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Abstract

Throughout this thesis, we study the dynamics of rogue waves in optical fibers, Bose-

Eistein condensates and Plasmas. Since the existence of such waves are proved in these

fields, we show that the intrinsic parameters related to these fields namely the nonlinearity

and the dispersion, can modify the profiles of these waves during their dynamics. Since the

construction of higher-order rogue wave solutions is a great challenge nowadays, we were

devoted to construct higher-order rogue wave solutions to the above mentioned fields. We

have also shown that rogue like-waves can interact elastically with soliton like-waves in

optical fiber. We have also shown the existence of rogue waves in ferrites and barotropic

relaxing media. The mathematical tools that we have used throughout this thesis are the

generalized Darboux transformation and the homoclinic test approach.

Keywords: Rogue waves; Soliton like-waves; Darboux transformation; Homoclinic

approach; Barothropic relaxing media.
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Résumé

Tout au long de ce travail, nous étudions la dynamique des ondes célérates dans les

milieux physiques tels que la fibre optique, les condensats de Bose-Einstein et les plasmas.

La présence de ce type d’onde étant déjà démontrée dans ces milieux, nous démontrons que

certains paramètres intrinsèques à ces systèmes tels que la nonlinearité et la dispersion

peuvent modifier le profile de ces ondes pendant leur dynamique. La construction des

solutions type onde célérate aux ordres supérieurs étant un grand challenge de nos jours,

nous nous sommes aussi focalisés sur la construction des solutions type onde célérate

jusqu’aux ordres supérieurs dans les systèmes mentionnés ci dessus. Nous avons montré

que les ondes célérates peuvent interagir avec les ondes type soliton de façon élastique.

Nous avons aussi tout au long de cette thèse montré l’existence des ondes type célérate dans

les ferrites et les milieux barotropiques. les méthodes mathématiques utilisées dans nos

travaux sont la transformation de Darboux généralisée et la méthode dite homoclinique.

Mots clés: Onde célérate ; Onde type soliton; Transformation de Darboux ; Méthode

homoclinique; Système barothropique.

Thesis dissertation Year 2020



General introduction

Rogue waves are stands for open water phenomenon, in which winds, currents, non-

linear phenomena such as solitons, and other circumstances cause a wave to briefly form

that is far larger than the "average" large occurring wave of that time and place. The

basic underlying physics that makes phenomena such as rogue waves possible is that

different waves can travel at different speeds, and so they can "pile up" in certain circum-

stances. However other situations can also give rise to rogue waves, particularly situations

where non-linear effects or instability effects can cause energy to move between waves and

be concentrated in one or very few extremely large waves before returning to "normal"

conditions.

A rogue wave is a natural ocean phenomenon that is not caused by land movement,

only lasts briefly, occurs in a limited location, and most often happens far out at sea.

Rogue waves are considered rare but potentially very dangerous, since they can involve

the spontaneous formation of massive waves far beyond the usual expectations of ship

designers, and can overwhelm the usual capabilities of ocean-going vessels which are not

designed for such encounters. Rogue waves are therefore distinct from tsunamis. Tsunamis

are caused by massive displacement of water, often resulting from sudden movement of the

ocean floor, after which they propagate at high speed over a wide area. They are nearly

unnoticeable in deep water and only become dangerous as they approach the shoreline and

the ocean floor becomes shallower; therefore tsunamis do not present a threat to shipping

at sea (the only ships lost in the 2004 Asian tsunami were in port). They are also distinct

from mega-tsunamis, which are single massive waves caused by sudden impact, such as

meteor impact or landslides within enclosed or limited bodies of water. In 1826, French

scientist and naval officer Captain Jules Dumont d’Urville reported waves as high as 33

meters (108.3 ft) in the Indian Ocean with three colleagues as witnesses, yet he was
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GENERAL INTRODUCTION 2

publicly ridiculed by fellow scientist François Arago. In that era it was widely held that

no wave could exceed 30 feet (9.1 m) [125,126]. Author Susan Casey wrote that much of

that disbelief came because there were very few people who had seen a rogue wave, and

until the advent of steel double-hulled ships of the 20th century "people who encountered

100-foot rogue waves generally weren’t coming back to tell people about it" [127]. For

almost 100 years, oceanographers, meteorologists, engineers and ship designers have used a

mathematical system commonly called the Gaussian function (or Gaussian Sea or standard

linear model) to predict wave height [128]. This model assumes that waves vary in a

regular way around the average (so-called ’significant’) wave height. In a storm sea with

a significant wave height of 12 metres (39.4 ft), the model suggests there will hardly ever

be a wave higher than 15 metres (49.2 ft). One of 30 metres (98.4 ft) could indeed happen

but only once in ten thousand years (of wave height of 12 metres [39.4 ft]). This basic

assumption was well accepted (and acknowledged to be an approximation). The use of a

Gaussian form to model waves has been the sole basis of virtually every text on that topic

for the past 100 years [128, 129]. The first known scientific article on "Freak waves" was

written by Professor Laurence Draper in 1964. In that paper which has been described as

a ’seminal article’ he documented the efforts of the National Institute of Oceanography in

the early 1960s to record wave height and the highest wave recorded at that time which

was about 67 feet (20.4 m). Draper also described freak wave holes [130–132].

Statoil researchers presented a paper in 2000 which collated evidence that freak waves

were not the rare realizations of a typical or slightly non-gaussian sea surface population

(Classical extreme waves) but rather they were the typical realizations of a rare and

strongly non-gaussian sea surface population of waves (Freak extreme waves). A workshop

of leading researchers in the world attended the first Rogue Waves 2000 workshop held in

Brest in November 2000. In 2000 the British oceanographic vessel discovery recorded a

29-metre (95 ft) wave off the coast of Scotland near Rockall. This was a scientific research

vessel and was fitted with high quality instruments. The subsequent analysis determined

that under severe gale force conditions with wind speeds averaging 21 metres per second

(68.9 ft/s) a ship-borne wave recorder measured individual waves up to 29.1 metres (95.5

ft) from crest to trough, and a maximum significant wave height of 18.5 metres (60.7

ft). These were some of the largest waves recorded by scientific instruments up to that
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GENERAL INTRODUCTION 3

time. The authors noted that modern wave prediction models are "known" to significantly

under-predict extreme sea states for waves with a ’significant’ height (Hs) above 12 metres

(39.4 ft). The analysis of this event took a number of years, and noted that "none of the

state-of-the-art weather forecasts and wave models-the information upon which all ships,

oil rigs, fisheries, and passenger boats rely-had predicted these behemoths." Put simply,

a scientific model (and also ship design method) to describe the waves encountered did

not exist. This finding was widely reported in the press which reported that "according

to all of the theoretical models at the time under this particular set of weather conditions

waves of this size should not have existed".

It is now proven via satellite radar studies that waves with crest to trough heights

of 20 meters (65.6 ft) to 30 meters (98.4 ft), occur far more frequently than previously

thought. It is now known that rogue waves occur in all of the world’s oceans many times

each day. In 2004 the ESA MaxWave project identified more than ten individual giant

waves above 25 meters (82 ft) in height during a short survey period of three weeks in

a limited area of the South Atlantic. The ESA’s ERS satellites have helped to establish

the widespread existence of these ’rogue’ waves. Thus acknowledgement of the existence

of rogue waves (despite the fact that they cannot plausibly be explained by even state-

of-the-art wave statistics) is a very modern scientific paradigm. It is now well accepted

that rogue waves are a common phenomenon. Professor Akhmediev of the Australian

National University, one of the world’s leading researchers in this field, has stated that

there are about 10 rogue waves in the world’s oceans at any moment. Some researchers

have speculated that approximately three of every 10,000 waves on the oceans achieve

rogue status, yet in certain spots-like coastal inlets and river mouths-these extreme waves

can make up three out of every 1,000 waves because wave energy can be focused. Rogue

waves may also occur in lakes. A phenomenon known as the "Three Sisters" is said to

occur in Lake Superior when a series of three large waves forms. The second wave hits

the ship’s deck before the first wave clears. The third incoming wave adds to the two

accumulated backwashes and suddenly overloads the ship deck with tons of water. The

phenomenon was implicated in the sinking of the SS Edmund Fitzgerald on Lake Superior

in November 1975.

Because the phenomenon of rogue waves is still a matter of active research, it is
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GENERAL INTRODUCTION 4

premature to state clearly what the most common causes are or whether they vary from

place to place. The areas of highest predictable risk appear to be where a strong current

runs counter to the primary direction of travel of the waves; the area near Cape Agulhas

off the southern tip of Africa is one such area; the warm Agulhas Current runs to the

southwest, while the dominant winds are westerlies. However, since this thesis does not

explain the existence of all waves that have been detected, several different mechanisms

are likely, with localized variation. Suggested mechanisms for freak waves include the

following:

• Diffractive focusing: According to this hypothesis, coast shape or seabed shape

directs several small waves to meet in phase. Their crest heights combine to create

a freak wave [133].

• Focusing by currents: Waves from one current are driven into an opposing current.

This results in shortening of wavelength, causing shoaling (i.e., increase in wave

height), and oncoming wave trains to compress together into a rogue wave [133] .

This happens off the South African coast, where the Agulhas Current is countered

by westerlies [134].

• Nonlinear effects (modulational instability): It seems possible to have a rogue wave

occur by natural, nonlinear processes from a random background of smaller waves

[135]. In such a case, it is hypothesized, an unusual, unstable wave type may form

which ’sucks’ energy from other waves, growing to a near-vertical monster itself,

before becoming too unstable and collapsing shortly after. One simple model for

this is a wave equation known as the nonlinear Schrödinger equation (NLS), in which

a normal and perfectly accountable (by the standard linear model) wave begins to

’soak’ energy from the waves immediately fore and aft, reducing them to minor

ripples compared to other waves. The NLS can be used in deep water conditions.

In shallow water, waves are described by the Korteweg-de Vries equation or the

Boussinesq equation. These equations also have non-linear contributions and show

solitary-wave solutions. A small-scale rogue wave consistent with the nonlinear

Schrödinger equation (the Peregrine Solution) was produced in a laboratory water

tank in 2011 [136]. In particular, the study of solitons, and especially Peregrine
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solitons, have supported the idea that non-linear effects could arise in bodies of

water [137].

• Wind wave interactions: While it is unlikely that wind alone can generate a rogue

wave, its effect combined with other mechanisms may provide a fuller explanation of

freak wave phenomena. As wind blows over the ocean, energy is transferred to the

sea surface. When strong winds from a storm happen to blow in the opposing direc-

tion of the ocean current the forces might be strong enough to randomly generate

rogue waves. Theories of instability mechanisms for the generation and growth of

wind waves-although not on the causes of rogue waves-are provided by Phillips [138]

and Miles [139].

The possibility of the artificial stimulation of rogue wave phenomena has attracted

research funding from DARPA, an agency of the United States Department of Defense.

Bahram Jalali and other researchers at UCLA studied microstructured optical fibers near

the threshold of soliton supercontinuum generation and observed rogue wave phenomena.

After modeling the effect, the researchers announced that they had successfully char-

acterized the proper initial conditions for generating rogue waves in any medium [140].

Additional works carried out in optics have pointed out the role played by a nonlinear

structure called Peregrine soliton that may explain those waves that appear and disappear

without leaving a trace [141,142].

The loss of the MS München in 1978 provided some of the first physical evidence of

the existence of rogue waves. The MS München was a state-of-the-art cargo ship with

multiple water-tight compartments, an expert crew and was considered unsinkable. She

was lost with all crew and the wreck has never been found. The only evidence found was

the starboard lifeboat which was recovered from floating wreckage some time later. The

lifeboats hung from forward and aft blocks 20 metres (65.6 ft) above the waterline. The

pins had been bent back from forward to aft, indicating the lifeboat hanging below it had

been struck by a wave that had run from fore to aft of the ship which had torn the lifeboat

from the ship. To exert such force the wave must have been considerably higher than 20

metres (65.6 ft). At the time of the inquiry, the existence of rogue waves was considered

so statistically unlikely as to be near impossible. Consequently, the Maritime Court in-
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vestigation concluded that the severe weather had somehow created an ’unusual event’

that had led to the sinking of the München [143]. The 1980 loss of the MV Derbyshire

during Typhoon Orchid south of Japan with the loss of all crew marked a turning point

for ship design. The Derbyshire was an ore-bulk-oil combination carrier built in 1976. At

91,655 gross register tons, she was-and remains-the largest British ship ever to have been

lost at sea. The wreck was found in June 1994. The survey team deployed a remotely

operated vehicle to photograph the wreck. A private report was published in 1998 which

prompted the British government to reopen a formal investigation into the sinking. The

British government investigation included a comprehensive survey by the Woods Hole

Oceanographic Institution which took 135,774 pictures of the wreck during two surveys.

The formal forensic investigation concluded that the ship sank because of structural fail-

ure and absolved the crew of any responsibility. Most notably, the report determined

the detailed sequence of events that led to the structural failure of the vessel. A third

comprehensive analysis was subsequently done by Douglas Faulkner, professor of marine

architecture and ocean engineering at the University of Glasgow. His highly analytical

and scientific report published in 2001 examined and linked the loss of the MV Derbyshire

with what he called the emerging body of scientific evidence regarding the mechanics of

freak waves. Professor Faulkner concluded that it was almost certain that Derbyshire

would have encountered a wave of sufficient size to destroy her. Faulkner’s conclusions

have not been refuted in the more than 15 years since they were first presented (as of

2016). Indeed, subsequent analysis by others has corroborated his findings. Faulkner’s

finding that the Derbyshire was lost because of a rogue wave has had widespread implica-

tions on ship design [143]. Faulkner has subsequently proposed the need for a paradigm

shift in thinking for the design of ships and offshore installations to include what he calls

a Survival Design approach additional to current design requirements. There is however

no evidence that his recommendations have yet been adopted (as of 2016) [144,145]. Very

few ship-wrecks have ever been fully investigated. The most recent bulk-carrier loss on the

open seas to have been subjected to thorough investigation (as at March 2011) was the

UK-owned M.V. Derbyshire, which sank in 1980. Its entire crew of forty-four, all British

citizens perished. It took 14 years of pressure from the British public and a privately

funded expedition to locate the wreck before a formal remote-camera search and inves-
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tigation was done by the British government. At least a couple of hundred bulk carriers

have been lost since 1980 and none have been properly investigated. A survey of 125

bulk carriers that sank between 1963 and 1996 found that seventy-six probably flooded,

another four because of hatch-cover failure, the rest from unidentified causes. Nine other

vessels broke completely in two. Causes of the remaining forty losses are unknown [146].

As pointed out by many researchers, rogue waves can appear in the ocean and in

optical fibers due to modulation instability (MI) [67]. The latter is widely known as the

Benjamin-Feir [36] or Bespalov-Talanov [147] instability. Specifically, a periodic pertur-

bation on the top of a continuous wave exponentially increases its amplitude due to the

above instability. Waves in a continuous but limited frequency range are involved in this

dynamics. Modulation instability is known for a number of nonlinear equations, with

the most important one being the nonlinear Schrödinger equation. (NLSE). For each fre-

quency, the long term dynamics of MI is closely related to the so called Fermi-Pasta-Ulam

recurrence [148]. Namely, during the initial stages of the development, each particular

frequency mode in a modulation instability phenomenon receives its energy from the cen-

tral mode, along with the higher harmonics and then returns all the energy back to the

central mode [149]. For the particular case of the NLSE, this process can be described

by an exact solution that has been referred to as the "Akhmediev Breather" (AB) in a

number of earlier works on ocean waves [150]. This solution describes the appearance

of a periodic sequence of maxima on the top of a continuous wave and their subsequent

disappearance on further evolution [151]. A particular case of modulation instability is

the one with a zero frequency (or infinite period) sideband. In this case, the periodic

sequence of maxima is reduced to just a single peak which "appears from nowhere and

disappears without a trace" [28]. The latter is also described by an exact solution of the

NLSE, which has a simple rational representation. The lowest-order solution of this class

is known as the Peregrine soliton [54] and can be obtained as a limiting case of an AB

with zero frequency of modulation [152]. There is a hierarchy of rational solutions with

progressively increasing amplitude [153]. Each of them can be thought of as a rogue wave.

Moreover, the high amplitude waves described by the higher-order rational solutions ap-

pear naturally in the chaotic wave field as a nonlinear superposition of two or more ABs

initiated by modulation instability with nonzero frequency sidebands [154]. Thus, it is
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essential to know the structure of rational solutions in order to understand rogue waves

in general.

Rational solutions of the nonlinear Schrödinger equation play a major role in the

theory of rogue waves [28]. There is a hierarchy of them with progressively increasing

central amplitude. The major reason supporting the claim that rational solutions are

important in the composition of ocean waves is that, as with waves created by modulation

instability, they "appear from nowhere". In other words, the instability induced from a

small perturbation on top of a plane wave leads to an increase in the perturbation up to

its highest amplitude and then to a decay so that it finally "disappears without a trace".

Although for rational solutions the growth rate of the instability is zero, they still develop

according to a power law. This may appear to take a very long time, but on the other

hand, the ocean is vast and there is enough space for the development of even such slow

instabilities. Rational solutions are limiting cases [156] of either periodic "Ma solitons"

(MS) [157] or "Akhmediev breathers" (ABs) [151]. MSs have to be created directly from

initial conditions consisting of the background plane wave+soliton. In other words, Ma

solitons must exist in the wave field right from the very beginning. Only rational solutions

and ABs belong to the class of excitations that appear from nowhere [156]. ABs, in

particular, arise during evolution due to modulation instability [147]. Once they have

appeared, they may collide just as can happen with solitons. Collisions of two or more

ABs with transversal frequencies close to zero may create structures similar to higher-

order rational solutions [158]. Thus, studies of rational solutions of higher order are of

fundamental importance. They may resolve the mystery of rogue waves in the ocean and

help in creating useful rogue waves in optical fibers [29].

Recent analysis have shown that the first order effects of dispersion and dissipation in

a vast range of physical systems can be described by a few simple nonlinear equations of

evolution, such as Burgers equation, sine-Gordon equation, Korteweg-de Vries equation

amongst others [1]. And, in such case, these equations have been found to possess sta-

ble steady-state solutions with remarkable properties. Hence, it has been seen that the

study of nonlinear evolution equations has attracted many mathematicians and theoreti-

cal physicists due to its considerable applications in various branches of science [2–7]. As

application, it bas been shown that nonlinear integrable evolution equations give rise to
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many kind of wave such as soliton, breather, rogue wave and so on [8–13].

A particular kind is the soliton wave. In physics and mathematics, a soliton is a self-

reinforcing wave packet, that maintains its shape and its velocity during the propagation.

It is a result of cancellation between the nonlinearity and the dispersive effect. solitons are

solutions to a widespread class of weakly partial differential equations describing physical

systems [14–18]. Soliton seems to be more accurate in the transport of information in

nonlinear media.

Another one is called rogue wave. Rogue waves are waves among naturally observed

by people on the sea surface that represent an inseparable feature of the ocean. They

appear from nowhere, cause danger and disappear without a trace. They occur on the

surface of a relatively calm sea and reach very great amplitudes, but still be fatal for

ships and crew due to their unexpectedness and abnormal features. Seamen are known

to be unsurpassed authors of exciting and horrifying stories about the sea and sea waves.

This could explain why, despite the increasing number of documented cases, that sailor’s

observation of "walls of water" have been considered fictitious for a while. Due to the

amount of doubtless evidence of the existence of this mysterious phenomenon, these stories

are now addressed again, but still without sufficient information to enable researchers and

engineers interested by the phenomenon to completely understand it. The billows appear

suddenly, by exceeding two times or more the size of the surrounding waves. This kind

of wave have obtained many names such as abnormal, exceptional, extreme, giant, huge,

sudden, episodic, freak, monster, killer wave etc. Serious study of the phenomenon have

intensified during the recent decade theoretically and experimentally [19–28].

Considerable efforts have been paid in understanding the physics behind this mys-

terious and destructive event. So D. R. Solli and coworkers [29] studied successfully the

rogue waves in optical fiber. They have introduced the concept of optical rogue waves. Us-

ing real-time detection technique, they studied a system that possesses extremely steep,

large waves as rare outcomes from an almost identically prepared initial population of

rogue waves. They modeled the generation of rogue waves using the generalized nonlinear

Schrödinger equation and demonstrated that they arise infrequently from initially smooth

pulses owing the power transfer seeded by a small noise perturbation.

Originally, the phenomenon of rogue waves refers to a giant ocean wave, responsible
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of many marine disasters [30]. Many years after that, more effort have been devoted to

the study and the understanding of this mysterious phenomenon in many fields such as

hydrodynamics [19–22], plasma physics [87], optics [29,33] and Bose-Einstein condensates

[85] just to name a few. From the study of the phenomenon, it resorts that rogue wave

appears from nowhere and disappears without a trace [13]; their amplitude is two or

three times larger than their surrounding waves [14]. The unpredictability of rogue waves

implies that they can be expressed by rational functions localized both in space and

time [13,15]. The simplest rogue wave solution was firstly obtained by Peregrin [54]; more

after, Akhmediev and coworkers have calculated the first-order rogue wave solution for

the nonlinear Schrödinger equation(NLSE) [28]. Analytical rogue wave solution has been

also obtained for various physical models [95, 99–101, 104, 106]. The results obtained in

these works remain insufficient to understand the phenomenon. Nowadays, the physics

behind the rogue wave phenomenon in nonlinear systems remains unclear. If rogue waves

exist in such systems and since they are known to be dangerous for mariners, what is their

effect on the other existing waves? What is their behavior in a system with higher-order

nonlinearity? Can this kind of wave also exist in other nonlinear systems as the known

ones?

In view to generate rogue wave solutions to physical models, many mathematical tools

have used such as similarity transformation [94], Darboux transformation (DT) [95] just

to name a few. The traditional DT was developed in reference [92], but that one is not

appropriated to construct higher-order rogue wave solution to nonlinear physical systems.

So Guo and coworkers [94] have modified it to derive the generalized DT. This one is

the tool used in this work to construct rogue wave solutions. The generalized DT is the

essential used in this dissertation to derive rogue wave solution to many physical systems.

The goals of this dissertation are

• to study the behavior of rogue waves in nonlinear systems,

• to determine new rogue wave solutions in some fields,

• to calculate higher-order rogue wave solutions to some equations

• and to prove the existence of such in the barotropic relaxing media.
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Then, the organization of this thesis is scheduled as follows:

• In chapter one, we present a literature review on rogue wave phenomenon in the

nature, starting from their effects in the ocean. We present some testimonials of

mariners according to the destruction of their equipments by such a mysterious like

rogue wave. Some real awesome pictures are presented to illustrate their comments.

We show that the rogue wave do not exist not only in the oceanic condition, but

also in the physical systems such as the fiber optics, the Bose Einstein condensates

and plasma. These demonstrations are based on the published works.

• The chapter two is devoted to the presentation of the major method of investigation

used in this work to derive interesting rogue wave solution to nonlinear physical

system, namely the generalized DT.

• In chapter three, we construct rogue wave solutions to some nonlinear physical

systems such as the Manakov system, a nonlinear Schrödinger equation with fifth-

order nonlinearity, a couple of equations modeling the nonlinear propagation of

wave in ferrites, a generalized nonlinear Schrödinger equation possessing higher-

order terms which refer to a femto-second pulse propagation in a nonlinear fiber

optic. By the use of the traditional DT, we derived the localized waves solutions

to a coupled nonlinear Schrödinger system with four wave mixing effects, self-phase

modulation and cross-phase modulation effects, in this case we show that the rogue

waves and the solitons can interact elastically. The particularity of this dissertation

is the rogue wave in the barothropic relaxing media.

• The last section is devoted to the general conclusion in which we give some perspec-

tives.
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Chapter 1

Literature review on rogue waves

Introduction

There are many personal descriptions of unexpectedly high waves collected in the

literature by now. Some of them will be discussed hereafter. The sudden formation

of spectacular waves in the ocean is well reported and no longer doubted in the sci-

entific community [30–36]. One possible mechanism explaining the formation of rogue

waves characterized by strongly localized, is the modulation instability of weakly non-

linear monochromatic waves discovered in water wave [37], aside from the trivial linear

superposition of waves. This instability can be modeled through the framework of the

nonlinear Schrödinger equation [38, 39] which is an evolution equation that describe the

dynamics in space and time of wave trains in water of finite and infinite depth [31]. Rogue

waves are waves occasionally appearing in the ocean that can reach the amplitudes more

than twice the value of those in the surrounding chaotic wave field. Above description

can roughly be taken as the definition although variety of interpretations is still possible

.Being considered initially for ocean waves, nowadays the concept is shifted to other fields

of physics, that can be modeled by similar nonlinear wave equations. Once the equations

describing the phenomenon are established, understanding the features of rogue waves

comes through finding special solutions that have the properties of having high ampli-

tudes and are localized in space and in time. From the experimental point of view it is

much easier and safer to deal with rogue waves in a laboratory than in the open ocean.
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Figure 1: Sinking of Wold Glory tanker in 1968.

In addition to oceanic ones, rogue waves can be observed in variety of physical systems:

optical fibers [29] and Bose-Einstein condensates (BEC) [85] just to name a few . The

latter system has the advantage that it admits variety of experimental conditions thus

allowing for several types of rogue waves.

1.1 Historical review and testimonies about rogue wave

behavior in deep or shallow water

Personalities make history human. Our story is created by accidents. The freak wave

phenomenon could remain marine folklore if there were no crashes that shake people’s

minds. Notorious casualties attract attention to the existence of abnormally huge waves,

and evidence makes us believe the reports. A long but obviously incomplete list of acci-

dents starting from the time of Christopher Columbus has been collected in [40]. Many

other descriptions are available in various publications [41–46]. The stories are sometimes
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very similar, but frequently they show distinctive differences and may be useful for the

comprehension of the phenomenon. We represent below some stories describing different

kinds of rogue wave accidents. The most striking cases of rogue waves correspond to

strongly localized high waves.

This is the beginning of the history of the tanker "World Glory," announced by a

newspaper in 1954 [47]. Its end is not so enthusiastic. On June 13, 1968, traveling along

the South African coast under the Liberian flag, World Glory encountered a freak wave,

which broke the tanker into two pieces and led to the death of 22 crew members [48]

Figure 1. It happened in the Indian Ocean, 105 km east of Durban. As a result, about

14 million gallons of oil spilt into the Ocean.

The tanker Prestige (42,000 gross tons, and about 250 m in length) went down simi-

larly off the Spanish coast in 2002 Figure 34. Estimations of the amount of spilt oil are

different, but they are roughly about 20 million gallons. Some people connected with

the accident think that the damage that led to its sinking might have been caused by

a freak wave. Anyway, it is more or less obvious that the hull was unable to bear the

wave force. The Prestige was built more than 20 years after World Glory. The vessel met

all American Bureau of Shipping Rule structural requirements and International Associ-

ation of Classification Societies Rule hull girder strength requirements. The vessel was

properly loaded and had adequate hull strength for the reported conditions at the time

of the casualty [49]. The number of accidents that occurred with wavelengths less than

half the ship’s length is small [50], so we could suppose that the damage in both cases

was probably caused by intense long waves causing unexpected nonuniform loads on the

hulls.

The cruise liner Queen Elizabeth II encountered a rogue wave in the North Atlantic

about 30 m height during a storm in 1995. The ship master referred to a particular

episode where they had been looking at a wall of water from the bridge for a couple of

minutes before it hit the ship well above the waterline: "a great wall of water - it looked

as if we were going into the White Cliffs of Dover." A similar description was given by

one of the crew members of the Statoil floating rig Veslefrikk B (it was hit the same year

by a wave that resulted in significant damage) [43]. The first mate of the oil tanker Esso

Languedoc described the wall of water in the photo in Figure 3: "We were in a storm and
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Figure 2: Sinking of tanker prestige in 2002.

the tanker was running before the sea. This amazing wave came from the aft and broke

over the deck. I didn’t see it until it was alongside the vessel but it was special, much

bigger than the others." [44].

Freak events represented by several successive very high waves in wave groups are also

well known. A collision of the naval ship Jeanne d’Arc with the Glorious Three in 1963

was described in Ref. [51].

"At about 09:47 a group of large breaking waves was sighted straight ahead, just beyond

an area of relative calm water (4-5 m wave height). The first wave heaved the ship; its

height was estimated about 15 m. During the interval of about 100 meters in-between

the first and the second wave the "Jeanne d’Arc" had time to return approximately to its

waterline, but she was soon heeled over to starboard by the second wave, until the heel

angle reached about 350. During clearance of those two waves, the freeboard deck and the

quarterdeck were submerged in turn, the sea covered the catwalks of the first deck, water

reaching the top of the bulkheads at the time of maximum heel. The third wave was cleared

in similar conditions, but with not as large amplitude motions, its height being slightly less

than that of the two first ones."
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Figure 3: Picture taken on the oil freighter Esso Languedoc outside the coast of Durban,

South Africa 1980.

Two unexpectedly large successive waves shattered windows 28 m above the waterline

of the cruise liner Queen Elizabeth in 1943; two other waves capsized the trawler Kotuku

in 2006; and three large waves hit and threw the fishing boat Starrigavan onto a jetty in

2007 [44]. In the past, seamen of different nationalities mention monstrous wave groups.

It is interesting to note that the number of individual waves that supposedly forms a

rogue wave packet is different: three sisters or the ninth billow. Surfers sometimes wait

for the largest, or seventh, wave. In Ref. [52] it is noted that successive large single-wave

crests or deep troughs can cause severe damage due to their impact, or may excite the

resonant frequencies of the structures. The Soviet refrigerator tanker Taganrogsky Zaliv

was subjected to an abnormal wave, a hole in the sea, in 1985 (see Figure 4 Figure 5)

and [48].

"Wave height did not exceed 5 m and the length was 40-45 m. The speed of the ship

was diminished to a minimum in order to make a safer control of the ship’s movement.

The ship rode well on the waves. The fore and main deck were not flooded with water. At

one o’clock the front part of the ship suddenly dipped, and the crest of a very large wave
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Figure 4: The map of the incidents off the Southeast coast of Africa and the scheme of

the collision of tanker Taganrogsky Zaliv with a rogue wave [48].

appeared close to the foredeck. It was 5-6 m higher over the foredeck. The wave crest fell

down on the ship. One of the seamen was killed and washed overboard. Nobody was able

to foresee the appearance of such a wave. When the ship went down, riding on the wave,

and its frontal part was stuck into water, nobody felt the wave’s impact. The wave easily

rolled over the foredeck, covering it with more than two meters of water. The length of

the wave crest was not more than 20 m".

Very similar descriptions are related to accidents with the cruiser Birmingham in 1944

and some other vessels [43] They report sighting a long trough followed by a steep crest,

or a "hole" in the sea. There is a viewpoint that a "hole" in the sea is more dangerous

for a boat than a crest, since it is less noticeable among the sea waves than huge crests,

and the shipmaster cannot change course and prepare the ship in advance. The NOAA’s

56-foot research vessel Ballena capsized in an individual rogue wave south of Point

Arguello, California in 2000. The weather was good, with clear skies and glassy swells

(1.5-2 m). At approximately 11:30, the crew observed a 4.5 m swell beginning to break

about 30 m from the vessel. The wave crested and broke above the vessel, caught the
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Figure 5: A "diving" into a boat. The case looks similar to the descriptions of the

accident with the Taganrogsky Zaliv [53].

Ballena broadside, and quickly overturned it [46].

Russian kayakers were lucky to observe and make photos of strange waves 25 km from

Cape Olga, Kronotsky Peninsula, about 1-1.5 km offshore Figure 6. They reported that

the weather was calm with only very long gently sloping surge waves coming from the

open ocean every 15-20 s. About 10 strange waves were observed in the same area with

irregular lengths. Freak waves arose, propagated, and collapsed during tens of seconds and

ran for about 50 m within this time. Wave heights were about 2-4 m, and typically their

length along the front was about 70 m. The first photo in Figure 6 is quite challenging,

although the second one (taken from another aspect) looks more ordinary.

These descriptions are in some sense similar to the first kind of observations (i.e.,

strongly localized high waves), but the reports emphasize individual waves that propagate

for some distance and are actually not surrounded by other considerable waves.

Extreme coastal wave phenomena similar to the ocean rogue waves have been noted

recently. Typically, such accidents are described as a sudden brief coastal flooding or as

huge waves rushing coastal structures (raised embankment or breakwaters). These waves
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Figure 6: Waves observed in 2006 near Kamchatka [53]

have not been related with tsunamis; although it is more difficult to ascertain whether

they are not caused by storm surges.

A very high (25 m) wave splash presented in Figure 7 occurred suddenly and was

absolutely unexpected by the students (who made the photos) after they had spent about

45 min observing swell waves that followed a severe storm that had happened one day

before.

