caractérisé dans cette thèse est admissible et efficace ; ainsi grâce à ce contrôle, nous avons obtenu une réduction considérable et rapide (moins d'une année) du nombre des tuberculeux actifs (voir Figure 6.17c et 6.17d). Enfin nous avons formulé un modèle stochastique de l'infection

Conclusion Générale

par le HPV du col utérin chez la femme en présence du traitement au cours duquel il y a émergence des cellules infectées résistantes, des cellules infectées non traitées et des cellules infectées traitées. Il est caractérisé également dans cette thèse le contrôle optimal qui minimise le nombre total de la masse cellulaire infectée par le HPV, virus vecteur du cancer du col utérien. Dans tous les problèmes du contrôle optimal étudiés, nous avons caractérisé et déterminé un contrôle optimal influençant l'évolution drastique d'un système dynamique qui fait de nombreux cas des infectés, causes de mortalité et de morbidité humaine. Les états d'un modèle contrôlé représentant ce système dynamique inflencé, ont alors des trajectoires non ascendantes qui évoluent de manière acceptable avec une décroissance significative des états infectés. Nous ne pouvons pas perdre de vue les simulations numériques effectuées dans cette thèse qui présentent non seulement un aspect visuel et virtuel important, mais aussi la mise en évidence de l'évolution numérique d'un système dynamique qui tient compte du "bruit blanc". Nous nous sommes investi durant cinq années de récherches, de 2012 à 2017 autour de la problématique du sujet de cette thèse pour aboutir aujourd'hui à ces résultats qui peuvent constituer notre contribution dans les activités scientifiques notamment en contrôle des modèles stochastiques épidémiques du type d'Itô.

En perspective, nous envisageons étudier le contrôle optimal d'autres types d'équations différentielles stochastiques avec applications en maladies des végétaux.
APPENDICE

Théorème .0.1. Castillo-Chavez (2002[18] Soit un modèle $\dot{x} = f(x)$ défini sur \mathbb{R}^n qui s'écrit :

(1)
$$\begin{cases} \dot{X} = F(X, Y) \\ \dot{Y} = G(X, Y) \quad G(X, 0) = 0 \end{cases}$$

 $Ou \ X \in \mathbb{R}^m_+$ avec $(m \le n)$ désigne le nombre des individus non-infectés et $Y \in \mathbb{R}^{n-m}$ désigne le nombre de tous les individus infectés.

Soit X^* le point d'équilibre du modèle, alors les conditions (**C** 1) et (**C** 2) ci-dessous doivent être satisfaites simultanement pour que X^* soit globalement asymptotiquement stable. Il s'agit de : (**C** 1) : Pour $F(X^*, Y) = F(X, 0)$, X^* est globalement asymptotiquement stable si : (**C** 2) : $G(X, Y) = AY - \hat{G}(X, Y)$, $\hat{G}(X, Y) \ge 0$ pour $(X, Y) \in \Omega_{\varepsilon}$ Où $A = D_Y G(X^*, 0)$ est une M-matrice (les éléménts non diagonaux sont négatifs) et Ω_{ε} est la région positivement invariante pour ce système.

Théorème .0.2. Castillo-Chavez et Song (2004) [19]

Soit un système d'équations différentielles ordinaires suivant avec un vecteur de paramètres θ :

(2)
$$\frac{dx}{dt} = f(x,\theta) \quad avec \ f: \mathbb{R}^n \times \mathbb{R} \longrightarrow \mathbb{R} \ et \ f \in \mathbb{C}^2(\mathbb{R}^n \times \mathbb{R})$$

0 est un point d'équilibre du système tel que $f(0, \theta) = 0$ *pour tout* θ *et que :*

A1 : $A = D_x f(0,0) = \left(\frac{\partial f_i}{\partial x_j}(0,0)\right)$ est un système linéarisé du système (1) autour de l'équilibre 0 avec θ tendant vers 0. Zéro est une valeur propre simple de A et les autres valeurs propres ont des parties réelles négatives

A2 : La matrice A a un vecteur propre droit u et un vecteur propre gauche v correspondants à la valeur propre zéro.

Soit f_k la k^{ime} composante de f.

$$a = \sum_{k,i,j=1}^{n} v_k u_i u_j \frac{\partial^2 f_k}{\partial x_i \partial x_j}(0,0) \qquad et \qquad b = \sum_{k,i=1}^{n} v_k u_i \frac{\partial^2 f_k}{\partial x_i \partial \theta}(0,0)$$

les dynamiques locales de (1) autour de 0 sont déterminées totalement par les signes de a et b. (i) a > 0, b > 0 Lorque $\theta < 0$ avec $|\theta| \ll 1$, 0 est localement asymptotiquement stable, et il existe un point d'équilibre positif instable, lorsque $0 < \theta \ll 1$, 0 est instable et il existe un point d'équilibre négatif localement asymptotiquement stable;

(ii) a < 0, b < 0 Lorque $\theta < 0$ avec $|\theta| \ll 1$, 0 est instable, lorsque $0 < \theta \ll 1$, 0 est localement asymptotiquent stable et il existe un point d'équilibre positif instable ;

(iii) a > 0, b < 0 Lorque $\theta < 0$ avec $|\theta| \ll 1$, 0 est instable, et il existe un point d'équilibre négatif localement asymptotiquement stable, lorsque $0 < \theta \ll 1$, 0 est stable et il apparaît un point d'équilibre positif instable;

(iv) a < 0, b > 0 lorsque θ change de signe négatif vers positif, 0 passe du point d'équilibre stable vers instable. Un point d'équilibre négatif instable devient positif et localement asymptotiquement stable. Particulièrement, si a > 0 et b > 0, alors il existe en $\theta = 0$ une bifurcation en arrière.

Annexe

Publications scientifiques

La liste des articles publiés est donnée comme suit :

- Bongor Danhree, Emvudu Yves and Koïna Rodoumta (2017).
 Optimal Control of the treatment frequency in a stochastic model of tuberculosis. Biomath 6 (2017), 1705077- http://dx.doi.org/10.11145/j.biomath.2017.05.077
- Emvudu Yves, Bongor Danhree and Koïna Rodoumta (2016). *Mathematical Analysis of HIV/AIDS Stochastic Dynamic Models*. Applied Mathematical Modelling Journal- Elsevier Issues 21-22, Vol.40, pages 9131-9151, (2016).
- Emvudu Yves and Bongor Danhree (2012). *Mathematical Analysis of a HIV/AIDS model with treatment*. International Electonic Journal of Pure and Applied Mathematics (IEJPAM) Vol.4,N°4, 297-320 (2012).

NB : *Tous ces articles publiés se trouvent à la suite des pages de cette annexe.*

ORIGINAL ARTICLE

Optimal control of the treatment frequency in a stochastic model of Tuberculosis

Bongor Danhree*, Emvudu Yves* and Koïna Rodoumta [‡]

*Department of Mathematics, Faculty of Science, University of Yaounde 1, Cameroon sbongordanhree@yahoo.com, yemvudu@yahoo.fr [‡]Department of Mathematics, Faculty of Exact and Applied Sciences University of Djamena, Chad koinarodoumta@yahoo.fr

Received: 10 March 2016, accepted: 7 May 2017, published: 6 June 2017

Abstract—This paper presents a stochastic model of the Tuberculosis(TB) infection with treatment in a population composed of four individuals compartments: susceptible individuals, latent infected individuals, active infected individuals and recovered individuals after the therapy. A preliminary survey of the model is performed on the stability before approaching the crucial left of the topic. The aim in this paper is to control the treatment frequency in a stochastic model of the TB infection while minimizing the cost of the measures. Then, we formulate an optimal control problem that consists in minimizing the relative cost of the dynamics of TB-model in order to reduce the prevalence and the mortality due to this infection. The optimal problem is solved by applying the Projection Stochastic Gradient Method in order to find the optimal numerical solution. Finally, we provide some numerical simulations of the controlled model.

Keywords-Stochastic Model of TB; local and Global Stability; Optimal Control; Functional Cost; Projection Stochastic Gradient.

I. INTRODUCTION

The tuberculosis (TB) continues to make a lot of victims in our societies despite of the exist-

ing treatment: the Bacillus Calmette- Guerin. The vaccine anti tubercular is used for preventive treatment for children. Nevertheless, other medicines exist as Rifampicin, Isoniazid, Pyrazinamide... for the curative treatment of the patients [23]. The expenses are enormous when the treatment is long. The tuberculosis is one of the causes of elevated mortality in humane communities irrespective of the enormous financial resources made by world-wide governments for the treatment of this disease in the purpose of its eradication. So there is the necessity to integrate to a set of the available control an optimal measure that consists on respecting the dose of the treatment to short length in order to reduce this infection.

In this paper, we consider a stochastic model of the Tuberculosis (TB) infection in presence of treatment in a population composed of four compartments of individuals: susceptible individuals, latent infected individual, active infected individuals and recovered individuals after the therapy. The mathematical model of TB infection include in addition to the deterministic term, a stochastic term that translates the random noise. The random nature of this model is due to the fact that the

Page 1 of 17

Citation: Bongor Danhree, Emvudu Yves, Koïna Rodoumta, Optimal control of the treatment frequency in a stochastic model of Tuberculosis, Biomath 6 (2017), 1705077, http://dx.doi.org/10.11145/j.biomath.2017.05.077

contraction of the Mycobacterium Tuberculosis, the vector agent of the TB infection and his transmission within the population are done in an random manner according to the variable efficiency of control of the immune system of the individuals. The infection of TB contracts itself mainly by the inhalation of the bacteria distributed by the cough or the sneeze of a sick individual. The vector agent of this infection accommodates itself to the level of the lungs of an individual exposition susceptible of contamination and the immune system of this one controls and maintains the infection in the latent state; otherwise there is the risk that this infection develops itself toward the active state. While supposing that only the infected individuals of active TB transmit the infection, they must observe some hygienic rules, they must adopt a positive behavior with respect to the susceptible individuals (who must also take precaution), to follow the treatment up to finish as early as possible (in less than one year), constitute measures of adequate control. A preliminary survey of the model is performed before introducing a function of control representing the necessary dose of medicines in order to control the frequency of the treatment and to reduce considerably and quickly the prevalence of the disease. The main objective is the control of the treatment frequency in the stochastic model of the TB infection. So we formulate an optimal control problem that consists in minimizing the relative cost of the dynamics of the model in order to reduce the prevalence and mortality due to this infection. To solve this optimal control problem, we are going to apply the Stochastic Gradient Method with Projection in order to find the optimal numeric solution. Finally, thanks to the numerical simulation tool, we simulate this model without or with control as well as the optimal solution and the associated cost function in order to characterize an optimal decision.

In epidemiology and others domain as biology, demography, economy..., many stochastic models deriving from their deterministic formulation. The reference of the literature for a variety of wellknown stochastic models deriving from their de-

terministic counterparts include the books [1], [5], [6], [7], and [22]. Our contribution is first in Sub Section II.A, the formulation of a stochastic model of TB with treatment from a deterministic model of TB-only (Sharomi [18]) which is formulated along the lines of the model in Feng and al. [26]. Secondly in Sub Section II.B, we change this stochastic model by perturbations or by an affine change of variables affine to lead the survey of the stability of the random equilibrium because the used transformation keeps the law of probability of an random variable [12]. Finally in Sub Section III.A, we control the treatment frequency in this stochastic model in order to reduce mortality due to the infection. The continuation of the paper is like follows: we recall the results that concern the projection method in Sub Section III.B. The gradient projection method is applied to the model in Sub Section III.C, and the numerical simulations are plotted in Sub Section III.D.

II. STOCHASTIC MODEL OF TB WITHOUT CONTROL

We start this section by the description of the variables and parameters of the model (see Table I) then follows it by the presentation of the model.

A. Diagram and Mathematical Stochastic Model of TB

Fig. 1. Diagram of the stochastic model of TB with treatment

Bongor Danhree et al., Optimal control of the treatment frequency in a stochastic model of Tuberculosis

TABLE I	
RANDOM VARIABLES AND PARAMETERS DESCRIPTION	

Variable	Description		
$S_t = S(t)$	Susceptible individuals number		
$L_t = L(t)$	Number of the TB- infected individuals		
	in the latent state		
$T_t = T(t)$	Number of the TB-infected individuals		
	in the active state		
$R_t = R(t)$	Number of recovered individuals		
λ_I	Force of TB infection		
	in presence of the treatment		
λ_r	Force of exogenous infection again		
Parameters	Description		
Λ	Recruitment rate of susceptible individuals		
μ	Naturel mortality rate		
σ	Progression rate of TB-infected individuals		
	from latent state to active state		
ρ	Infection rate of recovered individuals		
n	Proportion of susceptible individuals		
	that enter in (T) by infection		
β_T	Number of effective contact		
	of susceptible with TB vector		
δ_T	Mortality rate caused by TB		
η_r	Proportion of infected individuals		
	by exogenous infection again		
η_T	Proportion of recovered individuals		
	by par the active TB-infected		
τ	Treatment rate of TB		

The diagram of the stochastic model of the TB infection is given by Fig 1.

The mathematical stochastic model of TB infection in the presence of treatment is written under the compact form by the following equation (1) (its formulation uses [1], [5], [6], [7], and [22])

$$dX_t = f(t, X_t)dt + G(t, X_t)dW_t, \qquad (1)$$

where $X_t = (S_t, L_t, T_t, R_t)^T$ is a 4-dimensional random vector of the states S_t, L_t, T_t, R_t ;

 $W_t = (W_t^j)_{j=1,\dots,m=10}^T$, is a 10-dimensional Brownian motion process and is defined on a space of $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, P)$;

Biomath 6 (2017), 1705077, http://dx.doi.org/10.11145/j.biomath.2017.05.077

 $f(t,X_t) = (f_i(t,X_t))_{i=1,\ldots,d=4}^T$ is a vectorial function of evolution with components $f_i =$ $f_i(t, X_t)$ defined by

$$\begin{cases} f_1 = \Lambda - (\mu + \lambda_I)S_t, \\ f_2 = n\lambda_I S_t - (\mu + \sigma + \lambda_r)L_t + \rho R_t, \\ f_3 = (1 - n)\lambda_I S_t + (\sigma + \lambda_r)L_t - (\mu + \delta_T + \tau)T_t, \\ f_4 = \tau T_t - (\mu + \rho)R_t, \end{cases}$$

$$(2)$$

 $G = G(t, X_t) = (G_{ij})_{i=1,\dots,d=4; j=1,\dots,m=10}$ below is a (4×10) -dimensional matrix such that

$$G = \begin{pmatrix} M_1 & O_{2\times3} \\ O_{2\times3} & M_2 \end{pmatrix}, \tag{3}$$

where

W

$$O_{2\times3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$M_1 = \begin{pmatrix} G_{11} & G_{12} & G_{13} & G_{14} & 0 & 0 & 0 \\ 0 & 0 & G_{23} & 0 & G_{25} & G_{26} & G_{27} \end{pmatrix},$$

$$M_2 = \begin{pmatrix} G_{34} & 0 & G_{36} & 0 & G_{38} & G_{39} & 0 \\ 0 & 0 & 0 & G_{47} & 0 & G_{49} & G_{410} \end{pmatrix},$$
with
$$G_{11} = \sqrt{\Lambda}, \quad G_{12} = -\sqrt{\mu S_t},$$

$$G_{13} = -G_{23} = -\sqrt{n\lambda_I S_t},$$

$$G_{14} = -G_{34} = -\sqrt{(1-n)\lambda_I S_t},$$

$$G_{25} = -\sqrt{\mu L_t},$$
(4)

$$G_{26} = -G_{36} = -\sqrt{(\sigma + \lambda_r)L_t},$$

$$G_{27} = -G_{47} = \sqrt{\rho R_t},$$

$$G_{38} = -\sqrt{(\mu + \delta_T)T_t}, \ G_{39} = -G_{49} = -\sqrt{\tau T_t},$$

$$G_{410} = -\sqrt{\mu R_t}.$$

The TB force of infection λ_I is defined by:

$$\lambda_I = \beta_T \frac{T_t + \eta_T R_t}{N} \tag{5}$$

with

$$N = S_t + L_t + T_t + R_t$$

The force of exogenous infection λ_r is defined by:

$$\lambda_r = \beta_T \frac{\eta_r T_t}{N}.$$
 (6)

Page 3 of 17

B. Analysis of the solution of model and Stability

In this part, we are going to show the existence and the uniqueness of the global solution positive of the model (1). We also address the existence and stability characterization of the Disease Free-Equilibrium (DFE) and of the endemic equilibrium point.

1) Existence and Uniqueness of solution: Consider a region $\Omega \subset \mathbf{R}^4_+$ defined by

$$\Omega = \{ (S_t, L_t, T_t, R_t) \in \mathbf{R}_+^4; S_t + L_t + T_t + R_t \leq \frac{\Lambda}{\mu} \}.$$

Then, we has the following result:

Theorem 1. Let $(S_0, L_0, T_0, R_0) \in \Omega$ an initial condition. Then there is a unique solution of the stochastic model (1) denoted $X_t = (S_t, L_t, T_t, R_t)^T$ such that

$$P\{X_t = (S_t, L_t, T_t, R_t)^T \in \Omega\} = 1 \quad \forall \ t \ge 0.$$

Proof: See Appendix A.

2) Stochastic Stability of the random DFE: Let us recall the following that will a very helpful in the sequel

Lemma 1. Let $p \ge 2$, $x, y \in \mathbf{R}_+$ and $\varepsilon > 0$ sufficiently small

$$xy^{p-1} \le \frac{\varepsilon^{1-p}}{p}x^p + \frac{(p-1)\varepsilon}{p}y^p$$
$$x^2y^{p-2} \le \frac{2\varepsilon^{\frac{2-p}{2}}}{p}x^p + \frac{(p-2)\varepsilon}{p}y^p$$

Proof: The inequalities above can be demonstrated with the help of the inequalities of Young:

for
$$p, q > 0$$
 and $\frac{1}{p} + \frac{1}{q} = 1$,
 $xy \le \frac{x^p}{p} + \frac{y^p}{q}$.

Proposition 1. The stochastic model (1) admits a random equilibrium point without TB (Disease-Free random Equilibrium) $\left[X^0 = \left(\frac{\Lambda}{\mu}, 0, 0, 0\right)\right]$

Biomath 6 (2017), 1705077, http://dx.doi.org/10.11145/j.biomath.2017.05.077

that is exponentially p-stable if $p \ge 2$ and globally asymptotically stable.

Proof: By translation, we can always bring back a random equilibrium point X_e to $X_e = 0$ like in [25].

The existence of X^0 , disease-free random equilibrium point is proved by the following change variable for the stochastic model (1)

$$\widetilde{S}_t = \frac{\Lambda}{\mu} - S_t. \tag{7}$$

As a consequence, the stochastic model (1) reads as

$$d\widetilde{X}_t = \widetilde{f}(t, \widetilde{X}_t)dt + \widetilde{G}(t, \widetilde{X}_t)d\widetilde{W}_t, \qquad (8)$$

wherein

$$\widetilde{X}_t = (\widetilde{S}_t, L_t, T_t, R_t)^T, \quad \widetilde{W} = (W_i)^T, i = 2, ..., 10.,$$

$$\widetilde{f}(t, X_t) = (\widetilde{f}_i(t, X_t))_{i=1,...,4}^T = (\widetilde{f}_i)_{i=1,...,4}^T \text{ such that}$$

$$\begin{split} \widetilde{f}_1 &= \widetilde{\lambda}_I \left(\frac{\Lambda}{\mu} - \widetilde{S}_t\right) - \mu \widetilde{S}_t, \\ \widetilde{f}_2 &= n \widetilde{\lambda}_I \left(\frac{\Lambda}{\mu} - \widetilde{S}_t\right) - (\mu + \sigma + \widetilde{\lambda}_r) L_t + \rho R_t, \\ \widetilde{f}_3 &= (1 - n) \widetilde{\lambda}_I \left(\frac{\Lambda}{\mu} - \widetilde{S}_t\right) + (\sigma + \widetilde{\lambda}_r) L_t \\ &- (\mu + \delta_T + \tau) T_t, \\ \widetilde{f}_4 &= \tau T_t - (\mu + \rho) R_t. \end{split}$$

The noise $\widetilde{G} = \widetilde{G}(t, \widetilde{X}_t)$ is a matrix (4×9) given by

$$\widetilde{G} = \begin{pmatrix} \widetilde{M}_1 & O_{2\times 3} \\ O_{2\times 2} & \widetilde{M}_2 \end{pmatrix}, \qquad (10)$$

where

$$O_{2\times 2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$
$$\widetilde{M}_1 = \begin{pmatrix} \widetilde{G}_{12} & \widetilde{G}_{13} & 0 & 0 & 0 & 0 \\ 0 & \widetilde{G}_{23} & 0 & G_{25} & G_{26} & G_{27} \end{pmatrix},$$
$$\widetilde{M}_2 = \begin{pmatrix} \widetilde{G}_{34} & 0 & G_{36} & 0 & G_{38} & G_{39} & 0 \\ 0 & 0 & 0 & G_{47} & 0 & G_{49} & G_{410} \end{pmatrix},$$

Page 4 of 17

Bongor Danhree et al., Optimal control of the treatment frequency in a stochastic model of Tuberculosis

.

with

$$\begin{split} \widetilde{G}_{12} &= -\sqrt{\mu \widetilde{S}}_t, \quad \widetilde{G}_{34} = (1-n)\sqrt{\widetilde{\lambda}_I \left(\frac{\Lambda}{\mu} - \widetilde{S}_t\right)}, \\ \widetilde{G}_{23} &= n\sqrt{\widetilde{\lambda}_I \left(\frac{\Lambda}{\mu} - \widetilde{S}_t\right)}, \quad \widetilde{G}_{13} = \sqrt{\widetilde{\lambda}_I \left(\frac{\Lambda}{\mu} - \widetilde{S}_t\right)}, \\ \widetilde{\lambda}_I &= \beta_T \frac{T_t + \eta_T R_t}{\left(\frac{\Lambda}{\mu} - \widetilde{S}_t\right) + L_t + T_t + R_t}, \\ \widetilde{\lambda}_r &= \beta_T \frac{\eta_r T_t}{\left(\frac{\Lambda}{\mu} - \widetilde{S}_t\right) + L_t + T_t + R_t}. \end{split}$$

The existence of a disease-free random equilibrium of the model (8) gives the existence of disease-free random equilibrium of (1). In fact, Denote by $X(0) \equiv 0 \in \mathbf{R}^4$. The equalities f(t,0) = 0 and G(t,0) = 0 are verified for $t \ge 0$. So X(0) a disease-free random equilibrium of the model (8). Therefore, we have

$$\widetilde{S}_t = 0, \ L_t = 0, \ T_t = 0, \ R_t = 0,$$

that gives $S_t = \frac{\Lambda}{\mu}$, $L_t = 0$, $T_t = 0$, $R_t = 0$, i.e., $X^0 = \left(\frac{\Lambda}{\mu}, 0, 0, 0\right)$ is a disease-free random equilibrium of the model (1).

Now, consider a Lyapunov function:

$$V = \frac{1}{2p} \left(K \left(\frac{\Lambda}{\mu} - \widetilde{S}_t \right)^p + K_1 L_t^p + K_2 T_t^p + K_3 R_t^p \right)$$
(11)

with $K > 0, K_1 > 0, K_2 > 0, K_3 > 0, p \ge 2$.

Let us note by A a differential operator associated to the stochastic model (1), operating on a function $V = V(t, x) \in \mathcal{C}^{1,2}(\mathbf{R} \times \mathbf{R}^d)$ by

$$\mathcal{A}V = \frac{\partial V}{\partial t} + f(t, x)\frac{\partial V}{\partial x} + \frac{1}{2}tr[G^{T}(t, x)\frac{\partial^{2}V}{\partial x^{2}}G(t, x)].$$

Then

$$\mathcal{A}V = -[K_1(\mu + \sigma + \lambda_r)L_t^p + K_2(\mu + \delta_T + \tau)T_t^p + K_3(\mu + \rho)R_t^p] + K_1n\lambda_I S_t L_t^{p-1} + K_1\rho R_t L_t^{p-1} + K_2(1 - n)\lambda_I S_t T_t^{p-1} + K_2(\sigma + \lambda_r)L_t T_t^{p-1}$$

$$\begin{split} + K_{3}\tau T_{t}R_{t}^{p-1} + \frac{1}{4}(p-1)[KG_{11}^{2}\left(\frac{\Lambda}{\mu} - \widetilde{S}_{t}\right)^{p-2} \\ + KG_{12}^{2}\left(\frac{\Lambda}{\mu} - \widetilde{S}_{t}\right)^{p-2} + K\frac{1}{n}G_{23}^{2}\left(\frac{\Lambda}{\mu} - \widetilde{S}_{t}\right)^{p-2} \\ + K_{1}G_{23}^{2}L_{t}^{p-2} + K_{1}G_{47}^{2}L_{t}^{p-2} + K_{2}G_{34}^{2}T_{t}^{p-2} \\ + K_{2}G_{36}^{2}T_{t}^{p-2} + K_{3}G_{49}^{2}R_{t}^{p-2} + K_{1}G_{25}^{2}L_{t}^{p-2} \\ + K_{1}G_{36}^{2}L_{t}^{p-2} + K_{2}G_{38}^{2}T_{t}^{p-2} + K_{1}G_{49}^{2}T_{t}^{p-2} \\ + K_{3}G_{47}^{2}R_{t}^{p-2} + K_{3}G_{410}^{2}R_{t}^{p-2}] \end{split}$$

The application of the lemma 1 and the theorem given by Afanas'ev in [24], allows us to obtain finally

$$\begin{aligned} 4V &\leq -[K_1(\mu + \sigma + \lambda_r)L_t^p + K_2(\mu + \delta_T + \tau)T_t^p \\ &+ K_3(\mu + \rho)R_t^p] \end{aligned}$$

 $AV \leq 0$ (necessary to demonstrate).

Therefore, $X^0 = \left(\frac{\Lambda}{\mu}, 0, 0, 0\right)$ is exponentially p-stable $(p \ge 2)$.

For, p = 2, we say that X^0 is exponentially 2stable or stable in mean square [24]. In the sense of Lyapunov, X^0 is globally asymptotically stable. It marks the end of the proof.

3) Stability of the endemic random equilibrium:

Preliminary: Suppose that the infection of TB evolves of manner linear i.e. without random noise $G(X_t, t) \equiv 0$. Then the model (1) become $dX_t = f(X_t, t)dt$ which admits a basic reproduction number R_0^{τ} given by:

$$R_0^{\tau} = \frac{\beta_T(\mu + \rho + \tau \eta_T)[(1 - n)\mu + \sigma]}{(\mu + \sigma)[(\mu + \rho)(\mu + \delta_T) + \mu\tau] + \mu\rho\tau}.$$
(12)

If $R_0^{\tau} > 1$, then the model $dX_t = f(X_t, t)dt$ admits a unique endemic equilibrium point biologically meaningful, X^* that is locally asymptotically stable [18]. The existence of a random endemic equilibrium $[X^* = (S^*, L^*, T^*, R^*)]$ is guaranteed by the condition $R_0^{\tau} > 1$ almost surely (see [8]). At this random endemic equilibrium

Biomath 6 (2017), 1705077, http://dx.doi.org/10.11145/j.biomath.2017.05.077

Page 5 of 17

 $[X^* = (S^*, L^*, T^*, R^*)^T]$ we have $[\lambda_I = \lambda_I^*]$ and The linearized system of (15) around $X^* =$ $[\lambda_r = \lambda_r^*]$ such that

$$\lambda_I^* = \frac{\mu + \rho + \tau \eta_T}{\eta_r (\mu + \rho)} \lambda_r^*. \tag{13}$$

and

$$a_2(\lambda_I^*)^2 + a_1\lambda_I^* + a_0 \tag{14}$$

where

$$a_{0} = (1 - R_{0}^{\tau})(\mu + \rho + \tau \eta_{T})\{(\mu + \sigma)[(\mu + \rho)(\mu + \delta_{T}) + \mu\tau] + \mu\rho\tau\},\$$

$$a_{1} = (\mu + \rho + \tau\eta_{T})\{(\mu + \rho)(\mu + \sigma) + n[\delta_{T}(\mu + \rho) + \mu\tau] + \mu\tau\} + \eta_{r}(\mu + \rho)[(\mu + \rho)(\mu + \delta_{T}) + \mu\tau],\$$

$$a_{2} = \eta_{r}(\mu + \rho).$$

If $R_0^{\tau} = 1$ ie. $a_0 = 0$, the equation (14) admits a hopeless solution corresponding to X^0 the unique equilibrium without TB and it admits another solution to the real negative part corresponding to the endemic equilibrium which is biologically not pertinent.

If $R_0^{\tau} < 1$ ie. $a_0 > 0$, then $a_2 a_0 < 0$ and if the discriminant of (14) is positive i.e. $a_1^2 - 4a_2a_0 > 0$. It follows itself that the equation (14) admits two solutions to part real negatives that corresponding to two equilibriums no pertinent.

If $R_0^{\tau} > 1$ ie. $a_0 < 0$ then according to the Descartes rule of sign, the equation (14) admits one positive solution

$$\lambda_I^* = \frac{-a_1 + \sqrt{a_1^2 - 2a_2 a_0}}{2a_2}$$

corresponding to an endemic equilibrium X^* .

