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Registration number: 11W1365

Master in Physics

Director

Prof. Germaine DJUIDJE KENMOE épouse ALOYEM

Associate Professor, University of Yaoundé I (Cameroon)
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Abstract

The aim of this thesis is to introduce Brownian motion as the central object of trans-

port and discuss its properties, putting particular emphasis on the sample path prop-

erties. The Brownian particle moving in 1D and 2D periodic potential respectively, is

subjected to both a static bias force and time periodic driving biharmonic force. The

relevance of periodic systems has become important due to their ubiquitous presence in

Nature. By modifying the system parameters like the shape parameter of the potential,

the biharmonic parameter of the driving force, as well as the temperature, different types

of transport are generated in the system. Our hope is to capture as much as possible the

spirit of Paul Langevin investigations on Brownian motion.

The numerical integration of the Langevin equation describing the dynamics of the

Brownian particle by the fourth order stochastic Runge-Kutta method shows us how

the quantities characterizing optimal transport are affects by the system parameters. By

modifying the shape of the potential using shape parameter r, the dispersionless trans-

port, normal diffusion and anomalous diffusion are generated in the system. We show

that there exists a potential shape where some parameters of the system weakly affect

the type of diffusion. A remarkable transition of the negative velocity depending on

the shape of the potential is observed. The anomalous transport is pronounced when

the wells of the potential have small, flat bottoms (0 ≤ r ≤ 0.7) and when the potential

wells are separated by thin barriers (−0.4 ≤ r < 0). Further, in 2D study, according to

the direction ψ where the bias force is applied, we determine the biharmonic parameter

ǫ for the presence of anomalous transport. The results show that for the NaCl surface,

the anomalous transport is observed for 2 < ǫ < 10. For the MoS2 surface, it appears

for monochromatic driven (ǫ = 0) and for 3 < ǫ < 9. In particular for the honeycomb

surface anomalous transport is generated for 0 6 ǫ < 6 only when ψ > 300. Within the

dynamic motion of dimer, anomalous transport appears in monochromatic driven due

to the commensurate properties of the system , for the time symmetry unbias force and

depends on the temperature. Our investigation revealed that, the potential shape and

the system parameters affect the diffusion and transport and allows for a tremendous

simplification of device in engineering, paving the way toward practical implementa-

tions.
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Résumé

Le but de cette thèse est d’explorer la dynamique ainsi que les propriétés du mou-

vement Brownien comme moteur central du transport et mettre un accent particulier

sur les phénomènes qui en découlent. La particule Brownienne se déplace dans un pre-

mier temps sur un substrat périodique unidimensionnel, puis, cette étude est étendue à

un substrat périodique bidimensionnel. Les systèmes périodiques sont de plus en plus

importants à cause de leurs omniprésences dans la Nature. La particule est soumise à

une force constante et à une force biharmonique fonction du temps. En modifiant les

paramètres du système tels que le paramètre de déformabilité du substrat, le paramètre

biharmonique de la force et la température, différent types de transport sont générés

dans le système. Notre souhait est d’explorer autant que possible les investigations de

Paul Langevin sur le mouvement brownien dans le cadre des phénomènes de transport.

L’intégration numérique de l’équation de Langevin qui décrit la dynamique de la

particule Brownienne par la méthode stochastique de Runge-Kutta d’ordre quatre nous

montre comment les propriétés caractérisant le transport optimal sont affectées par les

paramètres du système. En modifiant la forme du substrat à travers le paramètre de

déformabilité du potentiel, le transport dispersif, la diffusion normale et la diffusion

anormale sont observés dans le système. Nous montrons qu’il existe une forme du

potentiel pour laquelle les paramètres du système affectent faiblement le type de dif-

fusion. Une transition remarquable de la vitesse négative selon la forme du potentiel

est observée. Le transport anormal est observé quand les puits du potentiel sont étroits

(0 ≤ r ≤ 0.7) et quand le potentiel est séparé par les barrières minces (−0.4 ≤ r < 0). De

plus, dans l’étude bidimensionnelle, selon l’angle ψ que fait la force excitatrice avec la

direction ox, nous déterminons le paramètre bi-harmonique ǫ où on observe le transport

anormal. Nous avons montré que pour la surfaceNaCl, on observe le transport anormal

pour 2 < ǫ < 10. Pour la surface MoS2, il apparaı̂t dans le cas monochromatique de la

force sinusoı̈dale (ǫ = 0) et pour 3 < ǫ < 9. En particulier pour la surface de forme hexag-

onale, le transport anormal est produit pour 0 6 ǫ < 6 seulement quand ψ > 300. Dans

le cas du mouvement de particules couplées (cas du dimère) par un potentiel quartique,

le transport anormal apparaı̂t pour une force monoharmonique à cause des propriétés

de commensurable du système. Il s’observe aussi lorsque la force biharmonique est une

fonction symétrique du temps pour certaines valeurs de la température. La longueur

xvii



du dimère modifie aussi le type de diffusion. Notre travail montre que la forme du po-

tentiel ainsi que les paramètres du système affectent la diffusion et le type de transport.

Une expérimentation des différents phénomènes observés pourra aider à l’amélioration

de certains dispositifs technologiques.

Mots clés: Mouvement Brownien, Transport anormal, Phénomènes de diffusion, Pro-

cessus stochastique, Paramètre de déformabilité
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General Introduction

The art of doing research in physics usually starts with the observation of a natural

phenomenon. Then follows a qualitative idea on ”how the phenomenon can be inter-

preted”, and one proceeds with the construction of a model equation or a simulation,

with the aim that it resembles very well the observed phenomenon, afterwards the lab-

oratory experiments and finally, the results are used in the industry. This progression

from natural phenomena to models and mathematical prototypes and then back to many

similar natural phenomena, is the methodological beauty of our research in physics.

Transport and diffusion of particles belong to this class of phenomena. Brownian

motion (named after the Scottish botanist Robert Brown) is the seemingly random move-

ment of particles suspended in a fluid (i.e. a liquid such as water or air) or the mathe-

matical model used to describe such random movements, often called a particle theory.

Particles in both liquids and gases (collectively called fluids) move randomly. They do

this because they are bombarded by the other moving particles in the fluid. Larger

particles can be moved by light, fast-moving molecules. The random movement of mi-

croscopic particles suspended in a liquid or gas, caused by collisions with molecules of

the surrounding medium also called Brownian motion or molecular movement.

In probability theory and related fields, a stochastic or random process is a math-

ematical object usually defined as a collection of random variables. Historically, the

random variables were associated with or indexed by a set of numbers, usually viewed

as points in time, giving the interpretation of a stochastic process representing numerical

values of some system randomly changing over time, such as the growth of a bacterial

population, an electrical current fluctuating due to thermal noise, or the movement of

a gas molecule [1, 2, 3, 4]. Stochastic processes are widely used as mathematical mod-
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els of systems and phenomena that appear to vary in a random manner. The Brownian

motion of non-interacting particles studied by Einstein a century ago, is however in-

teresting because it is used for the understanding of the relation between the transport

and diffusion processes [5, 6]. In recent years a reverend interest on this topic has arisen

the phenomenon of negative transfer of a particle [7, 8, 9, 10]. This phenomenon occurs

generally in the systems driven by spatial periodic and symmetric potential, random,

deformable and/or ratchet potential [11, 12]. The phenomenon of negative transfer is

characterized by absolute negative mobility (ANM), negative nonlinear mobility (NNM)

and the negative differential mobility (NDM).

Transport processes in periodic systems play an important role in a great variety of

everyday life phenomena. They have applications in many disciplines including sci-

ences such as biology [13], chemistry [14], ecology [15], neuroscience [16], and physics

[17] as well as technology and engineering fields such as image processing, signal pro-

cessing [18], information theory [19], computer science [20], cryptography [21] and telecom-

munications [22]. Furthermore, seemingly random changes in financial markets have

motivated the extensive use of stochastic processes in finance [23, 24, 25]. Applications

and the study of phenomena have in turn inspired the proposal of new stochastic pro-

cesses. Examples of such stochastic processes include the Wiener process or Brownian

motion process, used by Louis Bachelier to study price changes on the Paris Bourse [26],

and the Poisson process, used by A.K. Erlang to study the number of phone calls oc-

curring in a certain period of time [27]. These two stochastic processes are considered

the most important and central in the theory of stochastic processes [1, 2, 28], and were

discovered repeatedly and independently, both before and after Bachelier and Erlang,

in different settings and countries [26, 29]. Apart from these well investigated applica-

tions other important features concerning the problem of Brownian motion in periodic

potentials. This problem occurs, for instance, in solid-state physics (Josephson tunnel-

ing junction, superionic conductor), chemical physics (infrared absorption by rotating

dipoles) and electrical circuit theory (phase-locked loops). The Josephson junctions will

be used as a convenient system which provides a physical motivation for the Brown-
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ian particle model and can be used to experimentally verify our results. The Brownian

particle description is commonly used as it provides a simple interaction of the under-

lying equation on that is easy to understand and visualize, and which refers to objects

described by the intuitive laws of classical mechanics. Therefore in the following work

we will discuss the analysed systems primarily using this approach.

Our study is based on the response of a probe particle subjected to both the positive

external bias force and time periodic driving biharmonic force, moving in 1D and 2D

dimensional periodic potential, respectively. The main emphasis of these works lies on

formulating and exploring conditions that are necessary for the generation and control

of transport, its direction, as well as its dependence on system parameters like the shape

of the potential, the temperature and the external load. In so doing,

⋆ The first goal is to study the effect of the shape potential on the diffusion and the

type of transport by using a nonlinear deformable Remoissenet-Peyrad (RP) potential

with the shape parameter r which allows us to consider different potential shapes.

⋆ The second goal is to study the effect of anisotropy and the surface shape upon

the transport type. In so doing, three different surfaces are used: the NaCl surface, the

MoS2 surface and surface with honeycomb symmetry. These surfaces differ with the

unit-cell.

The organization of the work is as follows.

• Chapter I presents the literature review on diffusion and transport phenomena.

This chapter presents the phenomena of diffusion and transport for different physical

systems. The Josephson junction model is one of the application of these phenomena.

• Chapter II presents the methodology, describes in details the mathematical and nu-

merical methods which are devoted for this thesis. We introduced the Newton-Langevin

equation which is a general model of a driven periodic system.

• Chapter III presents the main results of our work. In fact, we examine numerically

the solution of the Langevin equation to present the properties of Brownian motion in

one and two dimensional studies.

• The present thesis ends with a general conclusion along with prospects. We sum-
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marize our results and give some future directions that could be investigated.
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CHAPTER I

LITERATURE REVIEW ON DIFFUSION

AND TRANSPORT PHENOMENA

I.1 Introduction

Theoretical physics aims to establish the laws that govern the phenomena existing in our

environment by using mathematical and computational tools. It is predicting some new

phenomena that might occur in certain physical conditions. However, these conditions

sometimes seem so less realistic that the predicted phenomena may be unbelievable.

This chapter highlights some of the most significant concepts of diffusion and transport

phenomena. Firstly, we present the origin of Brownian motion. Secondly, we describe

the diffusion type of particles that are used to characterize Brownian motion such as nor-

mal diffusion, ballistic diffusion and anomalous diffusion. Thirdly, we study the trans-

port phenomenon, that is, a directed movement of a certain physical quantity which can

be trivially induced by applying a macroscopic gradient, like a force or a temperature

difference. Indeed, systems possessing spatial or dynamical symmetry breaking, where

Brownian motion combines with unbiased external input signals, whether determinis-

tically or randomly, can assist direct or indirect transport of particles at nanoscale. This

implies that no direction of transport can be predicted a priori in such systems. Finally,

we present the Josephson junction model which is one of the application of the Brownian

motion.
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I.2 Origin of Brownian motion

Brownian motion is named after the botanist Robert Brown, who first observed this in

1827. While looking through a microscope, observing particles trapped in cavities inside

pollen grains in water, he noted that the particles moved through the water; but he was

not able to determine the mechanisms that caused this motion. Atoms and molecules

had long been theorized as the constituents of matter, and Albert Einstein published a

paper in 1905 that explained in precise detail how the motion that Brown had observed

was a result of the pollen being moved by individual water molecules [30]. This ex-

planation of Brownian motion served as convincing evidence that atoms and molecules

exist, and was further verified experimentally by Jean Perrin in 1908 [31, 32]. Eventually

the experimental evidence supporting Einstein’s theory of Brownian motion became so

compelling that the naysayers were forced to accept the existence of material atoms. His

fundamental work on applying statistical methods to the random motions of Newto-

nian atoms also led to his insights into the photo electric effect, through the discovery

of a critical connection between his statistical theory of heat and the behavior of elec-

tromagnetic radiation. There are two parts of Einstein’s theory: the first part consists

in the formulation of a diffusion equation for Brownian particles, in which the diffusion

coefficient is related to the mean squared displacement (MSD) of a Brownian particle,

while the second part consists in relating the diffusion coefficient to measurable physical

quantities [33]. In this way Einstein was able to determine the size of atoms, the number

of atoms in a mole and the molecular weight in grams of a gas [34].

In Brownian motion, a particle does not have a specific direction to travel. Instead, it

will move in all directions. But in diffusion the particles will travel from a high concen-

tration to a low concentration. Therefore, they have a direction. However, the particle

movement is random in both scenarios. Diffusion takes place according to a concen-

tration or chemical potential gradient. Brownian is governed by the other particles in

the medium. The term ”Brownian motor” was originally coined by perter Hänggi in
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1995: A distinct feature of a Brownian motors is in contrast to a molecular motor that

the output response is typically coupled only loosely to the input perturbation and ac-

tion of fluctuation. The performance characteristics of motors working on the nanoscale

are richer than those of macroscopic machines. Particularly, fluctuations of position and

velocity are inherent to all Brownian motors. These fluctuations affect the motor per-

formance and contain information about motor characteristics [35]. Fluctuations are a

very common feature in a large number of fields. Nearly every system is subjected to

complicated external or internal influences that are not fully known and that are often

termed noise or fluctuations.

In engineering, physics and chemistry, the study of transport phenomena concerns

the exchange of mass, energy, charge, momentum and angular momentum between

observed and studied systems. While it draws from fields as diverse as continuum

mechanics and thermodynamics, it places a heavy emphasis on the commonalities be-

tween the topics covered. Mass, momentum, and heat transport all share a very similar

mathematical framework, and the parallels between them are exploited in the study of

transport phenomena to draw deep mathematical connections that often provide very

useful tools in the analysis of one field that are directly derived from the others. There

are examples of experimentally accessible physical systems that can be classified as the

Brownian motors. An important representative that comes to mind is transport of ions

through nanopores [36], cold atoms in optical lattices [37, 38], type II superconducting

devices based on the motion of Abrikosov vortices [39, 40].

I.3 Diffusion phenomena

Diffusion is a time-dependent random process causing a spread in space. Diffusion is

the net movement of molecules or atoms from a region of high concentration (or high

chemical potential) to a region of low concentration (or low chemical potential). This is

also referred to as the movement of a substance down a concentration gradient, pressure

gradient and temperature gradient. The concentration gradient is a change of concen-
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tration over a distance, the pressure gradient is a change of pressure over a distance and

the temperature gradient is a change of temperature over a distance.

A distinguishing feature of diffusion is that it is dependent on particle random mo-

tion and results in mixing or mass transport [41]. In Fig. 1, some particles are introduced

Figure 1: Illustration of the process of physics diffusion

in the glass of water. At first, the particles are all near one corner of the glass. If the par-

ticles randomly move around in the water (diffuse), they eventually become distributed

randomly and uniformly from an area of high concentration to an area of low concen-

tration, and organized.

One of the reasons for the marginal role that Brownian motion continued to play

in nineteenth-century physics was a matter of perspective. Indeed, the focus of the

kinetic theory was oriented more towards a reconstruction of the laws of phenomeno-

logical thermodynamics than towards the discovery of deviations from these laws, even

if these were the statistical fluctuations that must occur if the interpretation of heat as

a kind of motion is correct [42]. Boltzmann’s Gastheorie, for instance, explicitly denies

that the thermal motion of molecules in a gas leads to observable motions of suspended

bodies [43]. Another reason was the intrinsic difficulties of applying the kinetic the-

ory to Brownian motion. Since the 1870s, several scientists had pursued the idea that

Brownian motion might be explained as the result of collisions between suspended par-
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ticles and the molecules of the liquid, among them Delsaulx, Carbonelle, and Gouy [44].