It was already pointed out that wave height, in addition to its shape and surround-

ing waves may define the strength of wave impact. Unusual wavelength or small crest

length(like in Figure 8) may lead to an inadmissible load distribution that may damage

the hull. The most striking examples of rogue waves in the recent literature are unusu-

ally asymmetrical with high crests compared to the depth of their troughs. Presumably

enormous huge-wave impacts have been already registered [54]. Ships usually travel per-

pendicular to the crests with low forward speed. A particular traveling direction of a

wave group results in complicated wave motion that makes the ship list and makes it

difficult to safely overpass the waves. Steep waves (like in Figure 9) may yield dangerous

dynamic effects due to ship motion (slamming), even though the significant wave height is
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Figure 7: A 2-s photo image sequence taken on the Dianna Island (Canada) [55].

not particularly large. A breaking rogue wave could potentially cause more damage than

a nonbreaking wave of the same dimension. These points should be taken into account

when studying the wave impact and designing a safe construction.

Due to the relatively large number of registered collisions of ships with abnormal waves,

a statistical analysis of the events was performed by Toffoli et al. [50] on the basis of 270

documented accidents selected among a total of 650 that occurred over about four years

and collected by the Lloyd’s Marine Information Service. Toffoli et al. [50] emphasized

that accidents occurred often in the presence of crossing seas: wind waves and swell. They

claim that any significant correlation between the main surface wave parameters and ship

weight were not found, although more than 90 percent of the incidents occurred in water

depths of more than 50 m. It is suggested that different kinds of ships should be subjected

to different freak-wave warning criteria. The current state of affairs, however, is obviously

not acceptable. Casualties happen too frequently and are too dramatic. Hundreds of

vessels sink and hundreds of people perish annually see Figure 10, although the situation

has taken a turn for the better over the last few years. The list of accidents related to the

attacks of huge waves contains many recent dates. Twenty-two (22) super carriers were
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Figure 8: Pyramidal wave off south Japan

lost or severely damaged between 1969 and 1994 due to the occurrence of sudden rogue

waves; a total of 542 lives were lost as a result [44]. About 650 incidents are counted during

the period from 1995 to 1999 due to bad weather, including total losses of all propelled

sea-going merchant ships in the world weighing 100 gross tons or more see Figure 11.

We now go further will presenting significant results obtained for rogue waves in phys-

ical systems

1.2 Physical results obtained

It has been shown that rogue waves appear not only in oceanic condition, but also

in nonlinear physical systems. In the following, we present results obtained in nonlinear

physical systems as nonlinear fiber optics, Bose-Einstein condensates and plasmas.
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Figure 9: A very steep breaking wave crest [56]

1.2.1 Rogue waves in optical fiber

The results presented in this section have been obtain by Solli and coworkers in Ref.

[29].

For centuries, seafarers have told tales of giant waves that can appear without warning

on the high seas. These mountainous waves were said to be capable of destroying a vessel

or swallowing it beneath the surface, and then disappearing without the slightest trace.

Until recently, these tales were thought to be mythical. In the mid-1990s, however, freak

waves proved very real when recorded for the first time by scientific measurements dur-

ing an encounter at the Draupner oil platform in the North Sea [57]. Although they are

elusive and intrinsically difficult to monitor because of their fleeting existences, satellite

surveillance has confirmed that rogue waves roam the open oceans, occasionally encoun-

tering a ship or sea platform, sometimes with devastating results [58]. It is now believed

that a number of infamous maritime disasters were caused by such encounters [59]. The

unusual statistics of rogue waves represent one of their defining characteristics. Conven-

tional models of ocean waves indicate that the probability of observing large waves should
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Figure 10: Number of total losses and number of fatalities per year of crew and passenger

during 1978-2001 (Source: Det Norske Veritas, http://www.dnv.com/)

diminish extremely rapidly with wave height, suggesting that the likelihood of observing

even a single freak wave in hundreds of years should be essentially non-existent. In reality,

however, ocean waves appear to follow "L-shaped" statistics: most waves have small am-

plitudes, but extreme outliers also occur much more frequently than expected in ordinary

(for example, gaussian or Rayleigh) wave statistics [60–62]. It is likely that more than

one process can produce occasional extreme waves with small but non-negligible proba-

bility [63, 64]. Possible mechanisms that have been suggested to explain oceanic rogue

waves include effects such as nonlinear focusing via modulation instability in one dimen-

sion [65, 66] and in two-dimensional crossings [67, 68], nonlinear spectral instability [69],

focusing with caustic currents [70] and anomalous wind excitation. Nonlinear mechanisms

have attracted particular attention because they possess the requisite extreme sensitivity

to initial conditions. Although the physics behind rogue waves is still under investiga-

tion, observations indicate that they have unusually steep, solitary or tightly grouped

profiles, which appear like "walls of water" [59]. These features imply that rogue waves

have relatively broadband frequency content compared with normal waves, and also sug-
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Figure 11: Distribution of shipping accidents from 1995-1999 [50].

gest a possible connection with solitons-solitary waves, first observed by J. S. Russell in

the nineteenth century, that propagate without spreading in water because of a balance

between dispersion and nonlinearity. As rogue waves are exceedingly difficult to study

directly, the relationship between rogue waves and solitons has not yet been definitively

established, but it is believed that they are connected.

So far, the study of rogue waves in the scientific literature has focused on hydrody-

namic studies and experiments. Intriguingly, there are other physical systems that possess

similar nonlinear characteristics and may also support rogue waves. Here the observation

and numerical modelling of optical rogue waves in a system based on probabilistic super-

continuum generation in a highly nonlinear microstructured optical fibre is reported. The

term "optical rogue waves" is coined, based on striking phenomenological and physical

similarities between the extreme events of this optical system and oceanic rogue waves.

Supercontinuum generation has received a great deal of attention in recent years for

its complex physics and wealth of potential applications [71]. An extremely broadband

supercontinuum source can be created by launching intense seed pulses into a nonlinear

fibre at or near its zero-dispersion wavelength [72]. In this situation, supercontinuum
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Figure 12: Experimental observation of optical rogue waves. a) Schematic of experimen-

tal apparatus. b-d) Single-shot time traces containing roughly 15,000 pulses each and

associated histograms (bottom of figure: left, b; middle, c; right, d) for average power

levels 0.8 mW (red), 3.2 mW (blue) and 12.8 mW (green), respectively. The grey shaded

area in each histogram demarcates the noise floor of the measurement process. In each

measurement, the vast majority of events are buried in this low intensity range, and the

rogue events reach intensities of at least 30-40 times the average value. These distributions

are very different from those encountered in most stochastic processes [29].

production involves generation of high-order solitons-the optical counterparts of Russell’s

solitary water waves-which fission into redshifted solitonic and blueshifted non-solitonic

components at different frequencies [71, 73]. The solitonic pulses shift further towards

the red as they propagate through the nonlinear medium because of the Raman-induced

self-frequency shift [74]. Interestingly, frequency downshifting effects are also known to

occur in water wave propagation. It has been noted that the aforementioned Raman

self-frequency shift represents an analogous effect in optics [75]. The nonlinear processes

responsible for supercontinuum generation amplify the noise present in the initial laser

pulse [76,77] . Especially for long pulses and continuous-wave input radiation, modulation
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instability (an incoherent nonlinear wave-mixing process) broadens the spectrum from

seed noise in the initial stages of propagation and, as a result, the output spectrum is

highly sensitive to the initial conditions [78, 79]. A critical challenge in observing optical

rogue waves is the lack of real-time instruments that can capture a large number of very

short random events in a single shot. To solve this problem, the of use a wavelength-to-

time transformation technique inspired by the concept of photonic time-stretch analog-

to-digital conversion [80] is required. In the present technique, group-velocity dispersion

(GVD) is used to stretch the waves temporally so that many thousands of random ultra-

short events can be captured in real time. A different single-shot technique has been

used to study isolated supercontinuum pulses [81]; however, the real-time capture of a

large number of random events has not been reported. Using the present method, a

small but statistically significant fraction of extreme waves can be discerned from a large

number of ordinary events, permitting the first observation of optical rogue waves. The

supercontinuum radiation used in this experiments is generated by sending picosecond

seed pulses at 1,064 nm through a length of highly nonlinear microstructured optical fibre

with matched zero-dispersion wavelength. The output is red-pass filtered at 1,450 nm and

stretched as described above so that many thousands of events can be captured with high

resolution in a single-shot measurement. A schematic of the experimental apparatus is

displayed in Figure 12.

Using this setup, large sets of pulses in real time for very low seed pulse power levels-

power levels below the threshold required to produce appreciable supercontinuum are

acquired. It is found that the pulse-height distributions are sharply peaked with a well-

defined mean, but contrary to expectation, rare events with far greater intensities also

appear. In Figure 12, it is shown a representative single-shot time traces and histograms

for three different low power levels. In these traces, the vast majority of events are

concentrated in a small number of bins and are so weak that they are buried beneath the

noise floor of the measurement process; however, the most extreme ones reach intensities

at least 30-40 times the average. The histograms display a clear L-shaped profile, with

extreme events occurring rarely, yet much more frequently than expected based on the

relatively narrow distribution of typical events. Because the red-pass filter transmits only

a spectral region that is nearly dark in the vast majority of events, the rare events clearly
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have extremely broadband, frequency-downshifted spectral content. The data also show

that the frequency of occurrence of the rogue events increases with the average power, but

the maximum height of a freak pulse remains relatively constant. These features indicate

that the extreme events are sporadic, single solitons.

The nonlinear Schrödinger equation (NLSE) (1.1) models soliton dynamics and has

also been used to study hydrodynamic rogue waves generated by nonlinear energy transfer

in the open ocean [65–68].

iut + uxx + 2|u|2u = 0. (1.1)

Where the quantities u, x and t scale a complex varying envelop, the distance and the

time respectively.

As the NLSE also describes optical pulse propagation in nonlinear media, it is cer-

tainly plausible that this equation could predict optical rogue waves. The numerical

investigation of this is made using the generalized NLSE (neglecting absorption), which

is widely used for broadband optical pulse propagation in nonlinear fibres [74] . The

generalized NLSE incorporates dispersion and the Kerr nonlinearity, as well as approx-

imations for self-steepening and the vibrational Raman response of the medium. This

equation has been successfully used to model supercontinuum generation in the presence

of noise [82, 83] and, as demonstrated here, is capable of qualitatively explaining our ex-

perimental results. In anticipation of broadband application, it is included several higher

orders of dispersion in the nonlinear fibre, which is calculated from the manufacturer’s

test data. Similarly, higher-order dispersion has also been used to extend the validity of

the NLSE for broadband calculations in hydrodynamics [84]. As expected, the present

model shows that a high-power, smooth input pulse ejects multiple redshifted solitons and

blueshifted non- solitonic components, and a tiny amount of input noise varies their spec-

tral content [71,79] . On the other hand, for low power levels, the spectral content of the

pulse broadens, but no sharp soliton is shed. In this case, the situation changes markedly

when a tiny amount of noise is added. This perturbation is amplified by nonlinear in-

teractions including modulation instability, which dramatically lowers the soliton-fission

threshold and permits unpredictable freak events to develop. Interestingly, the hydro-

dynamic equivalent-the Benjamin-Feir modulation instability is also thought to initiate

hydrodynamic rogue waves [65–68]. This instability spreads spectral content from a nar-
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row bandwidth to a broader range in the initial stages of water wave propagation, just as

it does in this optical system.

It is included a stochastic perturbation in the simulations by adding to the initial

pulse envelope a small amount of bandwidth-restricted random noise with amplitude pro-

portional to the instantaneous field strength. The NLSE is then solved repeatedly for a

large number of independent events. For a small fraction of events, the spectrum becomes

exceptionally broad with a clear redshifted solitonic shoulder.

Figure 13a shows the time trace and histogram of peak heights for a trial of 1,000

events after red-pass filtering each output pulse at the start of the solitonic shoulder

illustrated in Figure 13b. Clearly, the histogram of heights is sharply peaked but has

extended tails, as observed in the experiment, and the distribution contains rogue events

more than 50 times as large as the mean. The same rogue events are identified regardless

of where the filter is located within the smooth solitonic shoulder and can also be identified

from the complementary non-solitonic blue side of the spectrum. The rogue pulses have

exceptionally steep leading and trailing edges compared with the initial pulses and the

typical events, as shown in Figure 13c. The wide bandwidth and abrupt temporal profile

of an optical rogue wave is also highlighted in Figure 14 where the power is displayed as

a function of both wavelength and time using a short-time Fourier transform. Because

there are no apparent features in the perturbations that lead to the development of the

rogue events, their appearance seems unpredictable.

To pinpoint the underlying feature of the noise that produces rogue waves, it is closely

analysed the temporal and spectral properties of the initial conditions. Examining the

correlations between the initial conditions and their respective output waveforms, it is

found that if the random noise happens to contain energy with a frequency shift of about

8 THz within a 0.5-ps window centred about 1.4 ps before the pulse peak (Figure 13c),

a rogue wave is born. Noise at this particular frequency shift and on a leading portion

of the pulse envelope efficiently seeds modulation instability, reshaping the pulse to has-

ten its breakup. The output wave height correlates in a highly nonlinear way with this

specific aspect of the initial conditions. Thus, the normal statistics of the input noise

are transformed into an extremely skewed, L-shaped distribution of output wave heights.

Further study is needed to explain precisely why the pulse is so highly sensitive to these
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particular noise parameters. Nevertheless, the specific feature we have identified in the

initial conditions offers some predictive power for optical rogue waves, and may offer clues

to the oceanic phenomenon.

The rogue waves have a number of other intriguing properties warranting further

study. For example, they propagate without noticeable broadening for some time, but

have a finite, seemingly unpredictable lifetime before they suddenly collapse owing to

cumulative effects of Raman scattering. This scattering seeded by noise dissipates energy

or otherwise perturbs the soliton pulse beyond the critical threshold for its survival [79] .

The decay parallels the unpredictable lifetimes of oceanic rogue waves. The rogue optical

solitons are also able to absorb energy from other wavepackets they pass through, which

causes them to grow in amplitude, but appears to reduce their lifetime. A similar effect

may help to explain the development of especially large rogues in the ocean. In conclusion,

it have been observed extreme soliton-like pulses that are the optical equivalent of oceanic

rogue waves. These rare optical events possess the hallmark phenomenological features of

oceanic rogue waves-they are extremely large and seemingly unpredictable, follow unusual

L-shaped statistics, occur in a nonlinear medium, and are broadband and temporally steep

compared with typical events.

On a physical level, the similarities also abound, with modulation instability, solitons,

frequency downshifting and higher-order dispersion as striking points of connection. In-

triguingly, the rogue waves of both systems can be modeled with the nonlinear Schrödinger

equation. Although the parameters that characterize this optical system are of course very

different from those describing waves on the open ocean, the rogue waves generated in the

two cases bear some remarkable similarities.

1.2.2 Rogue waves in the Bose-Einstein condensates

Rogue wave in homogeneous Bose-Einstein condensates

There are at least two fundamental reasons for great interest in generating rogue

waves in laboratory conditions. First, this opens possibilities for detailed studies of their

properties as well as testing applicability of the mathematical models developed for their

descriptions (something unthink- able in the natural conditions). Second, being an es-
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sentially nonlinear phenomenon, rogue waves allow us to understand deeply the nature

and the dynamics of instabilities in nonlinear systems. Thus, the natural question that

appears is whether the rogue waves can be observed in other (than ocean or optical fibers)

physical media. The goal here is to give the positive answer to this question by showing

that rogue waves are also rather natural in the microworld. Namely, they can be observed

in Bose-Einstein condensates (BECs). The physical reasons for this are twofold. First,

BEC represents a fluid, which in the mean-field approximation is accurately described by

the Gross-Pitaevskii (GP), i.e., by the NLS equation. Second, due to the two-body inter-

actions, BEC is intrinsically a nonlinear system. Moreover, a BEC has great advantages

compared to other nonlinear systems. Indeed, the nonlinear interactions can be experi-

mentally managed by means of the Feshbach resonance [159], while the effective atomic

mass and the stability properties can be varied with help of the optical lattice [160]. The

suitable initial conditions can be created using phase and density engineering. In other

words, rogue waves in BECs appear to be well controllable objects.

The existence of rogue waves in the Bose Einsten Condensates (BEC) was predicted

in [85] by Bludov and comorkers. The model equation used is the Gross-Pitaevskii (GP)

equation given ass follows

iψt = −ψxx + σ|ψ|2ψ − ig|ψ|4ψ, (1.2)

where σ = sgn(as) and as is scattering length. The quantity ψ scale a complex varying

envelop while x and t stand for the normalized and distance and time respectively; the

subscript means partial derivative. In this equation, the dissipative term has been explic-

itly included due to inelastic three-body interaction whose strength is characterized by

g > 0 [86]. This last point is of special relevance as the rogue waves correspond to a giant

increase in the local density when the impact of the three-body collisions can become

dominant.

Besides the inelastic three-body interactions in a real experimental situation relevant

for the BEC applications, trap potential can be taken into account. This makes the prob-

lem very different from the analytically solvable nonlinear Schrödinger (NLS) equation.

Nevertheless, it is natural to expect that using the exact solution for the NLS rogue wave,

one can guess the proper initial conditions, giving rise for the giant density enhancement
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in a realistic mean-field model of a BEC. Therefore when scaling σ = −1 and g = 0,

equation (1.2) possesses an exact analytical solution [54]

ψ0(x, t) = ρ(x, t)eiθ(x,t) =

(
1− 4

1 + 2it

1 + 2x2 + 4t4

)
eit, (1.3)

with the density ρ2 and the phase distribution θ at each instant of time determined from

this formula. Equation (1.3) gives rise to the Figure (15).

To conclude, it is reported that it is possible to observe the rogue waves in BECs.

While the fact that the existence of such waves is somehow evident, it follows from the

fact that the mean-field dynamics of a BEC is described by the Gross-Pitaevskii equation;

there exists several features of the phenomenon observed in a condensed atomic gas.

First, condensates are created in the presence of an external potential, which is typically

parabolic one. Second, the three-body interactions are expected to become a significant

factor in the course of the evolution of the rogue waves. Third, the rogue waves can be

generated in a controlled manner by phase and amplitude engineering.

Vector rogue waves in binary mixtures of Bose-Einstein condensates

This work was done and published by Bludov and coworkers [161]. In this work,they

studied numerically the rogue waves in the two-component BECs which are described by

the coupled set of two Gross-Pitaevskii (GP) equations with variable scattering lengths,

i.e. coefficients of nonlinearity. Specifically, they presented the rogue wave solutions for

various combinations of these coefficients that admit such solutions. Among their major

results we can mention:

• Non trivial relation between the existence of vector Peregrine solutions and the

characteristics of the modulational instability of the system.

• Inhibition of the rogue waves due modulational stability induced by inter-atomic

interaction

• Rogue waves induced by interatomic interactions in the mixture of condensates with

positive scattering lengths (i.e.positive intra-atomic interactions)

• Rogue waves that are accompanied by the exchange of particles between the two

components
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• Possibility of existence of dark rogue waves.

To be specific, the authors have considered a spinor BEC composed of two hyperfine

states,say of the states of 87Rb atoms [162] confined at different vertical positions by

parabolic traps and coupled by a time-dependent coupling field. Then, in the mean-field

approximation the system is described by the GP equations [163].

iψ1t = −ψxx + (g1|ψ1|2 + g|ψ2|2) + β(t)ψ2

iψ2t = −ψxx + (g|ψ1|2 + g2|ψ2|2) + β(t)ψ1.
(1.4)

This equation is written on a dimensionless form where the quantity x and t scale the

coordinates and the time respectively. The coefficient of proportionality here depends on

a particular choice of the transverse trap, and generally is either one or of the order of

one. The last terms in Equation (1.4) describes the possibility of conversion between the

two hyperfine states, which can be originated by the external magnetic field. In this case,

the factor β can be expressed in terms of such field. The authors emphasized that the

results are not restricted to the described case.

To limit the number of possibilities, in the present work the authors deal only with

the case where the intra-species interactions have the same signs of the scattering length,

i.e. when g1g2 > 0. They have started some preliminary comments on the system (1.4),

mentioning that an important parameter of the theory is the determinant of the nonlinear

coefficients: ∆ = g1g2− g2. Which is known to determine the thermodynamic or modula-

tion instability. The authors have chosen the solution in the form of the one-component

rogue wave, namely

Ψ(x, t) =
1√
−g

(
1− 4

1 + 2it

1 + 2x2 + 4t2

)
, (1.5)

which is valid for g < 0. For the system under consideration, the solutions are

ψ1(x, t) = a1Ψ(x, t), ψ2(x, t) = a2Ψ(x, t)eiδ, (1.6)

where a1 = g−g2
∆

and a2 = g−g1
∆

.

The system (1.6) describes a synchronized evolution of the two components, so they should

be called vector rogue waves. The depictions are shown in Figure (21).

The system becomes physically significantly different when the linear coupling is taken

into account i.e β(t) ̸= 0. The number of particles in the first and the second components

Thesis dissertation Year 2020



1.2 Physical results obtained 33

relative to the total number of particles can be expressed using equation (1.6) as∫
|ψ1,2(x)|2dx∫
|Ψ(x)|2dx

= − 1

2g
[1± sin(2α) cos(2B(t))],

where the signs + and - in the right hand side correspond to the first and the second

components, respectively. Choosing

B(t) =
π

4

(
1− b

t− t0
t0

)
,

the particles are periodically swapped between the two components. The Figure (22) show

the results of numerical simulation of vector rogue waves in the Bose-Einstein condensates

with linear coupling.

In the first case, b = 1, shown in Figure (22a), the maximum of the rogue wave

is located at the maximum of the oscillating background. All particles at t = 0 are

concentrated in the second component. In the second case, b = 2, shown in Figure (22b),

the maximum of the rogue wave is located at the slope of the oscillating background. There

is an equal number of particles in the two components. Finally, when the frequency of the

oscillation of the particles between the two components is high (b = 15), the background

becomes fast oscillating as can be seen in Figure (22c).

We go forward while presenting other interesting results in physics.

1.2.3 Rogue wave in plasma

The existence of rogue wave dynamics in plasmas was reported by Bailung and cowork-

ers in Ref. [87].

The experimental observation of Peregrine solitons in a multicomponent plasma with

the critical concentration of negative ions was reported. A slowly amplitude modulated

perturbation undergoes self-modulation and gives rise to a high amplitude localized pulse.

The measured amplitude of the Peregrine soliton is 3 times the nearby carrier wave ampli-

tude, which agrees with the theory. The numerical solution of the nonlinear Schrödinger

equation is compared with the experimental results.

In a multicomponent plasma with the critical density of negative ions, the NLSE

describing the evolution of ion-acoustic wave with weak nonlinearity is given by [88,89]

i
∂ψ

∂τ
+ p

∂2ψ

∂2ξ
+
q

4
|ψ|2ψ = 0, (1.7)
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where ψ is the wave amplitude normalized by the electron temperature (Te), the time

τ and the distance ξ in the wave frame are normalized, respectively by the ion plasma

period ω−1
pi = (ε0mi/ne

2)1/2 and the electron debye length λD = (ε0κTe/ne
2)1/2, where mi

is the positive ion mass and n is the unperturbed electron density. The group velocity Vg

of the propagating wave normalized by (κTe/mi)
1/2 is given by

Vg =
ω3

dκ

(
1− r

1 + r/µ

)
≡ dω

dκ
.

Here, r and µ represent the density ration and the mass ration, respectively, of the negative

ions to that of the positive ions. The angular frequency ω and the wave number κ are

related with the following dispersion relation:

ω2 =
κ2

1 + κ2

(
1 + r/µ

1− r

)
.

The dispersion coefficient p is given by

p = −3

2

ω5

κ4

(
1− r

1 + r/µ

)2

≡ 1

2

d2ω

dκ2
,

with the nonlinear coefficient q = − dω
d|ω|2 .

As the dispersion relation coefficient p is always negative, a finite amplitude sinusoidal

wave is modulationally unstable for q < 0 [90]. The NLSE 1.7 has a rational solution of

the form [54]

ψ(ξ, τ) =
2
√
q

[
4(1 + iτ)

1 + 4τ 2 + 2ξ2/p
− 1

]
exp(iτ). (1.8)

The development of the initial amplitude modulated wave packet is then given by

η(x, t) = Reψ(x, t)exp[i(κx− ωt)], (1.9)

where ψ(x, t) is dimension form of equation 1.8 which can be obtained by using the

transformation ξ → a0κD(x − Vgt) and τ → a20ωpit, where a0 represents the initial wave

amplitude of the background carrier wave. The Figures 16, 17, 18, 19 and 20 show the

rogue wave dynamics in a multicompent plasma.

Rogue waves have been shown to exist in nonlinear physical systems. Many mathe-

matical tools have been used to construct analytical rational rogue wave solutions to the

nonlinear Schrödinger equation and its extensions , the complex modified Kdv equation,
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the Hirota equation, the AB system, the Sasa Satuma equation, the Maxwell-Bloch equa-

tion, just to name a few. The Darboux matrix method is among other tools used to derive

rogue wave solution the nonlinear physical wave equations. In the following we present in

detail the procedure on how this powerful technic is used to derive rogue wave solution,

through a typical example.

1.2.4 Extreme waves that appear from nowhere: On the nature

of rogue waves

This work was reported in reference [158]. It was done by Akhmediev and coworkers.

They have numerically calculated chaotic waves of the focusing nonlinear Schrödinger

equation (NLSE) starting with a plane wave modulated by relatively weak random waves.

They have shown that the peaks with highest amplitude of the resulting wave composition

(rogue wave) can be described in terms of exact solutions of the NLSE in the form of the

collision of Akhmediev breathers.

In the normalized form, the popular NLSE is written as

i
∂ψ

∂x
+

1

2

∂2ψ

∂t2
+ |ψ|2ψ = 0, (1.10)

where x is the propagation distance and t is the transverse variable. This notation is

standard both in nonlinear fiber optics and in the theory of ocean waves. Note that

ψ represents the envelope of a physical solution, and, in optics, its squared modulus

represents a measurable quantity, viz. intensity. The authors used as the initial condition

when solving equation (1.10) a plane wave solution with a random noise superimposed on

it,

ψ(x = 0, t) = [1 + µf(t)] (1.11)

where f(t) is a normalized complex random function whose standard deviation is σ =

1/
√
3. A typical example of the initial condition (1.11) is shown in Figure (23)

The authors were interested in the highest amplitudes of the resulting ocean surface. In

each numerical run, they singled out the maximum values of the field which can potentially

be rogue waves. Namely, at each x, they found the absolute maximum of the function

|ψ(x = const, t)| and plotted it against the x value. The corresponding plot for the initial

condition presented in Figure (23) is shown in Figure (24).
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The highest amplitude that appears in this numerical run is close to 5. This amplitude

cannot be associated with any of the first-order solutions since the maximum amplitude

in that case is 3. The latter is attributed to the first-order rational solution (Peregrine

soliton):

ψ =

(
1− 4

1 + 2ix

1 + 4x2 + 4t2

)
eix. (1.12)

This solution is shown in Figure (25)

It is worth noting that 5 is exactly the amplitude of the second-order rational solution

of the NLSE [164], given as

ψ =

(
1− G+ iH

D

)
eix, (1.13)

where the quantities G, H and D are given by

G = − 3
16

+ 3
2
t2 + t4 + 9

2
x2 + 6t2x2 + 5x4,

H = x
(
−15

8
− 3t2 + 2t4 + x2 + 4t2x2 + 2x4

)
,

D = 3
64

+ 9
16
t2 + 1

4
t4 + 33

16
x2 − 3

2
t2x2 + t4x2 + 9

4
x4 + t2x4 + 1

3
x6.

This solution is shown in Figure (26)

Because its maximum amplitude is equal to 5, it can, in principle, explain the high

amplitudes that the authors observed in the numerical simulations. However, it is useful

to take into account that this solution is a nonlinear superposition of two rational solutions

of first-order. As each of them is localized both in x and t directions, their appearance at

the same position simultaneously would be an extremely rare event.

Akhmediev breathers and their collisions

As an alternative, the authors considered the collision of two breather waves known

as akhmediev breathers (ABs). These are extended in the t direction, so such a collision

would have higher chance of occurring in a chaotic field. In order to construct these

solutions, they used the Darboux transformation.

The condition of integrability of the NLSE is the compatibility of the two following

linear equations:

Rt = (lJ + U)R, Rt = (l2J + lU +
1

2
V )R. (1.14)
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Where U , J and V are matrices given as follows

U =

 0 iψ∗

iψ 0

 , J =

 i 0

0 −i

 , V =

 −i|ψ|2 ψ∗
t

−ψt i|ψ|2

 ,

while R is a column matrix written as R =

 r

s

 and l is a complex eigenvalue.

The eigenvalue l in equation (1.14) is practically an arbitrary complex number that

appears as the parameter of the family of solutions that are going to be constructed. In the

case of solutions related to modulation instability, the real part of l is the velocity of the

solution, while the imaginary part characterizes the frequency of the periodic modulation.

In view to construct solution that is a collision of two first-order breathers, the authors

selected two eigenvalues l1 and l2, that have to be different for higher-order solution to

exist.

Following the procedure given in reference [165], They have assumed that the seeding

solution of the NLSE is a plane wave of amplitude 1, given as

ψ0 = eix.

The two linear solutions compatible with the system (2.40) are

r = A exp[i(2χ+ kt+ lkx)/2]−B exp[−i(2χ+ kt+ lkx)/2]e−
x
2 , (1.15)

s = A exp[i(−2χ+ kt+ lkx)/2] +B exp[−i(−2χ+ kt+ lkx)/2]e
x
2 ,

where χ = 1
2
arccos(k

2
), k = 2

√
1 + l2, A and B are constants of integration given as

follows
A = exp[(ilkx0 − ikt0 − iπ/2)/2]

B = exp[(−ilkx0 + ikt0 + iπ/2)/2]
, (1.16)

Substituting (1.16) into (1.15) yields

r1 = exp[(2iχ1 + ik1t− iπ/2 + il1k1x)/2]− exp[(−2iχ1 − ik1t+ iπ/2− l1k1x)/2]e
−x

2 ,(1.17)

s1 = exp[(−2iχ1 + ik1t− iπ/2 + il1k1x)/2]− exp[(2iχ1 − ik1t+ iπ/2− l1k1x)/2]e
x
2 ,

where k1 = 2
√
1 + l21 and χ1 = 1

2
arccos(k1/2). Here x0 = 0 and t0 = 0, without lost of

generality. The subscripts 1 has been added to refer to the eigenvalue l1.
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The nontrivial solution that is found at the first step of the Darboux scheme is given

by

ψ1 = ψ0 + 2
(l∗1 − l1)s1r

∗
1

|r1|2 + |s1|2
. (1.18)

Inserting s1 and r1 into (1.18), the first-order breather solution or AB is obtained. The

corresponding plots are given in Figures (27) and (28).

The higher-order solution that combines two independent frequencies of modulation

k1 and k2, can be found using the next step of the Darboux transformation. For this end,

the authors used a different eigenvalue, namely, l = l2.

r2 = exp[(2iχ2 + ik2t− iπ/2 + il2k2x)/2]− exp[(−2iχ2 − ik2t+ iπ/2− l2k2x)/2]e
−x

2 ,(1.19)

s2 = exp[(−2iχ2 + ik2t− iπ/2 + il2k2x)/2]− exp[(2iχ2 − ik2t+ iπ/2− l2k2x)/2]e
x
2 .

The solution of the linear set which corresponds to the higher-order NLSE solution

can be written in term of r1, s1, r2 and s2, namely

r12 =
(l∗1 − l1)s

∗
1r1s2 + (l2 − l1)|r1|2r2 + (l2 − l∗1)|s1|2r2

|r1|2 + |s1|2
, (1.20)

s12 =
(l∗1 − l1)s1r

∗
1r2 + (l2 − l1)|s1|2s2 + (l2 − l∗1)|r1|2s2

|r1|2 + |s1|2
.

The higher-order solution of the NLSE then is

ψ12 = ψ1 + 2
(l∗2 − l2)s12r

∗
12

|r12|2 + |s12|2
. (1.21)

This solutions are shown in figures (29) and (30). The frequencies are k1 = 1.6 and

k2 = 1.43. These frequencies are incommensurate. Thus, the superposition has one

absolute maximum. With the choice of the integration constants, it is located at the

origin. Even in this case, the central maximum of the solution is relatively high. It is

certainly higher than the crests of other wavelets in the solution. This maximum will

reach the value 5 when both k’s approach 1.

Qualitatively, the central part of the profile in each case looks very similar to the

higher-order rational solution. This is not unusual because the rational solutions are

limiting cases of the ABs in the infinite period limit. However, the probability of the

overlapping in the two-dimensional space of the high-order rational solutions is very low,

while ABs will necessarily collide, at least at one point. If they are moving with finite

velocities, then their collision is very similar to the collision of two solitons, except for the

direction of the localization and the periodicity of each breather.
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Comparison of numerical simulations with the exact solutions

The above results show that it is indeed possible that rogue waves can be attributed

to higher-order solutions. In order to confirm this conclusion, the authors made a detailed

comparison of the wave profile that appears in the simulations using random initial condi-

tions with the exact profiles defined by the analytic solutions. These plots are presented in

Figures (31) and (32) along the t and x directions, respectively. In each plot, the dashed

blue line is taken from the numerical simulations. The exact rational solution is shown by

the dotted red line, while the collision of two Akhmediev breathers is shown by the green

solid line.