Now, suppose that the random noise of the dynamic system of TB has a nature to perturb the states variables S_t , L_t , T_t , and R_t of the stochastic term $G(t, X_t)$ around of S^*, L^*, T^* , and R^* respectively (see also [25]). Then the model (1) becomes

$$dX_t = f(t, X_t)dt + G(t, X_t - X^*)dW_t, \quad (15)$$

that can be centered to X^* by the change variables

$$Y_1 = S_t - S^*, \ Y_2 = L_t - L^*, \ Y_3 = T_t - T^*, \ Y_4 = R_t - R^*$$
(16)

 $(S^*, L^*, T^*, R^*)^T$ as in [4] takes the form

$$dY_t = f^y(Y_t)dt + G^y(Y_t)d\xi_t, \qquad (17)$$

where $f^y = f^y(Y_t) = \mathcal{J}_f(X^*) \cdot Y_t$ with $\mathcal{J}_f(X^*)$ the jacobian matrix of f at X^* ; $Y_t = Y = (Y_1, Y_2, Y_3, Y_4)^T; \ \xi_t = (W_t^i)_{i=2,\dots,10};$

$$f^{y} = \begin{pmatrix} -\partial_{11} & \partial_{12} & \partial_{13} & \partial_{14} \\ \partial_{21} & -\partial_{22} & \partial_{23} & \partial_{24} \\ \partial_{31} & \partial_{32} & -\partial_{33} & \partial_{44} \\ 0 & 0 & \tau & -(\mu + \rho) \end{pmatrix} \begin{pmatrix} Y_{1} \\ Y_{2} \\ Y_{3} \\ Y_{4} \end{pmatrix}$$

wherein

$$\begin{split} -\partial_{11} &= \mu + \lambda_{I}^{*} \left(1 - \frac{S^{*}}{N^{*}} \right), \ \partial_{12} = -\lambda_{I}^{*} \frac{S^{*}}{N^{*}}, \\ \partial_{13} &= \left(\lambda_{I}^{*} - \beta_{T} \right) \frac{S^{*}}{N^{*}} \quad \partial_{14} = \left(\lambda_{I}^{*} - \beta_{T} \eta_{T} \right) \frac{S^{*}}{N^{*}}, \\ \partial_{21} &= n \lambda_{I}^{*} \left(1 - \frac{S^{*}}{N^{*}} \right) + \lambda_{r}^{*} \frac{L^{*}}{N^{*}}, \\ -\partial_{22} &= n \lambda_{I}^{*} \frac{S^{*}}{N^{*}} + \lambda_{r}^{*} \frac{L^{*}}{N^{*}} + \mu + \rho, \\ \partial_{23} &= -n \left(\lambda_{I}^{*} - \beta_{T} \right) \frac{S^{*}}{N^{*}} + \left(\lambda_{r}^{*} - \beta_{T} \eta_{r} \right) \frac{L^{*}}{N^{*}}, \\ \partial_{24} &= -n \left(\lambda_{I}^{*} - \beta_{T} \eta_{T} \right) \frac{S^{*}}{N^{*}} + \lambda_{r}^{*} \frac{L^{*}}{N^{*}} + \rho, \\ \partial_{31} &= \left(1 - n \right) \lambda_{I}^{*} \left(1 - \frac{S^{*}}{N^{*}} \right) - \lambda_{r}^{*} \frac{L^{*}}{N^{*}}, \\ \partial_{32} &= -(1 - n) \lambda_{I}^{*} \frac{S^{*}}{N^{*}} + \lambda_{r}^{*} \left(1 - \frac{L^{*}}{N^{*}} \right) + \sigma, \\ \partial_{33} &= (n - 1) \left(\lambda_{I}^{*} - \beta_{T} \eta_{T} \right) \frac{S^{*}}{N^{*}} - \lambda_{r}^{*} \frac{L^{*}}{N^{*}}; \\ \partial_{34} &= -(1 - n) \left(\lambda_{I}^{*} - \beta_{T} \eta_{T} \right) \frac{S^{*}}{N^{*}} - \lambda_{r}^{*} \frac{L^{*}}{N^{*}}; \\ \text{and } G^{y}(Y_{t}) &= \\ \begin{pmatrix} G_{12}^{y} & G_{13}^{y} & G_{14}^{y} & 0 & 0 & 0 & 0 & 0 \\ G_{12}^{y} & G_{13}^{y} & G_{14}^{y} & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \end{pmatrix}$$

$$\begin{pmatrix} G_{12} & G_{13} & G_{14} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & G_{23}^y & 0 & G_{25}^y & G_{26}^y & G_{27}^y & 0 & 0 & 0 \\ 0 & 0 & G_{34}^y & 0 & G_{36}^y & 0 & G_{38}^y & G_{39}^y & 0 \\ 0 & 0 & 0 & 0 & 0 & G_{47}^y & 0 & G_{49}^y & G_{410}^y \end{pmatrix},$$

Biomath 6 (2017), 1705077, http://dx.doi.org/10.11145/j.biomath.2017.05.077

Page 6 of 17

with

$$\begin{aligned} G_{12}^y &= -\sqrt{\mu Y_1}, \quad G_{13}^y &= -G_{23}^y = -\sqrt{n\lambda_I Y_1}, \\ G_{14}^y &= -G_{34}^y = -\sqrt{(1-n)\lambda_I Y_1}, \\ G_{25}^y &= -\sqrt{\mu Y_2}, \\ G_{26}^y &= -G_{36}^y = -\sqrt{(\sigma+\lambda_r)Y_3}, \\ G_{27}^y &= -G_{47}^y = \sqrt{\rho Y_4}, \\ G_{38}^y &= -\sqrt{(\mu+\delta_T)Y_3}, \\ G_{39}^y &= -G_{49}^y = -\sqrt{\tau Y_3}, \quad G_{410}^y = -\sqrt{\mu Y_4}. \end{aligned}$$
(18)

Theorem 2. The stochastic model (1) admits a random endemic equilibrium $[X^* = (S^*, L^*, T^*, R^*)]$ exponentially 2-stable and globally stable if the following conditions (i.), (ii.) are satisfied: (i): $R^{\tau} > 1$

.

(*i.*):
$$\kappa_0 > 1$$

(*ii.*):
$$\begin{cases} \partial_{11} > \frac{1}{2} \left(\omega_1 + \kappa_1 \beta_T (1 + \eta_T) \frac{\Lambda}{\mu} \right) \\ \partial_{22} > \frac{1}{2} (\omega_2 + \mu) \\ \partial_{33} > \frac{1}{2} \left(\omega_3 + \beta_T \frac{\Lambda}{\mu} \left(\frac{c_2}{c_3} + 1 \right) + \kappa_2 \right) \\ \mu + \rho > \frac{1}{2} (\omega_4 + \kappa_3). \end{cases}$$

where, for all real constants $c_i > 0$, i = 1, ..., 4, we have

$$\kappa_{1} = 1 + n\frac{c_{2}}{c_{1}} + (1 - n)\frac{c_{3}}{c_{1}}; \quad \kappa_{3} = \rho\left(\frac{c_{2}}{c_{4}} + 1\right) + \mu;$$

$$\kappa_{2} = \sigma\left(\frac{c_{2}}{c_{3}} + 1\right) + \tau\left(\frac{c_{4}}{c_{3}} + 1\right) + \mu + \delta_{T};$$

and $\kappa_{2} \ge 0$ i. 1. A such that

and $\omega_i > 0$, i = 1, ..., 4 such that

$$\begin{split} \omega_1 &= 2\lambda_I^* \frac{S^*}{N^*} + \frac{c_2}{c_1} \left(n\lambda_I^* \left(1 - \frac{S^*}{N^*} \right) + \lambda_r^* \frac{L^*}{N^*} \right) \\ &+ \frac{c_3}{c_1} \left(1 - n \right) \lambda_I^* \left(1 - \frac{S^*}{N^*} \right), \\ \omega_2 &= n\lambda_I^* \left(1 - \frac{S^*}{N^*} \right) + n\beta_T (1 + \eta_T) \frac{S^*}{N^*} \\ &+ 3\lambda_r^* \frac{L^*}{N^*} + \rho + \frac{c_3}{c_2} (\lambda_r^* + \sigma) \end{split}$$

$$\begin{split} \omega_3 &= \frac{c_1}{c_3} \lambda_I^* \frac{S^*}{N^*} + \frac{c_2}{c_3} + \left(n\beta_T \frac{S^*}{N^*} + \lambda_r^* \right) + \lambda_r^* \\ &+ (1-n) \left(\lambda_I^* \left(1 - \frac{S^*}{N^*} \right) + \beta_T \eta_T \frac{S^*}{N^*} \right) + \sigma \\ \omega_4 &= \frac{c_1}{c_4} \lambda_I^* \frac{S^*}{N^*} + \frac{c_2}{c_4} \left(n\beta_T \eta_T \frac{S^*}{N^*} + \lambda_r^* \frac{L^*}{N^*} + \rho \right) \\ &+ \frac{c_3}{c_4} (1-n) \beta_T \eta_T \frac{S^*}{N^*}. \end{split}$$

Proof: The trivial solution $Y_t = 0$ of the linearized system (17) corresponds to the equilibrium X^* that the existence is guaranteed by the condition (i).

Consider now the Lyapunov function defined by:

$$V^{y} = V^{y}(Y) = \frac{1}{2} \sum_{i=1}^{4} c_{i} Y_{i}^{2}, \ c_{i} > 0, i = 1, ..., 4.$$
(19)

Then

$$\begin{split} \mathcal{A}V^{y} &= -c_{1}\partial_{11}Y_{1}^{2} - c_{2}\partial_{22}Y_{2}^{2} - c_{3}\partial_{33}Y_{3}^{2} - c_{4}(\mu + \rho)Y_{4}^{2} \\ &+ \sum_{i,j=1}^{3}\sum_{i\neq j}^{4}c_{i}\partial_{ij}Y_{i}Y_{j} + \frac{1}{2}\sum_{i,j=1}^{4}tr(G^{y}G_{ij}^{yT}\frac{\partial^{2}V^{y}(Y)}{\partial Y_{i}\partial Y_{j}}) \\ \mathcal{A}V^{y} &= -c_{1}\left(\mu + \lambda_{I}^{*}(1 - \frac{S^{*}}{N^{*}})\right)Y_{1}^{2} - c_{2}(n\lambda_{I}^{*}\frac{S^{*}}{N^{*}} \\ &+ \lambda_{r}^{*}\frac{L^{*}}{N^{*}} + \mu + \rho)Y_{2}^{2} - c_{3}[(1 - n)(\lambda_{I}^{*} - \beta_{T})\frac{S^{*}}{N^{*}} \\ &+ (\lambda_{r}^{*} - \beta_{T}\eta_{r})\frac{L^{*}}{N^{*}} + \mu + \delta_{T} + \tau]Y_{3}^{2} - c_{4}(\mu + \rho)Y_{4}^{2} \\ &+ \sum_{i,j=1}^{3}\sum_{i\neq j}^{4}c_{i}\partial_{ij}Y_{i}Y_{j} + \frac{1}{2}\sum_{i,j=1}^{4}tr(G^{y}G^{yT})_{ij}\frac{\partial^{2}V^{y}(Y)}{\partial Y_{i}\partial Y_{j}}. \end{split}$$

To increase the last two terms of $\mathcal{A}V^y(Y)$ that we pose:

$$sum_{1} = \sum_{i,j=1}^{3} \sum_{i\neq j}^{4} c_{i}\partial_{ij}Y_{i}Y_{j},$$

$$sum_{2} = \frac{1}{2} \sum_{i,j=1}^{4} tr(G^{y}G^{yT})_{ij} \frac{\partial^{2}V^{y}(Y)}{\partial Y_{i}\partial Y_{j}}$$

$$sum_{1} = \sum_{i,j=1}^{3} \sum_{i\neq j,\partial_{ij}>0}^{4} c_{i}\partial_{ij}Y_{i}Y_{j} + \sum_{i,j=1}^{3} \sum_{i\neq j,\partial_{ij}<0}^{4} c_{i}\partial_{ij}Y_{i}Y_{j}$$

Biomath 6 (2017), 1705077, http://dx.doi.org/10.11145/j.biomath.2017.05.077

Page 7 of 17

Bongor Danhree et al., Optimal control of the treatment frequency in a stochastic model of Tuberculosis

$$\leq \frac{1}{2} \sum_{i,j=1}^{3} \sum_{i \neq j, \partial_{ij} > 0}^{4} c_i \partial_{ij} (Y_i^2 + Y_j^2) \\ + \sum_{i,j=1}^{3} \sum_{i \neq j, \partial_{ij} < 0}^{4} c_i \partial_{ij} Y_i Y_j$$

$$sum_1 \le \frac{1}{2} \sum_{i,j=1}^3 \sum_{i \ne j, \partial_{ij} > 0}^4 c_i \partial_{ij} (Y_i^2 + Y_j^2)$$

$$sum_{1} \leq \frac{1}{2} \{ [2\lambda_{I}^{*} \frac{S^{*}}{N^{*}} + \frac{c_{2}}{c_{1}} \left(n\lambda_{I}^{*} \left(1 - \frac{S^{*}}{N^{*}} \right) + \lambda_{r}^{*} \frac{L^{*}}{N^{*}} \right)$$
$$+ \frac{c_{3}}{c_{1}} (1 - n)\lambda_{I}^{*} \left(1 - \frac{S^{*}}{N^{*}} \right)]c_{1}Y_{1}^{2} + [n\lambda_{I}^{*} \left(1 - \frac{S^{*}}{N^{*}} \right)$$
$$+ n\beta_{T} (1 + \eta_{T}) \frac{S^{*}}{N^{*}} + 3\lambda_{r}^{*} \frac{L^{*}}{N^{*}} + \rho + \frac{c_{3}}{c_{2}} (\lambda_{r}^{*} + \sigma)]c_{2}Y_{2}^{2} +$$
$$[\frac{c_{1}}{c_{3}} \lambda_{I}^{*} \frac{S^{*}}{N^{*}} + \frac{c_{2}}{c_{3}} \left(n\beta_{T} \frac{S^{*}}{N^{*}} + \lambda_{r}^{*} \right) + (1 - n)(\lambda_{I}^{*} \left(1 - \frac{S^{*}}{N^{*}} \right)$$
$$+ \beta_{T} \eta_{T} \frac{S^{*}}{N^{*}}) + \lambda_{r}^{*} + \sigma]c_{3}Y_{3}^{2} + [\frac{c_{1}}{c_{4}} \lambda_{I}^{*} \frac{S^{*}}{N^{*}} + \frac{c_{2}}{c_{4}} (n\beta_{T} \eta_{T} \frac{S^{*}}{N^{*}}$$
$$+ \lambda_{r}^{*} \frac{L^{*}}{N^{*}} + \rho) + \frac{c_{3}}{c_{4}} (1 - n) \times \beta_{T} \eta_{T} \frac{S^{*}}{N^{*}}]c_{4}Y_{4}^{2} \}.$$

From where

$$sum_1 \leq \frac{1}{2} \{ \omega_1 c_1 Y_1^2 + \omega_2 c_2 Y_2^2 + \omega_3 c_3 Y_3^2 + \omega_4 c_4 Y_4^2 \}$$
 and

$$\begin{split} sum_2 &= \frac{1}{2} \{ c_1 (G_{12}^2 + G_{13}^2 + G_{14}^2) + c_2 (G_{23}^2 + G_{25}^2) \\ &+ G_{26}^2 + G_{27}^2) + c_3 (G_{34}^2 + G_{36}^2 + G_{38}^2 + G_{39}^2) \\ &+ c_4 (G_{47}^2 + G_{49}^2 + G_{410}^2) \} + \frac{1}{2} \{ (\kappa_1 \lambda_I + c_1 \rho) Y_1 \\ &+ c_2 \mu Y_2 + (\lambda_r (c_2 + c_3) + \kappa_2) Y_3 + \kappa_3 Y_4 \} \\ sum_2 &\leq \frac{1}{2} \{ \left(\kappa_1 \beta_T \frac{\Lambda}{\mu} (1 + \eta_T) + \rho \right) c_1 Y_1^2 + c_2 \mu Y_2^2 \\ &+ \left(\beta_T \frac{\Lambda}{\mu} \left(\frac{c_2}{c_3} + 1 \right) + \kappa_2 \right) c_3 Y_3^2 + \kappa_3 Y_4^2 \}. \end{split}$$
Hence

$$\mathcal{A}V^{y} \leq -\left(\partial_{11} - \frac{1}{2}\left(\omega_{1} + \kappa_{1}\beta_{T}(1+\eta_{T})\frac{\Lambda}{\mu}\right)\right)c_{1}Y_{1}^{2}$$
$$-\left(\partial_{22} - \frac{1}{2}(\omega_{2}+\mu)\right)c_{2}Y_{2}^{2} - [\partial_{33} - \frac{1}{2}(\beta_{T}\frac{\Lambda}{\mu}\left(\frac{c_{2}}{c_{3}}+1\right))c_{1}Y_{1}^{2}\right)$$

$$(+\omega_3 + \kappa_2)]c_3Y_3^2 - \left(\mu + \rho - \frac{1}{2}(\omega_4 + \kappa_3)\right)c_4Y_4^2.$$

According to the condition (ii.), we has $\mathcal{A}V^y \leq 0$ marking the end of this proof.

The random endemic equilibrium $[X^*]$ = $(S^*, L^*, T^*, R^*)^T$ of the model (1) exists whenever $R_0^{\tau} > 1$ and condition (*i*.) is fulfilled. It is exponentially 2-stable and globally asymptotically stable in sense of Lyapunov if the supplementary condition (ii.) is satisfied.

We study in the following section, the optimal control of the treatment frequency in a stochastic model of TB. The condition $R_0^{ au} < 1$ is needed for the effective stability of TB in a population because the biological pertinence of the endemic equilibrium exists whenever $R_0^{\tau} > 1$ almost surely. The control permits then to adjust this endemic situation unstable.

III. OPTIMAL CONTROL OF THE TREATMENT FREQUENCY IN THE TB MODEL

A. Optimal control problem

Let $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t>0}, P)$ a complete filtered probability space $\{\mathcal{F}_t\}_{t\geq 0}$ produced by a standard 10dimensional Brownian Motion $\{W_t\}_{t>0}$. Let $\mathcal{T} >$ 0 a fixed real number named the horizon of the finite time. Let's note by $L^2(\Omega, \mathcal{F}_T, \mathbf{R})$ the space of random variables. $\mathcal{F}_\mathcal{T}\text{-measurable}$ to real values and integrable square and by $L^2_{\mathcal{F}}(0; \mathcal{T}, \mathbf{R})$ a space of process \mathcal{F}_t - adapted to real values and integrable square such that $\mathbf{E}[\int_0^{\mathcal{T}} |X_t|^2 dt] < +\infty$. Let $K \in \mathcal{U}_{ad}$ a compact convex sub set of

 $L^2(0,\mathcal{T})$. Consider an optimal control problem that consists in minimizing the cost $\mathcal{J}(.,.)$, the objective function defined for the time $t \in [0, \mathcal{T}]$, the state $X \in \mathbf{R}^4$ and function of control $u \in \mathcal{U}_{ad}$ by:

$$\mathcal{J}(X, u) = \int_0^{\mathcal{T}} \mathbf{E}[\varphi(X_t, u_t)] dt + \int_0^{\mathcal{T}} h(u_t) dt,$$
(20)

relative to the state $X_t \in \mathbf{R}^4$ of the TB model governed in general by:

$$\begin{cases} dX_t = f(t, X_t, u_t)dt + G(t, X_t, u_t)dW_t, t \in [0, \mathcal{T}] \\ X_0 = X(0) \in \mathbf{R}^4 \end{cases}$$
(21)

Biomath 6 (2017), 1705077, http://dx.doi.org/10.11145/j.biomath.2017.05.077

1

Page 8 of 17

and in particular by:

$$\begin{cases} dX_t = f(t, X_t, u_t)dt + G(t, X_t)dW_t, t \in [0, \mathcal{T}] \\ X_0 = X(0) \in \mathbf{R}^4 \end{cases}$$
(22)

where $u = u_t : \tau \mapsto u(t)\tau$, for all rate τ of (2). This part deals with the study of the particular case where the control doesn't appear in the stochastic term. The control is said optimal when this dose reached its value optimal positive i.e. $u = u_{op} > 0$. If this optimal value is not reached, i.e. $u \in [-1; 0[\cup]0; u_{op}[$, then the control is said less efficient; it is said without effect when u = 0and finally the control is said efficient when the optimal value is passed) i.e. $u \in [u_{op}, 1]$. The aim is therefore to control the frequencies of the TB treatment in order to reduce number of new cases. The problem of the optimal control is translated to:

Find an admissible control optimal $u = u^*$ such that

$$\mathcal{J}(X, u^*) = \min_{u \in K \subset \mathcal{U}_{ad}} \mathcal{J}(X, u)$$
(23)

ie.
$$\mathcal{J}(X, u^*) \leq \mathcal{J}(X, u) \quad \forall \ u \in K \subset \mathcal{U}_{ad}$$

Set $F(u) = \mathcal{J}(X, u)$, then the optimal control problem (23) becomes a optimization problem

$$F(u^*) = \min_{u \in K \subset \mathcal{U}_{ad}} F(u), \qquad (24)$$

wherein F(u) is a functional convex.

B. Gradient Projection Method

We want to solve (24) by the projection stochastic gradient method. For this purpose, let us recall the results that concern the projection method on a convex closed K an the stochastic algorithm:

Proposition 2. Let, H a Hilbert space, provided with a norm $\|.\|$ induced by the scalar product $(\cdot|\cdot)$ and let $K \subset H$ a nonempty convex closed set. Then for all $u \in H$,

1) an unique $\tilde{u} \in K$ exists such that

$$||u - \tilde{u}|| = \min_{v \in K} ||u - v|| \quad for \ all \ v \in K,$$

where $\tilde{u} = P_K(u)$ is the orthogonal projection of u on K.

2) \tilde{u} is charcterized by

$$\tilde{u} = P_K(u) \iff (\tilde{u} - u \mid v - \tilde{u}) \ge 0$$

Proof:

- The existence of ũ ∈ K holds true because K is closed. Let's suppose that the dimension of H is finite. Let us consider K∩B(u; ||uv||) the intersection of K with a ball B. On this compact, the function v → ||u - v|| is continuous. Of all minimizing sequence we can extract a convergent sequence, its limit is ũ. The uniqueness comes from the convexity of K and Pythagoras' theorem.
- 2) For the characterization of \tilde{u} ; suppose $\tilde{u} = P_K(u)$ then we has for all $v \in K$

$$\|u - \tilde{u}\| = \min_{v \in K} \|u - v\| \Longrightarrow \|u - \tilde{u}\| \le \|u - v\|$$

Let $v \in K$, pose $v_{\varepsilon} = \tilde{u} + \varepsilon(v - \tilde{u}) \quad \varepsilon \in$]0;1[$v_{\varepsilon} \in K$ which implies that

$$\|u - \tilde{u}\|^2 \le \|u - v_{\varepsilon}\|^2 = \|u - \tilde{u}\|^2 + \varepsilon^2 \|v - \tilde{u}\|^2$$
$$+ 2\varepsilon(\tilde{u} - u \mid v - \tilde{u})$$
$$\|u - \tilde{u}\|^2 \le \|u - \tilde{u}\|^2 + \varepsilon^2 \|v - \tilde{u}\|^2$$
$$+ 2\varepsilon(\tilde{u} - u \mid v - \tilde{u})$$

Dividing by ε then we obtain

$$0 \le \varepsilon \|v - \tilde{u}\|^2 + 2(\tilde{u} - u \mid v - \tilde{u})$$
$$\implies (\tilde{u} - u \mid v - \tilde{u}) \ge 0$$

 $(\tilde{u} - u \mid v - \tilde{u}) \ge 0$

$$\begin{split} 0 &\geq (u - \tilde{u} \mid v - \tilde{u}) = (u - \tilde{u} \mid v - u + u - \tilde{u}) \\ 0 &\geq \|u - \tilde{u}\|^2 + (u - \tilde{u} \mid v - u) \end{split}$$

Applying the inequality of Cauchy-Schwarz, we have

$$0 \ge \|u - \tilde{u}\|^2 - \|u - \tilde{u}\|\|v - u\|$$
$$\implies \|v - u\| \ge \|\tilde{u} - u\|$$

Biomath 6 (2017), 1705077, http://dx.doi.org/10.11145/j.biomath.2017.05.077

Page 9 of 17

Proposition 3. The algorithm of the stochastic gradient consists in making evolve the variable u of the optimization problem (24) according to the formula of the following recurrence convergent sequence $(u_n)_{n>0}$ of limit u:

$$u_{n+1} = u_n + q_n(-\nabla F(u_n))$$

where $q_n > 0$ with $\lim_{n \to +\infty} q_n = q$ and ∇ denotes the gradient.

 $\begin{array}{l} \text{ 1. Initialization : } u_0 \in H \\ \text{ 2. } u = u_n \text{ is for } n \geq 0 \\ a) \text{ Calculate } \omega_n = -\nabla F(u_n) \\ \text{ Choisir } q_n \geq 0 \text{ such that } \\ F(u_n - q_n \omega_n) \leq F(u_n - q \omega_n) \quad \forall q > 0 \\ u_{n+1} = u_n + q_n \omega_n \\ b) \text{ Calculate } v_{n+1} = P_K(v_{n+1}) \\ c) \text{ Test the covergence of the iteration } \\ \varepsilon_n = \|u_{n+1} - u_n\| : \\ - \text{ if } \varepsilon_n < \varepsilon \text{ Stop } \\ - \text{ otherwise : } u = u_{n+1} \text{ and repeat } \\ \text{ iteration.} \end{array}$

(25)

C. Projection gradient method applied to the stochastic model of TB with control

Proposition 4. Consider $H = \mathcal{U}$ is a Hilbert space and $\mathcal{U}_{ad} \subset \mathcal{U}$ a closed convex subset. Let P_K the projection operator on K defined in \mathcal{U} by $P_K(\omega) = P_K \omega \in K; \ \forall \ \omega \in \mathcal{U}, \ then \ problem \ (24)$ admits an unique solution u or an optimal control such that

$$u = u(\cdot) = P_K[u - q(\cdot |F'(u))]$$

Proof: H = U is a Hilbert space and $U_{ad} \subset U$ a closed convex subset. The necessary and sufficient condition of the optimality problem (24) is given by

$$(F'(u) \mid v - u) \ge 0 \qquad \forall \ v \in K.$$

Let P_K the projection operator on K defined in \mathcal{U} by $P_K(\omega) = P_K \omega \in K$; $\forall \omega \in \mathcal{U}$, such that we have

$$(P_{K}\omega - \omega \mid P_{K}\omega - \omega) = \min_{u \in K \subset \mathcal{U}_{ad}} (u - \omega \mid u - \omega) \ \forall \omega \in \mathcal{U}.$$

It is equivalent to

 $(P_K\omega - \omega \mid v - P_K\omega) \ge 0 \ \forall v \in K \iff \omega = P_K\omega.$

It follows that the solution u of (24) is given by

$$u = u(\cdot) = P_K[u - q(\cdot | F'(u))].$$

Indeed, the optimality condition gives

$$(F'(u) \mid v - u) \ge 0 \qquad \forall \ v \in K,$$

then for q > 0 we have

$$q(\cdot \mid F'(h)) \mid v - u) \ge 0 \Longrightarrow (q(\cdot \mid F'(h)) \mid v - u) \ge 0$$
$$\Longrightarrow (u - u + q(\cdot \mid F'(h)) \mid v - u) \ge 0.$$

With $\omega = u - q(\cdot \mid F'(h))$, the last implication gives

$$(u-\omega \mid v-u) \ge 0 \iff u = P_K \omega$$
$$\iff u = P_K [u - q(\cdot \mid F'(h))]$$

For the optimal control problem of the treatment frequency of TB, we are going to define the following iteration scheme for n = 0, 1, ...

$$\begin{cases} (v \mid u_{n+\frac{1}{2}}) = (v \mid u_n) - q_n(v \mid F'_n(u_n)), \ \forall v \in \mathcal{U} \\ u_{n+1} = P_K(u_{n+\frac{1}{2}}), \end{cases}$$
(26)

where F'_n is the functional approached to the n^{th} iteration of F'_n .

The convergence of this scheme, and the calculation of F'_n . are given in [17],[13]. For $u(\cdot)$ an optimal control and $X(\cdot)$, the optimal stat corresponding to $X(\cdot)$ and for $v(\cdot) \in \mathcal{U} \subset L^2(0,T)$ such that $v^p = u(\cdot) + qv(\cdot)$, 0 < q < 1, then we have for all $v \in L^2(0,T)$,

$$F'_{n}(u)(v) = \lim_{q \to 0} \frac{F_{n}(u+qv) - F_{n}(u)}{q}$$
$$= \mathbf{E}[\int_{0}^{\mathcal{T}} \varphi'(X)\mathcal{D}(X)(v)dt] + \int_{0}^{\mathcal{T}} h'(u)dt, (27)$$

where

$$\mathcal{D}(X)(v) = \int_0^t \left[f'_X(s, X, u) \mathcal{D}(X)(v) + f'_u(s, X, u) v \right] ds$$

Biomath 6 (2017), 1705077, http://dx.doi.org/10.11145/j.biomath.2017.05.077

Page 10 of 17

Bongor Danhree et al., Optimal control of the treatment frequency in a stochastic model of Tuberculosis

$$+ \int_0^t G'_X(s, X)\mathcal{D}(X)(v)dW_s,$$

$$d(\mathcal{D}(X)(v)) = [f'_X(t, X, u)\mathcal{D}(X)(v) + f'_u(t, X, u)v]dt$$

$$+ G'_X(t, X)\mathcal{D}(X)(v)dW_t.$$

We define a adjoint functional p, \mathcal{F}_t -adapted and defined by

$$\begin{cases} -dp = [\varphi'(X) + pf'X(t, X, u) - pG'_X(t, X) \\ .(G'_X(t, X))^{tr}]dt + pG'_X(t, X)dW_t \\ p(\mathcal{T}) = 0 \end{cases}$$
(28)

such that $\mathbf{E}[\int_{0}^{\mathcal{T}} |p_t|^2 dt] < +\infty.$ The right hand side of the equation (27) permits to get finally $F'_n(u)(v)$ from (28), that reads as

$$F'_{n}(u)(v) = \int_{0}^{\mathcal{T}} \mathbf{E}[p(f'(t, X, u) + h'(u)]vdt,$$
(29)

The Projection Gradient Method applied to the stochastic model of TB with control, consist therefore in considering the system (30) of two equations (22) and (28) in order to solve it numerically,

$$\begin{cases} dX_t = f(t, X_t, u_t) dt + G(t, X_t, u_t) dW_t, t \in [0, \mathcal{T}], \\ -dp = [\varphi'(X_t) + pf'_X(t, X_t, u_t) - pG'_X(t, X_t) \\ .(G'_X(t, X))^{tr}] dt + pG'_X(t, X_t) dW_t, \\ X_0 = X(0) \in \mathbf{R}^4 \quad p(\mathcal{T}) = 0. \end{cases}$$
(30)

The numerical resolution of (30) uses the iteration scheme (31) below for n = 0, 1... and then the Euler scheme for the two equations of (30) (see [17]),

$$\begin{cases} (v|u_{n+\frac{1}{2}}) = (v|u_n) - q_n(v|\mathbf{E}[p_n(f'_u(t, X_n, u_n))] \\ + h'(u_n)), \quad \forall v \in \mathcal{U} \\ u_{n+1} = P_K(u_{n+\frac{1}{2}}), \end{cases}$$
(31)

where X_n , u_n and p_n are the present steps of the functions constructed.