Gouy supported this explanation by performing further experiments excluding alterna-

tive accounts. While the qualitative explanation of Brownian motion with the help of the

kinetic theory thus became ever more plausible, serious problems occurred as soon as

such an explanation made use of quantitative arguments. When we consider the num-

ber of particles in such a situation we find their number density follows a conservation

law which leads to Fick’s law. We then use Fick’s law to derive the standard Einstein’s

relation [45] which surprisingly relates the diffusion coefficient to temperature using

the fact that in the dilute limit the interactions between the particles in the fluid can be

ignored.

I.3.1 Fick’s law

⋆ Fick’s laws of diffusion

The simplest description of diffusion is given by Fick’s laws, which were developed by

Adolf Fick in the 19th century:

− The molar flux due to diffusion is proportional to the concentration gradient (Fick

first law).

− The rate of change of concentration at a point in space is proportional to the second

derivative of concentration with space (Fick second law).

We consider the flux j(x, t) of particles (number of particles per unit area per unit

time) and the concentration c(x, t) of particles (number of particles per unit volume). In

the random motion in 1D; half of particles in each bin move to the left and the other.

Right, left and total fluxes at x are given by

j+ =
1
2
c(x− L/2)AL

A∆t
and j− =

1
2
c(x+ L/2)AL

A∆t
, (1)

j = j+ − j− =
L

2∆t
[c(x− L/2)− c(x+ L/2)] , (2)

where A and L are the area and length, respectively. The Taylor expansion concentra-
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tions for small L gives

j =
L

2∆t

[

c(x)− L

2

dc

dx
+ ...−

(

c(x) +
L

2

dc

dx
+ ...

)]

= − L2

2∆t

dc

dx

(3)

The coefficient L2

2∆t
= D and then

j = −D dc

dx
. (4)

Generalize to 3D, we have

j = −D∇c, (5)

which is a Fick first law.

The total number of particles is conserved. If there is a net flow of particles inside a

bin, the concentration inside must increase by the same amount.

[c(x, t +∆t)− c(x, t)]AL =

[

j(x− L

2
)− j(x+

L

2
)

]

A∆t , (6)

⇒ dc

dt
= − dj

dx
. (7)

The conservation law in 3D is

dc

dt
= −∇j . (8)

Integrate the conservation equation over a closed volume V with N part’s

∫

V

dc

dt
dV = −

∫

V

∇j dV . (9)

By using the divergence theorem

d

dt

∫

V

cdV = −
∮

j.cda, (10)

dN

dt
= −Φ. (11)
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We can use the conservation equation to eliminate flux from Ficks equation

j = −D dc

dx
, → dj

dx
= −D d2c

dx2
, → dc

dt
= D

d2c

dx2
, (12)

dc

dt
= D∇2c. (13)

This is known as Fick second law and it states that a spatially non-uniform density leads

to currents in directions opposite to the direction of changes in densities, i.e. to cur-

rents to re-establish spatial uniformity of c(x, t). Fick’s law can be solved using standard

mathematical techniques to show that c(x, t) = 1√
4π∆t

exp
[

− x2

4∆t

]

, which is a function

that spreads out over time from its initial position. We can use this expression for the

conservation of number density to derive the Einstein’s relation by considering the di-

lute limit, which is when we ignore interactions between particles.

⋆ Einstein Relation

The Fick’s Law is only appropriate in situations when there is no external potential. In

the Einstein analysis of the motion of non interacting Brownian particles in flat potential

we consider the external force acting on a given particle and from molecules compress-

ing the fluid for which it collides with. These collisions with molecules has the effect of

introducing a friction force proportional to its velocity.

vD =
1

γ
fext = −1

γ
∇U(x), (14)

here γ is the friction coefficient, U(x) is some external potential and vD is the drift veloc-

ity. This drift velocity gives rise to a drift current jD = cvD in addition to the diffusion

current. Therefore, the total current becomes

jtot = −D∇c(x, t) + jD = −D∇c(x, t)− c(x, t)

γ
∇U(x). (15)
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The derivative of this equation by using eq. 7 gives

∂c(x, t)

∂t
= D∇2c(x, t) +

1

γ
∇c(x, t)∇U(x) + 1

γ
c(x, t)∇2U(x). (16)

In the thermodynamic equilibrium the total particle current must be zero and the density

must satisfy the Boltzman relation Ceq = exp [−U(x)/T ]; Eq. (15) becomes

jtot =
Dc(x, t)

T
∇U(x)− c(x, t)

γ
∇U(x) = 0, (17)

D =
T

γ
. (18)

To satisfy the condition of zero current, we find D = T
γ

which is the standard Einstein’s

relation, a result first derived by Einstein [45, 46, 47]. We have simply considered a

collection of particles diffusing and have noticed that they follow a conservation known

as Fick’s law. We then considered the limit that the interactions between particles can

be ignored to derive the standard Einstein’s relation, this is known as the dilute limit.

The dilute limit assumes that the particles are far enough away from each other so that

the interactions between them can be ignored. This means we can just consider a single

diffusing particle and the forces acting on it.

I.3.2 Mean square displacement (MSD)

In statistical mechanics, the MSD (also average squared displacement, or mean square

fluctuation) is a measure of the deviation time between the position of a particle and

some reference position. It is the most common measure of the spatial extent of random

motion, and can be thought of as measuring the portion of the system explored by the

random motion. In the realm of biophysics and environmental engineering, the MSD

is measured over time to determine if a particle is spreading solely due to diffusion, or

if an advective force is also contributing [48]. Another relevant concept, the Variance-

Related Diameter (VRD, which is twice the square root of MSD), is also used in studying
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the transportation and mixing phenomena in the realm of environmental engineering.

It prominently appears in the DebyeWaller factor (describing vibrations within the solid

state) and in the Langevin equation (describing diffusion of a Brownian particle). The

MSD is defined as

MSD ≡
〈

(x− x0)
2〉 =

1

N

N
∑

n=1

(xn(t)− xn(0))
2, (19)

where N is the number of particles or number of realisation, xn(0) = x0 is the reference

position of each particle, xn(t) is the position of each particles in determined time t [49].

Experimental methods to determine MSD include neutron scattering and photon cor-

relation spectroscopy. The linear relationship between the MSD and time t allows for

graphical methods to determine the diffusivity constant D. This is especially useful for

rough calculations of the diffusivity in environmental systems. In some atmospheric

dispersion models, the relationship between MSD and time t is not linear. Instead, a

series of power laws empirically representing the variation of the square root of MSD

versus downwind distance are commonly used in studying the dispersion phenomenon

[50].

The MSD is related with the diffusion coefficient by

〈

(x− x0)
2〉 = 2Dt. (20)

From this expression Einstein agreed that the displacement of a Brownian particle is not

proportional to the elapsed time, but rather to its square root [51]. His argument is based

on a conceptual switch from the ”ensemble” of Brownian particles to the ”single” Brow-

nian particle: we can speak of the relative number of particles at a single instant just as

well as of the time it takes a Brownian particle to reach a given point [52]. The second

part of Einstein’s theory relates the diffusion constant to physically measurable quanti-

ties, such as the mean squared displacement of a particle in a given time interval. This

result enables the experimental determination of Avogadro’s number and therefore the
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size of molecules. Einstein analyzed a dynamic equilibrium being established between

opposing forces. The beauty of his argument is that the final result does not depend

upon which forces are involved in setting up the dynamic equilibrium.

I.3.3 Physical analysis

The diffusion equation yields an approximation of the time evolution of the probability

density function associated to the position of the particle going under a Brownian move-

ment under the physical definition. The approximation is valid on short time-scales.

The time evolution of the position of the Brownian particle itself is best described using

Langevin equation, an equation which involves a random force field representing the

effect of the thermal fluctuations of the solvent on the particle. The displacement of a

particle undergoing Brownian motion is obtained by solving the diffusion equation un-

der appropriate boundary conditions and finding the root mean square of the solution.

This shows that the displacement varies as the square root of the time (not linearly),

which explains why previous experimental results concerning the velocity of Brownian

particles gave nonsensical results. A linear time dependence was incorrectly assumed.

At very short time scales, however, the motion of a particle is dominated by its iner-

tia and its displacement will be linearly dependent on time: ∆x = v∆t. So the instanta-

neous velocity of the Brownian motion can be measured as v = ∆x/∆t, when ∆t is the

momentum relaxation time. In 2010, the instantaneous velocity of a Brownian particle

was measured successfully [53]. The velocity data verified the Maxwell-Boltzmann ve-

locity distribution, and the equipartition theorem for a Brownian particle. The Brownian

motion can be modelled by a random motion [54]. Random walks in porous media or

fractals are anomalous. In the general case, Brownian motion is a non-Markov random

process and described by stochastic integral equations [55].
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I.3.4 Different types of diffusion

Diffusion is a collective phenomenon, characteristic for larger particle populations. It is

caused by thermal motion of suspending medium molecules exerting random (stochas-

tic) force on particles. The force exhibits a white-noise character, that is, it depends

only on the temperature of the medium. Under the action of this force, particles move

erratically in the suspension undergoing the so-called Brownian motion. In the first ap-

proximation, the rate of diffusion is proportional to the particle concentration gradient

and the diffusion coefficient. However, the direction of diffusion is opposite to the con-

centration gradient, which means that particles move on average into the direction of

lower concentration.

Depending on the model type, the system can exhibit normal or anomalous transport

accompanied with normal or anomalous diffusion. Figure 2 presents the relationship

between MSD (σ2) as a function of time for classify different types of diffusion.

σ 
2 (M

S
D

)

time t

normal diffusion
σ 2 ∝  t

superdiffusion
σ 2 ∝  tn, n>1

subdiffusion
σ 2 ∝  tn, n<1

Figure 2: Mean square displacement for different types of diffusion

Normal diffusion is a characteristic for the diffusion processes in systems that are in

equilibrium or very close to equilibrium. The appearance of normal diffusion in many

natural phenomena close to equilibrium and the particular Gaussian form of the solu-

tion of the diffusion equation can also be understood from probability theory.

Anomalous diffusion is a diffusion process with a non-linear relationship to time,

in contrast to a typical diffusion process, in which the MSD, of a particle is a linear
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function of time. Unlike typical diffusion, anomalous diffusion is described by a power

law [56, 57],

σ2 ∝ Dtn, (21)

where D is the diffusion coefficient and t is the elapsed time. Diffusion is then classified

through the scaling index n. In a typical diffusion process, if n > 1, the phenomenon

is called super-diffusion. Super-diffusion can be the result of active cellular transport

processes. If n < 1, the particle undergoes sub-diffusion [58], including the particular

case n = 2, which is called ballistic diffusion. If the trajectories of a sufficient number of

particles inside a system are known, then plotting logσ2 vs logt is an experimental way

to determine the type of diffusion occurring in a given system. As an illustration, let us

consider a particle that is moving with constant velocity v and undergoes no collisions

and experiences no friction forces. It then obviously holds that σ = vt, so that 〈σ2(t)〉 ∼

t2. Free particles are thus superdiffusive in the terminology used here, which is also the

origin of the name ballistic for the case n = 2. Accelerated particles would even diffuse

faster. The difference between normal and anomalous diffusion is also illustrated in

Fig. 3, where in the case of anomalous diffusion long ”flights” are followed by efficient

”trapping” of particles in localized spatial regions, in contrast to the more homogeneous

picture of normal diffusion. It is to note that anomalous diffusion manifests itself not

only in the scaling of Eq. 21 with n 6= 1 (which experimentally may also be difficult

to be measured), but also in ”strange” and ”anomalous” phenomena such as ”uphill”

diffusion, where particles or heat diffuse in the direction of higher concentration, or the

appearance of non-Maxwellian distributed particle velocities, very often of power-law

shape, which is very common in high energy astrophysics (e.g. cosmic rays), etc.

The role of anomalous diffusion has received attention within the literature to de-

scribe many physical scenarios, most prominently within crowded systems, for exam-

ple protein diffusion within cells, or diffusion through porous media. Sub-diffusion has

been proposed as a measure of macromolecular crowding in the cytoplasm. Recently,

anomalous diffusion was found in several systems including ultra-cold atoms [59], in
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(a)
(b)

Figure 3: Random walk in dynamical systems close to equilibrium (normal diffusion;
trajectory on the left), (b) random walk in dynamical systems far from equilibrium
(anomalous diffusion; trajectory on the right)

single particle movements in cytoplasm [60], and in worm-like micellar solutions [61].

Anomalous diffusion was also found in other biological systems, including heartbeat

intervals [62]. The daily fluctuations of climate variables such as temperature can be

regarded as steps of a random walker or diffusion and have been found to be anoma-

lous [63]. In particular for the super-diffusion regime, for σ2 ∝ t2, we observed ballistic

diffusion, and for n > 2 we speak about hyper-diffusion . These anomalous regimes are

observed only in a certain time interval determined by the temperature and properties

of the system. In a certain time, a steady state is established and the spatial dispersion

in the distribution of particles is described by the normal diffusion.

Of interest within the scientific community, when an anomalous-type diffusion pro-

cess is discovered, the challenge is to understand the underlying mechanism which

causes it. There are a number of frameworks which give rise to anomalous diffusion

that are currently in vogue within the statistical physics community. These are long

range correlations between the signals [64] continuous-time random motion [65] and
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fractional Brownian motion, diffusion of colloidal particles in bacterial suspensions [66],

and diffusion in disordered media [67].

I.4 Transport phenomena

In the calculation of the pressure exerted by a gas on its container the size of the molecules

was not involved, and we could neglect the collision of the molecules with each other.

We shall now consider the phenomena of viscosity, heat conduction, and diffusion,

which depend directly on the size of the molecules and on molecular collisions. The

success of the application of kinetic theory to these phenomena provided one of the first

convincing demonstrations of its essential validity, and consequently of the existence

of molecules. In the kinetic theory, viscosity involves the transport of momentum, heat

conduction involves the transport of kinetic energy, and diffusion involves the transport

of the density of the molecules. Molecular collisions play an important role in the trans-

port of these quantities, and the frequency of collisions depends directly on the size of

the molecules per unit volume.

The transport phenomena can be described at three scales: the molecular, the mi-

croscopic (continuum), and the macroscopic. At each scale the conservation laws for

mass, momentum, angular momentum, and energy play a key role. Also, at each scale

empiricisms have to be introduced to complete the description of the systems: an in-

termolecular potential expressions (constitutive equations) at the microscopic scale, and

the transfer coefficient correlations at the macroscopic scale. The three scales are inti-

mately connected, with the results for each scale contributing to the understanding of

the next larger scale.

At the microscopic scale, some information about the constitutive equations can be

obtained from the thermodynamics for irreversible processes. This approach is partic-

ularly important in understanding multicomponent diffusion and the ”cross-effects” in

energy and mass transport [68, 69, 70]. Transport in the realm of soft matter is strongly

influenced by diffusion. Conditions far from thermal equilibrium and non-linear dy-
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namics may give rise to unexpected transport phenomena, which are ruled out by the

second law of thermodynamics under equilibrium conditions.

I.4.1 Dispersionless transport

Dispersionless transport is a new type of motion of particles which is characterized by

a very weak temperature dependence of MSD. Generally, this type of motion appears

after the hyperdiffusion phase. It is limited in time and depends on the system parame-

ters. The MSD exhibit a flat regime where diffusion is constant (see Fig. 4). For a system

Figure 4: Illustration of dispersionless transport regime. The evolution of MSD is con-
stant according to the time

driven by a constant external force, we find that for small friction in a finite range of

forces the particles move essentially nondispersively, that is, coherently, over long inter-

vals of time [71]. In periodic potentials, dispersionless transport of long duration can

be observed when forces exceed a critical force, and the diffusion coefficient versus the

applied force presents a pronounced peak near this critical force. Such a maximum is ob-

served in both overdamped and underdamped regimes [72, 73, 74, 75], and is due to the

coexistence of locked and running states. The enhancement is quantitatively larger than

the free particle diffusion coefficient. This phenomenon is even more pronounced when
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some amount of disorder is also present [76, 77], and has been observed experimen-

tally when tracking the motion of colloidal spheres through a periodic potential created

from an optical vortex [76]. The anomalies in transport are related with the behavior of

mobility, which presents a pronounced maximum for some critical value of the force.