The conclusion is that the amplitude profile around the peaks indeed closely resembles

both the second-order rational solution and the result of the collision of two ABs. The

central part of the peak accurately follows each of the exact profiles. The discrepancy in

the tails of the peak are due to random smaller amplitude waves surrounding the peak.

Conclusion

Throughout this chapter, we have presented the effects of the rogue wave on the

marine liners. We have presented some historical testimonies of that phenomenon. It

is important to notice that the end of these histories is not enthusiastic. It has been

proved that rogue waves appear not only in oceanic condition but also in physical systems.

So we have presented some interesting results obtained in the literature in some fields

such as optics, plasma and Bose-Einstein condensates. These results have been obtained

numerically, not analytically; So Akhmediev and coworkers have derived the rogue waves

solution of the nonlinear Schrödinger equation and have compared the results with those

obtained numerical. They have also shown that a rogue wave can appear as a collision of

two breather wave called Akhmediev breather. We now go further while presenting the

methodologies employed in this work to derive rogue wave solutions.
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Figure 13: Simulation of optical rogue waves using the generalized nonlinear Schrödinger

equation. a) The time trace and histogram of 1,000 events with red-pass filtering from

1,155 nm. The initial (seed) pulses have width 3 ps, peak power 150 W, fractional noise

0.1 percent, and noise bandwidth 50 THz. The vertical axis of the histogram contains a

scale break to make it easier to see the disparity between the most common events at low

peak power and the rogue events at high peak power. b, The complete relative spectral

densities of the initial pulse (black line), a typical event (grey line) and the rare event

shown in c (red line). c, The markedly different temporal profiles of the seed pulse and

the rare event indicated in the histogram. The typical events from the histogram are so

tiny that they are not visible on this linear power scale. The shaded blue region on the

seed pulse delineates the time window that is highly sensitive to perturbation [29].
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Figure 14: Time-wavelength profile of an optical rogue wave obtained from a short-time

Fourier transform. The optical wave has broad bandwidth and has extremely steep slopes

in the time domain compared with the typical events. It appears as a ’wall of light’

analogous to the "wall of water" description of oceanic rogue waves. The rogue wave

travels a curved path in time-wavelength space because of the Raman self-frequency shift

and group velocity dispersion, separating from non-solitonic fragments and remnants of

the seed pulse at shorter wavelengths. The grey traces show the full time structure and

spectrum of the rogue wave. The spectrum contains sharp spectral features that are

temporally broad and, thus, do not reach large peak power levels and do not appear

prominently in the short-time Fourier transform [29].
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Figure 15: Evolution of the atomic density according to (a) the exact solution 1.3 , (b) TF

approximation with i =0.02, (c) Mexican hat, and (d) uniform ρ2i = 1 initial conditions.

In (b) , (c) , and (d), the initial phase distribution θi is taken from Eq.(1.7) . The initial

time is ti = −3. The inset in (c) shows the initial densities obtained from Eq. (1.2)

(dashed line) and from the Mexican hat approximation ψMH (solid line). In (b) ,(c) and

(d), we used g = 0.05 [85].
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Figure 16: Numerical result of equation 1.9 for different values of a0. Parameters used

are ω = 0.7ωpi,(ωpi = 492kHz), k = 0.74kD = 1/λD = 20.0cm−1, x = 13.0cm [87].
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Figure 17: Observed signals of the electron density perturbation at different probe po-

sitions from the separation grid. The top trace is the applied signal with carrier and

modulation frequencies 350 and 31 kHz, respectively. Peak to peak amplitude of the ap-

plied carrier wave (Vc) is fixed at 5.4 V. Signals observed at 10.5 to 14.5 cm are shown

with different amplitude scale (0.10/div) for better resolution [87].
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Figure 18: Signals recorded for different excitation amplitudes of the carrier wave. The

probe is fixed at 13.6 cm from the separation grid. Top trace represents the applied signal

with carrier and modulation frequencies 350 and 31 kHz, respectively. [87].
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Figure 19: Comparison of the time series signal (solid line) observed at 13.6 cm with the

theoretical Peregrine soliton (dashed line) obtained by using Eq. (3). The applied carrier

and modulation frequencies are 350 and 31 kHz, respectively. Vc = 5.9 V. The parameters

used for numerical are ω = 0.7ωpi, (ωpi = 492kHz), k = 0.74kD, KD = 1/λD = 20.0cm−1

[87].
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Figure 20: Measured widths W normalized with the electron Debye length λD as a

function of amplitude δn (peak to peak)/n, where δn is the perturbed electron density.

The solid curve is the theoretical width estimated from the wave signals as shown in Fig.

16 [87].
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Figure 21: Rogue waves in binary mixtures without linear coupling. Vector rogue waves

for the case when the parameters are g1 = 0.5, g2 = −0.7, g = 1 (∆ < 0). The numerical

results are made for the initial conditions given by the equation (1.6) with δ = 0 at

t = −3 (panel a); with shifted maxima of the component along the x-axis (panel b); with

deturned amplitudes of the coefficients (panel c). [161].
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Figure 22: Rogue waves in binary mixtures with linear coupling. Vector rogue waves

profile for g1,2 = g = −1, α = π/4, t0 = −3 and linear coupling with (a) b = 1, (b)

b = 2 and (c) b = 15 [161].
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Figure 23: Typical example of a small fraction of the initial condition in the form of a

plane wave perturbed by a random function f(t) (dotted blue line) with an amplitude of

µ = 0.6, where the mean width of the irregularities is t = 3.9. The full temporal interval

is much wider and extends from t = −1000 to t = 1000. The red solid curve shows part

of the field modulus, |ψ| , at x = 12.06 where it reaches its highest value, viz. 5 [158].
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Figure 24: The maximum of the chaotic field f(t) = |ψ(x = const, t)| vs. propagation

distance, x, for the case of the initial condition partially represented in Figure (23). Note

that the average amplitude of the two-dimensional field, |ψ(x, t)|, is around 1, i.e. it is

much lower. The highest maximum in this simulation is 5. It appears at x = 12.06 [158].
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Figure 25: First-order rational solution to the NLSE. [158].

Figure 26: Higher-order rational solution to the NLSE. [158].
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Figure 27: Single Akhmediev breather with nonzero velocity. The eigenvalue is: l1 =

0.08 + i0.9 [158].

Thesis dissertation Year 2020



1.2 Physical results obtained 54

Figure 28: Single Akhmediev breather with zero velocity. It corresponds to the eigenvalue

l1 = i0.9 [158].
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Figure 29: Collision of two Akhmediev breathers with zero velocities. The eigenvalues

are: l1 = i0.6 and l2 = −i0.7 [158].
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Figure 30: Collision of two Akhmediev breathers with nonzero velocities. The eigenvalues

are: l1 = 0.05 + i0.9 and l2 = −0.05 + i0.9 [158].
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Chapter 2

Methodologies of investigation: The

Darboux matrix method an the

homoclinic test approach .

Introduction

The general scheme for solving the NLSE from given initial conditions is the inverse

scattering technique [91]. Certain classes of solutions can also be constructed with the use

of dressing methods. A particular case of the latter is the so-called Darboux transforma-

tion (DT) [92]. The DT can be used to construct multisoliton solutions. Solutions of each

class consist of corresponding hierarchy of solutions. rational solution belong to a special

class and generally cannot be constructed using the traditional DT technique. The lowest-

order rational solution or Peregrine soliton can be obtained either as a limiting case of

an Akhmediev breather. Obtaining higher-order rational solutions in a similar procedure

would be highly involved although not completely impossible. Thus the traditional DT

has been modified such a way that limits are taken in the intermediate calculations. This

modification allows to find a way to construct the whole hierarchy of rational solutions. A

new method, homoclinic breather limit method (HBLM), for seeking rogue wave solution

of nonlinear evolution equation is proposed. A new family of homoclinic breather wave so-

lution, and rational homoclinic solution (homoclinic rogue wave) for the Davey-Stewartson

I (DSI) and DSII equations are obtained using the extended homoclinic test method and
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Figure 31: (Dashed blue line) Amplitude profile of the chaotic wave along t around the

point of the highest maximum amplitude in Figure (24). It is compared with (dotted

red line) the higher-order rational solution of the NLSE and (green solid line) with the

collision of two ABs with l1,2 = ±0.05 + 0.99 [158].

homoclinic breather limit method (HBLM), respectively. Moreover, rogue wave solution

is exhibited as period of periodic wave in homoclinic breather wave approaches to infi-

nite.This result shows that rogue wave can be generated by extreme behavior of homoclinic

breather wave for higher dimensional nonlinear wave fields.

2.1 Original Darboux transformation

In 1882, G. Darboux [93] studied the eigenvalue problem of a linear partial differential

equation of second order (now called the one- dimensional Schrödinger equation)

−ϕxx − u(x)ϕ = λϕ (2.1)

Here u(x) is a given function, called potential function; λ is a constant, called spectral

parameter. He found out the following fact. If u(x) and ϕ(x, λ) are two functions satisfying
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Figure 32: Amplitude profiles around the highest maximum along the x-direction. The

notations are the same as in Figure (31) [158].

2.1 and f(x) = ϕ(x, λ0) is a solution of the equation 2.1, for λ = λ0 where λ0 is a fixed

constant, then the functions u′ and ϕ′ defined by

u′ = u+ 2(ln f)xx, ϕ′(x, λ) = ϕx(x, λ)−
fx
f
ϕ(x, λ), (2.2)

satisfy

−ϕ′
xx − u(x)ϕ′ = λϕ′, (2.3)

which is of the same form as 2.1. Therefore, the transformation 2.2 transforms the

functions (u, ϕ) to (u′, ϕ′) which satisfy the same equations. This transformation (u, ϕ)

→ (u′, ϕ′) is the original Darboux transformation, which is valid for f ̸= 0.

Then explicit calculation from 2.2 gives new special solutions of 2.1. Since ϕ′ is known,

it is not necessary to solve any linear differential equations again to obtain (u′′, ϕ′′). That

is, we only need algebraic calculation to get (u′′, ϕ′′)etc.: (u, ϕ) → (u′, ϕ′) → (u′′, ϕ′′) →

· · · (un, ϕn) →. Here the superscripts denote the order of the solution to the system.
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2.1.1 Darboux transformation of the modified KdV equation.

The method of Darboux transformation can be applied to many equations such as the

modified KdV equation (MKdVE). the sine-Gordon equation etc. The MKdVE is given

as follows

ut + 6u2ux + uxxx = 0. (2.4)

Its integrability is ensured by the following over-determined linear system [166]

Φx = UΦ, Φt = V Φ, (2.5)

where U =

 λ u

−u −λ

 and V =

 −4λ3 − 2u2λ −4uλ2 − 2uxλ− 2u3 − uxx

4uλ2 − 2uxλ+ 2u3 + uxx 4λ3 + 2u2λ


,

that is, (2.4) is the necessary and sufficient condition for Φxt = Φtx being an identity.

The system (2.5) is called a Lax pair of (2.4) and λ a spectral parameter. Here Φ may be

regarded as a column solution or a 22 matrix solution of (2.5)

For a given solution u of the MKdVE, suppose we know a fundamental solution of

(2.5)

Φ(x, t, λ) =

 Φ11 Φ12

Φ21 Φ22

 (2.6)

which composes two linearly independent column solutions of (2.5).

Let λ1 , µ1 be arbitrary real numbers and

σ =
Φ22 + µ1Φ21

Φ12 + µ1Φ11

(2.7)

be the ratio of the two entries of a column solution of the Lax pairs given in (2.5).

Construct the matrix

D(x, t, λ) = λI − λ1
1 + σ2

 1− σ2 2σ

2σ σ2 − 1

 (2.8)

and let Φ
′
(x, t, λ) = D(x, t, λ)Φ(x, t, λ). Then it is easily verified that Φ

′
(x, t, λ) satisfies

Φ
′

x = U
′
Φ

′
, Φ

′

t = V
′
Φ

′
, (2.9)
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where U ′
=

 λ u
′

−u′ −λ

 and V ′
=

 −4λ3 − 2u
′2λ −4u

′
λ2 − 2u

′
xλ− 2u

′3 − u
′
xx

4u
′
λ2 − 2u

′
xλ+ 2u

′3 + uxx 4λ3 + 2u
′2λ


with

u
′
= u+

4λ1σ

1 + σ2
(2.10)

equation (2.9) is similar to (2.5). The only difference is that u is replaced by u
′ given

in equation (2.10). For any solution Φ of (2.5), DΦ is a solution of (2.9), hence (2.9) is

solvable for any given initial data (the value of Φ at some point (x0, t0)). In other words,

(2.9) is integrable. The integrability condition of (2.9) implies that u is also a solution of

the MKdVE. Using this method, we obtain a new solution of the MKdVE together with

the corresponding fundamental solution of its Lax pair from a known one.

The above conclusions can be summarized as follows. Let u be a solution of the

MKdVE and Φ be a fundamental solution of its Lax pairs. Take λ1 , µ1 to be two

arbitrary real constants, and let σ be defined by (2.7), then (2.10) gives a new solution u

of the MKdVE, and the corresponding solution to the Lax pair can be taken as DΦ. The

transformation (u,Φ) → (u
′
,Φ

′
) is the Darboux transformation for the MKdVE. This

Darboux transformation in matrix form can be done successively and purely algebraically

as (u,Φ) → (u
′
,Φ

′
) → (u

′′
,Φ

′′
) · · ·

Single and double soliton solution to the MKdVE

Starting with the trivial solution u = 0 of the MKdVE, one can use the Darboux

transformation to obtain the soliton solutions. For u = 0, the fundamental solution of the

Lax pair can be obtained as

Φ(x, t, λ) =

 exp(λx− 4λ3t) 0

0 exp(−λx+ 4λ3t)

 (2.11)

by integrating (2.5). Taking λ1 ̸= 0 and µ1 = exp(2α1) > 0, then (2.7) is reduced to

σ = σ1 = exp(−2λ1x+ 8λ31t− 2α1), (2.12)

hence

D = λI − λ1
cosh v1

 sinh v1 1

1 − sinh v1

 , (2.13)
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where v1 = 2λ1x + 8λ31t − 2α1. Then equation (2.10) gives the single soliton solution to

the MKdVE written as follows

u
′
= 2λ1sech(v1). (2.14)

If we take u′ as a seed solution, a new Darboux matrix can be constructed from Φ
′

and a series of new solutions of the MKdVE can be obtained.

We write down the second Darboux transformation explicitly. Suppose u is a solution

of the MKdVE (2.4) , Φ is a fundamental solution of the corresponding Lax pair (2.5).

Construct the Darboux matrix D = (Dij) according to (2.7) and (2.9) and let σ = σ1.

Moreover, take constants λ2 ̸= 0 ( λ2 ̸= λ1 ) and µ2 = exp(2α2). According to equation

(2.7)

σ
′

2(x, t, λ2) =
Φ

′
22 + µ2Φ

′
21

Φ
′
12 + µ2Φ

′
11

. (2.15)

Substituting Φ
′
= DΦ into it we obtain

σ
′

2(x, t, λ2) =
D21 +D22σ2
D11 +D12σ2

, (2.16)

where σ2 = σ2(λ2) =
Φ22+µ2Φ21

Φ12+µ2Φ11
.

Using the expression of D given in (2.13), we have

Φ
′
(x, t, λ) =

 (λ− λ1 tanh v1)e
λx−4λ3t − λ1sechv1e

−λx+4λ3t

−λ1sechv1eλx−4λ3t(λ+ λ1 tanh v1)e
−λx+4λ3t

 , (2.17)

hence

σ
′

2 =
−λ1sechv1 + (λ2 + λ1 tanh v1)e

−v2

λ2 − λ1 tanh v1 − λ1sechv1e−v2
, (2.18)

where v2 = 2λ2x − 8λ32t + 2α2. According to the single soliton solution, we obtain the

following

u
′′
=

2(λ22 − λ21)(λ2 cosh v1 − λ1 cosh v2)

(λ22 + λ21) cosh v1 cosh v2 − 2λ1λ2(1 + sinh v1 sinh v2)
. (2.19)

This is called the double soliton solution of the MKdVE.

Thus, the original Darboux transformation is not sufficient to derive higher-order wave

solution. Then Guo and coworkers [94] have introduced the so called generalized Darboux

transformation. That is what we are going to discuss in the next section.
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2.2 Generalized Darboux transformation

2.2.1 Generalized Darboux transformation of the KdV equation

This work was reported in reference [94]. First of all, let us present the well-known

classical Darboux transformation (DT) KdV equation.

Considering the Sturm-Liouvile equation

−Φxx + uΦ = λΦ (2.20)

and introduicing the following first-order operator

T [1] = ∂x −
Φ1x

Φ1

,

where Φ1 is the fixed solution of (2.20) with λ = λ1, then the DT

Φ[1] = T [1]Φ =
Wr(Φ1,Φ)

Φ1

(2.21)

converts equation (2.20) into

−Φ[1]xx + u[1]Φ[1] = λΦ[1], (2.22)

where u[1] = u − 2(lnΦ1)xx and Wr(Φ1Φ) = Φ1Φx − Φ1xΦ is the standard Wronskian

determinant.

The N-times iterated or n-fold DT yields the Crum theorem

−Φ[N ]xx + u[N ]Φ[B] = λΦ[N ], u[N ] = u− 2(lnΦ1)xx (2.23)

where Φ[N ] = Wr(Φ1,··· ,ΦN ,Φ)
Wr(Φ1,··· ,ΦN )

and Φ1, · · · ,ΦN are solution of (2.20) at λ = λ, · · · , λN .

It is obvious that Φ1[1] = T [1]Φ1 = 0, namely Φ1 is mapped to a trivial solution. This

fact implies that a seed solution may not be used more than once when considering the

iterations for the DT. However, as pointed out in reference [92], a generalized DT does

exist. Then this result have to be derived in a way which may be readily generalized. We

start with the assumption that

Φ2 = Φ1(k1 + ε), (2.24)
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where k1 = f(λ1) is a monotonic function and ε is a small parameter. Expanding Φ2 in a

series in ε, we get

Φ2 = Φ1 + Φ
[1]
1 ε+ Φ

[2]
1 ε

2 + · · · ,

where Φ
[i]
1 = 1

i!
∂iΦ1(k)

∂ki
|k=k1 . Since Φ2[1] = T1[1]Φ1 is a solution to equation (2.21 ), so is

Φ2[1]
ε

. Taking the limit ε→ 0for this solution, we find

Φ1[1] = lim
ε→0

T [1]Φ1(k1 + ε)

ε
= T [1]Φ

[1]
1 , (2.25)

which is a nontrivial solution for (2.21) at λ = λ1. This solution may be adopted to do

the second-step DT, that is,

T [2] = ∂ − Φ1,x[1]

Φ1[1]
, u[2] = u− 2(lnWr(Φ1,Φ

[1]
1 ))xx. (2.26)

Combining these two DT, we obtain

−Φ[2]xx + u[2]Φ[2] = λΦ[2], Φ[2] =
Wr(Φ1,Φ

[1]
1 ,Φ)

Wr(Φ1,Φ
[1]
1 )

.

This process may be continued and results in the so called generalized DT for the

system (2.20). Indeed, let Φ1,Φ2, · · ·ΦN n different solution for (2.20) at λ1, λ2, · · · , λn,

and consider the expansions

Φi(ki + ε) = Φ1(ki) + Φ
[1]
1 ε+ · · ·+ Φ

[mi]
i + · · · ,

with ki = f(λi) (i = 1, 2, · · · , n) then we have the following

u[N ] = u− 2(ln(W1))xx, Φ[N ] =
W2

W1

, (2.27)

with W1 =Wr(Φ1, · · · ,Φ[m1]
1 ,Φ2, · · · ,Φ[m2], · · · ,Φn, · · · ,Φ[mn]

2 ) and

W2 = Wr(Φ1, · · · ,Φ[m1]
1 ,Φ2, · · · ,Φ[m2], · · · ,Φn, · · · ,Φ[mn]

2 ,Φ)

solve

−Φ[N ]xx + u[N ]Φ[N ] = λΦ[n], where m1 +m2 + · · ·mn = N − n, mi ≥ 0, mi ∈ Z.

The generalized Darboux transformation (GDT) presented above may be used to gen-

erate both solitons and rational solutions for the KdV equation. Let us illustrate this

with the following examples. It is well known that the KdV equation,

ut − 6uux + uxx = 0, (2.28)
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takes (2.20) as its spatial part of the spectral problem and the corresponding temporal

part reads

Ψt = −4Ψxxx + 6uΨx + 3uxΨ.

In the case of N distinct spectral parameters, we will have the Wronskian representa-

tion for the N-soliton solution. To get rational solutions, one starts with the seed solution

u = c, where c is a real constant and Ψ1 = sin[k1(x+ (4k21 + 6c)t) + p(k1)], k1 =
√
λ1 − c

and p(k1) is a polynomial of k1. Now expanding the function Ψ1 at k1 = 0 and taking

p(k1) = 0 for convenience, we have

Ψ1 = (x+6ct)k1+[−1/6(x+6ct)3+4t]k31+[1/120(x+6ct)5−2t(x+6ct)5−2t(x+6ct)2]k51+· · · ,

therefore, Ψ[0]
1 = x + 6ct, Ψ[1]

1 = −1/6(x + 6ct)3 + 4t, Ψ[2]
1 = 1/120(x + 6ct)5 − 2t(x +

6ct)5 − 2t(x+ 6ct)2.

Then the generalized Darboux transformation provides us the rational solution for the

KdV equation. Namely,

u[3] = c+
G

H2
,

where G = 12[279936c5t5(216c5t5 + 360c4xt4 + 270c3x2t3 + 120c2x3t2 + 35cx4t + 7x5) +

38880c4t4(180t2 + 7x6) + 25920c3xt3(x6 + 180t2) + 1620c2x2t2(x6 + 720t2) + 60ct(x9 +

2160t2x3 + 4320t3) + 43200t3x+ x10 + 5400x4t2],

H = 3888c4t4(12c2t2+12cxt+5x2)+4320c3t3(x3+3t)+540c2xt2(x3+12t)+36cx2t(x3+

30t) + x6 − 720t2 + 60x3t.

The positon solutions for the KdV equation may be found in this way, according to

the work done in reference [167].

2.2.2 Generalized Darboux transformation and rogue wave solu-

tion to the nonlinear Schrödinger equation

In this section, we extend the idea discussed in the previous section to the nonlinear

Schrödinger (NLS) equation and construct a generalized Darboux transformation for it.

Furthermore, we show that this Darboux transformation enables one to obtain, apart from

the soliton solutions, rational solutions including multi-rogue-wave solutions.
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The focusing NLS equation

iqt +
1

2
qxx + |q|2q = 0,

is the compatibility condition of the linear spectral problems,

Ψx = [iζσ1 + iQ]Φ,

Ψt = [iζ2σ1 + iζQ+ 1
2
σ1(Qx − iQ2)]Ψ,

(2.29)

where σ1 =

 1 0

0 −1

, Q =

 0 q∗

q 0

.

Now we manage to find a generalized Darboux transformation. As in the last section,

suppose that Ψ2 = Ψ1(ζ1 + δ) is a special solution for system, then after transformation

we have Ψ2[1] = T1[1]Ψ2. Expanding Ψ2 at ζ1, we have

Ψ = Ψ
[0]
1 +Ψ

[1]
1 δ +Ψ

[2]
1 δ

2 + ...+Ψ
[N ]
1 δN , (2.30)

where Ψ
[k]
1 = 1

k!
∂k

∂ζk
Ψ1(ζ)|ζ=ζ1 .

Through the limit process

lim
δ→0

T [1]|ζ=ζ1+δΨ2

δ
= lim

δ→0

(δ + T1[1])Ψ2

δ
= Ψ

[0]
1 + T1[1]Ψ

[1]
1 ≡ Ψ1[1], (2.31)

we find a solution to the linear system given in (2.29) with q[1] and ζ = ζ1. This allows

us to go to the next step of the Darboux transformation, namely,

T1[2] = ζ − ζ∗1 + (ζ∗1 − ζ1)P1[2],

q[2] = q[1] + 2(ζ∗1 − ζ1)(P1[2])21,
(2.32)

where P1[2] =
Ψ1[1]Φ1[1]†

Ψ1[1]†Φ1[1]
.

Similarly, the limit

lim
δ→0

[T [2]T [1]]|ζ=ζ1+δΨ2

δ2
= lim

δ→0

(δ + T1[2])(δ + T1[1])Ψ1

δ2

= Ψ
[0]
1 + (T1[2] + T1[1])Ψ

[1]
1

+T1[2]T1[1]Ψ
[2]
1 ≡ Ψ1[2], (2.33)

provides us a nontrivial solution for the linear spectral problem with q = q[2] and ζ = ζ1.

Thus we may do the third-step iteration of the Darboux transformation, which is the

following
T1[3] = ζ − ζ∗1 + (ζ∗1 − ζ1)P1[3],

q[3] = q[2] + 2(ζ∗1 − ζ1)(P1[3])21,
(2.34)
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where P1[3] =
Ψ1[2]Φ1[2]†

Ψ1[2]†Φ1[2]
.

Continuing the above process and combining all the Darboux transformation, a gen-

eralized Darboux transformation is constructed.

Let us consider an example to illustrate the application of the above formulas to the

construction of higher rogue wave solutions. To this end, we start with the seed solution

q[0] = eit. The corresponding solution for the linear spectral problem at ζ = ih is

Ψ1(f) =

 i(C1e
A − C2e

−A)e−
i
2
t

(C2e
A − C1e

−A)e
i
2
t

 (2.35)

with C1 =
(h−

√
h2−1)1/2√
h2−1

, C2 =
(h+

√
h2−1)1/2√
h2−1

and A =
√
h2 − 1(x+ iht).

Let h = 1 + f 2 expanding the vector function Ψ1(f) at f = 0, we have

Ψ1(f) = Ψ(0) + Ψ
[1]
1 f

2 + · · · , (2.36)

where Ψ1(0) =

 (−2t+ 2ix− i)e−
1
2
it

(2it+ 2x+ 1)e
1
2
it

,

Ψ
[1]
1 =

 ( i
2
x− 5

2
t+ i

4
− 2tx2 + 2

3
ix3 − 2

3
t3 − 2ixt2 − ix2 + 2tx+ it2)e−

1
2
t

(1
2
x+ 5

2
it− 1

4
− 2itx2 + 2

3
x3 − 2i

3
t3 − 2xt2 + x2 + 2itx− t2)e

1
2
t

.

It is clear that Ψ1(0) is a solution for (2.29) at ζ = i. By means of the formula given

in equation (2.31), we obtain

Ψ1[1] = lim
f→0

[if 2 + T1[1]]Ψ1(f)

f 2
= T1[1]Ψ

[1]
1 + iΨ1(0), T1[1] = 2i

(
I − Ψ1(0)Ψ1(0)

†

Ψ1(0)†Ψ1(0)

)
.

(2.37)

The above formulae yield the second-order rogue wave solution to the NLS equation.

Namely,

q[2] =

(
1 +

G1 + itG2

H

)
eit, (2.38)

with G1 = 36 − 288x2 − 192x4 − 1152t2x2 − 864t2 − 960t4, G2 = 360 + 576x2 − 192t2 −

384x4 − 768x2t2 − 384t4,

H = 64t6 + 192t4x2 + 432t4 + 396t2 + 192t2x4 − 288t2x2 + 9 + 108x2 + 64x6 + 48x4.

The corresponding plot in shown in Figure (33).
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Figure 33: Second-order rogue wave solution the nonlinear Schrödinger equation (2.38).

2.2.3 Generalized Darboux transformation and rogue wave solu-

tion to the complex modified KdV equation.

We illustrate the generalized DT by showing its application in the work done by

Zhaqilao [95].

In this work, the author have considered the complex modified Kdv equation given as

follows

ut +
1

2
uxxx + 3|u|2ux = 0, (2.39)

which has many physical applications [96] including electrodynamics, electromagnetic

wave in size-quantized films, internal waves for certain special density stratifications, elas-

tic media and traffic flow. The Lax-pair ensure the total integrability of a nonlinear wave

equation. Those of the equation 2.39 are given as

Φx = UΦ, Φt = V Φ, (2.40)

with U =

 λ u

−u∗ −λ


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Figure 34: A1 and A2 express the first-order rogue wave to equation (2.39) [95]

and V =

 −2λ3 − λ|u|2 + 1
2
(−u∗ux + uu∗x) −2λ2u− λux +

1
2
(−2|u|2u− uxx)

2λ2u∗ − λu∗x +
1
2
(2|u|2u∗ + u∗xx) 2λ3 + λ|u|2 − 1

2
(−u∗ux + uu∗x)

, where

Φ = (ψ(x, t), ϕ(x, t))T , λ is the spectral parameter, u∗ is the complex conjugate of the

potential u. The equation 2.39 can be easily obtained by the zero curvature equation

Ut − Vx + [U, V ] = 0.

A DT is actually a special gauge transformation

Φ[1] = TΦ, (2.41)

of solutions of the Lax-pairs given in equation 2.40. T is the Darboux matrix. It change

the Lax-pairs of equation 2.40 into a new one, by on the same form, namely,

Φ[1]x = U [1]Φ[1], Φ[1]t = V [1]Φ[1], (2.42)

where the matrices U [1] and V [1] have the same form as U and V , but have the new

potential u[1] therein.

Combining equation 2.41 and 2.42, we obtain the following,

U [1] = (Tx + TU)T−1, V [1] = (Tt + TV )T−1. (2.43)
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Figure 35: A1 and A2 show the second-order rogue wave solution to equation (2.39) [95]

From equation 2.43, it is possible to establish a relationship between the new potential

u[1] and the old one u. To this purpose, the Darboux matrix T is defined as

T = λI −HΛH−1, (2.44)

where I =

 1 0

0 1

, H =

 ψ1 −ϕ∗
1

ϕ1 ψ∗
1

, Λ =

 λ1 0

0 −λ∗1

 and Φ1 = (ψ1, ϕ1)
T is a

particular solution of the Lax-pairs given in equation 2.40 at u = u[0], λ = λ1. Therefore,

after the action of the Darboux matrix T in equation 2.43, the elementary DT of the

complex modified KdV equation 2.39 could be given by

Φ1[0] = T [0]Φ1, u[1] = u[0] + 2
(λ1 + λ∗1)ψ1[0]ϕ

∗
1[0]

|ψ1[0]|2 + |ϕ1[0]|2
(2.45)

and T [1] = λ2I −H[0]Λ[1]H[0]−1,

where T [0] = I,H[0] =

 ψ1[0] −ϕ∗
1[0]

ϕ1[0] ψ∗
1[0]

, Λ[1] =

 λ1 0

0 −λ∗1

, Φ1[0] = (ψ1[0], ϕ1[0])
T =

(ψ1, ϕ1)
T = Φ1 and u[0] = u.

If N distinct basic solutions Φk = (ψk, ϕk)
T (k = 1, 2, ..., N) of the Lax-pairs at
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λ = λk (k = 1, 2, ..., N) are given, the elementary DT can be repeated N times; then the

(N − 1)th-step DT for the complex modified KdV equation is

ΦN [N − 1] = T [N − 1]T [N − 2]...T [1]T [0]ΦN

u[N ] = u[N − 1] + 2
N∑
i=1

(λi + λ∗i )ψi[i− 1]ϕ∗
i [i− 1]

|ψi[i− 1]|2 + |ϕi[i− 1]|2
(2.46)

and T [i] = λi+1I −H[i− 1]Λ[i]H[i− 1]−1 (i = 1, 2, ..., N), where

H[i− 1] =

 ψ1[i− 1] −ϕ∗
i [i− 1]

ϕi[i− 1] ψ∗
i [i− 1]

, Λ[i] =

 λi 0

0 −λ∗i

 ,

Φi = (ψi, ϕi)
T (i = 1, 2, ..., N) is a solution of the Lax-pairs given in equation 2.40 at

λ = λi. Here the initial value is Φ1[0] = (ψ1[0], ϕ1[0])
T = (ψ1, ϕ1)

T = Φ1.

According to the above elementary DT, we derive a generalized DT for the complex

modified KdV equation 2.39. Let us start vith the assumption that

Ψ = Φ1(λ1, ε) (2.47)

is a special solution of the Lax-pairs. ε is a small parameter in equation (2.47). Expanding

Ψ in a Taylor series gives

Ψ = Φ
[0]
1 + Φ

[1]
1 ε+ Φ

[2]
1 ε

2 + ...+ Φ
[N ]
1 εN , (2.48)

where Φ
[k]
1 = 1

k!
∂k

∂λkΦ1(λ)|λ=λ1 (k = 1, 2, ...)