D. Numerical Simulations

Algorithm[17]:

Stage 1 To choose the arbitrary initial control For $n = 0, 1, \cdots$, let $u = u_n$, to make the buckle iteration of Stage 1 to Stage 5;

- Stage 2 To use the implicit Euler scheme for the discretization in time of the SDE (22)
- Stage 3 To use the implicit Euler scheme for the discretization in time of the adjoint equation; (28)
- Stage 4 To use the iteration scheme (31) of the gradient method to update the controls;

$$\begin{cases} u_{n+\frac{1}{2}}^{m} = u^{m} - q_{n}(\mathbf{E}[p^{m}(f_{u}'(t^{m}, X^{m}, u^{m}))] \\ + h'(u^{m})), \quad m = 0, 1, \cdots, m_{max} \\ u_{n+1}^{m} = P_{K}(u_{n+\frac{1}{2}}); \end{cases}$$

Stage 5 Calculate $e_n = ||u_n - u_{n+1}||$. If e_n is small enough, then exit. Otherwise; let $u = u_{n+1}$ repeat the buckle iteration from Stage 2 to Stage 5.

TABLE II PARAMETER VALUES AND REFERENCES

Parameters	Values	References
Λ	variable	Estimate
μ	0.02	[18]
σ	1/33	[18]
ρ	0.04	[18]
δ_T	0.2	[18]
n	Variables	Estimates
η_r, η_T	0.4, 0.06	[18]
β_T, τ	Variables	Estimates

For the following figures, we take $\varphi(x, u) = (x^2 + u^2)exp(\frac{-t}{x^2 + u^2})$, $h(x) = x^2$, n = 0.05, $e_n < 10^{-7}$, $p_0 = 0.01$ and the rest Λ , β_T , τ , X_0 are unright. are variable.

Fig.2 give a schematic plot of the model (1) not depending of u. The aim is to show, for a initial condition given, the asymptotic behavior of the solution around a random endemic equilibrium when the hard epidemic a long time $R_0^{\tau} > 1$. While, Fig.3(resp. Fig.4) shows a numerical illustration of optimal control u, see (a) and (b) (resp. of cost F(u), see (c) and (d)). The orthogonal projection of the minimum point of F(u) on the closed subset [-1; 1], gives a numerical value of optimal control u^* ; e.g. the minimum point • of F(u) represented in (c), is valued as $F(u^*) = 2.7066$ giving $u^* = 0$ if $u_0 = 1$. Thanks to Matlab, we can value the

Bongor Danhree et al., Optimal control of the treatment frequency in a stochastic model of Tuberculosis

cost $F(u^*)$ and the optimal control u^* for a control initially chosen u_0 as Fig.6.

In Fig.5, the trajectory without control, see $(t._1)$, (resp. with control, see $(t._2)$) of the active infected individuals T is creasing between 0 and 2 years (resp. decreasing between 0 and 1 year and is annulling constantly thereafter). $(t._3)$ and $(t._4)$ show that a control of treatment intervened 0.5 years equal to 6 months after the infection, permits to reduce to nothing numbers of the active infected individuals of TB.

Fig. 2. Numerical Simulations of the model (1) without control (i.e. not depending of u), showing the asymptotic behavior of the solution when $R_0^{\tau} > 1$ at different initial condition: (i) : $X_0 = (S_0, L_0, T_0, R_0) = (50, 12, 5, 10)$, $\Lambda = 10$, $\beta_T = 0.8$, $\tau = 0.08$, $R_0^{\tau} = 2.3710 > 1$ and, (ii) $X_0 = (S_0, L_0, T_0, R_0) = (50, 1, 1, 1)$, $\Lambda = 8$, $\beta_T = 0.9$, $\tau = 0.08$. $R_0^{\tau} = 3.5565 > 1$.

Fig. 4. Numerical Simulation of a cost function F(u) (c) and (d)

Fig. 5. Trajectories without and with control of the model (1). For $\Lambda = 5$, $\beta_T = 0.08$, $\tau = 0.08$, $u_0 = 0.08$, $X_0 = (1, 1, 1, 1)$.

Let's note that initial value of sequence q_n is chosen as $q_0 = 0.1$ for Fig.6 and (d); $q_0 = 0.6$ for Fig.4 (c).

IV. CONCLUSION

The stochastic model (1) of TB without control admits for an initial state X(0), a positive and unique solution $X_t \in \Omega$ of probability one. It exist for this model an unique disease equilibrium free (DEF) exponentially 2-stable and globally asymptotically stable (in Lyapunov sense). Under a given condition, the model (1) admits a random endemic equilibrium exponentially p-stable ($p \ge 2$) and globally stable. The introduction of a treatment control function in model (1) gives an optimal control problem governed by model (22). The Projection Gradient method permits to determine numerically the optimal control as well as the cost function corresponding to this problem.

Fig. 6. Numerical Simulations of the control u and the function cost F(u) for the different initials values of u_0 . We obtain:

If $u_0 = 0.2$ then $F(u^*) = 2.7073$ and
$u^* = u_{op} = 0.03606;$
if $u_0 = 0.5$ then $F(u^*) = 2.9166$ and
$u^* = u_{op} = 0.01607;$
if $u_0 = 0.8$ then $F(u^*) = 3.3071$ and
$u^* = u_{op} = 0.0000;$
and if $u_0 = 1$ then $F(u^*) = 3.6673$ and
$u^* = u_{op} = 0;$

For example, with a treatment rate equal to $\tau = 8\%$ and with an initial value equal to $u_0 = 0.2$ of the function control, we obtain $u^* = 0.3606$, the admissible optimal control and $F(u^*) = 2.7073$, the cost. Also with $\tau = 8\%$ and $u_0 = 1$, we obtain $u^* = 0$. We therefore deduce that the optimal control is without effect when u_0 , the initial dose of the medicines taken by a patient ranges from 80% to 100 %. On the other hand the optimal control is efficient admissible when this initial dose is lower to 50 %. Thanks to the presence of the optimal control in the stochastic model (1) of TB, we can reduce considerably and quickly (less than one year) the number of the active infected individuals. As in Fig.5(t.2) and Fig.7(t.3)-(t.4), the trajectory with control of the active infected individuals T is decreasing between 0 and 1 year and becomes null constantly thereafter. This work is therefore a contribution that enters well in the same line of struggle against mortality due to the infections that several governments as well as

Biomath 6 (2017), 1705077, http://dx.doi.org/10.11145/j.biomath.2017.05.077

Page 13 of 17

Fig. 7. Trajectory without and with control of TB active infected individuals T. With $\beta_T = 0.08$ for $t_{.3}$ and $\beta_T = 0.8$ for $t_{.4}$.

humanitarian associations advocated so much.

APPENDIX A: PROOF OF THEOREM 1

Let $N_t = S_t + L_t + T_t + R_t$, the random variable giving the total number of the population at the time t. We have

$$dN_t = (\Lambda - \mu N_t - \delta_T T_t) dt - \xi_{\langle G, dW(t) \rangle}.$$

where

$$\begin{aligned} \xi_{\langle G, dW(t) \rangle} &= (\sqrt{\mu S_t} + \sqrt{\mu L_t} + \sqrt{(\mu + \delta_T) T_t} + \\ \sqrt{\mu R_t} - \sqrt{\Lambda}) d\varpi(t), \end{aligned}$$

with $\varpi = W_i$ i = 1, ..., 10. because W_i follow the same law of probability, namely the normal law. We need to show that if $X_t = (S_t, L_t, T_t, R_t)^T \in$ \mathbf{R}^4_+ for all $t \in [0; t_{\epsilon}[$ where t_{ϵ} is the explosion time, then we have for *P*-almost surely (*P*-as)

$$N_t < \frac{\Lambda}{\mu}.$$

In fact, if $X_t \in \mathbf{R}^4_+$ for all $t \in [0; t_{\epsilon}[$, then N_t is given such that for P-as.:

$$dN_t = (\Lambda - \mu N_t - \delta_T T_t - \xi_{\langle G, dW(t) \rangle})dt$$
$$\leq (\Lambda - \mu N_t)dt$$

 $_{3}$) According to the lemma of Gronwall, we obtain:

$$N_t \le \frac{\Lambda}{\mu} + (N_0 - \frac{\Lambda}{\mu})e^{-\mu t}$$
 $P - as.$

And as by hypothesis $(S_0, L_0, T_0, R_0) \in \Omega$ i.e.

$$N_0 - \frac{\Lambda}{\mu} \le 0,$$

we have then $N_t < \frac{\Lambda}{\mu} P - as.$

The terms $f(t, X_t)$ and $\overset{\mu}{G}(t, X_t)$ of the stochastic model (1) being locally Lipschitz, there is an unique local solution $X_t = (S_t, L_t, T_t, R_t)^T$ for all $t \in [0; t_{\epsilon}[$ fixed. Therefore, the unique local solution $X_t = (S_t, L_t, T_t, R_t)^T \in \mathbf{R}^4_+$.

In the sequel we show that X_t is global solution P-almost surely i.e. $t_{\epsilon} = \infty$.

Let $n_0 > 0$, an integer sufficiently large such that $(S_0, L_0, T_0, R_0) \in \left[\frac{1}{-1}; n_0\right]^4$.

Set
$$E_t = \{S_t, L_t, T_t, R_t\}$$
 and for all integer $n \ge n_0$, we define the stop-times $t_n = \inf \{H_n\}$ with $H_n =$

 $\left\{ t \in [0, t_{\epsilon}] : \min E_t \in \left[0; \frac{1}{n}\right] \text{ or } \max E_t \in [n; +\infty[\right\}. \\ (t_n)_{n>0} \text{ is an increasing sequence and convergent;} \\ \text{denote by} \right.$

$$t_{\infty} = \lim_{n \longrightarrow \infty} t_n$$

then $t_{\infty} \leq t_{\epsilon}$.

Let us show that $t_{\infty} = \infty$ so that we has $t_{\epsilon} = \infty$. For it, let us suppose by absurd that $t_{\infty} < \infty$, there is $\theta > 0$ such that for all $p \in]0; 1[$ we have $P\{t_{\infty} \leq \theta\} > p$. Consequently, there is an integer $n_1 \geq n_0$ such that for all set $A_n = \{t_n \leq \theta\}$, we have

$$P\{A_n\} > p \qquad n \ge n_1. \tag{32}$$

Biomath 6 (2017), 1705077, http://dx.doi.org/10.11145/j.biomath.2017.05.077

Page 14 of 17

Bongor Danhree et al., Optimal control of the treatment frequency in a stochastic model of Tuberculosis

Let us consider the function V defined on \mathbf{R}^4_+ and to values in \mathbf{R}_+ such that

$$V = -ln\left(\frac{\mu S_t}{\Lambda}\right) - ln\left(\frac{\mu L_t}{\Lambda}\right) - ln\left(\frac{\mu T_t}{\Lambda}\right) - ln\left(\frac{\mu R_t}{\Lambda}\right)$$

Using the multidimensional Itô formula on the interval $[0; \min(\tau_n; \theta)]$, we have for all $t \ge 0$

$$dV = dV(X_t) = \left[\frac{\partial V(X_t)}{\partial t} + \sum_{i=1}^{4} f_i(t, X_t) \frac{\partial V(X_t)}{\partial X_t^i} + \frac{1}{2} \sum_{i,j=1}^{4} (GG^T)_{ij} \frac{\partial^2 V(X_t)}{\partial X_t \partial X_t^j}\right] dt$$
$$+ \sum_{i=1}^{4} \sum_{j=1}^{10} G_{ij} dW_t^j \frac{\partial V(X_t)}{\partial X_t^i},$$
where for $i = 1, 2, ..., 4; j = 1, 2, ..., 10$,

$$G = (G_{ij});$$
 and $(GG^T)_{ij} = \sum_{k=1}^{10} G_{ik}.G_{kj}.$

Therefore

$$\begin{split} dV &= 2[4\mu + \sigma + \delta_T + \tau]dt + \frac{3}{4}(\lambda_I + \lambda_r)dt \\ &+ \frac{1}{2}[\mu\frac{1}{S_t} + (\mu + \sigma)\frac{1}{L_t} + (\mu + \delta_T + \tau)\frac{1}{T_t} \\ &+ (\mu + \rho)\frac{1}{R_t}]dt - \frac{1}{2}\{\Lambda\frac{(4S_t - 1)}{S_t^2} \\ &+ (n\lambda_I S_t + \rho R_t)\frac{(4L_t - 1)}{L_t^2} + [(1 - n)\lambda_I S_t \\ &+ (\sigma + \lambda_r)L_t]\frac{(4T_t - 1)}{L_t^2} + \tau T_t\frac{(4R_t - 1)}{L_t^2}\}dt \\ &- \frac{1}{S_t}(G_{11}dW_t^1 + G_{12}dW_t^2 + G_{13}dW_t^3 \\ &+ G_{14}dW_t^4) - \frac{1}{L_t}(G_{23}dW_t^3 + G_{25}dW_t^5 \\ &+ G_{26}dW_t^6 + G_{27}dW_t^7) - \frac{1}{T_t}(G_{34}dW_t^4 \end{split}$$

+
$$G_{36}dW_t^6 + G_{38}dW_t^8 + G_{39}dW_t^9)$$

- $\frac{1}{R_t}(G_{47}dW_t^7 + G_{49}dW_t^9 + G_{410}dW_t^{10})$

We further obtain the following inequations:

$$\begin{split} dV(X_t) &\leq M dt - \frac{1}{S_t} (G_{11} dW_t^1 + G_{12} dW_t^2 \\ &+ G_{13} dW_t^3 + G_{14} dW_t^4) - \frac{1}{L_t} (G_{23} dW_t^3 \\ &+ G_{25} dW_t^5 + G_{26} dW_t^6 + G_{27} dW_t^7) \\ &- \frac{1}{T_t} (G_{34} dW_t^4 + G_{36} dW_t^6 + G_{38} dW_t^8 \\ &+ G_{39} dW_t^9) - \frac{1}{R_t} (G_{47} dW_t^7 + G_{49} dW_t^9 \\ &+ G_{410} dW_t^{10}) \qquad P - as. \end{split}$$

with

$$M = \frac{5}{2} [4\mu + \sigma + \delta_T + \tau + \frac{1}{2} \beta_T (1 + \eta_T + \eta_r)] > 0.$$

Which implies by integration that

$$\int_{0}^{\wedge_{\theta}^{tn}} dV \leq M \int_{0}^{\wedge_{\theta}^{tn}} dt - \left[\sum_{k=1}^{4} \left(\int_{0}^{\wedge_{\theta}^{tn}} \frac{G_{1k}}{S_{t}} dW_{t}^{k} \right) + \sum_{k=3,\neq4}^{7} \left(\int_{0}^{\wedge_{\theta}^{tn}} \frac{G_{2k}}{L_{t}} dW_{t}^{k} \right) \right] - \left[\sum_{k=4,\neq7}^{9} \left(\int_{0}^{\wedge_{\theta}^{tn}} \frac{G_{3k}}{T_{t}} dW_{t}^{k} \right) + \sum_{k=7,k\neq8}^{10} \left(\int_{0}^{\wedge_{\theta}^{tn}} \frac{G_{4k}}{R_{t}} dW_{t}^{k} \right) \right], \quad (33)$$

where $\wedge_{\theta}^{t_n} = t_n \wedge \ \theta = \min(t_n; \theta).$

Taking the mathematical expectations for all terms of inequations (33), we obtain

$$\mathbf{E}[V(X_{t_n \land \theta})] \le \mathbf{E}[V(X_0)] + M\theta \tag{34}$$

Let a set $A_n = \{t_n \leq \theta\}$. Denote by \mathbb{I}_{A_n} (resp. $\mathbb{I}_{\mathcal{C}A_n}$) the indicator function of A_n (resp. of the complementary CA_n). Thus

$$\mathbf{E}[V(X_{t_n \wedge \theta})] = \mathbf{E}[V(X_{t_n \wedge \theta}) \mathbb{I}_{A_n}] + \mathbf{E}[V(X_{t_n \wedge \theta}) \mathbb{I}_{\mathbf{C}A_n}]$$

According to the definition of function V, we have $V(X_{t_n \wedge \theta}) \geq 0$. Hence

$$\mathbf{E}[V(X_0)] + M\theta \ge \mathbf{E}[V(X_{\wedge_{\theta}^{t_n}})\mathbb{I}_{A_n}] + \mathbf{E}[V(X_{\wedge_{\theta}^{t_n}})\mathbb{I}_{\mathbf{C}A_n}]$$
$$\mathbf{E}[V(X_0)] + M\theta \ge \mathbf{E}[V(X_{t_n})\mathbb{I}_{A_n}]$$

Biomath 6 (2017), 1705077, http://dx.doi.org/10.11145/j.biomath.2017.05.077

Page 15 of 17

Thanks to the continuity, it exists at least one of [4] D. Mukherjee. Stability analysis of a Stochastic Model the components X_{t_n} equals to n or to $\frac{1}{n}$. So

$$V(X_{t_n}) \ge \min\left\{-ln\left(\frac{\mu n}{\Lambda}\right); -ln\left(\frac{\mu}{\Lambda n}\right)\right\}$$
$$V(X_{t_n}) \ge \min\left\{ln\left(\frac{\Lambda}{\mu n}\right); ln\left(\frac{\Lambda n}{\mu}\right)\right\},$$

and consequently

$$\mathbf{E}[V(X_0)] + M\theta \ge \mathbf{E}[V(X_{t_n \land \theta})\mathbb{I}_{A_n}]$$
$$\ge P\{A_n\} \times \min\left\{ ln\left(\frac{\Lambda}{\mu n}\right); ln\left(\frac{\Lambda n}{\mu}\right)\right\}.$$

Hence

$$P\{A_n\} = P\{t_n \le \theta\} \le \frac{\mathbf{E}[V(X_0)] + M\theta}{\min\left\{\ln\left(\frac{\Lambda}{\mu n}\right); \ln\left(\frac{\Lambda n}{\mu}\right)\right\}}.$$
(35)

Taking the limit when $n \rightarrow +\infty$ in (35), we found that

$$0$$

which is a contraction, then $t_{\infty} = \infty$ i.e. that we have $P\{t_{\infty} = \infty\} = 1$.

Otherwise, $t_{\infty} \leq t_{\epsilon}$, we therefore conclude that $t_{\infty} = t_{\epsilon} = \infty \quad P - as.$

ACKNOWLEDGMENT

The authors would like to thank the anonymous referee and the African Center of Excellence in Technologies, Information and Communication of the University of Yaounde 1 (Cameroon).

REFERENCES

- [1] Allen L.J.S. and Van Den Driessche, Stochastic epidemic models with a bifurcation, Mathematical Biosciences and Engineering, 3(3): 445-457, 2006.
- [2] A. Lahrouz, L. Omari, and D. Kiouach, Global analysis of deterministic and Stochastic nonlinear SIRS epidemic model, volume 16, N1, 59-76.(1992).
- [3] Castillo-Chavez C.; Feng Z., and Huang, W., On the comutation of R₀ and its Role on Global Stability in Mathematical Approaches for Emarging and Reemerging Infectious Diseases, eds 229-250 (2002). math.la.asu.edu/chavez/2002/JB276.df volume 16 , N1, 59-76 .(1992).

- for Prey-Predator System with Diesease in the Prey. Nonlinear Analysis Modelling and Control, volume 8, N2, 83-92 .(2003).
- [5] Ed. Allen., Derivation of Stochastic Ordinay and Partial Differential Equations, NIMBioS Tutoial: Stochastic Model with Biological Applications: University of Tennesee Knoxville Mach, 2011.
- [6] Edward J. Allen, Linda J. S. Allen, Armando Areeniega and Priscilla E., Construction of Equivalent Stochastic Differential Equation Models, In A.F. Round, editor, Stochastic Analysis and Applications, volume 26., pages 274 - 297. Copyright Taylor and Francis Group, LLC ISSN 0736-2994 print/ 1532-9356 online DOI: 10.1080/07362990701857129, 2008.
- [7] Edward J. Allen, Modelling with Itô Stochastic Differential Equation, In A.F. Round, editor, Mathematical Modellind: Theory and Applications, volume 22., Springer. ISBN 978-1-4020-5952-0, 2007.
- [8] Y. Emvudu, R. Demasse, and D. Djeudeu, Optimal Control of the lost to follow up in a tuberculosis model, Comput. Math. Methods Med., 00:112,2011.
- [9] Fred Brauer. Pauline van den. and Driessche Jianhong Wu (Eds.), Mathematical Epidemiology, Springer 1945.
- [10] Florian Herzog, stability of stochastic systems, Von Metternich (Austrian Chancellor in 1815).
- [11] Glenn E.Lahodny.Jr, Linda J.S. Allen, Probability of a Disease Outbreak in Stochastic Multipatch Epidemic Models, Bull. Math. Biol. DOI 10.1007/s11538-013-9848-z. Society for Mathematical Biology, Springer, 2013.
- [12] Howard M. Taylor and Samuel Karlin, Optimal Stochastic Control: Numerical Methods, Academic Press, Elsevier 571-578, 1998.
- [13] J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Verlag, Berlin. (1971).
- [14] John A. Jacquez and Philip O'Neill, Reproduction Numbers and Thresholds In Stochastic Epidemic Models, Mathematical Biosciences, 107: 161-186.(1991).
- [15] Kloeden P.E., and Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlag, New York.(1992).
- [16] Kloeden P.E., Platen E., and Schurz, H., Numerical solution of SDE through Computer Experiments, Springer, Berlin. (1994).
- [17] Ning D., Jingtao, S. and Wonbin L., Effective Gradient Projection Method for Stochastic Optimal Control. International journal of Numerical Analysis and Modeling, Vol. 10,N4, Page 757-774. (2013).
- [18] O. Sharomi, C.N. Podder, A.B. Gumel et B. Song, Mathematical Analysis of fhe Transmisssion Dynamics of HIV/TB Co-infection in the Presence of Treatment, 20 september 2007 -1 january 2008.
- [19] R. Liptser, A Strong law of large numbers for locales, Stochastics, 3 pp. 217-228, 1980.
- [20] Rosen, J.B., The gradient projection method for nonlin-

Biomath 6 (2017), 1705077, http://dx.doi.org/10.11145/j.biomath.2017.05.077

Page 16 of 17

ear programming: Part II nonlinear constraints, SIAM J. Appl. Math., 9, 514-532 (1961).

- [21] S.D. Hove-Musekwa and F. Nyabadza, *The dynamic of an HIV/AIDS model with screened disease carriers*, Computational and Mathematical Methods in Medecine, Vol. 10, No.4, December 2009, 287-305.
- [22] Stanislas Ouara, and Ali Traoré, Deterministic and stochastic Schistosomiasis Models With General Incidence, Applied Mathematics, 4, 1682-1693 (2013).
- [23] Vincent Le Moing, *Treatment of tuberculosis*, Infectueuses Diseases and Tropical, W.W.W. Infectiologie.com 2009.
- [24] V.N. Afanas'ev, V.B. Kolmanowskii, V.R. Nosov, *Mathematical Theory of Control Systems Design*, Kluwe Academic, Dordrecht, 1996.
- [25] Yanan Zhao and Daquing Jiang, *The behavior of an SVIR Epidemic Model With Stochastic Perturbation*, Research Article. Hindawi Publishing Corpoation. Abstract and Applied Analysis. Volume 2014, Article ID 742730,7 pages, 2014.
- [26] Z. Feng, C. Castillo-Chavez and F. Capurro, A model for tuberculosis with exogenous reinfection, Theor. Pop. Biol., 57, 235-247, 2000.

Biomath 6 (2017), 1705077, http://dx.doi.org/10.11145/j.biomath.2017.05.077

Page 17 of 17

Applied Mathematical Modelling 40 (2016) 9131-9151

Contents lists available at ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier.com/locate/apm

Mathematical analysis of HIV/AIDS stochastic dynamic models

Yves Emvudu^{a,*}, Danhrée Bongor^a, Rodoumta Koïna^b

^a Applied Mathematical Laboratory, Postgraduate School of Science, Technology & Geoscience, University of Yaounde 1, URFD-MIBA, P.O. Box 918, Yaounde, Cameroon ^b Department of Mathematics, Faculty of the Exact and Applied Sciences, University of NDjamena, P.O. Box 1024, Djamena, Chad

ARTICLE INFO

Article history: Received 16 September 2014 Revised 2 May 2016 Accepted 11 May 2016 Available online 3 June 2016

Keywords: Stochastic model Stability analysis Endemic equilibrium Brownian motion Itô process Numerical simulation

ABSTRACT

In this paper, we present a group of stochastic dynamic models of the infection of the HIV/AIDS in a host population of four classes of epidemiological classes: susceptible individuals, HIV infected, AIDS infected individuals and treatment class (i.e. infected individuals who are under ARV treatment). The mathematical analysis of the deterministic model has been previously consider by Emvudu and Bongor (2012). The mathematical analysis of the group of the stochastic models associated to the deterministic model is performed to determine the conditions for the stability of the random equilibriums. The results of this mathematical analysis are the next one: the global and asymptotic stability of the disease free equilibrium of the mean system when the effective reproduction number is less than 1; the global, asymptotical, and *p*-exponential stability of the disease free equilibrium of the stachastic reproduction number is less than 1; the stability of the trivial equilibrium of the stochastic perturbations model occurs if the basic reproduction number is less than 1.

© 2016 Elsevier Inc. All rights reserved.

MATHEMATICA

CrossMark

1. Introduction

The Acquired Immunodeficiency Syndrome (AIDS) is the advanced stage of the infection in the Human Immunodeficiency Virus (HIV). This virus attacks the human cells by the following mechanism:

- fixing and introduction of HIV in the cell CD₄+;
- inverse transcription of the viral RNA in viral DNA by the inverse transcriptions;
- integration of the viral DNA in the DNA of the lymphocyte host and the RNA is retorted;
- expression of the viral RNA in polypeptide chains;
- cleavages of the chains in viral proteins;
- assemblies and liberation of the new viruses and the destruction of the cells targets.

Of all the infectious diseases first recognized in the 20th century, AIDS has not only the most profound effect on human illness and death, it ended the developed worlds complacency on infectious diseases. Nevertheless, an estimated 16 million persons have died from AIDS worldwide with 50 million currently infected with HIV [2,3]. In the other words, almost five people because infected with HIV and four people (i.e., three adults and one child) die from AIDS per minute. AIDS is the leading cause of death in sub-saharan African, especially in the southern part of the continent where nine countries with

^{*} Corresponding author. Tel.: +237 677 780 484.

E-mail addresses: yemvudu@yahoo.fr, yemvudu@minesup.gov.cm (Y. Emvudu).

http://dx.doi.org/10.1016/j.apm.2016.05.007 0307-904X/© 2016 Elsevier Inc. All rights reserved.

the highest HIV prevalence worldwide are all located in this subregion, with each of these countries experiencing adult HIV prevalence greater than 10%.

In the last decade, many mathematical models have been developed to describe the immunological response to infection with human immunodeficiency virus (HIV) (for example, see [4–12]). These models have been used to explain different phenomena. For more references and some detailed mathematical analysis on such models, we refer to the survey papers by Kirschner [13] and Perelson and Nelson [14].

The problem is that most of these models constructed do not take into account the unpredictable biological conditions i.e. the random nature perturbations that the dynamic system underwent. Yet all dynamic system can to undergo these random perturbations practically. It is therefore not only interesting to predict the state of evolution, but also to know the random aspect of this evolution (product by a Brownian Motion and a "white noise"). From where the necessity to construct a stochastic model that contains in addition to the deterministic term, an additional random term. We speak of the deterministic model if the random term is omitted and the stochastic model other-wise. The deterministic model is therefore a particular case of the stochastic model, and can have several associated stochastic models; it is the case of the stochastic model formulated by stochastic perturbations in this paper. In fact, because the affine transformation of a random variable or a vector of the random variables keeps the law of probability, by this type of transformation [15], we change a stochastic model by another equivalent in terms of probability, in the aim to refine our analysis.

There are several works on deterministic and stochastic models. Deterministic and stochastic schistosomiasis models with general incidence; equivalent stochastic differential equation model, studied by Stanislas and Traoré [16]. Formulation of stochastic differential equation epidemic model; Itò SDE formulation, studied by [17–19]. Basis reproduction number in stochastic models; the mean number of infected, studied by Jacquez and O'Neill [20] Global analysis of deterministic and stochastic nonlinear SIRS epidemic model, studied by Lahrouz et al. [21].

Stochastic processes have not been widely embraced by the AIDS modeling community, although epidemics are patently random. This reluctance stems in part from the fact that it is difficult to get analytic results of interest; further, if the population is at all sizable, aside from brute force and sometimes inconclusive simulation, stochastic models and their associated large Markov transition matrices are troublesome or even intractable. Our objective is to formulate a mathematical stochastic model and analyze for the spread and the control of the HIV/AIDS infection into the host population. We will then consider a group of the stochastic models associated to the deterministic model on which we provide mathematical results. We first consider the deterministic model of HIV/AIDS dynamics with treatment (with the ARV therapy) which has been considered in [1]. We will find the disease free equilibrium point and the endemic equilibrium points and calculate the basis reproduction number. We will also prove the global stability and the bifurcation of these equilibria.

Our paper is organized as follows. In the next section, we present the deterministic model proposed in [1] and its important results. In Section 2, the stochastic model of HIV/AIDS with treatment that we will study is formulated. We analyze the stochastic model in Section 3. In Section 4, global behavior of two group stochastic models is obtained and Section 5 contained numerical method and Criteria of convergence. We give some numerical simulations in Section 6 to explain our mathematical results. We end this paper with a brief discussion and conclusion in Sections 7 and 8.

1.1. Deterministic model of the HIV/AIDS with treatment

The infection of the HIV/AIDS, propagate in a host population of four classes of epidemiological: susceptible individuals *S*, HIV infected H_1 , H_2 individuals who have progressed to the full blown AIDS class and W_H individuals under ARV treatment class (see Fig. 1). A susceptible individual is infected by an individual infected of H_1 or H_2 or W_H , with a contact rate β_H and a transmission force λ_H , he will go in H_1 . An infected individual in H_1 who has not received the ARV progresses to the AIDS stage i.e. enters in to H_2 at a rate σ . When this individual receives the ARV, he enters in W_H with a rate of treatment τ_1 or τ_2 . Being in the class W_H , the individual can disregard to take the dose required of the ARV or can disregard the conduct to hold during the treatment, he enters in H_2 with a rate $\sigma\theta$. An AIDS-infected individual can die due to the AIDS with a rate δ_H . Let's suppose that all individual dies naturally with a rate μ . Let's suppose that all individual dies naturally with a rate μ and that the class of the susceptible *S* is supplied with a birth rate Λ . Table 1 gives the description of variables and parameters of the model.

