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Abstract

Based on a review of the literature, we have successfully constructed protein models, primar-

ily based on the long-range interaction between peptide units of alpha-helical proteins. One of

the models is a generalization of the Davydov model of alpha-helix proteins and comprises three

strands, instead of just one as envisioned in the original model. This particular model has been

shown to be fully described by a set of discrete, coupled and modified nonlinear Schrödinger

equations involving long-range interactions between peptide groups along the protein strands.

Using the method of modulation instability, it has been shown that the competition between

non-linearity and long-range intermolecular interactions modifies the field of plane wave instabil-

ity. The impact of competition between non-linearity and long-range interactions on the energy

transport and storage process was also discussed numerically. It has been shown that non-

linearity and long-range coupling can contribute to the emergence of solitonic structures trains,

when the parameters are well chosen in the field of the instability of the plane waves. The

relevance of the improved model as well as the biological implications of the long-range inter-

molecular interactions account have been discussed in the transport and energy storage contexts

in molecular structures related to hydrogen in general, and in the proteins of α-helix in par-

ticular. In a second plane, the Schrödinger coupled fractional nonlinear equations were derived

from two excitons energy transfer model of alpha-helical proteins. The terms fraction of space

are due to the presence of long-range intermolecular interactions. Analysis of the linear stabil-

ity of plane wave solutions has revealed the existence of regions of instability, in which solitary

waves may appear as a result of the competition between nonlinear and dispersive effects. The

parametric expansion of the instability growth rate has been shown to be sensitive to changes in

fractional order and nonlinear coupling coefficient parameters. Numerical evidence of analytic

predictions has been provided via the emergence and long-term behavior of solitonic structures,

whose characteristics have changed with changes in fractional parameters.

Keywords: α-helical proteins, nonlinear excitations, solitons, long-range interactions.
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Résumé

En se basant sur une revue de la littérature, nous avons réussi à construire des modèles

de protéines, principalement basés sur l’interaction à longue portée entre les unités peptidiques

d’hélice-alpha des protéines. L’un des modèles est une généralisation du modèle de Davydov

d’hélice-alpha des protéines qui comprend trois brins, au lieu d’une seule comme envisagé dans

le modèle initial. Il a été montré que ce modèle particulier était complètement décrit par un

ensemble d’équations de Schrödinger non linéaires discrètes, couplées et modifiées, impliquant

des interactions à longue portée entre des groupes peptidiques le long des brins de protéines. Au

moyen de la méthode de l’instabilité modulationnelle, il a été montré que la compétition entre

la non-linéarité et les interactions intermoléculaires à longue portée modifiait le domaine de

l’instabilité des ondes planes. L’impact de la concurrence entre la non-linéarité et les interactions

à longue portée, sur le processus de transport et de stockage de l’énergie, a également été abordé

numériquement. Il a été démontré que la non-linéarité et les couplages à longue portée peuvent

concourir à l’émergence de trains de structures solitoniques, lorsque les paramètres sont bien

choisis dans le domaine de l’instabilité des ondes planes. La pertinence du modèle amélioré ainsi

que les implications biologiques du compte des interactions intermoléculaires à longue portée

ont été discutées dans les contextes de transport et de stockage d’énergie dans les structures

moléculaires liées à l’hydrogène en général, et dans les hélice-α des protéines en particulier. Dans

un deuxième plan, les équations non linéaires fractionnées couplées de Schrödinger ont été dérivées

d’un modèle de transfert d’énergie à deux excitons d’hélice-alpha des protéines. Les termes

fraction d’espace sont dus à la présence d’interactions intermoléculaires à longue portée. L’analyse

de la stabilité linéaire des solutions d’ondes planes a révélé l’existence de régions d’instabilité, dans

lesquelles des ondes solitaires pourraient apparaître à la suite de la concurrence entre effets non

linéaires et dispersifs. L’expansion paramétrique du taux de croissance de l’instabilité s’est révélée

être sensible aux variations des paramètres d’ordre fractionnel et du coefficient de couplage non

linéaire. Des preuves numériques sur les prédictions analytiques ont été fournies via l’émergence

et le comportement de la longue portée sur les structures solitoniques, dont les caractéristiques

se sont modifiées avec les variations des paramètres d’ordre fractionnaire.
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General Introduction

The work of Fermi, Pasta and Ulam, Zabusky and Kruskal has given rise to many stud-

ies of the dynamics of nonlinear excitations in atomic networks. Nonlinear excitations in

diatomic chains have received a lot of attention because of their applications to many phys-

ical systems. Indeed, diatomic chain models have been used as prototypes to describe the

energy transport, the conductivity of proton mobility in hydrogen-bonded chains. Davy-

dov’s mechanism for locating and transporting energy in proteins relates to the α-helix

often found in membranes. The hydrolysis of ATP (adenosine triphosphate) releases a

neighboring energy two quanta ~ω from the vibrational model of the carbon-oxygen bond.