1. The zeroth-step generalized DT. It is easy to show that Φ1[0] is a solution to the

Lax-pairs given in equation (2.40) with u = u[0] and λ = λ1. A zeroth-step generalized

DT of the complex modified KdV equation (2.39) is given as follows

Φ1[0] = T [0]Φ1, u[1] = u[0] + 2
(λ1 + λ∗1)ψ1[0]ϕ

∗
1[0]

|ψ1[0]|2 + |ϕ1[0]|2
(2.49)

and T [1] = λ2I −H[0]Λ[1]H[0]−1,

where H[0] =

 ψ1[0] −ϕ∗
1[0]

ϕ1[0] ψ∗
1[0]

, Λ[1] =

 λ1 0

0 −λ∗1

,

Φ
[0]
1 =

 ψ
[0]
1

ϕ
[0]
1

 =

 ψ1[0]

ϕ1[0]

 = Φ1[0], u = u[0] and T1[0]Φ1[k] = Φ1[k] (k = 1, 2, ...).
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Figure 36: A1 and A2 show the third-order rogue wave solution to equation (2.39) [95]

2. The first-step generalized DT. Through the limit process

lim
ε→0

[T1[1]|λ=λ1+ε]Ψ

ε
= lim

ε→0

ε+ T1[1]|λ=λ1Ψ

ε
= Φ

[0]
1 + T1[1](λ1)Φ

[1]
1 ≡ Φ1[1], (2.50)

we find a solution to the Lax-pair with u[1] and λ = λ1. This allows us to go to a first-step

generalized DT, namely,

Φ1[1] = Φ1[0] + T1[1]Φ
[1]
1 , u[2] = u[1] + 2

(λ1 + λ∗1)ψ1[1]ϕ
∗
1[1]

|ψ1[1]|2 + |ϕ1[1]|2
, (2.51)

and T1[2] = λ1I − H1[1]Λ[1]H1[1]
−1, where H1[1] =

 ψ1[1] −ϕ∗
1[1]

ϕ1[1] ψ∗
1[1]

, Φ1[1] = ψ1[1]

ϕ1[1]

 .

3. The second-step generalized DT. Similarly, the limit

lim
ε→0

[ε+ T1[2]][ε+ T1[1]]Ψ

ε2
= Φ

[0]
1 + [T1[1] + T1[2]]Φ

[1]
1 + T1[2]T1[1]Φ

[2]
1 ≡ Φ1[2] (2.52)
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provide us with a non-trivial solution for the Lax-pairs with u[2] and λ = λ1. Thus

we may do the second-step iteration of the DT, which is the following:

Φ1[2] = Φ
[0]
1 + [T1[1] + T1[2]]Φ

[1]
1 + T1[2]T1[1]Φ

[2]
1 , (2.53)

u[3] = u[2] + 2
(λ1 + λ∗1)ψ1[2]ϕ

∗
1[2]

|ψ1[2]|2 + |ϕ1[2]|2
, (2.54)

and T1[2] = λ1I −H1[1]Λ[1]H1[1]
−1,

where H1[2] =

 ψ1[2] −ϕ∗
1[2]

ϕ1[2] ψ∗
1[2]

, Φ1[2] =

 ψ1[2]

ϕ1[2]

 .

4. The (N-1)th-step generalized DT. Continuing the above process and combining all

the Darboux matrices, an (N-1)th-step generalized DT is constructed as follows:

Φ1[N − 1] = Φ
[0]
1 +

[
N−1∑
l=1

T1[l]

]
Φ

[1]
1 +

[
k∑

l=1

N−1∑
l<k

T[1][k]T1[l]

]
Φ

[2]
1 (2.55)

+...+ [T1[N − 1]T1[N − 2]× ...× T1[1]]Φ
[N−1]
1

u[N ] = u[N − 1] + 2
(λ1 + λ∗1)ψ1[N − 1]ϕ∗

1[N − 1]

|ψ1[N − 1]|2 + |ϕ1[N − 1]|2
, (2.56)

and T1[k] = λ1I −H1[k − 1]Λ[1]H1[k − 1]−1,

where

H1[k − 1] =

 ψ1[k − 1] −ϕ∗
1[k − 1]

ϕ1[k − 1] ψ∗
1[k − 1]

 , Φ1[k − 1] =

 ψ1[k − 1]

ϕ1[k − 1]

 (k = 1, 2, ...).(2.57)

The formulae (2.55)-(2.57) are a recursive formulae of the (N-1)th-step generalized DT

for the complex modified KdV equation. Although it is not difficult to give the 2n × 2n

determinant representation of the (N-1)th-step generalized DT, we prefer the form of a

recursive formula, because it is very easy to construct higher-order rogue wave solutions

in the computer.

2.2.4 Rogue wave solutions.

In order to obtain the rogue wave solution, we start with the non-zero seed solution

u[0] = ei
√
6x. Then, the corresponding solution for the Lax-pairs given in equation (2.40)

at λ = ε2 + i
√
6

2
− 1 is

Thesis dissertation Year 2020



2.2 Generalized Darboux transformation 74

Φ1(ε) =

 (K1e
η +K2e

−η)e
i
√

6
2

(K2e
η +K1e

−η)e−
i
√

6
2

 (2.58)

where η = µ(x+ wt+
∑N

j=1(bj + icj)ε
2j) (bj, cj ∈ ℜ),

K1 =
√
i
√
6
2
− λ− µ, K2 =

√
i
√
6
2
− λ+ µ, µ =

√
2
2

√
2λ2 − 2i

√
6λ− 5,

w = 2− i
√
6λ− 2λ2, the quantities bj, cj and ε are free parameters.

Expanding the vector function Φ1(ε) given in (2.58) at ε = 0, we obtain

Φ1(ε) = Φ
[0]
1 + Φ

[1]
1 ε

2 + Φ
[2]
1 ε

4 + Φ
[3]
1 ε

6 + ..., (2.59)

where

Φ
[0]
1 =

 ψ
[0]
1

ϕ
[0]
1

 , Φ
[1]
1 =

 ψ
[1]
1

ϕ
[1]
1

 , Φ
[2]
1 =

 ψ
[2]
1

ϕ
[2]
1

 , Φ
[3]
1 =

 ψ
[3]
1

ϕ
[3]
1

 ... (2.60)

with ψ[0]
1 = 2ei

√
3
2
x, ϕ[0]

1 = 2e−i
√

3
2
x,

ψ
[1]
1 = −1

2
ei
√

3
2
x(72i(i+ 2

√
6)t2 + (1− 2x)2 + 12(2 + i

√
6)t(−1 + 2x)),

and ϕ[1]
1 = 1

2
e−i

√
3
2
x(72(1− 2i

√
6)t2 − (1 + 2x)2 − 12i(−2i+

√
6)t(1 + 2x)).

The analytical expressions of (ψ[i]
1 , ϕ

[i]
1 ) (i = 2, 3) are rather cumbersome to be written

down here, there can be found in Ref. [95].

It is clear that Φ[0]
1 is a solution for the Lax-pairs given in equation (2.40) at u[0] = ei

√
6x

and λ1 = i
√
6
2

Substituting u[0], λ1 and Φ
[0]
1 into equation (2.49), we obtain a trivial

solution, namely

u[1] = −ei
√
6x, (2.61)

to the complex modified KdV equation (2.39) and

T1[1] =

 −1 ei
√
6x

ei
√
6x −1

 . (2.62)

Substituting the expressions given in (2.61) and (2.62) and those of Φ
[0]
1 , Φ

[1]
1 into

equation (2.51), we obtain the first-order rogue wave solution to the system under con-

sideration, given as follows

u[2] =

(
1 +

−4 + 24i
√
6t

1 + 360t2 + 48tx+ 4x2

)
ei

√
6x. (2.63)
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The corresponding depiction is shown in 34. Following the procedure given above, the

higher-order rogue wave solutions to the system under consideration can be obtained. The

awesome features corresponding to the second and third-order rogue wave to the complex

modified KdV equation are shown in figures (35) and (36), respectively.

2.3 The homoclinic test approach

The homoclinic test approach or breather limit method was recently applied on some

nonlinear wave equation [167] to derive rogue wave solution. In the following, we present

in detail how the procedure works and illustrate it through some examples.

The homoclinic test approach works in four steps:

Step 1 : By Painleve analysis, a transformation u = T (f) is made for some new and

unknown function f .

Step 2 : By using the transformation in step 1, original equation can be converted

into Hirota’s bilinear form G(Dt, Dx, f) = 0. Where the D−operator is defined by

Dm
t D

n
xf(t, x).g(t, x) =

(
∂

∂t
− ∂

∂t′

)m(
∂

∂x
− ∂

∂x′

)n

f(t, x)g(t
′
, x

′
)|t′=t,x′=x.

Step 3 Solve the above equation to get homoclinic (heteroclinic) breather wave solu-

tion by using extended homoclinic test approach.

Step 4 Let the period of periodic wave go to infinite in homoclinic breather wave

solution, we can Obtain a rational homoclinic wave and this wave is just a rouge wave.

Now we illustrate this approach through an example. The results shown here was

obtained recently in reference [168]. In this work the authors considered the so-called

Benjamin Ono (BO) equation given as follows

utt + β(u2)xx + γuxxx = 0, (2.64)

where β and γ are nonzero constants.

By Painlevé analysis, let

u = u0 +
6γ

β
(ln f)xx, (2.65)

where f(x, t) is a real unknown function and u0 is a small perturbation parameter. Sub-

stituting (2.65) into (2.64), we obtain the following

6γ

β
(ln f)tt + 12γu0(ln f)xx +

36γ2

β
((ln f)xx)

2 +
6γ2

β
(ln t)xxxx = 0. (2.66)
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By mean of the Hirota operator given above, the bilinear form of the BO equation is

obtained as

(D2
t + βu0D

2
x + γD4

x)f.f = 0.

The test function is chosen to be

f(x, t) = ep1(x−w1t) + c1 cos(p2(x+ w2t)) + c2e
p1(x−w1t). (2.67)

Inserting this test function into the bilinear form, collecting different terms and solving

the resulting equations, the coefficients of the test function (2.67) are obtained and given

as follows

c1 = ±2

√
(2γp21w

2
2 + 2β2u20 + βu0w2

2)c2
−4γp21w

2
2 + 2β2u20 + βu0w2

2

, w1w2 = 2βu0, p21 =
1

4γ
(w2

1−w2
2), p1 = p2.

Hence, we obtain two forms of the test function, depending on the sign of the coefficient

c1 as follows

f1 = 2
√
c2cosh(p1(x− 2βu0

w2
) + ln

√
c2) + h1 cos(p2(x+ w2t)),

f2 = 2
√
c2cosh(p1(x− 2βu0

w2
) + ln

√
c2)− h1 cos(p2(x+ w2t)),

(2.68)

with h1 = 2
√

(2γp21w
2
2+2β2u2

0+βu0w2
2)c2

−4γp21w
2
2+2β2u2

0+βu0w2
2

. Taking into account the above expressions of the test

function, the expressions of the quantity u come from the equation (2.65) as

u1 = u0 +
6γ
β

−4h1p212
√
c2sinh

(
p1

(
x− 2βu0

w2

)
+ln

√
c2
)
sin(p2(x+w2t))−h2

1p
2
1+4c2p21(

2
√
c2cosh

(
p1(x− 2βu0

w2
t)+ln

√
c2
)
+h1 cos(p2(x+w2t))

)2 ,

u1 = u0 +
6γ
β

−4h1p212
√
c2sinh

(
p1

(
x− 2βu0

w2

)
+ln

√
c2
)
sin(p2(x+w2t))−h2

1p
2
1+4c2p21(

2
√
c2cosh

(
p1(x− 2βu0

w2
t)+ln

√
c2
)
−h1 cos(p2(x+w2t))

)2 .

(2.69)

The solution u1(x; t) (or u2(x, t)) shows a new family of two-wave, breather solitary wave,

which is a solitary wave and also is a periodic wave. The corresponding plot is shown in

Figure (37).

Now considering a limit behavior of u2 as the period 2Π
p1

of periodic wave cos(p1(x+w2t))

goes to infinite, i.e. p1 → 0. After computation, the following result is obtained

U = u0 +
24γ

(
R− 2

(
x− 2βu0

w2

)
t
)
(x+ w2t)

β

((
x− 2βu0

w2

)2
+ (x+ w2t)2 +R

)2 , (2.70)

with R =
−6γw2

2

2β2u2
0+βu0w2

2
. The corresponding plot is shown in figure (38).
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Figure 37: The figure of u2 with c2 = 1, u0 = 1
6
, β = 6 and γ = −1 [168].

Conclusion

In this chapter, we have presented the methodology of our investigation, starting from

the Darboux transformation, passing through the generalized one to the homoclinic test

approach. We have first presented the traditional Darboux transformation by illustrating

the process on the modified KdV equation. It has been shown that traditional Darboux

transformation is not appropriate to derive higher-order solution to nonlinear systems.

So we have presented also the generalized Darboux transformation by applying it on the

modified KdV equation, the nonlinear Schrödinger equation and the complex modified

KdV equation. We have presented also the homoclinic test appraoch showing the illus-

tration on the Benjamin Ono equation. In the next chapter we will present the results

obtained by us by applying the above methods on some nonlinear equations.
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Figure 38: The figure of U with c2 = 1, u0 = 1
6
, β = 6 and γ = −1 [168].
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Chapter 3

Results and discussions: Rogue

waves of nonlinear systems, a

particular case of barothropic

relaxing media

Introduction

In physics and mathematics, a soliton is a self-reinforcing solitary wave packet, that

maintains its shape while propagating at a constant velocity. It is a result of cancelation

between the nonlinearity and the dispersive effect. Solitons are solutions to a widespread

class of weakly nonlinear dispersive partial differential equations describing physical sys-

tems [14–16, 18, 97]. Soliton seems to be more accurate to the transport of information

in nonlinear media. In the past few decades, a new kind of wave has appeared, namely

the rogue wave [54]. Originally, the rogue wave appeared as monster wave, responsible

of many marine disasters. More after, it has been shown that, rogue wave appears not

only in ocean condition but also in physical nonlinear media such as hydrodynamics [32],

plasma physics [87], optics [29] just to name a few. Now again, rogue waves are still mys-

terious so that in any of these disciplines, the new studies enrich the concept and lead to

progress toward a comprehensive understanding of this phenomenon. It has been shown

that rogue waves are so unpredictable that they appear from nowhere and disappear with-
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Figure 39: Rogue wave dynamics in the generalized nonlinear Schrödinger equation. The

panel (a) and (b) correspond to the u component, depicted with the parameter γ = 0.1+ i

and γ = 0.75 + i, respectively. The panel (c) and (d) correspond to the v component,

depicted with the parameter γ = 0.1+ i and γ = 0.75+ i, respectively. All the depictions

are done with f = 0, a1 = 1 and a2 = 0.5.

out a trace. The unpredictability of rogue waves implies that they can be expressed by

rational functions localized both in space and time. The simplest rogue wave solution

was firstly obtained by Peregrine; more after, Akhmediev et al. [28] have calculated the

first-order rogue wave solution for the nonlinear Schrödinger equation (NLSE). Different

kinds of laboratory experiment and theoretical approaches have been used to study the

rogue waves [33]. The aim of this chapter, is to show the different results obtained dur-

ing our investigation. In section 1, we present the localized waves in a general nonlinear

Schrödinger equation, showing the interaction process between rogue wave and soliton,

between rogue wave and breather wave. In section 2, using the generalized Darboux trans-

formation, we derive higher-order rogue wave solutions the a nonlinear Schrödinger system

named the Manakov system. In section 3, also based on the Darboux matrix technic, we

derive rogue wave solutions to a nonlinear wave equation which model the propagation
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Figure 40: Rogue wave dynamics in the generalized nonlinear Schrödinger equation.

In the panel (a) we can observe a rogue wave together with a dark-soliton for the u

component; in the panel (b) a rogue wave with a bright soliton for the v component. All

the depictions are done with f = 1 and γ = 0.5 + i.

of waves in ferrites. In section 4, we construct the generalized Darboux transformation

of a generalized nonlinear Schrödinger equation, we derive rogue waves solutions to this

system and show that the rogue waves can be controlled during their propagation. In

section 5, we derive rogue wave solutions to a nonlinear Schrödinger equation while show-

ing the effects of nonlinear higher-order terms on their profile. In section 6, based on the

extended homoclinic test approach, we construct rogue wave solution to the Boussinesq

equation. The last section is devoted to the particular case of this thesis, the rogue waves

in a barothropic relaxing media.
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3.1 Localized waves in a general coupled nonlinear Schrödinger

equation

In a monomode birefringent fiber, the propagation of two polarized waves can be

modeled by the coupled NLSE, where the nonlinearity is expressed by coupling terms to

the third-order susceptibility [10, 97, 98]. The coupled NLSE under consideration in this

section is a general one, given as follows [18]

iut + uxx + 2(α|u|2 + β|v|2 + γuv∗ + γ∗vu∗)u = 0,

ivt + vxx + 2(α|u|2 + β|v|2 + γuv∗ + γ∗vu∗)v = 0,
(3.1)

where u and v stand for slowly varying envelop. The quantities α and β are real constants

scaling self-phase modulation and cross-phase modulation effects respectively whereas the

complex constant γ denotes the four-wave mixing effects. This system has been studied in

Ref. [18] and its soliton solutions have been calculated using the Darboux matrix method.

More recently, the generalized Darboux transformation of the above system was given and

its higher-order rogue wave solutions were provided [99]. The aim of this work is to show

the interaction between rogue wave and dark-bright soliton and the interaction between

rogue wave and breather in the above system. We aim also to show the effects of the

four waves mixture parameter on the profiles of the localized waves. The results obtained

in this work are useful in understanding the interaction process in nonlinear physical

systems. In fact, it shows that rogue waves and solitons can coexist in a same medium

and the information contained in the soliton cannot be destroyed during the interaction

with rogue wave. Thus, the organization of this section is settled as follows. In subsection

one we use the Darboux transformation to construct localized wave of the system (3.1)

starting from his seed solutions. In subsection 2, we discuss the results obtained.

3.1.1 Localized waves

The system given in Eq. (3.1) can be cast into a 3×3 eigenvalue problem [18], namely,

Rx = UR = (λJ + U0)R,

Rt = V R = (λ2V0 + λV1 + V2)R,
(3.2)
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Figure 41: Wave interaction process for the generalized nonlinear Schrödinger equation.

The u component is depicted in the panels (a), (b) and (c) at t = −4, t = 0 and t = 4,

respectively. The v component is depicted in the panels (d), (e) and (f) at t = −4, t = 0

and t = 4, respectively. f = 1 and γ = 0.5 + i.

with U0 =


0 0 u

0 0 v

r1 r2 0

, V0 = −2i


1 0 0

0 1 0

0 0 −1

, V1 = −2


0 0 u

0 0 v

r1 r2 0

,

V2 =


−iur1 −iur2 iux

−ivr1 −ivr2 ivx

−ir1x −ir2x iur1 + ivr2


and J = diag(i, i,−i), where r1 = −(αu∗+γv∗) and r2 = −(γ∗u∗+βv∗). The quantity

R = (r(x, t), s(x, t), w(x, t))T (T means matrix transpose) is the vector eigenfunction,

while λ is the spectral parameter. The system (1.1) can be obtained using the zero-

curvature equation Ut − Vx + UV − V U = 0. The Darboux transformation (DT) [92]
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Figure 42: Localized waves dynamics for the generalized nonlinear Schrödinger equation.

The panels (a) and (b) correspond to the u component for the values of f = 1 and

f = 0.0001, respectively. The panels (c) and (d) correspond to the v component for the

values of f = 1 and f = 0.0001, respectively. For all the depictions γ = 0.5 + i.

changes the Lax-pairs given in Eq. (3.2) into a new one as follows,

R̃ = (λI − S)R, ũ = u+ 2iS13, ṽ = v + 2iS23,

S = HΛH−1 =


S11 S12 S13

S21 S22 S23

S31 S32 S33

 , H =


r w∗ 0

s 0 w∗

w −r∗ −w∗

 , Λ =


λ 0 0

0 λ∗ 0

0 0 λ∗

 ,

(3.3)

where I is the 3× 3 unitary matrix. R̃ satisfies the new Lax-pairs

R̃x = ŨR̃, R̃t = Ṽ R̃, (3.4)

where the matrices Ũ and Ṽ have the same form as U and V with the new potentials ũ

and ṽ therein. In view to obtain rational solution to the system (3.1), we start with plane

wave solutions as seed solutions as follows

u = a1e
iat, v = a2e

iat, (3.5)
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Figure 43: Localized waves dynamics for the generalized nonlinear Schrödinger equation.

We can observe in the panels (a) and (b) for the u component a rogue wave merging with

a breather wave for f = 1 and f = 0.001, respectively. In the panels (c) and (d) for the

v component, one can observe also a rogue wave merging with a breather wave for the

values f = 1 and f = 0.001, respectively. The depictions are made with γ = i.

with a = 2(a21α+a
2
2β)+2a1a2(γ+γ

∗). The quantities a1 and a2 are real-valued constants,

with no loss of generality. Next, we derive the eigenfunction compatible with the Lax-

pairs given in equation (3.3) and corresponding to the seed solutions to the system (3.1).

So we assume the following,

r = a1M1e
iat + a2C1e

−iat, s = a2M2e
iat − a1C2e

−iat, w =M3, (3.6)

where the quantitiesM1, M2, M3, C1 and C2 are to be determined. Inserting the quantities

above into the Lax-pairs given in Eq. (3.3) and integrating the corresponding system, one

can obtain the following for λ = −i
√

a
2
,

r = [a1(2a
√
2at− 4

√
2ax+ 12iat− 8)e

√
2a
2

(−x+2at)]eiat + a2fe
−iat+

√
2a
2

(−2x+at),

s = [a2(2a
√
2at− 4

√
2ax+ 12iat− 8)e

√
2a
2

(−x+2at)]eiat − a1fe
−iat+

√
2a
2

(−2x+at),

w = 2a(−2x+ at− 3i
√
2at)e

√
2a
4

(−2x+at),

(3.7)
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where f is a real parameter.

Substituting the above expressions into equation (3.4), we derive the following rational

solutions to the system (3.1) as follows

u = a1e
iat +

a1(A+ iB)eiat + a2Ce
η1

D + Eeη2
, v = a2e

iat +
a2(A+ iB)eiat − a1Ce

η1

D + Eeη2
(3.8)

where

A = −8a(36a
√
2at2−8a

√
2atx+2a2

√
2at2+8

√
2ax2+16x−8at), B = +24

√
2at, C =

2 af
(
at− 3 i

√
2at− 2x

)
, D = (a21+a

2
2)(64+144a2t2+8a3t2+32ax2+64

√
2ax−32a

√
2at−

32tx)− 16a3xt+72a3t2+4a4t2+16a2x2, E = f 2 (a1
2 + a2

2), η1 = 3
√
2a
4

(2x− at)− iat and

η2 =
3
√
2a
2

(2x− at).

We now go further while discussing three different cases in the waves dynamics.

1. If the parameter f = 0, the expression given in equation (3.8) is reduced to the

following

u = a1

(
1 +

A+ iB

D

)
eiat, v = a2

(
1 +

A+ iB

D

)
eiat. (3.9)

This solution is merely the first-order vector rogue wave soliton to the system (3.1) [99].

It is easy to remark that the two above solutions are proportional to each other, hence the

solution obtained in Eq. (3.9) is a generalization of rogue wave solution to the decoupled

system. It is important to remark that, the real part of the four wave mixing parameter

γ make the rogue wave more thinner and higher when increasing; this result was also

observed in Ref. [100, 101]. Also, one background peak of the rogue wave disappears

gradually with high values of the parameter γ ( see Figure 39).

2. If f ̸= 0, a1 = 0, a2 = 0. In this case, nothing occurs, since the numerators of the

equations given in 3.8 vanish. We have in this case a trivial solution to the system.

3. If we set f ̸= 0, a1 ̸= 0 and a2 = 0, we observe a rogue wave merging with a dark

soliton (see Figure 40a) and a rogue wave interacting with a bright soliton (see Fig. 41a).

The Figure 41 shows in details the interaction process between rogue waves and soliton.

The four wave mixing parameter has no effect in this case since it is canceled from the

dispersion relation with a2 = 0.

4. If f ̸= 0, a1 = 0, a2 ̸= 0. In this case, we observe a bright pulse together with a

rogue wave in the v component and dark pulse with a rogue wave for the u component;

in contrary of the previous parametric choice(f ̸= 0, a1 ̸= 0, a2 = 0).
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Figure 44: First-order rogue waves u[1] and v[1] depicted with the following parameters

(a) a = 1, b = 1/4, and (b) a = 1/4, b = 1, α = 1.

5. If f ̸= 0, a1 ̸= 0 and a2 ̸= 0, we can observe in Figure 43 rogue waves interacting

with breather wave. The interaction is possible for the four wave mixing parameter being

taken pure imaginary.

3.1.2 Discussion and interpretation

(i) Since the quantities α, β and γ are arbitrary, the coupled system given in the

equation (3.1) can describe a wide variety of systems than the well-known standard coupled

nonlinear Schrödinger equation. If α = β and γ = 0 the system (3.1) is reduced to the

Manakov system [102], localized waves for the late system was predicted in Ref. [103].

Since the system under consideration is a generalization of the nonlinear Schrödinger

equation, the results obtained in this work is a generalization of the results obtained in

Ref. [102].

(ii) In the Figure. 40, we observe some rogue wave merging with dark-bright soliton.

The Figure 41 shows in details the interaction process. The solitons are propagating along
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the x axis in the positive direction. It is important to notice that, at time t = 0, a rogue

wave appears from nowhere and interacts with the soliton, after that, the rogue wave

suddenly disappears without a trace since the soliton conserve its shape and its velocity

after the interaction process. The interaction is merely elastic. This fact explains the

nature of rogue wave as predicted in Ref. [28]. In addition, the results obtained in this

work are useful in understanding the interaction process in nonlinear physical systems.

In fact, it shows that rogue waves and solitons can coexist in a same medium and the

information contained in the soliton cannot be destroyed during the interaction with rogue

wave. In the Figure 42d, the rogue wave is separated with the bright soliton and is difficult

to be seen due to its zero background amplitude. In the Figure 42, we can remark that

for the decreasing values of the parameter f , the soliton and the rogue wave are more

distant.

(iii) Observing the Figure 43, one can see some rogue wave brewed with breather wave.

For the decreasing values of the parameter f , the rogue wave and the breather are faraway.

In this case, the breather wave results from the superposition of the bright and the dark

contribution.

(iv) During the interaction process, the fact that the rogue wave appears from nowhere

and disappears without a trace can be related to the modulation instability. Indeed, the

instability created by the plane wave solution on his top induces an increase of perturbation

up to his highest amplitude and a decay [20].

Throughout this section, we have made an investigation on a generalized nonlinear

Schrödinger equation, which can describe the wave propagation in a wide variety of phys-

ical systems. Using the Darboux transformation on the Lax-pairs of the above system

and starting from plane wave solutions as seed solutions, we have constructed analyti-

cal rational solution to the system. Giving arbitrary values to the constants α, β and

γ contained in the equation, we have observed many behaviors of the localized wave in

their dynamics. Particularly for the parameter γ(four wave mixing parameter), we have

observed interesting behavior of localized wave during their dynamics. We have seen that

the real part of this parameter compresses the rogue wave during his dynamics and in-

crease its shape. We have also remarked that the interaction between a breather wave

and a rogue wave is possible if the real part of the four wave mixing parameter is null.
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Figure 45: Second-order composite rogue wave u[2] depicted with the following parame-

ters: a = 1, b = 0, c1 = d1 = 0 and α = 1. Panel (a) represents the 3-D perspective and

the panel (b) stands for the density plot of the 3-D representation.

Additionally, for the value of the parameter f = 0, the solution obtained is merely the

first-order rogue wave generalization of the decoupled system since the two components

are proportional to each other. For the values of f ̸= 0, we observe some rogue wave

brewed with dark-bright soliton propagating along the x axis in the positive direction

and for other case, rogue wave melted with breather wave for the both component u and

v. A possible application of the results obtained in this work, is the explanation of the

propagation of rogue light pulses in nonlinear systems interacting with soliton carrying an

information which cannot be destroyed during the interaction, such as plasma and optical

fiber. This work was published in the European physical Journal Plus [104]. We now go

forward while presenting the results obtained for the manakov system.
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3.2 Nth-order rogue waves to the Manakov system

Understanding the behavior and the dynamics of natural phenomena stand to be

worth fundamental. That is why it has been one of the most challenging aspects of

modern science and technology in studying nonlinear nature of system. The importance of

nonlinearity has been well-appreciated for many years, because nonlinearity is a fascinating

occurrence of nature in the context of large amplitude waves or high-intensity laser pulses

observed in various fields. This fascinating subject has branched out in almost all areas

of science, and its applications are percolating through the whole science. In general,

nonlinear evolution equations exhibiting a wide range of high complexities in terms of

different linear and nonlinear effects model nonlinear phenomena. Nonlinear science has

experienced an explosive growth by the invention of several exciting and fascinating new

concepts in the past few decades, such as solitons, dispersion-managed solitons, dromions,

rogue waves, among others [19,20].

Rogue waves, also called freak waves, giant waves or killer waves have attracted consid-

erable attentions. A rogue wave is a large-amplitude local wave, short-lived wave, meet in

an ocean that appears from nowhere and disappears without a trace. Rogue waves appear

not only in oceanic conditions, but also in optics, superfluids, Bose-Einstein condensates

and in the form of capillary waves. In any of these disciplines, new studies of rogue waves

enrich the concept and lead to progress toward a comprehensive understanding of this still

mysterious phenomenon. The first-order rational solution for the nonlinear Schrödinger

equation (NLSE) was given by Peregrine. Akhmediev and co-workers have calculated the

simplest rogue wave solutions for the NLSE. The construction of higher-order analogues

is actually a challenging problem. The construction of higher-order rogue wave solutions

needs a simple approach which is the generalized Dardoux transformation (DT). This

approach was proposed by Guo et al.

The DT, originating from the work of Darboux on the Sturm-Liouville equation, is

a powerful method for constructing solutions for integrable systems such as the NLSE,

the Korteweg-de Vries (KdV) equation, the Kadomtsev-Petviashvili equation, the Davey-

Stewartson equation and the Toda lattice equation just to name a few. But the original DT

is not applicable directly to obtain the rogue wave solutions for the nonlinear wave equa-
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tions. Matveev introduced the so-called generalized DT and the positon solutions were

calculated for the celebrated KdV equation. Recently, Guo and coworkers re-examined

Matveev’s generalized DT and proposed a new approach to derive the generalized DT for

the KdV and the NLS equations.

In this work, we discuss the Guo et al [94]’s approach to a focusing vector NLSE

(VNLSE), known as Manakov system given as follows

iut +
1

2
uxx + u(|u|2 + |v|2) = 0, (3.10)

ivt +
1

2
vxx + v(|u|2 + |v|2) = 0,

with x and t being two independent variables, u(x, t) and v(x, t) standing for complex

envelop of two field components. This system has many physical significant applications

such as the propagation in elliptically birefringent optical fibers [105] and for modeling

crossing sea waves [106].

3.2.1 Lax-pairs and Darboux transformation

We consider in this section, the VNLS equations in the anomalous dispersion regime.

The aim of this work is to construct Nth-order rogue wave solutions of the previous system.

The main tool is the generalized DT. Based on the Darboux matrix method, we iterate the

generalized DT of equations (3.10) and work out a formula for generation of higher-order

rogue wave solutions. It is worth noting that the rogue wave solutions of this system have

early been constructed in ref. [20], using however a non-recursive Darboux transformation

up to second-order.

Equation (3.10) can be cast into a 3× 3 linear eigenvalue problem due to integrability

[107]

Rx = UR, Rt = VR, (3.11)

where,

U = λE+Q, V =
3

2
λ2E+

3

2
λQ+

i

2
σ3(Qx −Q2), (3.12)

E = diag(−2i, i, i), σ3 = diag(1,−1,−1), Q =


0 −u −v

u∗ 0 0

v∗ 0 0

.
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Figure 46: Second-order composite rogue wave v[2] depicted with the following parame-

ters: a = 0, b = 1, c1 = d1 = 0 and α = 1. Panel (a) represents the 3-D perspective and

the panel (b) stands for the density plot of the 3-D representation.