The anomalies in the diffusion (dispersionless) are either associated with the mentioned

anomaly or with the randomness of the escape times from the potential wells.

I.4.2 Normal and anomalous transport

The transport theory of the inertial micron-sized particle moving in a periodic potential

has played a guiding role in condensed matter physics systems. In nonlinear dynamic

systems, noise induces new dynamic features that cannot be realized without it [78, 79].

The Brownian motion of particles in a tilted periodic potential is a standard model. As a

convenient example, Josephson junctions are used to provide a physical motivation for

Brownian motion. The study of Brownian particles in Langevin’s model is interesting

because it helps to understand a dynamical system’s features. A central result of ther-

modynamics is due to Le Chatelier, which states that ”a change in one of the variables

that describe the system at equilibrium produces a shift in the position of the equilib-

rium that counteracts this change”. In particular, if a system is at thermal equilibrium,

its reaction to an applied bias is so that the response is in the same direction of this

applied force, towards a new equilibrium and the transport is normal.

Thus, the seemingly paradoxical situation that the system’s response is opposite to a

small external load is prohibited by the laws of thermodynamics; it would imply the

phenomenon of an anomalous transport. The presence of nonlinearity and noise in

nonequilibrum systems has given rise to subtle and counterintuitive phenomena. They

have been observed in physical systems such as stochastic resonance, molecular motors,

intra-cellular transport [77, 79], to mention only a few. A typical example of a molecular

motor is the anomalous transport phenomena which occurs when the Brownian par-

ticles move in the opposite direction with static bias force. The process of anomalous
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transport occurs generally in systems driven by spatial periodic and symmetric poten-

tial, random and on ratchet potential which can be a superposition of two or three spa-

tial harmonic potentials with different phases [10]. Anomalous transport is often used to

Figure 5: Response of a Brownian particle to a constant load force F

describe non-equilibrium processes that cannot be explained with the help of standard

methods of statistical physics. It is introduced which relate to the directed transport in

driven periodic systems. The phenomena of normal and anomalous transport is illus-

trated in Fig. 5 [10]. The phenomenon of negative transfer is characterized by absolute

negative mobility(ANM), negative nonlinear mobility (NNM) and negative differential

mobility (NDM).

♣ Absolute negative mobility (ANM)

For a very small external force acting on a particle, the particle moves in the opposite

direction. ANM is observed when the velocity exhibits an opposite sign to the applied

force which is starting out at zero force (see Fig. 5c), which means that the particle nois-

ily moves backwards against at small constant bias. Within tailored parameter regimes,

thermal equilibrium fluctuations induce the phenomenon of ANM, which means that

the particle noisily moves backwards against a small constant bias. When no thermal

fluctuations act, the transport vanishes identically in these tailored regimes. ANM can

also occur in the absence of fluctuations on grounds which are rooted solely in the com-
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plex, inertial deterministic dynamics [10]. The results of theoretical study for ANM

has been verified by a Josephson junction and the corresponding anomalous transport

phenomena including absolute negative resistance, negative nonlinear resistance, and

negative differential resistance.

♣ Negative nonlinear mobility (NNM)

Within selected parameter regimes, the system exhibits negative mobility, which means

that the particle moves in the direction opposite to the direction of the constant force. It

is known that in such a setup the inertial term is essential for the emergence of negative

mobility and it cannot be detected in the limiting case of overdamped dynamics. A.

Slapik et al. [70] show that, the negative mobility can be observed even in the strong

damping regime. When a system at thermal equilibrium is exposed to a weak external

static force, its response is in the same direction as this of applied bias towards a new

equilibrium. This restriction is no longer valid under nonequilibrium conditions when

already an unperturbed system may exhibit a current due to the ratchet effect [37]. When

the force acting on the particle is very small, the particle transport direction and the force

are the same, then when the force increases, the motion of the particles and the force

have two opposite directions. Moreover, NNM refers to an anomalous transport regime

for which the velocity v(f) < 0 in some finite intervals of bias force f , being dijoint from

the interval around f = 0.

♣ Negative differential mobility (NDM)

The response of probe particles to weak constant driving in kinetically constrained mod-

els of glassy systems show that the probe’s response can be non-monotonic and give rise

to negative differential mobility [10]. The particle transport direction and the force are

the same, but the particle’s transport velocity decreases with an increase of the external

force. NDM means that the derivative of the mobility with respect to a certain control

parameter is negative. In general, such a phenomenon could be counter-intuitive at first

glance. Consider for example particles diffusing in a region interspersed with random
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static obstacles. Now add an external field that biases the movement of the particles

in a certain direction and measure the total current. If the bias is low, the current will

grow as the bias is increased. However, once the bias passes a certain critical value, the

particles will get stuck on the obstacles and it will be hard for them to go around the

obstacles. Then as you increase the bias, the mobility will decrease. It is observed when

the velocity decreases with increasing force.

In physics, transport phenomena are all irreversible processes of statistical nature

stemming from the random continuous motion of molecules, mostly observed in flu-

ids. Every aspect of transport phenomena is grounded in two primary concepts : the

conservation laws, and the constitutive equations. The conservation laws, which in the

context of transport phenomena are formulated as continuity equations, describe how

the quantity being studied must be conserved. The constitutive equations describe how

the quantity in question responds to various stimuli via transport.

These different types of anomalous transport can be applied experimentally by using

a step that consists of a resistively and capacitively shunted Josephson junction device.

In the one-to-one correspondence of the two models, the Josephson junction is presented

in the following section.

I.5 Physical systems of Brownian motion and motivations

I.5.1 Surface diffusion

Surface diffusion is a general process involving the motion of adatoms, molecules, and

atomic clusters (adparticles) at solid material surfaces. The process can generally be

thought of in terms of particles jumping between adjacent adsorption sites on a surface,

as in figure 6. Just as in bulk diffusion, this motion is typically a thermally promoted

process with rates increasing with increasing temperature. Many systems display dif-

fusion behavior that deviates from the conventional model of nearest-neighbor jumps.

Tunneling diffusion is a particularly interesting example of an unconventional mecha-
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Figure 6: Model of a single adatom diffusing across a square surface lattice. Note the fre-
quency of vibration of the adatom is greater than the jump rate to nearby sites. Also, the
model displays examples of both nearest-neighbour jumps (straight) and next-nearest-
neighbour jumps (diagonal).

nism wherein hydrogen has been shown to diffuse on clean metal surfaces via the quan-

tum tunneling effect. Various analytical tools may be used to elucidate surface diffusion

mechanisms and rates, the most important of which are field ion microscopy and scan-

ning tunneling microscopy [80]. While in principle the process can occur on a variety

of materials, most experiments are performed on crystalline metal surfaces. Due to ex-

perimental constraints most studies of surface diffusion are limited to well below the

melting point of the substrate, and much has yet to be discovered regarding how these

processes take place at higher temperatures.

Surface diffusion rates and mechanisms are affected by a variety of factors including

the strength of the surface-adparticle bond, orientation of the surface lattice, attraction

and repulsion between surface species and chemical potential gradients. It is an impor-

tant concept in surface phase formation, epitaxial growth, heterogeneous catalysis, and

other topics in surface science [81]. As such, the principles of surface diffusion are critical

for the chemical production and semiconductor industries. Real-world applications re-

lying heavily on these phenomena include catalytic converters, integrated circuits used
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in electronic devices, and silver halide salts used in photographic film [81].

There are four different general schemes in which diffusion may take place [80].

Tracer diffusion describes the motion of individual adparticles on a surface at relatively

low coverage levels. At these low levels, particle interaction is low and each particle

can be considered to move independently of the others. The single atom diffusing in

figure 6 is a nice example of tracer diffusion. Chemical diffusion diffusion describes

the process at higher level of coverage where the effects of attraction or repulsion be-

tween adatoms becomes important. These interactions serve to alter the mobility of

adatoms. The adatoms have no ”choice” but to move to the right at first, and adjacent

adatoms may block adsorption sites from one another. Chemical diffusion describes

the process at higher level of coverage where the effects of attraction or repulsion be-

tween adatoms becomes important. These interactions serve to alter the mobility of

adatoms. The adatoms have no ”choice” but to move to the right at first, and adjacent

adatoms may block adsorption sites from one another. Intrinsic diffusion occurs on a

uniform surface such as a single terrace, where no adatom traps or sources are present.

This regime is often studied using field ion microscopy, wherein the terrace is a sharp

sample tip on which an adparticle diffuses. Even in the case of a clean terrace the pro-

cess may be influenced by non-uniformity near the edges of the terrace. Mass transfer

diffusion takes place in the case where adparticle sources and traps such as kinks, steps,

and vacancies are present. Instead of being dependent only on the jump potential bar-

rier, diffusion in this regime is now also dependent on the formation energy of mobile

adparticles. The exact nature of the diffusion environment therefore plays a role in dic-

tating the diffusion rate, since the formation energy of an adparticle is different for each

type of surface feature as is described in the Terrace Ledge Kink model.

Surface diffusion may be studied by a variety of techniques, including both direct

and indirect observations. Two experimental techniques that have proved very use-

ful in this area of study are field ion microscopy and scanning tunneling microscopy

[80]. By visualizing the displacement of atoms or clusters over time, it is possible to

extract useful information regarding the manner in which the relevant species diffuse-
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both mechanistic and rate-related information. In order to study surface diffusion on the

atomistic scale it is unfortunately necessary to perform studies on rigorously clean sur-

faces and in ultra high vacuum (UHV) conditions or in the presence of small amounts

of inert gas, as is the case when using He or Ne as imaging gas in field-ion microscopy

experiments.

I.5.2 Diffusion dialysis

Diffusion is the random, thermal movement of molecules in solution (Brownian motion)

that leads to the net movement of molecules from an area of higher concentration to a

lower concentration until equilibrium is reached. In dialysis, a sample and a buffer

solution (called the dialysate) are separated by a semi-permeable membrane that causes

differential diffusion patterns, thereby permitting the separation of molecules in both

the sample and dialysate. Due to the pore size of the membrane, large molecules in the

sample cannot pass through the membrane, thereby restricting their diffusion from the

sample chamber.

Dialysis is a common technique used in biochemistry for separating molecules based

on diffusion. In this procedure, a semipermeable membrane allows the movement of

certain molecules based on size. This method can be applied to the removal of buffer,

known as desalting, or exchanging buffer molecules or ions from a protein solution.

Dialysis is a common, inexpensive technique used to separate molecules based on dif-

fusion. The method utilizes a semi-permeable membrane that allows the movement

of certain components, based on size. In the context of life science research, the most

common application of dialysis is for the removal of unwanted small molecules such as

salts, reducing agents, or dyes from larger macromolecules such as proteins, DNA, or

polysaccharides.

Two models have been used to describe diffusion dialysis process. The first is the

solution-diffusion model [82], which wasput forward 20 years ago and has been accept-

edmainly for explanation of the transport in dialysis, reverse osmosis, gas permeation,
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and pervaporation [82]. The model can also be applied in diffusion dialysis separation

process of strong acids and alkalis. According to this model, components dissolve in the

membrane phase and then diffuse through the membrane down a concentration gradi-

ent. The other and more popular model is three-phase membrane model [83], in which

the membrane is assumably divided into three phases. The water, which is indispens-

able for the migration of ions, exists mainly in the active and interstitial zones. The ions

can transport through these two regions via different mechanisms.

(a) (b)

Figure 7: Principles of diffusion dialysis: (a) illustration of the HCl separation process
from its feed solution and (b) illustration of theNaOH separation process fromNa2WO4

solution

During the diffusion dialysis process, the ion transport is driven mainly by the con-

centration gradient, with observation of the Donnan criteria of co-ion rejection and

preservation of electrical neutrality [84]. The separations of HCl and NaOH from their

feed solution are illustrated in Fig.7 to describe the principle of diffusion dialysis. As

shown in Fig. 7(a), HCl and its metal salts in the feed solution tend to transport to

the water side due to the concentration difference across the membrane. Because of the

presence of the anion exchange membrane, the Cl− ions are permitted passage, while

the metals in the waste solution are much less likely to pass. The H+ ions, although pos-

itively charged, have higher competition in diffusion than metal ions because of their

smaller size, lower valence state and higher mobility. Hence they can diffuse along with

the Cl− ions to meet the requirement of electrical neutrality. The H+ transport is a key

to the diffusion dialysis process. Separation process of NaOH from its feed solution is
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illustrated in Fig.7(b). NaOH and Na2WO4 tend to transport to the water side due to

the concentration difference across the membrane. Because of the presence of a cation

exchange membrane, the Na+ in the feed are permitted passage, while the WO2−
4 ions

are much less likely to pass through the membrane. Similar to H+ through an anion ex-

change membrane, the hydroxyl ions (OH−) have higher competition in diffusion than

WO2−
4 ions and can diffuse along with Na+ ions to meet the requirement of electrical

neutrality. The OH− transport is also a key to the process.

I.5.3 Josephson effect and its correspondence to the Brownian motion

A Josephson Junction is a quantum mechanical device, which is made of two supercon-

ducting electrodes separated by a barrier. Josephson effect is a flow of electric current

between two pieces of superconducting material separated by a thin layer of insulating

material. The Josephson effect is an example of a macroscopic quantum phenomenon.

It is named after the British physicist Brian David Josephson, who predicted in 1962

the mathematical relationships for the current and voltage across the weak link [85, 86].

As shown in Fig. 8 [87], a Josephson tunnelling junction consist of two superconduc-

Figure 8: Josephson tunnelling junction

tors which are separated by a thin oxide layer. The phase difference between the wave
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function ψI and ψII of the cooper pair in the two superconductors is denoted by ϕ [85].

ψII = NψIe
iϕ. (22)

Furthermore the ratio N = |ψII | / |ψI | is assumed to be constant. The time derivative of

this phase difference is given by the Josephson equation:

ϕ̇ =
2eV

~
, (23)

where V is the potential difference across the oxide layer. We study transport properties

of an experimental realization of the rocking ratchet mechanism in an asymmetric super-

conducting quantum interference device [88, 89, 90, 91]. We analyse the current-voltage

characteristics in the framework of the Stewart-McCumber theory [92, 93]. The Stewart-

McCumber model describes the semiclassical regime of a small Josephson junction for

which a spatial dependence of characteristics can be neglected. An equivalent circuit

that can be used for most types of resistively junctions is shown in Fig. 9. The model

Figure 9: Equivalent circuit of a Josephson junction.

is called the Resistively and Capacitively Shunted Junction-model. Here the Joseph-

son junction (J) is shunted by a voltage independent resistor and a capacitor. In this

theory the current I(t) flowing through the junction is split into four components. Con-

sequently, the current balance equation for the above circuit can be written as

I =
V

R
− L(t) + CV̇ + Imax sinϕ, (24)
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L(t) is a noise current, the correlation function of which is given by

〈L(t)L(t′)〉 = 2

R
KTδ(t− t′), (25)

CV̇ is the current due to the capacitance C of the junction and V
R

is a normal current

due to the tunnelling of quasi-particles. The term J(ϕ) = Imax sinϕ is the current due

to the cooper pairs tunnelling through the junction, where Imax is called the maximum

Josephson current. Using the time derivative of the phase difference ϕ̇, we obtain the

dynamic equation given as follows

~

2e
Cϕ̈ = − ~

2e

1

R
ϕ̇− J(ϕ) + I(t) + L(t). (26)

The above equality multiplied by the factor ~

2e
and provided that the time periodic part

can be extracted from the current I(t) applied to the device, has exactly the same form as

the driven periodic system described by the Newton-Langevin equation. This equation

is used to underline the quasi-classical dynamics of the phase difference ϕ(t) between

the macroscopic wave function of the cooper electrons on both sides of the resistively

and capacitively shunted Josephson junction.