This vibration is therefore a natural candidate for storing the hydrolysis energy of ATP.

Moreover, since the hydrogen atom is engaged in a hydrogen bond which contributes to

maintaining the geometry of the helix, it may be thought that the excitation of the oxygen

carbon bond is coupled to the mode of deformation of the propeller. This is proposed

by Davydov’s model, which considers that the energy transmitted to the carbon-oxygen

bond contributes to locally deforming the helix. This distortion tends to slightly modify

the vibration frequency of the excited carbon-oxygen bond which ceases to be reasoning

with the other oxygen carbon bonds of the neighborhood. It is important to know that

many biological processes such as muscle contraction, active transport and enzymatic

catalysis rely on energy. This energy, which is released by the hydrolysis of adenosine

triphosphate (ATP), is mainly transported and stored by proteins. The understanding

of subsequent phenomena, related to energy management by proteins, has been an active

research topic since the pioneering work of Davydov [1]. Based on a simple formulation

of the problem, Davydov showed that energy is transported by solitonic structures, thus

establishing the relationship between these entities and the distortions of the network. In

particular, considering the structure of the helix-α, Davydov and Kislukha [2,3] proteins

used the exciton formalism to explain the automatic trapping of the oscillations of the

amide-I, as a consequence of the interaction between exciton vibrations and the distor-
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GENERAL INTRODUCTION 2

tion of the protein structure resulting from the presence of the exciton. They established

that due to the interaction between non-linearity and dispersion, the self-trapped amide-I

vibratory energy, coupled with the deformation of the protein structure, could travel as

a soliton in the protein strand [4,5]. Previous models on the subject of energy transport

and storage in protein chains focused on a single-stranded structure of hydrogen-bonded

peptide units, both in the discrete regime and in the continuous regime [6–8]. These

models have been hotly debated because of their inconsistent formulation in the Davy-

dov soliton life-time predictions and, more importantly, their stability at 300 K biological

temperature [9–16]. Nevertheless, numerical simulations have revealed that such solitons

could be stable at 300 K, but these studies have been conducted from a purely classi-

cal point of view, with no consistent argument to prove their stability [4, 5, 17–22]. In

order to solve this problem, the adoption of a description of the protein helix-α, in the

form of a biological system stabilized by three quasi-linear strands has proved to be a

good idea. Most of the pioneering analytical and numerical contributions in this direc-

tion can be found in references [5, 23, 24]. In the same sense, Daniel and Latha [25],

discussed slightly modified Davydov models of the helix-α proteins, in which discrete and

continuous regimes were studied with particular interest for the influence of the backbone,

coupling and its consequences on the transport and metabolism process. energy storage

between the spines. Based on the fact that the process of Modular Instability (MI) is a

direct mechanism leading to solitons and the formation of nonlinear structures [26–30],

Tabi et al. [31–33] have shown that this process could also be considered in the con-

text of three-stranded molecular structures. More recently, a generalized model of helix-α

protein chains, including competition between diagonal and non-diagonal couplings, has

been proposed [34]. Subsequent energy modes proved to be very sensitive to the nonlin-

ear effects introduced by the two types of coupling. In reference [33], using the Hennig

model [35], Tabi et al. have shown that during the energy transport process, the co-

valent bonds can be compressed, while the hydrogen bonds exhibit oscillating behaviors

leading to favorable conditions for the transport and storage of energy in the coupled

spines via polaronic structures . Based on X-ray protein analysis data, it has also been

shown that the three-dimensional structure is favorable for the transfer of energy and

particles into proteins, due to the important presence of hydrogen bridges between them.