Let R1 = (r1, s1, w1)
T be a solution of the Lax-pairs given in equation (3.11) with

u = u[0], v = v[0] and λ = λ1. The classical DT of the Ablowitz-Kaup-Newell-Segur

(AKNS) spectral problem allows us to write the following formulas:

R[1] = T [1]R, T [1] = λ1I−H[0]Λ1H[0]−1, (3.13)

u[1] = u[0] + 2i(λ− λ∗)
r1[0]s1[0]

∗

|r1[0]|2 + |s1[0]|2 + |w1[0]|2
, (3.14)

v[1] = v[0] + 2i(λ− λ∗)
r1[0]w1[0]

∗

|r1[0]|2 + |s1[0]|2 + |w1[0]|2
, (3.15)

which satisfy

R[1]x = U[1]R[1], R[1]t = V[1]R[1], (3.16)

where R1[0] = T [0]R1, r1[0] = r1, s1[0] = r1, r1[0] = r1, I =


1 0 0

0 1 0

0 0 1

 , H[0] =
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Figure 47: Second-order rogue wave u[2] depicted with the following parameters: a = 1,

b = 0, c1 = d1 = 25 and α = 1. Panel (a) represents the 3-D perspective and the panel

(b) stands for the density plot of the 3-D representation.


r1[0] s1[0]

∗ w1[0]
∗

s1[0] −r1[0]∗ 0

w1[0] 0 −r1[0]∗

,

and Λ1 =


λ1 0 0

0 λ∗1 0

0 0 λ∗1

. The quantities U[1] and V[1] have the same form as

U and V except that the old potentials u and v are replaced by the new ones u[1]

and v[1]. The quantity T stands for the Darboux matrix. If N distinct basic solutions

Rk = (rk, sk, wk)
T (k = 1, 2, 3, ..., N) of the Lax-pairs expressed by equation (3.11) at

λ = λk (k = 1, 2, 3, ..., N) are given, the DT can be repeated N times. Then, the Nth-step

DT for the VNLSE (3.10) is

R[N ] = T [N ]T [N − 1]...T [1]R, T [k] = λI

−H[k − 1]ΛkH[k − 1]−1, (3.17)
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u[N ] = u[N − 1] + 2i(λ− λ∗)×
rN [N − 1]sN [N − 1]∗

|rN [N − 1]|2 + |sN [N − 1]|2 + |wN [N − 1]|2
, (3.18)

v[N ] = v[N − 1] + 2i(λ− λ∗)×
rN [N − 1]wN [N − 1]∗

|rN [N − 1]|2 + |sN [N − 1]|2 + |wN [N − 1]|2
, (3.19)

where

H[k − 1] =


rk[k − 1] sk[k − 1]∗ wk[k − 1]∗

sk[k − 1] −rk[k − 1]∗ 0

wk[k − 1] 0 −rk[k − 1]∗

, Λk =


λk 0 0

0 λ∗k 0

0 0 λ∗k

,

Rk[k− 1] = (rk[k− 1], sk[k− 1], wk[k− 1])T = Rk[k− 1] and R[k− 1] = T [k− 1]T [k−

2]...T [1]R.

3.2.2 Generalized Darboux transformation

According to the above classical DT, we derive the generalized DT for the system of

equation (3.11). We start with the assumption that

R1 = R1(λ1 + ϵ), (3.20)

is a particular solution of the Lax-pairs of equation (3.11). The constant ϵ being a small

parameter. Expanding R1 in a Taylor series gives

R1 = R
[0]
1 +R

[1]
1 ϵ+R

[2]
1 ϵ

2 + ...+R
[N ]
1 ϵN + ..., (3.21)

where R[k]
1 = 1

k!
∂k

∂ϵk
R1|ϵ=0 (k = 1, 2, 3, ...). 1. The first-step of the method.

From the above assumption, it is easy to find that R[0]
1 is a solution for the Lax-pairs

of equation (3.11) with u = u[0] and v = v[0] at λ = λ1. The first-step DT for the system

(3.10) is expressed as

R[1] = T [1]R, T [1] = λ1I−H[0]Λ1H[0]−1, (3.22)

u[1] = u[0] + 2i(λ− λ∗)
r1[0]s1[0]

∗

|r1[0]|2 + |s1[0]|2 + |w1[0]|2
, (3.23)

v[1] = v[0] + 2i(λ− λ∗)
r1[0]w1[0]

∗

|r1[0]|2 + |s1[0]|2 + |w1[0]|2
, (3.24)

where
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Figure 48: Second-order rogue wave u[2] depicted with the following parameters: a = 1,

b = 0, c1 = d1 = 100 and α = 1. Panel (a) represents the 3-D perspective and the panel

(b) stands for the density plot of the 3-D representation.

R1[0] = T [0]R1, r1[0] = r1, s1[0] = r1, r1[0] = r1,

I =


1 0 0

0 1 0

0 0 1

, H[0] =


r1[0] s1[0]

∗ w1[0]
∗

s1[0] −r1[0]∗ 0

w1[0] 0 −r1[0]∗

,

and Λ1 =


λ1 0 0

0 λ∗1 0

0 0 λ∗1

.

2. The second-step of the method.

With

lim
ϵ→0

T [1]|λ=λ1+ϵR1

ϵ
= lim

ϵ→0

(ϵ+ T1[1])R1

ϵ
= R

[0]
1

+T1[1]R
[1]
1 ≡ R1[1], (3.25)

we find a solution to the Lax-pairs of equation (3.11) with u[2] and v[2] and λ = λ1.
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Figure 49: Second-order rogue wave v[2] depicted with the following parameters: a = 0,

b = 1, c1 = d1 = 25 and α = 1. Panel (a) represents the 3-D perspective and the panel

(b) stands for the density plot of the 3-D representation.

This allows us to go to the second step DT, namely,

R[2] = T [2]T [1]R, T [2] = λ1I−H[1]Λ2H[1]−1, (3.26)

u[2] = u[1] + 2i(λ− λ∗)
r1[1]s1[1]

∗

|r1[1]|2 + |s1[1]|2 + |w1[1]|2
, (3.27)

v[2] = v[1] + 2i(λ− λ∗)
r1[1]w1[1]

∗

|r1[1]|2 + |s1[1]|2 + |w1[1]|2
, (3.28)

where (r1[1], s1[1], w1[1])
T = R1[1], I =


1 0 0

0 1 0

0 0 1

 , H[1] =


r1[1] s1[1]

∗ w1[1]
∗

s1[1] −r1[1]∗ 0

w1[1] 0 −r1[1]∗

,

and Λ2 =


λ1 0 0

0 λ∗1 0

0 0 λ∗1

.

3. The third-step of the method.
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Figure 50: Second-order rogue wave v[2] depicted with the following parameters: a = 0,

b = 1, c1 = d1 = 100 and α = 1. Panel (a) represents the 3-D perspective and the panel

(b) stands for the density plot of the 3-D representation.

Similarly, the following limit

lim
ϵ→0

[T [2]T [1]]|λ=λ1+ϵR1

ϵ2
= lim

ϵ→0

(ϵ+ T1[2])(ϵ+ T1[1])R1

ϵ2

= R
[0]
1 + (T1[2] + T1[1])R

[1]
1

+T1[2]T1[1]R
[2]
1 ≡ R1[2], (3.29)

provides us with a non-trivial solution for the Lax-pairs of equation (3.11) with u[3] , v[3]

and λ = λ1. Then, the third-step generalized DT can be given as follows

R[3] = T [3]T [2]T [1]R, T [3] = λ1I−H[2]Λ3H[2]−1, (3.30)

u[3] = u[2] + 2i(λ− λ∗)
r1[2]s1[2]

∗

|r1[2]|2 + |s1[2]|2 + |w1[2]|2
, (3.31)

v[3] = v[2] + 2i(λ− λ∗)
r1[2]w1[2]

∗

|r1[2]|2 + |s1[2]|2 + |w1[2]|2
, (3.32)
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Figure 51: Third-order composite rogue wave u[3] depicted with the following parameters:

a = 1, b = 0, c1 = d1 = c2 = d2 = 0 and α = 1. Panel (a) represents the 3-D perspective

and the panel (b) stands for the density plot of the 3-D representation.

where (r1[2], s1[2], w1[2])
T = R1[2], I =


1 0 0

0 1 0

0 0 1

,H[2] =


r1[2] s1[2]

∗ w1[2]
∗

s1[2] −r1[2]∗ 0

w1[2] 0 −r1[2]∗

,

and Λ3 =


λ1 0 0

0 λ∗1 0

0 0 λ∗1

. Continuing the above process and combining all the

Darboux matrices, an Nth-step generalized DT is considered.

Proposition. Notation

R1[N − 1] = R
[0]
1 +

N−1∑
k=1

T1[k]R
[1]
1 +

N−1∑
k=1

k−1∑
l=1

T1[k]T1[l]R
[2]
1

+...+ T1[N − 1]T1[N − 2]...T1[1]R
[N−1]
1 , (3.33)

Thesis dissertation Year 2020



3.2 Nth-order rogue waves to the Manakov system 99

Figure 52: Third-order composite rogue wave v[3] depicted with the following parameters:

a = 0, b = 1, c1 = d1 = c2 = d2 = 0 and α = 1. Panel (a) represents the 3-D perspective

and the panel (b) stands for the density plot of the 3-D representation.
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then the N-step generalized DT is provided

R[N ] = T [N ]T [N − 1]...T [1]R, T [k] = λ1I

−H[k − 1]ΛkH[k − 1]−1, (3.34)

u[N ] = u[N − 1] + 2i(λ− λ∗)×
r1[N − 1]s1[N − 1]∗

|r1[N − 1]|2 + |s1[N − 1]|2 + |w1[N − 1]|2
, (3.35)

v[N ] = v[N − 1] + 2i(λ− λ∗)×
r1[N − 1]w1[N − 1]∗

|r1[N − 1]|2 + |s1[N − 1]|2 + |w1[N − 1]|2
, (3.36)

where (r1[N − 1], s1[N − 1], w1[N − 1])T = R1[N − 1]

H[k − 1] =


r1[k − 1] s1[k − 1]∗ w1[k − 1]∗

s1[k − 1] −r1[k − 1]∗ 0

w1[k − 1] 0 −r1[k − 1]∗

,

Λk =


λ1 0 0

0 λ∗1 0

0 0 λ∗1

, and I =


1 0 0

0 1 0

0 0 1

.

The formulae given by equations (3.33)-(3.36) are a recursive formula of the Nth-

order generalized DT for the Manakov system (3.10). Although it is possible to give

the (3N) × (3N) determinant representation by using the so-called crum theorem. But

we prefer to use a recursive formula, because it is easy to construct higher-order rogue

wave solutions with the computer. Some interesting higher-order rogue wave solutions are

obtained for the Manakov system in the following section.

3.2.3 Rogue wave solutions

In order to obtain the rogue wave solution, we start with the following seed solutions

of the system (3.10) as

u[0] = aeiβt, v[0] = beiβt, (3.37)
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Figure 53: Third-order rogue wave u[3] depicted with the following parameters: a = 1,

b = 0, c1 = d1 = 0, c2 = d2 = 100 and α = 1. Panel (a) represents the 3-D perspective

and the panel (b) stands for the density plot of the 3-D representation

with β = a2 + b2, a and b are real constants. Then the basic solution for the Lax-pairs of

equation (3.11) with u[0], v[0] and λ holds

R1 =


(m1e

η1+η2 −m2e
η1−η2)e

iβt
2

τ1(m2e
η1+η2 −m1e

η1−η2)e−
iβt
2

τ2(m2e
η1+η2 −m1e

η1−η2)e−
iβt
2

 , (3.38)

where m1 =

(
λ−
√

β+λ2

λ2+β

) 1
2

, m2 =

(
λ+
√

β+λ2

λ2+β

) 1
2

,

η1 = 2iα( 1
α
x+ λ(λ+ 2)t), τ1 = a√

β
, τ2 = b√

β
,

η2 = iα
√
β + λ2

(
1
α
x+ (λ(λ+ 2)− β

2
)t+ Ωj

)
,

with Ωj =
∑N

j=1(cj + idj)ε
2j.

Here the constant ε is a small parameter.

Let λ = i
√
β(1 + ε2), expanding the vector function R1(ε) at ε = 0, we obtain

R1(ε) = R
[0]
1 +R

[1]
1 ε

2 +R
[2]
1 ε

4 + ..., (3.39)
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Figure 54: Third-order rogue wave v[3] depicted with the following parameters: a = 0,

b = 1, c1 = d1 = 0, c2 = d2 = 100 and α = 1. Panel (a) represents the 3-D perspective

and the panel (b) stands for the density plot of the 3-D representation

where,

R
[0]
1 =


r01

s01

w0
1

 , R
[1]
1 =


r11

s11

w1
1

, R[2]
1 =


r21

s21

w2
1

..., and (r
[i−1]
1 , s

[i−1]
1 , w

[i−1]
1 ) (i=1,2,3)

are given in appendix.

It is clear that R[0]
1 is a solution of the Lax pairs (3.11) at u[0] = aeiβt , v[0] = beiβt

and λ = i
√
β(1 + ε2). Hence from the formulae (3.23) and (3.24), we arrive at

u[1] = aeiβt
(
1 +

F1 + iH1

D1

)
, v[1] = beiβt

(
1 +

F1 + iH1

D1

)
, (3.40)

where

F1 = −4
√
βα (4βx2 − 12αβ2tx+ α2β2(9β + 16)t2 − 1),

D1 =
2
β
(4βx2 − 12αβ2tx+ α2β2(9β + 16)t2 + 1) ,

H1 = 32α
√
βt.

The solutions u[1] and v[1] here stand for the vector generalized first-order rogue wave
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Figure 55: Third-order rogue wave u[3] depicted with the following parameters: a = 1,

b = 0, c1 = d1 = c2 = d2 = 100 and α = 1. Panel (a) represents the 3-D perspective and

the panel (b) stands for the density plot of the 3-D representation

solutions for the Manakov system (3.11). It is important to remark that, u[1] and v[1]

are merely proportional. These solutions are depicted in figure 44. It is also important to

note that the solutions obtained here for the Manakov system resemble those obtained in

ref [107].

Then, using the matrices R[0]
1 and R

[1]
1 given in appendix A, and substituting them

into the expression of equation (3.27), we obtain the matrix R1[1] which elements are

also given in appendix. The matrix elements r1[1], s1[1] and w1[1] are then substituted

into equations (3.29) and (3.30), which give rise to the second-order vector generalization

rogue wave solutions of the Manakov system (3.10).

The second-order rogue wave solution possesses two free parameters c1 and d1. In

general, the second-order rogue solution is composed of three first-order rogue waves. For

the case where c1 = d1 = 0, the rogue wave are crowded round the origin (0,0) and the

maximum of u[2] and v[2] is 5. For this case we have rogue wave composite (see figures

45 and 46 ), which resemble those obtained in Ref [107]. When we increase the value of
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Figure 56: Third-order rogue wave v[3] depicted with the following parameters: a = 0,

b = 1, c1 = d1 = c2 = d2 = 100 and α = 1. Panel (a) represents the 3-D perspective and

the panel (b) stands for the density plot of the 3-D representation.

|c1| and |d1| we observe that three first-order rogue waves are scattered in all direction

(see Figures 47-50).

Iterating formulae (3.35)-(3.36) three times (with N = 3), we obtain the third-order

rogue wave solutions u[3] and v[3]. We omit presenting analytical expressions since they

are rather cumbersome to be write down here. By means of computer, we give the

pictures of these third-order rogue wave solutions in Figures 52 and 53. We know that

the third-order rogue wave possesses four free parameters c1, d1, c2 and d2. The third-

order rogue wave solution is composed of six first-order rogue waves. For the case where

c1 = d1 = c2 = d2 = 0, we can observe a composite third-order rogue wave solution and

the maximum value of u[3] and v[3] is 7 (see Figures 51 and 52). When c1 = d1 = 0,

c2 = d2 = 100, the six first-order rogue wave array a pentagon; among the six first-order

rogue waves, one sits in the center and the rest are located on the vertices of the pentagon

(see Figures 53 and 54)

When c1 = d1 = 100, c2 = d2 = 100, the corresponding third-order rogue wave is
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composed of six first-order rogue waves as well, which array a triangle ( see figures 55 and

56). This work can be found in Ref. [124].

3.3 Rogue waves dynamics in ferrites

Solitary wave solutions provide significant physical information in nonlinear science.

The electromagnetic wave-propagation plays an important role in ferro- or ferrimagnetic

media both from the viewpoint of theoretical perspective and from the viewpoint of prac-

tical uses, particularly in connection with the behavior of ferrite devices at microwave

frequencies such as ferrite-loaded waveguide [170]. It appears fundamental and more

crucial to understand deeply the micromagnetic structures in microsize and nanosize of

magnets [171–174] due to the increasing interest in advanced magnetic information storage

and data process elements. Indeed, the understanding of the electromagnetic propaga-

tion in ferromagnetic materials is actually made possible by the Maxwell’s equations in

such media. Theses equations are supplemented with a relation between the magneti-

zation and the auxiliary magnetic field in the materials. Such a relation appears as the

phenomenological equation of motion for the magnetization.

The genuine motivation of this work stems from the fact that the bulk polaritons

propagating through the real ferrite with spatial configuration exhibit different complex

features within the propagating directions with varying profiles, amplitudes and speeds

in such a way that these features cannot be deeply understood merely by virtue of the

one-dimensional configuration system of propagation. The engineering of the magnetic

bulk polariton system through the soliton management technique stands to be underlying

in the understanding of the fast remagnetization process of data inputs within magnetic

memory devices.

Kraenkel et al. [109] reported the following. The ferrite is a ferromagnet of zero con-

ductivity, a ferromagnetic insulator. in this case, it is assumed that it is in presence of

external magnetic field and is saturated. Hence in the absence of eddy currents, electro-

magnetic waves may propagate. The equations that describe this wave propagation are

fundamentally nonlinear. In absence of currents and charges, the Maxwell equations are
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reduced to

−∇(∇.H) +∇2H =
1

c2
∂2

∂2t
(H +M), (3.41)

where c = 1/
√
µ0ε is the speed of light, µ0 is the magnetic permeability of the vacuum,

M and H are respectively the magnetization density and the magnetic induction. The

following constitutive relations have been assumed

D = εE, B = µ0(H +M).

A relation between the quantities H and M reads

∂M

∂t
= −µ0γM ×H, (3.42)

where γ is the gyromagnetic ratio. It is by means of this equation that the nonlinearity

sets in. In view to linearize the above relations, the following perturbation have been

adopted

M =M0 +mei(kx−wt), H = H0 + hei(kx−wt),

where m and h are real vector of component (mx,my,mz) and (hx, hy, hz) and k and w are

respectively, the wave number and the frequency of the wave. This leads to the following

dispersion relation,

M2
0 [w

2(1 + α)− αk2][w2(1 + α)− k2(α + sin2 φ)]− w2(w2 − k2)2 = 0.

It is introduced the following rescaled variables

∂

∂x
=

1

ε

∂

∂ξ
,

∂

∂t
= −1

ε

∂

∂ξ
+ ε

∂

∂τ
,

and considered the general expressions

M = M (0) + εM (1) + ε2M (2) + · · ·

H = H(0) + εH(1) + ε2H(2) + · · · .

Introducing these relations into (3.41) and (3.42), the second order equation equation

leads to M (1)
y = M

(1)
z = 0 and the relations M (1)

x = −H(1)
x and ∂

∂ξ
M

(1)
x = M0H

(0)
z . The

third order reads

∂
∂τ
H

(0)
y = − 1

2M0
M

(1)
x

∂
∂ξ
M

(1)
x ,

∂2

∂ξ∂τ
M

(1)
x = M0

2
M

(1)
x (H

(o)
y +M0).

,
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Figure 57: Rogue wave dynamics B[2]x depicted with the parameters α = 2 and β = 0.

Panel (b) is the density plot of panel (a)

These equations are nonlinear ones describing the evolution of the nonlinear terms in the

expansion of H and M . Defining M (1)
x = ±Θ and H(0)

y = −M0+
4

M0
ηξ, hence the following

system is obtained

∂2η

∂ξ∂τ
= −2Θ

∂Θ

∂ξ
,

∂2Θ

∂ξ∂τ
= 2Θ

∂η

∂ξ
.

For convenience, we adopt the following notation:

Bxt = BCx

Cxt = −BBx

, (3.43)

The variables x and t stand for the space and the time coordinate respectively, while

the quantities B and C represent two physical observables related respectively to the mag-

netization and the external magnetic field to the ferrite. The subscripts to the observables

refer to their partial derivatives with respect to the corresponding variables.
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Recently, Kuetche et al. [110], investigated the higher-dimensional extension of the

above system and soliton solutions were calculated. More after, the above authors in-

vestigated the inhomogeneous exchange within ferrites through the phase analysis [111].

More recently, soliton solutions for the system (3.43) has been calculated via the inverse

scattering transform [112].

In the past few decades, rogue waves also called freak waves, killer waves or giant

waves have attracted particular attentions. A rogue wave is a large-amplitude wave met

originally in oceanic conditions. In this work we extend to a complex-valued one the

system (3.43) as follows:

Bxt = BCx

Cxt = −1
2
(B∗B)x

. (3.44)

We actually want to investigate the rogue waves solution to the above system, with

the assumption that the magnetization may be complex-valued. The physical implication

is that, we can have rotating waves in the ferrites due to the angular momentum of the

magnetization. The main tool used in this work is the generalized Darboux transformation

(DT) based on the Darboux matrix method.

3.3.1 Lax-pairs and generalized Darboux transformation

It is well known that, the Lax-pairs ensure the total integrability of nonlinear systems.

Those of the system (3.44) can be given as follows

yx = Uy, yt = V y, (3.45)

For the system (3.44) to be integrable that is U and V well-defined. Hence the system

(3.44) becomes

Bxt = BCx

Cxt = −1
2
(B∗B)x

. (3.46)

Therefore, we obtain U = −iλ

 Cx B∗
x

Bx −Cx

 , V =

 i/4λ −B∗/2

B/2 −i/4λ

 ,

while using the zero curvature equation Ut − Vx + [U, V ] = 0. The observable y stands

for eigenfunction and is defined as y = (r(x, t), w(x, t))T ( T means matrix transpose) and
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Figure 58: Rogue wave dynamics B[2]x depicted with the parameters α = 2 and β = 1.

Panel (b) is the density plot of panel (a)
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Figure 59: Rogue wave dynamics C[2]x depicted with the parameters α = 2 and β = 0.

Panel (b) is the density plot of panel (a)

λ is a spectral parameter. We start with the assumption that the function y1 = (r1, w1)
T is

a particular solution to the Lax-pairs given in equation (3.45) with the spectral parameter

λ1 at C = C1[0] and B = B1[0].

We can transform the system (3.45) into a new one,

y[1]x = U [1]y[1], y[1]t = V [1]y[1], (3.47)

with the following elementary DT:

y[1] = T [1]y, T [1] =
1

λ
I −H[0]Λ[1]−1H[0]−1, (3.48)

B[1]x =
λ∗
1

λ1
B[0]x − i

(λ1−λ∗
1)r[0]

∗

λ2
1λ

∗
1(|r1[0]|2+|w1[0]|2)2 (λ1r1[0]

∗×

(w1[0]r1x[0]− r1[0]w1x[0])− λ∗1(r1[0]r1[0]
∗w1x[0]

+w1[0](2w1[0]
∗w1x[0] + r1[0]

∗r1x[0]))),

C[1]x =
λ∗
1

λ1
C[0]x + i

λ1−λ∗
1

λ2
1λ

∗
1(|r1[0]|2+|w1[0]|2)2 (λ1w1[0]

∗×

r1[0]
∗(w1[0]r1x[0]− r1[0]w1x[0])

+λ∗1(−w1[0]w1[0]
∗2w1x[0] + r1[0]r1[0]

∗2r1x[0])),

(3.49)
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where r1[0] = r1, w1[0] = w1, I =

 1 0

0 1

 = T [0], H[0] =

 r1[0] −w1[0]
∗

w1[0] r1[0]
∗


Λ[1] =

 λ1 0

0 λ∗1

 .

Here, the matrices U and V are replaced by U [1] and V [1] with the new potentials

B[1]x and C[1]x therein.

In the following, we use the Guo and coworkers’s approach to derive the generalized

Darboux transformation for the system (3.46). We note that,

y1 = y1(λ1 + ε) (3.50)

is a special solution to the Lax-pairs given in equation (3.45) with B = B[0], C = C[0]

and λ = λ1 + ε. Here ε is a perturbation parameter. Expanding y1 in a Taylor series in

ε, we get

y1(λ1 + ε) = y
[0]
1 + y

[1]
1 ε+ y

[2]
1 ε

2 + y
[3]
1 ε

3 + ... (3.51)

where y[j]1 = 1
j!

∂j

∂λj
1

y1(λ1) (j = 0, 1, 2, 3, ...).

It is clear that y[0]1 is a solution to the Lax-pairs of equation (3.45), with the seed

solutions Bx = B[0]x, Cx = C[0]x corresponding to the spectral parameter λ = λ1. So the

first step generalized DT follows,

B[1]x =
λ∗
1

λ1
B[0]x − i

(λ1−λ∗
1)r[0]

∗

λ2
1λ

∗
1(|r1[0]|2+|w1[0]|2)2 (λ1r1[0]

∗×

(w1[0]r1x[0]− r1[0]w1x[0])− λ∗1(r1[0]r1[0]
∗w1x[0]

+w1[0](2w1[0]
∗w1x[0] + r1[0]

∗r1x[0]))),

C[1]x =
λ∗
1

λ1
C[0]x + i

λ1−λ∗
1

λ2
1λ

∗
1(|r1[0]|2+|w1[0]|2)2 (λ1w1[0]

∗×

r1[0]
∗(w1[0]r1x[0]− r1[0]w1x[0])

+λ∗1(−w1[0]w1[0]
∗2w1x[0] + r1[0]r1[0]

∗2r1x[0])),

(3.52)

and T [1] = 1
λ
I −H[0]Λ[1]−1H[0]−1, where the quantities I, H[0] and Λ[1] are identical as

those given above.

Through the following limit process,

lim
ε→0

(T [1]|λ=λ1+ε) y1
ε

= lim
ε→0

(ε+ T1[1]|λ=λ1)y1
ε

= y
[0]
1 + T1[1]y

[1]
1 ≡ y1[1], (3.53)
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we get another solution to the Lax-pair of equation (3.45). Then, the second-step gener-

alized DT can be forwarded, namely,

B[2]x =
λ∗
1

λ1
B[1]x − i

(λ1−λ∗
1)r[0]

∗

λ2
1λ

∗
1(|r1[1]|2+|w1[1]|2)2 (λ1r1[1]

∗×

(w1[1]r1x[1]− r1[1]w1x[1])− λ∗1(r1[1]r1[1]
∗w1x[1]

+w1[1](2w1[1]
∗w1x[1] + r1[1]

∗r1x[1]))),

C[2]x =
λ∗
1

λ1
C[1]x + i

λ1−λ∗
1

λ2
1λ

∗
1(|r1[1]|2+|w1[1]|2)2 (λ1w1[1]

∗×

r1[1]
∗(w1[1]r1x[1]− r1[1]w1x[1])

+λ∗1(−w1[1]w1[1]
∗2w1x[1] + r1[1]r1[1]

∗2r1x[1])),

(3.54)

and T [2] = λ−1I −H[1]Λ[2]−1H[1]−1, where

H[1] =

 r1[1] −w1[1]
∗

w1[1] r1[1]
∗

 , Λ[2] =

 λ1 0

0 λ∗1

 , and y1[1] = (r1[1], s1[1])
T .

3.3.2 Rogue wave solutions.

In view to obtain rogue wave solutions for the system (3.46), we begin with the seeding

ones B[0]x = iαei(αx+βt) and C[0]x = −αβ, where the quantities α and β are two real free

parameters. The corresponding solution for the Lax-pairs of equation (3.45) at λ =

− 1
2(β+i)

(1 + ε2) holds

y1(ε) =

 (M1e
σ +M2e

−σ)e−
i
2
θ

(M2e
σ +M1e

−σ)e
i
2
θ

 , (3.55)

where σ = 1
2
αρ(x+ wt), ρ =

√
−4β2λ2 − 4λ2 − 4βλ− 1, w = 1

2αλ
,

M1 =
√

ρ+2iβ+i
2λ

, M2 =
√

−ρ+2iβλ+i
2λ

and θ = αx+ βt.

Expanding the vector function y1(ε) in a Taylor series at ε = 0, we obtain the following

expression

y1(ε) = y
[0]
1 + y

[1]
1 ε

2 + y
[2]
1 ε

4 + y
[3]
1 ε

6 + ..., (3.56)

where y[0]1 =

 r
[0]
1

w
[0]
1

 , y
[1]
1 =

 r
[1]
1

w
[1]
1

...

with r[0]1 = 2e−
i
2
θ, w[0]

1 = 2e
i
2
θ

r
[1]
1 = −2e−

i
2
θ(−1− 4t+ 4β2t− 4iαx+ 8itβ − 4αxβ),

and w[1]
1 = 2e

i
2
θ(1− 4αxβ − 4iαx+ 8itβ + 4β2t− 4t),
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Figure 60: Rogue wave dynamics C[2]x depicted with the parameters α = 2 and β = 1.

Panel (b) is the density plot of panel (a)

It is very important to notify that only the first two terms of the series are taken into

account, because it is sufficient to construct the first-order rogue wave solution to the

system (3.46). If higher-order rogue wave are targeted, one needs to consider more terms

in equation (3.56) to be sure to the accuracy of the results.

Taking into account that the function y
[0]
1 is a solution to the Lax-pairs (3.45) at

Bx = B[0]x, Cx = C[0]x, we substitute the above seed solution into equations (3.51) and

we get a trivial solution to the system (3.46) as follows B[1]x = −iαeiθ and C[1]x = −αβ

Using the trivial solutions above and the formulae given in equations (3.53) and (3.54),

with the following Darboux matrix T [1] =

 −2i −2ie−iθ

2ieiθ −2i

, the rogue wave solution

for the system (3.46), can be given as follows

B[2]x =
H1 + iG1

D1

, C[2]x =
F1

D1

, (3.57)

with F1 = −α (β3 − 3 β − 64αβ6tx + 704αβ2tx − 256αβ4tx + 6144α2β5t2x2 +

5120α2β7t2x2+3072α2β3t2x2+512α2β t2x2−1024α3β8tx3−4096αβ8t3x−3072α3β6tx3−
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6144αβ6t3x−1024α3β2tx3−1024αβ2t3x−3072α3β4tx3−4096αβ4t3x+1536α2β6t2x2−

1024αβ10t3x−128xtα+768α4β5x4+128α2β3x2−160α2β x2+768α4β3x4+32α2β5x2+

256α4β x4+256α4β7x4+256 β11t4+2560 β5t4−544 β3t2+256 β t4+352 β t2+160 β5t2+

32 β7t2 + 1280 β6t4 + 1280 β3t4 + 2560 β7t4),

G1 = α − 1024α4β tx3 − 1024α2β t3x − 4096α2β3t3x + 64α2β5tx − 6144α2β5t3x −

1024α4β7tx3−4096α2β7t3x+1536α3β8t2x2−1024α2β9t3x−384α2β3tx+3072α3β2t2x2+

6144α3β4t2x2− 3072α4β5tx3− 3072α4β3tx3+576α2β tx+5120 β6α3t2x2+256α5β6x4+

768α5β4x4+2560αβ6t4+1280αβ8t4+256αβ10t4−32α3β4x2+512α3t2x2+128α3x2β2−

32αβ6t2+224α t2β4+768α5β2x4+2560αβ4t4+1280αβ2t4−736α t2β2+32α t2−96α3x2+

256α t4 − 3αβ2 + 256α5x4,

H1 = 1024α3β5tx2 + 2048α3β3tx2 + 1024α3β tx2 − 1792α2β2t2x − 2816α2β4t2x −

1280α2β6t2x − 256α4β4x3 − 256α2t2x − 512α4β2x3 − 48α2β2x − 64αβ t + 512αβ t3 +

512αβ7t3 + 64αβ3t+ 1536αβ3t3 + 1536αβ5t3 + 16α2x− 256α4x3,

andD1 = (1 + β2) (1 + 16 t2 + 32 t2β2 + 16 t2β4 − 32αβ tx− 32αβ3tx+ 16α2x2 + 16α2x2β2)
2.

The depictions corresponding to the rogue wave solution are shown in figures (57),

(58), (59) and (60).

In the Figures (57), (58) and (59), the familiar symmetry of the Peregrine soliton is

absent, since the place where the usual rogue waves reach their maximum shape moves

from the center to the surroundings. Also, in the Figure (57), we observe wave scattered

in all direction, while in the Figures (58) and (59), the waves are localized both in the

space and time directions. In our knowledge, the rogue wave solution in ferrites has not

yet been reported in the literature.

3.4 Generalized Darboux transformation and Parameter-

dependent rogue wave solutions to a nonlinear Schrödinger

system

Originally, the phenomenon of rogue waves refers to a giant ocean wave, responsible

of many marine disasters [1]. Many years after that, more effort have been devoted to the

study and the understanding of this mysterious phenomenon in many fields such as hydro-
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dynamics, plasma physics, optics, capillary waves and Bose-Einstein codensates just to

name a few. From the study of the phenomenon, it resorts that rogue wave appears from

nowhere and disappears without a trace [13]; their amplitude is two or three times larger

than their surrounding waves. The unpredictability of rogue waves implies that they can

be expressed by rational functions localized both in space and time. The simplest rogue

wave solution was firstly obtained by Peregrin ; more after, Akhmediev and coworkers

have calculated the first-order rogue wave solution for the nonlinear Schrödinger equa-

tion(NLSE). Analytical rogue wave solution has been also obtained for various physical

models.

In view to generate rogue wave solutions to physical models, many mathematical tools

have been used such as similarity transformation, Darboux transformation (DT) just to

name a few. The traditional DT was developed in reference [167], but that one is not

appropriated to construct higher-order rogue wave solution to nonlinear physical systems.

So Guo and coworkers have modified it to derive the generalized DT. This one is the tool

used in this work to construct rogue wave solutions.

The system under consideration in this section was derived in reference [113]. His DT

was constructed and soliton solutions were provided. This system is a couple of generalized

nonlinear Schrödinger equations(GNLSE):

iut + uxx − 2u2v + 4β
2
u3v2 + 4iβ(uv)xu = 0,

ivt − vxx + 2uv2 − 4β
2
u2v3 + 4iβ(uv)xv = 0.

