REPUBLIQUE DU CAMEROUN Paix – Travail – Patrie *******

UNIVERSITE DE YAOUNDE I FACULTE DES SCIENCES DEPARTEMENT DE CHIMIE ORGANIQUE *******

REPUBLIC OF CAMEROUN Peace – Work – Fatherland *******

UNIVERSITY OF YAOUNDE I FACULTY OF SCIENCE DEPARTMENT OF ORGANIC CHEMISTRY ******

Laboratoire des Substances Naturelles et Valorisation

> Caractérisation des constituants chimiques de Cordia millenii Baker (Boraginaceae) et évaluation de leurs propriétés antibactériennes et antivirales

Thèse rédigée et soutenue publiquement en vue de l'obtention du diplôme de Doctorat/ Ph.D en Chimie Organique

Par : **DONGMO ZEUKANG Rostanie** Master en Chimie Organique

Sous la direction de ATCHADÉ Alex de Théodore Maître de Conférences

Année Académique : 2019 - 2020

UNIVERSITE DE YAOUNDE I ********

FACULTE DES SCIENCES

CENTRE DE RECHERCHE ET DE FORMATION DOCTORALE EN SCIENCES, TECHNOLOGIE ET GEOSCIENCES

THE UNIVERSITY OF YAOUNDE I

FACULTY OF SCIENCE

POSTGRADUATE SCHOOL OF SCIENCE, TECHNOLOGY AND GEOSCIENCES ********

DÉPARTEMENT DE CHIMIE ORGANIQUE ******

DEPARTMENT OF ORGANIC CHEMISTRY *****

Laboratoire des Substances Naturelles et Valorisation

Caractérisation des constituants chimiques de *Cordia millenii* Baker (Boraginaceae) et évaluation de leurs propriétés antibactériennes et antivirales

Thèse rédigée et soutenue publiquement en vue de l'obtention du diplôme de Doctorat/ Ph.D en Chimie Organique Option : Chimie des Substances Naturelles

> Par DONGMO ZEUKANG Rostanie Matricule : 05T293 Master en Chimie Organique

> > Sous la direction de :

ATCHADÉ Alex de Théodore Maître de Conférences

Année académique : 2019 - 2020

UNIVERSITE DE YAOUNDE I

FACULTE DES SCIENCES

CENTRE DE RECHERCHE ET DE FORMATION DOCTORALE EN SCIENCES, TECHNOGIES ET GEOSSCIENCES

UNITE DE RECHERCHE ET DE FORMATION DOCTORALE EN CHIMIE ET APPLICATIONS

THE UNIVERSITY OF YAOUNDE I FACULTY OF SCIENCE

POSTGRADUATE SCHOOL OF SCIENCE, TECHNOLOGY AN, GEOSCIENCES

RESEARCH AND POSTGRADUATE TRAINNING UNIT FOR CHEMISTRY AND APPLICATIONS

DEPARTEMENT DE CHIMIE ORGANIQUE DEPARTMENT OF ORGANIC CHEMISTRY

ATTESTATION DE CORRECTION

<u>Titre de la thèse</u> : « Caractérisation des constituants chimiques de *Cordia millenii* Baker (Boraginaceae) et évaluation de leurs propriétés antibactériennes et antivirales»

Nous, Professeurs PEGNYEMB Dieudonné Emmanuel, TAPONDJOU AZEFACK Léon, PENLAP NINTCHOM Véronique épouse BENG, MKOUNGA Pierre, NGONO BIKOBO Dominique Serge et ATCHADÉ Alex de Théodore attestons que la candidate DONGMO ZEUKANG Rostanie (Matricule : 05T293) a bel et bien pris en compte dans la mouture finale toutes les corrections qui lui ont été faites conformément aux recommandations du jury.

En foi de quoi nous lui délivrons cette attestation de correction pour servir et valoir ce que de droit.

Fait à Yaoundé, le 29 Juillet 2020

Président :

PEGNYEMB Dieudonné Emmanuel Professeur Membres :

Rapporteur

- decentry

ATCHADÉ Alex de Théodore

Maître de Conférences

PENLAP NINTCHOM Véronique épouse BENG *Professeur*

MKOUNGA Pierre Maître de Conférences

NGONO BIKOBO Dominique Serge *Maître de Conférences*

LISTE PROTOCOLAIRE

UNIVERSITÉ DE YAOUNDÉ I Faculté des Sciences Division de la Programmation et du Suivi des Activités Académiques

 THE UNIVERSITY OF YAOUNDE I

 Faculty of Science

 Division of Programming and Follow-up

 of Academic Affaires

 LIST OF PERMANENT TEACHING STAFF

LISTE DES ENSEIGNANTS PERMANENTS

ANNÉE ACADEMIQUE 2019/2020

(Par Département et par Grade)

DATE D'ACTUALISATION 12 juin 2020

ADMINISTRATION

DOYEN : TCHOUANKEU Jean- Claude, Maître de Conférences

VICE-DOYEN / DPSAA : ATCHADE Alex de Théodore, Maître de Conférences

VICE-DOYEN / DSSE : AJEAGAH Gideon AGHAINDUM, Professeur

VICE-DOYEN / DRC : ABOSSOLO Monique, Maître de Conférences

Chef Division Administrative et Financière : NDOYE FOE Marie C. F., Maître de Conférences

Chef Division des Affaires Académiques, de la Scolarité et de la Recherche DAASR : MBAZE MEVA'A Luc Léonard, *Professeur*

1- DÉPARTEMENT DE BIOCHIMIE (BC) (38)			
N°	Noms et Prénoms	Grade	Observations
1	BIGOGA DIAGA Jude	Professeur	En poste
2	FEKAM BOYOM Fabrice	Professeur	En poste
3	FOKOU Elie	Professeur	En poste
4	KANSCI Germain	Professeur	En poste
5	MBACHAM FON Wilfried	Professeur	En poste
6	MOUNDIPA FEWOU Paul	Professeur	Chef de Département
7	NINTCHOM PENLAP V. épse BENG	Professeur	En poste
8	OBEN Julius ENYONG	Professeur	En poste
9	ACHU Merci BIH	Maître de Conférences	En poste
10	ATOGHO Barbara Mma	Maître de Conférences	En poste
11	AZANTSA KINGUE GABIN BORIS	Maître de Conférences	En poste
12	BELINGA née NDOYE FOE M. C.F.	Maître de Conférences	Chef DAF / FS
13	BOUDJEKO Thaddée	Maître de Conférences	En poste
14	DJUIDJE NGOUNOUE Marcelline	Maître de Conférences	En poste
15	EFFA NNOMO Pierre	Maître de Conférences	En poste
16	NANA Louise épouse WAKAM	Maître de Conférences	En poste
17	NGONDI Judith Laure	Maître de Conférences	En poste

18	NGUEFACK Julienne	Maître de Conférences	En poste
19	NJAYOU Frédéric Nico	Maître de Conférences	En poste
20	MOFOR née TEUGWA Clotilde	Maître de Conférences	Inspecteur de Service MINESUP
21	TCHANA KOUATCHOUA Angèle	Maître de Conférences	En poste
22	AKINDEH MBUH NJI	Chargé de Cours	En poste
23	BEBOY EDZENGUELE Sara Nathalie	Chargée de Cours	En poste
24	DAKOLE DABOY Charles	Chargé de Cours	En poste
25	DJUIKWO NKONGA Ruth Viviane	Chargée de Cours	En poste
26	DONGMO LEKAGNE Joseph Blaise	Chargé de Cours	En poste
27	EWANE Cécile Anne	Chargée de Cours	En poste
28	FONKOUA Martin	Chargé de Cours	En poste
29	BEBEE Fadimatou	Chargée de Cours	En poste
30	KOTUE KAPTUE Charles	Chargé de Cours	En poste
31	LUNGA Paul KEILAH	Chargé de Cours	En poste
32	MANANGA Marlyse Joséphine	Chargée de Cours	En poste
33	MBONG ANGIE M. Mary Anne	Chargée de Cours	En poste
34	PECHANGOU NSANGOU Sylvain	Chargé de Cours	En poste
35	Palmer MASUMBE NETONGO	Chargé de Cours	En poste
36	MBOUCHE FANMOE M. Joëlle	Assistante	En poste
37	OWONA AYISSI Vincent Brice	Assistant	En poste
38	WILFRIED ANGIE Abia	Assistante	En poste

	2- DÉPARTEMENT DE BIOLOGIE ET PHYSIOLOGIE ANIMALES (BPA) (48)			
1	AJEAGAH Gideon AGHAINDUM	Professeur	VICE-DOYEN / DSSE	
2	BILONG BILONG Charles-Félix	Professeur	Chef de Département	
3	DIMO Théophile	Professeur	En Poste	
4	DJIETO LORDON Champlain	Professeur	En Poste	
5	ESSOMBA née NTSAMA MBALA	Professeur	Vice-Doyen/FMSB/UYI	
6	FOMENA Abraham	Professeur	En Poste	
7	KAMTCHOUING Pierre	Professeur	En poste	
8	NJAMEN Dieudonné	Professeur	En poste	
9	NJIOKOU Flobert	Professeur	En Poste	
10	NOLA Moïse	Professeur	En poste	
11	TAN Paul VERNYUY	Professeur	En poste	
12	TCHUEM TCHUENTE Louis Albert	Professeur	Inspecteur de service Coord.Progr./MINSANTÉ	
13	ZEBAZE TOGOUET Serge Hubert	Professeur	En poste	
14	BILANDA Danielle Claude	Maître de Conférences	En poste	
15	DJIOGUE Séfirin	Maître de Conférences	En poste	
16	DZEUFIET DJOMENI Paul Désiré	Maître de Conférences	En poste	
17	JATSA BOUKENG Hermine épse MEGAPTCHE	Maître de Conférences	En Poste	
18	KEKEUNOU Sévilor	Maître de Conférences	En poste	
19	MEGNEKOU Rosette	Maître de Conférences	En poste	
20	MONY Ruth épse NTONE	Maître de Conférences	En Poste	
21	NGUEGUIM TSOFACK Florence	Maître de Conférences	En poste	
22	TOMBI Jeannette	Maître de Conférences	En poste	
23	ALENE Désirée Chantal	Chargée de Cours	En poste	
26	ATSAMO Albert Donatien	Chargé de Cours	En poste	
27	BELLET EDIMO Oscar Roger	Chargé de Cours	En poste	
28	DONFACK Mireille	Chargée de Cours	En poste	

29	ETEME ENAMA Serge	Chargé de Cours	En poste
30	GOUNOUE KAMKUMO Raceline	Chargée de Cours	En poste
31	KANDEDA KAVAYE Antoine	Chargé de Cours	En poste
32	LEKEUFACK FOLEFACK Guy B.	Chargé de Cours	En poste
33	MAHOB Raymond Joseph	Chargé de Cours	En poste
34	MBENOUN MASSE Paul Serge	Chargé de Cours	En poste
35	MOUNGANG LucianeMarlyse	Chargée de Cours	En poste
36	MVEYO NDANKEU Yves Patrick	Chargé de Cours	En poste
37	NGOUATEU KENFACK Omer Bébé	Chargé de Cours	En poste
38	NGUEMBOK	Chargé de Cours	En poste
39	NJUA Clarisse Yafi	Chargée de Cours	Chef Div. UBA
40	NOAH EWOTI Olive Vivien	Chargée de Cours	En poste
41	TADU Zephyrin	Chargé de Cours	En poste
42	TAMSA ARFAO Antoine	Chargé de Cours	En poste
43	YEDE	Chargé de Cours	En poste
44	BASSOCK BAYIHA Etienne Didier	Assistant	En poste
45	ESSAMA MBIDA Désirée Sandrine	Assistante	En poste
46	KOGA MANG DOBARA	Assistant	En poste
47	LEME BANOCK Lucie	Assistante	En poste
48	YOUNOUSSA LAME	Assistant	En poste

2. ΒΈΡΑ ΡΤΕΜΕΝΤ ΝΕ ΒΙΔΙ ΔΩΙΕ ΕΤ ΡΙΝΟΙΔΙ ΔΩΙΕ ΜΈΩΕΤΑΙ ΕΩ (ΒΡΥ) (23)				
	3- DEPARTEMENT DE BIOLOGIE ET PHYSIOLOGIE VEGETALES (BPV) (33)			
1	AMBANG Zachée	Professeur	Chef Division/UYII	
2	BELL Joseph Martin	Professeur	En poste	
3	DJOCGOUE Pierre François	Professeur	En poste	
4	MOSSEBO Dominique Claude	Professeur	En poste	
5	YOUMBI Emmanuel	Professeur	Chef de Département	
6	ZAPFACK Louis	Professeur	En poste	
7	ANGONI Hyacinthe	Maître de Conférences	En poste	
8	BIYE Elvire Hortense	Maître de Conférences	En poste	
9	KENGNE NOUMSI Ives Magloire	Maître de Conférences	En poste	
10	MALA Armand William	Maître de Conférences	En poste	
11	MBARGA BINDZI Marie Alain	Maître de Conférences	CT/ MINESUP	
12	MBOLO Marie	Maître de Conférences	En poste	
13	NDONGO BEKOLO	Maître de Conférences	CE / MINRESI	
14	NGODO MELINGUI Jean Baptiste	Maître de Conférences	En poste	
15	NGONKEU MAGAPTCHE Eddy L.	Maître de Conférences	En poste	
16	TSOATA Esaïe	Maître de Conférences	En poste	
17	TONFACK Libert Brice	Maître de Conférences	En poste	
18	DJEUANI Astride Carole	Chargé de Cours	En poste	
19	GOMANDJE Christelle	Chargée de Cours	En poste	
20	MAFFO MAFFO Nicole Liliane	Chargé de Cours	En poste	
21	MAHBOU SOMO TOUKAM. Gabriel	Chargé de Cours	En poste	
22	NGALLE Hermine BILLE	Chargée de Cours	En poste	
23	NGOUO Lucas Vincent	Chargé de Cours	En poste	
24	NNANGA MEBENGA Ruth Laure	Chargé de Cours	En poste	
25	NOUKEU KOUAKAM Armelle	Chargé de Cours	En poste	
26	ONANA JEAN MICHEL	Chargé de Cours	En poste	
27	GODSWILL N. NTSEFONG	Assistant	En poste	
28	KABELONG B. Louis-Paul-Roger	Assistant	En poste	
29	KONO Léon Dieudonné	Assistant	En poste	
30	LIBALAH Moses BAKONCK	Assistant	En poste	
31	LIKENG-LI-NGUE Benoit C	Assistant	En poste	

32	TAEDOUNG Evariste Hermann	Assistant	En poste
33	TEMEGNE NONO Carine	Assistant	En poste

	4- DÉPARTEMENT DE CHIMIE INORGANIQUE (CI) (34)			
1	AGWARA ONDOH Moïse	Professeur	Chef de Département	
2	ELIMBI Antoine	Professeur	En poste	
3	Florence UFI CHINJE épse MELO	Professeur	Recteur Univ.Ngaoundere	
4		Professour	Ministre Chargé	
4		Floresseul	deMiss.PR	
5	NANSEU Njiki Charles Péguy	Professeur	En poste	
6	NDIFON Peter TEKE	Professeur	CT MINRESI	
7	NGOMO Horace MANGA	Professeur	Vice Chancelor/UB	
8	NDIKONTAR Maurice KOR	Professeur	Vice-Doyen/ Univ.	
0	NDIKONTAK Mauree Kok	Tolesseur	Bamenda	
9	NENWA Justin	Professeur	En poste	
10	NGAMENI Emmanuel	Professeur	Doyen FS/UDs	
11	BABALE née DJAM DOUDOU	Maître de Conférences	Chargée Mission P.R.	
12	DJOUFAC WOUMFO Emmanuel	Maître de Conférences	En poste	
13	EMADACK Alphonse	Maître de Conférences	En poste	
14	KAMGANG YOUBI Georges	Maître de Conférences	En poste	
15	KEMMEGNE MBOUGUEM Jean C.	Maître de Conférences	En poste	
16	KONG SAKEO	Maître de Conférences	En poste	
17	NDI NSAMI Julius	Maître de Conférences	En poste	
18	NJIOMOU C. épse DJANGANG	Maître de Conférences	En poste	
19	NJOYA Dayirou	Maître de Conférences	En poste	
20	ACAYANKA Elie	Chargé de Cours	En poste	
21	BELIBI BELIBI Placide Désiré	Chargé de Cours	CS/ ENS Bertoua	
22	CHEUMANI YONA Arnaud M.	Chargé de Cours	En poste	
23	KENNE DEDZO GUSTAVE	Chargé de Cours	En poste	
24	KOUOTOU Daouda	Chargé de Cours	En poste	
25	MAKON Thomas Beauregard	Chargé de Cours	En poste	
26	MBEY Jean Aime	Chargé de Cours	En poste	
27	NCHIMI NONO KATIA	Chargé de Cours	En poste	
28	NEBA née NDOSIRI Bridget NDOYE	Chargée de Cours	CT/ MINFEM	
29	NYAMEN Linda Dyorisse	Chargée de Cours	En poste	
30	PABOUDAM GBAMBIE A.	Chargée de Cours	En poste	
31	TCHAKOUTE KOUAMO Hervé	Chargé de Cours	En poste	
32	NJANKWA NJABONG N. Eric	Assistant	En poste	
33	PATOUOSSA ISSOFA	Assistant	En poste	
34	SIEWE Jean Mermoz	Assistant	En Poste	

5- DÉPARTEMENT DE CHIMIE ORGANIQUE (CO) (35)			
1	DONGO Etienne	Professeur	Vice-Doyen/DSSE/Fac. SED
2	GHOGOMU TIH Robert Ralph	Professeur	Dir. IBAF/UDA
3	NGOUELA Silvère Augustin	Professeur	Chef de Dpt UDs
4	NKENGFACK Augustin Ephrem	Professeur	Chef de Département
5	NYASSE Barthélemy	Professeur	En poste
6	PEGNYEMB Dieudonné Emmanuel	Professeur	Directeur/ MINESUP
7	WANDJI Jean	Professeur	En poste
8	Alex de Théodore ATCHADE	Maître de Conférences	Vice-Doyen / DPSAA
9	EYONG Kenneth OBEN	Maître de Conférences	En poste
10	FOLEFOC Gabriel NGOSONG	Maître de Conférences	En poste

11	FOTSO WABO Ghislain	Maître de Conférences	En poste
12	KEUMEDJIO Félix	Maître de Conférences	En poste
13	KEUMOGNE Marguerite	Maître de Conférences	En poste
14	KOUAM Jacques	Maître de Conférences	En poste
15	MBAZOA née DJAMA Céline	Maître de Conférences	En poste
16	MKOUNGA Pierre	Maître de Conférences	En poste
17	NOTE LOUGBOT Olivier Placide	Maître de Conférences	Chef Service/MINESUP
18	NGO MBING Joséphine	Maître de Conférences	Sous/Direct. MINRESI
19	NGONO BIKOBO Dominique Serge	Maître de Conférences	Chargé d'Études Ass. n°3/MINESUP
20	NOUNGOUE TCHAMO Diderot	Maître de Conférences	En poste
21	TABOPDA KUATE Turibio	Maître de Conférences	En poste
22	TCHOUANKEU Jean-Claude	Maître de Conférences	Doyen/FS/UYI
23	TIH née NGO BILONG E. Anastasie	Maître de Conférences	En poste
24	YANKEP Emmanuel	Maître de Conférences	En poste
25	AMBASSA Pantaléon	Chargé de Cours	En poste
26	KAMTO Eutrophe Le Doux	Chargé de Cours	En poste
27	MVOT AKAK Carine	Chargé de Cours	En poste
28	NGNINTEDO Dominique	Chargé de Cours	En poste
29	NGOMO Orléans	Chargée de Cours	En poste
30	OUAHOUO WACHE Blandine M.	Chargée de Cours	En poste
31	SIELINOU TEDJON Valérie	Chargé de Cours	En poste
32	TAGATSING FOTSING Maurice	Chargé de Cours	En poste
33	ZONDENDEGOUMBA Ernestine	Chargée de Cours	En poste
34	MESSI Angélique Nicolas	Assistant	En poste
35	TSEMEUGNE Joseph	Assistant	En poste

6- DÉPARTEMENT D'INFORMATIQUE (IN) (25)			
1	ATSA ETOUNDI Roger	Professeur	Chef Div.MINESUP
2	FOUDA NDJODO Marcel Laurent	Professeur	Chef Dpt ENS/Chef IGA. MINESUP
3	NDOUNDAM Réné	Maître de Conférences	En poste
4	AMINOU Halidou	Chargé de Cours	Chef de Département
5	DJAM Xaviera YOUH-KIMBI	Chargé de Cours	En Poste
6	EBELE Serge Alain	Chargé de Cours	En poste
7	KOUOKAM KOUOKAM E. A.	Chargé de Cours	En poste
8	MELATAGIA YONTA Paulin	Chargé de Cours	En poste
9	MOTO MPONG Serge Alain	Chargé de Cours	En poste
10	TAPAMO Hyppolite	Chargé de Cours	En poste
11	ABESSOLO ALO'O Gislain	Chargé de Cours	En poste
12	MONTHE DJIADEU Valery M.	Chargé de Cours	En poste
13	OLLE OLLE Daniel Claude Delort	Chargé de Cours	C/D Enset. Ebolowa
14	TINDO Gilbert	Chargé de Cours	En poste
15	TSOPZE Norbert	Chargé de Cours	En poste
16	WAKU KOUAMOU Jules	Chargé de Cours	En poste
17	BAYEM Jacques Narcisse	Assistant	En poste
18	DOMGA KOMGUEM Rodrigue	Assistant	En poste
19	EKODECK Stéphane G. Raymond	Assistant	En poste
20	HAMZA Adamou	Assistant	En poste
21	JIOMEKONG AZANZI Fidel	Assistant	En poste
22	MAKEMBE S. Oswald	Assistant	En poste
23	MESSI NGUELE Thomas	Assistant	En poste
24	MEYEMDOU Nadège Sylvianne	Assistante	En poste

 25
 NKONDOCK M. BAHANACK N.
 Assistant
 En poste

	7- DÉPARTEMENT DE MATHÉMATIQUES (MA) (30)			
1	EMVUDU WONO Yves S.	Professeur	Inspecteur MINESUP	
2	AYISSI Raoult Domingo	Maître de Conférences	Chef de Département	
3	NKUIMI JUGNIA Célestin	Maître de Conférences	En poste	
4	NOUNDJEU Pierre	Maître de Conférences	Chef service des programmes & Diplômes	
5	MBEHOU Mohamed	Maître de Conférences	En poste	
6	TCHAPNDA NJABO Sophonie B.	Maître de Conférences	Directeur/AIMS Rwanda	
7	AGHOUKENG JIOFACK J. Gérard	Chargé de Cours	Chef Cellule MINPLAMAT	
8	CHENDJOU Gilbert	Chargé de Cours	En poste	
9	DJIADEU NGAHA Michel	Chargé de Cours	En poste	
10	DOUANLA YONTA Herman	Chargé de Cours	En poste	
11	FOMEKONG Christophe	Chargé de Cours	En poste	
12	KIANPI Maurice	Chargé de Cours	En poste	
13	KIKI Maxime Armand	Chargé de Cours	En poste	
14	MBAKOP Guy Merlin	Chargé de Cours	En poste	
15	MBANG Joseph	Chargé de Cours	En poste	
16	MBELE BIDIMA Martin Ledoux	Chargé de Cours	En poste	
17	MENGUE MENGUE David Joe	Chargé de Cours	En poste	
18	NGUEFACK Bernard	Chargé de Cours	En poste	
19	NIMPA PEFOUKEU Romain	Chargée de Cours	En poste	
20	POLA DOUNDOU Emmanuel	Chargé de Cours	En poste	
21	TAKAM SOH Patrice	Chargé de Cours	En poste	
22	TCHANGANG Roger Duclos	Chargé de Cours	En poste	
23	TCHOUNDJA Edgar Landry	Chargé de Cours	En poste	
24	TETSADJIO TCHILEPECK M.E.	Chargée de Cours	En poste	
25	TIAYA TSAGUE N. Anne-Marie	Chargée de Cours	En poste	
26	MBIAKOP Hilaire George	Assistant	En poste	
27	BITYE MVONDO Esther Claudine	Assistante	En poste	
28	MBATAKOU Salomon Joseph	Assistant	En poste	
29	MEFENZA NOUNTU Thiery	Assistant	En poste	
30	TCHEUTIA Daniel Duviol	Assistant	En poste	

	8- DÉPARTEMENT DE MICROBIOLOGIE (MIB) (18)			
1	ESSIA NGANG Jean Justin	Professeur	Chef de Département	
2	BOYOMO ONANA	Maître de Conférences	En poste	
3	NWAGA Dieudonné M.	Maître de Conférences	En poste	
4	NYEGUE Maximilienne Ascension	Maître de Conférences	En poste	
5	RIWOM Sara Honorine	Maître de Conférences	En poste	
6	SADO KAMDEM Sylvain Leroy	Maître de Conférences	En poste	
7	ASSAM ASSAM Jean Paul	Chargé de Cours	En poste	
8	BODA Maurice	Chargé de Cours	En poste	
9	BOUGNOM Blaise Pascal	Chargé de Cours	En poste	
10	ESSONO OBOUGOU Germain G.	Chargé de Cours	En poste	
11	NJIKI BIKOÏ Jacky	Chargée de Cours	En poste	
12	TCHIKOUA Roger	Chargé de Cours	En poste	
13	ESSONO Damien Marie	Assistant	En poste	
14	LAMYE Glory MOH	Assistant	En poste	
15	MEYIN A EBONG Solange	Assistante	En poste	
16	NKOUDOU ZE Nardis	Assistant	En poste	

17	SAKE NGANE Carole Stéphanie	Assistante	En poste			
18	TOBOLBAÏ Richard	Assistant	En poste			
9- DEPARTEMENT DE PYSIQUE(PHY) (40)						
1	BEN- BOLIE Germain Hubert	Professeur	En poste			
2	EKOBENA FOUDA Henri Paul	Professeur	Chef Division. UN			
3	ESSIMBI ZOBO Bernard	Professeur	En poste			
4	KOFANE Timoléon Crépin	Professeur	En poste			
5	NANA ENGO Serge Guy	Professeur	En poste			
6	NDJAKA Jean Marie Bienvenu	Professeur	Chef de Département			
7	NOUAYOU Robert	Professeur	En poste			
8	NJANDJOCK NOUCK Philippe	Professeur	Sous Directeur/ MINRESI			
9	PEMHA Elkana	Professeur	En poste			
10	TABOD Charles TABOD	Professeur	Doyen Univ/Bda			
11	TCHAWOUA Clément	Professeur	En poste			
12	WOAFO Paul	Professeur	En poste			
13	BIYA MOTTO Frédéric	Maître de Conférences	DG/HYDRO Mekin			
14	BODO Bertrand	Maître de Conférences	En poste			
15	DJUIDJE KENMOE épse ALOYEM	Maître de Conférences	En poste			
16	EYEBE FOUDA Jean sire	Maître de Conférences	En poste			
17	FEWO Serge Ibraïd	Maître de Conférences	En poste			
18	HONA Jacques	Maître de Conférences	En poste			
19	MBANE BIOUELE César	Maître de Conférences	En poste			
20	NANA NBENDJO Blaise	Maître de Conférences	En poste			
21	NDOP Joseph	Maître de Conférences	En poste			
22	SAIDOU	Maître de Conférences	MINERESI			
23	SIEWE SIEWE Martin	Maître de Conférences	En poste			
24	SIMO Elie	Maître de Conférences	En poste			
25	VONDOU Derbetini Appolinaire	Maître de Conférences	En poste			
26	WAKATA née BEYA Annie	Maître de Conférences	Sous Dir./ MINESUP			
27	ZEKENG Serge Sylvain	Maître de Contérences	En poste			
28		Charge de Cours	En poste			
29	EDONGUE HERVAIS	Charge de Cours	En poste			
30	ENYEGUE A NYAM epse BELINGA	Chargee de Cours	En poste			
31	FOUEDJIO David	Charge de Cours	Chef Cell. MINADER			
32	MBINACK Clement	Charge de Cours	En poste			
24	MELI'L Locito Lorizzo	Chargée de Cours	En poste			
25	MELI I Joene Lanssa	Chargé de Cours	En poste			
26	MVOGO ALAIN		DA/Ilain Inter État/			
30	OBOUNOU Marcel	Chargé de Cours	Sangmalima			
37	WOULACHE Rosalie Laure	Chargée de Cours	En poste			
38	AYISSI EYEBE Guy F. Valérie	Assistant	En poste			
39	CHAMANI Roméo	Assistant	En poste			
40	TEYOU NGOUPOU Ariel	Assistant	En poste			
	10- DÉPARTEMENT DE S	SCIENCES DE LA TERRE (ST) (43)			
1	BITOM Dieudonné	Professeur	Doyen / FASA / UDs			
2	FOUATEU Rose épse YONGUE	Professeur	En poste			
3	KAMGANG Pierre	Professeur	En poste			
4	NDJIGUI Paul Désiré	Professeur	Chef de Département			

5	NDAM NGOUPAYOU Jules-Remy	Professeur	En poste
6	NGOS III Simon	Professeur	DAAC/Uma
7	NKOUMBOU Charles	Professeur	En poste
8	NZENTI Jean-Paul	Professeur	En poste
9	ABOSSOLO née ANGUE Monique	Maître de Conférences	Vice-Doyen / DRC
10	GHOGOMU Richard TANWI	Maître de Conférences	CD/Uma
11	MOUNDI Amidou	Maître de Conférences	CT/ MINIMDT
12	NGUEUTCHOUA Gabriel	Maître de Conférences	CEA/MINRESI
13	NJILAH Isaac KONFOR	Maître de Conférences	En poste
14	ONANA Vincent Laurent	Maître de Conférences	Chef service Maintenance & du Matériel
15	BISSO Dieudonné	Maître de Conférences	Directeur/Projet Barrage Memve'ele
16	EKOMANE Emile	Maître de Conférences	En poste
17	GANNO Sylvestre	Maître de Conférences	En poste
18	NYECK Bruno	Maître de Conférences	En poste
19	TCHOUANKOUE Jean-Pierre	Maître de Conférences	En poste
20	TEMDJIM Robert	Maître de Conférences	En poste
21	YENE ATANGANA Joseph Q.	Maître de Conférences	Chef Div. /MINTP
22	ZO'O ZAME Philémon	Maître de Conférences	DG/ART
23	ANABA ONANA Achille Basile	Chargé de Cours	En poste
24	BEKOA Etienne	Chargé de Cours	En poste
25	ELISE SABABA	Chargé de Cours	En poste
26	ESSONO Jean	Chargé de Cours	En poste
27	EYONG JOHN TAKEM	Chargé de Cours	En poste
28	FUH Calistus Gentry	Chargé de Cours	Sec. D'Etat/MINMIDT
29	LAMILEN BILLA Daniel	Chargé de Cours	En poste
30	MBESSE CECILE OLIVE	Chargée de Cours	En poste
31	MBIDA YEM	Chargé de Cours	En poste
32	METANG Victor	Chargé de Cours	En poste
33	MINYEM Dieudonné-Lucien	Chargé de Cours	CD/Uma
34	NGO BELNOUN Rose Noël	Chargée de Cours	En poste
35	NGO BIDJECK Louise Marie	Chargée de Cours	En poste
36	NOMO NEGUE Emmanuel	Chargé de Cours	En poste
37	NTSAMA ATANGANA Jacqueline	Chargé de Cours	En poste
38	TCHAKOUNTE J. épse NOUMBEM	Chargée de Cours	Chef.cell / MINRESI
39	TCHAPTCHET TCHATO De P.	Chargé de Cours	En poste
40	TEHNA Nathanaël	Chargé de Cours	En poste
41	TEMGA Jean Pierre	Chargé de Cours	En poste
42	FEUMBA Roger	Assistant	En poste
43	MBANGA NYOBE Jules	Assistant	En poste

ſ

NOMBRE D'ENSEIGNANTS					
DÉPARTEMENT	Professeurs	Maîtres de Conférences	Chargés de Cours	Assistants	Total
BCH	9 (1)	13 (09)	14 (06)	3 (2)	39 (18)
BPA	13 (1)	09 (06)	19 (05)	05 (2)	46 (14)
BPV	06 (0)	11 (02)	9 (06)	07 (01)	33 (9)
CI	10(1)	9 (02)	12 (02)	03 (0)	34 (5)
CO	7 (0)	17 (04)	09 (03)	02 (0)	35(7)
IN	2 (0)	1 (0)	13 (01)	09 (01)	25 (2)
MAT	1 (0)	5 (0)	19 (01)	05 (02)	30 (3)
MIB	1 (0)	5 (02)	06 (01)	06 (02)	18 (5)
РНҮ	12 (0)	15 (02)	10 (03)	03 (0)	40 (5)
ST	8 (1)	14 (01)	19 (05)	02 (0)	43(7)
Total	69 (4)	99 (28)	130 (33)	45 (10)	343 (75)
Soit un total de		343 (75) do	nt :		
 Professeurs Maîtres de Conférences Chargés de Cours Assistants 		68 (4) 99 (28) 130 (33) 46 (10)			
() = Nombre	de Femmes	75			

Répartition chiffrée des Enseignants de la Faculté des Sciences de l'Université de Yaoundé I

DÉDICACES

Je dédie ce travail à :

Mon père ZEUKANG MARTIN

Ma mère **DONGFACK CHRISTINE**

REMERCIEMENTS

Ce travail n'aurait pu aboutir sans le soutien et l'encouragement de certaines institutions et personnes. Ainsi, j'adresse mes sincères remerciements:

Au **Pr. ATCHADÉ Alex**, mon directeur de thèse, pour m'avoir confié ce sujet de thèse, pour avoir cru en moi et pour la confiance qu'il m'a accordée durant ces années ; confiance sans laquelle je n'aurai pas pu donner le meilleur de moi-même. Grâce à votre écoute, humilité et vos critiques, j'ai pu mener ma thèse en toute sérénité et avec beaucoup d'enthousiasme. Vous n'avez pas seulement été mon directeur mais aussi un père qui s'est toujours montré disponible, soucieux et réconfortant aux moments difficiles. Vous m'avez accordé le droit à l'erreur et aussi appris à tirer des leçons de mes erreurs.

Au **Pr. MBAFOR TANYI Joseph**, pour m'avoir accepté dans son équipe de recherche, prodigué des conseils et pour avoir mis à ma disposition tous les moyens techniques nécessaires pour la réalisation de ce travail.

Au **Pr. NKENGFACK Augustin Ephrem**, Chef de Département de Chimie Organique pour sa disponibilité et les moyens techniques et humains qu'il mobilise pour l'encadrement des étudiants.

À tous les enseignants du Département de Chimie Organique dont j'ai bénéficié des enseignements dispensés. Je leur témoignage ma reconnaissance.

Au **Pr. RUI Krause**, Chef de Département de Chimie de Rhodes University (Afrique du Sud), pour sa disponibilité ; il a toujours répondu présent chaque fois qu'il a été sollicité pour l'évolution des travaux.

Au **Pr. CHOUDHARY Iqbal**, pour m'avoir accueilli dans son laboratoire et à l'ICCBS (International Center for Chemical and Biological Sciences). Infiniment merci Professeur, vos conseils et orientations lors de mon séjour au Pakistan ont été d'une très grande utilité pour l'avancement des travaux.

Au **Pr. TABOPDA KUIATE Turibio**, pour son assistance dans la détermination des structures, la rédaction de la thèse et l'article. Merci pour votre détermination, votre disponibilité, votre soutien sans faille. Ce fut un très grand plaisir de travailler avec vous.

Au **Dr. SIWE-NOUNDOU Xavier**, pour avoir enregistré certains spectres, évalué les tests biologiques et son indéfectible soutien à la réalisation de ce travail. Infiniment merci Docteur, malgré la distance des frontières, vous avez suivi d'un bout à l'autre l'évolution des travaux.

Au **Dr. TAGATSING FOTSING Maurice**, pour m'avoir prodigué des conseils et encouragements tout le long de mon travail.

Au Pr. NGONO BIKOBO Dominique, pour sa disponibilite, ses conseils et ses encouragements.

Au Pr. DJIOGUE Séfirin, pour la disponibilité accordée à la lecture de cette thèse.

À Monsieur NANA Victor, pour avoir identifié la plante d'étude.

À tous les membres du laboratoire, notamment **Dr. YAYA Abel**, Messieurs **KAYO Maurice, TOUKAM Paul, GADE Isaac, MBANE Martin, FEUNAING Roméo, EPAH Justin** et Madame **MAHAMAT Achi**, qui ont contribué à travers plusieurs moyens à faire régner l'esprit de collaboration et de dynamisme au sein de l'équipe de recherche.

À tous mes frères et sœurs : DJOUMESSI Yves, KENFACK Myraline, FONGOU Falain, LEKONGANG Ulrich, ZAFACK Arioce, ZOMBOUH Pamela, ACHINLENDEM Charoline, NKEMETSA Vanessa pour leurs encouragements, l'intérêt constant qu'ils ont montré pour mon travail, pour avoir été toujours à mes côtés sans réserve et avec amour, qu'ils trouvent ici l'expression de mon plus profond attachement.

À tous mes oncles et tantes qui m'ont toujours témoigné leur soutien et encouragement.

À tous mes amis notamment, messieurs **BEYEGUE Éric**, **DEFFO Clovis**, **KOAGNE Thierry** et **KENFACK Séverin** qui ont toujours été à mes côtés pendant les moments de découragement.

À toutes les personnes qui ne sont pas citées ici, dont leur contribution et soutien ont été d'un très grand apport à la réalisation de ce travail.

À la **TWAS** (The World Academy of Sciences), la **MRC** (The South African Medical Research Council) et **Rhodes University** (Afrique du Sud) qui ont soutenu matériellement et financièrement une partie des travaux.