Let us recall the Langevin equation for Brownian motion:

mẍ = −γẋ− V ′ (x, r, t) + ξ(t). (27)

In the one-to-one correspondence, the position x of a particle is related to the phase

ϕ, then the particle velocity ẋ is related to the voltage V = ϕ̇. The mass m acts as a

capacitance C, the damping γ is responsible to the conductance 1/R. The term V ′ (x, r, t)

corresponds to the combined action of the conservative force of the super-current J(ϕ)

and the total external field to the current I(t).
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I.5.4 Motivations

Apart from the well established applications to electronics and to solid state physics

such as superionic conductors, the Josephson tunnelling junction and surface diffusion,

new and exciting applications to physics and to biology (stochastic modelling of molec-

ular and Brownian motors [94]) keep the subject of Brownian motion at the forefront of

current research.

In contrast, the role of the substrate shape has not attracted much attention in the

phenomena of diffusion and transport. Here, we fill this gap and focus in more detail

on the fluctuation behaviour of the Brownian motor position and current. The average

asymptotic velocity together with its fluctuations are salient features when characteriz-

ing the performance of a Brownian motor. The average asymptotic velocity << v >>

describes how much time a typical particle needs to overcome a given distance in the

asymptotic (long-time) regime. Most of the analysis of transport phenomena are done in

one dimension by using a sinusoidal potential. Here, the RP potential is used to model

different substrate shapes. In reality, the particle moves in two dimensions. In other

to investigate on the surface shape, three types of surfaces are used: the NaCl surface,

the MoS2 surface and the surface with honeycomb symmetry. Motivated by the above

considerations, in the present thesis, we wish to investigate:

− the influence of the system parameters such as temperature, the phase-lag and the

biharmonic parameter of the unbias time periodic force,

− the effect of the shape potential on the phenomena of transport and diffusion by

using a deformable RP potential,

− the direction where the bias force is applied ( the effect of anisotropy) to charac-

terise normal and anomalous transport,

− the effect of the rest length of dimer on the emergence of anomalous transport.
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I.6 Conclusion

In this chapter the properties of the transport of a massive Brownian particle are ad-

dressed. Brownian motion is a prototype of normal diffusion, and its analysis has

brought forth a number of tools that today are very much in use for modelling a wide va-

riety of phenomena. Normal diffusion occurs in systems which are close to equilibrium.

It has now become evident that phenomena of anomalous diffusion are very frequent,

because many systems of interest are far from equilibrium, such as turbulent systems, or

because the space accessible to the diffusing particles has a strange. We have taken a tour

through the many intriguing and often counter-intuitive anomalous transport phenom-

ena occurring in driven periodic systems. In particular, different types of anomalous

transport are presented such as absolute negative mobility, negative nonlinear mobility

and negative differential mobility. These properties can be applied experimentally by

using a step that consist of a resistively and capacitively shunted Josephson junction

which is presented.
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CHAPTER II

METHODOLOGY: MODELLING AND

MATHEMATICAL METHODS

II.1 Introduction

The previous chapter has introduced the phenomena of diffusion and transport

which are the theories of Brownian motion. The theory of Brownian motion is per-

haps the simplest approximate way to treat the dynamics of nonequilibrium systems.

The fundamental equation is called the Langevin equation which is the first part of this

chapter. Secondly, we present the quantities characterizing optimal transport of Brow-

nian motion. Finally, the numerical simulation techniques, allowing to propose some

responses is presented.

II.2 Langevin equation

The langevin equation describes the physics of continuous memoryness stochastic

processes. Langevin described the Brownian particle’s position as the time integral of

its velocity.

II.2.1 Dynamic model

We consider the classical particle of massmmoving in periodic substrate in the presence

of and unbiased harmonic force and driven by static biasing force F [95] (see fig. 10).

For the large mass of the particle, the motion is described by the deterministic equation

so that its velocity due to thermal fluctuations is negligible. From the equipartition law,

33
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the mean energy of the particle in one dimension is

1

2
m
〈

v2
〉

=
1

2
KT.

For smaller mass m the thermal velocity vth =
√

〈v2〉 =
√

KT/m may be observable

and therefore the velocity of a small particle cannot be described exactly by the solution

of the deterministic equation. The modification consists in adding a fluctuating force

ξ(t). The total force of the molecules acting on the small particle is decomposed into a

continuous damping force and a fluctuating force. The thermal fluctuations due to the

coupling of the particle with the environment are modelled by the stochastic force ξ(t)

(Langevin force). This force ξ(t) is a stochastic or random force, the properties of which

are given only in the average.

Figure 10: Brownian particles moving in symmetric periodic structures in the presence
of an unbias force and driven by biasing force F . They are also subjected to the stochastic
force < ξ(t) >

We now want to discuss why a stochastic force occurs. If we were to treat the problem

exactly, we should have to solve the coupled equations of motion for all the molecules

of the fluid and for the small particle, and no stochastic force would occur. Because of

the large number of molecules in the fluid (the number is of the order 1023), however, we

cannot generally solve these coupled equations. Furthermore, since we do not know the

initial values of all the molecules of the fluid, we cannot calculate the exact motion of

the small particle immersed in the fluid. If we were to use another system (particle and

fluid) identical to the first except for the initial values of the fluid, a different motion of

the small particle results. As usually done in thermodynamics, we consider an ensemble

of such systems (Gibbs ensemble). The force ξ(t) then varies from system to system and
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the only thing we can do is to consider averages of this force for the ensemble. The

properties of this Langevin force are:

− its average over the ensemble should be zero

< ξ(t) >= 0, (28)

− the autocorrelation function satisfying Einstein’s fluctuation dissipation relation

< ξ(t)ξ(t′) >= qδ(t− t′), (29)

where q = 2mγKBT , KB is the Boltzmann constant, T the temperature and γ the Stockes

friction coefficient. A noise force with the δ correlation is called white noise, because the

spectral distribution given by the Fourier transforms is independent of the frequency ω.

II.2.2 Differential equation of motion for the dynamical model

The irregular motion of small particles suspended in a liquid or a gas is caused by the

bombardment of the particles by molecules of the medium (see Fig. 11). To establish

the differential equation, we identify the different energies of the system. The particle is

subjected to the kinetic energy of the substrate U(x), where x denote the displacement

of the particle. The viscous force is proportional to the particle velocity ẋ (Stokes law)

given by

fv = −γẋ. (30)

The representative force of the collisions with the molecules of the fluid is ξ(t) who has

the gaussian probability distribution with correlation function as shown in Eq. (29). The

other forces adding on the particle are the constant force f and unbias time periodic

biharmonic force

F(t) = F0 cos(ωt) + εF0 cos(2ωt+ φ), (31)
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Figure 11: The collision of a Brownian particle with the fluid molecules

where FO and ǫFO are the amplitudes of the first and second harmonics, respectively.

ω is the frequency of the driving biharmonic signal and ǫ represents the scale ratio of

second harmonic.

By using the Langevin equation:

mẍ =
∑

F, (32)

∑

F is the total force apply on the particle. According to this equation, the dynamics of

a Brownian particle can be written in Newton-Langevin equation as:

mẍ = −γẋ− U ′(x) + f + F (t) + ξ(t). (33)

Let us remind that, this equation has similar form as an equation of motion for the phase

difference ϕ(t) in the Josephson junction model which is presented in chapter I. This

model is used to provide a physical motivation for Brownian motion. Practically, the

forces f and F (t) are related respectively to the constant and sinusoidal electric field. In
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two dimensional study, this equation can be writing as follows:

m
d2R

dt2
= −γ dR

dt
−∇U(R) + f + F(t) + ξ(t)

R

‖R‖ , (34)

where R = (x, y) is the position vector. The bias force direction is defined by the angle

ψ = arctan

(

fy
fx

)

, (35)

where fx = f0cosψ and fy = f0sinψ are the components of bias force of magnitude fO.

In the case of two particles coupled via the potential W (y) of mass mi(i = 1, 2) ex-

periment on periodic potential substrate, the Langevin equation is:

miẍi = −γẋi −
∂Utot(x1, x2)

∂xi
+ f + F (t) + ξ(t), (36)

xi(i = 1, 2) denotes the coordinates of particles and Utot(x1, x2) the total potential of the

system yields

Utot(x1, x2) = U(x1) + U(x2) +W (x1 − x2) (37)

Here, U(xi) is the substrate potential, y = x1 − x2 is the dimer length and the potential

W (y) can be harmonic, quartic, etc.

According to the geometry of the substrates studied, the potential U(x) has different

configurations.

II.2.3 Configuration of the substrate potentials

In quantum mechanics, the particle in a one-dimensional lattice is a problem that occurs

in the model of crystal lattice.
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⋆ Configuration of sinusoidal potential

An example of sinusoidal potential is a Sine-Gordon potential given as follows:

U(x) = UO

(

1− cos

(

2πx

b

))

. (38)

This potential has a sinusoidal profile (see Fig. 12). The potential is 2π periodic, UO is a
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Figure 12: Sine-Gordon potential profile

constant which measures the amplitude of the potential and b the period of the substrate

potential.

⋆ Configuration of deformable potential

To model different shapes of substrate, we consider a nonlinear deformable Remoissenet-

Peyrard (RP) potential URP (x, r) [96, 97]. The RP potential can be derived from the gen-

eral expression

URP (x, r) = A(r)
1− e cos

(

2πx
b

)

[

1 + r2 + 2r cos
(

2πx/b
n

)]p . (39)

Here, r is the shape parameter with −1 < r < 1, A(r) is a normalizing amplitude

function, n and p are integers and e = ±1. In our study, we consider the case where

A(r) = UO(1 − r)2, n = p = 1 and e = −1. The corresponding potential given by the
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following equation

URP (x, r) = UO(1− r)2
1− cos

(

2πx
b

)

1 + r2 + 2r cos
(

2πx
b

) , (40)

where r is the shape parameter. The parameter r can account for the temperature depen-

−5 0 5
0

0.5

1

1.5

2

x

U
R

P
(x

,r
)

a)r=0.3

−5 0 5
0

0.5

1

1.5

2

x

U
R

P
(x

,r
)

b)r=0.5

−5 0 5
0

0.5

1

1.5

2

x

U
R

P
(x

,r
)

c)r=0.8

−5 0 5
0

0.5

1

1.5

2

x

U
R

P
(x

,r
)

d)r=−0.3

−5 0 5
0

0.5

1

1.5

2

x

U
R

P
(x

,r
)

e)r=−0.5

−5 0 5
0

0.5

1

1.5

2

x

U
R

P
(x

,r
)

f)r=−0.8

Figure 13: Illustration of the Remoissenet-Peyrard potential for (a) r = 0.0, (b) r = 0.5,
(c) r = 0.8, (d) r = −0.3, (e) r = −0.5 and (f) r = −0.8. The wells of the potential has
flat bottoms separated by thin barriers for r > 0 and the sharp wells separated by wide
barriers for r < 0.

dence of the substrate or the geometric configuration of the substrate. As this parameter

varies, the amplitude of the potential remains constant with degenerate minima 2πn and

maxima (2n + 1)π while its shape changes. When r > 0, it has flat bottoms separated

by thin barriers while for r < 0, it has the shape of sharp wells separated by flat wide

barriers (see Fig. 13). At r = 0, the RP potential reduces to the well-known Sine-Gordon

potential as shown in Fig. 12. This parameter depends on the physical characteristics

of each system. It is known that this deformable potential accounts well for various sit-

uations in real adsorption systems in particular, and in many other physical systems in

general [98]. The RP potential is introduced in the context of soliton, in tribology science

and the context of stochastic resonance processes [98, 99, 100].
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⋆ Configuration of two dimensional substrate potential

To model more real physical systems, we consider atoms which are arranged on a two-

dimensional (2D) square lattice. For the sake of simplicity, the atoms is represented by

two-dimensional periodic surface. We will restrict in this work to three types of surface:

− The NaCl surface

This surface is described by an adiabatic potential UNaCl which corresponds to the

first term of the two-dimensional Fourier series [101, 102]. It is given by the square

symmetry potential

UNaCl(x, y) = −U0

2
cos

(

2π

ax
x

)

cos

(

2π

ay
y

)

, (41)

where (x, y) is the tip potential, ax = ay determine the unit-cell parameter and U0 the

amplitude of the substrate potential.

− The MoS2 surface

Graphite and other lamellar solids such as molybdenum disulphide (MOS2) are

known to be a good solid lubricants and, are widely used in practical application. The

MOS2 surface is similar to the NaCl surface and differs to the unit-cell [103], ay = ax
√
3.

UMoS2(x, y) = −U0

2
cos

(

2π

ax
x

)

cos

(

2π

ax
√
3
y

)

. (42)

− The honeycomb symmetry surface

In this configuration, atoms are arranged in the hexagonal geometry, and have the

walls of some thickness. Therefore, in our model, the equation of the entire potential

can be described as follows [104, 105]:

UH(x, y) =
4
5
U0

[

3
2
− cos

(

2π
a
√
3
x
)

cos
(

2π
3a
y
)

− 1
2
cos
(

4π
3a
x
)

]

[

3
2
+ cos

(

2π
a
√
3
x
)

cos
(

2π
3a
y + π

3

)

+ 1
2
sin
(

4π
3a
y + π

6

)

]

,
(43)

Figs. 14a-14c illustrate the evolution of the potentials for an amplitude U0 = 0.362 eV
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and the corresponding contour representation in Figs. 14d-14f.

(a) (b) (c)

(d) (e) (f)

Figure 14: Schematic illustration of the two dimensional periodic potential correspond-
ing to (a) NaCl, (b) MoS2 and (c) honeycomb structure giving by Eqs. (41), (42) and (43),
respectively. The bottom panel ((d), (e) and (f)) is the corresponding contour plot of the
tip surface interaction. The unit-cell parameter is 0.564nm for NaCl and MoS2 surface,
0.246nm for the surface with honeycomb symmetry. The amplitude is U0 = 0.362eV

II.3 Quantifiers characterizing optimal transport of Brow-

nian motors

The performance characteristics of motors working on the nanoscale are richer than

those of macroscopic machines. Particularly, fluctuations of position and velocity are

inherent to all Brownian motors. These fluctuations affect the motor performance and

contain information about motor characteristics. The main objective is to deduce infor-

mation on the microscopic properties of the system from the observed dynamics of a

particle. For this purpose there are several quantities that characterize the effectiveness

of transport.
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II.3.1 Mean square displacement and diffusion of Brownian motors

For the Brownian motion of a particle it is difficult to measure the velocity correlation

function v(t). It is much easier to measure the mean-square value of its displacement. If

we assume that the particle starts at time t = 0 at x = x0 with the velocity v = v0, the

mean square value of its displacement at time t is given by

〈

(x(t)− 〈x0〉)2
〉

=

〈





t
∫

0

v(t1)dt1





2
〉

=

t
∫

0

t
∫

0

〈v(t1)v(t2)〉dt1dt2, (44)

where 〈v(t1)v(t2)〉 is the velocity correlation function, solution of the Langevin equation

given by

〈v(t1)v(t2)〉 = v20e
−γ(t1+t2) +

q

2γ

(

e−γ|t1−t2| − e
−γ(t1+t2)

)

, (45)

here the constant q = 2γKT/m. To determine the mean square value (Eq. 44), we

evaluate these integrals

t
∫

0

t
∫

0

e−γ(t1+t2)dt1dt2 =

(

1 + e−γt

γ

)2

; (46)

t
∫

0

t
∫

0

e−γ|t1−t2|dt1dt2 = 2

t
∫

0

dt1

t1
∫

0

e−γ(t1−t2)dt2 =
2

γ
t− 2

γ2
(

1− e−γt
)

. (47)

So, by replacing Eqs. (46) and (47) in to Eq. (44) we obtain:

〈

(x(t)− 〈x0〉)2
〉

=

(

v20 −
q

2γ

)

(1− e−γt)
2

γ2
+

q

γ2
t− q

γ3
(

1− e−γt
)

, (48)

when do not start with the sharp velocity v0 but with an initial velocity distribution for

the stationary state, the average square of the velocity is equal to 〈v02〉 = q
2γ

and Eq.(48)

becomes
〈

(x(t)− 〈x0〉)2
〉

=
q

γ2
t− q

γ3
(

1− e−γt
)

. (49)
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For a very large time (γt >> 1), the mean square displacement takes the form:

〈

(x(t)− x0)
2〉 =

q

γ2
t =

2KT

mγ
t, (50)

where D = KT
mγ

is the Einstein result for the diffusion constant. The relation between the

mean square displacement and diffusion is finally given by:

〈

(x(t)− 〈x0〉)2
〉

= 2Dt. (51)

In the non linear system, the effectiveness of directed transport is characterized by the

effective diffusion coefficient and describing the fluctuations around the average posi-

tion of the particles. It is defined by

Deff = lim
t→∞

〈x2(t)〉 − 〈x(t)〉2
2t

, (52)

where the brackets 〈...〉 denote an average over many realizations that include an aver-

age over initial conditions and thermal noise.