thorns [36–38]. In other words, the polarons appearing in the dynamics of the proteins

can correspond to the energy related to the transport of the electrons, as a function of
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GENERAL INTRODUCTION 3

the force of coupling to the vibratory movements [39]. In addition, recent studies have

suggested that long-range dispersive (LR) interactions may be responsible for interesting

dynamic behaviors, particularly in molecular systems such as DNA and proteins [40–42],

neural [43,44] and the cell [45]. This thesis is dedicated to the transport and localization

of energy in complex protein structures with long-range intermolecular interactions. Our

main objective here is to show that dispersive LR interactions can enhance the efficiency

of energy transport and storage in three-stranded molecules with inter-spin coupling. The

organization of work is as follows: chapter one presents the generalities of protein chains

on the biological and physical aspects, with particular emphasis on their dynamics. The

methods of investigation will be presented in chapter two. We will first present the pre-

liminaries during which we will discuss models with long-range energy modes in helix-α

networks with inter-spin coupling and models with long-range interaction effects; then we

will talk about the analytical method used; and finally, we will talk about the numerical

method used. We will conclude with chapter three on results and discussions. We will

not be able to complete this work without making a general conclusion and perspectives.
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Chapter 1

Literature review, the soliton

concept and the Davydov model

Introduction

Biology tells us that proteins are essential for the body because they participate in

virtually every process in cells. In this chapter, we will talk about the information about

protein chains, the origin of the concept of soliton and the theory of Davydov soliton that

he proposed a long time ago explaining the mechanism of transport and storage. of energy

in the protein molecules.

1.1 Protein chains

Proteins are biological macromolecules found in all living cells. They are formed of

one or more polypeptide chains. Each of these chains consists of the sequence of amino

acid residues linked together by peptide bonds. Proteins provide a multitude of functions

within the living cell and in tissues. These are enzymatic proteins (enzymes) that catalyze

the chemical reactions of synthesis and degradation necessary for the metabolism of the

cell. Other proteins provide a structural role within the cytoskeleton or tissues (actin,

collagen), some are molecular motors that allow mobility (myosin), others are involved

in the conditioning of DNA (histones), the regulation of gene expression (transcription

factors) or the transmission of cellular signals (membrane receptors).

The protein chains are synthesized in the cell by the ribosomes, from the information coded
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1.1 Protein chains 5

in the genes, which determine the order in which the 22 amino acids, called proteinigenic,

which are incorporated directly during the biosynthesis of proteins. The sequence of amino

acids is called the polypeptide sequence. Post-translational modifications may occur after

the protein has been synthesized, which may have the effect of modifying its physical

or chemical properties. It is also common for non-protein molecules, called prosthetic

groups, to bind stably to proteins and play a decisive role in their biological functions:

this is the case, for example, with heme in hemoglobin, without which this protein could

not carry oxygen in the blood. Proteins adopt a three-dimensional structure that allows

them to perform their biological function. This particular structure is determined pri-

marily by their amino acid sequence whose various physico-chemical properties lead the

protein chain to adopt a stable folding.

In the laboratory, they can be separated from other cellular constituents using various

techniques such as ultracentrifugation, precipitation, electrophoresis and chromatography.

Genetic engineering has introduced a large number of methods to facilitate the purifica-

tion of proteins. Their structure can be studied by immunohistochemistry, site-directed

mutagenesis, X-ray crystallography, nuclear magnetic resonance and mass spectrometry.

Proteins are an important component of animal nutrition, they are degraded in the diges-

tive tract and the released amino acids are then reused by the body.

1.1.1 Aminoacids and peptide bond

Due to the chemical structure of different acids amino acids, the protein chain has

directionality. The end of the protein with a free carboxylic group is known as than C-

terminus or carboxy terminus, while the end witha group of free animated is known as

N-terminus or amine terminus. The words protein, polypeptide, and peptide are few an

ambiguous and can overlap in meaning. the protein is generally used to refer to the bio-

logical molecule complete in a stable conformation, while peptide is typically reserved for

oligomers of a short aminoacid often lack a stable three-dimensional structure. However,

the boundary between the twois not well defined and is usually not close to 20-30 residues.

Polypeptide can refer to any linear string simple aminoacids, usually independently of the

length [1].
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1.1 Protein chains 6

1.1.2 Protein structures

Four levels of structural complexity are used to describe the three-dimensional shapes

of proteins. Most proteins are folded in athree-fold structuredimensions. The form in

which a proteinfoldsof course isknown as its native state. Althoughmanyproteinscanbend-

without help, simply by the chemicalproperties of theiraminoacids, othersrequiremolecular

help to bend in their initial states. Biochemistsoftenrefer to four distinct aspects of the

structure:

1.1.2.1 Primary structure: aminoacidorder structure

Most proteins have a linear primary structure Each amino acid is linked to the next

by a peptide bond, which is formed when the carboxylic group of a first amino acid

reacts with the amino group of a second, with elimination of water. When amino acids

are incorporated into a chain (called a polypeptide chain), they are called residues. The

polypeptide chain is not connected; it forms a single stretched filament. By convention,

the first amino acid in the chain is designated as being the one whose amino group remains

free; it is said that it is in 5 or else that it constitutes the N-terminus or the N-terminus.