SOMMAIRE

LISTE PROTOCOLAIRE	i
DÉDICACES	X
REMERCIEMENTS	xi
SOMMAIRE	xiii
LISTE DES ABRÉVIATIONS	xvii
LISTE DES TABLEAUX	xix
LISTE DES FIGURES	xxi
LISTE DES SCHÉMAS	xxiv
RÉSUMÉ	XXV
ABSTRACT	xxvi
INTRODUCTION GÉNÉRALE	2
REVUE DE LA LITTÉRATURE	5
1. Généralités sur le Syndrome d'Immunodéficience Acquise (SIDA)	6
1.1. Définition	6
1.2. Historique du VIH	6
1.3. Mode de transmission du VIH	
1.4. Mode d'action VIH	
1.5. Évolution de l'infection à VIH au stade SIDA.	12
1.6. Contrôle de l'évolution de l'infection du VIH	14
2. Généralités sur les infections bactériennes	
2.1. Définition	
2.2. Historique des infections bactériennes	
2.3. Classification des bactéries	
2.4. Mode de transmission des bactéries et infections bactériennes	
2.5. Diagnostic et traitement des infections bactériennes	21
3. Généralités sur les plantes de la famille des Boraginaceae	

3.1. Caractères généraux	24
3.2. Anatomie botanique	25
3.3. Usages traditionnels des plantes de la famille des Boraginaceae	25
3.4. Travaux chimiques antérieurs sur les plantes de la famille des Boraginac	eae 25
4. Généralités sur les plantes du genre Cordia	
4.1. Caractères généraux	
4.2. Anatomie botanique du genre Cordia	
4.3. Taxonomie du genre <i>Cordia</i>	
4.4. Usages traditionnels des plantes du genre Cordia	
4.5. Généralités sur l'espèce Cordia millenii	
4.6. Les depsidones	
4.7. Activités biologiques des depsidones	40
RÉSULTATS ET DISCUSSION	
	1.4
A. Etude phytochimique	
 A. Etude phytochimique 1. Isolement et caractérisation des composés isolés des écorces du trono <i>millenii</i> 	
 A. Etude phytochimique 1. Isolement et caractérisation des composés isolés des écorces du tronc <i>millenii</i> 1.1. Extraction et isolement 	
 A. Etude phytochimique 1. Isolement et caractérisation des composés isolés des écorces du tronc <i>millenii</i> 1.1. Extraction et isolement 1.2. Caractérisation chimique des composés isolés 	
 A. Etude phytochimique	
 A. Etude phytochimique	2 de <i>Cordia</i> 44 44 46 46 46
 A. Etude phytochimique	2 de <i>Cordia</i> 44 44 46 46 46
 A. Etude phytochimique	2 de <i>Cordia</i> 44 44 46 46 54 60 63
 A. Etude phytochimique 1. Isolement et caractérisation des composés isolés des écorces du tronc <i>millenii</i> 1.1. Extraction et isolement 1.2. Caractérisation chimique des composés isolés 1.2.1. Détermination de CM3 1.2.2. Identification de CM4 1.2.3. Identification de CM8 1.2.4. Identification de CM9 1.2.5. Identification de CM11 	2 de <i>Cordia</i> 44 44 46 46 54 60 63 66
 A. Etude phytochimique 1. Isolement et caractérisation des composés isolés des écorces du tronc <i>millenii</i> 1.1. Extraction et isolement 1.2. Caractérisation chimique des composés isolés 1.2.1. Détermination de CM3 1.2.2. Identification de CM4 1.2.3. Identification de CM8 1.2.4. Identification de CM9 1.2.5. Identification de CM11	2 de <i>Cordia</i> 44 44 46 46 54 60 63 63
 A. Etude phytochimique 1. Isolement et caractérisation des composés isolés des écorces du trono <i>millenii</i>	2 de <i>Cordia</i> 44 44 46 46 54 60 63 66 63 66 69 72
 A. Etude phytochimique 1. Isolement et caractérisation des composés isolés des écorces du tronc <i>millenii</i>	2 de <i>Cordia</i> 44 44 46 46 54 60 63 66 69 72 79
 A. Etude phytochimique	2 de <i>Cordia</i> 44 44 44 46 60 63 66 63 66 69 72 79 79

D

2.2.1. Identification de RCM1	
2.2.2. Identification de RCM3	
2.2.3. Identification de RCM9	
3. Isolement et caractérisation des composés des feuilles de Cordia millenii	
3.1. Extraction et isolement	
3.2. Caractérisation chimique des composés isolés	
3.2.1. Identification de FCM3	94
3.2.2. Identification de FCM6	
3.2.3. Identification de FCM8	
3.2.4. Identification de FCM9	
3.2.5. Identification de FCM10	110
B. Transformations chimiques	117
1. Acétylation des fonctions hydroxyles	117
1.1. Cas de TCM3	117
1.2. Cas de RCM3	
2. Estérification de la fonction acide de RCM9	
C- Activités biologiques	
1. Activité inhibitrice de l'intégrase du VIH de type I	
2. Activité antibactérienne	
3. Cytotoxicité	
CONCLUSION ET PERSPECTIVES	
PARTIE EXPÉRIMENTALE	
1. Appareillage	
1.1 Techniques chromatographiques	
1.2 Techniques spectroscopiques	139
1.2. Technique cristallographique	
2. Méthodologie	

2.1. Matériel végétal
2.1.1. Extraction, isolement et purification des composés des écorces du tronc de <i>Cordia</i> <i>millenii</i>
2.1.1.5 Caractéristiques physiques des composés isolés des écorces du tronc de <i>Cordia</i> <i>millenii</i>
2.1.2. Extraction, isolement et purification des composés isolés des racines de <i>Cordia</i> <i>millenii</i>
2.1.2.5. Caractéristiques physiques des composés isolés des racines de <i>Cordia millenii</i> .
2.1.3. Extraction, isolement et purification des composés des feuilles de <i>Cordia millenii</i>
2.1.3.6 Caractéristiques physiques des composés isolés des feuilles de <i>Cordia millenii</i> .
2.2. Réactions chimiques
2.2.1. Réaction d'acétylation
2.2.2. Réaction d'estérification
3. Tests biologiques
3.1. Activité inhibitrice de l'intégrase du VIH de type I152
3.2. Activité antibactérienne (Test du Blue alamar) 153
3.3. Activité cytotoxicité (Test MTT)154
4. Tests qualitatifs des composés isolés155
4.1. Test au chlorure ferrique
4.2. Test de Meyer
4.3. Test de Lasaigne
4.4. Test de Libermann –Burchard
RÉFÉRENCES
PUBLICATION

ſ

LISTE DES ABRÉVIATIONS

δ	:	Échelle de déplacement chimique en ppm
λ	:	Longueur d'onde
μΜ	:	Micromolaire
Ac ₂ O	:	Anhydride acétique
AcOEt	:	Acétate d'éthyle
ADN	:	Acide désoxyribonucléique
ARN	:	Acide ribonucléique
°C	:	Degré Celsius
¹³ C	:	Carbone 13
CC	:	Chromatographie sur Colonne
CDCl ₃	:	Chloroforme deuteré
C5D5N		Pyridine pentadeuteré
ССМ	:	Chromatographie sur Couche Mince
CoA	:	Coenzyme A
COSY	:	Correlation Spectroscopy
d	:	Doublet
dd	:	Doublet dédoublé
DEPT	:	Distortionless Enhancement by Polarization Transfert
DMSO	:	Diméthylsulfoxide
DMSO-d ₆	:	Diméthylsulfoxide hexadeuteré
EI	:	Electronic Ionization
ESI	:	Electrospray Ionization
FAB	:	Fast Atom Bombardment
$^{1}\mathrm{H}$:	Proton
HMBC	:	Heteronuclear Multiple Bond Correlation
HNC	:	Herbier National du Cameroun
HR	:	Haute résolution
HSQC	:	Heteronuclear Single Quantum Correlation
Hz	:	Hertz
J	:	Constante de couplage

m	:	Multiplet
m/z	:	Rapport masse/charge atomique
MeOH	:	Méthanol
MHz	:	Mégahertz
ppm	:	Partie par million
NOESY	:	Nuclear Overhauser Effect Spectroscopy
OMS	:	Organisation Mondiale de la Santé
ORTEP	:	Oak Ridge Thermal Ellipsoid Plot
q	:	Quartet
RMN ¹³ C	:	Résonance Magnétique Nucléaire du carbone 13
RMN ¹ H	:	Résonance Magnétique Nucléaire du proton
8	:	Singulet
SM	:	Spectrométrie de Masse

LISTE DES TABLEAUX

Tableau I: Données spectrales de RMN 1H (600 MHz, DMSO-d ₆), RMN ¹³ C (150 MHz,
DMSO- d_6), HMBC (¹ H : 600 MHz, ¹³ C : 150 MHz, DMSO- d_6) et NOESY (600
MHz, DMSO- <i>d</i> ₆) de CM353
Tableau II: Données spectrales de RMN $^1\mathrm{H}$ (600 MHz, DMSO-d_6), RMN $^{13}\mathrm{C}$ (150 MHz,
DMSO- d_6), HMBC (¹ H : 600 MHz, ¹³ C : 150 MHz, DMSO- d_6) et COSY (600
MHz, DMSO- <i>d</i> ₆) de CM4 comparées à celles de la litterature
Tableau III: Données spectrales de RMN ¹ H (500 MHz, CDCl ₃) de CM8 comparées à celles de
la littérature62
Tableau IV : Données spectrales de RMN ¹ H (500 MHz, CDCl ₃) de CM9 comparées à celles
de la littérature65
Tableau V: Données spectrales de RMN ¹ H (500 MHz, CDCl ₃) de CM11 comparées à celles
de la litterature
Tableau VI: Données spectrales de RMN ¹ H (500 MHz, CDCl ₃) de CM12 comparées à celles
de la litterature71
Tableau VII: Données spectrales de RMN $^1\mathrm{H}$ (500 MHz, $\mathrm{C}_5\mathrm{D}_5\mathrm{N}$), RMN $^{13}\mathrm{C}$ (125 MHz,
C ₅ D ₅ N), HMBC (1 H : 500 MHz, 13 C : 125 MHz, C ₅ D ₅ N) et COSY (500 MHz,
C ₅ D ₅ N) de TCM3 comparées à celles de la littérature78
Tableau VIII: Résumé des données cristallographiques et d'affinement de la structure de RCM1
Tableau IX: Données spectrales de RMN ¹ H (800 MHz, C ₅ D ₅ N), RMN ¹³ C (200 MHz, C ₅ D ₅ N)
et HMBC (¹ H : 800 MHz, ¹³ C : 200 MHz, C ₅ D ₅ N) de RCM3 comparées à celles de
la littérature
Tableau X: Données spectrales de RMN $^1\mathrm{H}$ (400 MHz, $C_5D_5N)$ et RMN $^{13}\mathrm{C}$ (100 MHz,
C5D5N), de RCM9 comparées à celles de la littérature91
Tableau XI: Données spectrales de RMN ¹ H (500 MHz, CDCl ₃), RMN ¹³ C (125 MHz, CDCl ₃)
de FCM3 comparée à celles de la littérature
Tableau XII: Données spectrales de RMN ¹ H (600 MHz, C ₅ D ₅ N) de FCM6 comparées avec
celles de la littérature102
Tableau XIII: Données spectrales de RMN ¹ H (600 MHz, CDCl ₃) de FCM8 105
Tableau XIV: Données spectrales de RMN ¹ H (500 MHz, CDCl ₃), RMN ¹³ C (125 MHz, CDCl ₃)
de FCM9 comparées à celles de la littérature

Tableau XV: Données spectrales de RMN ¹ H (500 MHz, CDCl ₃), RMN ¹³ C (125 MHz, CDCl ₃),
HMBC (1 H : 500 MHz, 13 C : 125 MHz, CDCl ₃) et COSY (500 MHz, CDCl ₃) de
FCM10
Tableau XVI : Récaputilatif des composés isolés de Cordia millenii
Tableau XVII: Données spectrales de RMN ¹ H (500 MHz, C ₅ D ₅ N) de TCM3 et (800 MHz
CDCl ₃) de TCM7 ; RMN 13 C (125 MHz, C ₅ D ₅ N) de TCM3 et (200 MHz, CDCl ₃)
de TCM7
Tableau XVIII: Données spectrales de RMN ¹ H (800 MHz, C ₅ D ₅ N) de RCM3 et (500 MHz
CDCl ₃) de RCM13 ; RMN 13 C (200 MHz, C ₅ D ₅ N) de RCM3 et (125 MHz, CDCl ₃)
de RCM13124
Tableau XIX: Données spectrales de RMN ¹ H (400 MHz, C ₅ D ₅ N) de RCM9 et (500 MHz,
CD ₃ OD) de RCM12
Tableau XX: Activité inhibitrice de l'intégrase du VIH de type I
Tableau XXI: Activité antibactérienne in vitro des fractions à l'acétate d'éthyle de Cordia
millenii
Tableau XXII: Cytotoxicité des extraits et fractions à l'acétate d'éthyle de Cordia millenii133
Tableau XXIII: Chromatogramme de la sous fraction SF1
Tableau XXIV: Chromatogramme de la sous fraction SF2
Tableau XXVI: Chromatogramme de la fraction F3 141
Tableau XXVII: Chromatogramme de la fraction F8 142
Tableau XXVIII: Chromatogramme de la sous fraction SF3
Tableau XXIX: Chromatogramme de la sous fraction SF2 148

LISTE DES FIGURES

Figure 1: Symbole de la cause du SIDA.	7
Figure 2 : Structure de la particule virale infectieuse du VIH-1	9
Figure 3: Histoire naturelle de l'infection par le VIH.	14
Figure 4: Morphologie bactérienne	19
Figure 5: Morphologie des différents types de bactéries	19
Figure 6: Répartition mondiale des plantes de la famille des Boraginaceae	24
Figure 7: Quelques alcaloïdes pyrrolizidiniques isolés de la famille des Boraginaceae	26
Figure 8: Quelques composés phénoliques isolés de la famille des Boraginaceae	26
Figure 9: Quelques acides gras isolés des plantes de la famille des Boraginaceae	27
Figure 10: Répartition mondiale des plantes du genre Cordia	28
Figure 11: Image des feuilles (a) et du tronc (b) de l'espèce Cordia millenii	30
Figure 12: Quelques triterpènes pentacycliques isolés des plantes du genre Cordia	33
Figure 13: Quelques dérivés de composés phénoliques isolés du genre Cordia	35
Figure 14: Quelques dérivés d'acides isolés du genre Cordia	36
Figure 15: Structure de base des depsidones	37
Figure 16: Quelques depsidones possédant des propriétés biologiques	41
Figure 17: Spectre de masse ESI de CM3	46
Figure 18: Spectre de RMN ¹ H (600 MHz, DMSO- <i>d</i> ₆) de CM3	47
Figure 19: Spectre de RMN ¹³ C (150 MHz, DMSO- <i>d</i> ₆) de CM3	48
Figure 20: Spectre DEPT 135 (150 MHz, DMSO-d ₆) de CM3	49
Figure 21: Spectre HMBC (1 H : 600 MHz, 13 C : 150 MHz, DMSO- d_6) de CM3	50
Figure 22: Spectre NOESY ¹ H - ¹ H (600 MHz, DMSO- <i>d</i> ₆) de CM3	52
Figure 23: Spectre de masse ESI de CM4	54
Figure 24 : Spectre de RMN ¹ H (600 MHz, DMSO- <i>d</i> ₆) de CM4	55
Figure 25: Spectre de RMN ¹³ C (150MHz, DMSO- <i>d</i> ₆) de CM4	56
Figure 26: Spectre HMBC (1 H : 600 MHz, 13 C : 150 MHz, DMSO- d_6) de CM4	57
Figure 27: Spectre COSY ¹ H- ¹ H (600 MHz, DMSO- <i>d</i> ₆) de CM4	58
Figure 28 : Spectre de RMN ¹ H (500 MHz, CDCl ₃ de CM8)	61
Figure 29 : Spectre de RMN ¹ H (500 MHz, CDCl ₃) de CM9	64
Figure 30 : Spectre de RMN ¹ H (500 MHz, CDCl ₃) de CM11	67

Figure 31 : Spectre de RMN ¹ H (500 MHz, CDCl ₃) de CM12	70
Figure 32: Spectre de masse FAB de TCM3	72
Figure 33: Spectre de RMN ¹ H (500 MHz, C ₅ D ₅ N) de TCM3	73
Figure 34: Spectre de RMN ¹ H élargi (500 MHz, C ₅ D ₅ N) de TCM3	74
Figure 35: Spectre de RMN ¹³ C (125 MHz, C ₅ D ₅ N) de TCM3	75
Figure 36: Spectre COSY ¹ H- ¹ H (500 MHz, C ₅ D ₅ N) de TCM3	75
Figure 37: Spectre HMBC (1 H : 500 MHz, 13 C : 125 MHz, C ₅ D ₅ N) de TCM3	76
Figure 38: Spectre de masse EI de TCM3	77
Figure 39: Spectre de masse EI de RCM1	81
Figure 40 : Spectre UV de RCM1	82
Figure 41: Image ORTEP de la structure cristalline de RCM1	82
Figure 42: Spectre de masse FAB de RCM3	
Figure 43: Spectre de RMN ¹ H élargi (800 MHz, C ₅ D ₅ N) de RCM3	85
Figure 44: Spectre de RMN ¹³ C (200 MHz, C ₅ D ₅ N) de RCM3	86
Figure 45: Spectre HMBC (1H : 800 MHz, 13C : 200 MHz, C ₅ D ₅ N) de RCM3	86
Figure 46: Spectre de masse EI de RCM9	88
Figure 47: Spectre de RMN ¹ H (400 MHz, C ₅ D ₅ N) de RCM9	89
Figure 48 : Spectre de RMN ¹³ C (100 MHz, C ₅ D ₅ N) de RCM9	90
Figure 49: Spectre de masse EI de FCM3	94
Figure 50: Spectre de RMN ¹ H élargi (500 MHz, CDCl ₃) de FCM3	95
Figure 51: Spectre de RMN ¹ H (500 MHz, CDCl ₃) de FCM3	96
Figure 52: Spectre de RMN ¹³ C (125 MHz, CDCl ₃) de FCM3	97
Figure 53: Spectre de RMN ¹ H (600 MHz, C ₅ D ₅ N) de FCM6	100
Figure 54: Spectre IE de FCM8	103
Figure 55: Spectre de RMN ¹ H (600 MHz, CDCl ₃) de FCM8	104
Figure 56: Spectre de masse ESI de FCM9	106
Figure 57: Spectre de RMN ¹ H (500 MHz, CDCl ₃) de FCM9	107
Figure 58: Spectre RMN ¹³ C (125 MHz, CDCl ₃) de FCM9	108
Figure 59: Spectre de masse ESI de FCM10	110
Figure 60: Spectre de RMN ¹ H élargi (500 MHz, CDCl ₃) de FCM10	111
Figure 61: Spectre de RMN ¹³ C (125 MHz, CDCl ₃) de FCM10	112
Figure 62: Spectre COSY ¹ H- ¹ H (500 MHz, CDCl ₃) de FCM10	113
Figure 63: Spectre HMBC (¹ H : 500 MHz, ¹³ C : 125 MHz, CDCl ₃) de FCM10	114

ſ

Figure 64: Spectres comparatifs de RMN 1 H (500 MHz, C ₅ D ₅ N) de TCM3 (A) et (800 MHz,
CDCl ₃) de TCM7 (B)118
Figure 65: Spectres comparatifs de RMN 13 C (125 MHz, C ₅ D ₅ N) de TCM3 (A) et (200 MHz,
CDCl ₃) TCM7 (B)119
Figure 66: Spectres comparatifs de RMN 1 H (800 MHz, C ₅ D ₅ N) de RCM3 (A) et (500 MHz,
CDCl ₃) de RCM13 (B)122
Figure 67: Spectres comparatifs de RMN 13 C (200 MHz, C ₅ D ₅ N) de RCM3 (A) et (125 MHz,
CDCl ₃) de RCM13 (B)123
Figure 68: Spectres comparatifs de RMN 1 H (400 MHz, C ₅ D ₅ N) de RCM9 (A) et (500 MHz,
CD ₃ OD) de RCM12 (B)126
Figure 69: Spectres comparatifs de RMN ¹ H (400 MHz, C ₅ D ₅ N) de RCM9 (A) et (500 MHz,
CD ₃ OD) de RCM12 (B)
Figure 70: Inhibition dose – dépendante du VIH par la cordidepsine (a) et de l'allantoïne (b).
130

LISTE DES SCHÉMAS

Schéma 1: Cycle de réplication du VIH-110
Schéma 2: Schéma de dépistage de l'infection VIH (adultes et enfants de plus de 18 mois) . 15
Schéma 3: Mécanisme d'action des inhibiteurs d'intégrase16
Schéma 4: Cycle de réplication du VIH et différentes cibles des antirétroviraux actuellement
commercialisés17
Schéma 5: Différentes étapes d'un test de diagnostic rapide (TDR) : cas d'une angine 22
Schéma 6: Biosynthèse de quelques familles des triterpènes pentacycliques
Schéma 7: Biosynthèse des depsidones
Schéma 8: Protocole d'extraction et d'isolement des composés de l'extrait brut à l'acétate
d'éthyle des écorces du tronc de <i>Cordia millenii</i> 45
Schéma 9: Corrélations observées sur le spectre HMBC de CM350
Schéma 10: Corrélations observées sur le spectre HMBC de CM3 (Suite et fin)
Schéma 11: Corrélations observées sur le spectre NOESY de CM3 52
Schéma 12: Corrélations observées sur le spectre HMBC de CM457
Schéma 13: Corrélations observées sur le spectre COSY de CM458
Schéma 14: Corrélations observées sur le spectre COSY ¹ H – ¹ H de TCM376
Schéma 15: Corrélations observées sur le spectre HMBC de TCM376
Schéma 16: Protocole d'extraction et d'isolement des composés de la fraction à l'acétate
d'éthyle de l'extrait méthanolique des racines de Cordia millenii
Schéma 17: Protocole d'extraction et d'isolement des composés de la fraction à l'acétate
d'éthyle de l'extrait brut des feuilles de Cordia millenii
Schéma 18: Réarrangement de Mc Lafferty de FCM8 105
Schéma 19: Corrélations observées sur le spectre COSY ¹ H – ¹ H de FCM10 113
Schéma 20: Corrélations observées sur le spectre HMBC de FCM10 114
Schéma 21: Mécanisme réactionnel de l'acétylation de TCM3 121
Schéma 22: Mécanisme réactionnel d'estérification de RCM9

RÉSUMÉ

Nos travaux portent sur la caractérisation, les transformations chimiques et l'évaluation des activités inhibitrice de l'intégrase du VIH, antibactérienne et cytotoxique des fractions, des extraits et des métabolites secondaires de *Cordia millenii* Baker, une plante de la famille des Boraginaceae. Les différentes parties de la plante sont utilisées en médecine traditionnelle pour le traitement des maladies infectieuses.

L'investigation phytochimique de l'extrait à l'acétate d'éthyle des écorces du tronc et des fractions à l'acétate d'éthyle des racines et des feuilles a permis d'isoler quinze (15) composés qui ont été entièrement caractérisés.

L'élucidation des structures de tous ces composés a été rendue possible grâce, d'une part, à une interprétation des données spectrales (RMN ¹H et ¹³C, DEPT, COSY, HMBC, NOESY) en association avec la spectrométrie de masse (Impact électronique, *Electrospray*, FAB), la cristallographie et d'autre part par comparaison de ces données spectrales avec celles décrites dans la littérature.

De l'extrait à l'acétate d'éthyle des écorces du tronc, sept composés ont été isolés et entièrement caractérisés. Il s'agit de la cordidepsine (72), une depsidone nouvelle dont la classe est isolée pour la première fois de la famille des Boraginaceae; l'allantoïne (74), la lupenone (75), la β -amyrone (76), le lupéol (77), la β -amyrine (78) et la 1'-(26'-hydroxyhexacosanoyl)glycérol (79), un monoglycérol isolé pour la première fois du genre Cordia. De la fraction à l'acétate d'éthyle des racines, trois composés ont été isolés et entièrement caractérisés. Il s'agit du cyclooctasulfure (80), un allotrope de soufre isolé pour la première fois d'une plante ; l'hexacosanoylglycérol (81) et l'acide bétulinique (82). De la fraction à l'acétate d'éthyle des feuilles, Cinq composés ont été isolés et entièrement caractérisés. Il s'agit de la triacontanoate de 3-lup-20(29)-ènyle (83), le glucoside de 3-O- β -D-stigmastérol (84), l'hexacosanoate de tétratriacontanyle (85), le propanoate de 2'-(4''-hydroxyphényl)éthyle (87) et la (E)-3-(4'hydroxyl)cinnamate de nonacosyle (88). Des composés isolés. 1'-(26'la hydroxyhexacosanoyl)glycérol (79) et l'hexacosanoylglycérol (81) ont fait l'objet d'une réaction d'acétylation. Les dérivés d'hémi-synthèse 1'-(26'-acétoxyhexacosanoyl)-2,3-diacétoxyglycérol (89) et l'hexacosanoyl-2,3-diacétoxyglycérol (90) ont été respectivement obtenus, tous deux nouveaux.

L'activité inhibitrice de l'intégrase du VIH de la cordidepsine (**72**) a montré une activité significative avec une $CI_{50} = 4,65 \mu M$. L'extrait à l'acétate d'éthyle des écorces du tronc et la fraction à l'acétate d'éthyle des racines ont inhibé respectivement *Staphylococcus aureus* (65,2 %) et *Bacillus subtilis* (49,45 %). De plus, les pourcentages de viabilité cellulaire de l'extrait à l'acétate d'éthyle des écorces du tronc (99 %), la fraction à l'acétate d'éthyle des racines (96 %) et la fraction à l'acétate d'éthyle des feuilles (95 %) révèlent qu'ils sont non toxiques sur les cellules humaines saines 3T3. Ces travaux nous ont permis d'apporter notre modeste contribution au traitement des maladies infectieuses à travers les plantes médicinales.

Mots clés : *Cordia millenii* ; Boraginaceae ; Depsidone ; Allotrope de soufre ; Inhibition de l'intégrase du VIH; Antibactérienne ; Cytotoxicité.

ABSTRACT

This work deals with characterization, chemical transformations and HIV integrase inhibition, antibacterial and cytotoxicity activities of the crude extracts, fractions and compounds isolated from *Cordia millenii* Baker; a plant from the Boraginaceae family. Its various parts are used in traditional medicine to treat infectious diseases.

The chemical investigation of the plant material (leaves, stem barks and roots) of *Cordia millenii* Baker, led to the isolation of fifteen (15) compounds which were entirely characterized.

The structures of these compounds were elucidated from detailled analysis using spectroscopic data (NMR ¹H and ¹³C, DEPT, COSY, HMBC and NOESY) associated with mass spectroscopic (Electrospray Ionization, Electronic Impact, FAB), cristallography and literature data.

The ethyl acetate crude extract of the stem bark led to the isolation of seven compounds which were characterized as cordidepsine (72), a new depsidone metabolite reported here for the first time in Boraginaceae family; allantoin (74), lupenone (75), β -amyrone (76), lupeol (77), β -amyrin (78) and 1'-(26'-hydroxyhexacosanoyl)glycerol (79), a monoglycerol metabolite reported for the first time from *Cordia* genus. The ethyl acetate fraction of roots led to the isolation of three compounds which were identified as cyclooctasulfur (80), a sulfur allotrop isolated for the first time from plant source; glyceryl-1-hexacosanoate (81) and betulinic acid (82). The ethyl acetate fraction of roots led to the isolation of five compounds which were identified as lup-20(29)-en-3-triacontanoate (83), stigmasterol glycoside (84), tetratriacontanylhexacosanoate (85), ethyle 2'-(4-hydroxyphenyl) propanoate (87) and nonacosyle (E)-3-(4'hydroxyl)cinnamate (88). New hemi-synthetic derivatives, cordicerol A (89) and cordicerol B (90) were obtained respectively through acetylation reactions of 1'-(26'hydroxyhexacosanoyl)glycerol (79) and glyceryl-1-hexacosanoate (81).

Biological assays such as HIV integrase inhibition, antibacterial and cytotoxicity activities were evaluated. Cordidepsine (**72**) exhibited significant HIV integrase inhibition with $IC_{50} = 4.65 \mu M$. The stem barks EtOAc extract and roots EtOAc fraction inhibited respectively *Staphylococcus aureus* (65.2 %) and *Bacillus subtilis* (49.45 %). In addition, the viability cell percentage of ethyl acetate crude extract of the stem barks (99 %), ethyl acetate fraction of roots (96 %) and ethyl acetate of leaves (95 %) reveal that these crude extract and fractions were not toxic on 3T3 heathy cells of human. This work brought our modest contribution for infectious diseases treatment through medicinal plants.

Keywords: *Cordia millenii*; Boraginaceae; Depsidone; Sulfur allotrop; HIV integrase inhibition, Antibacterial, Cytotoxicity activities.

xxvi

INTRODUCTION GÉNÉRALE

Introduction générale

Dans la plupart des pays en développement, les maladies infectieuses telles que la malaria, la diarrhée et les infections virales sont une cause majeure de mortalité (**Dye, 2014 ; Okusa et** *al.***, 2007**). Selon l'OMS, environ 13 millions de personnes décèderont par an dans le monde des suites de maladies infectieuses d'ici 2050 (**Dye, 2014**).

Le Syndrome de l'Immunodéficience Acquise (SIDA) est l'une des infections virales qui ravage le monde. Il est causé par le Virus de l'Immunodéficience Humaine (VIH). La transmission peut se faire par voie sexuelle, par transfusion sanguine et de la mère à l'enfant (**Guichet, 2016**). Depuis sa découverte en 1981, environ 78 millions de personnes ont été infectées par le virus et près de la moitié sont décédées (**Siwe-Noundou et** *al.*, **2018**). De plus, selon le rapport de *Cameroon Population Based HIV Impact Assessment* (CAMPHIA) en 2018, le taux de prévalence viral au Cameroun est 3,4% (**CAMPHIA**, **2018**) et actuellement environ 37 millions de personnes sont infectées par le VIH dans le monde (**OMS**, **2017**, **Siwe-Noundou et** *al.*, **2019**); avec une estimation de 5000 nouveaux cas d'infections chaque jour en majorité en Afrique sub-saharienne (**Siwe-Noundou et** *al.*, **2019**). L'absence du vaccin et l'échec des thérapies antivirales actuelles contribuent davantage à l'affaiblissement du système immunitaire des patients. Ainsi, ce système de défense est exposé aux infections opportunistes telles que les infections bactériennes (Tuberculose, pneumonie, zona, etc.) (**UNAIDS**, **1994**).

Les infections bactériennes sont l'une des causes de morbidité et mortalité, particulièrement dans les pays en développement (**OMS**, 2001). Environ 2,8 millions d'enfants meurent au cours des premiers mois de leur vie par an, soit 98% de décès (**OMS**, 2016). En 2018, selon le système *GLASS*, environ 500 000 personnes dans vingt-deux pays (Kenya, Tunisie, Afganistan, Cambodge, ...) présentaient des résistances aux antibiotiques (**OMS**, 2018). Bien que les antibiotiques aient permis de soigner certaines infections et de réduire le taux de mortalité, la résistance de certaines bactéries et l'émergence de nouveaux agents pathogènes s'accentuent de jour en jour (**OMS**, 2018). Face à cette situation alarmante de co-infection du VIH et des maladies bactériennes, et le nombre sans cesse croissant de décès y relatif, il demeure nécessaire voire urgent de poursuivre la recherche de nouveaux potentiels candidats anti-VIH et antibactériens.

Pour se soigner de ces infections, les populations rurales particulièrement en Afrique, n'ayant pas accès aux soins modernes appropriés faute de moyens financiers et des représentations sociales (comportements et pratiques culturels) ont recours aux plantes médicinales pour leurs soins primaires. La plupart des plantes médicinales sont une source importante des composés bioactifs qui peuvent inhiber ou détruire l'action des agents pathogènes responsables des maladies infectieuses. Par conséquent, les substances naturelles d'origine végétale peuvent être utilisées pour la formulation des nouveaux médicaments. D'où le choix porté sur l'espèce *Cordia millenii* se justifie d'une part par le fait qu'elle est utilisée localement pour le traitement des maladies infectieuses et d'autre part, les plantes du genre *Cordia* se sont révélées en médecine traditionnelle très utilisées pour le traitement des infections virales à travers ses différentes espèces (**Oza et Kulkarni, 2017**). De plus, très peu d'études phytochimiques ont été faites sur l'espèce *Cordia millenii*. Ainsi, pour limiter le taux d'infection au VIH et ses infections bactériennes opportunistes, **pouvons-nous trouver d'autres molécules bioactives pour lesquelles les agents pathogènes seront plus sensibles et moins résistants ?**

Pour apporter notre modeste contribution à la lutte contre le VIH et ses maladies opportunistes, le présent travail a pour objectif général de caractériser les constituants chimiques de *Cordia millenii* en faisant une étude phytochimique et en évaluant les activités anti-virales et antibactériennes.

Les objectifs spécifiques envisagés pour ce travail sont les suivants :

 Déterminer les métabolites secondaires contenus dans les différentes parties de la plante ;

Éffectuer des transformations chimiques sur certains composés majoritaires isolés en vue de confirmer leur structure par voie chimique ;

Déterminer les activités biologiques notamment, les activités antivirales, antibactériennes et cytotoxique des extraits et composés isolés dans l'optique de justifier l'usage de cette plante en médecine traditionnelle.

Ce document s'articulera autour de trois parties :

Revue de la littérature, cette partie illustre une bibliographie sur le VIH, les infections bactériennes, le genre *Cordia* et l'espèce *Cordia millenii* en particulier et les travaux antérieurs effectués sur le genre *Cordia*;

Résultats et discussion qui présente les résultats phytochimiques, d'hémisynthèses et biologiques obtenus ;

Partie expérimentale dans laquelle sont présentés l'appareillage et les différentes procédures qui nous ont permis d'obtenir les résultats.

REVUE DE LA LITTÉRATURE

1. Généralités sur le Syndrome d'Immunodéficience Acquise (SIDA)

1.1. Définition

Le SIDA est une maladie due à une infection du Virus d'Immunodéficience Humaine (VIH). Responsable d'une pandémie mondiale, le VIH se distingue des autres virus par la présence d'un génome ARN et trois enzymes virales: la transcriptase inverse (TI), l'intégrase (IN) et la protéase (PR) (Avettand-Fenoel et *al.*, 2017). Il appartient à la famille des *Rétroviridae*, à la sous famille des *Orthroretrovirinae* et au genre *Lentivirus*. Ce dernier regroupe les virus non oncogènes qui provoquent la mort des cellules infectées et qui sont responsables des maladies à évolution lente. (Djeneba, 2014).

1.2. Historique du VIH

Le VIH vient des virus de singe, virus de l'immunodéficience simienne (SIV). Ces derniers sont passés plusieurs fois à l'homme et ont produit différents types de virus. On distingue ainsi deux familles : le VIH-1 et le VIH-2 (**Lhuillier, 2016**). Le VIH-1 provient d'un SIV qui est passé quatre fois du singe à l'homme, s'est adapté et a donné lieu aux quatre groupes connus : M, N, O et P (**Keele et** *al.*, **2006**). L'épidémie a commencé à flamber dans les années 1920 et s'est accentuée avec l'urbanisation massive et la libre circulation des personnels des entreprises multinationales. Elle est devenue une pandémie dans les années 1960 avec la décolonisation (**Lhuillier, 2016**).

En1981, on a constaté que la maladie a provoqué une immunodéficience, qu'elle s'est transmise par voie sexuelle et sanguine et qu'elle est également contractée par les utilisateurs de drogues injectables et des personnes transfusées (**Guichet, 2016**).

En 1983, le virus est identifié par l'équipe du Professeur Montagnier de l'Institut Pasteur et il est décrit pour la première fois par l'équipe de Jean-Claude Chermann de l'Institut Pasteur comme virus responsable de la maladie qu'on a nommé *"Lymphadenopathy Associated Virus"* ou LAV (futur VIH-1). Dès lors, les chercheurs ont accentué les recherches et ont démontré un lien de causalité entre ce virus et la maladie. Ils ont également travaillé sur le test de dépistage. Les premiers travaux sur la transmission possible du virus chez des chimpanzés ont été entrepris et les premières directives pour des relations sexuelles plus sécuritaires ont été données par divers organismes en santé publique (**Barre-Sinoussi et al., 1983**). En 1984, les activités antirétrovirales de l'azidothymidine (AZT) ont été mises en évidence et les différents modes de transmission du virus ont été clairement établis (**Guichet**, **2016**).

En 1985, le deuxième virus, LAV-2 (futur VIH-2) est isolé d'un patient originaire de l'Afrique de l'Ouest et le test de dépistage de la maladie du LAV-1 a été commercialisé. Au cours de la même année, la première conférence internationale sur le SIDA s'est tenue aux États-Unis et ce pays comptait en son actif, 23000 personnes atteintes et 12500 décès (Avettand-Fenoel et *al.*, 2017).

En 1986, la communauté scientifique a adopté le nom de VIH (Virus d'Immunodéficience Humaine); la première thérapie à l'AZT était disponible mais elle demeurait coûteuse et très toxique. Les Nations Unis ont mis ainsi sur pied un premier programme de lutte contre le SIDA (**Guichet, 2016**).

En 1987, le test de dépistage du VIH-2 est mis au point par "*Diagnostics Pasteur*". La Déclaration Universelle des Droits des Malades et des Séropositifs voit également le jour (**Barre-Sinoussi et al., 1983**).

En 1988, l'Organisation Mondiale de la Santé (OMS) a proclamé le 1^{er} décembre comme la journée mondiale du SIDA (**Lutringer, 2010**).

En 1991, un peintre de New-York, Franck Moore a crée un ruban rouge (**Figure 1**) en guise de compassion et de solidarité pour la cause du SIDA; il est porté pour la première fois en 1992 lors des Tony Awards (**Lutringer, 2010**).