The schematic diagram leads to the following system of ordinary differential equations:

$$\begin{cases} \frac{dS}{dt} = \Lambda - \lambda_H S - \mu S, \\ \frac{dH_1}{dt} = \lambda_H S - (\mu + \sigma + \tau_1) H_1, \\ \frac{dH_2}{dt} = \sigma H_1 - (\mu + \delta_H + \tau_2) H_2 + \sigma \theta W_H, \\ \frac{dW_H}{dt} = \tau_1 H_1 + \tau_2 H_2 - (\mu + \sigma \theta) W_H, \end{cases}$$

(1)

where,

$$\lambda_H = \beta_H \frac{H_1 + \eta_2 H_2 + \eta_H W_H}{N}$$
 and $N = S + H_1 + H_2 + W_H$.

Fig. 1. Diagram of the deterministic model of HIV/AIDS with treatment.

Table 1 Variable and parameter description.

Variable	Descrij

Variable	Description
S	Susceptible individuals
H_1	HIV infected individuals
H ₂	AIDS infected individuals
W _H	Infected individuals under ARV treatment
Parameter	Description
Λ	Recruitment number
μ	Natural mortality rate
σ	Progression rate from HIV infected to
	AIDS infected individuals
θ	Modification factor of progression from
	HIV infected to AIDS infected individuals
β_H	Effective contact rate for HIV/AIDS
λ_H	Infectious force for HIV/AIDS
δ_H	Mortality rate caused by HIV/AIDS
η_2, η_H	Modification factor
<i>τ</i> ₁ , <i>τ</i> ₂	Treatment rate of HIV, AIDS

and the other parameters of the model are described in Table 1.

1.2. Analysis of the deterministic model

Herein, we present some important results about system (1) in [1].

1.2.1. Equilibria of deterministic model

Lemma 1. The deterministic model (1) has a disease free equilibrium $\varepsilon^0 = \left(\frac{\Lambda}{\mu}, 0, 0, 0\right)$ and an endemic equilibrium $\varepsilon^* = \left(S^*, H_1^*, H_2^*, W_H^*\right)$ such that:

$$\begin{cases} S^* = \frac{\Lambda \kappa}{\mu \kappa + (\mu + \sigma + \tau_1)(R_0^{\tau} - 1)}, \\ H_1^* = \frac{R_0^{\tau} - 1}{\kappa} S^*, \\ H_2^* = \pi_2 H_1^*, \\ W_H^* = \pi_H H_1^*, \end{cases}$$
(2)

wherein,

$$\pi_2 = \frac{\sigma(\mu + \sigma\theta + \theta\tau_1)}{(\mu + \delta_H)(\mu + \sigma\theta) + \mu\tau_2},\tag{3}$$

Y. Emvudu et al./Applied Mathematical Modelling 40 (2016) 9131-9151

$$\pi_H = \frac{\sigma \tau_2 + \tau_1 (\mu + \delta_H + \tau_2)}{(\mu + \delta_H)(\mu + \sigma \theta) + \mu \tau_2},\tag{4}$$

(5)

(8)

 $\kappa = 1 + \pi_2 + \pi_H,$

and R_0^{τ} defined in (12) rewrites itself under the shape:

$$R_0^{\tau} = \frac{\beta_H (1 + \eta_2 \pi_2 + \eta_H \pi_H)}{\mu + \sigma + \tau_1}$$

Proof of Lemma 1. In [1], we showed that a disease-free equilibrium $\varepsilon^0 = (\frac{\Lambda}{\mu}, 0, 0, 0)$ and one endemic equilibrium $\varepsilon^* = (S^*, H_1^*, H_2^*, W_H^*)$ such that:

$$\Lambda - \lambda_{H}^{*} S^{*} - \mu S^{*} = 0,$$
(6.1),

$$\lambda_{H}^{*} S^{*} - (\mu + \sigma + \tau_{1}) H_{1}^{*} = 0,$$
(6.2),

$$\sigma H_{1}^{*} + \sigma \theta W_{H}^{*} - (\mu + \delta_{H} + \tau_{2}) H_{2}^{*} = 0,$$
(6.3),

$$\tau_{1} H_{*}^{*} + \tau_{2} H_{*}^{*} - (\mu + \sigma \theta) W_{*}^{*} = 0,$$
(6.4),

where,

$$\lambda_H^* = \beta_H \left(\frac{H_1^*}{N^*} + \eta_2 \frac{H_2^*}{N^*} + \eta_H \frac{W_H^*}{N^*} \right).$$

From (6), the expressions for H_2^* and W_H^* according to H_1^* are given by,

 $H_2^* = \pi_2 H_1^*$ and $W_H^* = \pi_H H_1^*$.

Then we have,

$$\lambda_H^* = \beta_H (1 + \eta_2 \pi_2 + \eta_H \pi_H) \frac{H_1^*}{N^*},\tag{7}$$

and

 $N^* = S^* + \kappa H_1^*;$

 π_2 , π_H and κ are defined in (3), (4) and (5) respectively. Substituting (7) in (6.2), we have either $H_1^* = 0$ or,

$$\frac{S^*}{N^*} = \frac{\mu + \sigma + \tau_1}{\beta_H (1 + \eta_2 \pi_2 + \eta_H \pi_H)}.$$
(9)

Substituting (7), then (8) in (6.2), we have either $H_1^* = 0$ or,

$$H_1^* = \frac{1}{\kappa} \left[\frac{\beta_H (1 + \eta_2 \pi_2 + \eta_H \pi_H)}{\mu + \sigma + \tau_1} - 1 \right] S^* = \frac{(R_0^\tau - 1)}{\kappa} S^*.$$
(10)

Finally as substituting (7) then (9) and (10) in (6.1), on obtain as in [22]:

$$S^* = \frac{\Lambda \kappa}{\mu \kappa + (\mu + \sigma + \tau_1)(R_0^\tau - 1)}.$$
(11)

If $H_1^* = 0$, then the endemic equilibrium coincides with the disease-free equilibrium i.e. $\varepsilon^* = \varepsilon^0$.

Concerning the stability of equilibria, we have the following result:

Theorem 2. The unique disease-free equilibrium point ε^0 of the deterministic model (1) is locally and globally asymptotically stable if $R_0^{\tau} \leq 1$ and unstable for $R_0^{\tau} > 1$.

The endemic equilibrium point $\tilde{\varepsilon}^*$ is locally asymptotically stable if $R_0^{\tau} > 1$.

1.2.2. Basic reproduction number

The basic reproduction number, R_0 , is defined as the expected number secondary cases produced by a single (typical) infection in the completely susceptible population. In [1], it is shown that the basic reproduction number R_0^{τ} for model system (1) with treatment is given by:

$$R_0^{\tau} = \frac{\beta_H \phi}{(\mu + \sigma + \tau_1)[(\mu + \delta_H)(\mu + \sigma \theta) + \mu \tau_2]},$$
(12)

wherein,

$$\phi = (\mu + \delta_H)(\mu + \sigma\theta) + \sigma\eta_2[(\mu + \sigma\theta + \theta\tau_1)] + \eta_H[(\mu + \delta_H + \tau_2)\tau_1 + \sigma\tau_2] + \mu\tau_2.$$
(13)

The basic reproduction number R_0 (when there is no treatment) is given by:

$$R_0 = \frac{\beta_H(\mu + \delta_H + \sigma \eta_2)}{(\mu + \sigma)(\mu + \delta_H)}.$$
(14)

2. Stochastic model of HIV/AIDS with treatment formulation

Introducing the vector variable:

$$X(t) = (S(t), H_1(t), H_2(t), W_H(t))^T \in \mathbf{R}^4.$$

The compact formulation of the deterministic model (1) reads as:

$$\frac{dX(t)}{dt} = f(t, X(t)),\tag{15}$$

wherein f(t, X) is the variation speed vector defined by:

$$f(t,X) = \begin{pmatrix} \Lambda - (\mu + \lambda_H)S \\ \lambda_H S - (\mu + \tau_1 + \sigma)H_1 \\ \sigma H_1 - (\mu + \delta_H + \tau_2)H_2 + \sigma\theta W_H \\ \tau_1 H_1 + \tau_2 H_2 - (\mu + \sigma\theta)W_H \end{pmatrix}$$

The solution X(t) of the deterministic model (15) and initial condition $X_0 = X(0)$ are non-negative for the duration of the epidemic (Lemma 1. [1]).

The following result gives the compact formulation of the stochastic model associated to the deterministic model (1).

Theorem 3. The stochastic model of the dynamic of HIV/AIDS with treatment associated to (1) is given under the compact shape by:

$$\frac{dX(t)}{dt} = f(t, X(t)) + G(t, X(t))\frac{dW}{dt},$$
(16)

where $W = (W_j)_{j=1,...,10}^T$ is a Brownian motion or a Wiener process, and f(t, X) is the variation speed vector defined by (15). The noise matrix G = G(t, X(t)) is given by:

$$G = \begin{pmatrix} G_1 & -G_2 & -G_3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & G_3 & -G_4 & -G_5 & -G_6 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & G_5 & 0 & -G_7 & -G_8 & +G_9 & 0 \\ 0 & 0 & 0 & 0 & 0 & G_6 & 0 & G_8 & -G_9 & -G_{10} \end{pmatrix},$$
(17)

with

$$\begin{aligned} G_{1} &= \sqrt{\Lambda}, G_{2} = \sqrt{\mu S}, G_{3} = \sqrt{\lambda_{H}S}, G_{4} = \sqrt{\mu H_{1}}, G_{5} = \sqrt{\sigma H_{1}}, G_{6} = \sqrt{\tau_{1}H_{1}}, \\ G_{7} &= \sqrt{(\mu + \delta_{H})H_{2}}, G_{8} = \sqrt{\tau_{2}H_{2}}, G_{9} = \sqrt{\sigma \theta W_{H}}, \text{ and } G_{10} = \sqrt{\mu W_{H}}. \end{aligned}$$

The matrix *G* has the following properties (see in [23]):

The singular value decomposition of G is G = PDQ, where P and Q are orthogonal matrices of sizes (4×4) and (10×10) respectively, and D is a (4×10) matrix with $r (r \le 4)$ positive diagonal entries. It follows that:

 $V = GG^{T} = PDQ(PDQ)^{T} = PD(QQ^{T})D^{T}P^{T} = P(DD^{T})P^{T}$

where we have,

$$\sqrt{V} = P(DD^T)^{\frac{1}{2}}P^T$$

Proof. Let $\Delta X = (\Delta S, \Delta H_1, \Delta H_2, \Delta W_H)$ be the random variables vector during a time variation Δt . Note P_j the probability of state changes. Let us suppose that there is m changes of possible state, j = 1, 2, ..., m.

Let us consider two states X^j (initial state of X) and X^{j+1} (intermediate state X) which occur at time t and $t + \Delta t$ respectively. Then, setting $\Delta X^j := X^{j+1} - X^j$, we have:

$$P_{j} = Prob(\Delta X^{j}) = Prob\{X^{j+1}/X^{j}\}.$$

For the deterministic model (1), there are eleven possible states changes which are summarized in Table 2. Then the mean and the variance of the variable ΔX are then given by:

 $\mathbf{E}(\Delta X) = \sum_{j=1}^{m} P_j \Delta X^j = f(t, X) \Delta t,$

$$j=1$$

$$Var(\Delta X) = \mathbf{E}((\Delta X)(\Delta X)^{T}) - \mathbf{E}(\Delta X).\mathbf{E}(\Delta X)^{T} \simeq \mathbf{E}((\Delta X)(\Delta X)^{T}) = \sum_{j=1}^{m} P_{j}(\Delta X^{j})(\Delta X^{j})^{T} = V(t, X)\Delta t.$$
(19)

(18)

Y. Emvudu et al./Applied Mathematical Modelling 40 (2016) 9131-9151

Distribution of probability.	
Possibility state change (ΔX^{j})	Probability $P_j = Prob(\Delta X^j)$
$\Delta X^1 = (1 \ 0 \ 0 \ 0)^{T}$	$P_1 = \Lambda \Delta t$
$\Delta X^2 = (-1 \ 0 \ 0 \ 0)^{T}$	$P_2 = \mu S \Delta t$
$\Delta X^3 = (-1 \ 1 \ 0 \ 0)^{T}$	$P_3 = \lambda_H S \Delta t$
$\Delta X^4 = (0 \ -1 \ 0 \ 0)^{T}$	$P_4 = \mu H_1 \Delta t$
$\Delta X^5 = (0 \ -1 \ 1 \ 0)^{T}$	$P_5 = \sigma H_1 \Delta t$
$\Delta X^6 = (0 \ -1 \ 0 \ 1)^{T}$	$P_6 = \tau_1 H_1 \Delta t$
$\Delta X^7 = (0 \ 0 \ -1 \ 0)^{T}$	$P_7 = (\mu + \delta_H)H_2\Delta t$
$\Delta X^8 = (0 \ 0 \ -1 \ 1)^{T}$	$P_8 = \tau_2 H_2 \Delta t$
$\Delta X^9 = (0 \ 0 \ 1 \ -1)^{T}$	$P_9 = \sigma \theta W_H \Delta t$
$\Delta X^{10} = (0 \ 0 \ 0 \ -1)^{T}$	$P_{10} = \mu W_H \Delta t$
$\Delta X^{11} = (0 \ 0 \ 0 \ 0)^{T}$	$P_{11} = 1 - \sum_{i=1}^{10} P_i$
Otherwise: ΔX^i , $i \neq 1, 2, \dots, 11$.	$P_i = 0$

,	ι	Ŧ	1,	Ζ,	• •	• •	11.		r

T.1.1. 0

Table 3			
Parameter	values	and	references.

Parameters	Values	References	
Λ	Variable	Estimate	
μ	0.02	[30]	
σ	1/33	[30]	
θ	0.001	[30]	
δ_H	0.01	[30]	
η_2, η_H	1.2 0.001	[30]	
$\beta_{H}, \tau_{1}, \tau_{2}$	Variables	Estimates	

Then, we respectively find that:

$$\mathbf{E}(\Delta X) = \begin{pmatrix} \Lambda - (\mu + \lambda_H)S \\ \lambda_H S - (\mu + \sigma + \tau_1)H_1 \\ \sigma H_1 - (\mu + \delta_H + \tau_2)H_2 + \sigma \theta W_H \\ \tau_1 H_1 + \tau_2 H_2 - (\mu + \sigma \theta)W_H \end{pmatrix} \Delta t$$

Table 2

and

$$\mathbf{E}((\Delta X)(\Delta X)^{T}) = \begin{pmatrix} v_{1} & -p_{3} & 0 & 0\\ -p_{3} & v_{2} & -p_{5} & -p_{6}\\ 0 & -p_{5} & v_{3} & -p_{8} - p_{9}\\ 0 & -p_{6} & -p_{8} - p_{9} & v_{4} \end{pmatrix} \Delta t$$

wherein,

$$p_i = \frac{P_i}{\Delta t}, \quad i = 1, 2, ..., 10,$$

$$v_1 = p_1 + p_2 + p_3 = \Lambda + (\mu + \lambda_H)S, \quad v_2 = p_3 + p_4 + p_5 + p_6 = \lambda_H S + (\mu + \sigma + \tau_1)H_1,$$

 $\nu_3 = p_5 + p_7 + p_8 + p_9 = \sigma H_1 + (\mu + \delta_H + \tau_2)H_2 + \sigma \theta W_H, \quad \nu_4 = p_6 + p_8 + p_9 + p_{10} = \tau_1 H_1 + \tau_2 H_2 + (\mu + \sigma \theta) W_H.$ From where, we deduce that:

$$V(t,X) = \begin{pmatrix} \nu_1 & -\lambda_H S & 0 & 0\\ -\lambda_H S & \nu_2 & -\sigma H_1 & -\tau_1 H_1\\ 0 & -\sigma H_1 & \nu_3 & -\tau_2 H_2 - \sigma \theta W_H\\ 0 & -\tau_1 H_1 & -\tau_2 H_2 - \sigma \theta W_H & \nu_4 \end{pmatrix}.$$
 (20)

It is well know that $X(t + \Delta t) = X(t) + \Delta X$, has discreet form:

$$X^{j+1} = X^j + \Delta X^j \quad j = 1 \dots m,$$

wherein for $j = 1 \dots m$ the random changes (ΔX^j) are normally distributed with mean $\mathbf{E}(\Delta X^j)$ and variance $Var(\Delta X^j)$. Then thanks to the Gaussian approximation, we have:

$$\Delta X^{j} = \mathbf{E}(\Delta X^{j}) + \sqrt{Var(\Delta X^{j})} \Delta \widetilde{W}^{j},$$

where $\Delta \widetilde{W}^{j} \sim \mathcal{N}(0, 1)$,

and thanks to central limit theorem, we obtain that:

$$\Delta X = f(t, X(t)) \Delta t + \sqrt{V(t, X(t))} \Delta t \, \varpi,$$

wherein the random noise $\varpi = (\varpi_1, \varpi_2, \varpi_3, \varpi_4)$ is such that $\varpi_i \sim \mathcal{N}(0, 1) (i = 1, 2, 3, 4)$.

Taking stretch $\Delta t \rightarrow 0$, then X(t) converges strongly toward the solution of the differential stochastic Eq. (21):

$$\frac{dX(t)}{dt} = f(t,X(t)) + \sqrt{V(t,X(t))}\frac{dW}{dt}.$$
(21)

Let us introduce the following lemma which will be useful to reduce the model (21) (see [18,19]).

Lemma 4. The two stochastic differential equations of Itô (EDS₁) and (EDS₂) below are equivalent:

$$\frac{dX}{dt} = f(t, X) + \sqrt{V(t, X)} \frac{dW}{dt}, \quad (EDS_1),$$
$$\frac{dX^*}{dt} = f(t, X^*) + G(t, X^*) \frac{dW^*}{dt}, \quad (EDS_2)$$

where $f: \mathbf{T} \times \mathbf{R}^d \longrightarrow \mathbf{R}^d$, $G: \mathbf{T} \times \mathbf{R}^d \longrightarrow \mathbf{R}^{d \times m}$, and $V: \mathbf{T} \times \mathbf{R}^d \longrightarrow \mathbf{R}^{d \times d}$, are such that $V = GG^T$.

Under the same probability law on the Lipschitz-condition of the solutions X and X^* of (EDS_1) and (EDS_2) respectively. Then the solutions X and X^* of (EDS_1) and (EDS_2) possess the same probability distribution. In addition, a sample path solution of (EDS_1) is a sample path solution of (EDS_2) reciprocally.

Now, by Lemma 4 we easily find that model (21) is equivalent to (16):

$$\frac{dX(t)}{dt} = f(t, X(t)) + G(t, X(t))\frac{dW}{dt}.$$

To determine the *G* matrix as $GG^T = V$, let's examine the different events of changes of state of every component of the vector $\Delta X = (\Delta S, \Delta H_1, \Delta H_2, \Delta W_H)$.

Let $\ensuremath{\mathcal{P}}$ be a Poisson probability. We have:

$$\begin{cases} \Delta S = u_1 - u_2 - u_3, \\ \Delta H_1 = u_3 - u_4 - u_5 - u_6, \\ \Delta H_2 = u_5 - u_7 - u_8 + u_9, \\ \Delta W_H = u_6 + u_8 - u_9 - u_{10}, \end{cases}$$
(22)

with

 $u_1 \sim \mathcal{P}(\Lambda \Delta t), \ u_2 \sim \mathcal{P}(\mu S \Delta t), \ u_3 \sim \mathcal{P}(\lambda_H S \Delta t), \ u_4 \sim \mathcal{P}(\mu H_1 \Delta t), \ u_5 \sim \mathcal{P}(\sigma H_1 \Delta t), \ u_6 \sim \mathcal{P}(\tau_1 H_1 \Delta t),$

 $u_7 \sim \mathcal{P}((\mu + \delta_H)H_2\Delta t), \ u_8 \sim \mathcal{P}(\tau_2 H_2\Delta t), \ u_9 \sim \mathcal{P}(\sigma\theta W_H\Delta t), \ and \ u_{10} \sim \mathcal{P}(\mu W_H\Delta t).$

The system (22) becomes:

$$\begin{cases} \Delta S = \Lambda \Delta t + \sqrt{\Lambda \Delta t} \omega_{1} - \mu S \Delta t - \sqrt{\mu} S \Delta t \omega_{2} - \lambda_{H} S \Delta t - \sqrt{\lambda_{H}} S \Delta t \omega_{3}, \\ \Delta H_{1} = \lambda_{H} S \Delta t + \sqrt{\lambda_{H} S \Delta t} \omega_{3} - \mu H_{1} \Delta t - \sqrt{\mu H_{1} \Delta t} \omega_{4} - \sigma H_{1} \Delta t - \\ -\sqrt{\sigma H_{1} \Delta t} \omega_{5} - \tau_{1} H_{1} \Delta t - \sqrt{\tau_{1} H_{1} \Delta t} \omega_{6}, \end{cases}$$

$$\Delta H_{2} = \sigma H_{1} \Delta t + \sqrt{\sigma H_{1} \Delta t} \omega_{5} - (\mu + \delta_{H}) H_{2} \Delta t - \sqrt{(\mu + \delta_{H}) H_{2}} \omega_{7} - \tau_{2} H_{2} \Delta t - \sqrt{\tau_{2} H_{2} \Delta t} \omega_{8} + \sigma \theta W_{H} \Delta t + \sqrt{\sigma \theta W_{H} \Delta t} \omega_{9}, \\ \Delta W_{H} = \tau_{1} H_{1} \Delta t + \sqrt{\tau_{1} H_{1} \Delta t} \omega_{6} + \tau_{2} H_{2} \Delta t + \sqrt{\tau_{2} H_{2} \Delta t} \omega_{8} - \\ -\sigma \theta \Delta t - \sqrt{\sigma \theta \Delta t} \omega_{9} - \mu W_{H} \Delta t - \sqrt{\mu W_{H} \Delta t} \omega_{10}, \end{cases}$$

$$(23)$$

where,

 $\omega_j \sim \mathcal{N}(0, 1)$ for j = 1, 2, ..., 10.

When $\Delta t \rightarrow 0$, (23) converges to the following stochastic differential equation of Itô (16):

$$\frac{dX(t)}{dt} = f(t, X(t)) + G(t, X(t))\frac{dW(t)}{dt}.$$

It marks the end of the proof. \Box

We assume stochastic perturbation of white noise type, which are directly proportional to distance S(t), $H_1(t)$, $H_2(t)$, $W_H(t)$ from values of S^* , H_1^* , H_2^* , W_H^* , influence the $\frac{dS}{dt}$, $\frac{dH_1}{dt}$, $\frac{dH_2}{dt}$, $\frac{dW_H}{dt}$ respectively. So we obtain another stochastic model:

$$\frac{dX}{dt} = f(t, X) + G(t, (X - X^*))\frac{dW}{dt}.$$
(24)

In the rest of this paper, we will analyze the stochastic model (16). This include existence of positive solution to the model, the effective reproduction number of the model, the stability (local and global) of the mean equilibrium, the asymptotic behavior of two group models (16) and (24).

3. Stochastic model analysis

This section deal with the existence of the positive bounded solution to the model and the basic reproduction number of the stochastic model.

3.1. Positive bounded solution

Consider the stochastic model (16) and let us define the following set:

$$\Omega = \left\{ (S, H_1, H_2, W_H) \in \mathbf{R}^4_+; N = S + H_1 + H_2 + W_H < \frac{\Lambda}{\mu} \right\}.$$

Then, we have the following result:

Theorem 5. Let $X_0 = (S(0), H_1(0), H_2(0), W_H(0)) \in \Omega$ and $X(t) = (S(t), H_1(t), H_2(t), W_H(t))$ (for $t \ge 0$), the trajectory of the stochastic model (16) passing through X_0 . Then X(t) remains in Ω , for all $t \ge 0$, with probability 1.

Proof. of Theorem 5 Let $N(t) = S(t) + H_1(t) + H_2(t) + W_H(t)$, the random variable giving the total number of the population to date *t*.

$$\frac{dN}{dt}(t) = \Lambda - \mu N(t) - \delta_H H_2 - \left(G_1 \frac{dW_1(t)}{dt} + G_2 \frac{dW_2(t)}{dt} + G_4 \frac{dW_4(t)}{dt} + G_7 \frac{dW_7(t)}{dt} + G_{10} \frac{dW_{10}(t)}{dt}\right)$$

Since,

$$\xi\left(X(t), \frac{dW(t)}{dt}\right) = G_1 \frac{dW_1(t)}{dt} + G_2 \frac{dW_2(t)}{dt} + G_4 \frac{dW_4(t)}{dt} + G_7 \frac{dW_7(t)}{dt}\right) + G_{10} \frac{dW_{10}(t)}{dt} < 0,$$

and if $X(u) \in \mathbf{R}^4_+$ for all $0 \le u \le t$ almost surely (briefly a.s.), we get the following inequality:

$$\frac{dN(u)}{dt} < \Lambda - \mu N(u) \quad a.s.$$

Then $N(u) < \frac{\Lambda}{\mu}$. So

$$S(u), H_1(u), H_2(u), W_H(u) \in \left[0; \frac{\Lambda}{\mu}\right] \text{ for all } u \in [0; t] \text{ a.s.}$$

Since *f* and *G* are locally continuous Lipschitz, then for any given initial value X_0 , there exists a unique local solution X(u) on all interval fixed [0; *t*]. Show that this solution X(t) is global for $t \in [0; \tau_e]$; where τ_e is the explosion time.

Let $\rho_0 > 0$ such that S(0), $H_1(0)$, $H_2(0)$, $W_H(0) > \rho_0$ and for $\rho \le 0$ one defines the stopping times by:

$$\tau_{\rho} = \inf\{t \in [0; \tau_{e}[, S(t) < \rho \text{ or } H_{1}(t) < \rho, H_{2}(t) < \rho \text{ or } W_{H}(t) < \rho\}$$

We have $\lim_{\rho \longrightarrow 0} \tau_{\rho} = \tau_0$ with,

$$\tau_0 = \{t \in [0; \tau_e[, S(t) < 0 \text{ or } H_1(t) < 0, H_2(t) < 0 \text{ or } W_H(t) < 0\}$$

 $X = (S, H_1, H_2, W_H)$ by

$$U = -ln\left(\frac{\Lambda}{\mu}S\right) - ln\left(\frac{\Lambda}{\mu}H_1\right) - ln\left(\frac{\Lambda}{\mu}H_2\right) - ln\left(\frac{\Lambda}{\mu}W_H\right).$$

Using the Itô formula applied to a multidimensional problem on the interval [0; min(t, τ_{ρ})], we have for all s:

$$dU(X(s)) = \left(\frac{\partial U(X(s))}{\partial s} + \sum_{i=1}^{4} f_i(s, X(s)) \frac{\partial U(X(s))}{\partial X_i(s)} + \frac{1}{2} \sum_{i,j=1}^{4} (GG^T)_{ij} \frac{\partial^2 U(X(s))}{\partial X_i \partial X_j} \right) ds + \sum_{i=1}^{4} \sum_{j=1}^{10} G_{ij} dW_j(s) \frac{\partial U(X(s))}{\partial X_i},$$

with

$$G = (G_{ij})$$
 $i = 1, 2, ..., 4.; j = 1, 2, ..., 10.$; and $(GG^T)_{ij} = \sum_{k=1}^{10} G_{ik}.G_{kj}$

that is

$$\begin{split} dU(X) &= [4\mu + \tau_1 + \tau_2 + \sigma + \sigma\theta + \delta_H + \lambda_H] ds - \left[\Lambda \frac{(2S-1)}{2S^2} + \lambda_H \frac{(2H_1 - 1)}{2H_1^2} + \sigma (H_1 + \theta W_H) \right. \\ &\quad \times \frac{(2H_2 - 1)}{2H_2^2} + (\tau_1 H_1 + \tau_2 H_2) \frac{(2W_H - 1)}{2W_H^2} \right] ds + \left[(\mu + \lambda_H) \frac{1}{2S} (\mu + \sigma\theta) \frac{1}{2W_H} (\mu + \sigma + \tau_1) \frac{1}{2H_1} \right] ds \\ &\quad - \frac{1}{S} (G_1 dW_1 - G_2 dW_2 - G_3 dW_3) - \frac{1}{H_1} (G_3 dW_3 - G_4 dW_4 - G_5 dW_5 - G_6 dW_6) - \frac{1}{H_2} (G_5 dW_5 \\ &\quad - G_7 dW_7 - G_8 dW_8 + G_9 dW_9) - \frac{1}{W_H} (G_6 dW_6 + G_8 dW_8 - G_9 dW_9 - G_{10} dW_{10}). \end{split}$$

From where, we find that for almost surely for $s \in [0; t]$:

$$dU(X(s)) \leq \left[7\mu + \delta_{H} + 2\tau_{1} + \tau_{2} + 2\sigma(1+\theta) + \beta_{H}\frac{\Lambda}{\mu}(1+\eta_{2}+\eta_{H})\right]dt + \frac{1}{S}(G_{2}dW_{2} + G_{3}dW_{3}) + \frac{1}{H_{1}}(G_{4}dW_{4} + G_{5}dW_{5} + G_{6}dW_{6}) + \frac{1}{H_{2}}(G_{7}dW_{7} + G_{8}dW_{8}) + \frac{1}{W_{H}}(G_{9}dW_{9} + G_{10}dW_{10}).$$
(25)

Integrating inequality (25), we obtain that:

$$U(X(t)) \leq Ct + \int_{0}^{t} \frac{1}{5} (G_{2}dW_{2}(s) + G_{3}dW_{3}(s)) + \int_{0}^{t} \frac{1}{H_{1}} (G_{4}dW_{4}(s) + G_{5}dW_{5}(s) + G_{6}dW_{6}(s)) + \int_{0}^{t} \frac{1}{H_{2}} (+G_{7}dW_{7}(s) + G_{8}dW_{8}(s)) + \int_{0}^{t} \frac{1}{W_{H}} (G_{9}dW_{9}(s) - G_{10}dW_{10}(s)),$$
(26)

where,

$$C = 7\mu + \delta_H + 2\tau_1 + \tau_2 + 2\sigma(1+\theta) + \beta_H \frac{\Lambda}{\mu}(1+\eta_2+\eta_H).$$

Taking the mathematical expectation **E**[.] in (26) it comes:

$$\mathbf{E}[U(X(t))] \leq Ct + \left(\mathbf{E}\left[\int_{0}^{t} \frac{1}{S}(G_{2}dW_{2}(s) + G_{3}dW_{3}(s))\right] + \mathbf{E}\left[\int_{0}^{t} \frac{1}{H_{1}}(G_{4}dW_{4}(s) + G_{5}dW_{5}(s) + G_{6}dW_{6}(s))\right] + \mathbf{E}\left[\int_{0}^{t} \frac{1}{H_{2}}(G_{7}dW_{7}(s) + G_{8}dW_{8}(s))] + \mathbf{E}\left[\int_{0}^{t} \frac{1}{W_{H}}(G_{9}dW_{9}(s) - G_{10}dW_{10}(s))\right]\right).$$

Now, let us introduce the following lemma due to [24].