(3.58)

The quantities u, v are two polarized varying complex envelopes and β is a constant

parameter denoting the strength of higher-order terms. The subscripts mean partial

derivative. Setting v = ϵu∗, the system above is reduced to a GNLSE as follows

iut + uxx − 2ϵ|u|2u+ 4ϵ2β2|u|4u+ 4iϵβ(|u|2)xu = 0, ϵ = ±1. (3.59)

This equation was studied in Ref. [114] by means of the gauge transformation. In equation

(3.59), for the value of the parameter ϵ = +1, the system has compact manifold ie admits

the SU(2) symmetry; and for the case ϵ = −1 the system has non compact manifold ie

admit the SU(1, 1) symmetry [114]. In equation (3.59), the third and the fourth terms

are cubic and quintic nonlinearity respectively, and they describe the dynamics of two and

three body atomic interactions in a Bose Einstein condensates(BECs), while the last one
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Figure 61: First-order rogue wave solution to system (1.1). The panels (a), (b), (c) and

(d) are depicted with the value of β = 0.8, β = 0.9, β = 0.95 and β = 1, respectively.

scales the delayed nonlinear response of the system which offsets the modulation arising

from three-body interactions. In the nonlinear fiber optics, the last term of equation

(3.59) stands for self-frequency shift (SFS). The system (3.58) can model the propagation

of nonlinear wave in a wide variety of fields such as BECs, plasma, nonlinear optics and

the theory of deep water waves.

3.4.1 Lax-pairs and Darboux transformation

Due to integrability, the system (1.1) can be cast into 2×2 eigenvalue problem [113],

namely

Φx = UΦ, Φt = V Φ, (3.60)

with U =

 −iλ− iβuv u

v iλ+ iβuv

, V =

 A B

C −A

,

A = −2iλ2 + β(uxv− uvx) + 4iβ2u2v2 − iuv, B = 2uλ+ iux − 2βu2v, C = 2vλ− ivx −

2βuv2.
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The quantity λ is the spectral parameter and Φ =

 φ(x, t)

ϕ(x, t)

 is the vector eigen-

function. Through the zero-curvature equation Ut − Vx + (UV − V U) = 0, the system

(3.58) can be easily obtained.

(i) First iteration.

A special gauge transformation is now the DT [113],

Φ[1] = T [1]Φ, T [1] =

 α1 0

0 1/α1

 (Iλ− S[1]), (3.61)

where

(lnα1)x = 4iβ[|S[1]12|2 − Im(S[1]12u
∗)],

(lnα1)t = 4iβ[4Re(S[1]11)|S[1]12|2−2Im(S[1]22S[1]21u)+2βIm(S[1]12v)−iIm(S[1]21ux)],

Φ and Φ[1] are old and new eigenfunctions respectively, T is the Darboux matrix, I is the

identity matrix and S is a non-singular matrix. The DT (1.7) transforms the Lax-pairs

given in equation (3.60) into the new ones,

Φ[1]x = U [1]Φ[1], Φ[1]t = V [1]Φ[1], (3.62)

where the matrices U [1] and V [1] have same form as U and V with the new potentials

u[1] and v[1] therein. Inserting equation (3.61) into equation (3.60), one can easily obtain

the following

U [1] = (Tx + TU)T−1, V [1] = (Tt + TV )T−1. (3.63)

We assume the matrix S to be on the form

S =

 S11 S12

S21 S22

 = H1Λ1H
−1
1 , H1 =

 φ1 −ϕ∗
1

ϕ1 φ∗
1

 , Λ1 =

 λ1 0

0 λ∗1

 . (3.64)

The quantities φ∗
1, ϕ∗

1 and λ∗1 are complex conjugates of φ1, ϕ1 and λ1 respectively. The

elementary DT follows
u[1] = α2

1(u+ 2iS12),

v[1] = 1
α2
1
(v − 2iS21) .

(3.65)

Φ1 = (φ1, ϕ1)
T is a special solution of the Lax-pairs given in equation (3.60) at λ = λ1.

From the orthogonality condition, it follows that (−ϕ∗
1, φ

∗
1)

T is also a solution to the Lax-

pairs given in equation (3.60) at λ = λ∗1. From the first iteration given by equation (3.61),
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Figure 62: Compression of the wave along the x axis. The continuous line corresponds

to the case where β = 0.8, the small dashed line is for β = 0.85 and the big dashed line

is for the case where β = 0.9.

it follows that if H1 is a solution of Φ[1] for Λ = Λ1, then

H1Λ1 − S[1]H1 = 0 =⇒ S[1] = H1Λ1H
−1
1 . (3.66)

Such that S11 S12

S21 S22

 =

 φ1 −ϕ∗
1

ϕ1 φ∗
1

×

 λ1 0

0 λ∗1

×

 φ1 −ϕ∗
1

ϕ1 φ∗
1

−1

. (3.67)

From the cramer’s rule, the exact forms of the matrix elements S12 and S21 are ex-

pressed as follows

S12 =

∣∣∣∣∣∣ λ1φ1 −λ∗1ϕ∗
1

φ1 −ϕ∗
1

∣∣∣∣∣∣∣∣∣∣∣∣ φ1 −ϕ∗
1

ϕ1 φ∗
1

∣∣∣∣∣∣
, S21 =

∣∣∣∣∣∣ ϕ1 φ∗
1

λ1ϕ1 λ∗1φ
∗
1

∣∣∣∣∣∣∣∣∣∣∣∣ φ1 −ϕ∗
1

ϕ1 φ∗
1

∣∣∣∣∣∣
. (3.68)

From these determinant forms, the compact forms of S12 and S21 yield
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S12 =
(λ∗1 − λ1)φ1ϕ

∗
1

|φ1|2 + |ϕ1|2
, S21 =

(λ∗1 − λ1)ϕ1φ
∗
1

|φ1|2 + |ϕ1|2
. (3.69)

Knowing the exact expressions of S12 and S21, the solutions of the system (3.58) can be

given, according to equation (3.65) as follows

u[1] = α2
1

(
u+ 2i

(λ∗1 − λ1)φ1ϕ
∗
1

|φ1|2 + |ϕ1|2

)
, v[1] =

1

α2
1

(
v − 2i

(λ∗1 − λ1)ϕ1φ
∗
1

|φ1|2 + |ϕ1|2

)
. (3.70)

The solutions u[1] and v[1] can be expressed in form of determinant as follows

u[1] = α2
1

u+ 2i

∣∣∣∣∣∣ λ1φ1 −λ∗1ϕ∗
1

φ1 −ϕ∗
1

∣∣∣∣∣∣∣∣∣∣∣∣ φ1 −ϕ∗
1

ϕ1 φ∗
1

∣∣∣∣∣∣

 , v[1] =
1

α2
1

v − 2i

∣∣∣∣∣∣ ϕ1 φ∗
1

λ1ϕ1 λ∗1φ
∗
1

∣∣∣∣∣∣∣∣∣∣∣∣ φ1 −ϕ∗
1

ϕ1 φ∗
1

∣∣∣∣∣∣

 . (3.71)

From the above equations, it is possible to generate soliton wave solution, breather

wave solution and rogue wave solution to the system under consideration.

(ii) Second iteration

The second step DT begin with

Φ[2] = T [2]Φ[1], T [2] =

 α2 0

0 1/α2

 (Iλ− S[2]), (3.72)

where

(lnα2)x = 4iβ[|S[2]12|2 − Im(S[2]12u[1]
∗)],

(lnα2)t = 4iβ[4Re(S[2]11)|S[2]12|2−2Im(S[2]22S[2]21u[1])+2βIm(S[2]12v[1])−iIm(S[2]21u[1]x)],

Φ[2] and Φ[1] stand for the second and the first iteration of the DT respectively, T [2]

is the second iterated Darboux matrix. This DT transforms the Lax-pairs obtained in the

first iteration into a new one

Φ[2]x = U [2]Φ[2], Φ[2]t = V [2]Φ[2], (3.73)

where U [2] and V [2] are matrices as U [1] and V [1] with the new potentials u[2] and v[2]

therein. Then, Inserting equation (3.72) into (3.62), one can easily obtain the following

U [2] = (T [2]x + T [2]U [1])T [2]−1, V [2] = (T [2]t + T [2]V [1])T [2]−1. (3.74)
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Figure 63: Second-order rogue wave solution to system (1.1). The panels (a) and (b) are

depicted with the value of β = 0.8 and β = 0.95, respectively. In all the cases c1 = d1 = 0

We assume the matrix S[2] to be on the form

S[2] =

 S[2]11 S[2]12

S[2]21 S[2]22

 = H2[1]Λ2H2[1]
−1, H2[1] =

 φ1[2] −ϕ1[2]
∗

ϕ1[2] φ1[2]
∗

 , Λ2 =

 λ2 0

0 λ∗2

 .

(3.75)

Φ2[1] = (φ1[2], ϕ1[2])
T is the vector eigenfunction solution to the new Lax-pairs given in

equation (3.73) at λ = λ2. In this case the elementary DT of the system (3.58) follows

u[2] = α2
2(u[1] + 2iS[2]12), v[2] =

1

α2
2

(v[1]− 2iS[2]21). (3.76)

From the orthogonality condition, it follows that (−ϕ2[1]
∗, φ2[1])

T is also a solution to

the Lax-pairs given in equation (3.73) at λ = λ∗2. From the second iteration given in

equation(3.72) it follows that if H2[1] is a solution of Φ[2] for Λ = Λ2, then

H2[1]Λ2 − S[2]H2[1] = 0 =⇒ S[2] = H2[1]Λ2H2[1]
−1, (3.77)

such that
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S[2]21 S[2]22

 =

 φ2[1] −ϕ2[1]
∗

ϕ2[1] φ2[1]
∗

×

 λ2 0

0 λ∗2

×

 φ2[1] −ϕ2[1]
∗

ϕ2[1] φ2[1]
∗

−1

.

(3.78)

Here again, we need to evaluate only the exact expressions of the matrix elements

S[2]12 and S[2]21 using the Cramer’s rule. We then obtain

S[2]12 =
(λ∗2 − λ2)φ2[1]ϕ2[1]

∗

|φ2[1]|2 + |ϕ2[1]|2
, S[2]21 =

(λ∗2 − λ2)ϕ2[1]φ2[1]
∗

|φ2[1]|2 + |ϕ2[1]|2
. (3.79)

From equation (3.76), we obtain the second iterated solution to the system (3.58) as

follows

u[2] = α2
2

(
u[1] + 2i

(λ∗2 − λ2)φ2[1]ϕ2[1]
∗

|φ2[1]|2 + |ϕ2[1]|2

)
, v[2] =

1

α2
2

(
v[1]− 2i

(λ∗2 − λ2)ϕ2[1]φ2[1]
∗

|φ2[1]|2 + |ϕ2[1]|2

)
.

(3.80)

From the above equations, two-soliton solution, second-order breather solution and second-

order rogue wave solution to the system (3.58) can be provided. The solutions u[2] and

v[2] can be rewritten in terms of determinant as follows

u[2] = α2
2

(
α2
1u+ 2i

|A1|
|B|

)
, v[2] =

1

α2
2

(
1

α2
1

v − 2i
|A2|
|B|

)
, (3.81)

where

A1 =


α2
1λ1ϕ1 λ2ϕ2[1] α2

1λ
∗
1φ

∗
1 λ∗2φ2[1]

∗

α2
1φ1 φ2[1] −α2

1ϕ
∗
1 −ϕ2[1]

∗

α2
1λ1ϕ1 λ2ϕ2[1] α2

1λ
∗
1φ

∗
1 λ∗2φ2[1]

∗

α2
1ϕ1 ϕ2[1] α2

1φ
∗
1 φ∗

2[1]

 ,

A2 =


α−2
1 λ1φ1 λ2φ2[1] α−2

1 λ∗1ϕ
∗
1 λ∗2ϕ2[1]

∗

α−2
1 ϕ1 ϕ2[1] −α−2

1 φ∗
1 −φ2[1]

∗

α−2
1 λ1φ1 λ2φ2[1] α−2

1 λ∗1ϕ
∗
1 λ∗2ϕ2[1]

∗

α−2
1 φ1 φ2[1] α−2

1 ϕ∗
1 ϕ∗

2[1]

 ,

B =


λ1φ1 λ2φ2[1] −λ∗1ϕ∗

1 −λ∗2ϕ2[1]
∗

α2
1φ1 φ2[1] −α2

1ϕ
∗
1 −ϕ2[1]

∗

λ1ϕ1 λ2ϕ2[1] λ1φ
∗
1 λ2φ2[1]

∗

α2
1ϕ1 ϕ2[1] α2

1φ
∗
1 φ2[1]

∗

 .

(3.82)

(iii) N-th iteration
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Repeating the above process N-times, The N-th iterated solution (φl,ϕl)T (l = 1, 2, . . . , N)

to the Lax-pairs given in the equation (3.60) for λ = λl (l = 1, 2, . . . , N), provide the N-th

iterated solution to the system (3.58).

Proposition: Denoting

u[N ] = α2
N

(
u[N − 1] + 2i

(λ∗
N−λN )φN [N−1]ϕN [N−1]∗

|φN [N−1]|2+|ϕN [N−1]|2

)
,

v[N ] = 1
α2
N

(
v[N − 1]− 2i

(λ∗
N−λN )ϕN [N−1]φN [N−1]∗

|φN [N−1]|2+|ϕN [N−1]|2

)
.

(3.83)

Where

|αN | = 1

(lnαN)x = 4iβ[|S[N ]12|2 − Im(S[N ]12u[N − 1]∗)],

(lnαN)t = 4iβ[4Re(S[N ]11)|S[N ]12|2−2Im(S[N ]22S[2]21u[N−1])+2βIm(S[N ]12v[N−

1])− iIm(S[N ]21u[N − 1]x)],

Φ[N − 1] = T [N − 1]T [N − 2] . . . T [1]T [0]Φ,

with T [N ] =

 αN 0

0 1/αN

 (Iλ− S[N ]),

Λ[N ] =

 λN 0

0 λ∗N

 and HN [N − 1] =

 φN [N − 1] −ϕN [N − 1]∗

ϕN [N − 1] −φN [N − 1]∗

 .

Then the compact forms of the N-th iterated solution to the system (1.1) is written

as follows

u[N ] = α2
N

(
α2
1u+ 2i

|C1|
|D|

)
, v[N ] =

1

α2
N

(
1

α2
1

v − 2i
|C2|
|D|

)
, (3.84)
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where

C1 =



λN1 φ1 · · · λNNφN −λ∗N1 ϕ∗
1 · · · −λ∗NN ϕ∗

N

... · · · ...
... · · · ...

α2
1λ1φ1 · · · λNφN −α2

1λ
∗
1ϕ

∗
1 · · · −λ∗Nϕ∗

N

λN−1
1 φ1 · · · λN−1

N φN −λN−1
1 ϕ∗

1 · · · −λN−1
N ϕ∗

N

... · · · ...
... · · · ...

φ1 · · · φN −ϕ∗
1 · · · −ϕ∗

N


,

C2 =



λN−1
1 ϕ1 · · · λN−1

N ϕN λN−1
1 φ∗

1 · · · λN−1
N φ∗

N

... · · · ...
... · · · ...

α−2
1 ϕ1 · · · ϕN α−2

1 φ∗
1 · · · φ∗

N

λN1 ϕ1 · · · λNNϕN λ∗N1 φ∗
1 · · · λ∗NN φ∗

N

... · · · ...
... · · · ...

λ1ϕ1 · · · λNϕN λ∗1φ
∗
1 · · · λ∗Nφ

∗
N


,

D =



λN−1
1 φ1 · · · λN−1

N φN −λN−1
1 ϕ∗

1 · · · −λN−1
N ϕ∗

N

... · · · ...
... · · · ...

φ1 · · · φN −ϕ∗
1 · · · −ϕ∗

N

λN−1
1 ϕ1 · · · λN−1

N ϕN λN−1
1 φ∗

1 · · · λN−1
N φ∗

N

... · · · ...
... · · · ...

ϕ1 · · · ϕN φ∗
1 · · · φ∗

N


.

(3.85)

From equation (3.84), N-soliton solution, N-breather solution and so on can be provided.

The original DT is not applicable directly to obtain the rogue wave solutions for the

nonlinear wave equations. We now go forward while constructing generalized DT of the

system (3.58).

3.4.2 Generalized Darboux transformation

The N-th iterated DT contains N-eigenfunctions Φl associated with N-separate eigen-

values λl, but when carrying out the iteration in the original DT scheme, the generating

eigenfunction cannot be more than once. In view to obtain higher-order rogue wave solu-

tion for a fixed eigenvalue λ0, we must use repeated DTs. To overcome this problem, we

must consider the limit λl → λ1 in the corresponding eigenvalues found in the DT. Hence,

Thesis dissertation Year 2020



3.4 Generalized Darboux transformation and Parameter-dependent rogue
wave solutions to a nonlinear Schrödinger system 124

we adopt the procedure given in [92] to generate the higher-order rogue wave solution to

the system (3.58) using only one eigenvalue.

(i) First-step

We start with the assumption that Φ1 = Φ1(λ1 + f) is a special solution to the

Lax-pairs given in equation (3.60), also Φ(λ1+f)
f

solution to these Lax-pairs where f is a

perturbation small parameter. We consider the Taylor expansion of the function Φ at λ1

given as follows

Φ1 = Φ
[0]
1 + Φ

[1]
1 f

2 + Φ
[2]
1 f

4 + ..., (3.86)

where Φ
[l]
1 = 1

l!
∂l

∂λlΦ1|λ=λ1 (l=0,1,2. . . ). It is clear that the eigenfunction Φ
[0]
1 is a solution

of the Lax-pairs given in equation (3.60) at λ = λ1 with the seed solutions u and v. Hence

the first-step generalized DT (GDT) follows

u[1] = α2
1

(
u+ 2i

(λ∗1 − λ1)φ1[0]ϕ1[0]
∗

|φ1[0]|2 + |ϕ1[0]|2

)
, v[1] =

1

α2

(
v − 2i

(λ∗1 − λ1)ϕ1[0]φ1[0]
∗

|φ1[0]|2 + |ϕ1[0]|2

)
,

(3.87)

with Φ
[0]
1 = Φ1[0] = (φ1[0], ϕ1[0])

T . The first-order rogue wave solution to the system

(3.58) can be derived directly from equation (3.87).

(ii) Second-step

Through the following limit process

lim
f→0

T [1]|λ=λ1+fΦ

f
= lim

f→0

(f + T [1]|λ=λ1)Φ(λ1 + f)

f
= Φ

[0]
1 + T1[1]Φ

[1]
1 ≡ Φ1[1], (3.88)

we get another solution to the Lax-pair of equation (3.60), namely Φ1[1] = (φ1[1], ϕ1[1])
T .

The quantities Φ1[0] and Φ
[1]
1 are already calculated in the taylor expansion given in

equation (3.86). Then, the second-step GDT forwards, namely,

u[2] = α2
2

(
u[1] + 2i

(λ1 − λ∗1)φ1[1]ϕ
∗
1[1]

|φ1[1]|2 + |ϕ1[1]|2

)
, v[2] =

1

α2
2

(
v[1]− 2i

(λ1 − λ∗1)φ1[1]ϕ
∗
1[1]

|φ1[1]|2 + |ϕ1[1]|2

)
.

(3.89)

It is important to remark that λ1 and its associated eigenfunction in equation (2.62)

replace the eigenvalue (λ2) and eigenfunction in equation (2.52). Applying the limit

process above on equation (2.53), we obtain the determinant form of equation (3.89) as

follows
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u[2] = α2
2

(
α2
1u+ 2i lim

λ2→λ1

|E1[2]|
|F [2]|

)
, v[2] =

1

α2
2

(
1

α2
1

v − 2i lim
λ2→λ1

|E2[2]|
|F [2]|

)
, (3.90)

where

E1[2] =


λ1ϕ1 ϕ1[1, 1] λ∗1φ

∗
1 φ1[1, 1]

∗

φ1 α2
1φ1[0, 1] −ϕ∗

1 −α2
1ϕ1[0, 1]

∗

λ1ϕ1 ϕ[1, 1] λ∗1φ
∗
1 φ1[1, 1]

∗

ϕ1 α2
1ϕ1[0, 1] φ∗

1 α2
1φ1[0, 1]

∗

 ,

E2[2] =


λ1φ1 φ1[1, 1] λ∗1ϕ

∗
1 ϕ1[1, 1]

∗

ϕ1 α−2
1 ϕ1[0, 1] −φ∗

1 −α−2
1 φ1[0, 1]

∗

λ1φ1 φ1[1, 1] λ∗1ϕ
∗
1 ϕ1[1, 1]

∗

φ1 α−2
1 φ1[0, 1] ϕ∗

1 α−2
1 ϕ∗

1[0, 1]

 ,

F [2] =


λ1φ1 φ1[1, 1] −λ∗1ϕ∗

1 −ϕ1[1, 1]
∗

φ1 α2
1φ1[0, 1] −ϕ∗

1 −α2
1ϕ1[0, 1]

∗

λ1ϕ1 ϕ1[1, 1] λ∗1φ
∗
1 φ1[1, 1]

∗

ϕ1 α2
1ϕ1[0, 1] φ∗

1 α2
1φ1[0, 1]

∗

 ,

(3.91)

with φ1[i,m] = 1
m!

∂m

∂λm
1
[(λ1+f)

iφ1(λ1+f)]|f=0 and ϕ1[i,m] = 1
m!

∂m

∂λm
1
[(λ1+f)

iϕ1(λ1+f)]|f=0

(i.m = 0, 1.).

Using the above determinant form given in equation (3.90), one can easily derive the

second-order rogue wave solution to the system (3.58).

(iii) Nth-step

Repeating the above process N times and combining all the Darboux matrices, the

Nth iterated GDT for the system (3.58) is defined as follows

u[N ] = α2
N

(
u[N − 1] + 2i

(λ∗
1−λ1)φ1[N−1]ϕ1[N−1]∗

|φ1[N−1]|2+|ϕ1[N−1]|2

)
,

v[N ] = 1
α2
N

(
v[N − 1]− 2i

(λ∗
1−λ1)ϕ1[N−1]φ1[N−1]∗

|φ1[N−1]|2+|ϕ1[N−1]|2

)
,

(3.92)

where

|αk| = 1

(lnαk)x = 4iβ[|S[k]12|2 − Im(S[k]12u[k − 1]∗)],

(lnαk)t = 4iβ[4Re(S[k]11)|S[k]12|2−2Im(S[k]22S[2]21u[k−1])+2βIm(S[k]12v[k−1])−

iIm(S[k]21u[k − 1]x)],
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Figure 64: Second-order rogue wave solution to system (1.1). The panels (a), (b) and (c)

are depicted with the parametric choices (c1 = 100, d1 = 0), (c1 = 0, d1 = 100) and

(c1 = d1 = 100), respectively. In all the cases β = 0.8.

with T [k] =

 αk 0

0 1/αk

 (Iλ− S[N ]),

Λ[k] =

 λk 0

0 λ∗k

 and HN [N − 1] =

 φN [N − 1] −ϕN [N − 1]∗

ϕN [N − 1] −φN [N − 1]∗

 .

Φ1[N − 1] = Φ
[0]
1 +

∑N−1
k=1 T1[k]Φ

[1]
1 +

∑N−1
k=1

∑k−1
l=1 T1[k]T1[l]Φ

[2]
1 + ...+ T1[N − 1]T1[N −

2]...T1[1]Φ
[N−1]
1 .

Applying the limit process on the determinant given in equation (3.84), we obtain the

following compact form of the Nth iterated GDT of the system (3.58)

u[N ] = α2
N

(
α2
1u+ lim

λN→λ1

2i
|G1[N ]|
|H[N ]|

)
, v[N ] =

1

α2
N

(
1

α2
1

v − lim
λN→λ1

2i
|G2[N ]|
|H[N ]|

)
,

(3.93)

where
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G1[N ] =



λN1 φ1 · · · λN1 φ1[N,N − 1] −λ∗N1 ϕ∗
1 · · · −λ∗N1 ϕ∗

1[N,N − 1]
... · · · ...

... · · · ...

α2
1λ1φ1 · · · λ1φ1[1, N − 1] −α2

1λ
∗
1ϕ

∗
1 · · · −λ∗1ϕ∗

1[1, N − 1]

λN−1
1 φ1 · · · λN−1

1 φ1[N − 1, N − 1] −λN−1
1 ϕ∗

1 · · · −λN−1
1 ϕ∗

1[N − 1, N − 1]
... · · · ...

... · · · ...

φ1 · · · φ1[0, N − 1] −ϕ∗
1 · · · −ϕ∗

1[0, N − 1]


,

G2[N ] =



λN−1
1 ϕ1 · · · λN−1

1 ϕ1[N − 1, N − 1] λN−1
1 φ∗

1 · · · λN−1
1 φ∗

1[N − 1, N − 1]
... · · · ...

... · · · ...

α−2
1 ϕ1 · · · ϕ1[0, N − 1] α−2

1 φ∗
1 · · · φ∗

1[0, N − 1]

λN1 ϕ1 · · · λN1 ϕ1[N,N − 1] λ∗N1 φ∗
1 · · · λ∗N1 φ∗

1[N,N − 1]
... · · · ...

... · · · ...

λ1ϕ1 · · · λ1ϕ1[1, N − 1] λ∗1φ
∗
1 · · · λ∗1φ

∗
1[1, N − 1]


,

J [N ] =



λN−1
1 φ1 · · · λN−1

1 φ1[N − 1, N − 1] −λN−1
1 ϕ∗

1 · · · −λN−1
1 ϕ∗

1[N − 1, N − 1]
... · · · ...

... · · · ...

φ1 · · · φ1[0, N − 1] −ϕ∗
1 · · · −ϕ∗

1[0, N − 1]

λN−1
1 ϕ1 · · · λN−1

1 ϕ1[N − 1, N − 1] λN−1
1 φ∗

1 · · · λN−1
1 φ∗

1[N − 1, N − 1]
... · · · ...

... · · · ...

ϕ1 · · · ϕ1[0, N − 1] φ∗
1 · · · φ∗

1[0, N − 1]


.

(3.94)

Where

φ1[i,m] = 1
m!

∂m

∂λm
1
[(λ1+f)

iφ1(λ1+f)]|f=0 and ϕ1[i,m] = 1
m!

∂m

∂λm
1
[(λ1+f)

iϕ1(λ1+f)]|f=0

(i.m = 0, 1, 2 . . . N).

The determinant form given in equation (3.93) is useful for determining the N-order

rogue wave solution to the system (3.58), using the generalized Darboux transformation

and a seed solution.

3.4.3 Rogue wave dynamics

In order to obtain the rogue wave solution to the system (3.58), we start with the

following plane wave solutions as seed solutions to the system

u[0] = eia1t, v[0] = e−ia2t, (3.95)
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where the quantities a1 and a2 are real constants. Inserting the above seed solutions into

the system (3.58) and making the restriction a1 = a2 = a, we obtain a dispersion relation

in the form a = 4β2− 2. Then the basic solution to the Lax-pairs given in equation (3.60)

with u[0], v[0] and λ1 holds

Φ1 =

 i(M1e
µ −M2e

−µ)ei
θ
2

(M2e
µ −M1e

−µ)e−i θ
2

 , (3.96)

with θ = 2(2β2 − 1)t, M1 =

(
λ1−

√
λ2
1+a

λ2
1+a

)1/2

, M2 =

(
λ1+

√
λ2
1+a

λ2
1+a

)1/2

.

The quantity µ reads µ = i
√
λ21 + a(x − 2λ1(λ1 + 1) +

∑N
j=1(cj + idj)δ

2j); cj and dj

are constant real free parameters which will be responsible to the triplet and triangular

arrangement on rogue wave structure.

In view to obtain rogue wave solution to the system under consideration, we fix the

eigenvalue to be λ = i
√
a(1+ δ2), where the quantity δ is a small perturbation parameter.

We expand the vector eigenfunction at δ = 0 and we get the following

Φ1 = Φ
[0]
1 + Φ

[1]
1 δ

2 + Φ
[2]
1 δ

4 + ..., (3.97)

where,

Φ
[0]
1 =

 φ
[0]
1

ϕ
[0]
1

, Φ[1]
1 =

 φ
[1]
1

ϕ
[1]
1

, Φ[2]
1 =

 φ
[2]
1

ϕ
[2]
1

...

with

φ
[0]
1 = − 1√

a
(2

√
ax+ 4 a3/2t− 4 iat+ 1)ei

θ
2 ,

ϕ
[0]
1 = − i√

a

(
−2

√
ax− 4 a3/2t+ 4 iat+ 1

)
e−i θ

2 ,

φ
[1]
1 = ei

θ
2 (8 a5/2xt2 − 16/3 a9/2t3 − 16/3 ia3t3 − 4 a3t2 +16 ia4t3 − 4 a2xt− 2/3 a3/2x3 +

4 a2t2 + 4 ia2x2t − 2
√
ac1 − 9 a3/2t + 5 iat + 16 a7/2t3 + 16 ia3xt2 − 2 i

√
ad1 − 8 a7/2t2x −

1/2
√
ax+ 4 ia3/2xt− ax2 + 8 ia5/2t2 − 4 a5/2x2t+ 1/4),

ϕ
[1]
1 = e−i θ

2 (−16 ia7/2t3 + 4 ia5/2x2t + 5 at + 8 ia7/2t2x − 2
√
ad1 − 4 ia2xt − 4 ia3t2 −

8 ia5/2xt2 + 4 a2x2t + 2/3 ia3/2x3 + 9 ia3/2t + 16 a3xt2 + 1/2 i
√
ax + 16 a4t3 − 16/3 a3t3 +

16/3 ia9/2t3 + 4 ia2t2 − 4 a3/2xt+ 2 i
√
ac1 − 8 a5/2t2 − iax2 + 1/4 i).

It is important to note that only the two first terms in equation (3.97) are taken into

account, because it is sufficient for us to construct up to second-order rogue wave solution

to the system (3.58). If higher-order are targeted, one must consider more terms to be

sure to the accuracy of the results.
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Figure 65: Second-order rogue wave solution to system (1.1). The panels (a) and (b) are

depicted with the values β = 0.8 and β = 0.95, respectively. In all the cases c1 = d1 = 100.

(i) First-order rogue wave dynamics

Taking into account that Φ[0]
1 is a solution to the Lax-pairs given in equation (3.60), we

insert it into equation (3.87) and the first-order rogue wave solution to the system under

consideration yields
u[1] =

[
1 + 4

√
aF+iG

D

]
eiθ,

v[1] =
[
1 + 4

√
aF+iG

D

]
e−iθ,

(3.98)

where,

α1 = 1, F = 1 − 4a2x − 16a2xt − 16a2(a + 1)t2, G = −8at and D = 8ax2 + 32xt +

32a2(a+ 1)t2.

The first-order rogue wave solution corresponding to equation (3.98) is depicted in

figure (61). The same feature is observed for the v[1] component since the components u

and v are proportional.

(ii) Second-order rogue wave dynamics

Next, considering the expressions of Φ[0]
1 and Φ

[1]
1 and using equation (3.88), one can

obtain the analytical expressions of φ1[1] and ϕ1[1] as
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φ1[1] = −ei
θ
2

3∆
(3 + 6

√
ax − 12 ad1 + 64 a3x3t + 96 a5/2xt2 + 96 a7/2t2x + 96 a5/2x2t +

384 a4t2x2+768 a5t3x+256 a4xt3+48 a2tc1+48 a5/2td1+24 a3/2xd1− 12 iac1+512 a6t4+

512 a5t4 + 24 a3/2x3 + 256 a7/2t3 + 12 ax2 + 144 a3t2 + 48 a2t2 + 48 ia2tx2 + 96 ia3t2x +

48 ia3x2t + 96 ia4t2x + 144 ia5/2xt + 144 ia5/2t2 + 256 ia9/2t4 + 240 ia7/2t2 + 12 ia3/2x2 +

192 ia3t3+8 ia2x3+64 ia5t3+12 iat−512 ia11/2xt3−128 ia7/2x3t−384 ia9/2x2t2−60 ia2t−

256 ia13/2t4 − 16 ia5/2x4 − 6 iax+ 48 a3/2t+ 48 ia5/2tc1 + 24 ia3/2xc1 − 48 ia2td1),

ϕ1[1] =
−ie−i θ2

∆
(3−6

√
ax+12 ad1−48 ia5/2tc1−24 ia3/2xc1−144 ia5/2xt−144 ia5/2t2−

12 ia3/2x2 − 256 ia9/2t4 + 64 a3x3t − 96 a5/2xt2 − 96 a7/2t2x − 96 a5/2x2t + 384 a4t2x2 +

768 a5t3x+ 256 a4xt3 + 48 a2tc1 + 48 a5/2td1 + 24 a3/2xd1 − 12 iac1 + 512 a6t4 + 512 a5t4 −

24 a3/2x3 − 256 a7/2t3 + 12 ax2 + 144 a3t2 + 48 a2t2 + 48 ia2tx2 + 96 ia3t2x + 48 ia3x2t +

96 ia4t2x+512 ia11/2xt3+128 ia7/2x3t+384 ia9/2x2t2+256 ia13/2t4+16 ia5/2x4+192 ia3t3+

8 ia2x3 + 64 ia5t3 + 12 iat− 60 ia2t− 6 iax− 48 a3/2t− 240 ia7/2t2 + 48 ia2td1), with ∆ =

4ax2 + 16xt+ 16a2(a+ 1)t2.