En 1993 et 2003, les vaccins sont testés chez les humains mais sans succès (Avettand-Fenoel et *al.*, 2017).

Figure 1: Symbole de la cause du SIDA (Lutringer, 2010)
1.3. Mode de transmission du VIH

La transmission du VIH se fait à travers :

Les rapports sexuels : un seul contact peut être suffisant lors du rapport homo ou hétérosexuel. Certains facteurs peuvent augmenter le risque de transmission. Nous pouvons citer l'ulcération ou maladie sexuellement transmissible en évolution et les rapports sexuels lors des menstruations (Avettand-Fenoel et al., 2017).

➤ La transfusion sanguine ou ses dérivés : c'était le mode de transmission le plus répandu avant les années 1985. Actuellement, ce risque de transmission est extrêmement faible car les dons de sang sont obligatoirement testés et désactivés de tout contaminant. Mais la transmission par partage du matériel d'injection contamine et explique l'extension rapide chez les usagers de drogues par voie intraveineuse (Avettand-Fenoel et al., 2017).

➢ Materno-fœtale (de la mère à l'enfant) : cette transmission se fait lors de l'accouchement et aussi en fonction du traitement susceptible d'être administré entre le 2^{ème} et le 3^{ème} trimestre de la grossesse. La transmission dépend également du statut immunovirologie de la mère. Le virus se transmet aussi au cours de l'allaitement (Avettand-Fenoel et *al.*, 2017).

1.4. Mode d'action VIH

Il existe une grande diversité au sein des virus VIH. La plupart des VIH-1 appartiennent au groupe M (Majoritaire). Il est composé de 9 sous-types (A, B, C, D, F, G, H, J et K). Le soustype B est le plus répandu dans les pays occidentaux. L'Afrique est le continent le plus riche en sous-types différents, avec des recombinants entre sous-types (mosaïque A/E ou B/C par exemple, appelés CRF (*Circulating Recombinant Form*). Le groupe O (*Outlier*) et le groupe N (Non-M Non-O) sont les plus rares et ils sont surtout localisés au Cameroun. Le nouveau sousgroupe, groupe P a été identifié chez une patiente d'origine camerounaise. Le VIH-2 a pour particularité d'être à l'origine localisé en Afrique de l'Ouest (**Avettand-Fenoel et** *al.***, 2017**). Nous nous attarderons par la suite sur le VIH-1.

1.4.1. Structure de la particule virale et organisation génomique du VIH-1

Le VIH-1 est un virus enveloppé de 90 à 120 nanomètres de diamètre, produit par bourgeonnement de la membrane plasmique de la cellule hôte. Son enveloppe contient des trimères de deux glycoprotéines (Trottier B MN) virales : la glycoprotéine transmembranaire gp41 associée à la glycoprotéine extra membranaire gp120. L'enveloppe protège la capside interne ou « core » du virus qui renferme une matrice (MA) composée de protéines p17 puis une capside (CA) composée de protéines p24. Le génome du VIH-1, contenu dans la capside et associé à la nucléocapside (NC, p7) est constitué de deux molécules identiques d'ARN simple brin de polarité positive, liées de façon non covalente en "5 ". Les trois enzymes virales indispensables à la réplication (la transcriptase inverse (TI), l'intégrase (IN) et la protéase (PR)) sont contenues dans le core viral (**Figure 2**) (**Djeneba, 2014**).

Figure 2 : Structure de la particule virale infectieuse du VIH-1 (Djeneba, 2014)

1.4.2. Cycle de réplication du VIH

Le VIH-1 est caractérisé par sa très grande capacité réplicative. Dans son cycle viral, trois enzymes virales (PR, TI et IN) constituent le moteur moléculaire de sa réplication. Ce cycle peut être divisé en deux phases :

La phase précoce

Dès l'entrée du virus dans la cellule, sa glycoprotéine gp120 est reconnue par son récepteur spécifique (CD4) présent à la surface de la cellule cible. Cette grande affinité entraine un changement de la conformation de gp120, qui permet à une région spécifique, la boucle V3 d'interagir avec des corécepteurs (CCR5 et CXCR4) présents à la surface de la membrane cellulaire. Cette interaction met en contact une autre glycoprotéine, la gp41 virale avec la membrane cellulaire et il en résulte la fusion entre l'enveloppe virale et la membrane cellulaire. La capside du VIH pénètre alors dans le cytoplasme de la cellule et débute la rétrotranscription du génome viral. L'ARN viral est rétro-transcrit dans le cytoplasme en ADN double-brin (ADN proviral) grâce à la TI. L'ADN nouvellement synthétisé (provirus ou ADNc) est lié au complexe de pré-intégration (PIC). Ce denier qui contient la TI, IN, la proteine matrice et *Vpr* est ainsi orienté vers le noyau de la cellule. Ces trois dernières protéines semblent jouer un rôle majeur dans l'import nucléaire. Le provirus est ensuite intégré dans le génome de la cellule hôte grâce à l'intégrase (**Schéma 1**) (**Han et al., 2007**).

La phase tardive

Elle conduit à la libération de nouveaux virus par la cellule et dépendant du type et de l'état d'activation de la cellule infectée. Cette phase du cycle permet d'obtenir des virions complets, capables de bourgeonner et de maturer après leur libération dans le milieu extracellulaire. Le virus utilise ainsi la machinerie cellulaire pour se répliquer ; la transcription de l'ADN proviral en ARN génomique est assurée par l'ARN polymérase II de la cellule hôte. Deux protéines virales interviennent à ce niveau ; *tat* qui régule l'élongation de la transcription et *rev* qui joue un rôle dans le transport de l'ARN génomique complet ou épissé vers le cytoplasme. Une fois dans le cytoplasme, les ARN messagers viraux de différentes tailles codent pour les polyprotéines virales et l'encapsidation de l'ARN viral, les nouvelles particules formées bourgeonnent à la surface de la cellule avant d'être libérées dans le milieu extracellulaire. La maturation des protéines virales est assurée par la protéase virale (**Schéma 1**) (**Han et al., 2007**).

Schéma 1: Cycle de réplication du VIH-1

A-Fixation du VIH à la cellule cible, **B**-Fusion des deux enveloppes et entrée du virus dans la cellule, **C**-Décapsidation, **D**-Transcription inverse de l'ARN viral en ADN double brin, **E**- Import nucléaire du complexe de pré-intégration (PIC), **F**-Intégration de l'ADN proviral dans le génome de la cellule, **G**-Transcription de l'ADN proviral en ARN génomique et ARN messagers, **H**-Traduction des ARN messagers en protéines virales, **I**- Assemblage des nouveaux virions au niveau de la membrane cellulaire, **J**-Bourgeonnement et maturation des nouveaux virions libérés (**Han et** *al.*,**2007**). Des trois enzymes virales responsables de la réplication du VIH, notre étude s'est accentuée sur l'enzyme intégrase.

1.4.3. Mécanisme d'action de l'intégrase

L'intégrase est l'une des enzymes essentielles à la replication du virus VIH. Elle permet l'intégration de l'ADN viral dans le noyau de la cellule à travers trois étapes : *3'-processing*, formation du complexe de préintégration et transfert de brin (**Katlama et al., 2009**) :

Lorsque l'ARN viral est rétrotranscrit en ADN par transriptase inverse, l'intégrase est liée à une séquence d'attachement dite "*att*" située aux deux extrémités de l'ADN virale. Premièrement, l'IN catalyse une coupure endonucléolytique nommé *3'-processing* au niveau de la séquence CAGT (**a**) (**Pommier et al., 2005**). Cette réaction cytoplasmique se fait en milieu aqueux suivi d'une libération dans le milieu d'un dinucléotide de séquence GT. Après le *3'-processing*, l'ADN virale possède deux nouvelles extremités 3'-OH (cercle en rouge) (**b**) (**Pommier et al., 2005**). Cet intermédiaire maturé d'ADN viral (Complexe de préintégration ou ADN circularisé) formé va servir de substrat au double transfert brin de l'intégration concertée.

La dernière étape se passe dans le noyau. L'IN et le complexe de préintégration (CPI) traverse la membrane nucléaire. Lorsque le noyau est atteint, l'IN va rapprocher l'ADN viral et l'ADN cible (couleur bleu) (c). Ensuite, l'intégration du génone viral au sein du génone cellulaire à travers ses deux extrémités 3'-OH néo-formées est de manière concertée car elle se fait simultanément sur les deux brins d'ADN cible (d) (**Pommier et** *al.*, 2005, Savarino, 2006).

Après intégration, les deux bases non appariées de l'ADN viral sont excisées et l'ADN sera réparé par la machinerie cellulaire (e) (Pommier et *al.*, 2005).

1.5. Évolution de l'infection à VIH au stade SIDA.

Trois principales catégories de cellules sont infectées p ar le virus : les lymphocytes T CD4+, les cellules du système monocyte/macrophage et les cellules dendritiques. L'infection virale a un effet létal sur les lymphocytes T CD4+ qui consiste en un effet cytopathogène (ECP) à type de syncytia et aboutit le plus souvent à la mort des cellules. En revanche, monocytes et macrophages peuvent supporter sans ECP et sans dommage. Ils constituent ainsi un réservoir viral, mais aussi un véhicule pour infecter précocement divers compartiments de l'organisme. Chez un individu infecté, les souches virales sont à tropisme monocytaire ou macrophagique (R5) en début d'infection. Les souches à tropisme lymphocytaire (X4), apparaissent généralement lorsque l'infection est plus évoluée (avec un taux de CD4 bas) (Lutringer, 2010). L'infection évolue en 3 phases : primo-infection, phase asymptomatique et SIDA (Figure 3) :

Phase primo-infection

Elle correspond à la période d'invasion virale survenant dans les 10 à 12 jours après l'infection. L'infection cible principalement les lymphocytes T CD4+ et les monocytesmacrophages. Pendant cette phase, le réservoir viral se constitue et représente un obstacle majeur à l'éradication virale car il n'est pas ciblé par les antirétroviraux commercialisés actuellement. Les réponses immunes antivirales apparaissent aussi au cours de cette période qui a plusieurs spécificités : une présentation clinique très variable d'un individu à l'autre et un diagnostic qui peut être mis en défaut par des tests sérologiques en cas d'infection très récente qui nécessite la recherche directe du virus. Elle est symptomatique une fois sur deux environ, pouvant associer fièvre, adénopathies avec angine, éruption, méningite, voire encéphalite. Un syndrome mononucléosique peut donc être le signe d'une primo-infection à VIH. Cette phase est marquée par un premier pic, très élevé, de virémie (antigénémie p24 positive et ARN viral plasmatique très élevé). L'infection s'établit dans le tissu lymphoïde associé au tube digestif, dans les ganglions lymphatiques. La conséquence de l'infection à VIH est la destruction entrainant une baisse du taux des lymphocytes T CD4+ sanguins. Cette baisse survient au moment de la primo-infection. Un équilibre immuno-virologique est atteint dans les six premiers mois de l'infection, qui conditionne la progression clinique et immunologique ultérieure (**Keiser et al., 2009**).

Phase asymptomatique

Elle sépare la primo-infection et le SIDA. Elle n'est pas une période d'infection virale latente ; le taux de lymphocytes T CD4+ sanguins ne retrouve pas son niveau initial même s'il se corrige partiellement au début de cette phase en même temps qu'apparaissent les anticorps neutralisants et les lymphocytes T CD8+ cytotoxiques spécifiques du virus. Durant cette phase de latence clinique, la baisse des lymphocytes T CD4+ procède lentement pour s'accélérer lors du passage au stade de SIDA. Il existe une véritable réplication virale à l'état d'équilibre avec une persistance de lymphocytes sanguins circulant infectés (**Keiser et al., 2009**).

> SIDA

Le passage des lymphocytes T CD4+ circulants sous la barre des 200/mm³ de sang (normale : environ 1000/mm³) marque l'entrée dans le SIDA, en moyenne après dix ans d'évolution sans traitement. Le SIDA est caractérisé par la survenue d'infections opportunistes ou d'une encéphalite à VIH (marquée par un état de démence), ou de cancers dont il existe trois types liés à des virus : le sarcome de Kaposi (HHV-8), des lymphomes B (EBV), des cancers ano-génitaux, notamment des cancers du col utérin et anaux (HPV16 et 18) (**Keiser et** *al.***, 2009**).

Figure 3: Histoire naturelle de l'infection par le VIH (Lutringer, 2010).

1.6. Contrôle de l'évolution de l'infection du VIH

Pour contrôler le niveau d'infection, il faut au préalable effectuer un test de dépistage.

1.6.1. Diagnostic virologique

Le diagnostic biologique de l'infection par le VIH repose sur le seul test immunologique ELISA mixte, combiné. La lecture de ce test permet de détecter des anticorps anti-VIH-1 et 2 et de l'antigène p24 du VIH-1 avec un seuil minimal de détection de l'antigène p24 du VIH-1 de 2 UI/mL (50 pg/mL). En cas de résultat positif, une analyse de confirmation par Westernblot/Immunoblot est réalisée sur le même échantillon sanguin (**Schéma 2**). Il est nécessaire de confirmer le diagnostic biologique parce que les tests dit de 4^{ème} génération de nature très sensibles peuvent présenter un défaut de spécificité (0,5% de faux positifs). La présence des anticorps anti-VIH-1 et 2 ou de l'antigène p24 du VIH-1 chez un individu n'est validée qu'après confirmation.

Schéma 2: Schéma de dépistage de l'infection VIH (adultes et enfants de plus de 18 mois) (Avettand-Fenoel et al., 2017)

1.6.2. Traitement de l'infection du VIH

Le traitement de l'infection VIH comporte 2 volets :

1.6.2.1. Traitement spécifique anti-VIH (antirétroviraux)

Les antirétroviraux (ARV) sont des substances qui agissent dans le cycle de réplication du VIH en inhibant ses différents sites fonctionnels. Ainsi, nous avons six classes d'ARV actuellement disponibles: les inhibiteurs nucléosidiques de la transcriptase inverse, inhibiteurs non nucléosidiques de la transcriptase inverse, inhibiteurs d'intégrase, inhibiteurs de protéase et inhibiteurs d'entrée (Inhibiteurs de la fusion, inhibiteurs de CCR5) (**Guichet, 2016 ; Tattevin, 2010**). Pour les inhibiteurs d'intégrase, on en a distingue deux :

Les inhibiteurs de la fixation de l'ADN virale ou du 3'processing: ils permettent de bloquer la maturation de l'ADN viral qui est la première étape du processus d'intégration.

Les inhibiteurs de la fixation d'ADN cible ou du transfert de brin : ils agiraient en se positionnant à l'interface entre l'ADN cible et le site catalytique.

En cas d'inhibition de cette étape de transfert de brin, l'ADN circularisé reste dans le cytoplasme nucléaire (**Pommier et** *al.*, **2005, Savarino, 2006**). Ainsi, le mécanisme d'action des inhibiteurs de l'intégrase se résume au schéma 3 ci-dessous

Schéma 3: Mécanisme d'action des inhibiteurs d'intégrase (Katlama et al., 2009)

Les inhibiteurs disponibles actuellement bloquent l'insertion de l'ADN viral dans l'ADN de la cellule hôte. Le dolutégravir (1), nouvel inhibiteur d'intégrase présente quant à lui contrairement aux autres, une barrière génétique plus élevée associée à une forte puissance virologique (Avettand-Fenoel et *al.*, 2017, Guichet, 2016). De plus, des composés présentant une activité anti-VIH-1 intégrase ont été isolés des plantes parmi lesquels le méthylgallate (2) et l'acide O'acétyl-aleuritolique (3) isolés de l'*Alchornea cordifolia* (Siwe-Noundou et *al.*, 2019) ; l'acide éllagique (4) isolé de l'*Alchornea laxifloria* (Siwe-Noundou et *al.*, 2018) et l'aridanine (5) isolé de *Diospyros conocarpa* (Fouokeng et *al.*, 2019).

Actuellement, le traitement de l'infection à VIH s'est considérablement simplifié avec la disponibilité de plusieurs associations fixes comprenant 3 ARV sous une forme combinée en un seul comprimé. Il est important de noter que, quelque soit le mode d'action, le traitement antiviral n'a aucune action sur l'ADN proviral (**Avettand-Fenoel et** *al.*, **2017**). Le schéma 4 illustre différents sites d'action des ARV dans la réplication du VIH.

Schéma 4: Cycle de réplication du VIH et différentes cibles des antirétroviraux actuellement commercialisés (Avettand-Fenoel et al., 2017)

1.6.2.2. Prévention des infections opportunistes

Lorsque le taux de CD4 est inférieur à 200/mm³, les mesures de traitement sont prises pour empêcher leur évolution. Dès que le taux de CD4 augmente et dépasse 200/mm³ durant trois mois, l'état immunitaire du patient est suffisant pour pouvoir interrompre la prévention des maladies opportunistes (**Guichet, 2016**). Lorsqu'un patient séropositif est mis sous traitement

d'ARV, la restauration immunitaire avec une augmentation conséquente des CD4 peut entrainer une flambée des infections opportunistes (infections bactériennes et virales) et des cancers (**Guichet, 2016**).

2. Généralités sur les infections bactériennes

2.1. Définition

Les infections bactériennes sont celles provoquées par des espèces de bactéries qui sont pourtant présentes chez la plupart des personnes sans causer de maladie. Ces bactéries deviennent pathogènes lorsqu'elles se trouvent à un endroit du corps où elles ne devraient pas être présentes, ou en nombre anormalement élevé lors d'une baisse des défenses immunitaires (**Guilot, 1989**).

2.2. Historique des infections bactériennes

Les bactéries sont des micro-organismes vivants. Elles ont été découvertes à la fin du 17^{ème} siècle par Anthoni Van Leeuwenhoek (**Safonis-aventis, 2018a**). Elles sont très nombreuses et ont souvent été considérées comme des agents pathogènes et agressifs, responsables de maladies plus ou moins graves. En effet, le corps humain est colonisé par de nombreuses bactéries qui constituent la flore commensale (**Safonis-aventis, 2018a**). Au niveau du système digestif, le microbiote intestinal, largement impliqué dans les processus de digestion et de défense de l'organisme, est composé d'environ mille milliards de bactéries. Certaines de ces bactéries sont utilisées dans l'alimentation ou dans certains médicaments pour rééquilibrer le microbiote et rétablir une fonction digestive normale (**Goulet, 2009**).

2.3. Classification des bactéries

Les bactéries mesurent entre 0,5 et 10 μ m. Ce sont des organismes procaryotes qui ne possèdent pas de noyau, mais un ADN chromosomique circulaire situé dans le cytoplasme. De nombreuses bactéries contiennent une autre structure d'ADN extra-chromosomique, appelée plasmide. Elles sont entourées d'une paroi complexe et possèdent souvent des flagelles (**Safonis-aventis, 2018a**).

Figure 4: Morphologie bactérienne

Les bactéries sont classées en fonction de :

➢ Leur forme : les cocci ont la forme ronde et les bacilles se présentent sous forme de bâtonnet (Figure 5) (Safonis-aventis, 2018a) ;

Leur coloration Gram : les bactéries colorées en bleu-violet seront dites à Gram positif et celles en rose à Gram négatif (Safonis-aventis, 2018a);

> Leur besoin en oxygène : les bactéries aérobies et anaérobies (Safonis-aventis, 2018a).

Figure 5: Morphologie des différents types de bactéries (Safonis-aventis, 2018a).

2.4. Mode de transmission des bactéries et infections bactériennes

Les bactéries pathogènes se transmettent par plusieurs voies :

> Voie orale

La consommation de certains produits et boisons peut entrainer des infections du tube digestif. Ces infections sont causées par différentes bactéries qui modifient la flore intestinale et occasionnent les maladies telles que la diarrhée, les ulcères, la chlolécysiste et les sigmoïdites (Goulet, 2009). Nous pouvons également avoir une infection buccale qui s'observe lorsque l'écosystème buccal (flore supra-gingivale et flore sous-gingivale) est en déséquilibre. La bouche est ainsi infectée par la carie dentaire et les maladies parodontales. Les bactéries anaérobies telles que *Prevotella intermedia, Porphyromonas gingivalis* et *Tannerella forsythensis* sont responsables de ces infections (Grollier, 2004 ; Sixou et al., 2007).

> Voie respiratoire

Le nez est tapissé par une muqueuse qui sécrète un mucus permettant de piéger certaines particules inspirées. Ce mécanisme est renforcé par les cellules ciliées qui permettent le déplacement de ce mucus et contribuent à l'élimination des bactéries et virus. Mais il peut arriver que cette barrière soit défaillante. Les infections des voies aériennes peuvent être de plusieurs origines. Les maladies virales telles que les rhinopharyngites, la grippe, la bronchiolite, les bronchites, certaines otites et certaines angines sont les plus fréquentes. Nous avons aussi d'autres pathologies bactériennes telles que les pneumonies aiguës, les exacerbations de bronchopneumopathie chronique obstructive. Le *Streptococcus pneumoniae* et l'*Haemophilus influenzae* sont les germes les plus fréquemment retrouvés dans ces infections à voie aérienne (**Safonis-aventis, 2018b**).

> Voie sexuelle

L'appareil génital et la partie terminale de l'urètre sont colonisés par une flore bactérienne dite commensale, dont le rôle est de protéger l'organisme contre les agressions par des agents pathogènes (**Grollier, 2004**). Chez la femme, la flore vaginale est riche en bactéries anaérobies et sa composition évolue en fonction de l'âge. De la puberté à la ménopause, les lactobacilles sont largement prédominants et assurent le maintien d'un pH acide, empêchant ainsi la multiplication d'autres bactéries (**Grollier, 2004**). Certaines modifications de l'équilibre de la flore commensale peuvent être à l'origine des maladies parmi lesquelles les infections urinaires (**Safonis-aventis, 2018c**). Lorsque l'infection est localisée au niveau de la vessie on parle de cystite ; lorsqu'elle atteint le rein, on parle de pyéloméphrite. Le germe le plus fréquemment retrouvé est l'*Escherichia coli* (AFU, 2008).

Voie cutanée

Les infections cutanées et des tissus mous d'origine bactérienne surviennent en général suite à l'altération des processus de défense : rupture de la barrière kératinocytaire (plaies, lésions de grattage, brûlures...), modification du pH cutané, disparition du film sébacé et macération cutanée, qui facilite la pénétration des germes en profondeur (**CEDEF**, 2008 ; **Dubertret**, 2000). Les pathologies telles que les abcès cutanées, l'érysipèle, les furoncles, l'impétigo, les plaies cutanées, les panaris peuvent résulter d'infections bactériennes. La majorité des infections bactériennes cutanées est causée par des bactéries à Gram positif (**CEDEF**, 2008). Les deux germes principalement responsables sont le *Staphylococcus aureus* et le *Streptococcus pyogenes* (**CEDEF**, 2008).

2.5. Diagnostic et traitement des infections bactériennes

2.5.1. Diagnostic

Pour savoir si une maladie est due à un virus ou une bactérie, il est possible d'utiliser un **test de diagnostic rapide (TDR)**. Le schéma 5 illustre les différentes étapes d'un TDR (**ANSM, 2015**). Si le test s'avère positif pour une infection bactérienne, la prescription d'antibiotiques est nécessaire pour lutter efficacement contre la bactérie impliquée.

Schéma 5: Différentes étapes d'un test de diagnostic rapide (TDR) : cas d'une angine (ANSM, 2015)

2.5.2. Traitement

Un antibiotique est une molécule d'origine végétale, animale ou synthétique, capable de tuer les micro-organismes sensibles ou d'inhiber leur croissance (**OMS**, 2001). Il est caractérisé par une activité antibactérienne (activité *in vivo*), une bonne absorption et une bonne diffusion dans l'organisme. Il est administré à l'homme à dose faible pour détruire ou arrêter la croissance du germe par un mécanisme particulier jouant sur les mécanismes vitaux du germe (**Grandfils et** *al.*, 2004). La prescription d'antibiotiques repose sur un diagnostic précis pour identifier le germe impliqué et le traitement le plus adapté. L'antibiothérapie peut être préventive ou curative (**Grandfils et** *al.*, 2004). Il existe de nombreux antibiotiques, qui ont chacun un mécanisme d'action spécifique. Ils agissent ainsi sur un certain type de bactéries, dans un certain environnement précis. (**ANSM**, 2015).

La pénicilline (6) fut le premier antibiotique isolé du champignon *Penicillium motatum* en 1928 par Alexander Fleming (Hasdenteufel, 2011, Grandfils et *al.*, 2004).

Les antibiotiques sont classés selon :

L'origine: ils proviennent d'un micro-organisme vivant (bactérie, champignon...), d'une plante ou par synthèse (Hasdenteufel, 2011);

Le site d'action : il se résume en quatre mécanismes (Hasdenteufel, 2011).
-Inhibiteur de la synthèse protéine (beta-lactamines) ;

-Inhibiteur de la synthèse de l'enveloppe membranaire (aminoside, oxazolidinones) ;

-Inhibiteur de la synthèse des acides nucléiques (quinolones, mupirocine) ;

-Inhibiteur de la synthèse de l'acide folique (sulfamides).

Le spectre d'activité : à large spectre ou à spectre étroit, antimycosiques, antiviraux, antiprotozoaires (Hasdenteufel, 2011).

La nature chimique : les antibiotiques sont composés d'unités chimiquement définies (Hasdenteufel, 2011).

Cependant, les bactéries peuvent être naturellement résistantes à certaines molécules. Elles peuvent également aussi acquérir une résistance qui peut évoluer en fonction du temps et des souches (**OMS**, **2001**; **ANSM**, **2015**). Cette résistance peut être due au nouveau mécanisme d'interférence entre l'activité antibactérienne et l'émergence de certaines bactéries qui fragilisent le système immunitaire (**OMS**, **2001**).

Face à la résistance aux molécules actives et à la difficulté de mise sur pied d'un vaccin, la découverte et le developpement de nouvelles thérapies antibactériennes et anti-VIH deviennent une nécéssité. A cet égard, les plantes médicinales en général, sont succeptibles de constituer une solution alternative. Ainsi, notre étude s'est portée sur *Cordia millenii*, une plante de la famille des Boraginaceae.

3. Généralités sur les plantes de la famille des Boraginaceae

3.1. Caractères généraux

Les Boraginaceae sont une famille des plantes angiospermes dicotylédones, comprenant environ 130 à 135 genres et reparties dans 2400 à 2600 espèces (**Retief, 2008**). Cette famille est largement répandue dans le monde. Elle se trouve en Amérique du Nord et du Sud, en Europe, en Nouvelle Zélande, en Asie, en Australie, à Madagascar, en Afrique du Nord et de l'Est (**El-Gazzar et al., 2015**) (**Figure 6**). Ce sont des arbres, des arbustes, des plantes herbacées et plus rarement des lianes. Elles poussent dans les zones tempérées et tropicales. Elle est plus concentrée dans les régions méditerranéennes et la côte pacifique. Les feuilles sont alternes, simples, entières, sans stipules, souvent pourvues de cystolithes. Les fruits possèdent 1 à 4 pépins charnus (**Taton, 1971**). La famille des Boraginaceae est subdivisée en cinq (05) sous familles: Cordioideae, Ehretioideae, Heliotropioideae, Wellstedioideae et Boraginoideae. Les Boraginaceae sont proches des Hydrophyllaceae et des Lamiaceae respectivement à travers la similarité de l'inflorescence et le style gynobasique (**Chacón et al., 2016**).

Distribution des Boraginaceae

Figure 6: Répartition mondiale des plantes de la famille des Boraginaceae (www.mobot.org, consulté le 06/12/2018)

3.2. Anatomie botanique

Les Boraginaceae ont des fleurs bisexuées et actinomorphes ou rarement zygomorphes mais on trouve souvent des espèces dioïques. Les tiges, parfois les fleurs et les inflorescences sont couverts de poils souvent rudes, de nature épidermique, parfois calcifiés. Elles ont une inflorescence caractéristique, des cymes unipares scorpioïdes et parfois bractées. Ces fleurs présentent un calice à cinq (05) sépales, cinq (05) pétales soudées, cinq (05) étamines soudées à la corolle et deux (02) carpelles soudées qui forment un ovaire supère. La corolle tubulaire sous forme d'entonnoir contient des tubes subdivisés en 5 sections trapézoïdales (**El-Gazzar et al., 2015**). Les Boraginaceae sont très utilisées dans la medécine traditionnelle pour le traitement de plusieurs maladies.

3.3. Usages traditionnels des plantes de la famille des Boraginaceae

Les différentes parties des espèces du genre *Arnebia* sont utilisés comme diurétique, stimulant et tonique. Les racines sont très utilisées pour le traitement des ulcères, des blessures, des maux de tête, des furoncles et des fièvres. Le genre *Arnebia* possède également les propriétés antivirales, anti-tumorales et anti-inflammatoires (**Sharma et al., 2009**). Quant au genre *Heliotropium*, il a un effet hypotenseur et possède des propriétés anti-bacteriennes (**Dresler et al., 2017**). Le genre *Trichodesma* est utilisé comme antirhumatismal et est consommé comme boisson pour les enfants souffrant d'une dysenterie (**Dettrakul et al., 2009**). Les pépins des fruits du genre *Cordia* sont utilisés comme des antiinflammatoires (**Dettrakul et al., 2009**).

Certains genres (*Anchusa, Borago, Mertensia, Mysotis* et *Symphytum*) de la famille des Boraginaceae sont utilisés comme plantes décoratives. Le bois du genre *Ehretia* est utilisé dans la fabrication des boites d'allumette, boites à thé et dos de la brosse (**Sharma et al., 2009**). Afin de valoriser l'usage traditionnel de cette famille, plusieurs travaux chimiques ont été effectués.

3.4. Travaux chimiques antérieurs sur les plantes de la famille des Boraginaceae

Les études phytochimiques des plantes de la famille des Boraginaceae ont révélé différents métabolites secondaires. La classe des alcaloïdes pyrrolizidiniques (**7 - 10**) constitue la classe des alcaloïdes la plus importante (**Wiedenfeld et** *al.*, **2011**). Parmi environ 300 espèces qui constituent le genre *Cordia*, les alcaloïdes pyrrolizidiniques ont été isolés de *Cordia sinensis* et *Cordia myxa* (**Okusa et** *al.*, **2012**).

Figure 7: Quelques alcaloïdes pyrrolizidiniques isolés de la famille des Boraginaceae

Les Boraginaceae possèdent des composés phénoliques tels que les flavones (**11, 12**) isolés d'*Actinocarya tibetica* (**Singh et** *al.***, 2013**), les naphtoquinones (**13, 14**) isolées de *Cordia currasavica*, des dérivés phénoliques (**15, 16, 17**) isolés de *Cordia exaltata* (**Nogueira et** *al.***, 2013**).

5-méthoxy-6,7-méthylènedioxyflavone (11)

5, 6,7-triméthoxyflavone (12)

Figure 8: Quelques composés phénoliques isolés de la famille des Boraginaceae

Acide protocartechuique (15)

Acide (E)-7-(3,4-dihydroxyphényl)-7-propènoique (16)

m-méthoxyhydrobenzaldéhyde (17)

Figure 8 : Quelques composés phénoliques isolés de la famille des Boraginaceae (Suite et fin)

Les Boraginaceae sont également l'une des sources importantes des acides gras à longue chaine insaturée tels que l'acide γ -linoléique (18), l'acide α -linoléique (19) et l'acide oléique (20) isolés du genre *Paracaryum* (**Doğru-Koca et al., 2016**).

Figure 9: Quelques acides gras isolés des plantes de la famille des Boraginaceae

4. Généralités sur les plantes du genre Cordia

4.1. Caractères généraux

Le genre *Cordia* a été identifié par Linnaeus en 1753. *Cordia* est le genre le plus abondant dans la famille des Boraginaceae (**Retief, 2008**). Il compte environ 300 espèces et il est répandu dans les régions tropicales des deux hémisphères (**Nariya et al., 2017**). *Cordia* se trouve en Amérique Centrale et du Sud, en Afrique de l'Ouest et en Asie (Pakistan et Inde) (**Matos et al., 2017**). Trente-sept (37) espèces du genre *Cordia* ont été répertoriées en Afrique sub-saharienne dont sept (07) en Afrique Australe (**Retief, 2008**).

Distribution du genre Cordia

4.2. Anatomie botanique du genre Cordia

Les feuilles sont alternes, entières ou dentelées. Les fleurs sont de couleur blanche, jaune ou orange avec des inflorescences de cyme transitoire. Le calice est généralement tubuleux à cinq (05) dents. La corolle est profonde avec quatre (04) à huit (08) lobes. L'ovaire est formé de quatre (04) lobes contenant chacun un ovule. Les fruits ont la forme ovoïde ou ellipsoïdale avec l'endocarpe et la pulpe visqueuse (**Oza et Kulkarni, 2017**).

4.3. Taxonomie du genre Cordia

La classification botanique du genre *Cordia* se présente comme suit (**Chacón et** *al.*, 2016) :

Règne	:	Végétal
Sous règne	:	Eucaryotes
Embranchement	:	Tracheophyta
Sous embranchement	:	Euphyllophytina
Classe	:	Magnoliopsida
Sous classe	:	Lamiidae
Ordre	:	Boraginales
Famille	:	Boraginaceae
Genre	:	Cordia

4.4. Usages traditionnels des plantes du genre Cordia

Plusieurs espèces du genre *Cordia* sont utilisées pour le traitement des gouttes, des ulcères, des blessures, des tumeurs et des infections virales. Elles sont également utilisées comme purificateur et fébrifuge du sang (**Oza et Kulkarni, 2017**).

Les décoctions de feuilles de plusieurs espèces (*C. alliodora, C. boissieri, C. cylindrostachya, C. linnaei, C. globosa*) sont employées pour le traitement de la grippe, la fièvre, la toux, l'asthme, des menstrues douloureuses, la dysenterie, la diarrhée, le mal de tête et des inflammations (**Oza et Kulkarni, 2017; Souza da Silva et** *al.*, 2004). La décoction des racines (*C. verbenacea, C. gilletti*) est utilisée comme analgésique, anti-rhumatisme et pour le traitement de la tuberculose, la bronchite et la malaria (**De Carvalho et** *al.*, 2004; **Okusa et** *al.*, 2007). Les décoctions d'écorces (*C. rothii*) est utilisée comme gargarisme (**Watt, 1972**). Les fruits (*C. myxa, C. dichotoma*,) sont utilisés pour le traitement des maladies rénales et pulmonaires et également comme adoucissants (**Al-Awadi et** *al.*, 2001 ; **Anjali et** *al.*, 2011).

4.5. Généralités sur l'espèce Cordia millenii

Cordia millenii est une espèce très répandue en Afrique tropicale (Afrique Centrale, Afrique de l'Ouest et Afrique de l'Est) dans les forêts ; elle est généralement plantée en Afrique de l'Ouest. C'est un arbre de taille moyenne qui varie de 4 à 32 m de haut (**Kakudidi, 2004**).

4.5.1. Aperçu botanique

Les feuilles sont caduques, alternes et simples avec des stipules absentes, un mince pétiole de 2,5 à 16 cm de long et un limbe rond. L'inflorescence est constituée de cymes condensées (**Jiofack**, **2010**).

Les fleurs sont unisexuées, régulières et blanchâtres. Les fleurs mâles ont habituellement l'ovaire rudimentaire et les fleurs femelles ont des étamines stériles. Le Calice est tubulaire de 6 à 12 mm de long et possède 3 à 4 lobes. La corolle est sous forme d'entonnoir et possède 4 à 7 lobes de 4,5 à 7 mm de long. Les étamines sont alternées avec les lobes de la corolle (**Kakudidi, 2004**).

Le bois contient 46% de cellulose, 20% de lignine et 30% d'hémicellulose. La surface de l'écorce est lisse et se fissure au fur et à mesure que l'arbre croît (**Udeozo et** *al.*, **2016**).

Les fruits sont de couleur jaune à maturité et les drupes ont la forme ovoïde ou ellipsoïdale et peuvent atteindre 4,5 cm ; leurs noyaux contiennent 1 à 4 pépins. Les fruits contiennent des essences qui sont très appréciées en cosmétique (**Jiofack, 2010**).

Les caractères botaniques de *Cordia millenii* sont très semblables à ceux de *Cordia platythyrsa*. Mais *Cordia millenii* diffère par des feuilles plus petites, ovales et à poils et ses fruits sont plus petits (**Jiofack**, **2010**).

a

b

Figure 11: Image des feuilles (a) et du tronc (b) de l'espèce *Cordia millenii* (Dongmo, 2015)

Cordia millenii, comme la plupart des espèces du genre *Cordia*, est utilisée dans la medécine traditionnelle

4.5.2. Usages traditionnels de l'espèce Cordia millenii

En Afrique de l'Ouest, les différentes parties de *Cordia millenii* sont utilisées en médecine traditionnelle. Au Nigéria, la décoction des écorces du tronc est utilisée pour le traitement de la fièvre, le mal d'estomac, la fatigue générale et la dysenterie (**Ehiagbonare et** *al.*, **2008**); la poudre des pépins de fruits est mélangée à l'huile de palme pour le traitement des infections cutanées (**Udeozo et** *al.*, **2016**). Au Sud-Ouest du Nigeria, les feuilles sont utilisées pour le traitement de l'infertilité chez la femme (**Nnadozie et** *al.*, **2017**).

Au Cameroun et dans d'autres pays de l'Afrique de l'Ouest, la décoction des feuilles est utilisée comme vermifuge et pour le traitement de la toux et de l'asthme. De plus, au Nord-Ouest du Cameroun, l'association de ses feuilles avec celles de *Centella asiatica* est utilisée pour le traitement des convulsions chez les enfants (**Focho et al., 2009**).

4.5.3. Travaux chimiques antérieurs sur les plantes du genre Cordia

Les études phytochimiques ont été faites sur plusieurs espèces du genre *Cordia*. Il ressort de ces études que *Cordia* est constitué de plusieurs métabolites secondaires tels que les triterpènes, les quinones, les coumarines, les acides gras, les alcaloïdes, les flavonoïdes, les stéroïdes et les huiles essentielles. De ces travaux, les triterpènes constituent la classe la plus isolée.