II.3.2 Fluctuation and rectification measures

The main statistical quantities of the driven stochastic process x(t) can be described in

terms of time and ensemble averages. For a given quantity f(x(t)), its time-homogeneous

statistical property are obtained only in the long-time limit after transients have died

out and after both the average over the temporal period of the driving and the cor-

responding ensemble average are performed [106, 11]. In this asymptotic regime, the

time-independent quantities are obtained by a double averaging procedure over both

the noise and the period of driving. Therefore, the mean velocity of Brownian motor is

given by:

〈〈v〉〉 = lim
t→∞

ω

2π

∫ t+2π/ω

t

〈v(t′)〉dt′, (53)
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where 〈...〉 indicates the average over the noise realizations and 2π
ω

is the period. In the

asymptotic long time limit this quantity becomes time-independent, while the noise-

averaged quantity alone assumes a time-periodic function of the asymptotic time-periodic

phase-space probability. The mean velocity 〈ẋ(t)〉 takes the form of a Fourier series over

all possible higher harmonics [78, 107]; yielding

lim
t→∞

〈ẋ(t)〉 = V + vω(t) + v2ω(t) + ... (54)

where vnω(t) (n = 1, 2, ...) denote time-periodic higher harmonic functions of zero av-

erage over the fundamental period T = 2π/ω of the driving. The time-independent

component V becomes

V = lim
t→∞

V (t). (55)

Due to the presence of the external driving, the Brownian particle is taken far away

from thermal equilibrium and a time-dependent nonequilibrium state is reached in the

asymptotic long time regime. Since all forces in the right hand side of the Langevin

equation (Eq.(33)) are non-biased, the necessary condition for the occurrence of directed

transport V 6= 0 is the breaking of the reflection symmetry of the potential U(x) [108,

109, 110].

Likewise, in a similar manner, another important quantity that characterizes the ef-

fectiveness of transport is the magnitude of the velocity fluctuations given by variance

σv in the long time regime, namely

σv =
√

〈v2〉 − 〈v〉2 . (56)

The Brownian motor moves with an actual velocity v(t), which is typically contained

within the interval

v(t) ∈ [〈v〉 − σv, 〈v〉+ σv] . (57)

If the variance is large, i.e σv > 〈v〉, the Brownian motor can moves for some time in
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the opposite direction of its average velocity 〈v〉, and the direct transport becomes less

efficient.

As a measure of effective transport, we use the efficiency η of the rectification of

thermal noise that accounts for the velocity fluctuations to optimize the effective motor

motion [95, 111, 112]. The efficiency of machine is defined as the ratio of power Pout

done on the surrounding and the input power Pin,

η =
Pout

Pin
. (58)

Depending on the specific choice of the numerator Pout, different definitions of the Brow-

nian motor efficiency characterize various aspects of energy of the system. In particu-

lar, if the particle is working against a constant load force, then the output power is

Fv < v > when Fv is the friction force. Another possibility is to choose the friction force

Fv = γ < v > yielding

Pout = γ〈v〉2. (59)

The input power Pin =< G(t)v > is supplied to the system by all external forces G(t).

To obtain Pin, let us recast the Langevin equation (Eq. (33)) in unit of mass (m = 1)

dx = vdt, (60)

dv = − (γv + V ′(x)−G(t)) dt+
√

2γTdW (t), (61)

where G(t) is the total external force and W (t) is the Winner process characterized by its

two first moments < W (t) >= 0 and < W 2(t) >= t. The differentiation of this equation

gives.

d

(

v2

2

)

= −
(

γv2 + vV ′(x)− vG(t)− γT
)

dt+ v
√

2γTdW (t). (62)

Next, we perform the ensemble average for the rate of change of the kinetic energy

d

dt

〈

v2

2

〉

= −
(

γ
〈

v2
〉

+ 〈vV ′(x)〉 − 〈vG(t)〉 − γT
)

, (63)
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v2

2
is the kinetic energy in mass unit, d

dt

〈

v2

2

〉

= 0 and 〈vV ′(x)〉 = 0. We obtain finally

Pin = γ
〈

v2
〉

− γT. (64)

Note that the input energy depends not only on the force G(t) but also (via 〈v2〉) on all

other parameters of the system. Inserting Eq. (59) and Eq. (64) into Eq. (58), we obtain

the efficiency of energy

η =
〈v〉2

|〈v2〉 − T | . (65)

If the variance of velocity σv is reduced, the energetic efficiency increases and the trans-

port of the Brownian motor becomes more efficient.

II.4 Numerical analysis

Numerical simulations have played an important role for better understanding of Brow-

nian processes. The numerical integration of stochastic differential equations is a valu-

able tool for analysis of a vast diversity of problems in physics, ranging from equilib-

rium transport in molecular motors [94], phase dynamics in Josephson junctions [113,

114], stochastic resonance [115] to dissipative particle dynamics [116] to finance [117].

Stochastic simulation, as it is referred, is specially interesting when the dimensionality

of the problem is larger than three, and in that case it is often the only effective numerical

method. A prominent example of this is the stochastic variation of molecular dynamics:

Brownian dynamics.

II.4.1 Numerical methods for stochastic Langevin equation

The noiseless, deterministic inertia shows rather complex behaviour and, in distinct con-

trast to overdamped Brownian motion, often exhibits complex dynamics. By adding

noise, one typically obtains a diffuse dynamics, this allowing stochastic escape. The

stochastic differential equation commonly occurs throughout science and engineering,
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most frequently as a dynamic model of a physical system driven by random forces or

an electrical network with random voltage or current inputs. Again, one of the earliest

forms was the Langevin equation used to describe Brownian motion [118, 119]. There

are two interpretations of the stochastic differential equation driven by white noise. The

first is in using the linear form of Langevin equation to model stochastic processes with

known (or determined) autocorrelation functions (or spectral density). The interpreta-

tion of white noise and corresponding solution can be used to create processes with the

desired second order properties (autocorrelation and autospectral density). Secondly,

stochastic equations are often derived directly through dynamic descriptions of systems

driven by random forcing functions. If these functions are considered to be indepen-

dent processes, then in the continuous limit it is natural to assume a differential equa-

tion driven by white noise. Such equations arise in mechanics and electrical engineering

extremely often and are the basis for much of modern control theory.

As analytical methods to handle these situations effectively do not exist, we carried

out extensive numerical simulations. For better understanding the dynamic processes

occurring in our different models, we integrate numerically the equation of the motion.

For this purpose, we integrate the Langevin equation by using the fourth-order Runge-

Kutta algorithm for stochastic processes developed by Kasdin [120] with the time step

equal to 0.05. The initial conditions for the coordinate x(t) and velocity ẋ(t) were chosen

to zero.

The averages were calculated over 103 different trajectories, each trajectory evolving

over 103 periods where the period is 2π
ω

of the external force. For the estimation of the

quantities of interest the usual averages over the time 105 and 103 different realization

were taken.
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II.4.2 Fourth-order Runge-Kutta (RK4) algorithm for stochastic equa-

tions

The Runge-Kutta method is one of the numerical methods, and probably the most com-

monly used, single step numerical integration routine for solving differential equation.

To implement this method, we separate the one variable equation with second order

derivatives (Eq. (33)) into two variable equations with first order derivatives.

X = F (X, t) + ξ(t), (66)

where X and F (X, t) are the vectors.







ẋ1

ẋ2






=







x2

−γx2 −
1

m

∂VT (x1, t)

∂x1






+







0

ξ(t)/m






, (67)

here x1 = x and x2 = ẋ are used to reduce the derivative order of the equation.

Assuming that we know the value for Xk =







x1

x2






at time step tk, through fourth-

step calculation, we obtain the value for Xk+1 at time tk+1 given by the relation

Xk+1 = Xk + α1K1 + .... + αnKn , (68)

where the Kj coefficient are

K1 = hF (Xk, tk) + h(Dq1)
1/2







0

r1






, (69)

Kj = hF

(

Xk +

j−1
∑

i=1

αjiKi, tk + hcj

)

+ h(Dqj)
1/2







0

rj






, (70)

with h the time step, D = 2mγKBT
h

, j = 1...n. For n = 4 we obtain the fourth-order
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algorithm, and r is sampled by standard Gaussian distribution with zero mean value

and a variance of 1. The coefficients αji, cj and qj are constant coefficients whose values

are given in table 1, and cj =
j−1
∑

i=1

αji. More details of this algorithm can be found in

Kasdin’s reference [120].

Table 1: Fourth-order, time-varying RK coefficients
Coefficient value
α1 0.25001352164789
α2 0.67428574806272
α3 - 0.00831795169360
α4 0.08401868181222
α21 0.66667754298442
α31 0.63493935027993
α32 0.00342761715422
α41 - 2.32428921184321
α42 2.69723745129487
α43 0.29093673271592
q1 3.99956364361748
q2 1.64524970733585
q3 1.59330355118722
q4 0.26330006501868

II.5 Conclusion

In this chapter we present the analytical and numerical methods used in the study of

the dynamics of Brownian motion. The dynamics of the particle is governed by the

Langevin equation and crucially depends on the type of substrate. We have given the

explicit form of some potentials used in the context of Brownian motion. The quantities

characterizing Brownian motor such as the mean square displacement, the diffusion

coefficient, the mean velocity, the velocity fluctuation and the efficiency are presented.

For the numerical simulations, the RK4 for stochastic process (Kasdin method) has been

described. The results of numerical simulations are presented in the next chapter with

the discussions.
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CHAPTER III

RESULTS AND DISCUSSIONS

III.1 Introduction

In this chapter we apply the numerical method discussed in chapter 2 for solving the

Langevin equation, for the problem of Brownin motion in a periodic potential. As dis-

cussed below, this problem arises in several fields of science, for instance in physics,

chemical physics and communication theory. Restricting ourselves to the one and two

dimensional case, we study the properties of Brownian motor, such as diffusion and

transport. Thus, we present the properties of Brownian motion in one dimensional peri-

odic potential in the second section. In the third section, these properties are presented

for the Brownian motion of particle in two-dimensional periodic potential. The fourth

section is devoted to the study of dimer in one dimensional periodic potential.

III.2 Brownian motion of particle in one-dimensional de-

formable potential systems

In order to understand dynamical processes of the system, the nonlinear Langevin equa-

tion has been integrated numerically using the fourth-order Runge-Kutta algorithm

method developed by Kasdin [120]. We may examine how a wide range of potential

shapes, the temperature, the external field as well as the biharmonic parameter of the

time periodic unbias force affect the diffusion and transport properties.

50
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III.2.1 Diffusion phenomena

III.2.1.1 Mean velocity and mean square displacement of the particle

In order to understand the dynamical processes of the present system, the mean veloc-

ity of particles is presented. According to time (Fig. 15 (a)), the mean velocity increases

linearly and is limited in time corresponding to the supertransport processes. It is es-

tablished at large time and characterizes the normal transport. While, according to the

external field (Fig. 15 (b)), the evolution of the mean velocity is linear when the wells

of the potential are separated by wide barriers (r = −0.8). This can be due by the fact

that the well between any two consecutive barriers of the effective potential tends to

disappear when the magnitude of the shape parameter tends toward −1, and switching

between the potential wells are evident. Otherwise, for r = −0.2, 0, 0.2 and 0.5, the mean

velocity is exponentially small for a very weak force and recovers a free value when the

external field increases, as shown in Fig. 15 (b). Particularly for fd > 0.15, the evolution

of mean velocity is the same for all the potential shapes. The increase in the velocity

versus fd involves dynamical transitions between locked and running states that lead to

a finite average velocity [87].

We focus our attention on the shape potential and identify different types of particle

diffusion which occur under the action of a constant external field (F (t) = 0 in Eq.

33). We have shown on a log-log scale (Fig. 16) for several values of the external field

indicated on the graph, where the dimensionless mean square displacement is a function

of τ/∆τ with the time step ∆τ . A constant field can induce various regimes of motion of

a particle, depending on the values of the shape parameter. According to Fig. 16(a) for

r = −0.8, the mean square displacement is characterized by the appearance of a short

range of ballistic diffusion dependence (σ2 ∼ τ 2). This regime is observed only at short

times (τ/∆τ < 5.102, see region R1). When the time increases, τ/∆τ > 5.102 (region R2),

the mean square displacement is proportional to time, σ2 ∼ τ , which corresponds to

normal diffusion. We note that graphs are closed together for all values of the external
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Figure 15: (a) Mean velocity as a function of time for the external field fd = 0.15. It
shows that the mean velocity becomes constant at large time. (b) Illustration of a mean
velocity according to the external field; for a particular shape parameter (r = −0.8) the
mean velocity is approximately linear. The remaining rescaled parameter read friction
η = 0.141, and thermal noise TB = 0.194.

field and show the weak influence of this force on the diffusion type.

On the other hand, in the Figs. 16(b)-16(d), we take fd = 0.0, 0.06 and 0.15, respec-

tively, and varies the shape parameter for each figure. The change of the shape param-

eter is accompanied by the change of the type diffusion. In the absence of the external

field (Fig. 16(b)), the motion of the particles is determined only by thermal fluctuations,

which is governed by the normal diffusion for r = −0.2, 0, 0.5 and the hyperdiffusion

at short time (cubic time dependence of σ2; σ2 ∼ τ 3) when r = 0.5, 08. For the driven

force (fd = 0.06 Fig. 16(c)), two types of particle diffusion appear for the chosen values

of shape parameter. Region R1 is characterized by hyperdiffusion for τ/∆τ < 5.103, yet

for τ/∆τ > 5.103 (region R2), the normal diffusion appears. The increase of the force

(fd = 0.15, Fig. 16(d)), leads to the appearance of an unexpected phenomenon of the dis-

persion in a wide domain of shape parameter: the dispersionless transport. It appears

at short times after the hyperdiffusion phase and is limited in the time. It is observed

on lines 2, 3 and 4 (Fig. 16(d)) corresponding to r = −0.2, 0, 0.5, respectively. The mean

square displacement exhibit flat regime where diffusion is zero (indicated by horizon-

tal dash line in the figures).The time interval of this type of the motion depends on the
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Figure 16: Dependence of the mean square displacement of a particle as a function of
time at constant temperature TB = 0.194 and for friction coefficient η = 0.141. (a) is
plotted for r=-0.8 for different values of external field. The zoom inside shows the weak
influence of external field on the mean square displacement. (b) is plotted for fd = 0.0,
(c) for fd = 0.06 and (d) for fd = 0.15. The values of the shape parameter are indicated
on the figures. The horizontal dotted line indicate dispersionless transport.
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shape parameter. This is a particular abnormality because noise is not too small, and

appears for a finite external field [121]. After the dispersionless regime, the mean square

displacement increases linearly according to time (region R2) and indicates normal dif-

fusion.

The results can be summarized as follows: when the motion of particles is deter-

mined only by thermal fluctuations (fd = 0), it is characterized by the normal diffusion

for some values of shape parameters (r = −0.2, 0 and 0.5). According to these plots,

there exist two characteristic regions of motion; region R1 where we observe normal

diffusion, ballistic diffusion, hyperdiffusion and dispersionless transport depending on

the shape parameter and on the external field. J.M. Sancho et al. [122] have shown that,

normal diffusion appears at large time and the dispersionless regime appears when the

external field is greater than the critical force. In the present system, the diffusion also

depends on the potential shapes. Dispersionless transport does not appears for r = −0.8

(sharp wells of the potential) and r = 0.8 (flat bottoms of the potential). The form of

the potential strongly affects the diffusion, crucially for r = −0.8 (r tends toward −1),

switching between the potential wells is evident for all the values of the external field

and the type of diffusion is unchanged.