Inserting the expressions of φ1[1] and ϕ1[1] into equation (3.89) or in its determinant

form given in equation (3.90) starting from the seed solutions, the second-order rogue

wave solution to the system (3.58) is provided; the corresponding depiction is shown in

figure (63). The same feature occurs for the v[2] component.

3.4.4 Discussion and interpretation of the results

1. The solution obtained in equation (3.98) is the first-order vector rogue wave solu-

tion to the system (3.58). It is easy to remark that the two above solutions are merely

proportional to each other, hence the solution obtained is a generalization of the rogue

wave solution to the decoupled system. A similar case has been obtained in our previous

work [104]. One can remark in the figure (61) that for the increasing values of the pa-

rameter β, the wave is compressed along the x and the t axis and the amplitude of the

wave increases. Great appreciation of the effects of the parameter β on the structure of

the rogue wave is shown in the Figure (62).

2. The second-order rogue wave solution possesses two free parameters c1 and d1. For

the case where c1 = d1 = 0 , the rogue wave is crowded round the origin (0,0) and the

maximum of the u[2] and v[2] is 4, for this case we have rogue wave composite as the one

obtained in Ref. [107] (see Figure 63). When we increase the value of c1 and d1 we observe
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three first-order rogue waves scattered in all direction arraying a triangular arrangement

(see Figure64). If we increase the values of the parameters c1 and d1 the distances between

the rogue waves increase also. If we interchange the values of the parameters c1 and d1

for example (c1 = 100, d1 = 0) and (c1 = 0, d1 = 100), the triangular arrangement of

the rogue waves persists but with different orientations (see Figure64a and Figure64b). If

we give the same values to c1 and d1 for example (c1 = d1 = 100), we obtain the same

triangular arrangement but in a different orientation (see Figure64c).

3. In the Figure (65), one can also remark the compression of the rogue wave along

both x and t axis and the increase of the amplitude for different increasing values of the

parameter β. The parameter β in the system (3.58) is close to the higher-order terms

representing higher-order nonlinearity. Hence the effects of this term on the dynamics of

the rogue waves express the increase of the nonlinearity of the waves in the medium.

4. The results obtained in this work show that the profile of the rogue wave can be

modified so that it can propagate in sophisticated nonlinear physical systems such as Spin

chain. The rogue wave can also be controlled during its propagation by changing the

values of the parameter β [115,116].

5. Rogue waves are short live waves which appear from nowhere and disappear without

a trace due to modulation instability. The effects of the parameter β on the rogue wave

can be that, for the small values of β the modulation instability can be modified so that

the wave lives very shortly and for the big values the wave lives more longer due the

increase of his amplitude.

3.5 Controllable rogue waves in nonlinear optical fibers

Generally, nonlinear phenomena are modeled by nonlinear evolution equations such as

the Korteweg de-Vries equation , the NLS equation and its extensions , the Schäfer-wayne

short pulse equation just to name a few. The nonlinearity have attracted particular atten-

tion of scientists for many years, because nonlinearity is a fascinating subject which have

many applications in modern science. As an illustration, soliton solutions to the aforemen-

tioned equations have been calculated, since soliton solutions arise from the combination

of the nonlinearity and the dispersion.
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During the past few decades, another kind of solutions to the nonlinear evolution

equations have been calculated, namely the rogue wave solutions. The rogue waves are

currently called freak waves, monster waves, killer waves because there are often respon-

sible of the destruction of large ships in the ocean. Rogue waves are not only met in

the ocean but also in physical conditions in the following fields: optics, superfluids [9],

Bose-Einstein condensates and in the form of capillary waves. Now, rogue waves still

mysterious so that in any of this discipline, the new studies enrich the concept and lead

to progress toward a comprehensive understanding of this phenomenon. The first-order

rational solution to the NLS equation was first calculated by Peregrine. More after, the

simplest rogue wave solutions for the NLSE was calculated by Akhmediev et al. The

construction of higher-order analogues is actually a challenging problem. In our recent

work, we have studied the interaction between the rogue wave and soliton wave, from the

investigation it resorts that the both kind of wave can interact elastically.

In this section, we consider a generalized nonlinear schrödinger equation (GNLSE)

given as follows [117],

iut + uxx + 2u|u|2 + γ(uxxxx + 6u2xu
∗ + 4u|ux|2 + 8|u|2uxx + 2u2u∗xx + 6|u|4u) = 0. (3.99)

The quantities u is the complex envelope, u∗ its complex conjugate and γ stands for a

parameter scaling the effects of higher-order linear and nonlinear terms. The integrabil-

ity of this equation has been shown and its soliton solutions have been calculated. It

gauge equivalent to Heisenberg spin chain has been established [118, 119]. We derive the

higher-order rogue wave solutions to equation (3.99), using the generalized Darboux trans-

formation (DT) based on the Darboux matrix method. The generalized DT for equation

(3.99) is iterated and a formula for generating the higher-order rogue wave solutions is

given. We also show the impact of the parameter γ on the dynamic of rogue wave solution

to equation (3.99).
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Figure 66: First-order rogue wave solution to equation (1.1) depicted in panel (a) with

γ = 1/2, in panel (b) with γ = 1, in panel (c) with γ = 2 and in panel (d) with γ = 5/2.

3.5.1 Lax-pairs and generalized Darboux transformation

Equation (3.99) can be cast into a 2× 2 linear eigenvalue problem due to integrability

[117]

yx =My, yt = Ny, (3.100)

where M =

 −iλ u

−u∗ iλ

 and N = 8iγN4 − 2iN2 with
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N2 =

 λ2 − 1
2
|u|2 iuλ− 1

2
ux

−iu∗λ− 1
2
u∗x −λ2 + 1

2
|u|2

 ,

N4 =

 A B

C −A

 ,

A = λ4 − 1

2
|u|2λ2 + 1

4
(uu∗x − uxu

∗)λ+
1

8
(3|u|4 + u∗uxx + uu∗xx − uxu

∗
x),

B = iuλ3 − 1

2
uxλ

2 − i

4
(uxx + 2u|u|2)λ+

1

8
(uxxx + 6|u|2ux),

C = −iu∗λ3 − 1

2
u∗xλ

2 +
i

4
(u∗xx + 2u∗|u|2)λ+

1

8
(u∗xxx + 6|u|2u∗x).

Here y = (r(x, t), w(x, t))T (the superscript T means transpose), λ is the spectral pa-

rameter. Through direct calculation, one can get equation (3.99) by the use of the zero

curvature equation Ut − Vx + [U, V ] = 0.

We start with the assumption that the function y1 = (r1, w1)
T is a particular solution

to the Lax-pairs given in equation (3.100) with the spectral parameter λ1 at u = u[0].

We can transform the system (3.100) into a new one,

y[1]x =M [1]y[1], y[1]t = N [1]y[1], (3.101)

with the following elementary DT:

y[1] = T [1]y, T [1] = λI −H[0]Λ[1]H[0]−1, (3.102)

u[1] = u[0] + 2(λ− λ∗)
r1[0]w1[0]

∗

|r1[0]|2 + |w1[0]|2
, (3.103)

where r1[0] = r1, w1[0] = w1, I =

 1 0

0 1

 = T [0], H[0] =

 r1[0] −w1[0]
∗

w1[0] r1[0]
∗

 ,

Λ[1] =

 λ1 0

0 λ∗1

 .

Here, the matrices M and N are replaced by M [1] and N [1] with the new potential

u[1] therein. Then, making use of the above DT N times, we get the N-fold DT of system

(3.99),

y[N ] = T [N ]T [N − 1]...T [1]y, T [j] = λI

−H[j − 1]Λ[j]H[j − 1]−1, (3.104)
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Figure 67: Compression of the rogue wave along the time coordinate. The feature in

continue line correspond to the value of γ = 1/2, in small dashed line for γ = 1 and in

big dashed line for γ = 5/2.

u[N ] = u[N − 1] + 2(λ− λ∗)
r1[N − 1]w1[N − 1]∗

|r1[N − 1]|2 + |w1[N − 1]|2
, (3.105)

H[j − 1] =

 r1[j − 1] −w1[j − 1]∗

w1[j − 1] r1[j − 1]∗

 , Λ[j] =

 λj 0

0 λ∗j

 .

with (rj[j − 1], wj[j − 1])T = yj[j − 1], Tj[l] = T [l]|λ=λj
, 1 ≤ j ≤ N , 1 ≤ l ≤ j − 1

The original DT is not applicable directly to obtain the rogue wave solutions for

the nonlinear wave equations. Matveev constructed the so-called generalized DT and

the positon solutions were calculated for the KdV equation [92]. Recently, Guo and

coworkers [94] re-examined Matveev’s generalized DT and introduced a new method to

get the generalized DT for the KdV and the NLS equations. In the following, we use the

Guo and coworkers’s approach to derive the generalized Darboux transformation for the

equation (3.99). We note that ,

y1 = y1(ε) (3.106)

is a special solution to the Lax-pairs given in equation (3.100) with u = u[0] and λ = λ1+ε.
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Figure 68: Second-order rogue wave solution to equation (1.1) depicted in panel (a) with

γ = 1/2, the panel (b) stands for the density plot of panel (a); the panel (c) corresponds

to the depiction with γ = 3/2 and the panel (d) is the corresponding density plot. All the

depictions are made for c1 = d1 = 0.

Here ε is a perturbation parameter. Expanding y1 in a taylor series in ε, we get

y1 = y
[0]
1 + y

[1]
1 ε+ y

[2]
1 ε

2 + y
[3]
1 ε

3 + ...+ y
[N ]
1 εN + ... (3.107)

where y[j]1 = 1
j!

∂jy1(λ)
∂λj |λ=λ1 (l = 0, 1, 2, 3, ...).

It is clear that y[0]1 is a solution to the Lax-pairs of equation (3.100), with the seed

solution u = u[0] corresponding to the spectral parameter λ = λ1. So the first step

generalized DT follows,

u[1] = u[0] + 2(λ− λ∗)
r1[0]w1[0]

∗

|r1[0]|2 + |w1[0]|2
, (3.108)

and T [1] = λI − H[0]Λ[1]H[0]−1, where the quantities I, H[0] and Λ[1] are identical as

those given above. Through the following limit process,

lim
ε→0

T [1]|λ=λ1+εy1
ε

= lim
ε→0

(ε+ T1[1])y1
ε

= y
[0]
1 + T1[1]y

[1]
1 ≡ y1[1], (3.109)
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we get another solution to the Lax-pair of equation (3.100). Then, the second-step

generalized DT can be forwarded, namely,

u[2] = u[1] + 2(λ− λ∗)
r1[1]w1[1]

∗

|r1[1]|2 + |w1[1]|2
, (3.110)

and T [2] = λI −H[1]Λ[1]H[1]−1,

H[1] =

 r1[1] −w1[1]
∗

w1[1] r1[1]
∗

 , Λ[2] =

 λ1 0

0 λ∗1

 .

Similarly, the following limit

lim
ϵ→0

[T [2]T [1]]|λ=λ1+ϵy1
ϵ2

= lim
ϵ→0

(ϵ+ T1[2])(ϵ+ T1[1])y1
ϵ2

= y
[0]
1 + (T1[2] + T1[1])y

[1]
1

+T1[2]T1[1]y
[2]
1 ≡ y1[2], (3.111)

provides us with a solution for the Lax-pairs of equation (3.100) with u[3] and λ = λ1.

Then, the third-step generalized DT can be expressed as follows

u[3] = u[2] + 2(λ− λ∗)
r1[2]w1[2]

∗

|r1[2]|2 + |w1[2]|2
, (3.112)

T [3] = λI −H[2]Λ3H[2]−1,

H[2] =

 r1[2] −w1[2]
∗

w1[2] r1[2]
∗

 , Λ[3] =

 λ1 0

0 λ∗1

 .

Repeating the above process N times, an Nth-step generalized DT can be considered.

Proposition. Notation

y1[N − 1] = y
[0]
1 +

N−1∑
k=1

T1[k]y
[1]
1 +

N−1∑
k=1

k−1∑
l=1

T1[k]T1[l]y
[2]
1 + ...

+T1[N − 1]T1[N − 2]...T1[1]y
[N−1]
1 , (3.113)

then, the N-step generalized DT is provided, namely,

u[N ] = u[N − 1] + 2(λ− λ∗)
r1[N − 1]w1[N − 1]∗

|r1[N − 1]|2 + |w1[N − 1]|2
, (3.114)

A recursive formula of the Nth-order generalized DT for the equation (3.99) is given by

the equations (3.113) and (3.114). As an application, the above formulae are used to

derive rogue wave solutions to equation (3.99) in the following and some depictions are

presented.
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Figure 69: Second-order rogue wave solution to equation (1.1) depicted in panel (a) with

γ = 1/2, in the panel (b) with γ = 1, in the panel (c) with γ = 3/2 and in the panel (d)

with γ = 2. All the depictions are made for c1 = d1 = 30.

3.5.2 Rogue wave solutions

In view to obtain rogue wave solutions to equation (3.99), we begin with the seeding

one u[0] = ei(2+6γ)t. The corresponding solution for the Lax-pairs of equation (3.100) at

λ = i(1 + δ2) can be given as follows

y1(δ) =

 i(M1e
η −M2e

−η)e−
1
2
i(2+6γ)t

(M2e
η −M1e

−η)e
1
2
i(2+6γ)t

 , (3.115)

with

M1 =

(
1 + δ2 −

√
(1 + δ2)2 − 1

(1 + δ2)2 − 1

)1/2

, M2 =

(
1 + δ2 +

√
(1 + δ2)2 − 1

(1 + δ2)2 − 1

)1/2

,

and

η =
√
(1 + δ2)2 − 1

(
x+ iγ(1 + δ2)t+

N∑
j=1

(cj + idj)δ
2j

)
,

the quantities cj and dj are free real parameters. Expanding the vector function y1(δ) in
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Figure 70: Third-order rogue wave solution to equation (1.1) depicted in panel (a) with

γ = 1/2, the panel (b) is the density plot of the panel (a), the panel (c) show the depiction

with γ = 3/2 and the panel (d) is its density plot. All the depictions are made for

c1 = d1 = 0 and c2 = d2 = 100.

a Taylor series at δ = 0, we obtain the following expression

y1(δ) = y
[0]
1 + y

[1]
1 δ

2 + y
[2]
1 δ

4 + y
[3]
1 δ

6 + ..., (3.116)

y
[0]
1 =

 r
[0]
1

w
[0]
1

 , y
[1]
1 =

 r
[1]
1

w
[1]
1

 , y
[2]
1 =

 r
[2]
1

w
[2]
1

 , y
[3]
1 =

 r
[3]
1

w
[3]
1

...

The analytical expressions of the quantities r[j]1 and w
[j]
1 (j = 0, 1, 2) are given in the

following with the help of the maple 13 software:

r
[0]
1 = i(2x+ 2 iγ t− 1)e−i(1+3 γ)t, w

[0]
1 = (2 x+ 2 iγ t+ 1)ei(1+3 γ)t.

r
[1]
1 = (−1/12) i(−30 iγ t− 24 c1 − 24 id1 − 6x− 8x3 − 24 ix2γ t+ 24 xγ2t2 + 8 iγ3t3 +

12x2 + 24 ixγ t− 12 γ2t2 − 3)e−i(1+3 γ)t,

w
[1]
1 = (−1/12) (−30 iγ t− 24 c1 − 24 id1 − 6x− 8 x3 − 24 ix2γ t+ 24 xγ2t2 + 8 iγ3t3 −

12x2 − 24 ixγ t+ 12 γ2t2 + 3)ei(1+3 γt)t.

r
[2]
1 = 1

480
i(−45 + 240 c1 − 30x+ 960 id2 − 120x2 + 240 x3 − 80x4 + 32 x5 − 80 γ4t4 +
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480x2γ2t2 + 160 ix4γ t− 320 ix2γ3t3 + 1680 ix2γ t− 320 ix3γ t+ 320 ixγ3t3 − 1200 ixγ t+

1080 γ2t2 + 960 ix2d1 + 960 γ td1 − 960 γ2t2c1 − 960 ixd1 + 1920 ixγ tc1 − 1920 γ td1x −

960 iγ2t2d1−960 iγ tc1−960xc1+960 x2c1+240 id1+160 γ4t4x−320x3γ2t2−1200 iγ3t3+

210 iγ t+ 32 iγ5t5 + 960 c2 − 2640xγ2t2)e−i(1+3 γ)t,

w
[2]
1 = 1

480
(45 + 240 c1 − 30x + 960 id2 + 120 x2 + 240x3 + 80 x4 + 32 x5 + 80 γ4t4 −

480x2γ2t2 + 160 ix4γ t− 320 ix2γ3t3 + 1680 ix2γ t+ 1200 ixγ t− 320 ixγ3t3 + 320 ix3γ t−

1080 γ2t2+960 ixd1+960 ix2d1−960 γ td1−960 γ2t2c1+1920 ixγ tc1+960 iγ tc1−1920 γ td1x−

960 iγ2t2d1 +960xc1 +960 x2c1 +240 id1 +160 γ4t4x− 320x3γ2t2 − 1200 iγ3t3 +210 iγ t+

32 iγ5t5 + 960 c2 − 2640 xγ2t2)ei(1+3 γ)t.

It is important to notify that only the first three terms of the series are taken into

account, because it is sufficient to construct up to third-order rogue wave solution for

the equation (3.99). If higher-order rogue wave are targeted, one needs to consider more

terms in equation (3.113) to be sure to the accuracy of the results.

Taking into account that the function y
[0]
1 is a solution to the Lax-pairs (3.100) at

u = u[0], we substitute the above seed solution into equation (2.39) and we get the

first-order rogue wave solution to equation (3.99) as follows

u[1] =

(
1 +

−8 x2 − 8 γ2t2 + 2− 8 iγ t

4 x2 + 4 γ2t2 + 1

)
ei(2+6γ)t. (3.117)

The dynamics of this first-order rogue wave is depicted in figure (66)

It is easy here to observe that, when increasing the values of the parameter γ, the wave

in compressed along the time coordinate. This implies the effect of the linear and nonlinear

additional terms close to the parameter γ. The Figure (67) show us the compression in

the time direction as well.

Using formula (3.109) and substituting equation (3.115) into (3.110), the second-order

rogue wave solution to equation (3.99) can be obtained in the following form:

u[2] =

(
1 +

F2 + iG2

H2

)
ei(2+6γ)t, (3.118)
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Figure 71: Third-order rogue wave solution to equation (1.1) depicted in panel (a) with

γ = 1/2, the panel (b) is the density plot of the panel (a), the panel (c) show the depiction

with γ = 3/2 and the panel (d) is its density plot. All the depictions are made for

c1 = d1 = 100 and c2 = d2 = 100.

with

F2 = −9− 3072x3c1γ
2t2 − 4608 γ4t4c1x+ 4608 x4d1γ t+ 3072 x2d1γ

3t3 + 72x2

+1152 c1γ
2t2x+ 5760 d1x

2γ t+ 256x8 + 384 x6 − 72 γ2t2 + 1024 x2γ6t6

+1024x6γ2t2 + 1536x4γ4t4 − 1536 γ5t5d1 + 2304 γ2t2c1
2

+2304 γ2t2d1
2 + 1536 x5c1 + 2304 x2d1

2 + 2304 x2c1
2 + 1152 c1x

3 + 4992 x4γ2t2

+2688x2γ4t4 + 3456 γ2t2x2 − 1920 γ6t6 + 3456 γ4t4 + 5760 d1γ
3t3 + 256 γ8t8,

G2 = −72 γ t− 1920 γ5t5 + 1152 d1x
4 + 512 γ7t7 + 1248 γ3t3 − 288x2γ t+ 1152 γ td1

2

+1152 γ tc1
2 + 512 γ tx6 − 1920 γ4t4d1 + 1536 γ3t3x4 + 1536 γ5t5x2 + 2304 x2γ3t3

+2304 d1γ
2t2 + 1152 x4γ t− 72 d1 + 2304 γ2t2d1x

2 − 4608 γ3t3c1x− 1536 γ tc1x
3,

H2 = 16 d1x
2γ t+ (8/3)x2γ4t4 + (8/3)x4γ2t2 − (16/3) d1γ

3t3 − 16 c1γ
2t2x

+20 γ2t2x2 + 20 γ td1 + 1/8 + (10/3)x4 +
8

9
x6 +

27

2
γ2t2 − (14/3) γ4t4

+
8

9
γ6t6 − 1/2 x2 + 8 c1

2 + 4 c1x+ (16/3) c1x
3 + 8 d1

2.
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The depiction of the second-order rogue wave is shown in figure (68)

In the Figure (68), we observe also that the wave is compressed in the time direction.

This kind of rogue reassemble those obtained in Ref [107] called composite rogue for the

vector nonlinear Schrödinger equation II.

In the Figure (69), we see second-order rogue wave divided in three individual first-

order rogue waves. The three waves are scattered in all directions for the values of free

parameters c1 and d1 different from zero. The three rogue waves array a triangle in which

every wave sit on a vertices. Every wave is compressed along the time coordinate in his

dynamics for the increasing values of the parameter γ.

Using formulae (3.111) and (3.112), one can get the third-order rogue wave solution

to equation (3.99). The analytical expression for u[3] is rather cumbersome to be written

down here. Thus, the dynamics of the third-order are shown in Figures (70) and (71).

In the Figures (70) and (71), we see particular rogue waves scattered in all directions

depending from the values of parameters c1, c2, d1 and d2. In the Figure (70), we observe

five first-order rogue waves arraying a pentagon in which we have one in the center and

the others sit on vertices. We also see the compression of the wave in the time direction.

In Figure (71), we see six first-order rogue waves as well arraying a triangle. They are

also compressed in time direction.

The Figure 71 shows us the compression in the time direction as well.

3.6 Homoclinic rogue waves to the Boussinesq equation

The rogue waves have been intensively studied in recent years, experimentally and

theoretically. So far there have been a variety of approaches in the studies, starting

from linear wave analysis, which can explain some of the phenomena that involve high

amplitudes. In particular, for the deep ocean waves described by the nonlinear Schrödinger

equation (NLSE), the localization is exemplified by the Peregrine soliton. Rogue waves

always have two to three times amplitude higher than its surrounding waves and generally

form in a short time for which people think that their come from nowhere.Besides the

NLSE, rogue waves have also been explored in some other wave equations such as the(

Dysthe equation, Zakharov equation ), the Davey-Stewartson equation, just to name a
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few .

In this section, we use a homoclinic (heteroclinic) breather limit method for seeking

rogue wave solution to nonlinear evolution equation, Which is divided up in four steps:

Step 1

By painleve analysis, a transformation u = T (f) is made for some new and unknown

function f .

Step 2

By using the transformation in step 1, original equation can be converted into Hirota’s

bilinear form

G(Dt, Dx; f) = 0,

where the D-operator [121] is defined by

Dm
t D

n
xf(t, x).g(t, x) =

(
∂

∂t
− ∂

∂t′

)m(
∂

∂x
− ∂

∂x′

)n

f(t, x)g(t
′
, x

′
)|t′=t,x′=x.

Step 3

Solve the above equation to get homoclinic (heteroclinic) breather wave solution by using

extended homoclinic test approach (EHTA) [120] .

Step 4

Let the period of periodic wave go to infinite in homoclinic (heteroclinic) breather wave

solution, we can obtain a rational homoclinic (heteroclinic) wave and this wave is just a

rogue wave.

We consider in this work the Boussinesq equation,

utt − uxx − 3(u2)xx − uxxxx = 0,

Which is a good candidate to study water waves, since it finds applications in fluid dy-

namics. The Boussinesq equation,

utt − uxx − 3(u2)xx − uxxxx = 0, (3.119)

By painlevé analysis, let

u = u0 + 2(logf)xx (3.120)

Where, f(x, t) is a real and unknown function to be determined, and u0 is a small pertur-
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Figure 72: The figure of u(x,t) as u0 = −1/2

w2 = 3/4

bation parameter. Substituting (3.120) into (3.119), we get the following bilinear equation:

[D2
t − (1 + 6u0)D

2
x −D4

x − (3u20 + A)]f.f = 0, (3.121)

where, A is constant of integration, D4
x(f.f) = 2(fxxxxf − 4fxxxfx + 3f 2

xx) and

D2
x = 2(fxxf − f 2

x). In this case, we choose extended homoclinic test function

f(x, t) = e−p1(x−w1t) + a1cos (p2(x+ w2t)) + a2e
p1(x−w1t) (3.122)

where p, p1, w1, w2, a1 and a2 are constants to be determined.

Substituting equation (3.122) into equation (3.121), we can get algebraic equation of

ep1(x−w1t) . Then equating the coefficients of all powers of ejp1(x−w1t) (j = −2,−1, 0, 1, 2)

to zero, we get

−a1a2(3u20 + A)− a1a2(p
4
2 + p41 − 6p21p

2
2) + a1a2(p

2
1w

2
1 − p22w

2
2)− 2a1a2(1 + 6u0)(p

2
1 − p22) = 0,

a1p1p2w1w2 + a1(1 + 6u0)p1p2 + 2a1p1p2(p
2
1 − p22) = 0,

4(p21w
2
1a2 − a21p

2
2w

2
2) + 2(1 + 6u0)(4p

2
1a2 − a21p

2
2)− 2(3u20 + A)a2 − 8(4p41a2 + a21p

4
2) = 0,

3u20 + A = 0.

(3.123)
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Setting p1 = p2 and making any simplifications, equation (3.123) is then reduced as

follows, 
4p21a1a2 + a1a2(w

2
1 − w2

2) = 0,

w1w2a1 + a1(1 + 6u0) = 0,

2(a2w
2
1 − a21w

2
2) + (1 + 6u0)(2a2 − a21)− 2p21(4a2 + a21) = 0.

(3.124)

Solving equation (3.124) yields

a1 = ±

√
2w2

1 + β − 4p21
2w2

2 + β + 2p21
a2, w1w2 = −β, p21 =

1

4
(w2

2 − w2
1), (3.125)

with β = 1 + 6u0. choosing u0 ̸= −1
6

and a2 > 0, from (3.125) we find that

|w2| > |w1|, w1 = β/w2 and w2
1 > β or w2

1 < β (u0 < −1/6 or u0 > −1/6)

(3.126)

Substituting (3.126) into (3.122), we get the following solutions,

f1(x, t) = 2
√
a2 cosh

(
p1

(
x+

β

w2

t

)
+

1

2
ln(a2)

)
+ b1 cos (p1(x+ w2t))

f2(x, t) = 2
√
a2 cosh

(
p1

(
x+

β

w2

t

)
+

1

2
ln(a2)

)
− b1 cos (p1(x+ w2t))(3.127)

Where, b1 =
√

2w2
1+β−4p21

2w2
2+β+2p21

a2 , p1 = ±
√

w2
2−w2

1

2
. Equation (3.127) into (3.120) provides us

solutions of (3.119) as follows respectively

u1 = u0 + 2p21

a2 − b21 + 2b1
√
a2 sinh

(
p1

(
x+ β

w2
t
)
+ 1

2
ln(a2)

)
sin(p1(x+ w2t))(

2
√
a2 cosh

(
p1

(
x+ β

w2
t+ 1

2
ln(a2)

))
+ b1 cos(p1(x+ w2t))

)2
u2 = u0 + 2p21

a2 − b21 − 2b1
√
a2 sinh

(
p1

(
x+ β

w2
t
)
+ 1

2
ln(a2)

)
sin(p1(x+ w2t))(

2
√
a2 cosh

(
p1

(
x+ β

w2
t+ 1

2
ln(a2)

))
− b1 cos(p1(x+ w2t))

)2 (3.128)

The solution u1(x, t) (respectively u2(x, t)) shows a new family of two-waves, breather

solitary wave, which is a solitary wave and meanwhile is a periodic wave whose amplitude

periodically oscillates with the evolution of time Figure72. It shows elastic interaction

between a left-propagation(backward-direction) periodic wave with speed w2 and homo-

clinic of different direction with speed β
w2

. Taking a2 = 1 then, ln a2 = 0. So the solution

u2 can be rewritten as follows
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Figure 73: The figure of UB(x, t) as u0 = 1/6

, w1 = w2, w2 = 3/4.

u
(1)
2 = u0 + 2p21

b2 − 2b1 sinh
(
p1

(
x+ β

w2
t
))

sin(p1(x+ w2t))(
2 cosh

(
p1

(
x+ β

w2
t
))

− b1 cos(p1(x+ w2t))
)2 , (3.129)

Where b2 =
2(w2

2−w2
1)+6p21

2w2
2+β+2p21

. Now, we consider a limit behavior of u(1)2 as the period 2π/p1

of periodic wave cos(p1(x+ w2t)) goes to infinite, i.e. p1 → 0 .

By computing, we obtain the following result

Uroguewave = u0 +
16(6R− (x+ β

w2
t)(x+ w2t))((

x+ β
w2

)2
+ (x+ w2t)2 + 8R

)2 , (3.130)

where R = 1
2w2

2+β
; here we have used b1 → 0 and w1 = w2 as p → 0, U contains two

waves with different velocities and directions. It is easy to verify that Uroguewave is a

rational solution of Eq.3.119. Moreover, we can show that Uroguewave is also a breather-

type solution. In fact, U → 0 for fixed x and t → ±∞ . So, U is not only a rational

breather solution but also a rogue wave solution which has two to three times amplitude

higher than its surrounding waves and generally forms in a short time Figure 73 . One
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may think that whether the energy collection and superposition of breather solitary wave

in many periods in many periods lead to a rogue wave or not.

3.7 Homoclinic rogue waves in a barothropic relaxing

media

Rogue waves are a kind of wave which originally referred to a huge wave responsible

of many marine disasters. But many efforts have been paid to study and understand the

nature of this mysterious phenomenon, and the outcome is that, the rogue wave appears

not only in oceanic condition but also in nonlinear physical systems such as plasma, the

Bose-Einstein condensates, nonlinear optics, hydrodynamics just to name a few. It re-

sorts also from the study that, rogue wave appears from nowhere and disappears without

a trace; their amplitude is two or more times larger than the known common waves. The

expressions of rogue wave solution are rational functions localized both in space and time,

that is what imply their unpredictability. The simplest rogue wave solution was firstly

obtained by Peregrin; more after, the first-order rogue wave solution for the nonlinear

Schrödinger equation (NLSE) was calculated by Akhmediev and coworkers [19]. Analyt-

ical rogue wave solution has been also obtained for various physical models. Recently,

we have made a study on a system modeling the propagation of waves in nonlinear fiber

optics, and from the results it resort that the rogue wave can interact with solition-like

wave without the destruction and the modification of the soliton wave [124].

Vakhnenko has recently investigated the wave propagation of high-frequency pertur-

bations within a relaxing barothropic media and has derived a model equation known as

Vakhnenko equation [170]. Indeed, the dynamic state equation of such relaxing barothropic

media is given by [171]

(∂2xx − c−2
f ∂2tt + αc2fp

′
∂2xx + βf∂x + γf )p

′
= 0, (3.131)

where

βf =
c2f + c2e
τpcfc2e

, γf =
c4f − c4e
2τ 2p c

2
fc

4
e

.

The physical quantity p′ represents a pressure-valued perturbation (p′ ≪ p0) p0 being

the pressure at equilibrium. The independent variables x and t may stand for space-
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and time-valued coordinates, respectively. Subscripts x and t appended to p0 denote the

partial differentiation. The quantities cf and ce denote the velocities for fast and slow

processes, respectively. And a αf is a characteristic quantity referring to fast processes.

In this regime, the following accuracy may be necessary

∂2xx − c2f∂
2
tt ≈ 2∂x(∂x + c−1

f ∂t),

such that equation (3.131) becomes

∂x̃(∂t̃ + ũ∂x̃)ũ+ α̃∂x̃ũ+ ũ = 0,

provided the following transformations

x̃ =

√
γf
2
(x− cf t), t̃ =

√
γf
2
cf t, ũ = αfc

2
fp

′
, α̃ =

βf√
2γf

,

hold for the dimensionless quantities ũ, x̃, t̃ and α̃. Thus, setting βf = 0, we have the

following

∂x̃(∂t̃ + ũ∂x̃)ũ+ ũ = 0, (3.132)

which is known as the Vakhnenko equation.

In Ref. [122] this nonlinear evolution equation was discussed

∂x(∂t + u∂x)u+ u = 0. (3.133)

This equation model the propagation of waves in a relaxing medium [123]. The aim of this

section is to construct the rogue wave solution to this equation, using the homoclinic test

approach (HTA). For this end, we need to follow the procedure given in previous section

for the Boussinesq equation.