4.5.3.1.Triterpènes

Les triterpènes sont des métabolites secondaires dont le squelette de base en C₃₀ résulte de la polycondensation de six unités isopréniques. Ces derniers dérivent de la cyclisation d'un même précurseur qui est le squalène (**21**) ou 3S-2,3-époxydo-2,3-dihydrosqualène (**22**). Très répandus dans le règne végétal, plus de 20000 triterpènes ont déjà été isolés. Ils sont presque toujours hydroxylés en position 3 étant donné l'ouverture de l'époxyde lors de la cyclisation. Les triterpènes peuvent être sous une forme simple (Sapogénines) ou liés aux glycosides (Saponines) (**Gauthier, 2006**). Parmi les triterpènes isolés dans le genre *cordia*, les triterpènes pentacycliques sont les plus abondants. Lorsque l'époxydation est dans la conformation chaisechaise-chaise-bateau, la cyclisation aboutit au cation dammaranyle. Ce dernier conduit le plus souvent aux triterpènes pentacycliques de type oléanane, ursane, lupane, taraxérane, taraxastane, etc (**Harkati, 2011**). Lors de la biosynthèse des triterpènes pentacycliques, les réactions enzymatiques couramment observées sont les hydroxylations, les méthylations, les oléfinisations et les lactonisations (**Gauthier, 2006 ; Harkati, 2011**).

Schéma 6: Biosynthèse de quelques familles des triterpènes pentacycliques (Harkati, 2011).

Suite aux différentes réactions observées lors de la biosynthèse des triterpènes pentacyliques, plusieurs triterpènes pentacycliques ont été isolés du genre *cordia*. Le lup-20(29)-ène-3-*O*- β -*D*-maltoside (**23**) et le lup-20(29)-ène-3-*O*- α -*L*-rhamnopyranoside (**24**) ont été isolés des racines de *Cordia obliqua* (**Chauhan et Srivastava, 1978**) ; le 3 α -acétoxyl-6 β ,25-dihydroxy-20(S), le 24(S)-époxydammarane (**25**), le 3 α -6 β -25-trihydroxy-20(S),24(S)-époxydammarane (**26**) et la cabraleadiol (**27**) isolés des feuilles de *Cordia spinescens* (**Nakamura et al., 1997**) ; l'acide lantique (**28**), l'acide lantanolique (**29**), la lantadene A (**30**), la lantadene B (**31**) et le cordiaketal (**32**) isolés des feuilles de *Cordia multispicata* (**Kuroyanagi et al.; 2001**) ; l'acide 3 α -hydroxyoléan-12-èn-27-oïque (**34**) isolés des feuilles de *Cordia alliodora* (**Chen et al., 1983**) ; l'acide 3 β -O-6-déoxy- β -D-glucopyranoside cincholique (**35**) et l'acide 3 β -O- β -D-glucopyranoside quinovique (**36**) isolés des écorces de *Cordia Piauhiensis* (**Oza et Kulkarni, 2017**).

Figure 12: Quelques triterpènes pentacycliques isolés des plantes du genre Cordia

Figure 12: Quelques triterpènes pentacycliques isolés du genre Cordia (suite et fin)

4.5.3.2. Dérivés de composés phénoliques

Les composés phénoliques ont été également isolés de *Cordia*. Nous pouvons citer les cinnamates telles que la cordiacinnamate A (**37**) et la cordiacinnamate B (**38**) isolées de *Cordia platythyrsa* (**Dabole et** *al.*, **2016**). Nous avons également les dérivés d'acide phénolique tels

que le latifolicinine A (**39**), le latifolicinine B (**40**) et le latifolicinine C (**41**) isolés de *Cordia latifonia* (**Siddiqui et** *al.*, **2006**). Les acides chlorogenique (**42**) et cafféique (**43**) ont été isolés de *Cordia macleodii* (**El-sayed et** *al.*, **1998**). De plus, les benzoquinones telles que la cordiachrome A (**44**), la cordiachrome B (**45**) et la cordiachrome C (**46**) ont été isolées de *Cordia millenii* (**Moir et** *al.*, **1972**).

Figure 13: Quelques dérivés de composés phénoliques isolés du genre Cordia

4.5.3.3 . Dérivés d'acides

Le genre *Cordia* est constitué des acides gras comme tout genre de la famille des Boraginaceae. Des dérivés d'acide gras tels que le butyrate d'éthyle (47), l'acétate d'éthyle (48) et le formate d'éthyl (49) isolés de *Cordia nitida* (Pino et *al.*, 2002); le maleate de *sec*-butylundecyle (50) isolé de *Cordia sebestina* (Adeosun et Samuel, 2012).

Figure 14: Quelques dérivés d'acides isolés du genre Cordia

4.6. Les depsidones

4.6.1. Généralités sur les depsidones

Les depsidones sont des composés organiques constitués de deux noyaux d'acide 2, 4dihydroxybenzoïque. Ils sont reliés par les fonctions ester et éther pour former un cycle régide 11H-dibenzo[b,e][1,4]dioxepin-11-one (**Stojanović et al., 2014**). Ainsi, ils diffèrent des depsides par la formation de ce cycle rigide. Les depsidones résultent de deux molécules d'acide orsellinique, le cycle A s'identifie par sa fonction acide estérifiée et le cycle B est le second acide orsellinique non estérifié (**51**). Les depsidones se trouvent chez les fongites, les plantes et en majorité chez les lichens. Contrairement aux lichens, les depsidones sont très peu répandues chez les fongites car très peu ont été isolées (**Phainuphong et al., 2018**). Ce métabolite secondaire protège les plantes des microbes et des insectes ou du soleil. De plus, il protège les lichens du stress oxydatif dû aux radiations solaires (**Vila et al., 2011**).

Figure 15: Structure de base des depsidones

4.6.2. Biosynthèse des depsidones

Les depsidones sont obtenues par la polyketide synthase (PKS) via la voie polyketide (**Legaz et** *al.*, **2011; Rogers, 1989**). Leurs structures diffèrent suites aux réactions de réduction, d'oxydation et autres réactions. Les depsidones sont biosynthétisées à partir de deux voies :

▶ La première voie se fait à partir d'une réaction d'oxydation de deux depsides. Ces derniers sont biosynthétisés à partir de la réaction de condensation entre les dérivées d'orcinol et de l'acide orsellinique. La biosynthèse débute avec l'acétyl-CoA carboxylase qui forme le malonyl-CoA, principal substrat de la polyketide synthase (PKS). À partir de l'acéthyl-CoA (**52**), les polyketide synthases (PKS) permettent d'obtenir des composés de structures différentes. Ces composés sont obtenus via des cyclisations suite aux réactions de déshydratation, de réduction et de décarboxylation de Claisen (Schümann et Hertweck, 2006). Le tétraketide obtenu (**53**) possède un groupe méthyle en C-4 qui est intégré dans le processus de synthèse par la C-méthyltransférase (CMeT) des PKS correspondantes (Armaleo et Sun, 2011). Ainsi, les acides β-orselliniques (**54**) et orselliniques (**55**) sont produits par condensation d'aldol (C-7 et C-2) non enzymatique. Ensuite, les depsides (**57**, **58**) sont biosynthétisés soit par condensation des dérivés de l'acide orsellinique et orcinol (**56**) ou par condensation de deux acides orselliniques à travers la formation d'un ester par les PKS ou par un autre enzyme (Legaz et *al.*, 2011). Enfin les depsidones (**59**, **60**) sont formées par formation de la liaison ether par les depsides préalablement formées (Rogers, 1989).

La deuxième voie est celle de la benzophenone-grisadienedione (Adeboya et al., 1996).
Elle aboutit à la formation des depsidones (60) par réarrangement de l'intermédiaire de synthèse (grisadienedione) (63) qui est issu d'une réction d'oxydation entre deux benzophenones (62) ; ce dernier provenant d'une chaine polyketide (61).

KS: Ketosynthase; AT: Acyltransferase; ACP: Acyl carrier proteine; SAM: S-Adenosylmethionine

Schéma 7: Biosynthèse des depsidones (Okoye et al., 2013; Talontsi et al., 2013)

4.6.3. Détermination structurale des depsidones

La plupart des depsidones ont des chromophores. Les bandes d'absorption en ultra violet (UV) permettent d'identifier et de détecter leur origine. Ceux dérivant des α -orcinols présentent une bande d'absorption UV maximale entre 245 et 255 nm et une faible bande d'absorption aux environs de 310 à 320 nm. Ceux qui dérivent de β -orcinols ont une bande d'absorption maximale proche de 238 et 312 nm (**Rao et al., 1966; Yoshimura et al., 1994**).

En infra-rouge, les depsidones présentent les bandes du groupement hydroxyle (OH) aux environs de 3300 à 3500 cm⁻¹ et des bandes intenses de 1700 à 1710 ; 1735 à 1740 ; 1721 à 1775 cm⁻¹ caractéristiques respectivement des carbonyles d'ester, de cétone et d'aldéhyde (**Ibrahim et** *al.*, **2018**).

Les depsidones sont caractérisées par les liaisons ether et ester qui relient deux noyaux aromatiques pour former un troisième cycle. Sur le spectre de RMN ¹³C, les signaux des groupements carbonyles se révèlent de 161 à 167 ppm. Les noyaux aromatiques sont substitués par différents groupes fonctionnels tels que les aldéhydes, les hydroxyles, les méthyles, les méthoxyles, les halogènes (chlore ou brome), les chaines alkyles saturées et insaturées initialement liées à la fonction cétone. Leurs méthyles aromatiques s'observent de 7 à 30 ppm dépendant des substituants voisins. Les groupes méthoxyles s'observent à δ_H 3,40 - 3,90 et δ_C 50 - 60. Dans les chaines alkyles, le déplacement chimique du carbone de méthylènes s'observe de 25 à 45 ppm et celui du groupement méthyle s'observe de 14 à 15 ppm. Le spectre de RMN ¹H revèlent les protons des noyaux aromatiques de 6,40 à 7,20 ppm ; les protons de méthyles des dérivés de β -orcinol s'observent à 2,08 et 1,89 ppm ; 2,14 ppm pour ceux dérivant des orcinols et 2,00 ppm pour ceux dérivant de l'acide orsellinique. Les signaux de δ_H 9,85 à 10,85/ δ_C 191 à 195 sont caractéristiques de leur fonction aldéhyde (**Ibrahim et** *al.***, 2018 ; Vila et** *al.***, 2011).**

Étant donné que les depsidones sont également isolées des fongites, ces derniers peuvent induire la substitution du chlore ou du brome en position 2, 4 ou 7. La présence d'un atome de brome s'observe sur le spectre de masse par la présence de deux pics de l'ion moléculaire à $[M + H]^+$ et $[M + 2 + H]^+$ avec un ratio de 1:1. Avec deux atomes de brome, nous observons les pics de l'ion moléculaire à $[M + H]^+$, $[M + 2 + H]^+$ et $[M + 4 + H]^+$ avec des intensités de 1:2:1 (**Sureram et al., 2013**). Pour des composés qui possèdent le chlore, nous observons les mêmes pics de l'ion moléculaire sauf que les intensités diffèrent. Pour un atome de chlore, nous avons le ratio 3:1 (**Ibrahim et al., 2015**) et pour deux atomes de chlore, nous avons les intensités 9:6:1 (**Zhang et al., 2014**). La fragmentation des depsidones impliquent la perte d'une molécule de CO₂ du cycle central pour donner le squelette dibenzofurane, suivi de l'élimination des autres fragments dépendant de la nature des substituants (**Parrot et** *al.*, **2013; Huneck et Lam, 1975**).

La configuration absolue des atomes de carbones asymétriques des depsidones peut être déterminée soit par les rayons X ou par dichroïsme circulaire. Les rayons X permettent de déterminer les paramètres structuraux 3D de la molécule (**Deschamps, 2010**) et le dichroïsme circulaire permet de comparer ses données obtenues avec celles de la littérature ou des analogues isolés ou synthétisés (**Ibrahim et Mohamed, 2015; Berova et** *al.*, **2007**).

4.7. Activités biologiques des depsidones

En plus de jouer un rôle de protection chez les microorganismes, les depsidones sont également très importants pour la santé de l'homme. La forme structurale des depsidones est semblable aux hormones humaines (leucotriènes et prostaglandines) (**Chottanapund et** *al.*, **2017**). De plus, l'être humain est très peu allergique aux depsidones (**Molnár et Farkas, 2010 ; Legaz et** *al.*, **2011**). Plusieurs études révèlent que les depsidones possèdent diverses activités biologiques.

Les spiromastixones L (64), K (65), J (66), G (67) isolées des fonds marins (Niu et *al.*, 2014) et l'aspergisidone (68) isolé du microorganisme *Aspergillus unguis* (Phainuphong, 2018) ont révélé de très bonnes activités antibactériennes. Les depsidones ont également des activités inhibitrices; tels sont les cas des brevipsidones A (69) et D (70) isolées de *Garcinia brevipedicellata* (Ngoupayo et *al.*, 2008) et de la Corynesidone B (71) isolée de *Zanthoxyllum leprieurrii* (Talontsi et *al.*, 2013) qui présentent respectivement une bonne activité inhibitrice de la α -glucosidase et la protéine de kinase. Les depsidones possèdent également des propriétés anti-tumorale, antiinflammatoire, antivirale, antioxydante et antifongique (Brandão et *al.*, 2017; Chen et *al.*, 2015; Hamano et *al.*, 1992).

R: Cl(64); R: H(65)

R:Cl(66); R:H(67)

юн соон

Figure 16: Quelques depsidones possédant des propriétés biologiques

Motivé par l'utilisation des extraits de *Cordia millenii* en pharmacopée traditionnelle dans le traitement de plusieurs maladies et dans le cadre de la recherche de nouveaux agents chimiothérapeutiques à activité inhibitrice de l'intégrase du VIH et antibactérienne, il nous a semblé opportun d'entreprendre des travaux phytochimiques et biologiques sur cette plante. Travaux donc nous présentons dans la partie suivante.

RÉSULTATS ET DISCUSSION
Cette partie présente les résultats obtenus au cours des manipulations réalisées en laboratoire. Elle revêt ainsi trois aspects : phytochimique, transformations chimiques et évaluation de l'activité biologique (antibactérienne, inhibition de l'intégrase du VIH et cytotoxicité).

A. Etude phytochimique

L'étude phytochimique porte essentiellement sur l'isolement et la caractérisation des composés de l'extrait et des fractions à l'acétate d'éthyle des différentes parties de *Cordia millenii* (feuilles, écorces du tronc et racines).

1. Isolement et caractérisation des composés isolés des écorces du tronc de *Cordia millenii*

1.1. Extraction et isolement

Les écorces du tronc de *Cordia millenii* Baker ont été récoltées à Batoufam, région de l'Ouest Cameroun en Mai 2015. Grâce aux techniques d'extraction et chromatographiques, sept composés indexés CM3, CM4, CM8, CM9, CM11, CM12 et TCM3 ont été isolés de l'extrait à l'acétate d'éthyle. Le protocole utilisé est illustré sur le schéma 8 suivant :

Schéma 8: Protocole d'extraction et d'isolement des composés de l'extrait brut à l'acétate d'éthyle des écorces du tronc de *Cordia millenii*

1.2. Caractérisation chimique des composés isolés

1.2.1. Détermination de CM3

CM3 a été obtenu dans le système hexane/acétate d'éthyle (60:40). Il se présente sous forme de poudre amorphe blanche et est soluble dans le DMSO. Il répond positivement au test au FeCl₃, en donnant une couleur bleue, caractéristique des composés phénoliques. Son spectre de masse sous ionisation electrospray (**Figure 17**) et à haute résolution montre en mode positif le pic de l'adduit sodique à m/z = 376,4972 [M+2Na]²⁺, correspondant à la formule moléculaire brute C₁₇H₁₄O₇, renfermant ainsi 11 degrés d'insaturations.

L'analyse des données spectrales nous a permis d'obtenir la structure suivante :

Le spectre de RMN ¹H (**Figure 18 et tableau I**) présente le signal d'un groupement méthoxyle à δ_H 3,85 (3H, s, OCH₃), le signal du proton de la fonction aldéhyde à δ_H 10,43 (1H, s, H-14) et les signaux de deux singulets de protons aromatiques résonant à δ_H 6,85 (1H, s, H-2) et δ_H 7,08 (1H, s, H-9). De plus, nous observons sur ce spectre de RMN ¹H, les signaux des méthyles liés au noyau aromatique résonant à δ_H 2,45 (3H, s, H-12) et 2,19 (3H, s, H-13) caractéristique des depsidones (**Ibrahim et** *al.***, 2018 ; Vila et** *al.***, 2011).**

Figure 18: Spectre de RMN ¹H (600 MHz, DMSO-d₆) de CM3

Le spectre de RMN ¹³C (**Figure 19 et tableau I**) complètement découplé présente 17 signaux de carbone. L'analyse de ce spectre en association avec la technique DEPT (**Figure 20**) permet de mettre en évidence la présence de deux carbones quaternaires dont un carbonyle de lactone à $\delta_{\rm C}$ 166,1 (C-11) et un carbonyle d'aldéhyde à $\delta_{\rm C}$ 193,9 (C-14). Ce spectre de RMN ¹³C relève la présence de dix carbones aromatiques quaternaires parmi lesquels six oxygénés résonant à $\delta_{\rm C}$ 164,0 (C-3), 164,8 (C-4a), 142,5 (C-5a), 161,0 (C-9a), 143,4 (C-6), 154,7 (C-8) et le reste résonant à $\delta_{\rm C}$ 152,7 (C-1), 110,9 (C-4), 122,8 (C-7), 111,9 (C-11a). Ces données spectrales sont caractéristiques des depsidones précédemment isolées de plusieurs

microorganismes (**Ouyang et** *al.*, 2018 ; **Dong-Lin et** *al.*, 2016 ; **Chen et** *al.*, 2015 ; **Varughese et** *al.*, 2012) et de certaines plantes du genre *Garcinia* (**Ngoupayo et** *al.*, 2008).

Figure 19: Spectre de RMN ¹³C (150 MHz, DMSO-d₆) de CM3

Ce spectre met également en exergue la présence d'un groupement méthoxyle à δ_C 56,3 (OCH₃), deux groupements méthyles aromatiques à δ_C 21,7 (C-12) et 9,8 (C-13). De plus, nous observons dans les champs faibles, deux méthines aromatiques à δ_C 117,4 (C-2) et 107,7 (C-9) confirmant ainsi la présence des deux singulets de protons aromatiques sur le spectre RMN ¹H.

Figure 20: Spectre DEPT 135 (150 MHz, DMSO-d₆) de CM3

Sur la base des corrélations HMBC (**Figure 21, schéma 9 et tableau I**) la fixation de la fonction aldéhyde et l'un des groupements méthyles sur le noyau aromatique (A) s'est faite grâce aux corrélations observées entre le proton H-2 ($\delta_{\rm H}$ 6,85) et les carbones C-3 (164,0 ppm), C-14 (193,5 ppm), C-11a (111,9 ppm) et C-12 (21,7 ppm). La position de la fonction aldéhyde a été mise en évidence par les corrélations observées entre le proton H-14 ($\delta_{\rm H}$ 10,43) et les carbones C-4 ($\delta_{\rm C}$ 110,9) et C-4a ($\delta_{\rm C}$ 164,8) suggérant que la fonction aldéhyde est fixée sur le carbone C-4 ($\delta_{\rm C}$ 110,9). Nous observons également les corrélations HMBC entre le signal à $\delta_{\rm H}$ 2,45 (H-12) et les carbones à $\delta_{\rm C}$ 152,7 (C-1), 117,4 (C-2), 166,1 (C-11) et 111,9 (C-11a) justifiant ainsi l'attachement de l'un des groupements méthyles sur le carbone C-1 du noyau aromatique A.

Figure 21: Spectre HMBC (¹H : 600 MHz, ¹³C : 150 MHz, DMSO-*d*₆) de CM3

Schéma 9: Corrélations observées sur le spectre HMBC de CM3

Par ailleurs, les positions des substituants sur le second noyau aromatique (B) ont été identifiées grâce aux corrélations HMBC observée entre H-9 (δ_H 7,08) et C-5a (δ_C 142,5), C-7 (δ_C 122,8), C-8 (δ_C 154,7), C-11 (δ_C 166,1) et C-13 (δ_C 9,8). Le deuxième groupement méthyle a été placé sur le cycle aromatique B grâce aux corrélations HMBC observée entre ses protons à δ_H 2,19 (H-13) et les carbones C-6 (143,4 ppm), C-7 (122,8 ppm) et C-8 (154,7 ppm). Rendu à ce niveau de la discussion, il nous reste à déterminer la position du carbonyle de

Rendu a ce niveau de la discussion, il nous reste a determiner la position du carbonyle de l'ester dans la molécule. Il pourrait être adjacent au carbone C-11a (111,9 ppm) qui apparait dans le champ fort, dû au fait que nous observons en champ faible les carbones oxygénés à $\delta_{\rm C}$

164,8 (C-4a), 142,5 (C-5a), 161,0 (C-9a). Ainsi, les deux cycles aromatiques sont joins par les fonctions ester et éther, formant ainsi un cycle (C) suppléméntaire à sept chainons, caractéristique du squelette des depsidones (**Elix et** *al.*, **1986** ; **Chen et** *al.*, **2015**). Les valeurs des déplacements chimiques sur le spectre de RMN ¹³C et RMN ¹H de CM3 (**72**) présentent des simultudes avec celles de la Botryorhodine A (**73**), une depsidone précédemment isolée du champignon *Meyerozyma guilliermondii* (**Chen et** *al.*, **2015**).

Ces deux structures diffèrent par leur cycle aromatique B. Le cycle aromatique B de CM3 est substitué par les groupements hydroxyle et méthyle qui occupent des positions différentes que ceux de la Botryorhodine A (**73**). En plus, le cycle aromatique B de CM3 (**72**) est substitué par le groupement méthoxyle, qui est absent sur le cycle aromatique B de la Botryorhodine A (**73**). Ainsi, la corrélation HMBC observé entre les signaux à δ_H 3,85 (OCH₃) et à δ_C 154,7 (C-8) révèle l'attachement du groupement méthoxyle au second noyau aromatique (B) en C-8. La corrélation HMBC observée entre les signaux à δ_H 2,19 (H-13) et à δ_C 122,8 (C-7) renforce d'avantage la substitution du cycle aromatique B en C-7 par le groupement méthyle.

Schéma 10: Corrélations observées sur le spectre HMBC de CM3 (Suite et fin)

Par ailleurs, la substitution du cycle aromatique B en C-6 (143,4 ppm) par le groupement hydroxyle est une évidence étant donné que nous avons précédemment montré que le carbone C-6 est oxygéné. La structure jusqu'ici proposée a été renforcée par les corrélations NOESY (**Figure 22**, schéma 11 et tableau I) observées entre les protons du groupement méthoxyle (δ_H 3,85) et les signaux à δ_H 7,08 (H-9) et 2,19 (H-13) confirmant ainsi la position du groupement méthoxyle. De plus, nous observons également les corrélations NOESY entre les protons du méthyle à δ_H 2,45 (H-12) et le proton aromatique à δ_H 6,85 (H-9).

Figure 22: Spectre NOESY ¹H -¹H (600 MHz, DMSO-*d*₆) de CM3

Schéma 11: Corrélations observées sur le spectre NOESY de CM3

Au vu de tout ce qui précède, nous avons attribué à CM3, la structure **72** qui est celle de la 3,6dihydroxy-8-méthoxy-1,7-diméthyl-11-oxo-11H-dibenzo[b,e][1,4]dioxepine-4-carbaldéhyde, un composé nouveau auquel nous avons donné le nom trivial de Cordidepsine, un métabolite secondaire de la classe des depsidones isolé pour la première fois de la famille des Boraginaceae et du genre *Cordia*. La présence de cette depsidone pourrait être conssidée comme un contaminant dû au greffage d'un champignon ou d'un lichen sur les écorces du tronc car cette classe de métabolite secondire est majoritaire dans les lichens et champignon (**Vila et** *al.*, **2011**). De plus, la quantité isolée est très faible (2,7 mg)

72

Tableau I: Données spectrales de RMN 1H (600 MHz, DMSO- d_6), RMN ¹³C (150 MHz, DMSO- d_6), HMBC (¹H : 600 MHz, 13C : 150 MHz, DMSO- d_6) et NOESY (600 MHz, DMSO- d_6) de CM3

position	δ(¹³ C)	$\delta(^{1}\text{H}) (\text{mult.}, J (\text{Hz}))$	HMBC (¹ H- ¹³ C)	NOESY (¹ H- ¹ H)
1	152,7	-	-	-
2	117,4	6,85 (s)	C-3, C-11a, C-12, C-14	H-12
3	164,0	-	-	-
4	110,9	-	-	-
4a	164,8	-	-	-
5a	142,5	-	-	-
6	143,4	-	-	-
7	122,8	-	-	-
8	154,7	-	-	-
9	107,7	7,08 (s)	C-5a, C-7, C-8, C-11, C-13	OCH ₃
9a	161,0	-	-	-
11	166,1	-	-	-
11a	111,9	-	-	-
12	21,7	2,45 (s)	C-1, C-2, C-11, C-11a	H-2
13	9,8	2,19 (s)	C-6, C-7, C-8	OCH ₃
14	193,9	10,43 (s)	C-4, C-4a	-
OCH ₃	56,3	3,83 (s)	C-8	H-9, H-13

1.2.2. Identification de CM4

CM4 a été obtenu dans le système acétate d'éthyle /MeOH (90:10). Il se présente sous forme de poudre de couleur beige et est soluble dans le DMSO. Il répond positivement au test de Meyer en donnant un précipité blanc, caractéristique des alcaloïdes. Son spectre de masse sous ionisation electrospray à haute résolution (**Figure 23**) montre l'ion *quasi* moléculaire en mode positif à $m/z = 159,0636 [M+H]^+$, correspondant à la formule moléculaire brute C₄H₆O₃N₄ et renfermant ainsi 4 degrés d'insaturations.

Figure 23: Spectre de masse ESI de CM4

L'analyse des données spectrales nous a permis d'obtenir la structure suivante :

Le spectre de RMN ¹H (**Figure 24 et tableau II**) nous révèle la présence de trois singulets à $\delta_{\rm H}$ 10,56 (1H, s, H-1), 8,04 (1H, s, H-3) attribuables aux protons du groupement amide et à $\delta_{\rm H}$ 5,79 (2H, s, H-8) attribuable aux protons du groupement amino (-NH₂).

Figure 24 : Spectre de RMN ¹H (600 MHz, DMSO-*d*₆) de CM4

Nous observons également les signaux des doublets à $\delta_H 5,24$ (1H, d, J = 8 Hz, H-4) et $\delta_H 6,92$ (1H, d, J = 8 Hz, H-6) attribuables au méthine et au proton du groupement –NH respectivement.

Le spectre de RMN ¹³C (**Figure 25 et tableau II**) totalement découplé présente quatre signaux de carbone compatible avec le nombre de carbones dans la formule moléculaire brute. L'analyse de ces signaux permet de mettre en évidence le carbone d'un groupement méthine lié à l'atome d'azote à $\delta_{\rm C}$ 62,6 (C-4) et trois carbones quaternaires parmi lesquels deux carbonyles de lactame à $\delta_{\rm C}$ 157,0 (C-2) et 173,8 (C-5) et un carbonyle d'amide à $\delta_{\rm C}$ 157,6 (C-7).

Figure 25: Spectre de RMN ¹³C (150MHz, DMSO-d₆) de CM4

Le spectre HMBC (**Figure 26, schéma 12 et tableau II**) met en exergue les corrélations ³ J et ²J entre le méthine à δ_H 5,24 (H-4) et les carbonyles de lactame à δ_C 157,0 (C-2) et 173,8 (C-5) respectivement. Les positions des trois groupements –NH sont confirmées à travers les corrélations observées entre leurs protons à δ_H 10,56 (H-1), 8,04 (H-3), 6,92 (H-6) et les signaux de carbones à δ_C 157,0 (C-2), 62,6 (C-4) et 173,8 (C-5). Ce spectre présente des corrélations entre les protons du groupement amino à δ_H 5,79 (H-8) et le méthine à δ_C 62,6 (C-4).

Figure 26: Spectre HMBC (¹H : 600 MHz, ¹³C : 150 MHz, DMSO-*d*₆) de CM4

Schéma 12: Corrélations observées sur le spectre HMBC de CM4

La position du méthine a été confirmée dans la molécule grâce aux corrélations COSY (**Figure 27, schéma 13 et tableau II**) entre son proton (5,24 ppm) et les protons du groupement –NH en position 3 (8,04 ppm) et 6 (6,92 ppm).

Figure 27: Spectre COSY ¹H-¹H (600 MHz, DMSO-*d*₆) de CM4

Schema 13: Corrélations observées sur le spectre COSY de CM4

L'ensemble de toutes ces données, comparées à celles décrites dans la littérature, a permis d'identifier CM4 à l'allantoïne (74) précédemment isolé des graines de *Portulaca oleracea* (Heng-Zhi et Chuan-Jin, 2018), du bois de *Cordia trichotoma* (Menezesa et *al.*, 2001) et du lichen *Umbilicaria esculenta* (Xu et *al.*, 2011). L'allantoïne est un analgésique (Heng-Zhi et Chuan-Jin, 2018) et il est également utilisé pour soigner les blessures (Faizi et *al.*, 2008).

Tableau II: Données spectrales de RMN ¹H (600 MHz, DMSO-*d*₆), RMN ¹³C (150 MHz, DMSO-*d*₆), HMBC (¹H : 600 MHz, ¹³C : 150 MHz, DMSO-*d*₆) et COSY (600 MHz, DMSO-*d*₆) de CM4 comparées à celles de la litterature

Position	δ(¹³ C)	$\delta(^{1}\text{H}) \text{ (mult., } J \text{ (Hz))}$	HMBC (¹ H- ¹³ C)	COSY (¹ H- ¹ H)	δ(¹³ C) (125 MHz, DMSO- <i>d</i> ₆ , Xu et <i>al.</i> , 2011)
1	-	10,56 (s)	C-2, C-4, C-5	-	-
2	157,0	-	-	-	157,3
3	-	8,04 (s)	C-2, C-4, C-5	H-4	-
4	62,6	5,24 (d, <i>J</i> = 8,0 Hz)	C-2, C-5	H-3, H-6	62,4
5	173,8	-	-	-	173,6
6	-	6,92 (d, <i>J</i> = 8,0 Hz)	C-2, C-4, C-5	H-4	-
7	157,6	-	-	-	156,8
8	-	5,79 (s)	C-4	-	-

1.2.3. Identification de CM8

CM8 a été obtenu dans le système hexane/acétate d'éthyle (85:15). Il se présente sous forme de poudre blanche. Il est soluble dans le chloroforme et répond positivement au test de Libermann-Burchard en donnant une couleur rouge violacée, caractéristique des triterpènes. La CCM comparative avec les échantillons pris au laboratoire nous a permis d'identifier CM8 à la structure suivante :

Cette structure est confirmée par le spectre de RMN ¹H (**Figure 28, Tableau III**) qui révèle la présence des signaux de deux protons du système AB à $\delta_{\rm H}$ 4,55 (1H, d, J = 2,0 Hz, H-29a), 4,67 (1H, d, J = 2,0 Hz, H-29b) et un singulet de trois protons à $\delta_{\rm H}$ 1,66 (3H, s, H-30) caractéristique du squelette de lupane (**Pandey et** *al.*, **2008**). Nous observons également les signaux de six méthyles angulaires à $\delta_{\rm H}$ 0,93 (3H, s, H-23), 0,91 (3H, s, H-24), 0,85 (3H, s, H-25), 1,03 (3H, s, H-26), 0,76 (3H, s, H-27), 0,78 (3H, s, H-28).

Figure 28 : Spectre de RMN ¹H (500 MHz, CDCl₃ de CM8)

L'ensemble de toutes ces données spectrales comparées à celles décrites dans la littérature a permis d'identifier CM8 au lupenone (**75**), précédemment isolé des rhizomes de *Polypodium Vulgare* (**Chaturvedula et Indra, 2012**). La lupenone est utilisé pour le traitement des maladies de l'hypopigmentation (**Ragasa et** *al.*, **2014**).

Tableau III: Données spectrales de RMN ¹H (500 MHz, CDCl₃) de CM8 comparées à celles de la littérature

Position	$\delta(^{1}\text{H}) (\text{mult.}, J (\text{Hz}))$	$\delta(^{1}\text{H})$ (mult., <i>J</i> (Hz), (600 MHz,		
		CDCl ₃ ;Chaturvedula et Indra, 2012)		
1	1,73 (m), 1,63 (m)	1,51 (m), 1,72 (m)		
2	2,49 (m)	2,40 (m)		
3	-	-		
4	-	-		
5	1,08 (m)	0,97 (m)		
6	1,46 (m)	1,44 (m)		
7	1,40 (m)	1,30 (m)		
8	-	-		
9	1,17	1,25 (m)		
10	-	-		
11	1,35 (m)			
12	1,77 (m)			
13	1,67 (m)	1,63 (m)		
14	-	-		
15	1,69 (m)	1,61 (m)		
16	1,37 (m)	1,51 (m)		
17	-			
18	1,35 (m)			
19	2,32 (m)	2,38 (m)		
20	-	-		
21	1,92 (m)			
22	1,23 ; 1,42 (m)	1,33 (m)		
23	0,93 (s)	0,94 (s)		
24	0,91 (s)	0,91 (s)		
25	0,85 (s)	0,83 (s)		
26	1,03 (s)	1,06 (s)		
27	0,76 (s)	0,74 (s)		
28	0,78 (s)	0,78 (s)		
29a	4,55 (d, $J = 2,0$ Hz)	4,56 (s)		
29b	4,67 (d, $J = 2,0$ Hz)	4,74 (s)		
30	1,66 (s)	1,72 (s)		

1.2.4. Identification de CM9

CM9 a été obtenu dans le système *n*-hexane/acétate d'éthyle (85:15). Il se présente sous forme de poudre amorphe blanche. Il est soluble dans le chloroforme et répond positivement au test de Libermann-Burchard en donnant une couleur rouge violacée, caractéristique des triterpènes. La CCM comparative avec les échantillons pris au laboratoire nous a permis d'identifier CM9 à la structure suivante :

Cette structure est confirmée par son spectre de RMN ¹H (**Figure 29, Tableau IV**) qui révèle le signal d'un proton oléfinique à $\delta_{\rm H}$ 5,18 (1H, t, $J = 3,5{\rm Hz}$, H-12). Nous observons également sur ce même spectre, les signaux de huit singulets de groupements méthyles angulaires qui résonnent à $\delta_{\rm H}$ 0,82 (3H, s, H-23), 1,07 (3H, s, H-24), 1,03 (3H, s, H-25), 1,05 (3H, s, H-26), 1,12 (3H, s, H-27), 0,85 (3H, s, H-28), 1,01 (3H, s, H-29), 1,00 (3H, s, H-30), caractéristique des triterpènes pentacycliques. Ce spectre révèle également les signaux de deux méthylènes à $\delta_{\rm H}$ 2,33 - 2,40 (3H, m, H-2 et H_a-11) et d'un méthine à $\delta_{\rm H}$ 2,04 (1H, m, H-18) attribuable au squelette de l'oléan-12-ène (**Cáceres-Castillo et al., 2008**).

Figure 29 : Spectre de RMN ¹H (500 MHz, CDCl₃) de CM9

L'ensemble de toutes ces données spectrales comparées à celles décrites dans la littérature a permis d'identifier CM9 au β -amyrone (**76**), précédemment isolé des écorces du tronc de *Stereospermum suaveolens* (**Begum et** *al.*, **2014**). La β -amyrone possède une activité anti cancéreuse (**Po-wei et** *al.*, **2012**).

Tableau IV : Données spectrales de RMN ¹H (500 MHz, CDCl₃) de CM9 comparées à celles de la littérature

Position	$\delta(^{1}\text{H})$ (mult., J (Hz)	δ(¹ H) (mult., <i>J</i> (Hz) (500 MHz, CDCl ₃ ; Begum et <i>al.</i> , 2014)	
1	1,41, 1,90 (m)	1,50 (m)	
2	2,33-2,40 (m)	2,24 (m)	
3	-	-	
4	-	-	
5	1,33 (m)		
6	1,51 (m)	1,55 (m)	
7	1,36 (m)		
8	-	-	
9	2,32 (m)	2,38 (m)	
10	-	-	
11	2,33 (Ha) (m), 1,97 (Hb) (m)	2,30 (m)	
12	5,18 (t, $J = 3,5$ Hz)	5,36 (t, $J = 5,0$ Hz)	
13	-	-	
14	-	-	
15	1,86 (m)	1,79 (m)	
16	1,69 (m)		
17	-	-	
18	2,04 (m)	2,00 (m)	
19	1,48 (m)		
20	-	-	
21	1,69 (m)		
22	1,45 (m)		
23	0,82(s)	0,79 (s)	
24	1,07 (s)	0,96 (s)	
25	1,03 (s)	0,88 (s)	
26	1,05 (s)	0,92 (s)	
27	1,12 (s)	1,01 (s)	
28	0,85(s)	0,81 (s)	
29	1,01 (s)	0,86 (s)	
30	1,00 (s)	0,82 (s)	

1.2.5. Identification de CM11

CM11 a été obtenu dans le système *n*-hexane/acétate d'éthyle (92 : 8). Il se présente sous forme de poudre blanche. Il est soluble dans le chloroforme et répond positivement au test de Libermann-Burchard, en donnant une couleur rouge violacée caractéristique des triterpènes. La CCM comparative avec les échantillons pris au laboratoire nous a permis d'identifier CM11 à la structure suivante :

Cette structure est confirmée sur son spectre de RMN ¹H (**Figure 30, Tableau V**) par la présence des signaux de protons oléfiniques qui résonnent à δ_H 4,67 (1H, d, J = 2,0 Hz, H-29a) et 4,55 (1H, d, J = 2,0 Hz, H-29b) caractéristique du squelette de lupane (**Pandey et al., 2008**). Le reste des signaux observés sur le spectre de RMN ¹H présente de grandes simultides avec ceux du composé CM8 décrit précédemment. Cependant, CM11 diffère de CM8 par la présence d'un méthine oxygéné à δ_H 3,17 (1H, m, H-3).