For further investigation, we focus on the effects of the biharmonic parameter and

the shape potential on the mean square displacement. Different types of particle dif-

fusion under the action of an external force in periodic spatial potential can appear in

systems with a low energy dissipation. To illustrate the type of diffusion in the system,

we evaluate the mean square displacement of particles as a function of time for some

values of the parameters system in an anomalous regime ( see Fig. 17). As can be seen

in these figures, in the monochromatic drive (ǫ = 0), the mean square displacement is

approximately constant in the case of sinusoidal profile of the potential (r = 0). In this

regime, the motion of particles is characterized by the dispersionless transport phenom-

ena, and is limited in time. In such a system, this type of motion is characterized by a

very weak temperature dependence of σ2
d [123]. By changing the shape of the parameter,

namely r = 0.2 and r = 0.4, the velocity is very weak. This result has also been obtained
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Figure 17: Time dependencies of the mean square displacement σ2
d (Figure 7a-7f) of par-

ticles for the value of bias force f = 0.08. The values of the shape potential r and the
phase-lag φ are indicated on the figures. The short black lines indicate different types of
diffusion in the system. The values of the biharmonic parameters are taken respectively
as 0, 5, 10 and 15.

by Igor Goychuk [124] at high driving frequency of the periodic external field.

The further increase of the biharmonic parameter leads to the appearance of subdif-

fusion, superdiffusion, normal diffusion, ballistic diffusion, hyperdiffusion and disper-

sionless transport, dependent upon the value of the shape parameter and phase-lag. In

Fig. 17(a) (r = 0), the motion of a particle is characterized by ballistic diffusion (σ2
d ∼ τ 2)

for ǫ = 5 and hyperdiffusion (σ2
d ∼ τn;n > 2) for ǫ = 15 when τ < 102. When the time

increases, τ > 103, we observe normal diffusion (σ2
d ∼ τ ) independently from the choice

of non-zero biharmonic parameter. For r = 0.2 (Fig. 17(b)), hyperdiffusion is observed

at short time for ǫ = 5 and ǫ = 10. At large time τ > 103, the evolutions of mean square

displacement are close together for ǫ = 5 and ǫ = 10, and are characterized by normal

diffusion. Particularly, for ǫ = 15, a new type of particle motion appears, namely the

dispersionless transport phenomenon, and is limited in time (102 < τ < 104). After this

regime at τ > 104, the subdiffusion appears (σ2
d ∼ τn;n < 1). In Figure 17(c) (r = 0.4)

the motion of particles is characterized by superdiffusion for ǫ = 5 and τ < 104 before

changing to a subdiffusion regime. For ǫ = 10 and ǫ = 15, the motion is characterized
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by normal diffusion.

By changing the value of the phase-lag from φ = 1.256 to φ = 5.024, the type of

diffusion changes. As can be seen in Figure 17(d) (r = 0), while the interval of hyper-

diffusion increases for ǫ = 5 and ǫ = 10, the normal diffusion interval decreases. On

the other hand, as shown in Figure 17(e) (r = 0.2), for ǫ = 10, the choice of the other

value of the phase-lag leads to the appearance of the dispersionless transport regime.

The same phenomena are observed in Figure 17(f) for r = 0.4 at short time when ǫ = 15.

From the curves obtained, the motion of particles is characterized by normal diffusion

and dispersionless transport over a long time. This has been shown with time of about

107[111].

III.2.1.2 Potential dependence and biharmonic parameter on the critical force as

well as the maximum diffusion

a) Time dependence of the diffusion coefficient

Here we focus our attention on the temporal behaviour of the diffusion coefficient in

relation with the frequency, the temperature as well as the shape parameter. This allows

us to understand the motion of the particle under the action of the periodic external

field. Figure 18 shows the time dependence on the dimensionless diffusion coefficient

D for a constant external field (F (t) = 0), then we vary the frequency of the external

field when F (t) = F0sin(ωt). Figure 18(a) shows the weak dependence of the frequency

on the diffusion coefficient (r = −0.8). Fig. 18(b) corresponds to the constant external

field and the diffusion coefficient presents the resonance ship for the shape parameters

r = −0.5, −0.2, 0 and 0.5. Indeed, it is known that the diffusion exhibits a resonance ship

at the constant external field, for some shape of the potential, this dynamic is different

(r = −0.8 and r = 0.8). In Figs. 18(c)-18(e), the frequencies are taken respectively as

follows ωd = 5.10−1, 5.10−2 and 5.10−4. In these figures, each curve corresponds to the

change of the shape parameter. On the one hand, the coefficient of diffusion increases

and becomes constant for each choice of the shape parameters (see Fig. 18(c)). On the
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Figure 18: Dependence of the diffusion coefficient as a function of time for constant
temperature TB = 0.25 and the external sinusoidal field with constant amplitude Fd =
0.15. (a) The value of the shape parameter is r = −0.8, the frequencies are indicated
on the graph. The zoom inside shows the weak influence of frequency on the diffusion
coefficient. (b) The external field is constant. We also vary the frequency (c) ωd = 5.10−1,
(d) ωd = 5.10−2 and (e) ωd = 5.10−4, respectively; each curve corresponds to the change
of the shape parameter

other hand the diffusion increases, begins to oscillate and established at large time (Fig.

18(d)-18(e)). We know that for the underdamped particle, a low friction implies a slower

loss of kinetic energy to overcome a potential barrier, it will continue in the running

state for a beginning time before being slowed down again by a loss of energy [87]. This

explain the abrupt increase of diffusion curves at low time.

Now we analyse the effect of the temperature on the diffusion coefficient with di-

mensionless frequency ωd = 5.10−3. Fig. 19(a) shows that the temperature weakly affect

the diffusion coefficient for r = −0.8. While for the other shape parameters, the tem-

perature strongly affects the diffusion coefficient, it increases, begins to oscillate and es-

tablish (see Figs. 19(b)-19(d)). The diffusion coefficient is maximum where the potential

has flat bottoms separated by thin barriers (r = 0.8). In particular, the temperature can

exhibit anomalous dependence on the diffusion coefficient [123], e.g from TB = 0.09 to
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Figure 19: Illustration of the diffusion coefficient as a function of time for a frequency of
the external field ωd = 5.10−3 and the external sinusoidal field with constant amplitude
Fd = 0.15. (a) The value of the shape parameter is r = −0.8 and the zoom inside shows
the weak influence of temperature on the diffusion coefficient. For different shape pa-
rameters indicated on the graphs, the values of the temperature are (b) TB = 0.09, (c)
TB = 0.3 and (d) TB = 0.8.
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TB = 0.3, the coefficient of diffusion increases and decreases from TB = 0.3 to TB = 0.8.

This anomaly is observed for r = −0.5, −0.2, 0 and 0.5.

b) Potential dependence on the critical force as well as the maximum diffusion

We focus our attention on the critical force which is defined at the maximum of the

evolution of diffusion coefficient according to the external field. In so doing, the diffu-

sion coefficient as a function of external field Fd is shown in Figs. 20 and 21. One can

see that the diffusion coefficient shows a maximum as a function of the external field

Fd. This maximum diffusion is obtained around the critical forces Fc between locked

and running states where the diffusion coefficient has a resonance shape. The increase

of the shape parameter from −0.4 to 0.8 for 0.1 step shows that, the curves increase,

reach a maximum and decrease gradually when the force increases. For Fd > Fc, the

diffusion coefficient decreases and becomes constant. For r = 0 the harmonic potential

is recovered [123, 125]. The critical force depends on the shape of the parameter, (see

Fig. 20), when the shape parameter r increases, the critical force increases. The critical

force is large when the wells of the potential has flat bottoms separated by thin barriers

(r = 0.8). While, for negative values of the shape parameter r between −0.4 to −0.1, the

critical force and the maximum diffusion decrease when r increases, it corresponds to

the increase of the wells and to the decrease of the potential barriers. Otherwise, for the

shape parameters r = −0.6,−0.7,−0.8,−0.9 and 0.9 (Fig. 21(b)), the critical force does

not appears, and for r = −0.5, the evolution of diffusion presents an antiresonance.

The diffusion coefficient is approximately constant according to the external field for

r = −0.7,−0.8,−0.9 and 0.9.

These figures show that the critical force exists and depends on the shape parame-

ter. Fig. 22 shows the critical force and the maximum diffusion as a function of shape

parameter for three selected values of dimensionless temperature given in the figure

caption. Our results indicate that the maximum of the critical force is obtained when the

potential has flat bottom (r = 0.8). The critical force depends on the shape parameter

and the temperature. For TB = 0.3 and TB = 0.8, the critical force increases and shows
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Figure 20: Relationship of diffusion coefficient as a function of external field for 0.0 ≤
r ≤ 0.8 at constant temperature TB = 0.194 and friction coefficient η = 0.141. The inside
is the zoom of the part where we obtained the values of the critical field.

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
10

−1

10
0

10
1

10
2

10
3

10
4

F
d

D

 

 

r = − 0.1
r = − 0.2
r = − 0.3
r = − 0.4

(a)

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
10

0

10
1

10
2

F
d

D

 

 

r = − 0.5
r = − 0.6
r = − 0.7
r = − 0.8
r = − 0.9
r = 0.9

(b)

Figure 21: Relationship of diffusion coefficient as a function of external field at constant
temperature TB = 0.194 with friction coefficient η = 0.141. (a) r = −0.1,−0.2,−0.3,−0.4
corresponding to the negative values of shape parameter when we have the critical force.
(b) r = −0.5,−0.6,−0.7 − 0.8,−0.9 and 0.9 when we have irregular variation of the
diffusion coefficient according to the external field.
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Figure 22: (a) Illustration of the critical force versus shape parameter r and (b) maxi-
mum diffusion coefficient versus r for selected thermal noise of strength TB = 0.194, 0.3
and 0.8. For these values of temperature, the maximum diffusion decreases with the
increasing of the temperature for a selected shape parameter.

the singularity at r = 0.2 for TB = 0.8. It follows from the data obtained on the Fig. 22(b)

that the variation of maximum diffusion have similar shape at temperatures TB = 0.194

and TB = 0.3. The increase of the temperature is followed by the decrease of the maxi-

mum diffusion coefficient according to the shaped parameter (Fig. 22(b)). These figures

show that the critical force and the maximum of the diffusion strongly depend on the

system parameters and particularly on the shape potentials.

c) Effects of biharmonic parameter on the diffusion coefficient

The Brownian motor is subjected to both a static bias force f and time periodic driving

biharmonic force F (t) (see Eq. (31)). Figure 23 shows the evolutions of the effective dif-

fusion as a function of bias force f for different values of the biharmonic parameter and

shape potential for two selected values of the phase-lag. For monochromatic driving,

the diffusion coefficient increases for the sinusoidal profile potential, r = 0 (see Figures

23a and 23d); it presents a resonance ship at r = 0.2 (Figures 23b and 23e), and becomes

constant for r = 0.4 (Figure 23c and 23f). In the biharmonic driving ǫ = 5, the diffusion

coefficient is approximately constant for r = 0, r = 0.4 when φ = 1.256, decreases for

r = 0.2, φ = 1.256 and φ = 5.024 and presents the resonance ship at r = 0 for φ = 5.024.
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Figure 23: Relationship of the diffusion coefficient for Brownian particles as a function of
external bias force for the values of the shape parameter r and the phase-lag φ indicated
on the figures caption. The values of the biharmonic parameters are indicated on the
grafts.

The increase of the biharmonic parameter to ǫ = 10 leads to the appearance of the peak

evolution when r = 0, and r = 0.2 for φ = 5.024, yet it decreases for r = 0.2, r = 0.4

when φ = 1.256. From a higher value of biharmonic parameter (ǫ = 15), the diffusion co-

efficient increases and becomes constant for r = 0 (Figure 23a), increases at r = 0.2 and

r = 0.4 for φ = 1.256 (Figure 23b-23c), and conversely presents one minimum at r = 0,

0.2, 0.4 for φ = 5.024 (Figures 23d-23f). The peak evolution of the diffusion coefficient

according to the bias force is known as a critical force, which is the value of bias force

where the diffusion coefficient is maximized. It is dependent upon the shape potential,

the biharmonic parameter and the phase-lag of the two signals.

III.2.2 Normal and anomalous transport

The process of anomalous transport occurs generally in systems driven by spatial pe-

riodic and symmetric potential, random [12] and on ratchet potential which can be a

superposition of two or three spatial harmonic potentials with different phases [11].

Anomalous transport in symmetric one-dimensional periodic systems, even when it

Ph.D. Thesis of A.M. FOPOSSI MBEMMO Laboratory of Mechanics, Materials and Structures



Results and discussions 63

0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

φ

〈〈
 v

〉〉

 

 

r = 0
r = 0.1
r = 0.2
r = 0.3
r = 0.4
r = 0.5
r = 0.6
r = 0.7

(a)
0 1 2 3 4 5 6

−0.5

0

0.5

1

1.5

φ

〈〈
v〉

〉

 

 

r = − 0.1
r = − 0.2
r = − 0.3
r = − 0.4

(b)
0 1 2 3 4 5 6

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

φ

〈〈
v〉

〉

 

 

r = 0.8
r = 0.9
r = − 0.5
r = − 0.6
r = − 0.7
r = − 0.8
r = − 0.9

(c)

Figure 24: The mean velocity 〈〈v〉〉 as a function of the phase-lag of two signals at con-
stant bias force f = 0.08 and the biharmonic parameter ǫ = 10. Each curve corresponds
to the change of the shape parameter r from −0.9 to 0.9 of 0.1 step. The plot (a) corre-
sponds to the positive value of the shape parameter when we have negative mobility.
The plot (b) corresponds to the negative value of the shape parameter when we have
negative mobility. The plot (c) corresponds to the value of the shape parameter where
negative mobility does not exist.

originates from thermal equilibrium fluctuation, can-not survive at high temperature.

The averages of velocity is calculated over 103 different trajectories, each trajectory evolv-

ing over 103 periods where the period is 2π/ω.

To study the absolute negative mobility regimes, we focus our attention on the shape

parameter r and the value of phase-lag φ for which the negative velocity occurs. To

identify these values, we plot the mean velocity 〈〈v〉〉 as a function of the phase-lag of

two signals φ between the two components of the biharmonic force. Figures 24a-24c

illustrate the dependence of the mean velocity 〈〈v〉〉 as a function of the phase-lag φ of

two signals, the biharmonic parameter ǫ = 10, and, for the values of the shape parameter

from −0.9 to 0.9 of step 0.1. Figure 24(a) presents the positive shape parameter for which

the negative velocity appears. The case r = 0 corresponds to the motion of a Brownian

particle under the sinusoidal potential. In this case the evolution of mean velocity versus

φ follows a sine-like function when the bias force f < 0.16, already studied by Linjing

Yang et al [126]. For those values of r (0.1, 0.2, 0.5, 0.6 and 0.7), the mean velocity is

approximately zero at a very weak bias force. On the other hand, for r = 0.3 and r = 0.4,

the negative mean velocity is maximized at zero bias force (f = 0). For the increase of

the phase-lag, the mean velocity becomes negative or positive according to the selected

shape parameter. For a higher value of the phase-lag, the mean velocity in the negative
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direction is maximized at φ = 5.024 for r = 0, φ = 5.338 for r = 0.1, φ = 5.652 for r = 0.2,

φ = 5.966 for r = 0.3 and φ = 6.28 for r = 0.4. In Figure 24b, the negative velocity

appears slightly. In Figure 24c, the negative velocity does not exist, and therefore the

mean velocity is very low.

We summarize in Figures 25a-25b the plot of average velocity versus shape param-

eter and the phase-lag. we observe two types of transport phenomena. The first one

(〈〈v〉〉 < 0) corresponds to the anomalous transport when the wells of the potential have

small, flat bottoms (0 ≤ r ≤ 0.7) and when the potential is separated by thin barri-

ers (−0.4 ≤ r < 0). The second phenomenon (〈〈v〉〉 > 0) corresponds to the normal

transport. It appears when the wells of the potential have flat bottoms separated by

thin barriers and for sharp wells separated by wide barriers. These figures give the val-

ues of the shape parameters and the phase-lag where the negative velocity is observed.

In the Josephson junction model, the anomalous current is maximized at temperature

TB = 0.01, the value of the temperature that we use to obtain a maximized negative

velocity in the negative direction.