Lemma 6. The quadratic variation of the stochastic integral $\int_0^t Y(s)dW(s)$ is $\int_0^t Y^2(s)ds \le Ct$. Thus the strong law of large number for local martingales implies that:

$$\lim_{t \to +\infty} \frac{1}{t} \int_0^t Y(s) dW(s) = 0 \quad a.s.$$
(27)

Thanks to Lemma 6, one has:

$$\mathbf{E}\left[\int_{0}^{t} \frac{1}{S}(G_{2}dW_{2}(s) + G_{3}dW_{3}(s))\right] = 0; \quad \mathbf{E}\left[\int_{0}^{t} \frac{1}{H_{1}}(G_{4}dW_{4}(s) + G_{5}dW_{5}(s) + G_{6}dW_{6}(s))\right] = 0;$$
$$\mathbf{E}\left[\int_{0}^{t} \frac{1}{H_{2}}(+G_{7}dW_{7}(s) + G_{8}dW_{8}(s))\right] = 0; \quad \mathbf{E}\left[\int_{0}^{t} \frac{1}{W_{H}}(G_{9}dW_{9}(s) - G_{10}dW_{10}(s))\right] = 0.$$

Then, we have for all $t \ge 0$:

 $\mathbf{E}[U(X(\min(t,\tau_{\rho})))] \leq C\min(t,\tau_{\rho}) \leq Ct.$

Since $V(X(min(t, \tau_{\rho}))) > 0$, thus

 $\mathbf{E}[V(X(\min(t,\tau_{\rho}))] = \mathbf{E}[V(X(\min(t,\tau_{\rho})))\mathbf{1}_{(\tau_{\rho} \leq t)}] + \mathbf{E}[V(X(\min(t,\tau_{\rho}))\mathbf{1}_{(\tau_{\rho} > t)}] \geq \mathbf{E}[V(X(\min(t,\tau_{\rho}))\mathbf{1}_{(\tau_{\rho} \leq t)}],$ where $\mathbf{1}_{A}$ is the characteristic function of A. (28)

Y. Emvudu et al./Applied Mathematical Modelling 40 (2016) 9131-9151

(29)

There is some component of $X(\tau_{\rho})$ equal to ρ , therefore $U(X(\tau_{\rho})) \ge -ln(\frac{\mu\rho}{\Lambda})$. Hence:

$$\mathbf{E}[U(X(\min(t,\tau_{\rho}))] \geq -ln\left(\frac{\mu\rho}{\Lambda}\right)\mathbf{P}(\tau_{\rho} \leq t).$$

Inequality (25) and Lemma 6 give, for all $t \ge 0$:

$$\mathbf{P}(\tau_{\rho} \le t) \le \frac{-Ct}{\ln(\frac{\mu\rho}{\Lambda})}.$$

Taking $\rho \longrightarrow 0$ into (29), we obtain for all $t \ge 0$:

$$\mathbf{P}(\tau \leq t) = \mathbf{0}.$$

Hence $\mathbf{P}(\tau = \infty) = 1$. As $\tau_{\rho} \ge \tau$ then $\tau_{\rho} = \tau = \infty$ a.s. This end the proof of the theorem. \Box

3.2. Effective reproduction number and global stability of the mean system.

In this section, we will determine, the mean value of the state variables of our stochastic model (16) and the effective reproduction number which give the average number of secondary infections caused by a single infective, at a given susceptible fraction.

Denote the mean value by: $n_S = \mathbf{E}[S]$, $n_{H_1} = \mathbf{E}[H_1]$, $n_{H_2} = \mathbf{E}[H_2]$ and $n_{W_H} = \mathbf{E}[W_H]$. Then we have the following proposition.

Proposition 1. The mean values of the state variables verifies the following system:

$$\frac{dn_{S}}{dt} = \Lambda - \beta_{H} \mathbf{E}[S\phi_{X}] - \mu n_{S},
\frac{dn_{H_{1}}}{dt} = \beta_{H} \mathbf{E}[S\phi_{X}] - (\mu + \sigma + \tau_{1})n_{H_{1}},
\frac{dn_{H_{2}}}{dt} = \sigma n_{H_{1}} - (\mu + \delta_{H} + \tau_{2})n_{H_{2}} + \sigma \theta n_{W_{H}},
\frac{dn_{W_{H}}}{dt} = \tau_{1} n_{H_{1}} + \tau_{2} n_{H_{2}} - (\mu + \sigma \theta) n_{W_{H}},$$
(30)

wherein,

(dn

$$\phi_X = \frac{H_1 + \eta_2 H_2 + \eta_H W_H}{S + H_1 + H_2 + W_H}.$$

The effective reproduction number R_{ef} of system (30) is given by:

$$R_{ef} = \frac{\mathbb{E}[S\phi_X]}{n_{H_1}(1 + \eta_2\pi_2 + \eta_H\pi_H)}R_0^{\tau},\tag{31}$$

wherein R_0^{τ} is the basic reproduction number of the deterministic model (1) with treatment.

Moreover, system (30) has one disease free equilibrium $P^0 = (n_S^0, n_{H_1}^0, n_{H_2}^0, n_{W_H}^0)^T = (\frac{\Lambda}{\mu}, 0, 0, 0)^T$. P^0 is globally asymptotically stable if the basic reproduction number R_0^s (for the stochastic model), of the mean system, is less than 1.

Proof. The first part of the proposition is obvious.

The effective reproduction number R_{ef} for the system (30) with treatment verifies the following equation as in [25]:

$$\frac{dn_{H_1}}{dt} = (\mu + \sigma + \tau_1)[R_{ef} - 1]n_{H_1}.$$

Using the second equation of (30), we obtain:

$$R_{ef} = \frac{\mathbb{E}[S\phi_X]}{n_{H_1}} \frac{\beta_H}{\mu + \sigma + \tau_1},\tag{32}$$

then we have the result (31) with R_0^{τ} .

What remains is to find the global stability of the DFE and then derive the basic reproduction number of the mean system (30). Let us introduce the following linear operator,

$$F_{0} = \begin{pmatrix} \beta_{H} - (\mu + \sigma + \tau_{1}) & \eta_{2}\beta_{H} & \eta_{H}\beta_{H} \\ \sigma & -(\mu + \delta_{H} + \tau_{2}) & \sigma\theta \\ \tau_{1} & \tau_{2} & -(\mu + \sigma\theta) \end{pmatrix}.$$
(33)

$$\frac{d}{dt}(n_{H_1}(t), n_{H_2}(t), n_{W_H}(t))^T \le \mathbf{E}(\mathcal{D}F_0(v(t)) \,\forall t \ge 0.$$
(34)

Consider the following comparison system:

$$\begin{cases} \frac{d}{dt}x(t) = F_0.x(t) \\ x(0) = (n_{H_1}(0), n_{H_2}(0), n_{W_H}(0))^T \end{cases}$$
(35)

therefore,

$$(n_{H_1}(t), n_{H_2}(t), n_{W_{H}}(t))^T \le \nu(t) \ \forall t \ge 0.$$
(36)

$$v(t) = e^{tt_0}v(0)$$

Proposition 5 in [1] give $e^{tF_0} \longrightarrow 0$ when $t \longrightarrow +\infty$ iff. $R_0^s < 1$. Hence, if $R_0^s < 1$, then:

$$(n_{H_1}(t), n_{H_2}(t), n_{W_H}(t))^T \longrightarrow 0$$

when $t \to +\infty$. The n_S -equation of the system (30) gives $n_S(t) \to \frac{\Lambda}{\mu} = n_S^0$ when $t \to +\infty$. Finally,

$$(n_{H_1}(t), n_{H_2}(t), n_{W_H}(t))^T \longrightarrow P^0$$
 when $t \longrightarrow +\infty$

Hence P^0 is globally asymptotically stable if the basic reproduction number R_0^s , of the mean system, is less than 1.

Otherwise, for a proportion p_l of the infected individuals immunized after ARV treatment, the effective reproduction number is given, as the deterministic case in [25], by:

$$R_{ef} = (1 - p_I)R_0^s$$

Then we have $R_{ef} \le R_0^s$ and if $R_0^s < 1$ then $R_{ef} < 1$, as $p_l > 1 - \frac{1}{R_0^s}$.

4. Global behavior of two group stochastic models

In this section, we study the global behavior, the existence and stability of equilibrium for stochastic model (16) then the model (24).

4.1. Exponentially p-stability and globally asymptotically stability of the disease-free equilibrium

Proposition 2. The stochastic model (16) has a disease-free equilibrium point $X^0 = (\frac{\Lambda}{\mu}, 0, 0, 0) \in \mathbf{R}^4_+$. It is exponentially p-stable for $p \ge 2$ and globally asymptotically stable.

Proof. By a transfer, one will always bring back equilibrium point X_e of stochastic model to 0 as in [26]. The existence of the equilibrium point X^0 is proven by a following change of a variable for the stochastic model (16):

$$\widetilde{S} = \frac{\Lambda}{\mu} - S. \tag{38}$$

Therefore the stochastic model (16) is written as:

$$\frac{d\widetilde{X}(t)}{dt} = \widetilde{f}(t,\widetilde{X}(t)) + \widetilde{G}(t,\widetilde{X}(t))\frac{d\widetilde{W}}{dt},$$
(39)

where $\widetilde{X} = (\widetilde{S}, H_1, H_2, W_H), \ \widetilde{W} = (W_i), i = 2, 3, ..., 10,$

$$\widetilde{f}(t,\widetilde{X}) = \begin{pmatrix} \widetilde{\lambda}_{H}(\frac{\Lambda}{\mu} - \widetilde{S}) - \mu \widetilde{S} \\ \widetilde{\lambda}_{H}(\frac{\Lambda}{\mu} - \widetilde{S}) - (\mu + \sigma + \tau_{1})H_{1} \\ \sigma H_{1} - (\mu + \delta_{H} + \tau_{2})H_{2} + \sigma \theta W_{H} \\ \tau_{1}H_{1} + \tau_{2}H_{2} - (\mu + \sigma \theta)W_{H} \end{pmatrix},$$

$$(40)$$

and the noise matrix $\tilde{G} = \tilde{G}(t, \tilde{X}(t))$ is given by:

$$\widetilde{G} = \begin{pmatrix} \widetilde{G}_2 & \widetilde{G}_3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \widetilde{G}_3 & -G_4 & -G_5 & -G_6 & 0 & 0 & 0 \\ 0 & 0 & 0 & G_5 & 0 & -G_7 & -G_8 & +G_9 & 0 \\ 0 & 0 & 0 & 0 & G_6 & 0 & G_8 & -G_9 & -G_{10} \end{pmatrix},$$
(41)

with $\widetilde{G}_2 = \sqrt{\mu(\frac{\Lambda}{\mu} - \widetilde{S})}, \ \widetilde{G}_3 = \sqrt{\widetilde{\lambda}_H(\frac{\Lambda}{\mu} - \widetilde{S})}, \text{ and } \widetilde{\lambda}_H = \beta_H \frac{H_1 + \eta_2 H_2 + \eta_H W_H}{(\frac{\Lambda}{\mu} - \widetilde{S}) + H_1 + H_2 + W_H}$

(37)

The existence of the equilibrium point of the model (39) gives the existence of disease-free equilibrium point of (16). In fact, denoting $\widetilde{X}(0) \equiv 0 \in \mathbf{R}^4$, the equalities $\widetilde{f}(t,0) = 0$ and $\widetilde{G}(t,0) = 0$ are verified for $t \geq 0$. So $\widetilde{X}(0)$ is the equilibrium of the model (39), then we have

$$S = 0, H_1 = 0, H_2 = 0, W_H = 0,$$

what gives $S = \frac{\Lambda}{\mu}$, $H_1 = 0$, $H_2 = 0$, $W_H = 0$, i.e., $X^0 = (\frac{\Lambda}{\mu}, 0, 0, 0)$ is a equilibrium point of (16). Now, considering the Lyapunov function:

$$V = \frac{1}{2p} \left[K \left(\frac{\Lambda}{\mu} - S \right)^p + K_1 H_1^p + K_2 H_2^p + K_3 W_H^p \right], \tag{42}$$

with K > 0, $K_1 > 0$, $K_2 > 0$, $K_3 > 0$, $p \ge 2$. Then,

$$\begin{aligned} \mathcal{A}V &= -\left[\frac{K\Lambda\mu}{\Lambda-\mu S}\left(\frac{\Lambda}{\mu}-S\right)^{p}+K_{1}(\mu+\sigma+\tau_{1})H_{1}^{p}+K_{2}(\mu+\delta_{H}+\tau_{2})H_{2}^{p}+K_{3}(\mu+\sigma\theta)W_{H}^{p}\right]+K\mu S\left(\frac{\Lambda}{\mu}-S\right)^{p-1} \\ &+K\lambda_{H}S\left(\frac{\Lambda}{\mu}-S\right)^{p-1}+K_{1}\lambda_{H}SH_{1}^{p-1}+K_{2}\sigma H_{1}H_{2}^{p-1}+K_{2}\sigma\theta W_{H}H_{2}^{p-1}+K_{3}\tau_{1}H_{1}W_{H}^{p-1}+K_{3}\tau_{2}H_{2}W_{H}^{p-1} \\ &+\frac{1}{4}(p-1)\left[K\sum_{i=1}^{3}G_{i}^{2}\left(\frac{\Lambda}{\mu}-S\right)^{p-2}+K_{1}\sum_{i=2,\,i\neq3}^{6}G_{i}^{2}H_{1}^{p-2}+K_{2}\sum_{i=6}^{9}G_{i}^{2}H_{2}^{p-2}+K_{3}(G_{5}^{2}W^{p-2}+G_{9}^{2}W_{H}^{p-2}+G_{10}^{2}W_{H}^{p-2})\right]. \end{aligned}$$

$$\tag{43}$$

While using the following Lemma 7 and Theorem 8, we get finally:

$$\mathcal{A}V \leq -K\mu \left(\frac{\Lambda}{\mu} - S\right)^p - K_1(\mu + \sigma + \tau_1)H_1^p - K_2(\mu + \delta_H + \tau_2)H_2^p - K_3(\mu + \sigma\theta)W_H^p].$$

All coefficients of $(\frac{\Lambda}{\mu} - S)^p$, H_1^p , H_2^p and W_H^p are negative (it was necessary to demonstrate). Therefore $X^0 = (\frac{\Lambda}{\mu}, 0, 0, 0)$ is exponentially *p*-stable ($p \ge 2$). For, p = 2, we say that X^0 is exponentially stable in mean square. In the Lyapunov sense, X^0 is globally asymptotically

For, p = 2, we say that X^0 is exponentially stable in mean square. In the Lyapunov sense, X^0 is globally asymptotically stable. This proves the proof of this theorem. \Box

Lemma 7. Let $p \ge 2$, $x, y \in \mathbf{R}_+$ and $\varepsilon > 0$, chosen sufficiently small:

$$\begin{aligned} xy^{p-1} &\leq \frac{\varepsilon^{1-p}}{p} x^p + \frac{(p-1)\varepsilon}{p} y^p, \\ x^2 y^{p-2} &\leq \frac{2\varepsilon^{\frac{2-p}{2}}}{p} x^p + \frac{(p-2)\varepsilon}{p} y^p. \end{aligned}$$

Proof. The previous inequalities can be demonstrated with the help of the inequalities of Young: for *p*, *q* > 0 and $\frac{1}{p} + \frac{1}{q} = 1$, $xy \le \frac{x^p}{p} + \frac{y^p}{q}$. \Box

Theorem 8 ([27]). Suppose there exists a function $V(t, x) \in C^{1,2}(\mathbf{R} \times \mathbf{R}^n)$ satisfying the following conditions for $K_1 > 0$, $K_2 > 0$ and p > 0:

$$|V(t,x)| \le K_1 |x|^p,$$

and

$$\mathcal{A}V(t,x) \leq -K_2|x|^p,$$

where A is the differential operator associated with the stochastic model (16), defined for a function $V = V(t, x) \in C^{1,2}(\mathbb{R} \times \mathbb{R}^n)$ by:

$$\mathcal{A}V = \frac{\partial V}{\partial t} + f^{T}(t, x)\frac{\partial V}{\partial x} + \frac{1}{2}tr\left[G^{T}(t, x)\frac{\partial^{2}V}{\partial x^{2}}G(t, x)\right]$$

Then the equilibrium X^0 of (16) is exponentially p-stable.

When p = 2, X^0 is exponentially stable in mean square and it is globally asymptotically stable.

4.2. Stochastic stability of the endemic equilibrium

Proposition 3. The endemic equilibrium point of the stochastic model (24) is equivalent to the endemic equilibrium of deterministic model (1).

Proposition 4. If $R_0^{\tau} > 1$, the stochastic model (24) can be centered at its endemic equilibrium $X^* = (S^*, H_1^*, H_2^*, W_H^*)$ by the change of variables:

$$Y_1 = S - S^*, \ Y_2 = H_1 - H_1^*, \ Y_3 = H_2 - H_2^*, \ Y_4 = W_H - W_H^*.$$
(44)

We obtain:

$$\frac{dY(t)}{dt} = f^{y}(t, Y(t)) + G^{y}(t, Y(t))\frac{d\widetilde{W}}{dt},$$
(45)

where,

 $Y(t) = (Y_i(t)) \ i = 1, 2, 3, 4.$

$$\begin{split} f^{y}(t,Y(t)) &= \begin{pmatrix} -(\mu+\lambda_{H}^{y})Y_{1} \\ \lambda_{H}^{y}Y_{1} - (\mu+\sigma+\tau_{1})Y_{2} \\ \sigma Y_{2} - (\mu+\delta_{H}+\tau_{2})Y_{3} + \sigma\theta Y_{4} \\ \tau_{1}Y_{2} + \tau_{2}Y_{3} - (\mu+\sigma\theta)Y_{4} \end{pmatrix}; \\ G^{y}(t,Y(t)) &= \begin{pmatrix} G_{2}^{y} & G_{3}^{y} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & G_{3}^{y} & -G_{4}^{y} & -G_{5}^{y} & -G_{6}^{y} & 0 & 0 & 0 \\ 0 & 0 & 0 & G_{5}^{y} & 0 & -G_{7}^{y} & -G_{8}^{y} & G_{9}^{y} & 0 \\ 0 & 0 & 0 & 0 & G_{6}^{y} & 0 & G_{8}^{y} & -G_{9}^{y} & -G_{10}^{y} \end{pmatrix}, \end{split}$$

wherein,

$$\begin{split} G_2^y &= \sqrt{\mu Y_1}, \ G_3^y = \sqrt{\lambda_H^y Y_1}, \ G_4^y = \sqrt{\mu Y_2}, \ G_5^y = \sqrt{\sigma Y_2}, \ G_6^y = \sqrt{\tau_1 Y_2}, \ G_7^y = \sqrt{(\mu + \delta_H) Y_3}, \ G_8^y = \sqrt{\tau_2 Y_3}, \\ G_9 &= \sqrt{\sigma \theta Y_4}, \ G_{10}^y = \sqrt{\mu Y_4}, \ \text{and} \ \lambda_H^y = \beta_H \frac{Y_2 + \eta_2 Y_3 + \eta_H Y_4 + (1 + \eta_2 \pi_2 + \eta_H \pi_H) H_1^*}{Y_1 + Y_2 + Y_3 + Y_4 + S^* + \kappa H_1^*}. \end{split}$$

Proof. If $R_0^{\tau} > 1$, the deterministic model (1) has a unique endemic equilibrium $\varepsilon^* = X^*$ locally asymptotically stable. It is equivalent to a unique positive endemic equilibrium of the model (24). In this existence condition of X^* , we allow in the model (24) the stochastic perturbations of the variables *S*, H_1 , H_2 , W_H around their values at the positive endemic equilibrium X^* by the change of the variables (44) who gives (45). \Box

Theorem 9. The stability of the equilibrium X^* of the model (24) is equivalent to the stability of the equilibrium $Y(0) \equiv 0 \in \mathbb{R}^4$ of the model (45). The endemic equilibrium X^* of the model (24) is p-stable if (p > 5), and stable in probability. By-counter, X^* is asymptotically unstable.

Proof. It is easy to see that we only need to prove the equilibrium Y(0) of (45) is stable, so that X^* is stable. We define the Lyapunov function $\tilde{V}(Y(t))$ as follows with p > 5:

$$\widetilde{V}(Y(t)) = (Y_1)^p + (Y_2)^p + (Y_3)^p + (Y_4)^p.$$
(46)

We then compute,

$$\begin{split} \mathcal{A}\widetilde{V}(Y(t)) &= \frac{p(p-5)}{2} [(\mu + \lambda_{H}^{y})(Y_{1})^{p} + (\mu + \sigma + \tau_{1})(Y_{2})^{p} + (\mu + \delta_{H} + \tau_{2})(Y_{3})^{p} + (\mu + \sigma\theta)(Y_{4})^{p}] \\ &+ \frac{p(p+3)}{2} [\lambda_{H}^{y}Y_{1}(Y_{2})^{p-1} + \sigma Y_{2}(Y_{3})^{p-1} + \sigma\theta Y_{4}(Y_{3})^{p-1} + \tau_{1}Y_{2}(Y_{4})^{p-1} + \tau_{2}Y_{3}(Y_{4})^{p-1}]; \end{split}$$
(47)

and by the Itô formula, we have,

$$d(e^{t}\widetilde{V}(Y(t))) = e^{t}(\widetilde{V}(Y(t)) + \mathcal{A}\widetilde{V}(Y(t)))dt + pe^{t}F(Y, dW),$$
(48)

wherein,

$$F(Y, dW) = (Y_1)^{p-1} (G_2^y dW_2 + G_3^y dW_3) + (Y_2)^{p-1} (G_3^y dW_3 + G_4^y dW_4 - G_5^y dW_5 - G_6^y dW_6) + (Y_3)^{p-1} (G_5^y dW_5 - G_7^y dW_7 - G_8^y dW_8 + G_9^y dW_9) + (Y_4)^{p-1} (G_6^y dW_6 + G_8^y dW_8 - G_9^y dW_9 - G_{10}^y dW_{10}).$$

So we have:

$$Y_1 < \frac{\Lambda}{\mu} - S^*, \ Y_2 < \frac{\Lambda}{\mu} - H_1^*, \ Y_3 < \frac{\Lambda}{\mu} - H_2^*, \ Y_4 < \frac{\Lambda}{\mu} - W_H^*.$$
(49)

For $\widehat{N}^* = min(S^*, H_1^*, H_2^*, W_H^*)$, it then follows from (46), (48) and (49) that,

$$\mathcal{A}(\widetilde{V}(Y(t))) \leq \frac{1}{2} p \left(\frac{\Lambda}{\mu} - \widehat{N}^*\right)^p [(k-5)(4\mu + \delta_H) + 2(p-1)(\lambda_H^y + \sigma + \sigma\theta + \tau_1 + \tau_2)];$$
(50)

(51)

(59)

and

$$d(e^t \widetilde{V}(Y(t))) \leq Me^t dt + pe^t F(Y, dW);$$

with M > 0 is a constant defined by:

$$M = \left(\frac{\Lambda}{\mu} - \widehat{N}^*\right)^p \left[\frac{p(p-5)}{2}(4\mu + \delta_H) + p(p-1)(\lambda_H^* + \kappa\beta_H + \sigma + \sigma\theta + \tau_1 + \tau_2) + 4\right]$$

Let $q_0 > 0$ be sufficiently large for every component of $Y(0) = (Y_1(0) \quad Y_2(0) \quad Y_3(0) \quad Y_4(0))$ lying within the interval $[\frac{1}{q_0}; q_0]$. For each integer $q \ge q_0$, define the stopping time:

$$\iota_{q} = \inf \left\{ t \ge 0 : Y_{1}(t), Y_{2}(t), Y_{3}(t), Y_{4}(t) \notin \left[\frac{1}{q_{0}}; q_{0} \right] \right\}$$

Clearly $\iota_q \longrightarrow +\infty$ almost surely as $q \longrightarrow +\infty$. It then follows from (51) that:

$$\mathbf{E}[e^{\tau}\widetilde{V}(Y(\tau))] \leq \widetilde{V}(Y(0)) + M.\,\mathbf{E}\left[\int_{0}^{\tau} e^{s} ds\right],$$

with

 $\tau = \min(t, \iota_q.)$

Letting $q \longrightarrow +\infty$ then $\tau \longrightarrow t$ yields:

 $e^{t}\mathbf{E}[\widetilde{V}(Y(t))] \le \widetilde{V}(Y(0)) + M(e^{t} - 1).$ (52)

This implies that,

$$\mathbf{E}[\widetilde{V}(Y(t))] \le e^{-t}\widetilde{V}(Y(0)) + M.$$
(53)

Note that,

$$|Y(t)|^{p} = [(Y_{1})^{2} + (Y_{2})^{2} + (Y_{3})^{2} + (Y_{4})^{2}]^{\frac{p}{2}},$$
(54)

and

 $\overline{Y}^p = \max(Y_1)^p, (Y_2)^p, (Y_3)^p, (Y_4)^p.$

Then we get,

$$|Y(t)|^p \le 4^{\frac{p}{2}} \widetilde{Y}^p \le 2^{p} \widetilde{V}(Y(t)).$$
(55)

So we get finally from (53) and (55):

$$\mathbf{E}[|Y(t)|^{p}] \le 2^{p}(e^{-t}V(Y(0)) + M).$$
(56)
Passing to the limit of (56) when $t \mapsto +\infty$, we have:

$$\lim_{t \to \pm\infty} \mathbf{E}[|Y(t)|^p] = 2^p M > 0.$$
(57)

The inequality (56), implies that:

$$\sup_{t \ge 0} \mathbf{E}[|Y(t)|^p] \le \sup_{t \ge 0} 2^p (e^{-t} \widetilde{V}(Y(0)) + M) = 2^p \overline{M} < \varrho_1,$$
(58)

with $\overline{M} = \widetilde{V}(Y(0)) + M > 0$.

For each $\epsilon_1 > 0$, there is a $\delta > 0$ such that:

 $\sup_{t>0} \mathbf{E}[|Y(t)|^p] \le \epsilon_1 = 2^p \overline{M} \quad for all Y(0) = y_0, \ |y_0| \le \delta.$

It is sufficient to take $\delta = 2\sqrt[p]{\tilde{V}(y_0)}$. So according to [28], we have just shown that the equilibrium $Y(0) \equiv 0$, is *p*-stable, i.e. X^* is *p*-stable. Now, for any $\epsilon_2 > 0$, let $r = \frac{\varrho_1^2}{2}$, then by Chebychev's inequality.

$$\mathbf{P}\{|Y(t)| > r\} \le \frac{\mathbf{E}[\sqrt{|Y(t)|}]}{\sqrt{r}}.$$

Hence,

$$\sup_{t\geq 0} \mathbf{P}\{|Y(t)|>r\} \leq \frac{\varrho_1}{\sqrt{r}} = \epsilon_2;$$

this implies that,

$$\mathbf{P}\{\sup_{t\geq 0}|Y(t)|>r\}\leq \epsilon_2;$$

what gives,

$$\mathbf{P}\{\sup_{t>0}|Y(t)|\leq r\}\geq 1-\epsilon_2,$$

therefore, so according to [28], the equilibrium $Y(0) \equiv 0$, is stable in probability for the stochastic model (45), what is equivalent to say X^* is stable in probability for (24). To finish the proof of the theorem, (57) shows that Y(0) is asymptotically unstable for the model (45), i.e. X^* is asymptotically unstable for the model (24).

5. Numerical method and Criteria of convergence

Let's consider the stochastic model (16) that we write under the following form:

$$dX(t) = f(t, X(t))dt + \sum_{j=1}^{10} G_j dW_j(t).$$
(60)

Let $(Y_n)_{n \in \mathbb{N}}$ denote the sequence approximation values for the solution of (16) at time t_n , $n = 0, 1, ..., n_T$.

The discretionary of the time $t \in [0, T]$ is $t_0, t_1, \ldots, t_{n_T}$, such that $0 = t_0 \le t_1 \le \cdots \le t_{n_T} = T$. The time steep size is $\Delta_i = t_{i+1} - t_i \in \mathbf{R}$ + for all $i = 0, 1, 2, \ldots, n_T$.

The implicit scheme of θ -method applied to stochastic model (16) give:

$$Y_{n+1} = Y_n + (\Theta_n f(t_{n+1}, Y_{n+1}) + (I - \Theta_n) f(t_n, Y_n)) \Delta_n + \sum_{j=1}^{10} G_j(t_n, Y_n) \Delta W_{j,n},$$
(61)

wherein $\Delta_n = t_{n+1} - t_n$ and $\Delta W_{j,n} = W_j(t_{n+1}) - W_j(t_n)$,

I represent $(d \times d)$ real matrix unit, Θ_n is a uniformly bounded parameter matrix in $\mathbf{R}^{d \times d}$.

If $\Theta_n = 0$ for all n, then its scheme reduces to the implicit scheme of Euler-method.

Criteria 1 (Numerical convergence criteria on average square). For Δt sufficiently small, if K constants and γ exist on average the criteria of convergence square of the Θ - method is:

$$\sup_{0 \le t_n \le T} \mathbf{E} \|X(t_n) - Y_n\|^2 \le K \Delta t^{2\gamma},\tag{62}$$

with $K = K(T, f, G_i, X(0)) > 0$ et $\gamma \ge 0$ is the global order of this convergence.