Figure 30 : Spectre de RMN ¹H (500 MHz, CDCl₃) de CM11

L'ensemble de toutes ces données spectrales comparées à celles de la littérature a permis d'identifier CM11 au lupéol (77), précédemment isolé des feuilles de *Russelia equisetiformis* (**Burns et al., 2000**). Le lupéol possède des propriétés anti-tumorale et anti-inflammatoire (**Suttiarporn et al., 2015**).

Tableau V: Données spectrales de RMN ¹H (500 MHz, CDCl₃) de CM11 comparées à celles de la litterature

Position	$\delta(^{1}\text{H}) (\text{mult.}, J (\text{Hz}))$	δ(1H) (mult., J (Hz) (400 MHz,		
		CDCl3 ; Burns et al., 2000)		
1	1,68 (m), 1,57 (m)	1,52 (m), 1,64 (m)		
2	1,23 (m)	1,61 (m)		
3	3,17 (m)	3,18 (dd, J = 11,0 Hz et 5,3 Hz)		
4	-	-		
5	0,67 (m)	0,69 (m)		
6	1,58 (m)	1,52 (m)		
7	1,40 (m)	1,38 (m)		
8	-	-		
9		1,30 (m)		
10	-	-		
11		1,43, 1,29 (m)		
12	1,75 (m)	1,70 (m)		
13	1,60 (m)	1,62 (m)		
14	-	-		
15	1,62 (m)	1,61 (m)		
16	1,37(m)	1,48 (m)		
17	-	-		
18	1,34 (m)	1,39 (m)		
19	1,94 (m)	2,38 (m)		
20	-	-		
21	1,23 (m)	1,27 (m)		
22	1,23 (m)	1,19 (m)		
23	0,95 (s)	0,97 (s)		
24	0,77 (s)	0,77 (s)		
25	0,85 (s)	0,84 (s)		
26	1,01 (s)	1,04 (s)		
27	0,92 (s)	0,96 (s)		
28	0,81 (s)	0,80 (s)		
29a	4,67 (d, <i>J</i> = 2,0 Hz)	4,68 (d, <i>J</i> = 2,5 Hz)		
29b	4,55 (d, <i>J</i> = 2,0 Hz)	4,56 (d, <i>J</i> = 2,5 Hz)		
30	1,66 (s)	1,70 (s)		

1.2.6. Identification de CM12

CM12 a été obtenu dans le système *n*-hexane/acétate d'éthyle (92 : 8). Il se présente sous forme de poudre amorphe blanche. Il est soluble dans le chloroforme et répond positivement au test de Libermann-Burchard, caractéristique des triterpènes. La CCM comparative avec les échantillons pris au laboratoire nous a permis d'identifier CM12 à la structure suivante :

Cette structure est confirmée par le spectre de RMN ¹H (**Figure 31, Tableau VI**) sur lequel nous observons les signaux d'un proton oléfinique à $\delta_{\rm H}$ 5,16 (1H, t, J = 3,5 Hz, H-12) et d'un methine à $\delta_{\rm H}$ 2,36 (1H, dd, J = 5,5 Hz et 6,0 Hz, H-18) suggérant le squelette du type oléan-12ène (**Chowdhury et al., 2013 ; Hamzah et Lajis, 1998**). Sur ce spectre, contrairement à celui du CM9 décrit plus haut, on observe l'apparition du signal d'un méthine oxygéné à $\delta_{\rm H}$ 3,18 (dd, J = 5,5 Hz et 10,5 Hz, H-3). Le reste des signaux présente des similitudes avec ceux du composé CM9.

Figure 31 : Spectre de RMN ¹H (500 MHz, CDCl₃) de CM12

L'ensemble de toutes ces données spectrales comparées à celles de la littérature a permis d'identifier CM12 à la β -amyrine (**78**), précédemment isolée des écorces du tronc d'*Alstonia boonei* (**Okeye et** *al.*, **2014**). La β -amyrine possède des propriétés anti-inflammatoire et anti-irritante (**Ching et** *al.*, **2010**).

Tableau VI: Données spectrales de RMN ¹H (500 MHz, CDCl₃) de CM12 comparées à

Position	$\delta(^{1}\mathrm{H})$ (mult., J (Hz)	$\delta(^{1}\text{H})$ (mult., J (Hz) (500 MHz,		
		CDCL3; (Okeye et <i>al.</i> , 2014)		
1	1,57, 1,67 (m)	1,55 (m), 1,64 (m)		
2	1,60 (m)	1,52, 1,55		
3	3,18 (dd, J = 5,5 Hz et 10,5 Hz)	3,20 (dd, J = 4,4 Hz et 11,5 Hz)		
4	-			
5	0,74 (m)	0,71 (m)		
6	1,55 (m)	1,53 (m), 130 (m)		
7				
8	-	-		
9	1,84 (m)	1,95 (m)		
10	-	-		
11	1,77 (m)	1,84 (m)		
12	5,16 (t, J = 3,5Hz)	5,16 (t, J = 3,5Hz)		
13	-	-		
14	-	-		
15	1,87 (m)			
16	1,59 (m)	1,57 (m)		
17	-	-		
18	2,36 (dd, $J = 5,5$ Hz et 6,0 Hz)	2,80 (m)		
19	1,99 (m)			
20	-	-		
21	1,62 (m)	1,66 (m)		
22	1,40 (m)			
23	0,77(s)	0,77 (s)		
24	0,98 (s)	0,98 (s)		
25	0,92(s)	0,92 (s)		
26	0,95(s)	0,94 (s)		
27	1,11 (s)	1,11 (s)		
28	0,81(s)	0,81 (s)		
29	0,85 (s)	0,85 (s)		
30	0,81(s)	0,85 (s)		

celles de la litterature

1.2.7. Identification de TCM3

TCM3 a été obtenu dans le système *n*-hexane/acétate d'éthyle (1 :1). Il se présente sous forme de poudre blanche et est soluble dans la pyridine. Son spectre de masse par bombardement d'atomes lourds en mode positif (**Figure 32**) montre le pic de l'ion *quasi* moléculaire à m/z = 487,3 [M + H]⁺, correspondant à la formule moléculaire brute C₂₉H₅₈O₅ qui renferme un degré d'insaturation.

L'analyse des données spectrales a permis d'identifier TCM3 à la structure suivante :

Le spectre de RMN ¹H (**Figure 33, 34 et tableau VII**) révèle la présence de quatre protons germinaux au groupement hydroxyle, parmi lesquels trois méthylènes oxygénés à $\delta_{\rm H}$ 3,87 (2H, t, J = 6,6 Hz, H-26'), l'un avec des protons diastériotopiques à $\delta_{\rm H}$ 4,72 (1H, dd, J = 4,2 Hz, 4,8 Hz, H-1a), 4,65 (1H, dd, J = 6,6; 6,6 Hz, H-1b) et l' autre à $\delta_{\rm H}$ 4,12 (2H, d, J = 5,4 Hz, H-3) ; et un oxyméthine à $\delta_{\rm H}$ 4,45 (1H, q, J = 5,4 Hz, H-2). Ces déplacements chimiques sont comparables à ceux caractéristiques des protons oxyméthylène du système de spin -O-CH₂-CH(OH)-CH₂-O- attribuable au glycérol (**Sultana et al., 1999**). Sur ce spectre, nous observons les protons méthyléniques à $\delta_{\rm H}$ 2,34 (2H, t, J = 7,0 Hz, H-2') attribuable aux méthylène en position α du carbonyle ; les protons méthyléniques en position β du carbonyle à $\delta_{\rm H}$ 1,63 (2H, q, J = 7,5 Hz, H-3'); un large signal des protons méthyléniques à $\delta_{\rm H}$ 1,50 (2H, q, H-24') et 1,74 (2H, q, H-25'). Nous observons également les protons de trois groupements hydroxyles à $\delta_{\rm H}$ 5,88 (1H, s, OH -26'), 6,51 (1H, s, OH-1) et 6,86 (1H, s, OH-2).

Figure 33: Spectre de RMN ¹H (500 MHz, C₅D₅N) de TCM3

Figure 34: Spectre de RMN ¹H élargi (500 MHz, C₅D₅N) de TCM3

Le spectre de RMN ¹³C (**Figure 35 et tableau VII**) révéle vingt-neuf atomes de carbone. Ces spectres mettent en exergue quatre carbones oxygénés parmi lesquels trois méthylènes oxygénés à $\delta_{\rm C}$ 66,7 (C-1), 64,2 (C-3), 62,1 (C-26') et un oxyméthine à $\delta_{\rm C}$ 70,9 (C-2); un carbonyle d' ester à $\delta_{\rm C}$ 173,7 (C-1'), quatre méthylènes aliphatiques à $\delta_{\rm C}$ 34,4 (C-2'), 25,3 (C-3'), 26,5 (C-24'), 33,7 (C-25') et le reste des signaux de 29,3 à 29,9 ppm (C-4' - C-23') intégrant pour un large nombre de méthylènes de la longue chaine aliphatique.

Zeukang / Dr.Iqbal / TCM-3 / C5D5N BB

Figure 35: Spectre de RMN ¹³C (125 MHz, C₅D₅N) de TCM3

Le fragment du glycérol a été confirmé grâce aux corrélations COSY (**Figure 36**, schéma 14 et tableau VII) entre les protons à $\delta_H 4,72$ (H-1a) et 4,45 (H-2) ; entre les signaux à $\delta_H 4,45$ (H-2) et 4,65 (H-1b), 4,12 (H-3).

Figure 36: Spectre COSY ¹H-¹H (500 MHz, C₅D₅N) de TCM3

Schéma 14: Corrélations observées sur le spectre COSY ¹H – ¹H de TCM3

Le fragment du glycerol a été relié au carbonyle des esters grâce aux corrélations HMBC (**Figure 37, schéma 15 et tableau VII**) observées entre les protons méthyléniques à δ_H 4,72 /4,65 (H-1a/b) et le carbone à δ_C 173,8 (C-1'). Ce spectre met en exergue la jonction entre la longue chaine méthylénique et le carbonyle des esters par les corrélations observées entre les protons à δ_H 2,34 (H-2'), 1,62 (H-3') et le carbone à δ_C 173,8 (C-1').

Figure 37: Spectre HMBC (¹H : 500 MHz, ¹³C : 125 MHz, C₅D₅N) de TCM3

Schéma 15: Corrélations observées sur le spectre HMBC de TCM3

La longueur de la chaine de l'alcool gras a été déterminée grâce à la présence de certains ion-fragments sur le spectre de masse EI (**Figure 38**). L'ion fragment observé à m/z = 308 $[M - glycérol - C_4H_7O_2]$ correspondant à vingt deux méthylènes. De plus, la structure a été confirmée par la présence des pics à m/z = 468 $[M - H_2O]$ dû à la perte d'une molécule d'eau et m/z = 394 [M - glycérol - H] suggérant la présence d'un acide gras identifiable à l'acide hexacosanoïque.

Figure 38: Spectre de masse EI de TCM3

Au vu des données précédentes et en comparaison avec celles décrites dans la littérature, TCM3 est identifié au 1'-(26'-hydroxyhexacosanoyl)glycérol précédemment isolé des écorces des racines de *Pentaclethra eetveldeana* (**Babady-Byla et Werner, 1996**).

Tableau VII: Données spectrales de RMN ¹H (500 MHz, C5D5N), RMN ¹³C (125 MHz, C5D5N), HMBC (¹H : 500 MHz, ¹³C : 125 MHz, C5D5N) et COSY (500 MHz, C5D5N) de TCM3 comparées à celles de la littérature

		δ(¹ H)	HMBC	COSY	δ(¹³ C) (75 MHz,
Position	δ(¹³ C)	(mult., <i>J</i> (Hz)	(¹ H - ¹³ C)	(¹ H - ¹ H)	CDCl3, Babady-Byla
					et Werner, 1996)
1a	66,7	4,72 (dd, <i>J</i> = 4,2, 4,8 Hz)		H-1b, H-2	65,6
1b		4,65 (dd, <i>J</i> = 6,6 ; 6,6 Hz)	C-1'; C-2	H-2, H-1a	
2	70,9	4,45 (q, <i>J</i> = 5,4 Hz)	C-1 ; C-3	H-3, H-1b	70,7
3	64,2	4,12 (d, <i>J</i> = 5,4 Hz)	C-3 ; C-2	H-2	63,7
2-OH	-	6,86 (1H, s)	-	-	-
3-OH	-	6,51 (1H, s)	-	-	-
1'	173,8	-	-	-	174,9
2'	34,4	2,34 (t, <i>J</i> = 7,0 Hz)	C-1'	H-3'	34,4
3'	25,3	1,62 (q)	C-1'; C-2';	H-2'	25,9
4' -23'	29,3 -29,9	1,26 -1,29 (q)	-	-	29,3 -29,8
24'	26,5	1,50 (q)	C-25', C-26'	H-25'	25,1
25'	33,7	1,74 (q)	C-26'	H-24', H-26'	33,0
26'	62,1	3,87 (t, <i>J</i> = 6,6 Hz)	C-4'- C-23'	H-25'	63,4
26'-OH	-	5,88 (1H, s)	-	-	

2. Isolement et caractérisation des composés des racines de Cordia millenii

2.1. Extraction et isolement

Les racines de *Cordia millenii* ont été récoltées à Batoufam, région de l'Ouest Cameroun en Mai 2015. Grâce aux techniques d'extraction et chromatographiques, quatre composés indexés RCM1, RCM3, RCM6, RCM8 et RCM9 ont été isolés de la fraction à l'acétate d'éthyle. Le protocole utilisé est illustré sur le schéma 16.

Schema 16: Protocole d'extraction et d'isolement des composés de la fraction à l'acétate d'éthyle de l'extrait méthanolique des racines de *Cordia millenii*

2.2. Caractérisation chimique des composés isolés

2.2.1. Identification de RCM1

RCM1 a été obtenu dans le *n*-hexane et est soluble dans le benzène. Il se présente sous forme de poudre jaune et répond positivement au test de Lasaigne en donnant une couleur violette, caractéristique des composés soufrés. Son spectre de masse en impact électronique (**Figure 39**) montre le pic de l'ion moléculaire $[M]^+$ à m/z = 256,1. Ce spectre présente également une différence de m/z = 32 entre deux pics consécutifs, suggérant ainsi la nature du soufre qui est l'isotope ³²S.

L'absence de pics sur les spectres de RMN ¹³C et ¹H suggère ainsi l'absence de l'atome de carbone et d'hydrogène au sein de cette structure. Sur la base des données précédentes, la structure de RCM1 serait uniquement constituée d'atomes de soufre.

Figure 39: Spectre de masse EI de RCM1

Cette hypothèse est confirmée sur le spectre UV (**Figure 40**) par la présence des bandes d'absorption à 229 nm et 262 nm, caractéristique de la liaison S—S du cyclooctasulfure (**Reznichenko et** *al.*, **2007**).

Figure 40 : Spectre UV de RCM1

L'image ORTEP de la structure cristalline de RCM1 est presentée à la figure 41.

Figure 41: Image ORTEP de la structure cristalline de RCM1

L'exploitation des données résultant de l'analyse radiocristallographique de ce composé révèle que RCM1 cristallise dans le système orthorhombique, de groupe d'espace *Fddd*. Les paramètres de maille sont : a = 10,4709 (7) Å, b =12,8709 (8) Å et c = 24,484(2) Å, V = 3299,7(4) Å³, Z = 16. La diffraction des rayons X sur monocristal a été faite avec une radiation de longueur d'onde λ = 1,54178 Å et un coefficient linéaire d'absorption de μ = 19,279 mm⁻¹ (**Tableau VIII**). La cristallographie de RCM1 a permis de l'identifier au cyclooctasulfure (S₈) (80) à (**Pastorino et Gamba, 2000**), précédemment isolé du champignon *Ganoderma lucidum* (**Hapuarachchi et** *al.*, **2016**) mais il est isolé ici pour la première d'une plante. Le cyclooctasulfure est utilisé pour le traitement des inflammations et des allergies (**Hapuarachchi et** *al.*, **2016**).

Tableau VIII: Résumé des données cristallographiques et d'affinement de la structurede RCM1

Formule brute	S ₈
Masse moléculaire (g.mol ⁻¹)	256,48
Température (K)	299(2)
λ (Å)	1,54178
Système cristallin	Orthorhombique
Groupe d'espace	Fddd
Paramètre de la maille	
a (Å)	10,4709(7)
b (Å)	12,8709(8)
c (Å)	24,484(2)
λ (°)	90
β (°)	90
γ (°)	90
Z	16
Densité calculée (Dcalc ; Mg.m ⁻³)	2,065
Coefficient d'absorption μ (mm ⁻¹)	19,279
F(000)	2048
Dimension du cristal (mm)	0,16 x 0,07 x 0,06
Angle de balayage, θ (°)	5,74-66,64
Indices limites	$-12 \le h \le 12$
	$-15 \le k \le 15$
	$-29 \le 1 \le 28$
Nombre de reflections collectées	10593
Nombre de reflections independantes(R _{int})	735 (0,0520)
transmission maximale et minimale	0,3909 et 0,1484
Indices Finaux R [$I > 2\sigma(I)$]	R1 = 0,0178
	wR2 = 0,0449
Indices R (Toutes led données)	R1 = 0,0194
	wR2 = 0,0457
Densite electronique residuelle (eÅ ⁻³)	0,255 et -0,239

2.2.2. Identification de RCM3

RCM3 a été obtenu dans le système *n*-hexane/acétate d'éthyle (75:25). Il se présente sous forme de poudre blanche et est soluble dans la pyridine. Son spectre de masse par bombardement d'atomes lourds en mode négatif (**Figure 42**) montre le pic de l'ion moléculaire à m/z = 469,2 [M-H]⁻, correspond à la formule moléculaire brute C₂₉H₅₈O₄, renfermant un degré d'insaturation.

Figure 42: Spectre de masse FAB de RCM3

L'analyse des données spectrales a permis d'obtenir la structure suivante :

Le spectre de RMN ¹H (**Figure 43 et tableau IX**) révèle la présence de quatre protons germinaux au groupement hydroxyle à $\delta_{\rm H}$ 4,72 (1H, dd, J = 4,8 Hz 8,0 Hz, H-1a), 4,65 (1H, dd, J = 6,4 Hz, 8,0 Hz, H-1b), 4,45 (1H, q, J = 4,8 Hz, H-2) et 4,12 (2H, d, J = 5,0 Hz, H-3). Sur ce spectre, nous observons également quatre protons méthyléniques à $\delta_{\rm H}$ 2,34 (2H, t, J = 7,6Hz, H-2'), 1,63 (2H, q, J = 7,6 Hz, H-3'), un large signal des protons méthyléniques à $\delta_{\rm H}$ 1,23 -1,29 (44H, sl, H-4'- H-25'). Ces déplacements chimiques sont très proches de ceux du composé TCM3. Cependant, sur le spectre de RMN ¹H de RCM3, on observe les signaux de deux protons hydroxyles à $\delta_{\rm H}$ 6,50 (1H, s, OH-3), 6,84 (1H, s, OH-2) ; le troisième proton hydroxyle présent sur le spectre de RMN ¹H de TCM3 a été remplacé par un méthyle terminal à $\delta_{\rm H}$ 0,87 (3H, t, J = 6,8 Hz, H-26') sur le spectre de RMN ¹H de RCM3.

Figure 43: Spectre de RMN ¹H élargi (800 MHz, C5D5N) de RCM3

Cette présence se confirme sur le spectre de RMN ¹³C (**Figure 44 et tableau IX**) par le signal du méthyle terminal à δ_C 14,2 (C-26') ; de deux groupements méthylènes oxygénés au lieu de trois à δ_C 66,4 (C-1), 64,3 (C-3).

Par ailleurs, son spectre HMBC (**Figure 45 et tableau IX**) révèle la corrélation observée entre le large signal des protons méthyléniques à δ_H 1,23 – 1,29 (H-4'- H-25') et le carbone à δ_C 14,2 (C-26') confirmant ainsi la position du méthyle terminal.

Figure 45: Spectre HMBC (1H : 800 MHz, 13C : 200 MHz, C5D5N) de RCM3

L'ensemble de toutes ces données spectrales comparées à celles décrite dans la littérature a permis d'identifier RCM3 à l'hexacosanoylglycérol (**81**) précédemment isolé des écorces du tronc de *Piptadenia africana* (**Mbouangouere et** *al.*, **2007**). L'hexacosanoylglycérol possède des propriétés cytotoxiques sur les cellules Hep-G2 et MCF-7 du cancer du sein (**Djemgou et** *al.*, **2006**).

Tableau IX: Données spectrales de RMN ¹H (800 MHz, C5D5N), RMN ¹³C (200 MHz, C5D5N) et HMBC (¹H : 800 MHz, ¹³C : 200 MHz, C5D5N) de RCM3 comparées à celles de la littérature

Positior	n δ(¹³ C)	$\delta(^{1}\mathrm{H})$ (mult., J (Hz)	HMBC (¹ H - ¹³ C)	δ(¹³ C) (125 MHz, CDCl ₃ , Djemgou et <i>al.</i> , 2006)
1a		4,72 (dd, <i>J</i> = 4,8 ; 8,0 Hz)		
1b	66,4	4,65 (dd, J = 6,4 ; 8,0 Hz)	C-1', C-2	65,0
2	70,9	4,44 (q, J = 4,8 Hz)	C-1 ; C-3	69,9
3	64,3	4,12 (d, <i>J</i> = 5,0 Hz)	C-2, C-1	63,1
2-OH	-	6,84 (s)	-	-
3-OH	-	6,50 (s)	-	-
1'	173,7	-	-	174,4
2'	34,4	2,34 (t, <i>J</i> = 7,6 Hz)	C-1'	34,0
3'	25,3	1,63 (q, <i>J</i> = 7,6 Hz)	C-1'; C-2'	24,8
4'-25'	29,3 - 32,1	1,23 - 1,29 (sl)	-	29,3
26'	14,2	0,85 (t, J = 6,8 Hz)	C-4'- C-23'	13,9

2.2.3. Identification de RCM9

RCM9 a été obtenu dans le système *n*-hexane/acétate d'éthyle (85:15). Il se présente sous forme de poudre blanche. Il est soluble dans la pyridine et répond positivement au test de Libermann-Burchard en donnant une couleur rouge violacée, caractéristique des triterpènes. Son spectre de masse en impact électronique (**Figure 46**) montre le pic de l'ion moléculaire à $m/z= 456,2 [M]^+$, correspondant à la formule moléculaire brute C₃₀H₄₈O₃, renfermant sept degrés d'insaturations.

Figure 46: Spectre de masse EI de RCM9

L'analyse des données spectrales a permis d'identifier RCM9 à la structure suivante :

Son spectre de RMN ¹H (**Figure 47 et Tableau X**) révèle la présence de six singulets de trois protons à $\delta_{\rm H}$ 1,06 (H-23), 0,99 (H-24), 1,05 (H-25), 0,81 (H-26), 1,23 (H-27) et 1,78 (H-30); deux doublets de deux protons sp² à $\delta_{\rm H}$ 4,76 (1H, d, J = 3,0 Hz, H-29a) et 4,94 (1H, d, J = 3,0 Hz, H-29b) caractéristique du squelette de lup-20(29)-ène. Ce spectre révèle également un triplet d'un proton à $\delta_{\rm H}$ 3,45 (1H, t, J = 8,0 Hz, H-3) et d'un groupement hydroxle à $\delta_{\rm H}$ 5,71 (1H, s, OH).

Figure 47: Spectre de RMN ¹H (400 MHz, C5D5N) de RCM9

Son spectre de RMN ¹³C (**Figure 48 et tableau X**) montre les signaux correspondant à trente atomes de carbone. L'analyse de ce spectre indique la présence de six méthyles angulaires à δ_C 28,6 (C-23), 16,3 (C-24), 16,4 (C-25), 16,4 (C-26), 14,9 (C-27) et 19,4 (C-30) ; dix

méthylènes à δ_{C} 39,2 (C-1), 28,3 (C-2), 18,7 (C-6), 34,8 (C-7), 21,2 (C-11), 26,1 (C-12), 31,2 (C-15), 32,8 (C-16), 30,2 (C-21) et 37,5 (C-22) ; cinq méthines à δ_{C} 55,9 (C-5), 50,9 (C-9), 38,5 (C-13), 47,7 (C-18) et 49,7 (C-19) ; cinq carbones quaternaires à δ_{C} 39,5 (C-4), 41,1 (C-8), 37,6 (C-10), 42,8 (C-14) et 56,6 (C-17). Ce spectre montre également les signaux à δ_{C} 178,5 (C-28) et 151,3 (C-20) attribuable respectivement au carbonyle d'un acide carboxylique et à un carbone quartenaire hybridé sp² ; celui observé à δ_{C} 78,1 (C-3) est caractéristique de l'oxyméthine d'un squelette de triterpène (**Mahato et Kundu, 1994**).

La comparaison de toutes ces données avec celles décrites dans la littérature identifie RCM9 à l'acide bétulinique (82) précédemment isolé des feuilles d'*Orthosiphon stamineus* (Hossain et Ismail, 2013). L'acide bétulinique possède des propriétés antiinflammatoires (Chowdhury et *al.*, 2002) et antipaludéenes (De Sa et *al.*, 2009).

Tableau X: Données spectrales de RMN ¹H (400 MHz, C₅D₅N) et RMN ¹³C (100 MHz, C₅D₅N), de RCM9 comparées à celles de la littérature

Position	δ(¹³ C)	$\delta(^{1}\text{H}) \text{ (mult., } J \text{ (Hz)} \qquad \delta(^{13}\text{C}) \text{ (150 MHz, C5D5N} \text{Hossain et Ismail 2013)}$	
	20.2		
1	39,2	1,64 ; 0,96 (m)	39,1
2	28,3	1,83 (m)	28,3
3	78,1	3,45 (t, J = 8,0 Hz)	78,2
4	39,5	-	39,6
5	55,9	0,79 (m)	56,2
6	18,7	1,50 (m)	18,8
7	34,8	1,31	34,9
8	41,1	-	41,2
9	50,9	1,35 (m)	51,0
10	37,6	-	37,9
11	21,2	1,34 (m) ; 1,16 (m)	21,3
12	26,1	1,19 ; 1,92 (m)	26,2
13	38,6	2,24 (m)	38,7
14	42,8	-	42,9
15	31,2	1,50 (m)	31,3
16	32,8	1,40 (m)	32,6
17	56,6	-	56,4
18	47,7	1,52 (m)	47,8
19	49.7	2,73 (m)	49,8
20	151.3	-	152,0
21	30.2	1,86 ; 1,19 (m)	30.6
22	37.6	1.41 : 1.83 (m)	37.4
23	28.6	1.06(s)	28.5
24	16.3	0.99(s)	16.2
25	16.4	1.05(s)	16.8
26	16.4	0.81(s)	16.4
27	14.9	1.23(s)	15.0
28	178.5	-, (-)	178.4
29a	170,0	4.76 (d. $J = 3.0$ Hz)	1,0,1
29b	109,9	4,94 (d, J = 3,0 Hz)	109,4
30	19,4	1,78 (s)	19,3
ОН	-	5,71 (s)	-

3. Isolement et caractérisation des composés des feuilles de Cordia millenii

3.1. Extraction et isolement

Les feuilles de *Cordia millenii* ont été récoltées à Batoufam, région de l'Ouest Cameroun en Mai 2015. Grâce aux techniques d'extraction et chromatographiques, cinq composés indexés FCM3, FCM5, FCM6, FCM9 et FCM10 ont été isolés de la fraction à l'acétate d'éthyle. Le protocole utilisé est illustré sur le schéma 17.

Schéma 17: Protocole d'extraction et d'isolement des composés de la fraction à l'acétate d'éthyle de l'extrait brut des feuilles de *Cordia millenii*

3.2. Caractérisation chimique des composés isolés

3.2.1. Identification de FCM3

FCM3 a été obtenu dans le système *n*-hexane/acétate d'éthyle (85:15). Il se présente sous forme de poudre blanche et est soluble dans le chloroforme. Il répond positivement au test de Libermann-Burchard en donnant une couleur rouge violacée, caractéristique des triterpènes. Sur son spectre de masse en impact électronique (**Figure 49**), nous observons le pic de l'ion moléculaire à m/z = 860,83 [M]⁺, correspondant à la formule moléculaire brute C₆₀H₁₀₈O₂, renfermant sept degrés d'insaturations.

Figure 49: Spectre de masse EI de FCM3

L'analyse des données spectrales a permis d'identifier FCM3 à la structure suivante :

Le spectre de RMN ¹H (**Figure 50, 51 et tableau XI**) présente les signaux des protons oléfiniques à $\delta_{\rm H}$ 4,54 (1H, d, J = 3,0 Hz, H-29a) et 4,66 (1H, d, J = 3,0 Hz, H-29b) caractéristique du squelette de lup-20(29)-ène (**Pandey et al., 2008**). Ce spectre révèle la présence de huit méthyles parmi lesquels sept singulets de trois protons chacun résonant à $\delta_{\rm H}$ 0,92 (H-23), 0,83 (H-24), 0,82 (H-25), 0,96 (H-26), 1,01 (H-27), 0,77 (H-28) et 1,66 (H-30) ; un triplet de trois protons à $\delta_{\rm H}$ 0,86 (J = 6,9 Hz, H-30') caractéristique d'un méthyle terminal d'une longue chaine aliphatique. Ceci est confirmé par la présence d'un large signal résonant à $\delta_{\rm H}$ 1,18 - 1,26 (H-4'- H-29') attribuable aux protons de groupements méthylènes de la longue chaine aliphatique (CH₂)_n. Ce spectre révèle également en champ faible, le signal d'un proton méthine à $\delta_{\rm H}$ 4,44 (1H, dd, J = 5,4 ; 4,8 Hz, H-3) et le signal des protons méthyléniques à $\delta_{\rm H}$ 2,26 (2H, t, J = 7,5 Hz, H-2') attribuable au methylène en position α de la fonction carbonyle.

Figure 50: Spectre de RMN ¹H élargi (500 MHz, CDCl₃) de FCM3

Figure 51: Spectre de RMN ¹H (500 MHz, CDCl₃) de FCM3

Son spectre de RMN ¹³C (**Figure 52 et tableau XI**) présente sept groupements méthyles angulaires résonant à δ_C 27,9 (C-23),15,9 (C-24), 16,1(C-25), 16,5(C-26), 14,5 (C-27), 17,9 (C-28) et 19,2 (C-30) ; dix méthylènes à δ_C 38,3 (C-1), 27,4 (C-2), 18,1 (C-6), 34,8 (C-7), 20.9 (C-11), 25,0 (C-12), 25,1 (C-15), 35,5 (C-16), 29,1(C-21) et 39,9 (C-22) ; cinq méthines à δ_C 55,3 (C-5), 50,3 (C-9), 38,0 (C-13), 48,2 (C-18) et 47,9 (C-19) ; cinq carbones quaternaires à δ_C 37,8 (C-4), 40,8 (C-8), 37,1 (C-10), 42,8 (C-14) et 42,9 (C-17). Sur ce spectre, nous observons les signaux à δ_C 29,2 - 29,8 (C-4'- C-29') attribuables aux méthylènes d'une longue chaine aliphatique; les signaux à δ_C 173,3 (C-1') et δ_C 14,1 (C-30') attribuables au carbonyle d'un ester et du méthyle terminal respectivement ; un oxyméthine à δ_C 80,5 (C-3) et les signaux de deux carbones insaturés sp² à δ_C 109,3 (C-29) et 150,9 (C-20) caractéristique du squelette de lup-20(29)-ène (**Mahato et Kundu, 1994**).

Figure 52: Spectre de RMN ¹³C (125 MHz, CDCl₃) de FCM3

La jonction du squelette de lup-20(29)-ène à la chaine aliphatique de l'acide gras s'est faite grâce à la comparaison des données spectrales du lupéol et de FCM3. Nous observons une différence avec les valeurs de C-3 (80,5 ppm) et H-3 (4,44 ppm) de FCM3 qui apparaissent en champ faible contrairement à celles du lupéol (δ_C 78,5 ; δ_H 3,13) (**Chávez et al., 1996**) qui apparaissent légèrement en champ fort. Ce qui permet de suggérer que l'apparition de ces valeurs en champ faible est due à une estérification de C-3. Les données ci-dessus ont permis de conclure que la structure **83** est un ester d'acide gras du lupéol. La longueur de la chaine aliphatique a été determinée grâce aux ions fragments sur le spectre de masse. Sur ce spectre de masse, nous observons le pic à $m/z = 365[M - CO_2 - C_{30}H_{49} - C_2H_4]$ correspondant à la perte de deux groupements méthylènes, du squelette de lup-20(29)-ène et du dioxyde de carbone. Nous observons également l'ion fragment à $m/z = 481[M - CO_2 - CH_4]$ correspondant à la perte du dioxyde de carbone et du méthyle terminal.

La comparaison de toutes ces données avec celles de la littérature a permis d'identifier FCM3 au triacontanoate de 3-lup-20(29)-ènyle (83) précédemment isolé des tiges de *Calophyllum inophyllum* (Pandey et *al.*, 2008). L'ester de lupéol est ainsi décrit pour la première fois du genre *Cordia*. Le triacontanoate de 3-lup-20(29)-ènyle a présenté une activité antimalariale (**Pandey et al., 2008**).

Position	δ(¹³ C)	$\delta(^{1}\text{H})$ (mult., J (Hz) $\delta(^{13}\text{C})$ (75 MHz, CDC	
	0(0)	Pandey et al., 2008)	
1	38,3	1,39 (m)	38,3
2	27,4	1,27 (m)	23,6
3	80,6	4,44 (dd, <i>J</i> = 5,4 ; 4,8 Hz)	80,5
4	37,8	-	37,7
5	55,4	0,88 (m)	55,3
6	18,1	1.59 (m)	18,1
7	34,8	1.47 (m)	34,2
8	40,8	-	40,8
9	50,3	1,28 (m)	50,3
10	37,1	-	37,0
11	20,9		20,9
12	25,0	1,59 (m)	25,1
13	38,0	1,17 (m)	38,0
14	42,8	-	42,7
15	25,2	1,63 (m)	27,4
16	35,5	1,34 (m)	35,5
17	42,9	-	42,9
18	48,2	2,37 (m)	48,2
19	47,9	1,89 (m)	47,9
20	150,9	-	150,8
21	29,1		29,8
22	39,9	0,96 (m)	39,9
23	27,9	0,92 (s)	27,8
24	16,5	1,00 (s)	16,4
25	16,1	0,83 (s)	16,0
26	15,9	0,82 (s)	15,9
27	14,5	1,01 (s)	14,4
28	17,9	0,77 (s)	17,8
29a	109,3	4,54 (d, <i>J</i> = 3,0 Hz)	
29b		4,66 (d, <i>J</i> = 3,0 Hz)	109,2
30	19,2	1,66 (s)	19,2
1'	173,7	-	173,5
2'	34,8	2,26 (t, <i>J</i> = 7,5 Hz)	34,8
3'	34,1	1,37 (m)	29,9
4'-29'	29,2–29,8	1,18 – 1,26 (m)	29,9
30'	14,1	0,86 (t, J = 6,9 Hz)	13,9

Tableau XI: Données spectrales de RMN ¹H (500 MHz, CDCl₃), RMN ¹³C (125 MHz,

CDCl₃) de FCM3 comparée à celles de la littérature

3.2.2. Identification de FCM6

FCM6 a été obtenu dans l'acétate d'éthyle. Il se présente sous forme de poudre de couleur beige et est soluble dans la pyridine. Il répond positivement au test de Libermann-Burchard en donnant une couleur bleu verdâtre, caractéristique des stérols. La CCM comparative avec les échantillons pris au laboratoire nous a permis d'identifier FCM6 à la glucoside de $3-O-\beta-D$ -stigmastérol.

Cette structure est confirmée par son spectre de RMN ¹H (**Figure 53**) sur lequel nous observons un doublet d'un proton à $\delta_{\rm H}$ 5,34 attribuable au proton oléfinique porté par le carbone C-6 des stérols ; deux doublets de doublé d'un proton chacun à $\delta_{\rm H}$ 5,07 et 5,05 attribuable aux protons éthyléniques du stigmastérol H-22 et H-23.

Figure 53: Spectre de RMN ¹H (600 MHz, C₅D₅N) de FCM6

Ses données de RMN ¹H sont comparées à celles décrite dans littérature d'identifier clairement FCM6 au glucoside de 3-*O*- β -*D*-stigmastérol, précédemment isolé des racines de *Melochia umbellata* (**Ridhay et** *al.*, **2012**) et des écorces du tronc de *Phyllanthus reticulatus* (**Khatun et** *al.*, **2012**). Il possède une activité antifongique (**Ridhay et** *al.*, **2012**).