(a) (b)

Figure 25: Illustration of averaged velocity 〈〈v〉〉 as a function of the phase-lag at constant
bias force f = 0.08 where the biharmonic parameter is ǫ = 10. (a) Illustration of three
dimensional representation; (b) the φ− r plane presents the domain of shape parameter
r and the phase-lag φ for different values of averaged velocity. These plots give the
couple of the values φ − r where the anomalous transport is identified for a particular
set of system parameters.
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III.2.3 Quantities characterizing transport versus external bias

The performance characteristics of motors working on the nanoscale are richer than

those of macroscopic machines. Particularly, fluctuations of position and velocity are

inherent to all Brownian motors. These fluctuations affect the motor performance and

contain information about motor characteristics. The main objective is to deduce infor-

mation on the microscopic properties of the system from the observed dynamics of a

particle. For this purpose there are several quantities that characterize the effectiveness

of transport. These quantities are the average velocity of Brownian motion, the velocity

fluctuations, the efficiency, the fluctuation of kinetic energy and the coefficient diffusion.
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Figure 26: The average velocity 〈〈v〉〉 of the inertial Brownian motor is plotted as a func-
tion of the bias external field for some value of the shape parameter when the direction
of the negative velocity is maximized. (a) r = 0, φ = 1.256; (b) r = 0.2, φ = 1.256; (c)
r = 0.4, φ = 1.256; (d) r = 0, φ = 5.024; (e) r = 0.2, φ = 5.024; (f) r = 0.4, φ = 5.024. The
parameter values read: Fd = 4.2, γd = 0.9, ω = 5.85 and TB = 0.01.

We examine the influence of bias force on the mobility transport process. The case

of zero bias force in sinusoidal potential has been studied by L. Machura et al [127, 128]

to show the influence of phase-lag on the negative mean velocity. Here, we represent

the evolution of mean velocity with respect to the bias force for some values of shape
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parameter and for the values of the phase-lag where the mean velocity has a negative

direction. Figure. 26 shows that, for the monochromatic drive (ǫ = 0), 〈〈v〉〉 ≃ 0, the be-

haviour of the transported particle is very weak independently of the shape parameter.

In the biharmonic driving, the behaviour of the particle is influenced by the biharmonic

parameter. For the upper panel (Figures 26a-26c) φ = 1.256, the dynamics of Brown-

ian particle is illustrated for three different shape parameters. For r = 0 (Figure 26a),

we observe normal transport of particles for ǫ = 5 and ǫ = 15. When ǫ = 10, anoma-

lous transport is observed, characterized by negative mean velocity. In Figure 26b when

r = 0.2, the motion of particle for ǫ = 15 is similar to the monochromatic drive, while for

r = 0.4, it is similar to the monochromatic for ǫ = 5. In the bottom panel (Figures 26d-

26f), φ = 5.024 where the negative mean velocity is maximized for ǫ = 10 for some shape

parameters. For r = 0 and r = 0.2 (Figures 26d-26e), the mean velocity changes from

negative to positive values of biharmonic parameter ǫ = 5 and ǫ = 15, except for the case

where ǫ = 15 (Figure 26e) which is similar to the monochromatic drive. In addition, for

r = 0.4 (Figure 26f), the anomalous phenomenon appears only for ǫ = 10.

Let us now analyse the average velocity 〈〈v〉〉 with the particular φ and r parameters

for which absolute negative mobility occurs and show the influence of bias force and

biharmonic parameters on the negative velocity regime. In so doing, we summarize in

Figures 27a-27d the average velocities according to bias force and biharmonic parameter

for the phase-lag φ = 5.024 and the shape parameters r = 0 and r = 0.2, respectively.

Particularly, Figures 27b and 27d show the dynamical phase diagram in the f − ǫ plane

representation which presents the region of anomalous transport. We see that, anoma-

lous transport appears for intermediate biharmonic parameters at low bias force, and

depends on the shape parameter. The characteristic feature emerges from the interval

where the bias force is sufficiently large, the variation of φ can induce negative velocity.

In our next point of analysis, we discuss quantities that characterize the transport

phenomena of the Brownian motor. These are the fluctuation of velocity, the relative

fluctuation of kinetic energy, and the efficiency of thermal noise. To analyse the be-

haviour of these quantities in our system, its evolutions are represented according to the
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(a) (b)

(c) (d)

Figure 27: Illustration of average velocity 〈〈v〉〉 as a function of bias force f and bihar-
monic parameter ǫ. (a) Three dimension representation and (b) f − ǫ plane for r = 0.
(c) Three dimension representation and (d) f − ǫ plane for r = 0.2; the phase-lag of two
signals is taken to φ = 5.024. These figures give the couple of the values f − ǫ where the
anomalous transport is identified for a particular set of system parameters for the shape
of parameter r=0 and r=0.2, respectively.
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Figure 28: The fluctuation velocity σv, the relative fluctuation of the kinetic energy
σE

2

〈E〉2
and the efficiency of the rectification of thermal noise η are plotted as a function of bias
force. The biharmonic parameter is taken respectively to be (a)-(c) ǫ = 5; (d)-(f) ǫ = 10.
The phase-lag of two signals is φ = 5.024 and the shape parameters are indicated on the
figures caption.

bias force for several values of the parameters elucidated above. The values of shape

parameter and the phase-lag are taken in the domain of negative velocity on the φ − r

diagram. The biharmonic parameter is chosen respectively for ǫ = 5 and ǫ = 10 (see

figure 28). From the case of biharmonic parameter ǫ = 5, see Figures (28a-28c), the fluc-

tuation of mean velocity is constant for r = 0.2, 0.3, 0.4 and present in resonance ship

for r = 0 and r = 0.1 (Figure 28a). Figure 28b shows the increase of the fluctuation of ki-

netic energy according to the bias force. On the one hand, the efficiency energy exhibits

one minimum for r = 0 and r = 0.1, and on the other hand, it approximately zero for

r = 0.2, 0.3, 0.4 (Figure 28c). With the increase of the biharmonic parameter to ǫ = 10,

the fluctuation velocity shows a resonance ship dependent upon the shape parameter

(see Figure 28d), while the efficiency of energy present a minima (Figure 28f).

To accomplish the comparison, the fluctuation velocity σv and the efficiency of the

rectification of thermal noise η are plotted as a functions of bias force for some selected

shape parameters in anomalous transport regions. It is shown that the reduction of

fluctuation velocity σv is followed by the increase of energy efficiency and the transport
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of the motor becomes more efficient [127]. This dynamic is observed for ǫ = 5 when

r = 0, r = 0.1 and for ǫ = 10, for all the shape parameters chosen. It is important to

note that this behaviour depends on the interval of the bias force. The small bias force

(f = 0.05) from which the Brownian motor is more efficient is obtained at the biharmonic

parameter ǫ = 10 when the wells of the potential have small, flat bottoms separated by

thin barriers (r = 0.4).

III.3 Brownian motion of particle in two-dimensional pe-

riodic potential

Transport phenomena are generally implemented in one dimension using sinusoidal

potential, yet in reality, the particle moves in two dimensions. Our study in this section

is based to the response of a probe particle subjected on both the positive external bias

force and time periodic driving biharmonic force, moving in two dimensional periodic

potential. The problem here is to investigate the effect of the surface shape, the phase-

lag of two signals as well as the biharmonic parameter on the transport phenomenon.

Although our emphasis here is to consider three types of surface which are the NaCl

surface, MoS2 surface and surface with honeycomb symmetry.

III.3.1 Simulation with the bias force in the x-axis

The set of numerical results started by the dynamic of a particle subjected on both the

bias force and the time periodic driving biharmonic force in the x-axis. Our focus here is

on the effects of system parameters such as biharmonic parameter, the phase-lag of two

signals, the bias force and the temperature on the features of transport.

Therefore, we plotted the components of the mean velocity 〈〈V 〉〉 as a function of

these parameters. Fig. 29 illustrates the dependence of the components of the asymp-

totic mean velocity 〈〈V 〉〉 according to the biharmonic parameter. Normal transport and

anomalous transport occurs and are strongly affected by the biharmonic parameter and
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Figure 29: The components of average velocity 〈〈V 〉〉 of the inertial Brownian motor is
plotted as a function of biharmonic parameter for (a) NaCl surface, (b)MoS2 surface and
(c) surface with honeycomb symmetry. The dimensional temperature is TB = 0.01, the
phase-lag φ = π/2 and the bias force f = 0.15. The remaining rescaled parameters are
γd = 0.9, ω = 5.85, Fd = 4.2 for NaCl and MoS2 surface. For the surface with honeycomb
symmetry γd = 0.393, ω = 2.551, Fd = 1.835
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Figure 30: The components of the average velocity 〈〈V 〉〉 of the inertial Brownian motor
is plotted as a function of bias force for (a) NaCl surface, (b) MoS2 surface and (c) sur-
face with honeycomb symmetry. Inset of figure 3.c is the y-component of the velocity
which is increasing very slowly. The biharmonic parameter is taken to ǫ = 5. The other
parameters are the same as in Fig. 29
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the type of surfaces. In the case of NaCl and MoS2 surface (Figs. 29a-29b), for small

biharmonic parameter (ǫ < 4), 〈〈V 〉〉 is approximately null, the Brownian particle stays

in the equilibrium state. This phenomenon is also observed for ǫ > 16 (Fig. 29a), and

ǫ > 15 (Fig. 29b). The anomalous transport is exhibited for 3 < ǫ < 10 (NaCl surface),

and for 3 < ǫ < 8 (MoS2 surface) when the components of the asymptotic mean ve-

locity are negative. For the positive components of the mean velocity, normal transport

occurs. Otherwise, for the honeycomb symmetry surface (Fig. 29c), the motion of a

particle is characterized by normal transport, except the case ǫ = 19 which corresponds

to the anomalous transport. At this value of ǫ, the x-component of the mean velocity

is negative and the y-component is positive. For some values of biharmonic parameter

(ǫ ≃ 0 and ǫ >>) the average velocity tends to zero, the Brownian particle has difficult

to jump the barrier height and stays in the equilibrium state.

To analyse the influence of the bias force on the transport process, the components of

the asymptotic mean velocity as a function of the bias force are plotted in Fig. 30 for the

three different surfaces. On one hand, the NaCl surface (Fig. 30a) displays anomalous

transport for the values of the force f < 0.4, while, when f > 0.4, normal transport

appears, and on the other hand for the MoS2 surface (Fig. 30b), anomalous transport

is observed for f < 0.25. In Fig. 30c (surface with honeycomb symmetry), anomalous

transport is observed when the bias force tends towards zero. However, for f > 0.07,

normal transport is generated in the system. In the anomalous transport regime, ANM

emerges because the bias force cannot make the particle to produce current flow, and

the particle velocity direction is always in the opposite direction of the bias force.

Now, let us analyse the influence of the phase-lag of the two signals on the transport

properties. For arbitrary values of Fd and ǫ the unbias force possesses the time reflection

symmetry for φ = π
2

and φ = 3π
2

. For φ = 0 and φ = π, the unbias force is antisym-

metry. It is asymmetry for other values of the relative phase-lag. The evolution of the

components of the asymptotic mean velocity with respect to the phase-lag is presented.

In Figs. 31a-31b, normal and anomalous transport are observed according to the value

of phase-lag. The values of the phase-lag for which the anomalous transport occurs cor-
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respond to the negative components of mean velocity, or, for which the x-component

is negative and the y-component is positive. In Fig. 31c, the motion of the particle is

only characterized by the normal transport process for the system parameters selected.

Henceforth, we focus our attention for a symmetry (φ = π
2
) and antisymmtry (φ = π)

unbias force.
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Figure 31: Illustration of the components of the average velocity 〈〈V 〉〉 of the particles as
a function of the phase-lags of two signals for (a) NaCl, (b) MoS2 and (c) surface with
honeycomb symmetry. The other parameters are the same as in Fig. 29

Fig. 32 shows the influence of the noise intensity on the anomalous transport for a

given value of bias force (f = 0.08). For the noise intensity less than 0.1 the anomalous

transport is noticed. This phenomenon disappears when the noise intensity increases

(see Fig. 32a for the NaCl surface). Otherwise, in Fig. 32b, only the anomalous transport

is observed (MoS2 surface). For the honeycomb surface (see Fig. 32c), the motion of the

particle is characterized by a normal transport, except at very low temperature (10−6)

where we observed anomalous transport. These analyses show the diversity effect of

noise in the system, noise can induce ANM, and also can eliminate it, this behaviour

strongly depends of the structure of surface. Noise (temperature) plays a fundamental

role in the dynamics, if the system finds itself in a state that would be metastable or even

stable in the absence of noise; the smallest amount of noise may cause a transition to a

running solution [71]. In Figs. 29-32, we present the components of average velocity

depicted as a function of the biharmonic parameter ǫ, the phase-lag of two signals φ, the

bias force f and the temperature TB respectively. From these figures, the type of surface

strongly affects the transport properties and depends on the system parameters.
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Figure 32: Schematic illustration of the components of average velocity 〈〈V 〉〉 of particle
as a function of temperature for (a) NaCl surface, (b) MoS2 surface and (c) surface with
honeycomb symmetry. The other parameters are the same as in Fig. 29

III.3.2 Effect of anisotropy

This second point of analysis is the numerical result of Eq. 34 where the bias force

depends on the relative orientation of the substrate lattice. The bias force direction is

defined by the angle ψ = arc tan
(

fy
fx

)

where fx = f0 cosψ and fy = f0 sinψ are the

components of the bias force of magnitude f0. The velocity angle is constructed for the

Cartesian components of the average velocity 〈〈Vx〉〉 and 〈〈Vy〉〉, defined as:

tanα =
〈〈Vy〉〉
〈〈Vx〉〉

. (71)

To study the transport properties of the different surfaces, we define the angle θ called

the deflection angle [122], which is the angle between the bias force and the direction of

the average particle velocity given by

θ = |ψ − α| . (72)
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In this case normal transport is observed when the deflection angle is less than 900 (|θ| <

900), on the other hand, when |θ| > 900 the phenomenon of anomalous transport occurs.

Previously, we have shown that the system parameters strongly affect the occur-

rence of the transport. However, we use the deflection angle to show the influence of

anisotropy upon the transport properties. For that, the dependence of the deflection

angle |θ| as a function of angle ψ between the external bias force and the x-direction is

evaluated for two different values of phase-lag for each surface (see Fig. 33). Figure

33a is plotted for the value of phase-lag φ = π/2. For the NaCl surface, the anomalous

transport occurs when ψ increases from the zero value to 75◦, while for MoS2 surface

anomalous transport is depicted when ψ < 45◦. For this value of phase-lag, normal

transport is noted for the honeycomb surface for ψ < 60◦ and anomalous transport for

65◦ < ψ < 80◦. When ψ tends to 90◦, normal transport occurs for each surface. Other-

wise, in Fig. 33b when the phase-lag is φ = π, anomalous transport is observed when

ψ is very slow for the NaCl and MoS2 surface, and, for ψ ≃ 90◦ for the NaCl surface.

On the other hand, only normal transport is generated for the honeycomb symmetry

surface. Moreover for the symmetry unbias force, anomalous transport appears for the

honeycomb surface (Fig. 33a) and disappears completely when the unbias force is anti-

symmetry (Fig. 33b).
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Figure 33: Relationship of the deflection angle as a function of the angle between the
external bias force and the x-axis for two selected values of phase-lag: (a) φ = π/2; (b)
φ = π. The system parameters are TB = 0.01, ǫ = 5, the magnitude of bias force is
f0 = 0.15. Anomalous transport is observed when |θ| > 90◦
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(a) (b)

(c) (d)

(e) (f)

Figure 34: Illustration of the absolute deflection angle |θ| as a function of the angle ψ
between the external bias force and the x-axis and the biharmonic parameter ǫ. (a) Three
dimensional representation and (b) ǫ − ψ plane for NaCl surface; (c) three dimensional
representation and (d) ǫ−ψ plane forMoS2 surface; (e) three dimensional representation
and (f) ǫ − ψ plane for honeycomb surface. The amplitude of the bias force is taken to
f0 = 0.15, and the phase-lag of two signals is φ = π/2. The other parameters are the
same as in Fig. 29. These plots give the couple of the values ǫ − ψ where normal and
anomalous transport are identified for a particular set of system parameters. Normal
transport corresponds to the |θ| < 90◦ and anomalous transport to the |θ| > 90◦
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The type of transport crucially depends on the direction of bias force and strongly

depends on the shape of the surfaces. To study the influence of biharmonic parameter

and the effect of anisotropy upon the transport properties, we summarize in Fig. 34

the plot of the deflection angle versus biharmonic parameter ǫ and the angle ψ, with the

particular value of phase-lag φ = π/2. From numerical analysis, it follows that the trans-

port changes to normal and anomalous by varying the parameter ǫ and the direction of

bias force. Figure. 34a show the dependence of the deflection angle |θ| on the bihar-

monic parameter and the angle ψ for the NaCl surface. The corresponding diagram

in the ǫ − ψ plane representation (Fig. 34b) presents the region for different transport.