Criteria 2 (Stability conditions of numerical method). for Δn sufficiently small, all numeric method applied to stochastic model (16) with the data initial $X_0 = Y(0) = x$ satisfied to the conditions (63) and (64):

$$\sup_{0 \le t \le T} \mathbf{E} \|X(t)\|^2 < B_{T,x},$$
(63)

where $B_{T, x}$ depends of T and x; but doesn't depend of Δt :

$$\sup_{0 \le t \le T} \mathbf{E} \|X(t) - Y(t)\|^2 \le (\sup_{0 \le t \le T} \mathbf{E} \|X(t)\|^2) C_T \Delta t,$$
(64)

where C_T depends of T; but doesn't depend of x and Δt .

We use the Euler–Maruyama method to simulate the models. This method applied to the stochastic model (16) gives:

$$\begin{cases} S_{n+1} = S_n + [\Lambda - \lambda_H S_n - \mu S_n] \Delta_n + [\sqrt{\Lambda}\omega_{1,n} - \sqrt{\lambda_H S_n}\omega_{2,n} - \sqrt{\mu S_n}\omega_{3,n}] \sqrt{\Delta_n}, \\ H_{1n+1} = H_{1n} + [\lambda_H S_n - (\mu + \sigma + \tau_1)H_{1n}] \Delta_n + [\sqrt{\lambda_H S_n}\omega_{2,n} - \sqrt{\mu H_{1n}}\omega_{4,n} - \sqrt{\tau_1 H_{1n}}\omega_{5,n} - \sqrt{\sigma H_{1n}}\omega_{6,n}] \sqrt{\Delta_n}, \\ H_{2n+1} = H_{2n} + [\sigma H_{1n} + \sigma \theta W_{Hn} - (\mu + \delta_H + \tau_2)H_{2n}] \Delta_n + [\sqrt{\sigma H_{1n}}\omega_{6,n} + \sqrt{\sigma \theta W_{Hn}}\omega_{7,n} - \sqrt{(\mu + \delta_H)H_{2n}}\omega_{8,n} - \sqrt{\tau_2 H_{2n}}\omega_{9,n}] \sqrt{\Delta_n}, \\ W_{Hn+1} = W_{Hn} + [\tau_1 H_{1n} + \tau_2 H_{2n} - (\mu + \sigma \theta)W_{Hn}] \Delta_n + [\sqrt{\tau_1 H_{1n}}\omega_{5,n} + \sqrt{\tau_2 H_{2n}}\omega_{9,n} - \sqrt{(\mu + \sigma \theta)W_{Hn}}\omega_{10,n}] \sqrt{\Delta_n}, \end{cases}$$
(65)

where for i = 1, 2, ..., 10 and $n = 1, 2, ..., n_T$ (indication of maximal time), $\omega_{i, n}$ are normally distributed with mean 0 and variance 1.

Fig. 2. Trajectory of two stochastic models: (i) for the model (16) and (ii) for model (24) putting in evidence the equivalent evolution of the states of two systems and the persistence of the infection of HIV/AIDS in presence of the treatment when R_0^r is more that 1. S(0) = 20; $H_1(0) = 2$; $H_2(0) = 2$; $W_H(0) = 0$; $\Lambda = 23$; $\beta_H = 0.35$; $\tau_1 = 0.08$; $\tau_2 = 0.02$; $R_0^r = 4$, 6609.

Fig. 3. Trajectories superimposed of the stochastic models (16) and (24) in the purpose of a comparison of two models: showing a negligible difference to the level of the trajectory of the susceptible when R_0^{τ} is more that 1.

6. Numerical simulation

In this section, we use codes matlab [29] to make the numerical simulations for the stochastic model and the model with stochastic perturbations in order to compare them. Also we make the similar comparison between the deterministic model and the stochastic model. Finally, we show the global behavior of the stochastic model.

As the stochastic model (24) drifts from the model (16), the trajectories given by the figures (Fig. 2(i) and (ii)) have the same initial conditions with the same values of parameters , the same pace. While superimposing the trajectories of the figures (i) and (ii) in the only plan, we obtain the Fig. 3.

Trajectory of the susceptible *S*, the HIV infected H_1 (or seropositive), the AIDS class H_2 , and the infected under treatment class W_H in the deterministic (15) and stochastic (16) models cases are represented respectively by the figures (a)–(e) (see Fig. 4). The values of the parameters permitting this simulation gives $R_0^{\tau} = 11.5064$. We observe that the trajectories in the stochastic case are oscillatory, it is not the case for the deterministic model. This oscillation is caused by the random noise that doesn't exist in the deterministic model and it shows a random evolution of the different states of the stochastic model.

Fig. 4. Trajectory of (a): susceptible *S*, (b): HIV infected *H*₁, (c): AIDS infected *H*₂ and (d): *W*_H individuals under treatment for (15) and (16) models with (*S*(0), *H*₁(0), *H*₂(0), *W*_H(0)) = (20, 2, 2, 0), *N* = 426, $\Lambda = 18$, $\beta_H = 0.6$, $\tau_1 = 0.04$, $\tau_2 = 0.02$, $R_0^r = 11$, 5064; (e): Numerical simulation of the models (15) and (16) respectively at a time with $R_0^r = 7$, 6709, $\beta_H = 0.4$, $\tau_1 = 0.04$, $\tau_2 = 0.02$, $\Lambda = 14$.

Fig. 5. Schematic plot of the mean system (30) while taking into account the effective reproduction number: (I) without treatment ($\tau_1 = \tau_2 = 0$) and (II) with treatment ($\tau_1 = 0.08$; $\tau_2 = 0.02$) and $\Lambda = 5$, $\beta_H = 0$, 35, $\tau_1 = 0$, 08, $\tau_2 = 0.02$, $n_{X^*(0)} = (600, 1; 0; 0; 0)$.

Fig. 6. The asymptotic behavior of the solutions to the stochastic model (16) around the equilibria with values parameters: $(S(0), H_1(0), H_2(0), W_H(0)) = (100, 10, 5, 1), \Lambda = 2, \beta_H = 0.31, \tau_1 = 0.07, \tau_2 = 0.05, R_0^{-1} = 4.0202, R_{ef} = 0.2512, X^* = (24.8075, 12.5005, 5.3596, 57.0644)$ for (c1) and for (c2), we have $H_1(0) = H_2(0) = 2, \Lambda = 23, \beta_H = 0, 05, \tau_1 = 0, 08, \tau_2 = 0.02, R_0^{-1} = 0.6658.$

The Fig. 5 is the schematic plot the mean system (30) without treatment Fig. 5(I) and with treatment Fig. 5(II) while taking into account the effective reproduction number for to show the effect of treatment.

By the Fig. 6(c1) and (c2) and Fig. 7(c3) and (c4), we present the asymptotic behavior of *S*, H_1 , H_2 and W_H for the stochastic model (16) and finally, by Fig. 7(c5) for the stochastic model (24).

In spite of the existing treatment in the model (16), Fig. 2(i) shows that the variables of state infective H_1 , H_2 and W_H are increasing. The epidemic of HIV/AIDS is invading if R_0^{τ} is greater than one. Similar results are obtained with the same values of parameters for the model (24) in Fig. 2(ii).

Fig. 3 shows that two stochastic models (16) and (24) are approximately the same when $R_0^{\tau} = 4,6609 > 1$.

In Fig. 4, for an evolution of short duration (from an initial state at initial time t = 0), the trajectories of the deterministic model (15) and the stochastic model (16) are approximately the same. But from a time t big enough, there are some spaces between the deterministic trajectories and the stochastic trajectories (see figures (a)–(e)). These spaces are the results of the

Fig. 7. The asymptotic behavior of the solutions to the stochastic models (16) and (24) with for c3: $(S(0), H_1(0), H_2(0), W_H(0)) = (20, 2, 1, 1), \Lambda = 3, \beta_H = 0.09, \tau_1 = 0.06, \tau_2 = 0.02, R_0^{\tau} = 1.4144, R_{ef} = 0.6661, X^* = (24.8075, 12.5005, 5.3596, 57.0644)$; for (c4): $S(0) = H_1(0) = H_2(0) = W_H(0) = 1, \Lambda = 14, \beta_H = 0.05, \tau_1 = 0.04, \tau_2 = 0.02, R_0^{\tau} = 0.9589$ and for (c5): $(S(0), H_1(0), H_2(0), W_H(0)) = (20, 2, 1, 1), \Lambda = 3, \beta_H = 0.01, \tau_1 = 0.06, \tau_2 = 0.02, R_0^{\tau} = 0.1572, R_{ef} = 0.6661, X^* = (1389.3, -224.7077, -136.6771, -809.5737).$

random noise translated by a supplementary term whose trajectory comes to superimpose to the deterministic trajectories. In these case, we cannot ignore the effect of random noise which force the solutions of the stochastic model to oscillate strongly around the equilibria.

Schematic plot of the mean system (30) without and with treatment is made while taking into account the effective reproduction number and the critical number of the susceptible. In Fig. 5(I) the schematic plot of the system is made without treatment, i.e. $\tau_1 = \tau_2 = 0$ and it is made with treatment in Fig. 5(II). In these two case, the susceptible number decreases until a critical number. The HIV infected number grows if $R_{ef} > 1$ and declines if $R_{ef} < 1$. The critical number of susceptible is hence given by the condition $R_{ef} = 1$. Value of this critical number increases with the treatment. If there is not treatment, it is weak (small). So the effective reproduction number R_{ef} measures the impact of treatment (see Fig. 5(I) and (II)).

According to Propositions 1 and 2 or Theorem 9, the random noise, diffusion term of model (16) can force the solutions *S*, *H*₁, *H*₂ and *W*_H to oscillate strongly around the disease free equilibrium $\varepsilon^0 = (\frac{\Lambda}{\mu}, 0, 0, 0)$ or around the endemic equilibrium $X^* = (S^*, H_1^*, H_2^*, W_H^*)$ of deterministic model (15). Fig. 6(c1) shows the asymptotic behavior of these solutions around $\varepsilon^0 = (100, 0, 0, 0)$ or around $X^* = (24.8075, 12.5005, 5.3596, 57.0644)$. Fig. 6(c2) shows the asymptotic behavior of infected individuals *H*₁ and *H*₂ around $\varepsilon^0 = (0, 0)$.

Similarly, a explanation of what is happening in Fig. 7(c3)-(c5) is given below.

The random noise of model (16) forces these solutions (see Fig. 7(c3) to oscillate strongly around disease free equilibrium $\varepsilon^0 = (150, 0, 0, 0)$ or around endemic equilibrium point $X^* = (104.2677, 8.2921, 5.0436, 29.8747)$.

Fig. 7(c4) shows the asymptotic behavior of the solutions of model (16) around disease free equilibrium $\varepsilon^0 = (700, 0, 0, 0)$ point which is not represented because *S*, *H*₁, *H*₂, *W*_H are represented in [0, 1] × [0; 20].

In Fig. 7(c5), we have thanks to Theorem 9, the asymptotic behavior of the solutions of model (24) around endemic equilibrium point $X^* = (1389.3, -224.7077, -136.6771, -809.5737)$ which is asymptotically unstable.

7. Discussion

In this paper, we consider a group of stochastic models associated to a deterministic model of the dynamics of the HIV/AIDS in the presence of treatment antiretroviral (ARV). We use these stochastic models because of the hold on account in the formulation of the two aspects: deterministic and uncertain. the mathematical analysis of the random equilibria shows that the global stability of this infection is to determine by the condition on the basic reproduction number R_{0}^{π} of the deterministic model. If $R_0^{\tau} < 1$, then the states trajectories of the stochastic models are globally asymptotically stable and the epidemic stretches toward the disease free equilibrium but the epidemic doesn't disappear because the treatments managed to the infected individuals prolong the life of these infected individuals and to delay the apparition of the opportunist diseases. The treated individuals cannot be healed of AIDS. The taking ARV against the HIV/AIDS does not prevent the transmission, because the virus continues to be present in the infected cells but immune, its contact with a healthy cell, can redo the viral function after the loss of immunity. The basic reproduction number, indicates the average number of people each infected person infects in a totally susceptible population. By contrast, the effective reproduction number, indicates the average number of people each infected person infects, given the current interventions (treatments) in place, and any prior immunity that reduces the susceptible pool. The effective reproduction number is always less than or equal to the basic reproduction number and typically declines gradually as a disease spreads through the population and collective immunity increases. For our stochastic models, the number of HIV infective grows if the effective reproduction number R_{ef} is greater than one and declines if it is less than one. Schematically, this is given in Fig. 5(I) without treatment and (II) with treatment. The critical number of susceptible is given by the condition $R_{ef} = 1$. This critical number has a value almost zero without treatment but it becomes big when the treatment rate is too big. If $R_{ef} > 1$, then the epidemic persists and can take probably a stable regimen. In this situation of pandemic, some states trajectories of the stochastic models can pass the doorstep of treatment offered by the medical service if other adequate measures are not taken. For example, it is the case when the trajectory of the infected individuals H_1 class under treatment increases more than the one of the susceptible S. See the Fig. 4(e) when to the departure no one of H_1 or H_2 is under ARV treatment i.e. $W_H(0) = 0$. The initial state of this dynamics of the transmission of the HIV/AIDS with treatment influences the behavior of the disease. Therefore we need other strategies of control of the disease using ARV treatment.

8. Conclusion

In this paper, we formulated two group stochastic models (16) and (24) associated to the deterministic model (1) of the infection of the HIV/AIDS in the presence of the treatment in the ARV therapy. By introducing additional terms in the random noise of model (16), we find a new stochastic model (24) which are approximately the same when $R_0^{\tau} = 4,6609 > 1$ (see Fig. 3). The mathematical analysis shows that the stochastic model (16) as well as model (24) admit a point of random disease free equilibrium and a point of random endemic equilibrium. The disease free equilibrium of (16) is exponentially *p*-stable for $(p \ge 2)$, and asymptotically globally stable if $R_0^{\tau} \le 1$. If $R_0 > 1$ the endemic equilibrium of (24) is *p*-stable for p > 5, stable in probability and asymptotically unstable. We observe that, by numerical stimulation, the trajectories in the stochastic case are oscillating, it is not the case for the deterministic model. For an evolution of short duration (from an initial state at initial time t = 0, the trajectories of the deterministic model and the stochastic model seem to have the same pace. But from a time t big enough, there are some spaces between the deterministic trajectories and the stochastic trajectories (see Fig. 4). These spaces are the results of the random noise translated by a supplementary term whose trajectory comes to superimpose to the deterministic trajectories. In these case, we cannot ignore the effect of random noise which force the solutions of the stochastic model to oscillate strongly around the equilibria. The treated individuals cannot be healed of AIDS. The taking ARV against the HIV/AIDS doesn't prevent the transmission, because the virus continues to be present in the infected cells but immune, its contact with a healthy cell, can redo the viral function after the loss of immunity. The basic reproduction number, indicates the average number of people each infected person infects in a totally susceptible population. By contrast, the effective reproduction number, indicates the average number of people each infected person infects, given the current interventions (ARV treatments) in place, and any prior immunity that reduces the susceptible pool. The effective reproduction number is always less than or equal to the basic reproduction number and typically declines gradually as a disease spreads through the population and collective immunity increases. The epidemic of the HIV/AIDS is persistent in the host population if effective reproduction number R_{ef} is greater than one and declines if it is less than one. So the effective reproduction number R_{ef} measures the impact of treatment (see Fig. 5(I) and (II)). Therefore the stochastic models are appropriated to describe the dynamics of this infection precisely.

Acknowledgment

The authors would like to thank the anonymous referee and the African Center of Excellence in Technologies, Information and Communication (CETIC) of the University of Yaounde 1.

References

- [1] Y. Emvudu, D. Bongor, Mathematical analysis of a HIV/AIDS model with treatment, IEJPAM 4 (4) (2012).
- [2] F. Gao, E. Bailes, D.L. Robertson, Y. Chen, C.M. Rodenburg, S.F. Michael, et al., Origin of HIV-1 in the chimpanzee pan troglodytes., Nature 397 (1999) 436-441
- [3] B. Korber, M. Muldoon, J. Theler, F. Gao, R. Gupta, A. Lapedes, et al., Timing of the ancestor of the HIV-1 pandemic strains., Science 288 (2000) 1789-1796.
- [4] R.M. Anderson, R.M. Anderson, Mathematical and statistical studies of the epidemiology of HIV, AIDS 4 (1990) 107.
- [5] R.M. Anderson, R.M. May, A. Goldbeter, Complex dynamical behavior in the interaction between HIV and the immune system, in: Cell to Cell Signalling: From Experiments to Theoretical Models, Academic Press, New York, 1989, p. 335.
- [6] J.J. Bailey, J.E. Fletcher, E.T. Chuck, R.I. Shrager, A kinetic model of CD4. lymphocytes with the human immunodeficiency virus (HIV)., BioSystems 26 1992) 177.
- [7] S. Bonhoer, R.M. May, G.M. Shaw, M.A. Nowak, Virus dynamics and drug therapy., Proc. Natl. Acad. Sci. USA 94 (1997) 69–71.
 [8] R.J. De Boer, A.S. Perelson, Target cell limited and immune control models of HIV infection: a comparison., J. Theor. Biol. 190 (1998) 201.
 [9] T. Hraba, J. Dolezal, S. Celikovsky, Model-based analysis of CD4. lymphocyte dynamics in HIV infected individuals., Immunobiology 181 (1990) 108.
- [10] N. Intrator, G.P. Deocampo, L.N. Cooper, Analysis of immune system retrovirus equations, Theoretical Immunology II, Addison-Wesley, Redwood City,
- CA, 1988, p. 85.
 [11] D.E. Kirschner, A.S. Perelson, O. Arino, D. Axelrod, M. Kimmel, M. Langlais, A model for the immune system response to HIV: AZT treatment studies., in: Mathematical Population Dynamics: Analysis of Heterogeneity, in: Theory of Epidemics Series, vol. 1, Wuerz, Winnipeg, Canada, 1995, p. 295.
- [12] D.E. Kirschner, S. Lenhart, S. Serbin, Optimal control of the chemotherapy of HIV, Math. Biol. 35 (1997) 775.
- [13]
- D.E. Kirschner, Using mathematics to understand HIV immune dynamics., Notices Am. Math. Soc. 43 (1996) 191. A.S. Perelson, P.W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo ., SIAM Rev. 41 (1999) 3. D. Mukherjee, Stability analysis of a stochastic model for prey-predator system with disease in the prey, Nonlinear Anal. Model. Control 8 (N2) (2003) 15 83-92.
- [16] O. Stanislas, A. Traoré, Deterministic and stochastic schistosomiasis models with general incidence, Appl. Math. 4 (2013) 1682–1693.
- [17] E. Allen, Derivation of Stochastic Ordinay and Partial Differential Equations, NIMBioS Tutoial: Stochastic Model with Biological Applications, University of Tennesee Knoxville Mach, 2011.
- [18] E.J. Allen, A. J. Areeniega, E. Priscilla, A.F. Round, Construction of equivalent stochastic differential equation models, Stochastic Analysis and Applications, vol. 26, Taylor and Francis Group, LLC, 2008, pp. 274–297. ISSN 0736–2994 print/1532-9356 online DOI: 10.1080/07362990701857129.
 [19] L.J.S. Allen, V.D. Driessche, Stochastic epidemic models with a bifurcation, Math. Biosci. Eng. 3 (3) (2006) 445–457.
- [20] J.A. Jacquez, P. O'Neill, Reproduction numbers and thresholds in stochastic epidemic models, Math. Biosci. 107 (1991) 161-186.
- [21] A. Lahrouz, L. Omari, D. Kiouach, Global analysis of deterministic and stochastic nonlinear SIRS epidemic model 16 (1) (1992) 59-76.
- [22] S.D. Hove-Musekwa, F. Nyabadza, The dynamic of an HIV/AIDS model with screened disease carriers, Comput. Math. Methods Med. 10 (4) (2009) 287-305.
- [23] E.J. Allen, Modelling with Itô stochastic differential equation, in: A.F. Round (Ed.), Mathematical Modelling: Theory and Applications, vol. 22, Springer, 2007. ISBN 978-1-4020-5952-0. [24] R. Liptser, A strong law of large numbers for locales, Stochastics 3 (1980) 217-228.
- A. Cintron-Arias, C. Castillo-Chavez, LMA. Bettencourt, A.L. Lloyd, H.T. Bank, The estimation of the effective repoductive number from disease outbreak data, Math. Biosci. Eng. 6 (2) (2009) 261–282. 3 [25]
- Y. Zhao, D. Jiang, The behavior of an SVIR Epidemic Model With Stochastic Perturbation, Abs. Appl. Anal. 2014 (2014) 7. Research Article. Hindawi [26] Publishing Corpoation. Article ID 742730.
- [27] V.N. Afanas'ev, V.B. Kolmanowskii, V.R. Nosov, Mathematical Theory of Control Systems Design, Kluwe Academic, Dordrecht, 1996

- [28] F. Herzog. Stability of stochastic systems. (Unpublished), http://www.idsc.ethz.ch/Courses/stochasticsystems/SDE.pdf (accessed 28.09.13).
 [29] F. Brauer, P. van den, D.J. Wu, Mathematical Epidemiology, vol. 1945, Springer, 2008.
 [30] O. Sharomi, N. Podder, A.B. Gumelet, B. Song, Mathematical analysis of the transmission dynamics of HIV/TB co-infection in the presence of treatment, [30] Math. Biosci. Eng. 5 (1) (2008 Jan) 145-174.

International Electronic Journal of Pure and Applied Mathematics

Volume 4 No. 4 2012, 297-320

MATHEMATICAL ANALYSIS OF A A HIV/AIDS MODEL WITH TREATMENT

Yves Emvudu^{1 §}, Bongor Danhree² ^{1,2}Laboratory of Applied Mathematics Department of Mathematics Faculty of Science University of Yaounde 1, P.O. Box 812, Yaounde, CAMEROON

Abstract: In this paper, we present a deterministic model of the dynamics of HIV/AIDS in a population of size N(t) at time t, consisting of four classes of individuals or epidemiologic classes : class of healthy individuals, class of infected individuals with HIV, class of sick with AIDS and finally the class of HIV/AIDS restored after ARV-therapy. We firstly give the basic properties of the model and then we draw a mathematical analysis by starting with the sub-model: in the dynamic sub-model of infection of HIV/AIDS in the absence of treatment. The mathematical analysis performed on the dynamics of HIV/AIDS with ARV-therapy, allows us to highlight the phenomenon of bifurcation of the existing equilibrium points (diseasefree equilibrium and endemic equilibrium) in the sub-model, therefore the model. This phenomenon, which destabilizes the system is explained by a small variation or disturbance of the data parameters passed by the system from one stable state to an unstable state. This state of stability or instability is governed by the basic reproduction number. Furthermore we show that in the absence of treatment of infected individuals with HIV/AIDS, the model admits a free disease equilibrium globally unstable. This shows that the HIV/AIDS is one of greater cause of death. In the presence of treatment, we seek and find an optimal therapy which consists of treating HIV/AIDS to infected individuals.

AMS Subject Classification: 34A34, 34D23, 92D30

Key Words: nonlinear dynamical systems, epidemiological models, HIV/AIDS model, stability

Received: March 1, 2012

 \bigodot 2012 Academic Publications, Ltd.

[§]Correspondence author

1. Introduction

As the process by which a problem or phenomenon in the real world is described, interpreted and represented in terms of abstract symbols or models, modeling is applied for a long time in the fight against infectious diseases. The first modeling work in epidemiology was conducted in 1760 by Daniel Bernoulli [6] to evaluate the effectiveness of variolation: decrease mortality due to smallpox and gain in life expectancy. Since 1927 Kermak Mckendrik played a central role in the mathematical theory of epidemics [7]. Modeling consist of constructing numerically simulable models of real natural phenomena, a priori evaluation of strategies for intervention or control.

In order to properly model a phenomenon as the dynamics of HIV/AIDS, we have two major requirements: The need to integrate clinical medicine and biology in the modeling of epidemics on an other hand and the triple expertise: mathematical statistical and other information.

How mathematics can be used, for example, to get the reality of the dynamics of infection with a disease like AIDS to adopt a strategy of optimal control treatment or effective?

A model is only an approximation of reality and it is conceivable that several mathematical functions are likely to approach this reality. This is the question that we must provide solutions and show that taking ARV drugs by HIV infected/AIDS reduced the progression of this disease and we can achieve long-term zero new infections of AIDS. To do this we consider type of compartmental model, is a model where the population is divided into four epidemiological classes may consist of healthy, HIV infected, AIDS patients and finally recovered after treatment.

We note that this model with four compartments was studied by Oluwaseun Sharom, N. Chandra Podder and Abba B. Gumel and B. Song (2007-2008) [1]. Our contribution will be to determine explicitly the dynamics of this infection and treatment strategy to achieve zero new infections.

In the model formulation, we will define the various flows of the transmission diffusion see of epidemiological behavior of individuals from one compartment to another compartment of our model. Our model will highlight the changes in numbers over time in each compartment. The time step is year.

Once the mathematical study of our model is made, we will be able with the help of numerical simulation to give the different states which follow and we easily s that the scale of a population's behavior or changes in healthy individuals, individuals undergoing primary infection or co-infection, in asymptomatic individuals and individuals suffering from this disease of the millennium: AIDS.

We then need to be able to design rules or a system of optimal control system which can lead to a desired state dynamics.

2. The Model

2.1. Description of the State Variables and Parameters of the Model

Variables	Descriptions	
S(t)	Class of healthy individuals who may contract HIV	
H_1 (t)	class of individuals with HIV	
H_2 (t)	class of people sick with AIDS only	
$W_H(t)$	Class of recovered after ARV-therapy	
	of the HIV/AIDS H_1 and H_2	
parameters	Description	
Λ	recruitment rates of healthy	
μ	Natural mortality rate	
σ	The progression rate of HIV-infection	
	to AIDS stage	
C_2	multiplier of co-infection	
θ	multiplier factor of up	
	Of infection to the AIDS stage because of resistances	
β_H	Forces of HIV infection,	
δ_H	mortality due to HIV/AIDS	
$\eta_1 \eta_2 \eta_H \eta_D, \eta_r$	numbers	
$ au_1, au_2$	The recovery rate of infectious individuals	
	with HIV and AIDS Respectively	

Table 1: Description of the variables and parameters of model

2.2. Diagram and Model

The diagram below allows to obtain model (1) of the dynamics of HIV/AIDS with treatment:

$$\begin{cases} \dot{S} = \Lambda - \lambda_H S - \mu S \\ \dot{H}_1 = \lambda_H S - (\mu + \sigma + \tau_1) H_1 \\ \dot{H}_2 = \sigma H_1 + \sigma \theta W_H - (\mu + \delta_H + \tau_2) H_2 \\ \dot{W}_H = \tau_1 H_1 + \tau_2 H_2 - (\mu + \sigma \theta) W_H \end{cases}$$
(1)

Where

$$\lambda_{H} = \beta_{H} \frac{H_{1} + \eta_{2}H_{2} + \eta_{H}W_{H}}{N} \quad with \quad N = S + H_{1} + H_{2} + W_{H}$$

Figure 1: Compartmental diagram of HIV/AIDS infection with treatment

2.3. Basic Properties of the Model

2.3.1. Positivity of Solutions

Lemma 1. The solutions of system (1) with initial conditions are non-negative for the duration of the epidemic.

Proof. For the model to be epidemiologically plausible, it is necessary to prove that the solutions of system (1) with positive initial conditions, will remain positive at all times to come.

Let's us assume that S(0) > 0, $H_1(0) > 0$, $H_2(0) > 0$, $W_H(0) > 0$, and show that $\forall t > 0$, S(t) > 0, $H_1(t) > 0$, $H_2(t) > 0$, $W_H(t) > 0$. Whether $t_0 = \sup\{t > 0 : S(t) > 0$, $H_1(t) > 0$, $H_2(t) > 0$, $W_H(t) > 0$ }. The first equation of system (1) provides:

$$\dot{S} = \Lambda - \lambda_H S - \mu S$$

$$\frac{d}{dt} [S(t) \exp\{\mu t + \int_0^t \lambda_H(\tau) d\tau\}] \ge \Lambda \exp\mu t + \int_0^t \lambda_H(\tau) d\tau$$
(2)

Passing to the integral of 0 from t_0 , we have:

$$S(t_0) \exp\{\mu t_0 + \int_0^{t_0} [\lambda_H(\tau) d\tau\} - S(0) \ge \int_0^{t_0} (\Lambda \exp \mu x + \int_0^x \lambda_H(\tau) d\tau) dx$$
$$S(t_0) \ge S(0) \exp\{-(\mu t_0 + \int_0^{t_0} (\lambda_H(\tau)) d\tau\} + \exp\{-(\mu t_0 + \int_0^{t_0} \lambda_H \tau) d\tau\}) (\int_0^{t_0} \Lambda \exp(\mu x + \int_0^x (\lambda_H(\tau) d\tau) dx).$$

Thus we get that $S(t_0) > 0$. That means that S(t) > 0. Similarly, one can show that $H_1(t) > 0$, $H_2(t) > 0$, $W_H(t) > 0$. It is concluded that the system admits positive solutions when all the constant parameters and variables are non-negative.

2.3.2. Positive Invariance of the Bounded Domain of Solutions

Lemma 2. Each of the solutions of system (1) is bounded, and for all $\varepsilon > 0$ the subset ω_{ε} of the positive region of \mathbb{R}^4_+ defined by:

$$\Omega_{\varepsilon} = \{ (S, H_1, H_2, W_H) \in \mathbb{R}^4_+ : N \le \frac{\Lambda}{\mu} + \varepsilon \}$$

is a positively invariant region for system (1).