Position	$\delta(^{1}\text{H})$ (mult., <i>J</i> (Hz)	$\delta(^{1}\text{H})$ (mult., J (Hz), 400 MHz, CDCl ₃
		+ CD ₃ OD, Khatun et <i>al.</i> , 2012)
1	1,04 (m)	1,18 (m)
2	1,08 (m)	1,40 (m)
3	4,06 (m)	3,77 (m)
4	1,85 (m)	1,93 (m)
5	-	-
6	5,34 (m)	5,29
7	1,73 (m)	1,81 (m)
8	1,53 (m)	1,42 (m)
9	1,53 (m)	1,42 (m)
10	-	-
11	1,25 (m)	1,42 (m)
12	1,29 (m)	1,42 (m)
13	-	-
14	1,34 (m)	1,42 (m)
15	1,38 (m)	1,77 (m)
16	1,38 (m)	1,77 (m)
17	1,38 (m)	1,77 (m)
18	0,65 (s)	0,61 (s)
19	0,91 (s)	1,02 (s)
20	2,13 (m)	2,19 (m)
21	0,98 (d, J = 6,6 Hz)	0,84 (m)
22	5,07 (d, <i>J</i> =9,0 Hz)	5,08 (dd, $J = 12$ Hz et 8Hz)
23	5,05 (dd, $J = 4,8, 4,8$ Hz)	4,96 (dd, J = 12 Hz et 8Hz)
24	2,47 (m)	2,21 (m)
25	1,85 (m)	2,16 (m)
26	0,86 (d, J = 4,2 Hz)	0,75 (d, J = 6,8 Hz)
27	0,84 (d, J = 7,2Hz)	0,74 (d, J = 6,8 Hz)
28	1,01 (m)	1,18 (m)
29	0,88 (t, J = 7,1 Hz)	0,77 (t, J = 6,9 Hz)
1'	4,58 (d, J = 6,0 Hz)	4,33 (d, <i>J</i> = 7,8 Hz)
2'	2,74 (m)	2,33 (m)
3'		3,31 (m)
4'		3,31 (m)
5'		3,39 (m)
6'		3,31 (m)

Tableau XII: Données spectrales de RMN ¹H (600 MHz, C₅D₅N) de FCM6 comparées avec celles de la littérature

3.2.3. Identification de FCM8

FCM8 a été obtenu dans le système *n*-hexane/acétate d'éthyle (97,5: 2,5). Il se présente sous forme de poudre amorphe blanche et est soluble dans le chloroforme. Son spectre de masse en impact électronique présente le pic de l'ion moléculaire à m/z = 872,1 (**Figure 54**). Cette masse moléculaire correspond à la formule moléculaire brute C₆₀H₁₂₀O₂, renfermant un dégré d'insaturation.

Figure 54: Spectre IE de FCM8

L'analyse des données spectrales a permis d'identifier FCM8 à la structure suivante :

Sur le spectre de RMN ¹H (**Figure 55**), on observe un triplet de six protons qui résonent à $\delta_{\rm H}$ 0,87 (H-26 / H-34') attribuable aux méthyles terminaux; un triplet de méthylène à $\delta_{\rm H}$ 2,27 (H-2) attribuable aux protons en α du carbonyle ; un triplet à δ_H 4,04 (H-1') attribuable aux protons d'un méthylène oxygéné. Ce spectre révèle également un large signal à δ_H 1,23 – 1,28 (H-4 – H-24 / H-3'– H-33') attribuable aux méthylènes d'une longue chaine aliphatique.

Figure 55: Spectre de RMN ¹H (600 MHz, CDCl₃) de FCM8

L'ensemble de toutes ces données comparées à celles décrites dans la littérature nous permet d'attribuer à FCM8, le squelette **86** qui est celui d'un ester d'acide gras.

Il nous reste à présent de déterminer les groupements R_1 et R_2 . Ils seront déterminés à l'aide du spectre de masse sur lequel nous avons la fragmentation de l'ion moléculaire et le réarrangement de Mc Lafferty (**Schéma 18**)

Schéma 18: Réarrangement de Mc Lafferty de FCM8

Etant donné que sur le spectre en impact électronique des esters, le pic de base correspond très souvent au réarrangement de Mc Lafferty (RML) au niveau du carbonyle. La structure correspondante au pic à m/z =397,1 est celle donc $R_1 = C_{25}H_{51}$, et $R_2 = C_{31}H_{63}$. Ainsi, FCM8 est identifié au hexacosanoate de tétratriacontanyle (**85**). Il a été précédemment identifié par chromatographie en phase gaseuse dans l'extrait au chloroforme de la nymphe de *Bemisia argentifolii* (**Buckner et al., 1999**).

85

Position	$\delta(^{1}\text{H}) (\text{mult., } J (\text{Hz})$
1	-
2	2,26 (t, $J = 7,5$ Hz)
3	1,58 (m)
4 - 23	1,23 –1,28 (m)
24	1,28 (m)
25	1,26 (m)
26	0,87 (t, J = 7,0 Hz)
1'	4,03 (t, $J = 6,7$ Hz)
2'	1,62 (m)
3'	1,60 (m)
4'-33'	1,23 -1,28 (sl)
34'	0,87 (t, J = 7,0 Hz)

Tableau XIII: Données spectrales de RMN ¹H (600 MHz, CDCl₃) de FCM8

3.2.4. Identification de FCM9

FCM9 a été obtenu dans le système *n*-hexane/acétate d'éthyle (90:10) et est soluble dans le chloroforme. Il se présente sous forme de poudre amorphe blanche et répond positivement au test au FeCl₃ en donnant une couleur bleu caractéristique des composés phénoliques. Son spectre de masse sous ionisation electrospray à haute résolution (**Figure 56**) montre l'ion *quasi* moléculaire en mode négatif à m/z = 193,0866 [M-H]⁻, compatible avec la formule moléculaire brute C₁₁H₁₄O₃ et renfermant cinq degrés d'insaturation.

Figure 56: Spectre de masse ESI de FCM9

Les analyses spectrales ont permis d'identifier FCM9 à la structure suivante :

Le spectre de RMN ¹H (**Figure 57 et tableau XIV**) présente par les signaux de quatre protons d'un système aromatique AA'BB' résonant à $\delta_{\rm H}$ 7,06 (2H, d, J = 8,5 Hz, H-2''/H-6'')

et 6,74 (2H, d, J = 8,5 Hz, H-3''/ H-5'') suggérant ainsi un noyau aromatique parasubstitué. Nous observons également les signaux des méthylènes aliphatiques à $\delta_H 4,21$ (2H, t, J = 7,0 Hz, H-1') et 2,84 (2H, t, J = 7,0 Hz, H-2'). De plus, ce spectre révèle un signal de deux protons à $\delta_H 2,25$ (2H, t, J = 7,5 Hz, H-2) attribuable au méthylène en position α de la fonction carbonyle, $\delta_H 0,86$ (3H, t, J = 7,0 Hz, H-3) attribuable à un méthyle terminal et $\delta_H 4,65$ (1H, s, OH) attribuable au proton du groupement hydroxyle.

Figure 57: Spectre de RMN ¹H (500 MHz, CDCl₃) de FCM9

Le système aromatique AA'BB'est confirmée sur le spectre de RMN ¹³C (**Figure 58 et tableau XIV**) par la présence des signaux de carbones résonant à δ_C 154,2 (C-1''/C-4''), 130,0 (C-2''/C-6'') et 115,3 (C-3''/C-5''). Ce spectre met en exergue trois méthylènes résonants à δ_C 64,9 (C-1'), 34,3 (C-2') et 34,2 (C-2). Nous observons les signaux d'un carbonyle d'ester à δ_C 173,8 (C-1) et d'un méthyle terminal à δ_C 14,1 (C-3).

Figure 58: Spectre RMN ¹³C (125 MHz, CDCl₃) de FCM9

La jonction du noyau aromatique au fragment ester s'est faite grâce aux corrélations HMBC observées entre les signaux à δ_H 7,06 (H-2"/H-6") et δ_C 64,9 (C-1'), 34,3 (C-2').

L'ensemble des données spectrales comparées à celles de la littérature permet d'identifier FCM9 au propanoate de 2'-(4''-hydroxyphényl)éthyle (**87**) précédemment synthétisé à partir du tyrosol (**Aissa et** *al.*, **2012**).

Tableau XIV: Données spectrales de RMN ¹H (500 MHz, CDCl₃), RMN ¹³C (125 MHz, CDCl₃) de FCM9 comparées à celles de la littérature

		-	$\delta(^{13}C)$ (125 MHz, CDCl ₃ ;
Position	δ(¹³ C)	$\delta(^{1}\text{H})$ (mult., J (Hz)	Aissa et <i>al.</i> , 2012)
1	173,8	-	174,1
2	34,2	2,25 (t, <i>J</i> = 7,5 Hz)	30,9
3	14,1	0,86 (t, J = 7,0 Hz)	28,0
1'	64,9	4,21 (t, $J = 7,0$ Hz)	65,6
2'	34,3	2,84 (t, $J = 7,0$ Hz)	34,6
1"	154,2	-	130,1
2"	130,0	7,06 (d, <i>J</i> = 8,5 Hz)	130,4
3"	115,3	6,74 (d, <i>J</i> = 8,5 Hz)	115,7
4"	154,2	-	154,8
5",	115,3	6,74 (d, <i>J</i> = 8,5 Hz)	115,7
6"	130,0	7,06 (d, <i>J</i> = 8,5 Hz)	130,4
OH		4,65 (s)	-

3.2.5. Identification de FCM10

FCM10 a été obtenu dans le système *n*-hexane/acétate d'éthyle (90:10). Il se présente sous forme de poudre amorphe blanche et est soluble dans le chloroforme. Il répond positivement au test au FeCl₃ en donnant une couleur bleu caractéristique des composés phénoliques. Son spectre de masse sous ionisation electrospray (**Figure 59**) et à haute résolution montre en mode positif le pic de l'adduit sodique à m/z = 593,4138 [M + Na]⁺, correspondant à la formule moléculaire brute C₃₈H₆₆O₃, renfermant ainsi 6 dégré d'insaturations.

Figure 59: Spectre de masse ESI de FCM10

Les analyses spectrales ont permis d'identifier FCM10 à la structure suivante :

Le spectre de RMN ¹H (**Figure 60 et tableau XV**) présente les signaux de quatre protons d'un noyau aromatique résonant à $\delta_{\rm H}$ 6,82 (2H, d, J = 9,0 Hz, H-2'/H-6'), 7,42 (2H, d, J = 9,0Hz, H-3'/H-5') attribuables à un noyau aromatique 1, 4 disubstitué. Nous observons également deux signaux à $\delta_{\rm H}$ 6,29 (1H, d, J = 16,0 Hz, H-2), 7,61(1H, d, J = 16,0 Hz, H-3) attribuables à deux protons vinyliques en position trans, caractéristique du noyau cinnamoyle (**Somepalli et** *al.***, 2005**). Ce spectre présente également les signaux d'un groupement hydroxyle à $\delta_{\rm H}$ 5,08 (1H, s, OH) ; d'un méthyle terminal à $\delta_{\rm H}$ 0,86 (3H, t, J = 6,5 Hz, H-29'') ; trois méthylène à $\delta_{\rm H}$ 4,16 (2H, t, J = 6,75 Hz, H-1''), 1,67 (2H, m, H-2''), 1,35 (2H, m, H-3'') et plusieurs méthylènes attribuables à une longue chaine aliphatique à $\delta_{\rm H}$ 1,23–1,37 (50 H, H-4''– H-28'').

Figure 60: Spectre de RMN ¹H élargi (500 MHz, CDCl₃) de FCM10

L'analyse de son spectre de RMN¹³C (**Figure 61 et tableau XV**) en association avec le spectre HMBC (**Figure 63**) révèle les signaux d'un méthyle terminal à δ_C 14,1 (C-29''); trois méthylènes à δ_C 64,6 (C-1''), 28,7 (C-2''), 25,9 (C-3'') ; deux carbones aromatiques à δ_C 115,0 (C-2'/C-6') et 129,9 (C-3'/C-5') ; deux carbones vinyliques à δ_C 115,8 (C-2) et 144,2 (C-3). Sur ces spectres, nous observons également les signaux à δ_C 29,2 - 29,7 (C-4''- C-28'') attribuables aux méthylènes d'une longue chaine aliphatique; un carbone aromatique quaternaire oxygéné résonant à δ_C 157,0 (C-4') et deux autres carbones quaternaires résonant à

 δ_{C} 167,1 (C-1) et 127,8 (C-1') attribuables respectivement au carbonyle d'un ester et au noyau aromatique.

Figure 61: Spectre de RMN ¹³C (125 MHz, CDCl₃) de FCM10

La présence du noyau aronatique 1,4 disubstitué est confirmée grâce à la corrélation COSY (**Figure 62 et schéma 19**) observée entre les signaux à $\delta_{\rm H}$ 6,82 (H-2'/H-6') et 7,42 (H-3'/5'). Nous observons les corrélations COSY entre les signaux des protons vinyliques à $\delta_{\rm H}$ 6,29 (H-2) et 7,61 (H-3) confirmant la présence du noyau cinnamoyle. De plus, nous observons d'autres corrélations entre les protons à $\delta_{\rm H}$ 4,16 (H-1'') et 1,67 (H-2'') et 1,35 (H-3'')

Figure 62: Spectre COSY ¹H – ¹H (500 MHz, CDCl₃) de FCM10

Schéma 19: Corrélations observées sur le spectre COSY ¹H – ¹H de FCM10

Le noyau cinnamoyle est également confirmé grâce aux corrélations HMBC (**Figure 63** et schéma 20) entre le proton à δ_H 6,29 (H-2) et les carbones à δ_C 167,1 (C-1) et 127,8 (C-1') ; entre le proton à δ_H 7,61 (H-3) et les carbones à δ_C 167,1 (C-1), 115,8 (C-2) et 129,9 (C-3'/C-5') ; et entre les signaux à δ_H 6,82 (H-2'/H-6') et à δ_C 115,8 (C-2), 127,8 (C-1') et 157,0 (C-4'). La longue chaine aliphatique du groupement méthylène est d'avantage renforcée par les corrélations HMBC entre les signaux à δ_H 4,16 (H-1'') et à δ_C 28,7 (C-2'') et entre le proton à δ_H 1,67 (H-2'') et les carbones à δ_C 64,6 (C-1'') et 25,9 (C-3'').

L'attachement du noyau cinnamoyle à l'alcool gras s'est fait grâce à la corrélation HMBC entre les signaux à $\delta_H 4,16$ (H-1'') et à $\delta_C 167,1$ (C-1).

Figure 63: Spectre HMBC (¹H : 500 MHz, ¹³C : 125 MHz, CDCl₃) de FCM10

Schéma 20: Corrélations observées sur le spectre HMBC de FCM10

La longueur de la chaine de l'alcool gras a été déterminée grâce à la présence de certains ion-fragments sur le spectre de masse ESI. L'ion fragment observé à $m/z = 256 [M - C_{24}H_{49} + Na^+]$ correspond à l'élimination de vingt trois méthylènes et du méthyle terminal. Nous observons également l'ion fragment à $m/z = 495 [M - C_7H_{14} + Na^+]$ correspondant à la perte d'une autre partie de la série des méthylènes. La comparaison de toutes ces données avec celles de la littérature a permis d'identifier FCM10 à la (E)-3-(4'hydroxyl)cinnamate de nonacosyle (**88**), précédemment isolé des écorces de *Dendrobium fimbriatum* (**Li et al., 1992**).

Tableau XV: Données spectrales de RMN ¹H (500 MHz, CDCl₃), RMN ¹³C (125 MHz, CDCl₃), HMBC (¹H : 500 MHz, ¹³C : 125 MHz, CDCl₃) et COSY (500 MHz, CDCl₃) de FCM10

Position	δ(¹³ C)	$\delta(^{1}\mathrm{H})$ (mult., J (Hz)	HMBC (¹ H- ¹³ C)	COSY(¹ H- ¹ H)
1	167,1	-	-	-
2	115,8	6,29 (d, <i>J</i> = 16,0 Hz)	C-1, C-4	H-3
3	144,2	7,61 (d, <i>J</i> = 16,0 Hz)	C-1, C-2, C-6, C-8	H-2
1'	127,8	-	-	-
2'	115,0	6,82 (d, <i>J</i> = 9,0 Hz)	C-2, C-4, C-7	H-3'/H-5'
3'	129,9	7,42 (d, J = 9,0 Hz)	C-3, C-6, C-7	H-2'/H-6'
4'	157,0	-	-	-
5'	129,9	7,42 (d, $J = 9,0$ Hz)	C-3, C-7, C-8	H-2'/H-6'
6'	115,0	6,82 (d, <i>J</i> = 9,0 Hz)	C-2, C-4, C-7	H-3'/H-6'
OH	-	5,08 (s)	-	-
1"	64,6	4,16 (t, <i>J</i> = 6,75 Hz)	C-1, C-2'	H-2"
2"	28,7	1,67 (m)	C-1', C-3'	H-1", H-3"
3"	25,9	1,35 (m)		H-2"
4''- 28''	29,3 - 29,7	1,23 – 1,37 (m)		H-29"
29''	14,1	0,86 (t, $J = 6,5$ Hz)		H-4"-H-28"
Composés isolés	Pa	arties de la plante		
--	--------------	---------------------	---------	
	Feuilles	Écorces du tronc	Racines	
Cordidepsine (CM3)		\checkmark		
Allantoïne (CM4)		✓	√	
Lupenone (CM8)		✓		
β -amyrone (CM9)		✓		
Lupéol (CM11)		✓		
β -amyrine (CM12)		✓		
1'-(26'-hydroxyhexacosanoyl)glycérol (TCM3)		✓	~	
Cyclooctasulfure (RCM1)			~	
Hexacosanoylglycérol (RCM3)			~	
Acide bétulinique (RCM9)			~	
Triacontanoate de 3-lup-20(29)-ènyle (FCM3)	\checkmark			
Glucoside de 3- O - β - D -stigmastérol (FCM6)	\checkmark			
Hexacosanoate de tétratriacontanyle (FCM8)	\checkmark			
2'-(4''-hydroxyphényl)éthyle (FCM9)	\checkmark			
(E)-3-(4'hydroxyl)cinnamate de nonacosyle	\checkmark			
(FCM10)				

Tableau XVI : Récaputilatif des composés isolés de Cordia millenii

B. Transformations chimiques

Les transformations chimiques ont été effectuées sur certains composés isolés. Ainsi, nous avons effectué les réactions d'acétylation sur les composés **TCM3** et **RCM3** possédant des sites réactionnels constitués de la fonction hydroxyle. La réaction d'estérification a également été faite sur le composé **RCM9** qui possède comme site réactionnel la fonction acide en C-28.

1. Acétylation des fonctions hydroxyles

1.1. Cas de TCM3

Le mélange de 10 mg de TCM3, de 1 mL d'anhydride acétique et de 1 mL de pyridine a été agité à température ambiante pendant 12 h. Au produit réactionnel, 10 mL de chloroforme et 10 mL d'eau distillée ont été ajoutés ; le produit obtenu a été chromatographié par CC. Le produit acétylé, **TCM7** (8,9 mg) a été obtenu avec un rendement de 70,67 %.

La formation du produit acétylé a été attestée sur le spectre de RMN ¹H (**Figure 64 et tableau XVII**) par l'apparition de trois singulets à δ_H 2,02 (H-6''), 2,05 (H-3'') et 2,06 (H-4'') intégrant chacun pour trois protons et correspondant aux méthyles du groupement acétyle.

Figure 64: Spectres comparatifs de RMN ¹H (500 MHz, C₅D₅N) de TCM3 (A) et (800 MHz, CDCl₃) de TCM7 (B)

Le produit acétylé est d'avantage confirmé sur le spectre de RMN ¹³C (**Figure 65 et tableau XVII**) de TCM7 par la présence de trois signaux supplémentaires du carbonyle des

esters à δ_{C} 171,2 (C-1''), 170,1 (C-5'') et 170,5 (C-3'') et de trois signaux du groupement méthyle à δ_{C} 20,7 (C-6''), 20,9 (C-4'') et 21,0 (C-2'').

Figure 65: Spectres comparatifs de RMN ¹³C (125 MHz, C₅D₅N) de TCM3 (A) et (200 MHz, CDCl₃) TCM7 (B)

L'ensemble des données spectrales comparées à celles décrites dans la littérature ont permis d'attribuer à **TCM7** le nom 1'-(26'-acétoxyhexacosanoyl)-2,3-diacétoxyglycérol (**89**), un dérivé nouveau auquel nous avons donné le nom trivial **cordicérol A**.

89

Tableau XVII: Données spectrales de RMN ¹H (500 MHz, C₅D₅N) de TCM3 et (800 MHz CDCl₃) de TCM7 ; RMN ¹³C (125 MHz, C₅D₅N) de TCM3 et (200 MHz, CDCl₃) de TCM7

	TCM3		TCM7	1
Position	δ(¹³ C)	$\delta(^{1}\text{H}) (\text{mult.}, J (\text{Hz})$	δ(¹³ C)	$\delta(^{1}\text{H})$ (mult., J (Hz)
1a		4,72 (dd, <i>J</i> = 4,2 ; 4,8 Hz)	62,2	4,13 (m)
1b	66,7	4,65 (dd, <i>J</i> = 6,6 ; 6,6 Hz)		
2	70,9	4,45 (q, $J = 5,4$ Hz)	69,1	5,23 (m)
3	64,2	4,12 (d)	61,9	4,28 (2H, m)
2-OH	-	6,86 (1H, s)	-	-
3-OH	-	6,51 (1H, s)	-	-
1'	173,8	-	173,3	-
2'	34,4	2,34 (t, $J = 7,0$ Hz)	34,0	2,29 (t, <i>J</i> = 7,5 Hz)
3'	25,2	1,62 (q)		
4'-23'	29,3-29,9	1,26 - 1,29 (q)		
24'	26,5	1,50 (q)	28,5 - 29,7	1,23 - 1,60 (m)
25'	33,7	1,74 (q)		
26'	62,1	3,87 (t, J = 6,6 Hz)	64,6	4,03 (t, J = 6,7 Hz)
26'-OH	-	5,88 (1H, s)	-	-
1"	-	-	171,2	-
2"	-	-	21,0	2,06 (3H, s)
3"	-	-	170,5	-
4"	-	-	20,9	2,05 (3H, s)
5"	-	-	170,1	-
6''	-	-	20,7	2,02 (3H, s)

Le produit acéthylé s'est formé selon le mécanisme réactionnel suivant :

1.2. Cas de RCM3

Pour l'acétylation de RCM3, on a suivi le même protocole qu'avec TCM3 en utilisant les mêmes quantités de reactifs. Le produit acétylé, **RCM13** (9,1 mg) a été obtenu avec un rendement de 77,11%.

La formation du produit acétylé a été observée sur le spectre de RMN ¹H (**Figure 66 et tableau XVIII**) par l'apparition de deux nouveaux singulets à δ_H 2,05 (H-2'') et 2,06 (H-4'') intégrant chacun pour trois protons et correspondant aux méthyles d'acétyle.

Figure 66: Spectres comparatifs de RMN ¹H (800 MHz, C5D5N) de RCM3 (A) et (500 MHz, CDCl₃) de RCM13 (B)

De plus, sur le spectre de RMN ¹³C (**Figure 67 et tableau XVIII**) de RCM13, nous observons deux signaux supplémentaires du carbonyle des esters résonant à δ_C 170,1 (C-1'') et

170,5 (C-3''), et de deux signaux additionnels du groupement méthyle à δ_C 20,8 (C-2'') et 21,0 (C-4'') attribuables au groupement acétyle.

Figure 67: Spectres comparatifs de RMN ¹³C (200 MHz, C₅D₅N) de RCM3 (A) et (125 MHz, CDCl₃) de RCM13 (B)

L'ensemble des données spectrale comparées à celles décrites dans la littérature a permis d'attribuer à RCM13 le nom hexacosanoyl-2,3-diacétoxyglycérol (90), un dérivé nouveau qui a pour nom trivial **cordicérol B**.

90

Tableau XVIII: Données spectrales de RMN ¹H (800 MHz, C5D5N) de RCM3 et (500 MHz CDCl3) de RCM13 ; RMN ¹³C (200 MHz, C5D5N) de RCM3 et (125 MHz, CDCl3) de RCM13

	RCM3		RCM13	
Position	δ(¹³ C)	$\delta(^{1}\text{H})$ (mult., J (Hz)	δ(¹³ C)	$\delta(^{1}\mathrm{H})$ (mult., J (Hz)
1a		4,72 (dd, <i>J</i> = 4,8 ; 8,0 Hz)	61,9	4,27 (m)
1b	66,4	4,65 (dd, <i>J</i> = 6,4 ; 8,0 Hz)		
2	70,9	4,45 (q, <i>J</i> = 4,8 Hz)	69,1	5,23 (m)
3	64,3	4,12 (d)	62,3	4,13 (m)
2-OH	-	6,84 (s)	-	-
3-OH	-	6,50 (s)	-	-
1'	173,7	-	173,3	-
2'	34,4	2,34 (t, <i>J</i> = 7,6 Hz)	34,0	2,29 (t, <i>J</i> = 7,5 Hz)
3'	25,3	1,63 (q, $J = 7,6$ Hz)		
4'-25'	29,3 – 32,1	1,23 - 1,29 (s)	24,8 - 29,6	1,23 - 1,61 (m)
26'	14,2	0,85 (t, J = 6,8 Hz)	14,1	0,86 (t, J = 7,0 Hz)
1"	-	-	170,5	-
2"	-	-	20,8	2,05 (s)
3"	-	-	170,0	-
4"	-	-	21,0	2,06 (s)

2. Estérification de la fonction acide de RCM9

4,56 mg (0,01 mmole) de RCM9 ont été dissous dans le chloroforme ; 10 mL d'éthanol absolu et 3 gouttes d'acide sulfurique concentré ont été ajoutés. La solution obtenue a été chauffée à reflux pendant 18 h. Le produit réactionnel a été précipité dans un bain de glace, puis filtré, séché et pesé. Le produit estérifié, **RCM12** (4 mg) a été obtenu avec un rendement de 82,6%.

Le composé estérifié a été attesté sur le spectre de RMN ¹H (**Figure 68, 69 et tableau XIX**) par la présence des signaux supplémentaires à $\delta_H 4,04$ (H-1') et $\delta_H 1,27$ (H-2') attribuables respectivement aux protons de groupements de méthylène et méthyle, dérivant de l'alcool gras.

Figure 68: Spectres comparatifs de RMN ¹H (400 MHz, C₅D₅N) de RCM9 (A) et (500 MHz, CD₃OD) de RCM12 (B)

Figure 69: Spectres comparatifs de RMN ¹H (400 MHz, C5D5N) de RCM9 (A) et (500 MHz, CD3OD) de RCM12 (B)

L'ensemble des données spectrales comparées à celles décrites dans la littérature a permis d'identifier RCM12 à la bétulinate d'éthyle (**91**). Elle a été précédemment synthétisée par Shahlaei et *al.*, et elle possède des propriétés immunomodulatoires (**Shahlaei et** *al.*, **2013**).

Tableau XIX: Données spectrales de RMN ¹ H (400 MHz, C ₅ D ₅ N) de RCM9 et (500
MHz, CD ₃ OD) de RCM12

	RCM9	RCM12
Position	$\delta(^{1}\mathrm{H})$ (mult., J (Hz)	$\delta(^{1}\text{H})$ (mult., J (Hz)
1	1,64 ; 0,96 (m)	1,61 (m)
2	1,83 (m)	1,91 (m)
3	3,45 (t, J = 8,0 Hz)	3.12
4	-	-
5	0,79 (m)	1,04 (m)
6	1,50 (m)	1,41 (m)
7	1,31	1,31 (m)
8	-	-
9	1,35 (m)	2,21 (m)
10	-	-
11	1,34 (m) ; 1,16 (m)	1,16 (m)
12	1,19 ; 1,92 (m)	1,49 (m)
13	2,24 (m)	2,28 (m)
14	-	-
15	1,50 (m)	1,56 (m)
16	1,40 (m)	1,38 (m)
17	-	-
18	1,52 (m)	1,54 (m)
19	2,73 (m)	1,70 (m)
20	-	-
21	1,86 ; 1,19 (m)	1,52 (m)
22	1,41 ; 1,83 (m)	1,36 (m)
23	1,06 (s)	0,95 (s)
24	0,99 (s)	0,84 (s)
25	1,05 (s)	0,94 (s)
26	0,81 (s)	0,74 (s)
27	1,23 (s)	0,99 (s)
28	-	-
29a	4,76 (d, $J = 3,0$ Hz)	4,58 (d, <i>J</i> = 1,5 Hz)
29b	4,94 (d, J = 3,0 Hz)	4,69 (d, <i>J</i> = 1,5 Hz)
30	1,78 (s)	1,68 (s)
OH	5,71 (s)	-
1'	-	4,04 (q, <i>J</i> = 3,5 Hz)
2'	-	1,27 (t, $J = 7,0$ Hz)

ſ

Le produit estérifié s'est formé selon le mécanisme réactionnel suivant :

C- Activités biologiques

Nous avons évalué les activités biologiques (inhibition de l'intégrase du VIH, antibactérienne et cytoxique) des différents extraits et de certains composés isolés de *Cordia millenii* afin de contribuer à la valorisation de son utilisation dans la médecine traditionnelle.

1. Activité inhibitrice de l'intégrase du VIH de type I

La cordidepsine (72) (CM3) et l'allantoïne (74) (CM4) ont été testés *in vitro* pour leur effet inhibiteur sur l'enzyme responsable de l'intégration de l'ADN proviral dans le genone de la cellule hôte. Les résultats obtenus révèlent que la cordidepsine a une activité significative ($CI_{50} = 4,65 \mu M$) alors que l'allantoïne n'a montré aucune activité ($CI_{50} = 412,94 \mu M$) comparé à l'acide chicorique ($CI_{50} = 0,3298 \mu M$) pris comme référence (**Tableau 20**) (**Grobler et** *al.***, 2002**) dans les même conditions expérimentales. Les profils de l'effet inhibiteur de ces deux composés sont récapitulés à la **figure 68**.

Figure 70: Inhibition dose – dépendante du VIH par la cordidepsine (a) et de l'allantoïne (b).

CM3 : cordidepsine (72) ; CM4 : allantoïne (74) ; Chichoric : acide chicorique

Les études biologiques antérieures ont revelé que les depsidones sont des potentiels agents antiviraux (**Varughese et** *al.*, **2012**). L'activité de la cordidepsine s'explique d'une part par la présence des groupements hydroxyles (-OH) sur les noyaux aromatiques A et B et la présence du carbonyle des aldéhydes. En effet, les études antérieures ont révélé que les groupements hydroxyles des noyaux aromatiques en présence des groupements carbonyles et en présence des métaux (Mg, Mn) sont des fonctions qui confèrent aux composés des potentialités anti-VIH-1 intégrase (**Nicklaus et** *al.*, **1997 ; Neamati et** *al.*, **1997**).

D'autre part, l'activité inhibitrice de l'intégrase de la cordidepsine (72) s'explique également par la présence du pharmacophore 1 (A) et pharmacophore 2 (B) ou l'un des deux pharmacophores ; car d'après les travaux de Neamati et al., l'activite inhibitrice de l'intégrase de l'acide virensique (92) avec une $CI_{50} = 3 \mu M$ est due à la présence de ces deux pharmacophores (ensemble d'atomes actifs qui induit une activite biologique) (Neamati et al., **1997**).

A

12

De plus, l'acide bétulinique (82) et ses dérivés se sont révélés être des inhibiteurs d'entrée, de protéase et de transcriptase inverse du VIH de type 1 (Fujioka et Kashiwanda, 1994; Pengsuparp et *al.*, 1994; Xu et *al.*, 1996; Dzubak et *al.*, 2006).

Composés	Code	CI50 (µM)
Cordidepsine (100 µM)	CM3	4,647
Allantoïne (100 µM)	CM4	412,939
Référence (100 µM)	Acide chicorique	0,3298

Tableau XX: Activité inhibitrice de l'intégrase du VIH de type I

CI₅₀: concentration inhibitrice exprimée en µM ; concentration du composé/extrait qui inhibe 50% de l'activité enzymatique du VIH

2. Activité antibactérienne

La fraction à l'acétate d'éthyle des racines a montré une bonne activité en révélant un pourcentage d'inhibition de 49,45% contre *Bacillus subtilis* comparé à la tétracycline (92%) prise comme référence (**Tableau XXI**). Quant à l'extrait à l'acétate d'éthyle des écorces du tronc, il a montré une activité significative contre *Staphylococcus aureus* avec un pourcentage d'inhibition de 65,2% comparé à la tétracycline (89%) prise comme référence. Cependant, ces échantillons sont inactifs contre les bactéries à Gram négatif (*Escherichia coli, Pseudomonas aeruginosa* et *Salmonella typhi*) (**Tableau XXI**). De plus, la fraction à l'acétate d'éthyle des feuilles a été inactive sur toutes les bactéries testées (**Tableau XXI**). Ces résultats sont en accord avec les études antérieures qui ont revélé que l'acide bétulinique (**82**), la lupenone (**75**), le lupéol (**77**) et la β -amyrine (**78**) possèdent une activité antibactérienne (**Po-Wei et al., 2012 ; Shai et al., 2008 ; Abdel-Raouf et al., 2015**).

 Tableau XXI: Activité antibactérienne in vitro des fractions à l'acétate d'éthyle de Cordia millenii

	_	М	icroorgan	ismes testés	
	Е.	В.	<i>S</i> .	Р.	<i>S</i> .
	coli	subtilis	aureus	aeruginosa	typhi
Fraction AcOEt des raciness (3000 µM)	PI	49,45	PI	PI	PI
Extrait AcOEt des écorces du tronc (3000µM)	PI	PI	65,2	PI	PI
Fraction AcOEt des feuilles (3000µM)	PI	PI	PI	PI	PI
Tétracycline (3000µM)	-	92,00	89,00	-	-

Les inhibitions sont évaluées en pourcentage (%) PI: Pas d'inhibition

E: Escherichia, B: Bacillus, S: Staphylococcus, P: Pseudomonas, S: Salmonella

3. Cytotoxicité

La cytotoxicité des extraits et fractions a été évaluée sur des cellules saines humaines de type 3T3.

Les résultats obtenus révèlent que l'extrait à l'acétate d'éthyle des écorces du tronc et les fractions à l'acétate d'éthyle des feuillles et des racines ont respectivement un pourcentage de viabilité cellulaire de 99 %, 95 % et 96 % (**Tableau XXII**). Sur la base de ces résultats, ces extraits et fractions ne seraient pas toxiques sur les cellules saines 3T3 de la même manière que la cyclohexamide prise comme référence, et ayant montré un pourcentage de viabilité cellulaire de 93 %.

Tableau XXII: Cytotoxicité des extraits et fractions à l'acétate d'éthyle de Cordia millenii

	cellules saines 3T3 testées
	Pourcentage de viabilité cellulaire (%)
Fraction AcOEt des racines (30 µM)	96
Extrait AcOEt des écorces du tronc (30 µM)	99
Fraction AcOEt des feuilles (30 µM)	95
Cyclohexamide (30 µM)	93

CONCLUSION ET PERSPECTIVES

Conclusion et perspectives

Le présent travail avait pour objectif général la caractérisation et l'évaluation des activités anti-VIH et antibactérienne des constituants chimiques de *Cordia millenii*, une plante de la famille des Boraginaceae.

Sur le plan phytochimique, nous avons isolé quinze(15) composés des extraits et des fractions à l'acétate d'éthyle des différentes parties de la plante et ces composés ont été entièrement caracterisés. La détermination structurale de ces composés a été rendue possible grâce à l'interprétation de leurs données spectrales (RMN ¹H et ¹³C, DEPT, COSY, HMBC et NOESY) en association avec la spectrométrie de masse (Impact électronique, *Electrospray*, FAB), l'UV, la cristallographie et en comparaison avec les données de la littérature. Ces métabolites secondaires appartiennent à neuf (09) classes de substances naturelles donc :

Une depsidone : 3,6-dihydroxy-8-méthoxy-1,7-diméthyl-11-oxo-11H-dibenzo [b,e][1,4]dioxepine-4-carbaldéhyde (72), un composé nouveau auquel nous avons donné le nom trivial cordidepsine. Cette classe de métabolite secondaire est isolée pour la première fois de la famille des Boraginaceae et du genre *Cordia*.

Un alcaloide : l'allantoïne (74) ;

Deux monoglycérides : la 1'-(26'-hydroxyhexacosanoyl)glycérol (79) et l'hexacosanoylglycérol (81) ; classe isolée pour la première fois du genre *Cordia* ;

 \succ Cinq triterpènes pentacycliques : la lupenone (**75**), la β-amyrone (**76**), le lupéol (**77**), la β-amyrine (**78**), l'acide bétulinique (**82**) et leur dérivé : la triacontanoate de 3-lup-20(29)-ènyle (**83**) isolé pour la première fois du genre *Cordia*;

> Un allotrope de soufre : le cyclooctasulfure (S_8) (80) isolé pour la première fois d'une plante ;

- Vun stéroïde : le glucoside de $3-O-\beta$ -*D*-stigmastérol (84) ;
- Une cinnamate : la (E)-3-(4'hydroxyl)cinnamate de nonacosyle (88);
- Un ester d'acide gras : l'hexacosanoate de tétratriacontanyle (85) ;
- Un dérivé phénolique : le 2'-(4''-hydroxyphényl)éthylpropanoate (87) ;

Par la suite, la 1'-(26'-hydroxyhexacosanoyl)glycérol (**79**) et l'hexacosanoylglycérol (**81**) ont fait l'objet d' une réaction d'acétylation, laquelle a permis de confirmer la structure de ces monoglycérides et de synthétiser respectivement la 1'-(26'-acétoxyhexacosanoyl)-2,3-diacétoxyglycérol (**89**) et l'hexacosanoyl-2,3-diacétoxyglycérol (**90**), deux dérivés nouveaux d'hémi-synthèse auxquels nous avons attribué respectivement les noms triviaux de cordicérol

A et de cordicérol **B**. De plus, l'acide bétulinique (82) a fait l'objet d'une réaction d'estérification. Cette dernière a conduit au dérivé d'hémi-synthèse la bétulinate d'éthyle (91).

Sur le plan biologique, deux composés ont été évalués *in vitro* pour leurs activé inhibitrice de l'intégrase du VIH-1, et l'activité antibactérienne et cytotoxique *in vitro* des extraits et fractions à l'acétate d'éthyle ont été déterminés. Les résultats obtenus ont révèlé que :

► La cordidepsine (72) a une activité significative contre l'intégration du VIH-1 dans le noyau cellulaire de l'hôte avec une $CI_{50} = 4,65 \mu M$, contrairement à l'allantoïne (74) qui n'a montré aucune activité avec une $CI_{50} = 412,94 \mu M$ comparée à l'acide chicorique pris comme référence qui a présenté quant à elle une $IC_{50} = 0,3298 \mu M$.