Anomalous transport appears for intermediate biharmonic parameters (2 < ǫ < 10). For

the MoS2 surface (Fig.34c-34d), the anomalous transport occurs for the monochromatic

driven (ǫ = 0) for all the value of the angle ψ between [0; 90[, and for 3 < ǫ < 9 for

the small values of ψ. Otherwise, for the honeycomb symmetry surface (Fig. 34e-34f),

anomalous transport is illustrated for 0 < ǫ < 6, and for monochromatic driven when

ψ ≃ 90. Particularly for this surface, anomalous transport does not occur for the small

values of the angle ψ. We observe an alternative between normal and anomalous trans-

port as ǫ increases, when ǫ becomes large (ǫ > 10) we only observe normal transport.

When the amplitude of the second harmonic increases (ǫ > 10) the normal transport

is generated for each surface. These results may provide guidance to the possibility of

anomalous transport for the difference surfaces which is one fundamental importance

from the point of view of transport phenomena.

III.4 Rest length dimer effects on transport and diffusion

phenomena

We focus our attention on the transport and diffusion of dimer diffusing in a 1D har-

monic potential (see Fig. 35(a)). The prototype model for the interaction of atoms is

the quartic potential W (y) = c(y − ∆)3(y − ∆ − 2) [129], with positive parameters c, ∆
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illustrated on fig. 35(b). ∆ is the ratio between the dimer length and the period of the

potential. Figures 35(c) and (d) show the comparison of the motion of the incommen-

surability (∆ = 0.5) and commensurability (∆ = 1) between dimer and substrate where

its effects on transport and diffusion are analysed. At a starting point of this section

we explore the velocity of dimer to identify normal and anomalous transport. We also

analyse the diffusion phenomenon in the system.
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Figure 35: schematic illustration of substrate potential (a) and the quartic interaction
potential (b) for C = 0.428. The bottom panel is the comparison of the motion of the
commensurate (c) and incommensurate (d) dimer in the periodic potential.

III.4.1 Commensurability effects on the transport phenomena

We first identify the value of phase-lag and the interval of bias force for which anoma-

lous transport occurs. In so doing, the mean velocity is plotted as a function of bihar-

monic parameter (Fig. 36) and, a function of bias force (Fig. 37) for commensurate and

incommensurate contact. The anomalous transport is maximized for φ = π/2 (the un-

bias force is symmetry at this value of phase-lag). In particular, in the commensurate

contact (∆ = 1), anomalous transport is generated for ǫ = 0 (monochromatic driven).

However, the average velocity<< V >> versus bias force f is presented in Fig. 37(a) for

the monochromatic driven (ǫ = 0). This figure demonstrates that: for the commensurate
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contact (∆ = 1), the dimer displays anomalous transport for f < 0.3; at incommensu-

rate contact (∆ = 0.5), the long-time averaged velocity of dimer tends towards zero.

According to Fig.37(b) and (c), for φ = π/2 we observe negative velocity for f < 0.2

when ∆ = 0.5 and for f < 0.3 when ∆ = 1. For the other values of phase-lag, the system

is roughly in the normal transport regime. Henceforth, we focus our attention for the

symmetry unbias force (φ = π/2).
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Figure 36: The average velocity of the dimer’s center of mass as a function of biharmonic
parameter for (a) incommensurate (∆ = 0.5) and (b) commensurate (∆ = 1) system.
Anomalous transport is generated for monochromatic driven (ǫ = 0) for the commen-
surate system. The parameter values read: f = 0.1, Fd = 4.2, TB = 0.01, γd = 1.2,
ωd = 5.85.
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Figure 37: Dependence of the average dimer velocity << V >> on the bias force. (a)
Incommensurate and commensurate contact for monochromatic driven (ǫ = 0). The
inset shows that for the incommensurate contact, the averaged velocity tends towards
zero. (b) Incommensurate and (c) commensurate contact for biharmonic driven (ǫ = 8)
for some values of the phase-lag indicated on the figures caption. The other parameters
are the same as in fig. 36.

Let us analyse the mean velocity << V >> in the parameter space TB − ǫ when the
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bias force is set to the low value f = 0.1 and check how the commensurability between

dimer and substrate influence the type of transport (see Figs. 38(a)-(d)). From these fig-

ures, there is a region in the parameter space where anomalous transport is maximized

around the biharmonic parameter ǫ between ]2; 11[. For ∆ = 1, the anomalous transport

is observed for ǫ between [0; 11[. The increase of the temperature leads to reduction of

anomalous transport area and disappears for hight enough temperature. On the other

hand, for the parameter space ∆−ǫ, the anomalous transport area corresponds to ǫ < 11

(see Fig. 39). In particular for ǫ = 0, normal transport occurs for ∆ ∈ ]0.3; 0.8[. In re-

cent studies of transport phenomena, a numerical description showed that the long-time

averaged velocity of the Brownian motor is equal to zero if it is driven only by one har-

monic, i.e when ǫ = 0 [128]. A. Słapik et al [70] show the impact of inertia on directed

transport of a Brownian particle under non-equilibrium condition in monochromatic

driven. In this study, it is demonstrated that in monochromatic driven, the emergence

of anomalous transport is detected when the dimer and substrate are symmetric (∆ = 1).

These facts indicate that the rest length of dimer plays prevalent role for the emergence

of anomalous transport.

III.4.2 Commensurability effects on the diffusion phenomena

For further investigation, we focus on the effects of rest length, the biharmonic parame-

ter and the temperature on the diffusion processes. The features of the diffusion of dimer

is affected by these parameters. For the monochromatic driven (ǫ = 0), the mean square

displacement exhibits a flat regime for τ < 103 and the diffusion coefficient decreases in

the time (see Figs. 40 (a)-(c)) when ∆ = 0.5. In this regime, the motion of dimer is char-

acterized by the dispersionless transport phenomena. Moreover, for the commensurate

system (∆ = 1), normal diffusion takes place after the transient time. The mean square

displacement is proportional to time (σ2 ∼ τ ) and the effective diffusion is established.

Otherwise, according to the bias force (Fig. 41 (a)), the diffusion increases for ǫ = 0, 5, 8

and presents the resonance ship for ǫ = 10. While, for ∆ = 1, the diffusion decreases for
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(a) (b)

(c) (d)

Figure 38: Dependence of averaged velocity << v >> as a function of the temperature
and the biharmonic parameter at constant bias force f = 0.1 where the phase-lag of
two signals is φ = π/2. (a) Three dimensional representation and (b) the TB − ǫ plane
representation for the incommensurate contact. (c) Three dimensional representation
and (b) the TB − ǫ plane representation for the commensurate contact. The TB − ǫ plane
presents the domain of temperature and biharmonic parameter for different values of
averaged velocity. These plots give the couple of the values TB − ǫ where the anomalous
transport is identified.
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(a) (b)

Figure 39: Averaged velocity << V >> of dimer as a function of rest length ∆ and
biharmonic parameter ǫ for φ = π/2 and f = 0.1; (a) three dimensional representation,
(b) the ∆−ǫ plane representation. These plots give the values of the rest length for which
anomalous transport is generated in the system.

ǫ = 0, increases for ǫ = 5, 8, and for ǫ = 10 the resonance ship is noticed (see Fig. 41 (b)).

Overall, the diffusion increases and decreases as a function of biharmonic parameter.

Figure 42 shows the temperature dependences of the effective diffusion Deff for

different values of ǫ for commensurability and incommensurability contact. The dif-

fusion dependences change significantly by the temperature interval. There are three

interval scales of the temperature corresponding for different variation of the diffusion:

[0.001; 0.01[, [0.01; 0.1[ and [0.1; 1[. On Fig. 42 (a), the diffusion increases as a function

of temperature when ǫ = 0, and roughly constant for ǫ = 5, 8, 10 for high enough tem-

perature (TB ∈ [0.01; 0.1[ ). For the commensurate system (Fig. 42 (b)), and for low

temperature, the diffusion decreases except for ǫ = 5 where it is roughly constant. For

ǫ = 0, the diffusion decreases when TB ∈ [0.01; 0.1[ and increases for TB ∈ [0.1; 1[. One

can see that as the temperature is increased, the overall occurrence of diffusion in the

analysed parameter space is varied by interval.

We observe from Figs. 43 (a) and (b) that the position of the diffusion peaks and min-

ima of the diffusion crucially depend on the rest length of dimer. These dependences

exhibited in monochromatic driven the maximum diffusion for ∆ ≈ 0, and the diffusion

decreases when the rest length increases. In the biharmonic driven ǫ = 8, the maximum
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Figure 40: Dependence of mean square displacement (a)-(b) and diffusion coefficient
(c)-(d) of dimer at constant temperature TB = 0.01, the friction coefficient γd = 1.2, the
bias force f = 0.1, the phase-lag φ = π/2 the angular driving frequency ω = 5.85 and the
amplitude Fd = 4.2. For monochromatic driven (ǫ = 0) dispersionless transport appears
when the system is incommensurate.
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Figure 41: Relationship of diffusion coefficient as a function of bias force for four values
of biharmonic parameter indicated on the figures caption for (a) incommensurate and
(b) commensurate contact.
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Figure 42: Illustration of the diffusion coefficient for (a) incommensurate (∆ = 0.5) and
(b) commensurate (∆ = 1) contact between dimer and substrate for the values of bihar-
monic parameter indicated on the figures caption.
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Figure 43: Three dimensional representation of diffusion as a function of rest length and
bias force for (a) monochromatic driven(ǫ = 0) and (b) biharmonic driven (ǫ = 8).
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diffusion is obtained around ∆ ≈ 1 and presents the maxima.

III.5 Conclusion

This chapter presents the results and discussion made on the study of the dynamic

of Brownian particles behaviour governed by the Langevin equation. The particle is

moved in 1D RP potential and 2D NaCl, MoS2 and honeycomb symmetry potential.

The system parameters weakly affect the diffusion of particles when the potential has

a sharp wells separated by wide barriers. We have identified the values of the shape

parameter where the anomalous transport occurs. Furthermore, we have shown that

this phenomenon strongly depends on the shape of the potential and occurs at low bias

force. We also studied the influence of the shape of surface potential and the rest length

effect of dimer on the transport phenomena. From the numerical analysis, it follows that

the shape potential of substrate and the rest length of dimer strongly affect the occur-

rence of diffusion and transport phenomena.
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General Conclusion

Main results

In this thesis we have taken a tour through the many intriguing and often counterin-

tuitive diffusion and transport phenomena occurring in driven periodic systems. The

massive Brownian particle studied in this work, is that moving in a periodic potential

and driving out of an equilibrium state by an external time periodic force. The case with

an additional constant bias force was also investigated.

The concepts of diffusion and transport were presented in chapter I. The mean square

displacement is a quantity where its evolution as a function of time gives different types

of diffusion which can be normal or anomalous. The phenomenon of anomalous diffu-

sion is very frequent because, many systems of interest are far from equilibrium state.

Due to the properties of the system and its environment, different kind of anomalous

processes occur such as; absolute negative mobility, negative nonlinear mobility and

negative differential mobility. These transport properties can be applied in Josephson

junction were the model is presented in the generality.

We presented in chapter II the Langevin equation and the numerical method that

were used to solve the open problems stated in chapter I. The Langevin equation is

a fundamental equation used to treat the theory of Brownian motion. This theory is

characterized by different quantities which can be used to optimize the Brownian mo-

tion. Using the deformability parameter of the Remoissenet-Peyrard potential, different

types of substrates are presented in 1D study. In 2D study, different types of surfaces

namely NaCl,MOS2 and honeycomb surface are presented. We have shown the numer-

ical method used to solve the Langevin equation which is the fourth-order Runge-Kutta
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algorithm for stochastic equations.

The third chapter is devoted to the presentation of different results obtained in our

work. These results presented were mainly based on numerical simulation of nonlin-

ear stochastic differential equation describing the dynamics of Brownian particle. When

the Brownian particle moving on a deformable substrate and is subjected only to a time

periodic external field, ballistic diffusion, hyperdiffusion and dispersionless transport

appear in the supertransport regime. For a sharp well separated by wide barriers of

potential (r = −0.8) the system parameters such as temperature, external field and fre-

quency of the external field affect weakly the mean square displacement and diffusion.

The critical force which marks the maximum diffusion, according to the external field,

strongly depends on the shape of potential. For some shape parameters, the critical force

does not exist for the choice of some parameters.

Furthermore, when the Brownian particle is governed by both the constant force and

time periodic driven biharmonic force, the influence of biharmonic parameter on the

diffusion is presented. We have identified the values of the shape parameter and the

corresponding values of the phase-lag where the anomalous transport occurs. Typically,

the velocity fluctuation and the efficiency energy of thermal noise have been studied

and used to determine the shape parameter and the value of bias force from which the

transport of the motor becomes more efficient. We have showed that, for the monochro-

matic drive (ǫ = 0), the average velocity is approximately zero and the mean square

displacement is constant.

In the two dimensional study, the system parameters corresponding to normal and

anomalous transport was identified for different surfaces. From the curves, we have

found that anomalous transport phenomenon weakly appears on the honeycomb sur-

face contrary for the two other surfaces which are NaCl and MoS2 surfaces. Our scan

of the parameters ψ and ǫ allowed us to determine that in the monochromatic driven

(ǫ = 0), anomalous transport is observed only for MoS2 and honeycomb surfaces. While

for the biharmonic driven (ǫ 6= 0), we observe larger area of anomalous transport in

the parameters space (ǫ-ψ) for the NaCl surface. We have found that for low bias force,
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anomalous transport occurs generally for small biharmonic parameter and strongly de-

pends on the temperature. Particularly, for the honeycomb symmetry surface, anoma-

lous transport occurs at very low temperature. Crucially, the direction of bias force also

affect the transport properties.

For the generic model of two particles (dimer), the rest length dimer effects on trans-

port and diffusion were analysed. The scan of the parameter space TB − ǫ shows that

anomalous transport is noticed for the monochromatic driven (ǫ = 0) when the system

is commensurate (∆ = 1). On the other hand, for the ∆− ǫ space, anomalous transport

is maximized for ∆ = 0 and ∆ = 1. The study of mean square displacement allows us

to observe that the dimer is characterized by dispersionless transport for the monochro-

matic driven (ǫ = 0) and is limited in time for the incommensurate contact. For the

commensurate contact, it is characterized by normal diffusion after the transient time.

We also observe that the effective diffusion is maximized for ∆ ≈ 0 in the monochro-

matic driven (ǫ = 0), and for ∆ ≈ 1 in the biharmonic driven (ǫ = 8).

The study of the Langevin equation in this work has a similar form as an equation of

motion for the phase difference ϕ(t), which is well known in literature as the Stewart-

McCumber model. So, these results can be applied experimentally by using a step that

consists of a resistively and capacitively shunted Josephson junction device moving in

an underdamped optical lattice. This study allows for a tremendous simplification of

device in engineering, paving the way toward practical implementations of transport

and diffusion.

Perspectives

Many results have thus been obtained in the present thesis. However numerous points

related to this developing topic remain unsolved, and then may be subject to future

investigations.

♠ Extending the investigation of dimer in two-dimensional to approach the realistic

model.
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♠ Study the phenomena of transport in the model of deformable dimer.

♠ Investigate on the fluctuations of the noise induced by current and its conse-

quences for the efficiency of rectifying noise of dimer.

♠ Extending the study of Brownian particle diffusing in a 2D periodic channel.
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