Proof. The total population of N(t) at time t is given by:

 $N(t) = S(t) + H_1(t) + H_2(t) + W_H(t)$ et $N(t) = \Lambda - \mu N(t) - \delta_H H_2(t)$ then it follows that: $\dot{N}(t) < \Lambda - \mu N(t)$. Setting $M(t) = \Lambda - \mu N(t)$ We then obtain its derivative $\dot{M}(t) = -\mu \dot{N}(t) \ge -\mu M(t)$ whether

$$\dot{M}(t) \ge -\mu M(t) \Rightarrow M(t) \ge M(0)e^{-\mu t}$$

as $M(t) = \Lambda - \mu N(t)$ and $M(0) = \Lambda - \mu N(0)$ Then obtained for all $\varepsilon > 0$:

$$N(t) \le \frac{\Lambda}{\mu} + N(0)e^{-\mu t} + \varepsilon$$

Letting $t \to +\infty$ we therefore obtain

$$N(t) \le \frac{\Lambda}{\mu} + \varepsilon$$

Hence each solution of the system is bounded by: $\frac{\Lambda}{\mu} + N(0)e^{-\mu t} + \varepsilon$. We now show that Ω_{ε} is a positively invariant region. Indeed, let h on a specific application \mathbb{R}^4_+ to \mathbb{R} what more $x = (S, H_1, H_2, W_H)$ combines $h(x) = S + H_1 + H_2 +$ $H_2 + W_H h$ is a differentiable and its gradient is given by:

$$\nabla h = (1, 1, 1, 1) \quad \forall x \in \mathbb{R}^4_+$$

more $\forall x \in h^{-1}(\frac{\Lambda}{\mu} + \varepsilon)$, the scalar product

$$\langle d(x), \nabla(h(x)) \rangle = \dot{S} + \dot{H}_1 + \dot{H}_2 + \dot{W}_H \text{ with } d(x) = (\dot{S}, \dot{H}_1, \dot{H}_2, \dot{W}_H)$$

whether

$$\langle d(x), \nabla(h(x)) \rangle = \dot{N} = \Lambda - \mu N - \delta_H H_2$$

But $\forall x \in h^{-1}(\frac{\Lambda}{\mu} + \varepsilon), N = \frac{\Lambda}{\mu} + \varepsilon$ so for $\varepsilon > 0$, we have

$$\forall x \in h^{-1}(\frac{\Lambda}{\mu} + \varepsilon), \quad \langle d(x), \nabla(h(x)) \rangle = \dot{N} = -\mu\varepsilon - \delta_H H_2 \le 0$$

Y. Emvudu, B. Danhree

By the theorem of hence, it is concluded that:

$$\Omega_{\varepsilon} = \{ (S, H_1, H_2, W_H) \in \mathbb{R}^4_+ : N \le \frac{\Lambda}{\mu} + \varepsilon \}$$

is positively invariant for system (1)

3. Mathematical Analysis of the Model

3.1. Local Stability of Equilibrium Without HIV and Basic Reproduction Rate

Proposition 3. System (1) has a unique disease-free equilibrium (DFE): $\varepsilon_0^{H\tau} = (\frac{\Lambda}{\mu}, 0, 0, 0)$ and its basic reproduction rate $R_0^{H\tau}$ is

$$R_{0}^{H\tau} = \frac{\beta_{H}\{(\mu + \delta_{H})(\mu + \sigma\theta) + \sigma\eta_{2}[(\mu + \sigma\theta) + \theta\tau_{1}) + \eta_{H}[(\mu + \delta_{H} + \tau_{2})\tau_{1} + \sigma\tau_{2}] + \mu\tau_{2}\}}{h_{1}(h_{2}h_{3} - \sigma\theta\tau_{2})},$$
(3)

with

$$h_1(h_2h_3 - \sigma\theta\tau_2) = (\mu + \sigma + \tau_1)[(\mu + \delta_H)(\mu + \sigma\theta) + \mu\tau_2]$$

Proof. Applying the method of Van den Driessche and Watmough for calculating the basic reproduction rate $R_0^{H\tau}$ of model (1), we have:

$$\mathcal{F} = \begin{pmatrix} 0 \\ \lambda_H S \\ 0 \\ 0 \end{pmatrix} \text{ and, } \mathcal{V} = \begin{pmatrix} \lambda_H S + \mu S - \Lambda \\ (\mu + \sigma + \tau_1) H_1 \\ (\mu + \delta_H + \tau_2) H_2 - \sigma H_1 - \sigma \theta W_H \\ (\mu + \sigma \theta) W_H - \tau_1 H_1 - \tau_2 H_2 \end{pmatrix}$$
$$F = \begin{pmatrix} \beta_H & \eta_2 \beta_H & \eta_H \beta_H \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ and, } V = \begin{pmatrix} \mu + \sigma + \tau_1 & 0 & 0 \\ -\sigma & \mu + \delta_H + \tau_2 & -\sigma \theta \\ -\tau_1 & -\tau_2 & \mu + \sigma \theta \end{pmatrix}$$

Setting:

$$h_1 = \mu + \sigma + \tau_1, \quad h_2 = \mu + \delta_H + \tau_2, \text{ and } h_3 = \mu + \sigma\theta$$

$$\begin{aligned} \text{So, } V^{-1} \!=\! \begin{pmatrix} \frac{1}{h_1} & 0 & 0\\ \frac{\sigma(h_3 + \theta \tau_1)}{h_1(h_2h_3 - \sigma\theta \tau_2)} & \frac{h_3}{h_2h_3 - \sigma\theta \tau_2} & \frac{\sigma\theta}{h_2h_3 - \sigma\theta \tau_2} \\ \frac{h_2\tau_1 + \sigma\tau_2}{h_1(h_2h_3 - \sigma\theta \tau_2)} & \frac{\tau_2}{h_2h_3 - \sigma\theta \tau_2} & \frac{h_2}{h_2h_3 - \sigma\theta \tau_2} \end{pmatrix} \text{ and } \\ FV^{-1} \!=\! \begin{pmatrix} \frac{\beta_H G}{h_1(h_2h_3 - \sigma\theta \tau_2)} & \frac{\beta_H(h_3\eta_2 + \tau_2\eta_H)}{h_2h_3 - \sigma\theta \tau_2} & \frac{\beta_H(\sigma\theta\eta_2 + h_2\eta_H)}{h_2h_3 - \sigma\theta \tau_2} \\ 0 & 0 & 0 \end{pmatrix} \end{aligned}$$

Here

$$G = \sigma \eta_2 (h_3 + \theta \tau_1) + \eta_H (\sigma \tau_2 + h_2 \tau_1) + h_2 h_3 - \sigma \theta \tau_2$$

= $(\mu + \delta_H)(\mu + \sigma \theta) + \sigma \eta_2 [(\mu + \sigma \theta) + \theta \tau_1] + \eta_H [(\mu + \delta_H + \tau_2) \tau_1 + \sigma \tau_2] + \mu \tau_2$
The eigenvalues of FV^{-1} are: $R_1 = R_2 = 0$ and $R_3 = \frac{\beta_H G}{h_1 (h_2 h_3 - \sigma \theta \tau_2)}$.

So the basic reproduction rate $R_0^{H\tau}$ of the sub-model (2.18) of the dynamics of HIV/AIDS-only in the presence of treatment is:

$$\frac{R_0^{H\tau}}{\beta_H \{(\mu + \delta_H)(\mu + \sigma\theta) + \sigma\eta_2[(\mu + \sigma\theta) + \theta\tau_1) + \eta_H[(\mu + \delta_H + \tau_2)\tau_1 + \sigma\tau_2] + \mu\tau_2\}}{h_1(h_2h_3 - \sigma\theta\tau_2)}$$

with

$$h_1(h_2h_3 - \sigma\theta\tau_2 = (\mu + \sigma + \tau_1)[(\mu + \delta_H)(\mu + \sigma\theta) + \mu\tau_2]$$

Remark 4. We can see that:

When the rate τ_1 of HIV treatment in non-advanced (in other words, the treatment in the class (H_1) tends to infinity then the basic reproduction rate $R_0^{H\tau}$ of the model (1) of the dynamics of HIV/AIDS in the presence of treatment tends to $\frac{\beta_H [\eta_2 \sigma \theta + \eta_H (\mu + \delta_H + \tau_2)]}{(\mu + \delta_H)(\mu + \sigma \theta) + \mu \tau_2}$ positive values.

$$\lim_{\tau_1 \to \infty} R_0^{H\tau} = \frac{\beta_H [\eta_2 \sigma \theta + \eta_H (\mu + \delta_H + \tau_2)]}{(\mu + \delta_H)(\mu + \sigma \theta) + \mu \tau_2} > 0$$

Similarly, when the rate τ_2 of AIDS treatment (that is to say the treatment in the class (H_2)) tends to infinity then the basic reproduction rate $R_0^{H\tau}$ of the model (1) of the dynamics of HIV/AIDS in the presence of treatment tends to $\frac{\beta_H[\mu + \eta_H(\sigma + \tau_1)]}{\mu(\mu + \sigma + \tau_1)}$ with positive values.

$$\lim_{\tau_2 \longrightarrow \infty} R_0^{H\tau} = \frac{\beta_H [\mu + \eta_H (\sigma + \tau_1)]}{\mu (\mu + \sigma + \tau_1)} > 0$$

Proposition 5. The disease-free equilibrium (DFE) of model (1) of the dynamics of HIV/AIDS in the presence of treatment is locally asymptotically stable if $R_0^{H\tau} < 1$ and unstable if $R_0^{H\tau} > 1$

Proof. At the disease-free equilibrium (DFE) $\varepsilon_0^{H\tau} = (\frac{\Lambda}{\mu}, 0, 0, 0)$, the Jacobian matrix of system (1) is given by:

$$J(\varepsilon_0^{H\tau}) = \begin{pmatrix} -\mu & -\beta_H & -\eta_2\beta_H & -\eta_H\beta_H \\ 0 & \beta_H - (\mu + \sigma + \tau_1) & \eta_2\beta_H & \eta_H\beta_H \\ 0 & \sigma & -(\mu + \delta_H + \tau_2) & \sigma\theta \\ 0 & \tau_1 & \tau_2 & -(\mu + \sigma\theta) \end{pmatrix}$$
(4)

The characteristic polynomial of $J(\varepsilon_0^{H\tau})$ is $P(\chi) = (\chi + \mu)(\chi^3 + a_2\chi^2 + a_1\chi + a_0)$ where the coefficients a_2, a_1 and a_0 are defined by:

$$\begin{cases} a_{2} = 3\mu + \sigma + \delta_{H} + \tau_{1} + \tau_{2} + \sigma\theta - \beta_{H} \\ a_{1} = 3\mu^{2} + 2\mu\sigma + 2\mu\delta_{H} + 2\mu\tau_{1} + 2\mu\tau_{2} + 2\mu\sigma\theta + \sigma^{2}\theta + \sigma\theta\delta_{H} + \sigma\theta\tau_{1} + \sigma\tau_{2} \\ + \sigma\delta_{H} + \tau_{1}\delta_{H} + \tau_{1}\tau_{2} - [2\mu + \delta_{H} + \tau_{2} + \sigma\theta + \sigma\eta_{2} + \tau_{1}\eta_{H}]\beta_{H} \\ a_{0} = (\mu + \sigma + \tau_{1})[(\mu + \delta_{H})(\mu + \sigma\theta_{t}) + \mu\tau_{2}] - \beta_{H}\{(\mu + \delta_{H})(\mu + \sigma\theta) \\ + \sigma\eta_{2}[(\mu + \sigma\theta) + \theta\tau_{1}) + \eta_{H}[(\mu + \delta_{H} + \tau_{2})\tau_{1} + \sigma\tau_{2}] + \mu\tau_{2}\} \end{cases}$$
(7)

If $R_0^{H\tau} > 1$ then $a_0 < 0$, because the expression of a_0 depending on that of $R_0^{H\tau}$ is:

$$a_0 = (1 - R_0^{H\tau})(\mu + \sigma + \tau_1)[(\mu + \delta_H)(\mu + \sigma\theta) + \mu\tau_2]$$

With $(\mu + \sigma + \tau_1)[(\mu + \delta_H)(\mu + \sigma\theta) + \mu\tau_2] > 0$

According to Descartes's rule of signs, the polynomial $\chi^3 + a_2\chi^2 + a_1\chi + a_0$ admits at least one root with positive real part and therefore we conclude that $\varepsilon_0^{H\tau}$ is unstable if $R_0^{H\tau} > 1$.

If $R_0^{H\tau} < 1$ then $a_0 > 0$ and otherwise we have: $a_2 > 0$, in fact,

$$a_{2} = 3\mu + \sigma + \delta_{H} + \tau_{1} + \tau_{2} + \sigma\theta - \beta_{H}$$

$$R_{0}^{H\tau} < 1 \Rightarrow a_{0} > 0 \quad \Rightarrow \quad -\beta_{H} > -\frac{(\mu + \sigma + \tau_{1})[(\mu + \delta_{H})(\mu + \sigma\theta) + \mu\tau_{2}]}{G}$$

$$\Rightarrow a_{2} > 3\mu + \sigma + \delta_{H} + \tau_{1} + \tau_{2} + \sigma\theta - \frac{(\mu + \sigma + \tau_{1})[(\mu + \delta_{H})(\mu + \sigma\theta) + \mu\tau_{2}]}{G}$$

$$\Rightarrow a_{2} > \frac{(3\mu + \sigma + \delta_{H} + \tau_{1} + \tau_{2} + \sigma\theta)G - (\mu + \sigma + \tau_{1})[(\mu + \delta_{H})(\mu + \sigma\theta) + \mu\tau_{2}]}{G}.$$

By replacing G by its expression, we have:

=

$$\Rightarrow a_2 > \frac{(3\mu + \sigma + \delta_H + \tau_1 + \tau_2 + \sigma\theta)[\mu(\mu + \sigma\theta) + \delta_H(\mu + \sigma\theta) + \sigma\eta_2(\mu + \sigma\theta)}{(\mu + \delta_H)(\mu + \sigma\theta) + \sigma\eta_2[(\mu + \sigma\theta) + \theta\tau_1] + \eta_H[(\mu + \delta_H + \tau_2)\tau_1 + \sigma\tau_2] + \mu\tau_2}$$

MATHEMATICAL ANALYSIS OF...

$$+\frac{\eta_H\tau_1(\mu+\delta_H+\tau_2)+\sigma\tau_2\eta_H+\sigma\theta\eta_2\tau_1]-\mu[\mu(\mu+\sigma\theta)+\delta_H(\mu+\sigma\theta)+\mu\tau_2]}{(\mu+\delta_H)(\mu+\sigma\theta)+\sigma\eta_2[(\mu+\sigma\theta)+\theta_t\tau_1]+\eta_H[(\mu+\delta_H+\tau_2)\tau_1+\sigma\tau_2]+\mu\tau_2}$$
$$+\frac{-\sigma[\mu(\mu+\sigma\theta_t)+\delta_H(\mu+\sigma\theta)+\mu\tau_2]-\tau_1[\mu(\mu+\sigma\theta)+\delta_H(\mu+\sigma\theta)+\mu\tau_2]}{(\mu+\delta_H)(\mu+\sigma\theta)+\sigma\eta_2[(\mu+\sigma\theta)+\theta\tau_1]+\eta_H[(\mu+\delta_H+\tau_2)\tau_1+\sigma\tau_2]+\mu\tau_2}$$

Either we have after simplification:

$$a_{2} > \frac{(2\mu + \tau_{2} + \sigma\theta)[(\mu + \sigma\theta)(\mu + \delta_{H} + \sigma\eta_{2}) + \eta_{H}\tau_{1}(\mu + \delta_{H} + \tau_{2}) + \sigma\tau_{1}(\eta_{H} + \eta_{2}\theta)]}{(\mu + \delta_{H})(\mu + \sigma\theta) + \sigma\eta_{2}[(\mu + \sigma\theta) + \theta\tau_{1}] + \eta_{H}[(\mu + \delta_{H} + \tau_{2})\tau_{1} + \sigma\tau_{2}] + \mu\tau_{2}} + \frac{(\sigma + \tau_{1})[\mu\tau_{2}(\eta_{H} - 1) + \sigma\eta_{2}(\mu + \sigma\theta) + \eta_{H}\tau_{1}(\mu + \delta_{H} + \tau_{2})]}{(\mu + \delta_{H})(\mu + \sigma\theta) + \sigma\eta_{2}[(\mu + \sigma\theta) + \theta\tau_{1}] + \eta_{H}[(\mu + \delta_{H} + \tau_{2})\tau_{1} + \sigma\tau_{2}] + \mu\tau_{2}} + \frac{\mu\sigma(\mu + \sigma\theta)(\eta_{2} - 1) + \sigma\theta\eta_{2}\tau_{1}(\mu + \sigma + \tau_{1}) + \sigma\eta_{H}\tau_{2}(2\sigma + \tau_{1})}{(\mu + \delta_{H})(\mu + \sigma\theta) + \sigma\eta_{2}[(\mu + \sigma\theta) + \theta\tau_{1}] + \eta_{H}[(\mu + \delta_{H} + \tau_{2})\tau_{1} + \sigma\tau_{2}] + \mu\tau_{2}} > 0 \\ \Rightarrow a_{2} > 0$$

The conditions of stability: $a_0 > 0$ $a_2 > 0$ et $a_1a_2 - a_0 > 0$ the Routh-Hurwitz criterion in the case of a polynomial of degree 3 are satisfied. then $\varepsilon_0^{H\tau}$ is locally asymptotically stable if $R_0^{H\tau} < 1$

3.2. Global Stability of the Equilibrium without HIV/AIDS of Model (1)

Lemma 6. The disease-free equilibrium (DFE) $\varepsilon_0^{H\tau}$ of model (1) is globally asymptotically stable when $R_0^{H\tau} < 1$ and unstable if $R_0^{H\tau} > 1$

Proof. To apply the theorem of Castillo-Chavez (2002), we set:

$$\begin{cases} \dot{X} = F(X, Y) \\ \dot{Y} = G(X, Y), \qquad G(X, 0) = 0 \end{cases}$$

$$\tag{6}$$

Where

$$X = S \in \mathbb{R}_+$$
, $Y = (H_1, H_2, W_H) \in \mathbb{R}^3_+$

and

$$\varepsilon_0^{H\tau} = (X^*, 0, 0, 0) \quad with \quad X^* = \frac{\Lambda}{\mu}$$

$$F(X,Y) = (\Lambda - \lambda_H S - \mu S) \quad \text{and} \quad G(X,Y) = \begin{pmatrix} \lambda_H S - (\mu + \sigma + \tau_1)H_1 \\ \sigma H_1 + \sigma \theta_t W_H - (\mu + \delta_H + \tau_2)H_2 \\ \tau_1 H_1 + \tau_2 H_2 - (\mu + \sigma \theta)W_H \end{pmatrix}$$

As a result we have: $F(X, 0) = (\Lambda - \mu S)$.

2

Check if the conditions C_1 and C_2 are satisfied: • $(C_1):F(X^*,Y) = F(X^*,0),$

•
$$(C_2)$$
: $G(X,Y) = AY - \widehat{G}(X,Y)$, where

$$A = \begin{pmatrix} \beta_H - (\mu + \sigma + \tau_1) & \eta_2 \beta_H & \eta_H \beta_H \\ \sigma & -(\mu + \delta_H + \tau_2) & \sigma \theta \\ \tau_1 & \tau_2 & -(\mu + \sigma \theta) \end{pmatrix},$$
$$\widehat{G}(X, Y) = \begin{pmatrix} \beta_H H_1 - \lambda_H S + \eta_2 \beta_H H_2 + \eta_H \beta_H W_H \\ 0 \\ 0 \end{pmatrix}$$

By factoring the components of the column matrix $\widehat{G}(X, Y)$, we have

$$\widehat{G}(X,Y) = \begin{pmatrix} \beta_H (H_1 + \eta_2 H_2 + \eta_H W_H) (1 - \frac{S}{N}) \\ 0 \\ 0 \end{pmatrix}$$

Setting

$$\widehat{G}_1(X,Y) = \beta_H (H_1 + \eta_2 H_2 + \eta_H W_H) (1 - \frac{S}{N}), \quad \widehat{G}_2(X,Y) = 0 \quad et \quad \widehat{G}_3(X,Y) = 0$$

It follows that $\widehat{G}(X,Y) \geq 0$ for $(X,Y) \in \Omega_{\varepsilon}^{Hr}$.

Thus the conditions (C_1) et (C_2) are satisfied. Hence the disease-free equilibrium in the presence of treatment is globally asymptotically stable.

3.3. Existence of Endemic Equilibrium

Proposition 7. The endemic equilibrium of model (1) of the HIV/AIDS dynamic's in the presence of treatment is $\varepsilon_{H_{\tau}}^* = (S^*, H_1^*, H_2^*, W_H^*)$ so that:

$$\begin{cases} S^* = \frac{\Lambda}{\mu + \lambda_H^*} \\ H_1^* = \frac{\Lambda \lambda_H^*}{(\mu + \lambda_H^*)(\mu + \sigma + \tau_1)} \\ H_2^* = \frac{\sigma \Lambda \lambda_H^*(\mu + \sigma \theta + \theta \tau_1)}{(\mu + \lambda_H^*)(\mu + \sigma + \tau_1)[(\mu + \delta_H)(\mu + \sigma \theta) + \mu \tau_2])} \\ W_H^* = \frac{\Lambda \lambda_H^*[(\mu + \delta_H + \tau_2)\tau_1 + \sigma \tau_2]}{(\mu + \lambda_H^*)(\mu + \sigma + \tau_1)[(\mu + \delta_H)(\mu + \sigma \theta) + \mu \tau_2]} \end{cases}$$
(7)

MATHEMATICAL ANALYSIS OF ...

Proof. A point $\varepsilon_{H\tau}^* = (S^*, H_1^*, H_2^*, W_H^*)$ of $\Omega_{\varepsilon}^{Hr}$ is an endemic equilibrium solution if and only if the system:

$$\begin{cases} \Lambda - \lambda_H^* S^* - \mu S^* = 0\\ \lambda_H^* S^* - (\mu + \sigma + \tau_1) H_1^* = 0\\ \sigma H_1^* + \sigma \theta W_H^* - (\mu + \delta_H + \tau_2) H_2^* = 0\\ \tau_1 H_1^* + \tau_2 H_2^* - (\mu + \sigma \theta) W_H^* = 0 \end{cases}$$
(8)

Where:

$$\lambda_H^* = \beta_H \frac{H_1^* + \eta_2 H_2^* + \eta_H W_H^*}{N^*} \quad and \quad N^* = S^* + H_1^* + H_2^* + W_H^* \tag{9}$$

The first equation of system (8) gives:

$$S^* = \frac{\Lambda}{\mu + \lambda_H^*}$$

Consider the second equation of (8) and substituting S^* by its expression, we obtain H_1^* given by:

$$H_1^* = \frac{\Lambda \lambda_H^*}{(\mu + \lambda_H^*)(\mu + \sigma + \tau_1)}$$

Substituting H_1^* by its expression above in the third and fourth equation of system (8), we find the following system of two equations:

$$\begin{cases} \frac{\sigma\Lambda\lambda_H^*}{(\mu+\lambda_H^*)(\mu+\sigma+\tau_1)} + \sigma\theta W_H^* - (\mu+\delta_H+\tau_2)H_2^* = 0\\ \frac{\tau_1\Lambda\lambda_H^*}{(\mu+\lambda_H^*)(\mu+\sigma+\tau_1)} + \tau_2H_2^* - (\mu+\sigma\theta)W_H^* = 0 \end{cases}$$
(10)

Solving (10), allows us to obtain H_2^* and W_H^* defined by:

$$H_2^* = \frac{\sigma\Lambda\lambda_H^*(\mu + \sigma\theta + \theta\tau_1)}{(\mu + \lambda_H^*)(\mu + \sigma + \tau_1)[(\mu + \delta_H)(\mu + \sigma\theta) + \mu\tau_2])}$$
$$W_H^* = \frac{\Lambda\lambda_H^*[(\mu + \delta_H + \tau_2)\tau_1 + \sigma\tau_2]}{(\mu + \lambda_H^*)(\mu + \sigma + \tau_1)[(\mu + \delta_H)(\mu + \sigma\theta) + \mu\tau_2]}$$

Hence the results.

Whether $\varepsilon_{H\tau}^* = (S^*, H_1^*, H_2^*, W_H^*)$ considered as endemic equilibrium point of system (1). Injection of expressions S^*, H_1^*, H_2^* et W_H^* in that of λ_H^* of the equation (9) allows us to obtain a quadratic equation in λ_H^* below:

$$\lambda_H^*(b_2\lambda_H^* + b_1) = 0 \tag{11}$$

Y. Emvudu, B. Danhree

Where:

308

$$\begin{cases} b_2 = (\mu + \sigma\theta)(\mu + \sigma + \delta_H) + \tau_1(\mu + \delta_H + \sigma\theta) + \tau_2(\mu + \sigma + \tau_1), \\ b_1 = -\beta_H[(\mu + \delta_H)(\mu + \sigma\theta_t) + \sigma\eta_2[\mu + (\sigma + \tau_1)\theta] \\ + \eta_H \tau_1(\mu + \delta_H \tau_2) + \tau_2(\mu + \sigma\eta_H)]. \end{cases}$$
(12)

It is obvious that $b_1 < 0$ and $b_2 > 0$ then according to the Descartes's rule of signs, equation (11) has a unique solution to this positive real part and parked the existence of this endemic equilibrium of the system.

Consider the second degree equation (11) verified by λ_H^* with coefficients as b_2 , b_1 and b_0 defined by the system (12) with $b_0 = 0$.

It was always $b_2 > 0$. and since $b_1 < 0$ and $b_0 = 0$, then equation (11) has a solution with zero real part and a solution to the positive real part . The solution to zero real part is associated with disease-free equilibrium $\varepsilon_0^{H\tau}$ of (1) and the other solution to the endemic equilibrium $\varepsilon_{H^*\tau}$.

3.4. Analysis of the Bifurcation

For this analysis of bifurcation, we use the theorem of Castillo-Chavez and Song (2004):

Setting: $S = x_1$, $H_1 = x_2$, $H_2 = x_3$ et $W_H^* = x_4$ and taking into account the expression of the parameter $\lambda_H = \beta_H \frac{H + \eta_2 H_2 + \eta_H W_H}{N}$, we have $N = x_1 + x_2 + x_3 + x_4$, $X = (x_1, x_2, x_3, x_4)^T$, and $\frac{dX}{dt} = (g_1, g_2, g_3, g_4)$

Model (1) becomes as follows:

$$\begin{cases} \dot{x}_{1} = g_{1} = \Lambda - \beta_{H}^{*} \frac{x_{1}x_{2} + \eta_{2}x_{3}x_{1} + \eta_{H}x_{4}x_{1}}{x_{1} + x_{2} + x_{3} + x_{4}} - \mu.x_{1} \\ \dot{x}_{2} = g_{2} = \beta_{H}^{*} \frac{x_{1}x_{2} + \eta_{2}x_{3}x_{1} + \eta_{H}x_{4}x_{1}}{x_{1} + x_{2} + x_{3} + x_{4}} - (\mu + \sigma + \tau_{1})x_{2} \\ \dot{x}_{3} = g_{3} = \sigma x_{2} + \sigma\theta x_{4} - (\mu + \delta_{H} + \tau_{2})x_{3} \\ \dot{x}_{4} = g_{4} = \tau_{1}x_{2} + \tau_{2}x_{3} - (\mu + \sigma\theta)x_{4} \end{cases}$$
(13)

The Jacobian matrix in $\varepsilon_0^{H\tau}$ of system (13) is the same as (1) $J(\varepsilon_0^{H\tau})$ given by equation (4). It also provides the same basic reproduction rate $R_0^{H\tau}$ as given by equation (3).

If we assume $\beta_{H}^{*} = \beta_{H}$ where β_{H}^{*} is a parameter of the bifurcation, its determination by resolution of $R_0^{H\tau} = 1$ gives:

$$\beta_H^* = \beta_H = \frac{(\mu + \sigma + \tau_1)[(\mu + \delta_H)(\mu + \sigma\theta) + \mu\tau_2]}{(\mu + \delta_H)(\mu + \sigma\theta + \eta_H\tau_1) + \sigma\eta_2(\mu + \sigma\theta + \theta\tau_1) + \eta_H(\mu + \tau_1)}$$
(14)

The coefficient of the bifurcation β_H^* can also be deduced from the Jacobian matrix of the linearized system of the model (1) around the equilibrium DFE $\varepsilon_0^{H\tau}$. The

Jacobian matrix $J(varepsilon_0^{H tau})$ see (4) of the system (1) linearized around disease free equilibrium

 $x^* = x_{DFE} = \varepsilon_0^{H\tau} = (\frac{\Lambda}{\mu}, 0, 0, 0)$ when $\beta_H^* = \beta_H$ is given by:

$$J(x^*) = \begin{pmatrix} -\mu & -\beta_H^* & -\eta_2\beta_H^* & -\eta_H\beta_H^* \\ 0 & \beta_H^* - (\mu + \sigma + \tau_1) & \eta_2\beta_H^* & \eta_H\beta_H^* \\ 0 & \sigma & -(\mu + \delta_H + \tau_2) & \sigma\theta \\ 0 & \tau_1 & \tau_2 & -(\mu + \sigma\theta) \end{pmatrix}$$
(15)

It admits at least one simple eigenvalue with positive real part. This allows us then to use the technique of Castillo-Chavez and Song which the theorem is stated in the basic mathematical concepts. We have now to show that assertion A_1 of this theorem is true.