➤ La fraction à l'acétate d'éthyle des racines a présenté une bonne activité antibactérienne (49,45%) contre *Bacillus subtilis* et l'extrait à l'acétate d'éthyle des écorces du tronc a révélé une activité significative (65,2%) contre *Staphylococcus aureus*. Cependant, la fraction à l'acétate d'éthyle des feuilles a été inactive sur les bactéries à Gram positif et négatif testées.

➢ Ces extraits et fractions n'ont montré aucune toxicité sur les cellules humaines saines 3T3 comparé à la cyclohexamide prise comme référence.

La richesse dans la diversité structurale des composés isoleés du l'espèce *Cordia millenii*, nous motive dans la suite de nos travaux à:

- Étendre nos investigations sur d'autres espèces du genre Cordia.
- Élucider les spectres des composés isolés restants;
- Étudier les fractions restantes ;

Par ailleurs, pour davantage comprendre et rationnaliser l'usage ethnobotanique de *Cordia millenii*, les propriétés inhibitrice d'intégrase significatives observées pour la cordidepsine couplées à celles déjà indiquées dans la littérature pour d'autres composés isolés du genre *Cordia* nous amène à projeter d'évaluer les différentes activités biologiques (inhibition de l'intégrase du VIH et antibactérienne) des composés d'hémi-synthèse et des composés isolés sur lequels nous n'avons pas pu mener des tests biologiques. Au vu des resultats biologiques jusqu'ici obtenus, l'espèce *cordia millenii* pourrait être une source potentielle des composés à activités antivirales et antibactériennes. La finalisation des tests biologiques des composés d'hémi-synthèse et des composés isolés non testés permettra d'atteindre définitivement nos objectifs.

PARTIE EXPÉRIMENTALE

1. Appareillage

La concentration des extraits et fractions s'est faite à l'aide d'un évaporateur rotatif de marque BÜCHI. Les différentes masses ont été mesurées sur la balance électronique SARTORIUS 125 MP. Les différents extraits et fractions ont été traités par plusieurs techniques qui ont fait usage de plusieurs appareils.

1.1 Techniques chromatographiques

Nous avons utilisé les techniques suivantes:

1.1.1. Chromatographie sur Colonne (CC)

Elle s'est faite à l'aide d'une colonne en verre fritté. La hauteur et le diamètre des colonnes ont été choisis en fonction de la quantité de l'extrait et des fractions à traiter. La phase stationnaire utilisée est un gel de silice en phase normale de marque Merck et de granulométrie 40 (0,2-0,5 mm). L'extrait à fractionner a été préalablement adsorbé par une quantité de silice, soit environ le double de la masse de l'extrait. L'élution s'est faite par simple gravité en utilisant plusieurs systèmes binaires de solvant. Les fractions recueillies ont été regroupées sous la base d'une analyse par CCM.

1.1.2. Chromatographie sur Couche Mince (CCM)

Les différentes CCM ont été réalisées sur des plaques chromatographiques en aluminium sur lesquelles est déposé un gel de silice de granulométrie 60 F₂₅₄ de marque Merck. Les dépôts des échantillons sur la plaque se sont faits avec des capillaires. La plaque a été ensuite développée par un système de solvants de polarités différentes. Après migration des spots, la plaque est révélée à l'aide d'une lampe UV de type SPECTROLINE CC-10 (λ_{max} 254 et 366 nm), des vapeurs d'iode et de l'acide sulfurique dilué (10%).

1.1.3. Chromatographie sur Couche Mince préparative

La plaque chromatographique est constituée d'un gel de silice 60 F_{254} de marque Merck, fixé sur un support en aluminium de dimensions 20 x 20 cm. La plaque est préalablement activée à l'étuve à 120°C pendant une heure. Ensuite elle est conservée dans un dessiccateur afin d'éviter le contact avec l'humidité. Les fractions ont été solubilisées dans l'acétate d'éthyle et ensuite déposées sur la plaque sous forme d'une bande. Après le dépôt, la plaque est développée dans une cuve chromatographique avec le système *n*-hexane/AcOEt approprié. Après migration, la plaque est séchée et observée à la lampe UV afin de visualiser et délimiter la bande qui nous intéresse. Cette bande est ensuite découpée et extraite par un solvant adéquat.

1.2 Techniques spectroscopiques

1.2.1. Spectroscopie de Résonance Magnétique Nucléaire (RMN)

Les spectres RMN (¹H et ¹³C) ont été enregistrés sur différents spectromètre de Brüker, résonant respectivement à 400 MHz, 500 MHz, 600 MHz et 800 MHz pour ce qui concerne le ¹H et 100 MHz, 125 MHz, 150 MHz et 200 MHz pour le ¹³C. Les déplacements chimiques ont été enregistrés en δ (ppm) avec référence le tétraméthylsilane (TMS) et les constantes de couplage (*J*) ont été exprimées en Hertz (Hz). Les échantillons ont été dissouts dans des solvants deuterés avant leur analyse. Les spectres obtenus ont été traités au moyen du logiciel Brüker.

1.2.2. Spectrometrie de masse

Les spectres de masse ESI ont été obtenus grâce au spectromètre de masse Brüker Compact QToF et MAXIS II. Les spectres de masse EI et FAB ont été enregistrés au moyen du spectromètre de masse Jeol JMS HX 110.

1.2. Technique cristallographique

Le cristal soumis aux rayons X était sous forme de lamelle de dimensions 0,16 x 0,07 x 0,06 mm. Les intensités du diffractionnement ont été collectées par le diffractomètre de marque ENRAF NONIUS Kappa CCD.

2. Méthodologie

2.1. Matériel végétal

Les différentes parties de *Cordia millenii* Baker ont été récoltées à Batoufam, région de l'Ouest Cameroun en Mai 2015 et identifiées par le botaniste Nana Victor. Un échantillon a été déposé à l'herbier national du Cameroun sous le numéro de référence 35142/HNC.

2.1.1. Extraction, isolement et purification des composés des écorces du tronc de *Cordia millenii*.

Les écorces du tronc ont été découpées, séchées et broyées. La poudre obtenue (2,85 kg) a été extraite par macération à température ambiante pendant 72 h avec le *n*-hexane et l'acétate d'éthyle successivement. L'extrait brut à l'acétate d'éthyle (35 g) a été fractionné sur colonne de gel de silice avec différents solvants. Son élution avec les systèmes Hex/ AcOEt et AcOEt

/MeOH par polarité croissante, a permis d'obtenir 20 fractions. Six de ces fractions ont été traitées grâce à différentes techniques chromatographiques (CC, CCM et CCM préparative). La purification de ces différentes fractions a permis d'isoler sept composés indexés CM3, CM4, CM8, CM9, CM11, CM12 et TCM3. Le traitement de ces differentes fractions s'est fait comme suit :

2.1.1.1. Traitement de la fraction F1

La fraction **F1** est obtenue dans le système Hex/AcOEt (80:20). Elle a été chromatographiée sur colonne de gel de silice avec le système Hex/CH₂Cl₂ à polarités croissantes. Ce qui a donné 50 flacons. Sur la base des CCM, les flacons ont été regroupés en six sous fractions (SF1-SF6). Les sous fractions (SF1 et SF2) obtenues au système Hex/CH₂Cl₂ (40:60) ont été rechromatographiées sur gel de silice au système Hex/AcOEt à polarité croissante. Le lupéol (CM11) et la β -amyrine (CM12) ont été obtenus de SF1 au système Hex/AcOEt (92:8); lupenone (CM8) et la β -amyrone (CM9) obtenues de SF2 au système Hex/AcOEt (85:15).

Système	Fractions	Série	Observations
Hex 100%	1 - 20	S1	Trainée
HexAcOEt (97:3)	21 - 42	S2	Trainée
HexAcOEt (94:6)	43 - 67	S 3	Trainée
HexAcOEt (92:8)		S4 : 70 - 91	CM11 est obtenu après filtration et lavage
	68 - 110		des précipités sous forme de poudre blanche
		S5 : 93 - 107	CM12 est obtenu après filtration et lavage
			des précipités sous forme de poudre amorphe
			blanche
Hex/AcOEt (89:11)	36 - 40	S 6	Une tache + trainée
Hex/AcOEt (86 :14)	41 - 52	S 7	Trainée

Tableau XXIII: Chromatogramme de la sous fraction SF1

Système	Fractions	Série	Observations
Hex/AcOEt (97,5:2,5)	1 - 15	S1	Trainée
Hex/AcOEt (95:5)	16 - 35	S2	Trainée
Hex/AcOEt (92,5 : 7,5)	36 - 51	S 3	Trainée
Hex/AcOEt (90:10)	52 - 68	S4	Trainée
Hex/AcOEt (87,5:12,5)	69 - 89	S5	Une tache + trainée
Hex/AcOEt (85:15)	89 - 131	S6 :90 - 116	CM8 est obtenu après filtration et lavage des
			précipités sous forme de poudre blanche
		S7:119 - 128	CM9 est obtenu après lavage et filtration des
			précipités sous forme de poudre amorphe
			blanche
Hex/AcOEt (82,5:17,5)	132 - 151	S 8	Trainée
Hex/AcOEt (80:20)	152 - 167	S 9	Trainée

Tableau XXIV: Chromatogramme de la sous fraction SF2

2.1.1.2. Traitement de la fraction F3

La fraction **F3** est obtenue dans le système Hex/AcOEt (50:50). Elle a été chromatographiée sur colonne de gel de silice avec le système Hex/AcOEt à polarités croissantes. Ce qui a permis d'avoir six sous fractions (SF1 - SF6).

Système	Fractions	Sous fractions	Observations
Hex/AcOEt (70:30)	1 - 5	SF1	Trainée
Hex/AcOEt (65:35)	6 - 13	SF2	Trainée
Hex/AcOEt (62,5:37,5)	14 - 21	SF3	Trainée
Hex/AcOEt (60:40)	22 - 29	SF4	trainée
Hex/AcOEt (57,5:42,5)	30 - 40	SF5	2 taches + trainée
Hex/AcOEt (55:45)	41 - 50	SF6	trainée

Tableau XXV: Chromatogramme de la fraction F3

La sous fraction **SF5** obtenue dans le système Hex/AcOEt (57,5:42,5) a été rechromatographiée sur colonne de gel de silice avec un système isochratique Hex/AcOEt (60:40). Le produit obtenu a été soumis à une CCM préparative au système Hex/AcOEt (60:40). Après filtration et lavage, la cordidepsine (**CM3**) a été obtenue sous forme de poudre amorphe blanche.

2.1.1.3. Traitement de la fraction F8

La fraction **F8** est obtenue dans le système Hex/AcOEt (20:80). Elle a été traitée sur colonne de gel de silice avec le système Hex/AcOEt à polarités croissantes. Ainsi, la 1'-(26'-

hydroxyhexacosanoyl) glycérol (**TCM3**) a été obtenue sous forme de poudre blanche dans le système Hex/AcOEt (50 :50) selon le chromatogramme suivant :

Système	Flacon	Sous fractions	Observations
	S		
Hex/AcOEt (65:35)	1-6	SF1	Trainée
Hex/AcOEt (60:40	7 – 16	SF2	Trainée
Hex/AcOEt (55:45)	17 - 27	SF3	Trainée
Hex/AcOEt (52,5:47,5)	28 - 38	SF4	2 taches + trainée
Hex/AcOEt (50:50)	39 - 55	SF5 : 40 - 47	TCM3 est obtenu après lavage et filtration
			des précipités sous forme de poudre blanche
		SF6 : 49 - 55	2 taches + trainée
Hex/AcOEt (47,5:52,5)	56 - 65	SF7	Trainée

Tableau XXVI: Chromatogramme de la fraction F8

2.1.1.4. Traitement de la fraction F12

F12 est obtenue dans le système AcOEt /MeOH (85:15). Elle a été rechromatographiée sur colonne de gel de silice avec un système isochratique AcOEt /MeOH (90:10). Ainsi, l'allantoïne (CM4) est obtenue sous forme de poudre de couleur beige.

2.1.1.5 Caractéristiques physiques des composés isolés des écorces du tronc de *Cordia millenii*.

CM3 : Cordidepsine

Aspect physique : poudre amorphe blanche Solvant de solubilité : DMSO Test au chlorure ferrique : positif RMN ¹H (600 MHz, DMSO- d_6) et RMN ¹³C (150 MHz, DMSO- d_6), tableau I SM-HR-ESI, m/z: 376,4972 [M+2Na]²⁺, C₁₇H₁₄O₇.

CM4: Allantoïne

Aspect physique : poudre de couleur beige Solvant de solubilité : DMSO-*d*₆ Test de Meyer : positif RMN ¹H (600 MHz, DMSO-*d*₆) et RMN ¹³C (150 MHz, DMSO-*d*₆), tableau II SM-HR-ESI, *m/z*: 159,0636 [M+H]⁺, C₄H₆O₃N₄ P.F: 252 - 254 °C

CM8: Lupenone

Aspect physique : poudre blanche Solvant de solubilité : chloroforme Test de Libermann Burchard : positif RMN ¹H (500 MHz, CDCl₃), tableau III P.F: 168 – 170 °C

CM9: β-amyrone

Aspect physique : poudre amorphe blanche Solvant de solubilité : chloroforme Test de Libermann Burchard : positif RMN ¹H (500 MHz, CDCl₃), tableau IV.

CM11: Lupéol

Aspect physique : poudre blanche Solvant de solubilité : chloroforme Test de Libermann Burchard : positif RMN ¹H (500 MHz, CDCl₃), tableau V. P.F: 212 - 214 °C

HO

¹¹11 24

CM12: *β*-amyrine

Aspect physique : poudre amorphe blanche Solvant de solubilité : chloroforme Test de Libermann Burchard : positif RMN ¹H (500 MHz, CDCl₃), tableau VI

Aspect physique : poudre blanche Solvant de solubilité : pyridine RMN ¹H (500 MHz, C₅D₅N) et RMN ¹³C (125 MHz, C₅D₅N), tableau VII. SM-FAB, m/z: 487 [M+H]⁺, C₂₉H₅₈O₅ P.F: 100 - 102 °C

15 27

78

2.1.2. Extraction, isolement et purification des composés isolés des racines de *Cordia millenii*.

Les racines ont été découpées, séchées et broyées. La poudre obtenue (2,44 kg) a été extraite par macération à froid et à température ambiante pendant 72 h au MeOH. L'extrait brut (185,6 g) a été ensuite partitionné avec le *n*-hexane et l'acétate d'éthyle. La fraction à l'acétate d'éthyle (50,23 g) a été traitée sur colonne de gel de silice. Son élution avec les systèmes Hex/AcOEt et AcOEt/MeOH par polarités croissantes, a permis d'obtenir 17 sous fractions. Le traitement de cinq de ces sous fractions par différentes techniques chromatographiques (CC et CCM), nous a permis d'isoler cina composés indexés RCM1, RCM3, RCM6, RCM8 et RCM9. L'isolement et la purification des composés se sont faits comme suit :

2.1.2.1. Traitement de la sous fraction SF1

Les précipités obtenus de colonne de gel de silice au *n*-hexane ont été filtrés, lavés et recristallisés. Le produit obtenu (**RCM1**) sous forme de poudre jaune a été identifiée au cyclooctasulfure. La poudre de RCM1 obtenue a été dissoute dans le mélange méthanol/chloroforme et laissée au repos à temepérature ambiante pendant 96 h. Après évaporation du solvant, les cristaux se sont formés.

2.1.2.2. Traitement de la sous fraction SF3

La sous fraction **SF3** est obtenue dans le système Hex/AcOEt (65:35). Elle a été traitée sur colonne de gel de silice et a permis d'isoler l' hexacosanoylglycérol (**RCM3**) et l'acide bétulinique (**RCM9**), tous deux sous forme de poudre blanche. Le chromatogramme détaillé se présente ainsi :

Systèmes	Fractions	Séries	Observations
Hex/AcOEt (95 :5)	1 - 17	S 1	Trainée
Hex/AcOEt (90:10)	18 - 40	S2	Trainée
		S3 : 41 - 53	Une tache + trainée
Hex/AcOEt (85 :15)	41 - 70	S4 : 54 -70	RCM9 est obtenu après filtration et lavage
			des précipités sous forme de poudre blanche
Hex/AcOEt (80 :20)	71 - 88	S5	Trainée
Hex/AcOEt (75 :25)	81 - 118	S 6	RCM3 est obtenu après filtration et lavage
			des précipités sous forme de poudre blanche
Hex/AcOEt (70:30)	119 - 130	S7	Une tache + trainée
Hex/AcOEt (65 :35)	131 - 142	S 8	Trainée

Tableau XXVII: chromatogramme de la sous fraction SF3

2.1.2.3. Traitement de la sous fraction SF6

Les précipités de la sous fraction SF6 ont été obtenus dans le système Hex/AcOEt (50 :50) puis traités sur colonne de gel de silice avec un système isochratique Hex/AcOEt (60 :40). Ceci a permis d'isoler 1'-(26'-hydroxyhexacosanoyl)glycérol (**RCM6**), identique au composé TCM3.

2.1.2.4. Traitement de la sous fraction SF15

Les précipités obtenus de la sous fraction SF15 dans le système AcOEt /MeOH (95:5) ont été lavés puis recistallisés. Ceci a permis une poudre de couleur beige et identifiable à l'allantoïne (**RCM8**). Il est identique au composé CM4.

2.1.2.5. Caractéristiques physiques des composés isolés des racines de Cordia millenii.

RCM1 : Cyclooctasulfure

Aspect physique : poudre jaune Solvant de solubilité : benzène Test de Lasaigne : positif SM–EI *m/z*: 256,1 [M]⁺, S₈, tableau VIII P.F: 119 - 121 °C

RCM3 : hexacosanoylglycérol

Aspect physique : poudre blanche Solvant de solubilité : pyridine RMN ¹H (800 MHz, pyridine-*d*₆) et RMN ¹³C (200 MHz, pyridine-*d*₆), tableau IX SM-FAB *m*/*z*: 471 [M+H]⁺, C₂₉H₅₈O₄. P.F: 88 - 90 °C

RCM9 : Acide bétulinique

Aspect physique : poudre blanche Solvant de solubilité : pyridine Test de Libermann Burchard : positif RMN ¹H (400 MHz, C₅D₅N) et RMN ¹³C (100 MHz, C₅D₅N), tableau X SM-IE *m/z*: 456,2 [M]⁺, C₃₀H₄₈O₃. P.F: 315 - 317 °C

2.1.3. Extraction, isolement et purification des composés des feuilles de Cordia millenii

Les feuilles ont été séchées et broyées. La poudre obtenue (2,45 kg) a été extraite par macération à froid et à température ambiante pendant 72 h au mélange CH₂Cl₂/ MeOH (1 :1). L'extrait brut (97,87 g) a été partitioné avec le *n*-hexane et l'acétate d'éthyle. La fraction à l'acétate d'éthyle (25 g) a été traitée sur colonne de gel de silice. Son élution avec les systèmes Hex/AcOEt et AcOEt/ MeOH par polarités croissantes, a permis d'obtenir huit (08) sous fractions. Grâce aux différentes techniques chromatographiques (CC, CCM et CCM préparative), nous avons isolé de cinq sous fractions, six composés indexés FCM3, FCM6, FCM8, FCM9 et FCM10. L'isolement et la purification des composés se sont faits comme suit :

2.1.3.1. Traitement de la sous fraction SF1

La sous fraction **SF1** est obtenue dans le système Hex/AcOEt (90:10). Après rechromatographie sur colonne de gel de silice avec un système isochratique Hex/AcOEt (97,5:2,5), nous avons obtenu **FCM8** sous forme de poudre amorphe blanche.

2.1.3.2. Traitement de la sous fraction SF2

La sous fraction **SF2** est obtenue dans le système Hex/AcOEt (80:20). Elle a été traitée sur colonne de gel de silice et a permis d'isoler le triacontanoate de 3-lup-20(29)-ènyle (**FCM3**) sous forme de poudre blanche. Le chromatogramme est détaillé dans le tableau ci-dessous :

Système	Fractions	Séries	Observations
Hex/AcOEt (92,5:7.5)	1 - 13	S 1	trainée
Hex/AcOEt (90:10)	14 - 30	S2	trainée
Hex/AcOEt (87,5:12,5)	31 - 50	S 3	trainée
Hex/AcOEt (85:15)	51 - 85	S4:51-66	FCM3 est obtenu après lavage et filtration
			des précipités sous forme de poudre blanche
		S5 :67-87	2 taches + trainée
Hex/AcOEt (82,5:17,5)	86 - 101	S 6	trainée
Hex/AcOEt (80:20)	102 - 110	S 7	trainée

Tableau XXVIII: Chromatogramme de la sous fraction SF2

2.1.3.3. Traitement de la sous fraction SF3

La sous fraction **SF3** est obtenue dans le système Hex/AcOEt (70:30). Ensuite, elle a été traitée par une CCM préparative au système Hex/AcOEt (90:10). Sur la plaque chromatographique, nous avons observé les bandes qui nous intéressaient à l'UV. Ces bandes ont été découpées puis extraites et filtrées. Ainsi, nous avons obtenu le 2'-(4''-

hydroxyphényl)éthyle (**FCM9**) et la (E)-3-(4'hydroxyl)cinnamate de nonacosyle (**FCM10**), tous deux sous forme de poudre amorphe blanche.

2.1.3.4. Traitement de la sous fraction SF8

Les précipités obtenus de la sous fraction **SF8** (AcOEt) ont été lavés et recristallisés. La poudre blanche obtenue est celle du glucoside de $3-O-\beta$ -*D*-stigmastérol (**FCM6**).

2.1.3.6 Caractéristiques physiques des composés isolés des feuilles de Cordia millenii.

FCM3 : Triacontanoate de 3-lup-20(29)-ènyle Aspect physique : poudre blanche Solvant de solubilité : chloroforme Test de Libermann Burchard : positif RMN ¹H (500 MHz, CDCl₃) et RMN ¹³C (125 MHz, CDCl₃), tableau XI. SM-IE *m/z*: 860,83 [M]⁺, C₆₀H₁₀₈O₂. P.F: 72-74 °C

FCM6 : Glucoside de 3-*O*- β -*D*-stigmastérol Aspect physique : poudre de couleur beige Solvant de solubilité : pyridine Test de Libermann Burchard : positif RMN ¹H (600 MHz, C₅D₅N), tableau XII. P.F: 290 - 292 °C

FCM8: Hexacosanoate de tétratriacontanyle

Aspect physique : poudre amorphe blanche Solvant de solubilité : chloroforme RMN ¹H (600 MHz, CDCl₃), tableau XIII. SM-IE m/z: 872,1 [M]⁺, C₆₀H₁₂₀O₂

FCM9: 2'-(4''-hydroxyphényl)éthyle

Aspect physique : poudre amorphe blanche Solvant de solubilité : chloroforme Test au chlorure ferrique : positif RMN ¹H (500 MHz, CDCl₃) et RMN ¹³C (125 MHz, CDCl₃), tableau XIV. SM-HR-ESI *m*/*z*: 193,0866 [M-H]⁻, C₁₁H₁₄O₃.

85

FCM10 : (E)-3-(4'hydroxyl)cinnamate de

nonacosyle

Aspect physique : poudre amorphe blanche Solvant de solubilité : chloroforme Test au chlorure ferrique : positif RMN ¹H (500 MHz, CDCl₃) et RMN ¹³C (125 MHz, CDCl₃), tableau XV

SM-HR-ESI *m/z*: 593,4138 [M+Na]⁺, C₃₈H₆₆O₃.

2.2. Réactions chimiques

2.2.1. Réaction d'acétylation

Le mélange de 10 mg du produit à acétyler, 1 mL d'anhydride acétique et 1 mL de pyridine a été agité à température ambiante pendant 12 h.

2.2.1.1. Hydrolyse du produit réactionnel

Dans une ampoule à décanter, on a introduit le produit réactionnel, 10 mL de chloroforme et 10 mL d'eau distillée. L'ensemble a été agité plusieurs fois et la phase organique recueillie a été séchée à l'aide du Na₂S₂O₄ anhydride puis filtrée.

2.2.1.1.2. Traitement de la phase organique

Après évaporation de la phase organique sous hotte, le résidu obtenu a été séché puis purifié par CC sur gel de silice dans un système isochratique *n*-hexane/AcOEt (9 :1).

2.2.2. Réaction d'estérification

Dans un ballon de 100 mL, nous avons introduit 4,56 mg (0,01 mmole) de RCM9 préalablement dissous dans le chloroforme, 10 mL d'éthanol et 3 gouttes d'acide sulfurique concentré, l'ensemble a été chauffé à reflux pendant 18 h. L'évolution du milieu réactionnel a été suivie par CCM. Après consommation totale de RCM3, la réaction a été arrêtée.

Traitement du produit réactionnel

Le produit réactionnel a été précipité dans un bain de glace. Le précipité obtenu (RCM12) a été filtré, recristallisé et pesé.

3. Tests biologiques

3.1. Activité inhibitrice de l'intégrase du VIH de type I

3.1.1. Principe

Le principe est basé sur l'inhibition de l'intégration du virus VIH de type I dans l'ADN de la cellule hôte.

3.1.2. Mode opératoire

Le test d'inhibition du transfert de brin du sous-type C de l'intégrase du VIH-1 (CIN) s'est fait selon la méthode précédemment décrite par Grobler et al. (**Grobler et** *al.*, **2002**). Un brin ADN donneur biotinylé double brin de 20 nM de long (5'-5Biotin TEG /

ACCCTTTTAGTCAGTGTGGAAAATCTCTAGCA-3' repliqué à

5'ACTGCTAGAGATTTTCCACACTGACTAAAAG-3') a été immobilisé dans des puits de streptoclonine enrobée à 96 puits microtitrés. Après une incubation à la température ambiante pendant 40 minutes et une étape de lavage stricte, 5 μ g / ml de VIH-1 CIN recombiné et purifié dans une solution tampon 1 de pH 7,5 (50 mM NaCl, 25 mM Hepes, 25 mM, MnCl₂, 5 mM β -mercaptoéthanol, 50 μ g / ml De la BSA) a été ajouté à des puits individuels. Le mélange de (composé et d'acide chicorique) de concentration finale 20 μ M a été ajouté à des puits individuels. Le sous-type C IN recombiné du VIH-1 a été assemblé sur l'ADN du donneur prétraité par incubation pendant 45 minutes à la température ambiante. La réaction de transfert du brin d'intégrase a débutée dans la solution tampon 2 (identique à la solution tampon1, sauf que 25 mM a été remplacé par 2,5 mM) après addition de 10 mM (concentration finale) d'ADN cible marqué au FITC à double brin (5'-TGACCAAGGGCTAATTCACT / 36-FAM / -3' répliqué à

5'-AGTGAATTAGCCCTTGGTCA- / 36-FAM / -3'). Après une période d'incubation de 60 minutes à 37 ° C, les plaques ont été lavées avec du PBS contenant 0,05% de Tween 20 et 0,01% de BSA, suivi d'une addition d'un anticorps anti-FITC de mouton conjugué à la peroxydase (ThermoScientific, USA) dilué à 1:1000 dans le même tampon PBS. Enfin, les plaques ont été lavées et un substrat de peroxydase (Sure Blue ReserveTM, KPL, USA) a été ajouté pour permettre la détection à 620 nm en utilisant un lecteur de plaques de marque Synergy MX (BioTek®). Les valeurs d'absorbance ont été converties en pourcentage d'activité enzymatique par rapport aux lectures obtenues à partir des puits témoins (enzyme sans inhibiteur).

3.2. Activité antibactérienne (Test du Blue alamar)

2.2.3. Principe

Cette méthode colorimétrique est basée sur la capacité qu'ont les cellules viables à métaboliser le Blue alamar (résazurine, forme oxydée) par réduction en resorufine (forme réduite) (Lancaster et Fields, 1996).

3.2.1. Mode opératoire

Ce test a été réalisé dans le but de cribler l'activité antibactérienne des extraits en utilisant la méthode de microdilution en milieu liquide dans une microplaque de 90 puits où le Blue alamar est utilisé comme révélateur de croissance. (**Pettitet** *al.*, **2005; Sarkar et** *al.*, **2007**).

Les souches bactériennes en croissante sont cultivées dans la gélose Mueller Hinton (Oxoid Limited, Royaume-Uni) puis transféré dans le bouillon Mueller Hinton (Oxoid Limited, Royaume-Uni) et incubés pendant toute la nuit à 37 °C. L'inoculum bactérien a été ensuite dilué pour obtenir une turbidité équivalente à 0,5 McFarland équivalent à $1,5 \times 108$ UFC / mL. À partir des solutions mères de concentration 60 mg/mL des différents extraits dilué dans le DMSO, 10 µL de chaque solution mère a été répartie dans les puits tests d'une microplaque stérile de 96 puits à l'exception des puits du témoin positif (bouillon + inoculum bactérien) pour un volume finale de 200 µL et une concentration en extrait de 3000 µg /mL. Enfin, une suspension bactérienne (3 x 106 UFC / ml) a été ajoutée dans chaque puits. Les microplaques ont été scellées avec du parafilm et incubées à 37 °C pendant 18 à 24 h. Après un jour d'incubation, 20 µL de Blue alamar à 0,02 % Concentré (Chem-Impex-Int'L Inc) ont été ajoutés dans chaque puits et réincubés dans un incubateur à agitateur de 80 tr / min et à 37 °C pendant 2 à 3 h. Le changement de couleur du bleu au rose rouge a indiqué la croissance des bactéries. Pour l'analyse quantitative, les plaques ont été lues à 570 nm et 600 nm dans un spectrophotomètre à microplaques de type Multiskan ™ GO (ThermoScientific, USA). Le pourcentage d'inhibition de la croissance bactérienne a été calculé à l'aide de la formule:

% d'inhibition de la croissance = 100 - (% de différence dans la réduction de la densité optique entre les bactéries traitées et les bactéries de contrôle positives).

3.3. Activité cytotoxicité (Test MTT)

3.3.1. Principe

Ce test colorimétrique est basé sur la capacité qu'ont les cellules Saines (3T3) à absorber les bandes (longueur d'ondes 540 nm) par réduction du MTT (bromure de 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) en formazane.

3.3.2. Mode opératoire

Ce test a été évalué en utilisant le dosage colorimétrique standard MTT (Bromure de 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium) dans des microplaques à fond plat de 96 puits (**Mosmann, 1983**). A cet effet, les cellules saines 3T3 ont été cultivées dans le milieu Dulbecco modifié. Dans ce milieu, on a ajouté 5 % de sérum de veau fœtal (SVF), de 100 UI / mL de pénicilline et de 100 μ g / mL de streptomycine dans des flacons de 75 cm². L'ensemble est conservé dans un incubateur contenant 5% de CO₂ à 37 °C. Les cellules en croissance exponentielle ont été récoltées, comptées avec un hémocytomètre et diluées avec un milieu particulier. Une culture cellulaire de concentration 5 x 10⁴ cellules / mL a été préparée et introduite (100 μ L / puits) dans des plaques à 96 puits. Après une nuit d'incubation, le milieu a été éliminé et 200 μ L de milieu frais ont été ajoutés avec une concentration différente des extraits (1-30 μ g/mL). Au bout de 48 heures, 200 μ L de MTT de concentration 0,5 mg / mL ont été ajoutés à chaque puit et réincubés davantage pendant 4 heures. Ensuite, 100 μ L de DMSO ont été ajoutés à chaque puits. La réduction du MTT en formazane dans les cellules a été calculée en mesurant l'absorbance à 540 nm à l'aide d'un lecteur de microplaques (Spectra Max plus, Molecular Devices, CA, USA). Le pourcentage de viabilité cellulaire a été calculé en utilisant la formule suivante :

% viabilité cellulaire =
$$(1 - \frac{(D.0 \text{ de l'extrait} - D.0 \text{ du contrôle négative})}{(D.0 \text{ contrôle positive} - D.0 \text{ du control négative})} \times 100$$

D.O : Densité optique

4. Tests qualitatifs des composés isolés

4.1. Test au chlorure ferrique

Ce test est caractéristique des composés phénoliques.

Mode opératoire : Dans un tube à essai, on dissout une quantité de produit dans le méthanol et on ajoute quelques gouttes de chlorure ferrique.

Résultat et interprétation : Il apparait une couleur bleue, due à la formation du complexe $[Fe(OAr)_6]^{3-}$

4.2. Test de Meyer

Mode opératoire : Dans un tube à éssai, on dissout une quantité du produit dans le méthanol et on ajoute ensuite quelques gouttes d'acide sulfamide (NHSO₃H).

Résultat et interpretation : La présence d'alcaloïde se traduit par l'apparition d'un précipité blanc.

4.3. Test de Lasaigne

Ce test est caractéristique des composés soufrés, halogénés et azotés.

Mode opératoire : On introduit dans un tube à essai, un morceau de sodium et on fait fondre à la flamme de bunsen. Après refroidissement du sodium, on ajoute une quantité de produit et l'ensemble est chauffé jusqu'à ce que le fond du tube à essai devient rouge vif. Ensuite, on plonge le tube à essai dans un bain d'eau froide et on filtre la solution lorsque le bain a une température d'environ 70 - 80 °C. Enfin, on prélève 1 mL de la solution obtenue (solution de sel sodique) et y ajoute une goutte de nitroprossiate de sodium.

Résultat et interprétation : La présence du composé soufré se manifeste par l'apparition d'une couleur violette.

4.4. Test de Libermann –Burchard

Ce test est caractéristique des triterpènes et des stérols. Le réactif de Libermann Burchard est composé de 20 mL d'anhydride acétique et 1 ml d'acide sulfurique concentré.

Mode opératoire : Dans un tube à essai, dissoudre une petite quantité de produit dans 50 mL de dichlorométhane. À la solution obtenue, on ajoute quelques gouttes du réactif de Libermann Burchard

Résultat et interprétation : La présence des triterpènes se manifeste par l'apparition d'une couleur rouge violacée et celle des stérols par l'apparition d'une couleur bleu verdâtre.

RÉFÉRENCES

- Abdel-Raouf N.; Al-Enazi N.M.; Al-Homaidan A.A.; Ibraheem I.B.M.; Al-Othman M.R. et Hatamleh A.A. (**2015**). Antibacterial β -amyrin isolated from *Laurencia microcladia*. *Arabian Journal of Chem*istry **8**, 32 37.
- Adeboya M.O.; Edwards R.L.; Lassøe T.; Maitland D.J.; Shields L. et Whalley A.J.S. (1996). Metabolites of the higher fungi. Part 29. Maldoxin, maldoxone, dihydromaldoxin, isodihydromaldoxin and dechlorodihydromaldoxin. A spirocyclohexadienone, a depsidone and three diphenyl ethers: keys in the depsidone biosynthetic pathway from a member of the fungus genus *Xylaria Journal of the Chemical Society, Perkin Transactions* 1, 1419 – 1425.
- Adeosun C.O. et Samuel S.O. (**2012**). The chemical composition of flower lipids of *Cordia* sebestina. Advances in Environmental Biology **6**, 655 657.
- Agence Nationale de Sécurité du Médicament-France (ANSM) (**2015**). Les antibiotiques considérés comme critiques. Rapport d'expertise, 1-16. http://www.plan-antibiotiques.sante.gouv.fr/, consulté le 28/06/2019.
- Aissa I.; Sghair R.M.; Bouaziz M.; Laouini D.; Sayadi S.; Gargouri Y. (**2012**). Synthesis of lipophilic tyrosyl esters derivatives and assessment of their antimicrobial and antileishmania activities. *Lipids in Health and Disease* **11**, 1–8.
- Al-Awadi F.M.; Srikumar T.S.; Anim J.T; Islam K. (2001). Anti-inflammatory effects of *Cordia myxa* fruit on experimentally induced colitis in rat. *Nutrition* 17, 391 396.
- Anjali B.G.; Nirmal S. A. et Patil A. N. (2011). Use of apigenin from *Cordia dichotoma* in the treatment of colitis. *Fitoterapia* 82, 1052 1056.
- Armaleo D. et Sun X.C. (2011). Culberson, insights from the first putative biosynthetic gene cluster for a lichen depside and depsidone. *Mycologia* 103, 741–754.
- Association Française d'Urologie (AFU) (2008). Diagnostic, traitement et suivi des infections communautaires bactériennes de l'appareil urinaire de l'homme et de la femme adultes (cystites aiguës, pyélonéphrites aiguës) et de l'appareil génital de l'homme adulte (prostatites aiguës). *Recommandations du Comité d'Infectiologie de l'AFU* 18, 1 50.
- Aymen B.N.; Besbes M.; Guérineau V.; Touboul D.; Hichem B.J. et M'hamed A.H. (2017). Isolation and structure elucidation of acetylcholinesterase lipophilic lupeol derivatives inhibitors from the latex of the tunisian *Periploca laevigata*. *Arabian Journal of Chemistry* 10, S2767 – S2772.
- Bais W. J. (**1927**). A Case of Pathogenicity of *Bacillus Subtilis*. *Journal of Infectious Diseases* **40**, 313–315.