First of all we need to give the bilinear form of equation (3.133). We then introduce

the following variables X and T defined by

x = ϕ(X,T ) := T +

∫ X

−∞
U(X

′
, T )dX

′
+ x0 t = X, (3.134)

where u(x, t) = U(X,T ) and x0 is a constant. From equation (3.134), it come the following

∂X = ∂t + u∂x, ∂T = θ∂x, (3.135)
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where

θ(X,T ) = 1 +

∫ X

−∞
UTdX

′
, so that θX = UT . (3.136)

Combining the equations (3.133) and (3.135), we obtain the following one

UXT + θU = 0. (3.137)

The transformed form of the VE is obtain by eliminating the quantity θ between

(3.136) and (3.137), namely

UUXXT − UXUXT + U2UT = 0. (3.138)

Introducing the quantity W defined by WX = U and assuming that W and its derivatives

vanish as X → −∞, then θ = 1 +WT and (3.137) becomes

WXXT +WXWT +WX = 0. (3.139)

Then, taking

W = 6(ln f)X , (3.140)

the bilinear form of equation (3.139) is given as follows

(DTD
3
X +D2

X)f.f = 0 (3.141)

where the quantity D is the Hirota operator defined as follows

Dm
t D

n
xf(t, x).g(t, x) =

(
∂

∂t
− ∂

∂t′

)m(
∂

∂x
− ∂

∂x′

)n

f(t, x)g(t
′
, x

′
)|t′=t,x′=x.

We choose the homoclinic test function as follows

f(x, t) = e−p1(x−w1t) + c1 cos(p2(x+ w2t)) + c2e
p1(x−w1t). (3.142)

Inserting the above test function in the bilinear form given in equation (3.141), we obtain

the following set of equations


p22 − p21 + p41w1 − p42w2 + 3p21p

2
2w2 − p22p

2
1w1 = 0,

−2− p21w2 − p22w1 + 3p21w1 + 3p22w2 = 0,

−2c21p
2
2 + 8c21p

4
1w2 + 8p21c2 − 32p41w1c2 = 0.

(3.143)
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Figure 74: Figure of U1 for w1 = 1 and c2 = 1.

Solving this set of equation, making the restriction w1 = w2 (without lost of generality),

yields

c1 = ±2

√
(4w1p21 − 1)p21
4p41w1 − p22

c2, p1 =

√
4 + w1

w1(3w1 + 4)
, p2 =

√
4− w1

w1(3w1 + 4)
, w1 < 4.

(3.144)

Inserting the expressions given in equation (3.144) into the homoclinic test function given

in (3.142), we obtain the following

f1 = 2
√
c2 cosh [p1(x− w1t) + ln

√
c2] + k1 cos[p2(x+ w1t)], (3.145)

f1 = 2
√
c2 cosh [p1(x− w1t) + ln

√
c2]− k1 cos[p2(x+ w1t)], (3.146)

where k1 = 2
√

(4w1p21−1)p21
4p41w1−p22

c2 .

From the expressions of the test function given above, we derive the solution of equation
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Figure 75: Depiction of U for w1 = 1 and c2 = 1.

(3.138) as follows

U1 =
2k1

√
c2(p

2
1 − p22) cosh(ζ) cos(χ) + 4

√
c2p1p2 sinh(ζ) sin(χ) + 4c22p

2
1 − k21p

2
2[

2
√
c2 cosh(ζ) + k1 cos(χ)

]2 , (3.147)

U2 =
2k1

√
c2(p

2
1 − p22) cosh(ζ) cos(χ) + 4

√
c2p1p2 sinh(ζ) sin(χ) + 4c22p

2
1 + k21p

2
2[

2
√
c2 cosh(ζ)− k1 cos(χ)

]2 ,(3.148)

with ζ = p1(x− w1t) + ln
√
c2 and χ = p2(x+ w1t).

The figure corresponding to the solution U1 is given in Figure (74).

Now, we consider a limit behavior of U1 as the period 2π/p1 of periodic wave cos(p2(x+

w1t)) goes to infinite, i.e. p2 → 0. Hence we obtain the following expression

U =
4
(

4
3wt+4

(1− 2xwt) + 2(x2 − w2t2) + 1
)

(wt− x)2 + (wt+ x)2 + 2
(3.149)

U is the rational homoclinic rogue wave solution to equation (1.9). The corresponding

feature is given in Figure (75).
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Conclusion

Throughout this chapter, we have constructed rogue wave solutions to some nonlin-

ear systems, by applying first the generalized Darboux transformation and secondly the

homoclinic test approach. It resorts from our results that, the rogue waves can interact

with other kind of wave without the destruction and the modification of the structure of

that wave. It resorts also that the higher-order nonlinearity can modify the profile of the

rogue waves during their dynamics. We have also shown that rogue waves can appear

also in materials such as the ferrites. We have applied the homoclinic test approach on a

nonlinear equation that models the dynamics of waves in the barothropic relaxing media,

and it resorts that rogue waves can also exist in this media.
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General Conclusion

At the starting of this dissertation, we proposed to study the rogue waves dynamics in

nonlinear systems and particularly in the barothropic relaxing media. During our work, we

have derived rogue wave solutions to nonlinear wave equation modeling nonlinear behavior

in a wide variety of sophisticated fields such as spin chain, ferrites, monomode birefringent

fiber, plasma, optics, deep water field and barothropic relaxing media. To derive these

solutions, we have used two powerful mathematical tools such as the generalized Darboux

transformation and the Extended Homoclinic Test Approach (EHTA). The generalized

Darboux transformation originally comes from the classic Darboux matrix method. This

last one unfortunately, is not appropriate to construct higher-order solution to a nonlinear

system; that is why it has been modified in Ref. ( [94]) to give born the most appropriated

one, namely the Generalized Darboux Transformation (GDT). The GDT opere on the

lax-pairs of the system under consideration. It consists of starting from a seed solution

and grows like a ladder. Its particularity is that, it uses only one eigenvalue for all the

procedure. The EHTA consists of starting from a test function with unknown coefficients,

which is inserted in the original equation and the unknown coefficients are determined.

After that, breather waves are obtained and by a Taylor expansion, the periodicity is

omitted and the resulting wave is just a rogue wave.

In this thesis, we presented in detail a procedure of the construction of a generalized

DT for the Manakov system. The construction is divided into two steps. First, a brief

introduction of the DT for the Manakov system is given by the Darboux matrix method.

Then a detailed derivation of the generalized DT for this system is discussed through the

Taylor expansion and a limit procedure. The generalized DT allows us to calculate the

higher-order rogue wave solution for the Manakov system in a unified way. In particular,

some higher-order rogue wave solutions to the Manakov system are constructed by means
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of the generalized DT with seed solutions u[0] = eiβt and v[0] = eiβt. It is important

to point out that the rogue wave solutions obtained in this paper are non-singular. The

profiles of the higher-order rogue wave solutions for the Manakov system depend on the

values of their free parameters cj dj (j = 1, 2, 3...). We hope our result will be real-

ized by physical experiments in the future, which is useful to understand the generation

mechanism and to find possible applications of the rogue wave.

We have constructed localized waves solutions for a coupled nonlinear Schrödinger

system with four wave mixing effects, self-phase modulation and cross-phase modulation

effects. In this case, we have shown that the rogue wave can interact with soliton wave

and breather wave elastically. From the results In fact, it ressort that rogue waves and

solitons can coexist in a same medium and the information contained in the soliton cannot

be destroyed during the interaction with rogue wave. During the interaction process, the

fact that the rogue wave appears from nowhere and disappears without a trace can be

related to the modulation instability. Indeed, the instability created by the plane wave

solution on his top induces an increase of perturbation up to his highest amplitude and a

decay. The mathematical tool used is the classical DT.

Higher-order rogue wave solutions to another coupled nonlinear Schrödinger equation

with fifth-order nonlinearity have been constructed in this work. Up to second-order ex-

pansion rogue wave solution to this system has been provided using the GDT. It resort

from the result that, increasing the value of the parameter close the higher-order non-

linearity, the wave is compressed along the x and t axis and its shape increases. Hence,

the higher-order nonlinearity increases the nonlinear behavior of the wave in the medium.

The effects of the parameter close to the higher-order nonlinearity on the rogue wave can

be that, for the small values of this parameter, the modulation instability can be modified

so that the wave lives very shortly and for the big values the wave live more longer due the

increase of his amplitude. The results obtained in this work show that the profile of the

rogue wave can be modified so that it can propagate in sophisticated nonlinear physical

systems such as Spin chain. The rogue wave can also be controlled during its propagation

by changing the values of the parameter β. The second-order rogue wave possesses two

free parameters c1 and d1 responsible of the triplet and triangular arrangement on the

rogue wave structure.
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we have made an investigation on a system of generalized NLSE by mean of Darboux

transformation, as a result higher-order rogue solutions has been obtained. We have

studied the effects of the higher-order terms on the structure of rogue waves during their

dynamics. Since the traditional DT is difficult to construct higher-order rogue wave

solution, we have constructed the generalized DT for the system under consideration.

Starting from seed solutions u[0] = ei(4β
2−2)t and v[0] = e−i(4β2−2)t to the above system,

we have given explicit first-order rogue wave solution. We have given explicit expressions

to calculate second-order rogue wave solution. We have given formulae generating higher-

order rogue wave solution to the system under study. We have introduced arbitrary

parameters in the phase factor of the eigenfunction of the Lax-pairs responsible to triplet

and triangular arrangement on the structure of the rogue waves. The second-order rogue

wave solution contains two free parameters c1 and d1; for the values c1 = d1 = 0. When we

set c1 = d1 = 100 we observe three fundamental rogue waves scattered in all directions and

arraying a regular triangle. We have observed that increasing the values of the parameter

β which implies the strength of higher-order nonlinearity and the SFS in the system, the

rogue wave is compressed along the distance and the time direction and the amplitude

increases. The results obtained in this work can explain the propagation of rogue waves

in some sophisticated nonlinear physical systems such as spin chain, plasma, nonlinear

optics and the theory of deep water waves. These results can also explain the propagation

of rogue light pulses in nonlinear fiber optic.

Throughout this thesis, we have provided a generalized Darboux transformation of a

generalized Nonlinear Schrödinger equation using Darboux matrix method. The starting

block of this method is the Lax-pairs of this equation. Starting from a seed solution

u[0] = ei(2+6γ)t and a generalized Darboux transformation, we have constructed rogue

wave solutions from one to third-order. A general formula for generating Nth-order rogue

wave solution has been proposed. We have shown that higher-order rogue wave solution

to the GNLSE depends on their free parameters cj and dj. The second-order rogue wave

solution contains two intrinsic parameters c1 and d1, the case where c1 = d1 = 0 gives a

composite rogue wave crowded round the center (0, 0) with the amplitude equal to 5, the

case where c1 = d1 = 30 gives a feature in which we observe three fundamental rogue waves

as well scattered in all directions. For the third-order, we have four intrinsic parameters
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c1, c2, d1 and d2. When c1 = d1 = 0 and c2 = d2 = 100 we observe six fundamental

rogue waves scattered in all directions and arraying a pentagon in which one sits in the

center and the others are placed on the vertices, for the case where c1 = d1 = 100 and

c2 = d2 = 100 we see also six fundamental rogue waves scattered in all directions and

arraying a regular triangle. We have discussed in details the effect of the higher-order

terms contained in this equation. It have been observed that, increasing the values of

the parameter γ the rogue wave is compressed along the time coordinate. This result can

be useful to explain the dynamic of rogue wave in some sophisticated nonlinear physical

systems, especially in spin system. The results obtained in this work can also explain the

propagation of rogue pulse light in nonlinear fiber optic.

We have also constructed rogue wave solution to a system modeling the dynamics of

nonlinear behavior in the ferrites using the generalized Darboux transformation (GDT).

The awesome pictures showing their dynamics have been plotted. From the results, it

resort that, the waves are scattered in all directions and localized in both space and time

directions. Throughout this thesis, we have extended system modeling the dynamics of

ferrites in nonlinear systems, to a complex-valued one while studying its integrability

properties. Then, we have used a generalized Darboux transformation to provide rogue

wave solutions to this system using its Lax-pairs. One of the applications of the results in

this work can be the propagation of rogue light pulses in ferrites. Since the magnetization

is complex, the wave can rotate while propagating and the carried information can be

more secured in micro-size devices such as hard-drive disk. Also, dashed magnetic signals

can be efficiently eliminated in the ferrites.

Based on Darboux matrix method, a generalized Darboux transformation of a gen-

eralized nonlinear Schrödinger equation possessing higher-order terms which refer to a

femto-second pulse propagation in a nonlinear fiber optic has been constructed. From

this GDT, up to thirst-order expansion rogue wave solution to this equation has been

provided. From the results it has been shown that, increasing the value of the parameter

scaling the strength of linear and nonlinear terms, the rogue waves are compressed along

the time axis. The second-order rogue wave possesses two free parameters c1 and d1 re-

sponsible to the triplet and triangular arrangement on rogue wave structure. Increasing

the values of these parameters brings the second-order rogue wave to be divided into three
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fundamental (first-order) rogue waves scattered in all directions. The thirst-order rogue

wave possesses a part from the parameters c1 and d1, two other parameters c2 and d2.

Giving the values different from zero to these parameters brings the thirst-order to be

divided into six first-order rogue wave scattered in all directions.

Based on the homoclinic test approach, we derive the rogue wave solution to the

Boussinesq equation.

In this thesis, we have applied the homoclinic breather limit method to the Vakhnenko

equation. As a result, we have obtained solitary breather wave of the Vakhnenko equation.

Meanwhile, considering a limit behavior of the breather wave, we have obtained the rogue

wave solution to the equation under consideration. we aim in our future work to use other

method such as the Darboux transformation and the wronskian determinant to construct

higher-order rogue wave solution to the Vakhnenko equation.

We aim in our future works to go further while constructing more higher-order rogue

wave solutions to the above systems. We aim also to make experiments of the solutions

obtained in this work. We will also observe the behavior of these solutions using numerical

simulations. All the systems that we have studied in this thesis are all (1+1)-dimensional

systems, we will in our future works devote our attention to (2+1)-dimensional and (3+1)-

dimensional systems.
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1. Analytical expressions of coefficients of equation (3.43)

r
[0]
1 =

√
2

2 4√β
(1− i) (−2

√
βx+ 3 β3/2α t− 4 iβ α t− 1)

e−2
√
βx+2β3/2α t−4 itα β+1/2 iβ t,

s
[0]
1 = a

√
2

2β3/4 (1− i) (−2
√
βx+ 3 β3/2α t− 4 iβ α t+ 1)

e−2
√
βx+2β3/2α t−4 itα β−1/2 iβ t,

w
[0]
1 = b

√
2

2β3/4 (1− i) (−2
√
βx+ 3 β3/2α t− 4 iβ α t+ 1)

e−2
√
βx+2β3/2α t−4 itα β−1/2 iβ t.

For simplicity, we have put α = 1,(a = 1, b = 0 for s[j]1 ),(a = 0, b = 1 for w[j]
1 ) (j=1,2)

r
[1]
1 = (−1/24 + 1/24 i)

√
2e−2x+2 t−7/2 it(−3 + 117 t3 + 180xt+ 15 t− 42xt2 + 147 t2

−18x − 36x2 − 36x2t + 24 id1 − 240 ixt − 36 it + 504 it2 − 144 it2x + 48 ix2t + 44 it3 +
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s
[1]
1 = (1/24− 1/24 i)

√
2
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√
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1
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i
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2
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39525 t4+560 x4−237 t5−32x5−3840 ixtc1+960 ixd1+22880 ixt3+1680 it2d1+1920 it2x3+

81120 it2x+480 ixt+5760 ix3t+5760 itc1 +5760 it2c1 +2880 xc1t+25200 it4 +3116 it5 +

540 it+3840 xd1t−320 ix4t−31680 it2x2−14880 ix2t−4320 itd1−3360 it4x−1760 it3x2−

960 ix2d1 − 5760 td1 − 4320 tc1 − 5760 t2d1
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+ 960 xc1 + 1680 t2c1 − 960x2c1 − 41160 it3 − 19440 it2 − 240 id1 − 960 id2 + 2880 ixtd1 −

240 c1 − 960 c2),

s
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2. Analytical expressions for r1[1], s1[1], w1[1], r1[2], s1[2] and w1[2].
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2928x4t2 + 792 t3x + 96 tx3 − 2232 t2x2 + 18300 x2t4 − 2808 c1 t
3 + 864 td1 − 792 tc1 +

144xc1 −1056 t3d1 +108 x2+2835 t2−1152x2td1 +864x2tc1 +1008 c1 xt
2+3456 xt2d1 +

10179 t4 + 48x4 + 64x6 + 15625 t6 + 144 d1
2 + 144 c1

2),

s1[2] = (−1/30− 1/30 i)
√
2e(−

2
97

+ 9
194

i)(16x+36 ix−97 t)(−540 d1+95436 it5d1+8640 ix3c2+66960 it2c1
2+65880 it3d2+

3240 ixd1 + 348480 ix3t3 + 1013280 ix4t4 + 100608 ix6t2 + 17280 ix3t + 2251536 it6x2 +

5760 ix3d1 +1620 itd1 +1080 ic1 x+2160 ixd2 +3456 ix5d1 +4320 ic1 d2 +36720 it2d1
2 −

491040 it3x2d1−244800 ic1 t
2x3−92880 ic1 t

2x−8640 ixc1
2t+27648 ix5d1 t+103680 ic1 t

2d1+
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41040 it2xc2 +540x−3510 t+8640 ix2td1 +496440 ixt4d1 +38880 itc1 x
2+124920 it4c1 x+

54720 itx4c1 + 30240 ix2td2 + 146880 it2x3d1 + 280800 ic1 t
3x2 − 4860x2t − 14040xt +

1890xt2 + 9408 x6t + 86016x5t3 + 12288x7t − 44544x6t2 − 71136x5t2 − 36720 t2d1
2 +

66960 t2c1
2−8640x2c1

2−350280 t4x3+436068 t5x2+124800 t7x−60672 t5x3+140448 t6x2+

1313928 t5x− 1694730 t6x− 83520x3t3+10368 x5t+36000 x4t2− 48960 t4x4+35280 x4t+

437760 t3x+17280 tx3−218160 t2x2−2115270 t4x−126000 t2x3+628200 t3x2+2880 d1 x
4−

8640 d1 2t−8640x2d1
2−532440x2t4−234720 t4c1−111852 t5d1+129564 t5c1+8064 x5c1−

432000 c1 t
3− 73440 tc1

2+8640 xc1
2− 29160 t2d1 +244080 t2c1 +8640x2c1 +16740 td1 −

15660 tc1 +3240xc1 − 29160 t3d1 +985140 t4d1 +276720 x4t3 +4320x2d1 − 145152x6t3 +

277440x5t4−6912 x8t+41472x7t2+168480 t3d1
2−121248 t5x4−878176 t6x3+11520x3d1

2+

2523600 t7x2−3288750 t8x−123552 t6d1−1078536 t6c1−4608x6c1−1080 xd1−8640 x3d2−

2160xd2 + 1080 c1 − 1080 d2 + 1080 x2 + 53190 t2 + 2520 x3 − 170325 t3 − 84480 t3x3d1 −

718560 t4x2c1+311040 t3x3c1+448704 t5xd1+1315872 t5xc1−9216 x5td1−241920 t4x2d1+

69120x4t2d1 + 41472 x5tc1 − 155520x4t2c1 − 51840 td1
2x2 − 60480 t2d1

2x+ 5760 x3td1 −

25920xc1 t − 21600xd1 t − 108000x2td1 + 69120 x2tc1 − 262440 t4xc1 − 8640x4td1 −

48960x4tc1 + 538560 c1 t
3x+ 11520 c1 tx

3 − 190080 c1 t
2x2 − 8640 tc1 2x+ 60480xd1 2t−

943200 xt3d1+438480xt2d1+73440 x2t2d1+358920 t4xd1+182880 t3x2c1−31680 t2x3d1+

66240 t2x3c1−27360 t3x2d1+644130 t4+1440x4+1790073 t5−4320x5−2688x6+26250 t8−

8682 t6 + 2125893 t7 − 1536x8 − 384x7 + 2160 d1
2 + 2160 c1

2 + 1828125 t9 + 512 x9 −

35640 t2d2−4320 x2c2−2880x3c2+8640 x3d1+5760 x5d1+16200 td2−7560 tc2+2160 xc2+

5760 x4c2−87480 t2c2−216000 t4d2+65880 t3c2−63000 t4c2+65160 t3d2−69120x2tc1 d1+

207360 t2c1 xd1−60480 ixtd1
2−51840xtc1 d1−63360 t3d1 c1+17280x2c1 d1+8640 xc1 d1+

12960 tc1 c2 + 247680 t3xd2 − 30240 t2c1 d1 + 8640 ix2d1
2 − 8640 ix2c1

2 + 23040 x3td2 −

36720xt2c2−4320xtd2+21600x2td2−34560x3tc2+30240xtc2+30240 x2tc2−103680 t2x2d2+

77760 t2x2c2 − 77760 t3xc2 +12960 td1 d2 +38880 c1 td1 − 41040 t2xd2 +760320 ix3t3d1 −

21600 ix2tc2 − 14400 itx4d1 − 64800 ixt2d1 − 36720 ixt2d2 +56160 ixtc1 +77760 it2x2d2 +

8640 ixd1 c2 + 4320 ixtc2 − 1440 ix4 + 1080 ix2 + 33750 it2 + 1152 ix6 + 2128626 it6 +

327870 it4+1261875 it8+768 ix8−69120 itc1 xd1 +4320 id1
2x+4320 ix2c2 +8640 id1 c1

2+

228960 it4d1+23760 itc1
2+62640 id1

2t+35640 it2c2+5760 ix4d2+216000 it4c2+63360 it3c1
2+

286200 it2d1 + 4320 ix2d1 + 226304 ix6t3 + 1582920 it4x3 + 32940 ix2t + 315000 it3x2 +

2292864 it5x4 + 112608 ix5t2 + 3072 ix8t + 4795200 it7x2 + 1102890 it6x + 19440 ix4t −
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23040 ix3tc2−315360 ic1 t
2x2−195840 ix4t2d1−168480 it3d1 c1−207360 it2c1

2x−8640 ic1 xd2−

241920 ix2t4c1−9216 ix5c1 t−34560 itx3d2−247680 it3xc2−11520 ic1 x
3d1−64800 itc1 d1−

1477440 ix2t4d1−84480 ix3t3c1−17280 itd1 d2−17280 itc1 c2−155520 ix2t2d1−12960 ixd1 t−

12960 itd1 c2 − 77760 it3xd2 − 4320 ixc1
2 − 128250 ixt2 − 1392210 it4x − 36864 ix7t2 −

875520 ix5t4 − 4108032 it6x3 − 585840 ix4t3 − 14016 ix6t − 1901124 it5x2 − 43920 it2x3 −

3240000 it8x−3072 ix6d1−4320 ix2c1−4320 ix2d2−63000 it4d2−160920 it2c1−2880 ix4c1−

774900 ic1 t
4 − 87480 it2d2 − 796464 it6d1 − 123552 it6c1 + 17280 ic1 x

3t+ 12960 ic1 td2 +

448704 it5xc1 + 69120 ix2c1
2t+ 1080 ic2 + 8640 id1

3 + 69120 ix4t2c1 + 384 ix7 + 540 ic1 +

1080 id1 + 30240 ixtd2 + 51840 ix2d1 tc1 + 60480 it2d1 xc1 + 8640 ixc1 d1 − 4320x2d2 +

4320 c1 c2+4320 d1 d2−3960 ix3−270 ix−3744 ix5−1094349 it7+8640 c1 d1
2+2160 ixc2+

2880 ixt3d1+687500 it9+457065 it3+1135251 it5+1485 it+135 i−8640 xd1 d2−8640xc1 c2−

17280 td1 c2 +17280 c1 td2 +1236960 ic1 t
3x+103680 it2x2c2 − 4320 id1 c2 − 6480 it2x2 −

563400 ix2t4−1802304 it5x3−832104 it5x−15360 ix7t−89280 it3x−2036400 it7x−1080 ixt−

398592 ix5t3−5760 ix5t−18720 ix4t2−336852 it5c1 −8100 itc1 −65160 it3c2 −2880 ix3d2 −

7560 itd2 − 16200 itc2 − 5760 ix5c1 − 8640 ic1 x
3 − 149400 ic1 t

3 − 79920 it3d1 +8640 c1
3 +

1384128 ixt5d1 +34560 itd1 x
3)/(9− 612xt− 192x3c1 − 22500 t5x− 8928x3t3 − 576x5t+

2928x4t2 + 792 t3x + 96 tx3 − 2232 t2x2 + 18300 x2t4 − 2808 c1 t
3 + 864 td1 − 792 tc1 +

144xc1 −1056 t3d1 +108 x2+2835 t2−1152x2td1 +864x2tc1 +1008 c1 xt
2+3456 xt2d1 +

10179 t4 + 48x4 + 64x6 + 15625 t6 + 144 d1
2 + 144 c1

2),

w1[2] = (−1/30− 1/30 i)
√
2e(−

2
97

+ 9
194

i)(16x+36 ix−97 t)(−540 d1+95436 it5d1+8640 ix3c2+66960 it2c1
2+65880 it3d2+

3240 ixd1 + 348480 ix3t3 + 1013280 ix4t4 + 100608 ix6t2 + 17280 ix3t + 2251536 it6x2 +

5760 ix3d1 +1620 itd1 +1080 ic1 x+2160 ixd2 +3456 ix5d1 +4320 ic1 d2 +36720 it2d1
2 −

491040 it3x2d1−244800 ic1 t
2x3−92880 ic1 t

2x−8640 ixc1
2t+27648 ix5d1 t+103680 ic1 t

2d1+

41040 it2xc2 +540x−3510 t+8640 ix2td1 +496440 ixt4d1 +38880 itc1 x
2+124920 it4c1 x+

54720 itx4c1 + 30240 ix2td2 + 146880 it2x3d1 + 280800 ic1 t
3x2 − 4860x2t − 14040xt +

1890xt2 + 9408 x6t + 86016x5t3 + 12288x7t − 44544x6t2 − 71136x5t2 − 36720 t2d1
2 +

66960 t2c1
2−8640x2c1

2−350280 t4x3+436068 t5x2+124800 t7x−60672 t5x3+140448 t6x2+

1313928 t5x− 1694730 t6x− 83520x3t3+10368 x5t+36000 x4t2− 48960 t4x4+35280 x4t+

437760 t3x+17280 tx3−218160 t2x2−2115270 t4x−126000 t2x3+628200 t3x2+2880 d1 x
4−

8640 d1 2t−8640x2d1
2−532440x2t4−234720 t4c1−111852 t5d1+129564 t5c1+8064 x5c1−
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432000 c1 t
3− 73440 tc1

2+8640 xc1
2− 29160 t2d1 +244080 t2c1 +8640x2c1 +16740 td1 −

15660 tc1 +3240xc1 − 29160 t3d1 +985140 t4d1 +276720 x4t3 +4320x2d1 − 145152x6t3 +

277440x5t4−6912 x8t+41472x7t2+168480 t3d1
2−121248 t5x4−878176 t6x3+11520x3d1

2+

2523600 t7x2−3288750 t8x−123552 t6d1−1078536 t6c1−4608x6c1−1080xd1−8640x3d2−

2160xd2 + 1080 c1 − 1080 d2 + 1080 x2 + 53190 t2 + 2520 x3 − 170325 t3 − 84480 t3x3d1 −

718560 t4x2c1+311040 t3x3c1+448704 t5xd1+1315872 t5xc1−9216 x5td1−241920 t4x2d1+

69120x4t2d1 + 41472 x5tc1 − 155520x4t2c1 − 51840 td1
2x2 − 60480 t2d1

2x+ 5760 x3td1 −

25920xc1 t − 21600xd1 t − 108000x2td1 + 69120 x2tc1 − 262440 t4xc1 − 8640x4td1 −

48960x4tc1 + 538560 c1 t
3x+ 11520 c1 tx

3 − 190080 c1 t
2x2 − 8640 tc1 2x+ 60480xd1 2t−

943200xt3d1+438480xt2d1+73440 x2t2d1+358920 t4xd1+182880 t3x2c1−31680 t2x3d1+

66240 t2x3c1−27360 t3x2d1+644130 t4+1440x4+1790073 t5−4320x5−2688x6+26250 t8−

8682 t6 + 2125893 t7 − 1536x8 − 384x7 + 2160 d1
2 + 2160 c1

2 + 1828125 t9 + 512 x9 −

35640 t2d2−4320 x2c2−2880x3c2+8640 x3d1+5760 x5d1+16200 td2−7560 tc2+2160 xc2+

5760x4c2−87480 t2c2−216000 t4d2+65880 t3c2−63000 t4c2+65160 t3d2−69120x2tc1 d1+

207360 t2c1 xd1−60480 ixtd1
2−51840xtc1 d1−63360 t3d1 c1+17280x2c1 d1+8640 xc1 d1+

12960 tc1 c2 + 247680 t3xd2 − 30240 t2c1 d1 + 8640 ix2d1
2 − 8640 ix2c1

2 + 23040 x3td2 −

36720xt2c2−4320xtd2+21600x2td2−34560x3tc2+30240xtc2+30240 x2tc2−103680 t2x2d2+

77760 t2x2c2 − 77760 t3xc2 +12960 td1 d2 +38880 c1 td1 − 41040 t2xd2 +760320 ix3t3d1 −

21600 ix2tc2 − 14400 itx4d1 − 64800 ixt2d1 − 36720 ixt2d2 +56160 ixtc1 +77760 it2x2d2 +

8640 ixd1 c2 + 4320 ixtc2 − 1440 ix4 + 1080 ix2 + 33750 it2 + 1152 ix6 + 2128626 it6 +

327870 it4+1261875 it8+768 ix8−69120 itc1 xd1 +4320 id1
2x+4320 ix2c2 +8640 id1 c1

2+

228960 it4d1+23760 itc1
2+62640 id1

2t+35640 it2c2+5760 ix4d2+216000 it4c2+63360 it3c1
2+

286200 it2d1 + 4320 ix2d1 + 226304 ix6t3 + 1582920 it4x3 + 32940 ix2t + 315000 it3x2 +

2292864 it5x4 + 112608 ix5t2 + 3072 ix8t + 4795200 it7x2 + 1102890 it6x + 19440 ix4t −

23040 ix3tc2−315360 ic1 t
2x2−195840 ix4t2d1−168480 it3d1 c1−207360 it2c1

2x−8640 ic1 xd2−

241920 ix2t4c1−9216 ix5c1 t−34560 itx3d2−247680 it3xc2−11520 ic1 x
3d1−64800 itc1 d1−

1477440 ix2t4d1−84480 ix3t3c1−17280 itd1 d2−17280 itc1 c2−155520 ix2t2d1−12960 ixd1 t−

12960 itd1 c2 − 77760 it3xd2 − 4320 ixc1
2 − 128250 ixt2 − 1392210 it4x − 36864 ix7t2 −

875520 ix5t4 − 4108032 it6x3 − 585840 ix4t3 − 14016 ix6t − 1901124 it5x2 − 43920 it2x3 −

3240000 it8x−3072 ix6d1−4320 ix2c1−4320 ix2d2−63000 it4d2−160920 it2c1−2880 ix4c1−

774900 ic1 t
4 − 87480 it2d2 − 796464 it6d1 − 123552 it6c1 + 17280 ic1 x

3t+ 12960 ic1 td2 +
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448704 it5xc1 + 69120 ix2c1
2t+ 1080 ic2 + 8640 id1

3 + 69120 ix4t2c1 + 384 ix7 + 540 ic1 +

1080 id1 + 30240 ixtd2 + 51840 ix2d1 tc1 + 60480 it2d1 xc1 + 8640 ixc1 d1 − 4320x2d2 +

4320 c1 c2+4320 d1 d2−3960 ix3−270 ix−3744 ix5−1094349 it7+8640 c1 d1
2+2160 ixc2+

2880 ixt3d1+687500 it9+457065 it3+1135251 it5+1485 it+135 i−8640 xd1 d2−8640xc1 c2−

17280 td1 c2 +17280 c1 td2 +1236960 ic1 t
3x+103680 it2x2c2 − 4320 id1 c2 − 6480 it2x2 −

563400 ix2t4−1802304 it5x3−832104 it5x−15360 ix7t−89280 it3x−2036400 it7x−1080 ixt−

398592 ix5t3−5760 ix5t−18720 ix4t2−336852 it5c1 −8100 itc1 −65160 it3c2 −2880 ix3d2 −

7560 itd2 − 16200 itc2 − 5760 ix5c1 − 8640 ic1 x
3 − 149400 ic1 t

3 − 79920 it3d1 +8640 c1
3 +

1384128 ixt5d1 +34560 itd1 x
3)/(9− 612xt− 192x3c1 − 22500 t5x− 8928x3t3 − 576x5t+

2928x4t2 + 792 t3x + 96 tx3 − 2232 t2x2 + 18300 x2t4 − 2808 c1 t
3 + 864 td1 − 792 tc1 +

144xc1 −1056 t3d1 +108 x2+2835 t2−1152x2td1 +864x2tc1 +1008 c1 xt
2+3456 xt2d1 +

10179 t4 + 48x4 + 64x6 + 15625 t6 + 144 d1
2 + 144 c1

2).
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