To verify the assertion A_2 Castillo-Chavez and Song theorem, we denote by $u = (u_1, u_2, u_3, u_4)^T$ the right eigenvector of the Jacobian matrix (15) associated with the eigenvalue zero. So we get:

$$\begin{pmatrix} -\mu & -\beta_{H}^{*} & -\eta_{2}\beta_{H}^{*} & -\eta_{H}\beta_{H}^{*} \\ 0 & \beta_{H}^{*} - (\mu + \sigma + \tau_{1}) & \eta_{2}\beta_{H}^{*} & \eta_{H}\beta_{H}^{*} \\ 0 & \sigma & -(\mu + \delta_{H} + \tau_{2}) & \sigma\theta \\ 0 & \tau_{1} & \tau_{2} & -(\mu + \sigma\theta) \end{pmatrix} \begin{pmatrix} u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$
 (16)

Solving this matrix equation (16) gives:

$$u_{1} = -\frac{\beta_{H}^{*}}{\mu}(u_{2} + \eta_{2}u_{3} + \eta_{H}u_{4}),$$
$$u_{2} = \frac{\beta_{H}^{*}}{(\mu + \sigma + \tau_{1}) - \beta_{H}^{*}}(\eta_{2}u_{3} + \eta_{H}u_{4}), \quad u_{3} = u_{3} > 0,$$
$$u_{4} = \frac{\tau_{1}(\mu + \delta_{H} + \tau_{2}) + \sigma\tau_{2}}{\sigma(\mu + \sigma\theta + \theta\tau_{1})}u_{3}.$$

The left eigenvector of the Jacobian matrix (15) associated with the zero eigenvalue when $\beta_H^* = \beta_H$ is $v = (v_1, v_2, v_3, v_4)^T$ so that:

$$\begin{pmatrix} v_1 & v_2 & v_3, v_4 \end{pmatrix} \begin{pmatrix} -\mu & -\beta_H^* & -\eta_2 \beta_H^* & -\eta_H \beta_H^* \\ 0 & \beta_H^* - (\mu + \sigma + \tau_1) & \eta_2 \beta_H^* & \eta_H \beta_H^* \\ 0 & \sigma & -(\mu + \delta_H + \tau_2) & \sigma \theta \\ 0 & \tau_1 & \tau_2 & -(\mu + \sigma \theta) \end{pmatrix}$$

Y. Emvudu, B. Danhree

$$= \left(\begin{array}{cccc} 0 & 0 & 0 \end{array}\right)$$

The matrix equation (17) gives the following resolution:

$$v_{1} = 0, \quad v_{2} = \frac{1}{(\mu + \sigma + \tau_{1}) - \beta_{H}^{*}} (\sigma v_{3} + \tau_{1} v_{4}), \quad v_{3} = v_{3},$$
$$v_{4} = \frac{1}{\mu + \sigma \theta} (\beta_{H}^{*} \eta_{2} v_{2} + \sigma \theta v_{3}), \quad v_{3} > 0$$

The calculations of the bifurcation coefficients a and b of the linearized system of (1) around equilibrium are based on the non-zero partial derivatives of g_i , i = 1, 2, 3, 4. below the disease-free equilibrium x^*

$$\begin{aligned} \frac{\partial^2 g_2}{\partial x_2^2} &= \frac{-2\beta_H^* \mu}{\Lambda}, \quad \frac{\partial^2 g_2}{\partial x_3^2} = \frac{-2\eta_2 \beta_H^* \mu}{\Lambda}, \quad \frac{\partial^2 g_2}{\partial x_4^2} = \frac{-2\eta_H \beta_H^* \mu}{\Lambda} \\ \frac{\partial^2 g_2}{\partial x_2 \partial x_3} &= \frac{-(1+\eta_2)\beta_H^* \mu}{\Lambda}, \quad \frac{\partial^2 g_2}{\partial x_2 \partial x_4} = \frac{-(1+\eta_H)\beta_H^* \mu}{\Lambda}, \\ \frac{\partial^2 g_2}{\partial x_3 \partial x_4} &= \frac{-(\eta_2 + \eta_H \beta_H^* \mu}{\Lambda} \end{aligned}$$

Using the above results in the expression of \boldsymbol{a} in Castillo-Chavez and Song theorem, we obtain:

$$a = -\frac{2\mu\beta_H^*}{\Lambda}v_2[u_2^2 + \eta_2 u_3^2 + \eta_H u_4^2 + (1+\eta_2)u_2 u_3 + (1+\eta_H)u_2 u_4 + (\eta_2 + \eta_H)u_3 u_4]$$

= $-\frac{2\mu\beta_H^*}{\Lambda}v_2[u_2(u_2 + u_3 + u_4) + (\eta_2 u_3 + \eta_H u_4)(u_2 + u_3 + u_4)]$

After factorization, we finally get:

$$a = -\frac{2\mu\beta_H^*}{\Lambda}v_2(u_2 + u_3 + u_4)(u_2 + \eta_2 u_3 + \eta_H u_4)$$
(17)

It follows that: a < 0

To determine b, the expression of which is defined in the same theorem, we will use now the non-zero partial derivative below the g_i i = 1, 2, 3, 4. relatively at $\beta_H^* = \beta_H$:

$$\frac{\partial^2 g_2}{\partial x_2 \partial \beta_H^*} = 1, \qquad \frac{\partial^2 g_2}{\partial x_3 \partial \beta_H^*} = \eta_2, \qquad \frac{\partial^2 g_2}{\partial x_4 \partial \beta_H^*} = \eta_H$$

It follows that:

$$b = v_2(u_2 + \eta_2 u_3 + \eta_H u_4) > 0$$

The signs of the bifurcation coefficients a and b: a < 0 and b > 0 can be concluded in the light of Theorem Castillo-Chavez (2004) (*iv*) that the system (1) undergoes a bifurcation when $R_0^{H\tau} = 1$. So the study of bifurcation allows us to state the following result:

Proposition 8. The model (2.18) of the transmission dynamics of HIV/AIDSonly in the presence of treatment, undergoes a bifurcation when the basic reproduction rate $R_0^{H\tau} = 1$. Which implies the existence of the unique endemic equilibrium locally asymptotically stable for $R_0^H = 1$.

4. Numerical Simulations

For numerical simulations, we use the estimated parameters as Numerical simulation,

Parameters	values	references
Λ	50000	[1]
μ	0.02	[1]
σ	1/33	[1]
c_2	1	[1]
θ	0.001	[1]
β_H	Variable	[1]
δ_H	0.01	[1]
η_2, η_H	1.2 0.001	[1]
$ au_1, au_2$	Variables	[1]

Table 2: Numerical values of model parameters

according to the treatment, the basic reproduction rate $R_0^{H\tau}$ of the dynamics of HIV/AIDS is given below.

Figure 2: Curves of $R_0^{H\tau}$ depending to $\tau_1(a)$ and depending to τ_1 and τ_2 (b) ,(c): Contour($R_0^{H\tau}, \tau_1, \tau_2$) and (d): Level curve of $R_0^{T\tau} = (\tau_1, \tau_2) = C$ for C = 0.56; 1 and 4

We can observe on figures follow the trajectory and the successive trajectory of individuals of the dynamics $\rm HIV/AIDS$ only model with treatment.

Figure 3: Simulation of the dynamics HIV/AIDS-only model with treatment. Trajectory of individuals for $\beta_H = 0.16$; $\tau_1 = 0.008$ and $\tau_2 = 0.005$

All these regrouped trajectories give two figures follow for the system of the

Figure 3: Continuation: Simulation of the dynamics HIV/AIDS-only model with treatment. Trajectory of individuals for $\beta_H = 0.16$; $\tau_1 = 0.008$ and $\tau_2 = 0.005$

Figure 4: Simulation of the dynamics HIV/AIDS-only model with treatment. Trajectory (a) and successive trajectory (b) of individuals for β_H fixed one has the rate of treatment varied

HIV/AIDS-only model with treatment:

Figure 5: Simulation of the dynamics HIV/AIDS-only model with treatment.

(a): $\beta_H = 0.16$, $\tau_1 = \tau_2 = 0$), (b): $\beta_H = 0.16$, $\tau_1 = \tau_2 = 0.008$ (c): $\beta_H = 0.16$, $\tau_1 = 0/008$ and $\tau_2 = 0$ (d): $\beta_H = 0.16$, $\tau_1 = 0\tau_2 = 0.008$

We observe changes of trajectories of the model of HIV/AIDS when one does the variation of values of treatment rates.

Simulations of the HIV/AIDS model with treatment of HIV-positive only (individuals (H_1)) without treating AIDS patients is to say, those of compartment (H_2)), give the curves (A), (B) and (C) below which show that for $(\tau_2 = 0)$ and $\beta_H = 0, 10$ estimated, the change in treatment rate (τ_1 from 0.01 to 0.08 is effectively reduce the number of infected with HIV/AIDS. By cons, if we take into account in the model (1), the treatment of AIDS only ($\tau_1 = 0$), then for the same value of $\beta_H = 0.01$, the curves (D) (E) and (F) below show that an significant increase of (τ_2) from 0.01 more than 0.08 to reduce the number of infected.

Figure 6: Simulation of the dynamics HIV/AIDS-only model with treatment . For β_H fixed ($\beta_H = 0.35$) and one has the rate of treatment varied (a): $\tau_1 = 0.01$ and $\tau_2 = 0$ (b): $\tau_1 = 0.0$ and $\tau_2 = 0$ (c): $\tau_1 = 0.5$ and $\tau_2 = 0$

Figure 7: Simulation of the dynamics HIV/AIDS-only model with treatment.

For β_H fixed to 0.35 , $\tau_1=0$ and τ_2 variable.

Figure 8: Simulation of the dynamics HIV/AIDS-only model with treatment. For β_H fixed to 0.35 , τ_1 and τ_2 variable.

At the end of the numerical simulations of the dynamics of HIV/AIDS, we can say that a good strategy for treatment of infected HIV/AIDS requires support in advance of HIV: HIV-infected do not show and symptomatic signs of AIDS patients.

5. Conclusion

We have just made a detailed mathematical analysis of a model that describes the dynamics of infection HIV/AIDS. After having given basic properties of the model, the set limited of solutions and the initial conditions, we studied the dynamics of infection HIV/AIDS by means of some necessary mathematical tools and setting as Matlab, Maple. This model of the co- infection drifts a model very known model of co-infection tuberculosis - HIV/AIDS in presence of the treatment and already studied in article [1] of Gumel. We showed that it admits a equilibrium point, its basic reproduction rate that governs the stability of this equilibrium, is determined. While testing this model, with the realistic data, numerically one notes the impact of this infection on the propagation of HIV/AIDS creating a massive susceptible individual flux thus toward compartments of the tainted. The objective being to reduce mortality owed to bath illnesses in accordance with the national and international plan of struggles, we can make recourse to a means of control to know strategies of treatments of the illnesses to reduce the weight of this infection and to win in life expectancy of our populations. It is for that to make that we used in this paper, a model of infection in presence of the treatment that gives a good strategy of the treatment that consists in taking therapeutic in charge not only the tainted of HIV/AIDS, but also to found a control optima of treatment.

References

- O. Sharomi, C.N. Podder, A.B. Gumel et B. Song Mathematical Analysis of the Transmisssion Dynamics of HIV/TB Co-infection in the Presence of Treatment (20 september 2007 -1 january 2008)
- [2] Birkhoff, G. and Rota, G. C. (1982). Ordinary differential equations. Needham Heights: Ginn.
- [3] Castillo-Chavez, C., Feng, Z., and Huang, W(2002). On the computation of R0 and its role on global stability. math.la.asu.edu/chavez/2002/JB276.pdf
- [4] P.Van Den Driesche et J. Watmough. 2002. Reproduction numbers and Subtreshold endemic equilibra for compartmental model of desease transmission. Math.Brosci

Y. Emvudu, B. Danhree

- [5] C. Castillo-Chavez, Z. Feng, and W. Huang, " On the Computation of R_0 and its role on global stability "
- [6] D. Beroulli (1760) The mathematical modelling: tool of help to the decision in situation of uncertainty. Saint-Maurice(Fr) Sanitary eve institution, November 2008,
- [7] Kermak et Mckendrick (1927). Surveillance et modelisation mathematique des maladies transmissibles. Antoine Flahault Iserm- Universite Pierre et Marie Curie UMR-S 707 16 juillet 2007
- [8] Kirchner D. (1996) Using Mathematics to understand HIV immune Dynamics
- [9] Samuel Bowong and Jean Jules Tewa. Parameter estimation and optimal control of the dynamics of transmission of tuberculosis with application to Cameroon 2010.
- [10] C.P. Bhunu S. Mushayabasa J.M. Tchuenche: A Theoretical Assessment of the Effects of Smoking on the Transmission Dynamics of Tuberculosis Received: 2 February 2010 / Accepted: 22 June 2010 / Published: 20 August 2010 by Society for Mathematical Biology 2010
- [11] Lavigne, M., Rocher, I., Steensma, C., Brassard, P. (2006). The impact of smoking on adherence to treatment for latent tuberculosis infection. BMC Public Health, 6(66).
- Berman. A, Plemmons, RJ:Nonegative matrices in the mathematical sciences. SIAM (Rev.35, 43-79(1993)

Bibliographie

- A. Bensoussan Lectures on stochastic Control, Nolinear Filtering an Stochastic Control (S.K. Mitter, A. Moro, eds). Lecture Notes on Math.972, Springer-Verlag. 1982.
- [2] A. Bensoussan and J.L. Lions *Applications des inéquations variationnelles en contrôle stochastique* Dunod, Paris. 1978.
- [3] Akian M., J.P. Quadrat, M. Viot. Analyse de l'algorithme multigrille FMBH de résolution d'équation de Hamilton-Jacobi-Bellman, In A. Bensoussan, J. L. Lions (eds). Sc. Analysis and Optimization of Systems, 14, Springer-Verlag, 113-122, (1990).
- [4] Akian M., J.P. Quadrat, M. Viot. *Bellman Processes*. In LN in Cont. and Inf. Sc. N.1995, Springer-Verlag.
- [5] Artur E. Bryson, Jr., Yu-Chi Ho. Applied Optimal Control : Optimization, Estimation, and Control. Taylor & Francis Group, 1975, New York. http://www.taylorandfrancis.com
- [6] A. Krener and C. Lobry (1981). On the complexity of stochastic differential applications. *Stochastics*. 4., (1981).
- [7] Allen L.J.S. and Van Den Driessche. Stochastic epidemic models with a bifurcation. *Ma*-*thematical Biosciences and Engineering* 3(3) : (2006) 445-457.
- [8] Amir Dembo. Stochastic processes : Lectures notes for stat219/math136 at stanford, 2007.
- [9] Banks, H. T., D.M. Bodz, nd S. E. Holte. 2003. *Incorporation of Variability in the Mathematical Modeling of Viral Delays in HIV infection Dynamics* Math. Biol. 183 : 63-91.
- [10] Bernt Oksendal *Stochastic Differential Equations An Introduction with Applications* Fifth Edition, Corrected Printing Springer-Verlag Heidelberg New York 2000.
- [11] Bernt Oksendal *Stochastic Differential Equations : An Introduction with Applications* Sixth Edition, Universitext, Springer-Verlag 2003.
- [12] Bernt Oksendal Stochastic Differential Equations, Springer 2007.
- [13] Blower, S.M., H. B. Gershengorn, and R. M. Grant 2006. *A Talc of Two Futures : HIV and Antiretroviral Therapy in San Francisco* Sciences 287 : 650-654.
- [14] Blower, S.M., T. C. Porco, and G. Darby. 1998. *Predicting and Preventing the Emergence of Antiviral Drug Resistance in HIV-2*. Nature Med. 4 : 673-678.
- [15] Bongor Danhrée, Emvudu Yves, Koïna Rodoumta. 2017. Optimal control of the treatment frequency in a stochastic model of Tuberculosis,. Biomath 6 (2017). http://dx.doi.org/10.11145/j.biomath.2017.05.077

- [16] Bratus A., Dimentberg, M., Lourtchenko; D. Noori, M. Hybrid solution model for dynamic programming equation for MDOF stochastic systems. *Dynamics and Control* 10 (2000), 107-166.
- [17] Carr J. (1981). Applications of Center Manifold Theory. New York (1981).
- [18] Castillo-Chavez C.; Feng Z., and Huang, W. On the computation of R₀ and its Role on Global Stability in Mathematical Approaches for Emarging and Reemerging Tnfectious Diseases. math.la.asu.edu/chavez/2002/JB276.pdf. eds (2002), 229-250.
- [19] Castillo-Chavez C. and Song, B. Dynamical Models of Tuberculosis and their Applications. Mathematical Biosciences and Engineering, Volume 1, N°.2 (2004),361-404.
- [20] Castillo-Chavez C. (1989) Mathematical and Statistical Approaches to AIDS EpidemiomogyLecture note in Mathematics 89. Springer-Verlag, Berlin, Heiderberg, New York.
- [21] Christiane Dargatz, Vera Georgescu, Leonhard Held Stochastic Modelling of the Spatial Spread of Influenza in Germany Austrian journal of statistics Volume 35 (2006), Number1, 4-20 pages :3-4
- [22] Claire Citron and Patricia Fener Focus sur la co-infection VIH-Tuberculose. http://vih.org site d'informations, de débats, d'échange au service de la lute contre le SIDA. INIST-CNRS, paris (2009).
- [23] C. P. Bhunu, S. Mushayabasa, H. Kojouharov, J.M. Tchuenche (2010) Mathematical Analysis of an HIV/AIDS Model : Impact of Educational Programs and Abstinence in Sub-Saharan Africa. J Math Model Algor. ©Springer Science+Business Media B.V. 2010.
- [24] Culshaw, R.V., Ruan, and G.Weko. 2003. Mathematical Statistical Approaches to AIDS Epidemiology. Lecture Note in Biomathematics, 83. Springer-Verlag, Berlin, Heidelberg, New York.
- [25] Claude Lobry 1970. Controlabilité des systèmes non linéaires. SIAM J. Control optimization, 8 (1970), pp 573-605.
- [26] Ed. Allen. Derivation of Stochastic Ordinary and Partial Differential Equations NIMBioS Tutoial : Stochastic Model with Biological Applications : University of Tennesee Knoxville Mach, (2011).
- [27] Edward J. Allen, Linda J. S. Allen, Armando Arciniega and Priscilla E. Construction of Equivalent Stochastic Differential Equation Models. In A.F. Round, editor, Stochastic Analysis and Applications, volume 26., pages 274 - 297. Copyright © Taylor and Francis Group, LLC ISSN 0736-2994 print/ 1532-9356 online DOI : 10.1080/07362990701857129, 2008.
- [28] Edward J. Allen. Modelling with Itô Stochastic Differential Equation. In A.F. Round, editor, Mathematical Modellind : Theory and Applications, volume 22., Springer. ISBN 978-1-4020-5952-0, 2007.
- [29] Emvudu Yves and Bongor Danhrée. Mathematical Analysis of a HIV/AIDS model with treatment. *IEJPAM* Vol.4,N°4, 297-320 (2012).

- [30] Emvudu Yves, Bongor Danhrée and Koïna Rodoumta. Mathematical Analysis of HIV/AIDS Stochastic Dynamic Models. *Applied Mathematical Modelling Journal*-Elsevier Issues 21-22, Vol.40, pages 9131-9151, (2016).
- [31] E. Lagier newblock *Mycobacterium tuberculosis*. *Du Ziehl au séquençage en passant par l'IRD et l'interféron* Ch Aix en Provence, Séminaire de Biologie La Plagne, (2009).
- [32] Fabio Camilli and Maurizio Falcone communitated by P.L. Lions. An approximation scheme for the optimal control of diffusion processes. *Mathematical Modelling and Numerical Analysis* Vol. 29, n°1, 97-122, (1995).
- [33] Fred Brauer. Pauline van den. and Driessche Jianhong Wu (Eds.) *Mathematical Epidemiology* Springer 1945.
- [34] Frédéric Bonnans and Pierre Rouchon *Commande et optimisation de systèmes dynamiques* Les éditions de l'école polytechnique, 2005, pp 253-271,(2005).
- [35] François Liret. Maths en pratique à l'usage des étudiants Cours et exercice *Dunod*, Paris, ISBN 2 10 049629, 2006.
- [36] G. Barles *Solutions de viscosité des équations d'Hamiton-Jacobi-Bellman*. Mathématiques et Applications. ed ellipse, Vol 17, 1994.
- [37] George M. Ewing *Calculus of Variations with Applications*. Dover Publications. New York, 1985.
- [38] G. Leitmann The Calculus of Variation and Optimal Control. Springer, Berlin, 1981.
- [39] H.J.Kushner and Dupois, P. Numérical methods for Stochastic Control Problems in Continuous Time. Springer-Verlag, New YorK. 2001.
- [40] H.J.Kushner. Stochastic stability and control. Academic Press, 1967.
- [41] H.J.Kushner. *Probability methods for approximations in stochastic control and for elliptic equations*. Academic Press, New York 1977.
- [42] Hyman, J. M., J. Li, and F. A. Stanley. 1999. *The differential Infectivity and Staged Progression Models for Transmission of HIV*. Math. Biosci., 155 : 77-109.
- [43] Huyên Pham On some recent aspects of stochastic control and their applications. *Probability Surveys*, Vol.2 (2005), 506-549.
- [44] Ioannis Karatzas and Steven E.Shreve *Brownian motion ans stochastic calculus* secondth Edition, Graduate Texts in Mathematics, volume 113, Springer-Verlag 1997.
- [45] I. Ya. Kats and Lyapunov function method in problems of stability and stabilization of systems with random structure. Ekatennburg, UGPS, Russian, 1998.
- [46] Jian-Qiao Sun Stochastic Dynamics and Control. Monograph Series on Nonlinear Science and Complexity volume 4, University of Delaware, Newark, DE 19716,USA, Elsevier (2006).

- [47] John A. Burns. Introduction to the Calculus of Variations and Control with Modern Applications. *Chapman, Hall/ CRC Applied Mathematics and Nonlinear Science Seres*, 2014.
- [48] J. C. Panetta and K. R. Fister. Optimal control applied to cell-cycle-specific cancer chemotherapy. SIAM Journal on Applied Mathematics Biological Dynamics. 60 :3, 1059-1072, (2000).
- [49] J.Yong and X.Y.Zhou Stochastic Controls : Hamiltonian Systems and HJB Equations. coll. «Applications of Mathematics», vol.43, New York. Springer. (1999).
- [50] Kirchner D. (1996) Using Mathematics to understand HIV immune Dynamics
- [51] Kirschner D., Lenhart S., Serbin S. Optimal Control of the Chemotherapy of HIV. Journal Mathematical Biology 35, 775-792, 1997
- [52] Kirschner H. J. and Dupuis, P. 1992. *Numerical Methods for Stochastic Control Problems in Continious Time*. Applications of Mathematics, Springer Verlag. .
- [53] Krylov, N. V. *Lecture on Elliptic and Parabolic Equation in HöLder Space*. Graduate Studies in mathematics. 12. Providence, RI : American Mathematical Society.
- [54] Madjid Jaberi-Douraki and Seyed M. Moghadas. Optimality of a time-dependant treatment profile during and epidemic. *Journal of Biological Dynamics*. 7 :1, 133-147, (2013).
- [55] Menaldi J. L., 1989. Some estimated for finite difference approximations. *SIAM Journal Control Optimization*, 27, 579-607, (1989).
- [56] M. Hestenes. Calcul of variations and optimal control theory. *John Wiley & Sons Ltd.*. (1967) p.252.
- [57] M. Bardi et I. Capuzzo Dolcetta. *Optimal control and vicosity solutions of Hamilton-Jacobi-Bellman equations* Birkhäuser, 1996.
- [58] Maurice Mashaal et son équipe. L'explosion des Mathématiques SMF et SMAI Juillet 2002 page 22. ed Institut Polythecnique Palaiseau.
- [59] Marcel Dekker, Inc. *Handbook of stochastic analysis and applications*. Statistics : textbooks and monographs, volume : 163, New York (2002).
- [60] Goursat M., and Quadrat J.P. Analyse numérique d'inéquations quasi-variationnelles elliptiques associées à des problèmes de contrôle impultionnel. INRIA Report, N° 154 and 186. INRIA, Le Chesnay, France.(1975).
- [61] M.G Crandall and P.L. Lions *Viscosity solutions of Hamilton-Jacobi equations*. Trans. Amer. Math. soc., 227 :1-42. 1983.
- [62] M.G Crandall, H. Ishii, and P.L. Lions User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. soc., 27 :1-67. 1992.
- [63] Movellan J. R. (2009) Primer on Stochastic Optimal Control equations. MPLab Tutorials, University of California San Diego.
- [64] Nowak, M. A., and R. M. 2000. Virus Dynamic. Exfort Univ. Press, New York.

- [65] Ning D., Jingtao, S. and Wonbin L. Effective Gradient Projection Method for Stochastic Optimal Control. International journal of Numerical Analysis and Modeling, Vol. 10,N°4, Page 757-774. (2013).
- [66] N.V. Krylov *Lectures on elliptic and parabolic equations in Holder spaces*. Graduate Studies in Mathematics.12 Providence, RI. American Mathematical Society (AMS), 1996.
- [67] N.V. Krylov Controlled diffusion processes. Springer-Berlin, 1980.
- [68] N.V. Krylov and M.V. Safonov *On the Hamilton-Jacobi-Bellman equations*. Acta Applicandae,1, 17-41, 1983.
- [69] V.N. Afanas'ev, V.B. Kolmanowskii, V.R. Nosov. 1996. *Mathematical Theory of Control Systems Design*. Kluwe Academic, Dordrecht.
- [70] O. Sharomi, C.N. Podder, A.B. Gumel et B. Song Mathematical Analysis of the Transmisssion Dynamics of HIV/TB Co-infection in the Presence of Treatment 20 september 2007 - 1 january 2008
- [71] P. Brunovsky and C. Lobry. Contrôllabilité bang-bang, Contrôllabilité différentiable et perturbation des systèmes non linéaires. Ann. di Mathematica Pura ed Applicatta, IV, (1975) pp.93-119.
- [72] P. Van den Driessche and J. Watmough. (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Bioscience 180: 29-48.
- [73] Perelson A.S, Kirschner D. and De Boer R. (1993) Dynamics of HIV infection of CD4⁺ T cells. Math. Bioscience 114 : 81-125.
- [74] P.L. Lions Optimal Control of diffusion processes and Hamilton-Jacobi-Bellman équations, part1 : The dynamic Programming Principle and Applications. comm. in partial differential equations. 8.1101-1174. 1983.
- [75] P.L. Lions Optimal Control of diffusion processes and Hamilton-Jacobi-Bellman équations, part2 : Viscosity Solutions and uniqueness comm. in partial differential equations. 8(11).1229-1276. 1983.
- [76] P.L. Lions Optimal Control of diffusion processes and Hamilton-Jacobi-Bellman équations, part3 : Regularity of the optimal cost function. In Nonlinear Partial Differential Equations and Applications. College de France Seminar, Volume 5, Pitman, London, 1983.
- [77] P.L. Lions Optimal stochastic Control of diffusion type processes and Hamilton-Jacobi-Bellman équations. In advances in Filtering and Optimal Stochastic Control. Ed., W.H. Fleming and L. Gorostiza, Springer Lecture Notes. In Control and Information Sciences, Berlin, 1982.
- [78] P.L. Lions Fully nonlinear elliptic equations and applications. Proceedings of the Function Spaces and Applications Vonference, in Pisek, Teubner, Leipzig, 1982.

- [79] P.L. Lions and B. Mercier Approximation numeric of Hamilton-Jacobi-Bellman equations. RAIRO Anal. Numer., 14, 369-393.
- [80] Pontryagin, L.S. Boltyanskii, V.G., Gamkrelidze, R.V. and Mishchenko, E.F. (1962) The mathematical theory of optimal processes. Int. Jouurnal of Math. Analysis vol.7, n°18, 873-882.
- [81] R. Bellman *On the Theory of Dynamic Progamming* Proceedings of the National Academy of Sciences of the United States of America. 38.N°8, 716-719 (1952).
- [82] R. Bellman Dynamic Progamming Princeton University Press page 83. 1957
- [83] R. Hoppe Multigrid methods for Hamilton-Jacobi-Bellman equations. Numersche Mathematik. 49, 235-254. 1986
- [84] R.C. Merton Lifetime portfolio selection under uncertainty : The continuous-time. *Review* of Economics and Statistics Vol.51(3),247-257, 1969.
- [85] R.G. Bartle Introduction to Real Analysis. Wiley, Dordrecht 2000.
- [86] R. Liptser A Strong law of large numbers for locales, Stochastics 3 (1980), 217-228.
- [87] R.M. Anderson., Mathematical and statistical studies of the epidemiology of HIV, AIDS R.M. Anderson, 4 (1990). 107
- [88] R.M. Anderson, R.M. May., Complex dynamical behavior in the interaction between HIV and the immune system, in : A. Goldbeter (Ed.), Cell to Cell Signalling : From Experiments to Theoretical Models Academic Press, New York, 1989, p. 335.
- [89] R.Z. Khasminskii *Stochastic stability of differential equations*. Sijthoff and Noordhof Alphen, Transl. 1980.
- [90] S. Peng A general stochastic maximum principle for optimal control problems SIAM J. Control Optim. 28(4), 966-979. 1990.
- [91] Sun M. Domain decomposition algorithms for solving Hamilton-Jacobi-Bellman equations Numerical Funct. Anal. and Optim. 14, 145-166. 1993.
- [92] Stanislas Ouara, and Ali Traoré. Deterministic and stochastic Schistosomiasis Models With General Incidence. *Applied Mathematics*, 4 (2013), 1682-1693.
- [93] Stewart N. Ethier and Thomas G. Kurtz. *Markov processes*. Wley series in Probability and Mathematical Statistics, John Wiley and Sons Inc. New York 1986.
- [94] S. Dreyfus (2002). Richard Bellman on the Birth of Dynamic Programming. Operations Research. 50, N°1, 48-51 (2002).
- [95] Thiem, H. and Castillo-Chavez. 1993. *How May Infection-Age-Dependent Infectivity affect the Dynamics of HIV/AIDS*?. SIAM J. Appl. Math. 53 : 1447-1479.
- [96] Thieme, H. R. 1993. *Mathematics in population biology*. Princeton University Press Princeton and Oxford, 2003.

- [97] Vivek S. Borkar *Optmal control of diffusion processes*. Pitman Research Notes in Mathematics Series volume 203, Longman Scientific and Technical, Harlow. 1989.
- [98] Vicente Rico-Ramirez, Fabricio Napoles-Rivera, Guillermo González-Alatorre a and Urmila M. Diwekar. Stochastic Optmal Control for the Treatment of a Pathogenic Disease. 20th European Symposium on Computer Aided Process Engineering.ESCAPE20 S. Pierucci and G. Buzzi Ferraris (Editors). © 2010 Elsevier B.V.
- [99] $https//:www.google.fr/?gws_rd = ssl#cancer+du+col+d'uterud+image+google$
- [100] W.H. Fleming and H.M. Soner *Controlled Markov processes and Visosity Solutions*. Springer-Verlag. New York. 1993.
- [101] W.H. Fleming and R. Rishel *Deterministe and stochastic optimal control*. Springer-Berlin. 1975.
- [102] Wodarz D. 2001. Helper-dependent vs Helper-independent CTL Reponses in HIV Infection, Implication for Drug Therapy and Resistance. J. Theor. Biol. 2013 : 447-459.
- [103] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. London Ser. A, 115(772) :700-721, 1927. doi : 10.1098/ rspa.1927.
- [104] Wai-Yuan T. and Hulin Wu. Deterministic and Stochastic Models of AIDS Epidemics and HIV Infections with Intervention. World Scientific Publishing, Co. Pte. Ltd 5 Toh Tuch Link, Singapore 596224. ISBN 981-256-139-0. (2005).
- [105] Yanan Zhao and Daquing Jiang *The behavior of an SVIR Epidemic Model With Stochastic Perturbation*. Research Article Hindawi Publishing Corporation. Astract and Applied Analysis. Volume 2014. ID 742730, 7 pages (2014).