- Barre-Sinoussi F.; Chermann J.C.; Rey F.; Nugeyre M.T.; Chamaret S.; Gruest J.; Dauguet C.; Axler-Blin C.; Vezinet-Brun F. et Rouzioux C. (1983). Isolation of a T-lymphotropic retrovirus from a patient at risk for Acquired Immune Deficiency Syndrome (AIDS). *Science* 220, 868 – 871.
- Babady-Byla et Werner H. (**1996**). Triterpenes and 1-(ω-hydroxyceratyl)glycerols from *pentaclethra eetveldeana* root bark. *Phytochemistry* **42**, 501 504.
- Begum F.; Nahar S.K. et Rashid M.A. (2014). Secondary metabolites from different extractives of Stereospermum suaveolens. Dhaka University Journal of Pharmaceutical Science 13, 31-36.
- Berova N.; Di Bari L. et Pescitelli G. (2007). Application of electronic circular dichroism in configurational and conformational analysis of organic compounds. *Chemistry Society Reviews* 36, 914–931.
- Brandão L.F.G.; Santos N.P.; Pereira E.C.G.; Da Silva N.H.; Matos M.F.C.; Bogo D. et Honda N.
 K. (2017). Effects of fumarprotocetraric acid, a depsidone from the lichen *Cladonia verticillaris*, on tyrosinase activity. *Orbital: Electronic Journal of Chemistry* 9, 256 260.
- Buckner J.S.; Hagen M.M. et Nelson D. R. (1999). The composition of the cuticular lipids from nymphs and exuviae of the silverleaf whitefly, *Bemisia argentifolii*. *Comparative Biochemistry and Physiology* Part B 124, 201 – 207.
- Burns D.; Reynolds W.F.; Buchanan G.; Reese P.B. et Enriquez Raul G. (**2000**). Assignment of ¹H and ¹³C spectra and investigation of hindered side-chain rotation in lupeol derivatives. *Magnetic Resonance in Chemistry* **38**, 488 493.
- Cáceres-Castillo D.; Mena-Rejón Gonzalo J.; Cedillo-Rivera R. et Quijano L. (**2008**). 21βhydroxy-oleanane-type triterpenes from *Hippocratea excelsa*. *Phytochemistry* **69**, 1057 – 1064.
- Chacón J.; Luebert F.; Hilger H.H.; Ovchinnikova S.; Selvi F.; Cecchi L.; Guilliams C.M.; Hasenstab-Lehman K.; Sutorý K.; Simpson M.G. et Weigend M. (2016). The borage family (Boraginaceae s.str.): A revised infrafamilial classification based on new phylogenetic evidence, with emphasis on the placement of some enigmatic genera. *Taxon* 65, 523 546
- Chaturvedula V.S.P. et Indra P. (**2012**). Isolation and structural characterization of lupane triterpenes from *Polypodium Vulgare*. *Research Journal of Pharmaceutical Sciences* **1**, 23 27.
- Chauhan J.S. et Srivastava S. K. (**1978**). Lupa-20, 29-ene-3-*O*-β-*D*-maltoside from the roots of *Cordia obliqua. Phytochemistry* **17**, 1005 1006.

- Chávez J.P.; Santos I.D.D.; Cruz F.G. et David J.M. (**1996**). Flavonoids and triterpene ester derivatives from *Erythroxylum leal cost*. *Phytochemistry* **41**, 941 943
- Chen S.; Liu Z.; Lui Y., Lu Y.; He L. et She Z. (**2015**). New depsidones and isoindolinones from the mangrove endophytic fungus *Meyerozyma guilliermondii* (HZ-Y₂) isolated from the South China sea. *Beilstein Journal of Organic Chemistry* **11**, 1187 1193.
- Chen T.K.; Ales D.C.; Baenziger N. C. et Wiemer D.F. (**1983**). Ant-repellent triterpenoids from *Cordia alliodora. Journal of Organic Chemistry* **48**, 3525 3531.
- Ching J.; Chua T.; Chin L.; Lau A.; Pang Y.; Jaya J.; Tan C. et Koh H. (**2010**). β-amyrin from *Ardisia elliptica* Thunb. Is more potent than aspirin in inhibiting collagen-induced platelet aggregation. *Indian Journal of Experimental Biology* **48**, 275 279.
- Chottanapund S.; Van Duursen M.B.M.; Zwartsen A.; Timtavorn S.; Navasumrit P.; Kittakoop P.; Sureram S.; Ruchirawat M. et Van den Berg M. (2017). Depsidones inhibit aromatase activity and tumor cell proliferation in a co-culture of human primary breast adipose fibroblasts and T47D breast tumor cells. *Toxicology Report* 4, 165 – 171.
- Chowdhury A.R.; Mandal S.; Mittra B.; Sharma S.; Mukhopadhyay S. et Majumder H.K. (2002). Betulinic acid, a potent inhibitor of *eukaryotic topoisomerase* I: identification of the inhibitory step, the major functional group responsible and development of more potent derivatives. *Medical Science Monitor* 8, 254 – 265.
- Chowdhury N.; Al Hasan A.; Tareq F. S.; Ahsan M. et Zafrul Azam A.T.M. (**2013**). 4 Hydroxy*trans*-cinnamate derivatives and triterpene from *Barleria cristata*. *Dhaka University Journal of Pharmaceutical Sciences* **12**, 143 – 145.
- Collège des Enseignants en Dermatologie de France (CEDEF) (2008). Infections cutanéomuqueuses bactériennes. *Annales de Dermatologie et de Vénéréologie* 87, 35 – 41.
- Dabole B.; Zeukang R.; Atchade A.A.; Tabopda T.; Koubala B.B. et Mbafor J.T. (**2016**). Cinnamoyl derivatives from *Cordia Platythyrsa* and chemiotaxonomical value of the *Cordia* genus. *Science Journal of Chemistry* **4**, 36 – 40.
- De Carvalho P.; Rodrigues R.F.; Sawaya A.C; Marques M.O. et Shimizu M.T. (**2004**). Chemical composition and antimicrobial activity of the essential oil of *Cordia verbenacea* D.C. *Journal of Ethnopharmacology* **95**, 297 301.
- De Sa M.S.; Costa J.F.; Krettli A.U.; Zalis M.G.; Maia G.L.; Sette I.M., Camara Cde A.; Filho J.M.; Giulietti-Harley A.M.; Dos Santos R.R. et Soares M.B. (2009). Antimalarial activity of betulinic acid and derivatives *in vitro* against *Plasmodium falciparum* and *in vivo* in *P. berghei*-infected mice. *Parasitology Research* 105, 275 279.

- Deschamps J.R. (2010). X-ray crystallography of chemical compounds. *Life Sciences* 86, 585 589.
- Dettrakul S.; Surerum S.; Rajviroongit S. et Kittakoop P. (**2009**). Biomimetic transformation and biological activities of globiferin, a terpenoid benzoquinone from *Cordia globifera*. *Journal of Natural Products* **72**, 861 865.
- Djemgou P.C.; Gatsing D.; Tchuendem M.; Ngadjui B.T.; Tane P.; Ahmed, A.A.; Gamal-Eldeen A.M.; Adoga G.I.; Hirata T. et Mabry T.J. (2006). Antitumor and immunostimulatory activity of two chromones and other constituents from *Cassia petersiana*. *Natural Product Communications* 1, 961 968
- Djeneba B.F. (**2014**). Bases moléculaires de la résistance des VIH-1 de sous types non B aux nouveaux antirétroviraux. Thèse de Doctorat en complexité du vivant, Université Pierre et Marie Curie, Paris, France, 12 30.
- Doğru-Koca A.; Özcan T.S. et Yıldırımlı I. (2016). Chemotaxonomic perspectives of the *Paracaryum (Cynoglosseae, Boraginaceae)* taxa based on fruit fatty acid composition. *Phytochemistry* **131**, 100 106.
- Dong-Lin Z.; Chang-Lun S.; Chao-Yin W.; Mei W.; Lu-Jia Y. et Chang-Yun W. (2016). Naphthalenones and depsidones from a sponge-derived strain of the fungus *Corynespora* cassiicola. *Molecules* 21, 1 – 6.
- Dresler S.; Szymczak G. et Wójcik M. (**2017**). Comparison of some secondary metabolite content in the seventeen species of the Boraginaceae family. *Pharmaceutical Biology* **55**, 691 695.
- Dubertret L. (2000). Peau et environnement. Comptes Rendus de l'Académie des Sciences de Paris. *Sciences de la vie* 323, 629 632.
- Dye C. (2014). After 2015: infectious diseases in a new era of health and development. *Philosophical Transactions of the Royal Society* **B** 369, 1 8.
- Dzubak P.; Hajduch M.; Vydra D.; Hustova A.; Kvasnica M.; Biedermann D.; Markova L.; Urban M. et Sarek J. (**2006**). Pharmacological activities of natural triterpenoids and their therapeutic implications. *Natural Product Reports* **23**, 394 411.
- Ehiagbonare J.E.; Onyibe H.I. et Ehiagbonare P.O. (**2008**). Conservation studies on four medicinal taxa of Southern Nigeria. *Scientific Research and Essay* **3**, 040 045.
- El-Gazzar A.; El-Ghamery A.; El-Saied A.; K hattab A.H. et El-Kady A. (**2015**). Computer generated keys to the flora of Egypt. 6. The Boraginaceae. *Annals of Agricultural Science* **60**, 67 85.

- El-Sayed N.H; Aboutabl S.A; Moharram F.A.; Abdel-Allim M.A et Mabry T.J. (**1998**). Phenolics and flavonoids of *Cordia macleodii*. *Revista Latinoamericana de Quimica* **26**, 30 35.
- Elix J. A.; Jenie U. A.; Arvidsson L.; JØrgensenc P. M. et James P. W. (**1986**). New Depsidones from the Lichen Genus *Erioderma*. *Australian*. *Journal of. Chemistry* **39**, 719 22.
- Faizi S.; Khan R.A.; Mughal N.R.; Malik M.S.; Kaneez-e-Sayyeda S. et Ahmad A. (2008). Antimicrobial activity of various parts of *Polyalthia longifolia* var. *pendula*: isolation of active principles from the leaves and the berries. *Phytotherapy Research* 22, 907 – 912.
- Focho D. A.; Muh C.N.; Mendi G.A.; Fongod A.N. et Fonge B.A. (**2009**). Ethnobotanical survey of trees in Fundong, North-west Region, Cameroon. *Journal of Ethnobiology and Ethnomedicine* **5**, 1 12.
- Fouokeng Y.; Feumo Feusso H.M.; Mbosso Teinkela J.E.; Siwe-Noundou; Wintjens R.; Isaacs M.; Hoppe H.C.; Krause R.W.M.; Azebaze A.G.B. et Vardamides J.C. (2019). In vitro antimalarial, antitrypanosomal and HIV-1 integrase inhibitory activities of two Cameroonian medicinal plants: Antrocaryon klaineanum (Anacardiaceae) and Diospyros conocarpa (Ebenaceae). South African Journal of Botany 112, 510–517.
- Fournier S.; Treilhou M. P.; Pialoux G.; Fleury J.et Dupont B. (**1997**). Infection à *Pseudomonas* aeruginosa chez 25 patients infectés par le VIH. Médecine et Maladies Infectieuses **27**, 654-657.
- Fujioka T. et Kashiwanda Y. (**1994**). Anti-AIDS agents: betulinic acid and platonic acid as anti-HIV principles from *Syzigum claviflorum*, and the anti-HIV activity of structurally related triterpenoids. *Journal of Natural Products* **57**, 243 – 247.
- Garcia C.; Chincha O.; Leon M, Iglesias D.; Barletta F.; Mercado E. et Ochoa T. (2010). High Frequency of Diarrheagenic *Escherichia coli* in Human Immunodeficiency Virus (HIV) Patients with and without Diarrhea in Lima, Perú. *The American Journal of Tropical Medicine and Hygiene* 82, 1118 – 1120.
- Gauthier C. (**2006**). Glycosidation de triterpènes pentacycliques de type lupane et évaluation *in vitro* de leur potentiel anticancéreux. Doctorat en Ressources Renouvelables, Université du Québec, Canada, 7 34.
- Goulet O. (2009). La flore intestinale : un monde vivant à préserver. *Journal de Pédiatrie et de Puériculture* 22, 102 106.
- Grandfils N.; Sermet C. et Auvray L. (**2004**). La prescription d'antibiotiques chez les généralistes: évolution 1992 2002. *Bulletin d'Information en Economie de la Santé* **87**, 1 8.

- Grobler J.A.; Stillmock K.; Hu B.; Witmer M.; Felock P.; Espeseth A.S.; Wolfe A.; Egbertson M.; Bourgeois M.; Melamed J.; Wai J.S.; Young S.; Vacca J. et Hazuda D.J. (2002). Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Proceedings of the National Academy of Sciences of the United States of America, 6661 – 6666.
- Grollier G.; Le Moal G. et Robert R. (2004). Infections dues aux bactéries anaérobies de la flore endogène (*Clostridium* difficile et *Actinomyces* exclus). *EMC-Maladies Infectieuses* 1, 262 – 280.
- Guichet E. (**2016**). Etude des résistances du VIH-1 au traitement antirétroviral et amélioration du suivi virologique des patients vivant avec le VIH dans les pays du Sud. Doctorat en Biologie Santé, Université de Montpellier, France, 31 262.
- Guilot J.F. (**1989**). Apparition et évolution de la résistance bactérienne aux antibiotiques. *Annales de Recherches Vétérinaires* **20**, 3 16.
- Hamano K.; Kinoshita-Okami M., Hemmi A.; Sato A.; Hisamoto M.; Matsuda K.; Yoda K.; Haruyama H.; Hosoya T. et Tanzawa K. (1992). Folipastatin, a new depsidone compound from *aspergillus unguis* as an inhibitor of phospholipase A2, taxonomy, fermentation, isolation, structure determination and biological properties. *The Journal of Antibiotics* 45, 1195 – 1201.
- Hamzah A.S. et Lajis N.H. (**1998**). Chemical constituents of *Hedyotis herbacea*. Asean Review of Biodiversity and Environmental Conservation (ARBEC) **2**, 1 6.
- Han Y.; Wind-Rotolo W.; Yang H.C.; Siliciano J.D. et Siliciano R.F. (2007). Experimental approaches to the study of HIV-1 latency. *Nature Reviews Microbiology* 5, 95 106.
- Hapuarachchi K.K; Wen T.C, Jeewon R.; Wu X.L et Kang J.C. (**2016**). *Ganoderma lucidum* are the beneficial medical properties substantiated. *Mycosphere* **7**, 687 715.
- Harkati B. (**2011**). Valorisation et identification structurale des principes actifs de la plante de la famille Asteraceae: *Scorzonera undulata*. Doctorat en phytochimie, Université de Mentouri-constantine, Algérie, 6 8.
- Hasdenteufel F. (2011). Étude des relations structure-activité en allergie médicamenteuse. Thèse de Doctorat en Sciences de la Vie et de la Santé, Université Henri Poincaré, Nancy, France, 1-134.
- Heng-Zhi H.Z. et Chuan-Jin W. (2018). Isolation, characterization and analgesic activity of natural allantoin from *Portulaca oleracea* seed. *Modern Chemistry and Application* 6, 1 3.

- Hidron A. I; Kempker R.; Moanna A. et Rimland D. (**2010**). Methicillin resistant *Staphylococcus aureus* in HIV-infected patients. *Infection and Drug Resistance* **3**, 73 86.
- Hossain M.A. et Ismail Z. (**2013**). Isolation and characterization of triterpenes from the leaves of *Orthosiphon stamineus*. *Arabian Journal of Chemistry* **6**, 295 298.
- Huneck S. et Lamb I.M. (**1975**). 1-Chloropannarin, a new depsidone from *Argopsis friesiana*: notes on the structure of pannarin and on the chemistry of the lichen genus *Argopsis*. *Phytochemistry* **14**, 1625 1628.
- Ibrahim S.R.M.; Mohamed G.A.; Moharram A.M. et Youssef D.T.A. (2015). Aegyptolidines A and B: new pyrrolidine alkaloids from the fungus *Aspergillus aegyptiacus*. *Phytochemistry Letters* 12, 90 93.
- Ibrahim S.R.M. et Mohamed G.A. (**2015**). Naphthylisoquinoline alkaloids potential drug leads. *Fitoterapia* **106**, 194 225.
- Ibrahim S.R.M.; Mohamed G.A.; Al Haidari R.A.; El-Kholy A.A.; Zayed M.F. et Khayat M.T. (2018). Biologically active fungal depsidones: Chemistry, biosynthesis, structural characterization and bioactivities. *Fitoterapia* 129, 317 – 365.
- Jiofack T. (**2010**). *Cordia millenii* (Prota). Fiche de Protabase (Ressources végétales de l'Afrique tropicale). 2010. http://uses.plantnet-project.org/en/Cordia_millenii_(prota), consulté le 25/05/ 2019.
- Kakudidi E.K (**2004**). Cultural and social uses of plants from and around Kibale national park, western Uganda. *African Journal of Ecology* **42**, 114 118.
- Katlama C.; Tubiana R. et Murphy R. (2005). Les nouvelles molécules anti-VIH : la place du raltégravir. *Antibiotiques* 11, 11 17
- Keele B.F.; Van Heuverswyn F.; Li Y.; Bailes E.; Takehisa J.; Santiago M.L.; BibolletRuche F.; Chen Y.; Wain L.V. et Liegeois F. (2006). Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. *Science* 313, 523 – 526
- Keiser O.; MacPhail P.; Boulle A.; Wood R.; Schechter M. et Dabis F. (2009). Accuracy of WHO CD4 cell count criteria for virological failure of antiretroviral therapy. *Tropical Medicine* and International Health 14, 1220 – 1225.
- Khatun M.; Billah M. et Quader M.A. (**2012**). Sterols and sterol glucoside from *Phyllanthus* Species. *Dhaka University Journal of Science* **60**, 5 10.
- Kuroyanagi M.; Seki T.; Hayashi T.; Nagashima Y.; Kawahara N.; Sekita S. et Satake M. (**2001**). Anti-androgenic triterpenoids from the brazilian medicinal plant, *Cordia multispicata*. *Chemical and Pharmaceutical Bulletin* **49**, 954 – 957.

- Lancaster et Fields (**1996**). Antibiotic and cytotoxic susceptibility assays using resazurin and poising agents. US Patent **5**, 501 959.
- Legaz E.M.; De Armas R. et Vicente C. (2011). Bioproduction of depsidones for pharmaceutical purposes. Drug development - A case study based insight into modern strategies. C. Rundfeld (Ed.), Rijeka, Croatia, 487 – 508.
- Lhuillier S. (2016). Origine du VIH-Origine de l'épidémie. Transversal 81, 32 31.
- Li M.; Hirata Y.; Xu G. et Wu H. (**1992**). Chemical constituents of eyeshap *Dendrobium* (*Dendrobium fimbriatum*). *Zhoncaoyao* **23**, 227 228.
- Mahato S.B. et Kundu A.P. (**1994**). ¹³C NMR spectra of pentacyclic triterpenoids-a compilation and some salient features. *Phytochemistry* **37**, 1517 1575.
- Matos T.S.; Silva A.K.; Quintela A.L.; Pinto F.C.; Canuto K.M.; Braz-Filho R.; Fonseca M.J.; Luna-Costa A.M.; Paz I.A.; Nascimento N.R.; Silveira E.R.; Pessoa O.D. (2017). Neuroinhibitory meroterpenoid compound from *Cordia oncocalyx. Fitoterapia* 123, 65–72.
- Mbouangouere R.N.; Tane P.; Ngamga D.; Djemgou P.; Choudhary M.I. et Ngadjui B.T. (2007) Piptaderol from *Piptadenia africana*. *African Journal of Traditional, Complementary and Alternative Medicines* **4**, 294 – 298.
- Menezesa J.E.S.; Lemos T.L.G.; Silveira E.R.; Braz-Filho R. et Pessoa O.D.L. (2001).Trichotomol, a new cadinenediol from *Cordia trichotoma*. Journal of the Brazilian Chemical Society 12, 787 – 790.
- Moir M.; Thomson R.H.; Hausen B.M. et Simatupa M.H. (**1972**). Cordiachromes: a new group of terpenoid quinones from *Cordia* spp. *Journal of Chemistry Society* **166**, 363 364.
- Molnár K. et Farkas E. (**2010**). Current results on biological activities of lichen secondary metabolites: a review. *Zeitschrift Für Naturforschung* C **65**,157 173.
- Mosmann T. (**1983**). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. *Journal of Immunology Methods* **65**, 55 63
- Nakamura N.; Kojima S.; Lim y.; Meselhy R.; Hattori M.; Gupta M. et Correa M. (**1997**). Dammarane-type triterpenes from *Cordia spinescens*. *Phytochemistry* **42**, 1139 1141.
- Nariya P.B.; Shukla V.J.; Acharya R. et Nariya M.B. (2017). Isolation and simultaneous determination of three biologically active flavonoids from some indigenous *Cordia* species by thin-layer chromatography with UV absorption densitometry method. *Journal* of Planar Chromatography 30, 264 – 270.

- Neamati N.; Hong H.; Mazumder A.; Wang S.; Sunder S.; Nicklaus M.C.; Milne G.W.A.; Proksa B. et Pommier Y. (1997). Depsines and depsidones as inhibitors of HIV-1 integrase: discovery of inhibitors through 3D database searching. *Journal of Medicinal Chemistry* 40, 942 951.
- Ngoupayo J.; Tabopda K.T.; Shaiq M. A. et Tsamo E. (2008). α-Glucosidase inhibitors from *Garcinia brevipedicellata* (Clusiaceae). *Chemistry Pharmacology Bulletin* 56, 1466 – 1469.
- Nicklaus M.C.; Neamati N.; Hong, H.; Mazumder A.; Sunder S.; Chen J.; Milne G.W.A. et Pommier Y. (**1997**). HIV-integrase pharmacophore: discovery of inhibitors through three-dimensional database searching. *Journal of Medicinal Chemistry* **40**, 920 929.
- Niu S.; Liu D.; Hu X.; Proksch P.; Shao Z. et Lin W. (2014). Spiromastixones A-O, antibacterial chlorodepsidones from a deep-sea-derived Spiromastix sp. Fungus. *Journal of Natural Products* 77, 1021 – 1030.
- Nnadozie I. J.; Omolola O.C; Olayinka O. A. et Okpuzor J. (**2017**). Effet of *Cordia millenii* extract on reproduction hormone in cisplatin induced infertility in female albino rats. *Journal Advances in Biomedical Studies* **2**, 014 019.
- Nogueira T.B.; Nogueira R.B.; Silva D.A.; Taveres J.F.; Oliveira L.E. et Pereira O.F. (**2013**). First chemical constituents from *Cordia exaltata* Lam and antimicrobial activity of two neolignands. *Molecules* **18**, 11086 11099.
- Okeye N.N.; Ajaghaku L.D.; Okeke H.H.; Ilodigwe E.E.; Nworu C.S. et Okeye F.B.C. (**2014**). Beta-amyrin and alpha-amyrin acetate isolated from the stem bark of *Alstonia boonei* display profound anti-inflammatory activity. *Pharmaceutical Biology* **52**, 1478 – 1486.
- Okoye F.B.C; Lu S.; Nworu C.S.; Esimone C.O.; Proksch P.; Chadli A. et Debbab A. (**2013**). Depsidone and diaryl ether derivatives from the fungus *Corynespora cassiicola*, an endophyte of *Gongronema latifolium*. *Tetrahedron Letters* **54**, 4210 4214.
- Okusa P.N.; Beuerle T.; Stévigny C. et Duez P. (2012). Absence of pyrrolizidine alkaloids in Cordia gilletii De wild (Boraginaceae). Biochemistry Systematics and Ecology 41, 1-2.
- Okusa P.N.; Penge O.; Duez P. et Devleeschouwer M. (**2007**). Direct and indirect antimicrobial effects and antioxidant activity of *Cordia gilletii* De Wild (Boraginaceae). *Journal of Ethnopharmacology* **112**, 476 481.
- Ouyang J.; Mao Z.; Guo H.; Xie Y.; Cui Z., Sun J., Wu H., Wen X., Wang J. et Shan T. (**2018**). Mollicellins O-R, four new depsidones isolated from the Endophytic Fungus *Chaetomium* sp. Eef-10. *Molecules* **23**, 3218, 1 – 11.
- Oza M.J. et Kulkarni Y.A. (2017). Traditional uses, phytochemistry and pharmacology of the medicinal species of the genus *Cordia* (Boraginaceae). *Journal of Pharmacy and Pharmacology* 69, 755 789.

- Pandey R.; Kaur R.; Malasoni R. et Gupta M.M. (2008). Lupeol ester from *Clerodendrum phlomidis* L. *Indian Journal of Chemistry* 4B, 470 472.
- Parrot D.; Jan S.; Baert N.; Guyot S. et Tomasi S. (2013). Comparative metabolite profiling and chemical study of Ramalina siliquosa complex using LC-ESI-MS/MS approach. *Phytochemistry* 89, 114 – 124.
- Pastorino C. et Gamba Z. (2000). Test of a simple and flexible S₈ model molecule in α -S₈ crystals. *Chemical Physics Letters* **319**, 20 26.
- Pengsuparp T.; Cai L.; Fong H.H.S.; Kinghorn A.D.; Pezzuto J.M.; Wani M.C. et Wall M.E. (1994). Pentacyclic triterpenes derived from *Maprounea africana* are potent inhibitors of HIV-1 reverse transcriptase. *Journal of Natural Products* 57, 415 – 418.
- Pettit R.K.; Weber C.A.; Kea M.J.; Hoffmann H.; Pettit G.R.; Tan R.; Franks K.S. et Horton M.L. (2005). Microplate alamar blue assay for *Staphylococcus epidermidis* biofilm susceptibility testing. *Antimicrobial Agents Chemotherapy* 49, 2612 – 2617.
- Phainuphong P.; Rukachaisirikul V.; Phongpaichit S.; Sakayaroj J.; Kanjanasirirat P.; Borwornpinyo S.; Akrimajirachoote N.; Yimnual C. et Muanprasat C. (2018). Depsides and depsidones from the soil-derived fungus Aspergillus unguis PSU-RSPG204. Tetrahedron 74, 5691 – 5699.
- Pino JA.; Avilio B.; Armando U. et Rolando M. (**2002**). Fruit volatiles from *Cordia nitida* Vahl. *Journal of Essential Oil Research* **14**, 118 – 119.
- Pommier Y.; Johnson AA. et Marchand C. (2005). Integrase inhibitors to treat HIV/AIDS. *Nature Review Drug Discovery* 4, 236 – 48.
- Po-Wei T.; De castro-Cruz K.A.; Chien-Chang S. et Ragasa C.Y. (**2012**). Chemical constituents of *Broussonetia luzonicus*. *Pharmacognosy Journal* **4**, 1–4.
- Ragasa C.Y; Galia R.F.; Mitzell A.; Tan V. et Shen C.C. (2014). Triterpenes and sterols from Samanea saman. Research Journal of Pharmaceutical Biological and Chemical Sciences 5, 1501 – 1507.
- Rao P.S.; Sarma K.G. et Seshadri T.R. (**1966**). The ultraviolet and infrared spectra of some lichen depsides and depsidones. *Indian Academic Sciences* **66**, 1 14.
- Retief E. (2008). The genus *Cordia* L. (Boraginaceae: Cordioideae) in Southern Africa. *South African Journal of Botany* 72, 389.
- Reznichenko S.A, Markov V.V. et Sokolova L.V. (**2007**). Mechanism of the stabilisation of polymeric sulfur. *Kauchuk i Rezino* **4**, 25 29.
- Ridhay A.; Noor A.; Soekamto N.H.; Harlim T. and Altena I.V. (2012). A stigmasterol glycoside from the root wood of *Melochia umbellata* (Houtt) Stapf var. degrabrata K. *Indonesia Journal of Chemistry* 12, 100 – 103.
- Rogers R.W. (1989). Chemical variation and the species concept in lichenized *ascomycetes*. *Botanical Journal of the Linnean Society* 101, 229 239.

- Sarkar S.D.; Nahar L. et Kumarasamy Y. (2007). Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the *in vitro* antibacterial screening of phytochemicals. *Methods* 42, 321 – 324.
- Savarino A. (**2006**). A historical sketch of the discovery and development of HIV-1 integrase inhibitors. *Expert Opin Investig Drug* **12**, 1507 1522.
- Schümann J. et Hertweck C. (2006). Advances in cloning, functional analysis and heterologous expression of fungal polyketide synthase genes. *Journal of Biotechnology* 124, 690–703.
- Shahlaei M.; Ghanadian S.M.; Ayatollahi A.M.; Mesaik M.A.; Abdalla O.M.; Afsharypour S. et Rabbani M. (2013). Molecular modeling, structure activity relationship and immunomodulatory properties of some lupeol derivatives. *Medicinal Chemistry Research* 22, 1795 – 1803.
- Shai L.J.; McGaw, L.J.; Aderogba M.A.; Mdee L.K. et Eloff J.N. (2008). Four pentacyclic triterpenoids with antifungal and antibacterial activity from *Curtisia dentata* (Burm.f) C.A. Sm. leaves. *Journal of Ethnopharmacology* 119, 238 – 244.
- Sharma R.A.; Singh D. et Chandrawa P. (2009). Ethnomedicinal, pharmacological properties and Chemistry of some medicinal plants of Boraginaceae in India. *Journal of Medicinal Plants Research* 3, 1153 – 1157.
- Siddiqui B.S.; Perwaiz S. et Begum S. (2006). Studies on the chemical constituents of the fruits of *Cordia latifolia*. *Natural Product Research* 20, 131 137.
- Singh B.; Siddiq T.; Jain S.K.; Lawaniya Y. et Kichu S. (2013). Anti-inflammatory and immunomodulatory flavones from Actinocarya tibetica Benth. Natural Product Research 27, 2227 – 2230.
- Siwe-Noundou X.; Ndinteh D.T.; Olivier D.K.; Mnkandhla D.; Isaacs M.; Muganza F.M.; Mbafor J.T.; Van Vuuren S.F.; Patnala S.; Hoppe H. et Krause R.W.M (2018). Biological activity of plant extracts and isolated compounds from *Alchornea laxiflora*: Anti-HIV, antibacterial and cytotoxicity evaluation. *South African Journal of Botany* 122, 498 – 503.
- Siwe-Noundou X.; Musyoka T.M.; Vuyani M.; Ndinteh D.T.; Mnkandhla D.; Hoppe H.; Özlem T.B. et Krause R.W.M. (2019). Anti-HIV-1 integrase potency of methylgallate from *Alchornea cordifolia* using *in vitro* and *in silico* approaches. *Scientific reports* 9, 1–9.
- Sixou M.; Diouf A. et Alvares D. (2007). Biofilm buccal et pathologies buccodentaires. *Antibiotiques* 9, 181–188.
- Somepalli V.; Merallapudi S.; Alluri V.; Golakoti T. et Gottumukkala V. (2005). Antioxidant and antimicrobial activity evaluation of polyhydroxycinnamic acid ester derivatives. *Indian Journal of Chemistry* 45B, 252 – 257.

- Souza da Silva S.; Lopes M.; Maria de Fátima A.; Leitão da Cunha E.; Barbosa-Filho J. et Sobra da Silva M. (2004). Flavonoids from *Cordia globosa*. *Biochemical Systematics and Ecology* 32, 359 – 361.
- Stojanović I.Ž, Najman S.; Jovanović O.; Petrović G.; Najdanović J.; Vasiljević P. et Šmelcerović A. (2014). Effects of depsidones from *Hypogymnia physodes* on Hela cell viability and growth. *Folia Biologica* 60, 89 – 94.
- Sultana N.; Armstrong J.A. et Waterman P.G. (**1999**). Benzopyran derivatives from the arial part of *Eriostemon rhomboideus*. *Phytochemistry* **52**, 895 900.
- Suttiarporn P.; Chumpolsri W.; Mahatheeranont S.; Luangkamin S.; Teepsawang S. et Leardkamolkarn V. (2015). Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black non-glutinous rice. *Nutrients* 7, 1672 – 1687.
- Sureram S.; Kesornpun C.; Mahidol C.; Ruchirawat S. et Kittakoop P. (2013). Directed biosynthesis through biohalogenation of secondary metabolites of the marine-derived fungus Aspergillus unguis. Royal Society of Chemistry Advances 3, 1781 – 1788.
- Talontsi F.M.; Douanla-Meli C. et Laatsch H. (2013). Depsidones from an endophytic fungus Chaetomium sp. associated with Zanthoxylum leprieurii. Zeitschrift Für Naturforschung B 68, 1259 – 1264.
- Tattevin P. (**2010**). Les anirétroviraux en 2010. $11^{ième}$ Journées nationales d'infectiologie, Université de Rennes, France, 1 33.
- Taton A. (1971). Spermatophytes Boraginaceae: flore du Congo, du Rwanda et du Burundi. Bruxelles, Belgique, 20 – 70.
- Udeozo I.P.; Ejikeme C.M., Eboatu A.N., Arinze R.U. and Kelle H.I. (2016). An assay of characteristics, chemical constituents and functional group analysis of *Cordia millenii*: a tropical timber. *International Journal of Life Sciences Research* **4**, 29 36.
- Varughese T.; Riosa N.; Higginbotham S.; Elisabeth Arnold A.; Coley P.D.; Kursar T.A.; Gerwick W.H. et Cubilla Rios L. (2012). Antifungal depsidone metabolites from *Cordyceps dipterigena* and endophytic fungus antagonistic to the phytopathogen *Gibberella fujikuroi. Tetrahedron Letter* 53, 1624 – 1626.
- Verdier I.; Lina G.; Gillet Y. et Vandenesch F. (2015). Staphylococcus. Cours de bactériologie médicale. Faculte de medecine Laennec de Lyon, France. http://www.microbes edu.org/etudiant/staph.html, consulte le 20/11/2019.
- Vila J.; Mollinedo P. et Sterner O. (**2011**). Spectroscopic studies of lichen depsides and depsidones. *Revista Boliviana de Química* **28**, 28 34.
- Watt G. (**1972**). A dictionary of economic products of India, vol. II, Cosmo Publications, Delhi, India, 565 566.
- Wiedenfeld H. et Edgard J. (2011). Toxicity of pyrrolizidine alkaloids to humans and ruminants. *Phytochemistry Reviews* 10, 137 151.

- Xu B.; Sung C. et Han B. (**2011**). Crystal structure characterization of natural allantoin from edible lichen *Umbilicaria esculenta*. *Crystals* **1**, 128 135.
- Xu H.X.; Zeng F.Q.; Wan M. et Sim K.Y. (1996). Anti-HIV triterpene acids from *Geum japonicum*. *Journal of Natural Products* 59, 643 645.
- Yoshimura I.; Kurokawa T.; Kinoshita Y.; Yamamoto Y. et Miyawaki H. (1994). Lichen substances in cultured lichens. *Journal of the Hattori Botanical Laboratory* 76, 249-261.
- Zhang Y.; Mu J.; Feng Y.; Wen L. et Han J. (2014). Four chlorinated depsidones from a seaweedderived strain of Aspergillus unguis and their new biological activities. Natural Product Research 28, 503 – 506.

Sites webographiques

- Avettand-Fenoel V.; Charpentier C. et Visseaux B. (**2017**). Virus de l'immunodéficience humaine (VIH). https://www.sfm-microbiologie.org/wp content/uploads/2019/02/VIRUS_VIH.pdf, Consulté le 27/06/2019.
- Bush L.M. et Perez Maria T. (2018). Infections à *pseudomonas* et infections similaires. https://www.msdmanuals.com/fr/, consulté le 19/11/2019.
- Cameroon Population Based HIV Impact Assessment (CAMPHIA) (**2018**). Summary sheet: primilary fundings. https//phia.icap.columbia.edu/.../3471CAMPHIA Cameroon-SS_A4_v13_requests_7.25.18.pdf, consulté le 02/05/2019.
- Lutringer D. (**2010**). Infection à VIH et SIDA: épidémie et histoire naturelle. Cours de Master immunologie. Service d'Immunologie Clinique et Allergologie Lyon Sud, France, 1 85. http://allergo.lyon.inserm.fr/M1_2009-2010/Vanhems_04-03-2010.pdf, consulté le 03/07/2019.
- Ministère de l'Agriculture des Pêcheries et de l'Alimentation, QUEBEC (MAPAQ) (2016). Les maladies infectueuses : salmonellose. Guide du consommateur et de l'épicerie à la maison, 1–11. http://www.mapaq.gouv.qc. ca/fr/Publications/MAPAQ_guide_consommateur.pdf., consulté le 19/11/2019.
- Organisation Mondiale de la Sante (OMS) (2001). WHO model prescribing information-drugs used inbacterial infections. Genève, Suisse, 1–165. http://www.who.int/iris/handle/10665/42372.pdf, consulté le 02/05/2019.
- Organisation Mondiale de la Santé (OMS) (**2016**). Directives : prise en charge d'une infection bactérienne potentiellement grave chez le jeune nourrisson. Genève, suisse, 1 44. http://www.who.int/maternal_child_adolescent/fr/, consulté le 24/06/2019.
- Organisation Mondiale de la Santé (OMS) (**2017**). La lutte contre la pharmacorésistance du VIH : tendances, lignes directrices et action mondiale. http://www.who.int/hivWHO/HIV2007.21-fre.pdf, consulté le 12/12/2019.

- Organisation Mondiale de la Santé (OMS) (**2018**). De nouvelles données révèlent l'existence de niveaux élevés de résistance aux antibiotiques dans le monde. https://www.who.int/mediacentre/news/releases/2018/antibiotic-resistance-found/fr/, consulté le 24/06/2019.
- Safonis-aventis (**2018a**). Les maladies d'origine bactérienne. https://www.antibio responsable.fr/maladies/maladies, consulté le 28/06/2019.
- Safonis-aventis (2018b). Les infections des voies aériennes. https://www.antibioresponsable.fr/maladies/orl, consulté le 28/06/2019.
- Safonis-aventis (**2018c**). Les infections de l'appareil génital et urinaire.https://www.antibioresponsable.fr/maladies/urologie, consulté le 28/06/2019.
 - United Nations Acquired Immune Deficiency Syndrome (UNAIDS) (**1994**). HIV-related opportunistic diseases: UNAIDS technical update. http://data.unaids.org/publications/irc-pub05/opportu_en.pdf, consulté le 02 /05/2019).

Rostanie Dongmo Zeukang, Xavier Siwe-Noundou, Maurice Tagatsing Fotsing, Turibio Tabopda Kuiate, Joseph Tanyi Mbafor, Rui W. M. Krause, Muhammad Iqbal Choudhary and Alex de Théodore Atchadé (**2019**). Cordidepsine is a potential new anti-HIV depsidone from *Cordia millenii*, Baker. *Molecules* **24**, 1 - 14.