The last residue of the chain is the one whose carboxylic group remains free; it is said at

3, or at the C-terminus.

There are circular proteins: By focusing on the active ingredient of a Congolese medicinal

tea that facilitates uterine contractions, it was discovered in the 90’s that it was a small

protein with a circular structure, stable enough to resist boiling. and ingestion. This

protein, the B1 kalata, was just the first of a series of circular proteins we had to discover,

and now have more than a hundred members in their ranks (we think there could even

be several thousands). Their structure gives them great stability and many of them have

insecticidal or antimicrobial activities. (Other non-protein circular peptides exist, such as

the cyclosporine we discussed in 1.6.2). Some have a topological structure in node (this

is the case of kalata B1); they are called cyclotides.

Circular proteins seem to be produced from large linear precursors, but the enzymes that

allow their maturation and cyclization are poorly known. In the case of mammalian

defensin RTD-1, two independent precursors are cut and ligated together at both ends to

form a circle. In the case of kalata B1, two separate parts of the same precursor are first

cut, then leagued at their ends to form a circle. But in the case of AS-48 bacteriocin, only
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1.1 Protein chains 7

one precursor is cut and its two ends united to close the circle.

The advantage of being circular for one protein is, among other things, not to offer a

terminal end to the exopeptidases. The stability is thus increased. It is also more difficult

to permanently denature them by heat or pH changes.

Figure 1.1: Amino-acids sequence. Image taken from Jewel Medley, biologiste associé,

Austin Community College (2017)

1.1.2.2 Secondary structure

The secondary structure of a protein is the local spatial arrangement of a polypeptide

backbone atoms without regard to the conformations of its side chains. Protein secondary

structure includes the regular polypeptide folding patterns such as helices, sheets, and

turns. The secondary structure exhibits two regular structure: the α-helix and the β-

sheet. regularly repetition of local structures is stabilized by hydrogen bonds. Since the

structures secondary are local, many structural regions different secondary maybe present

in the same molecule of protein (Figure 1.2)

1.1.1.2.1 The α-helix

The α-helix is right-handed; that is, it turns in the direction that the fingers of a right

hand curl when its thumb points in the direction that the helix rises. The α-helix has

3.6 residues per turn and a pitch (the distance the helix rises along its axis per turn) of

5.4 Å [5, 46]. The α-helices of proteins have an average length of ∼12 residues, which

corresponds to over three helical turns, and a length of ∼18 Å. The real α-helix structure

of protein molecules consists of three spines (chains) of hydrogen bonded peptide groups

in the longitudinal direction. Each spine contains peptide groups (HNCO) periodically

placed, connected by hydrogen bonds "...H-N-C=O...H-N-C=O...H-N-C=O...", where the
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1.1 Protein chains 8

dotted lines represent hydrogen bonds and C=O the amide-I bond, as shown in Fig. 1.2.

Most of the investigations are based on the assumption that they are approximately

parallel and independent.

In the α-helix, the backbone hydrogen bonds are arranged such that the peptide C=O

bond of the nth residue points along the helix axis toward the peptide N-H group of the

(n+4)th residue. This results in a strong hydrogen bond that has the nearly optimum

N...O distance of 2.8 Å. Amino acid side chains project outward and downward from the

helix, thereby avoiding steric interference with the polypeptide backbone and with each

other. The core of the helix is tightly packed; that is, its atoms are in Van der Waals

contact.

Figure 1.2: secondary structure of α-helix . Image taken from wikipedia

1.1.1.2.2 The β-sheet

In 1951, the same year Pauling proposed the α-helix, Pauling and Corey postulated

the existence of a different polypeptide secondary structure, the β-sheet. Like the α-helix,

the β-sheet uses the full hydrogen-bonding capacity of the polypeptide backbone. In β-

sheets, however, hydrogen bonding occurs between neighboring polypeptide chains rather

than within one as in an α-helix. Sheets come in two varieties:

1. The antiparallel β-sheet, in which neighboring hydrogen-bonded polypeptide chains

run in opposite directions.

2. The parallel β-sheet, in which the hydrogen-bonded chains extend in the same
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1.1 Protein chains 9

direction. The conformations in which these structures are optimally hydrogen bonded

vary somewhat from that of the fully extended polypeptide shown in Fig. 1.3. They

therefore have a rippled or pleated edge-on appearance and for that reason are sometimes

called pleated sheets. Successive side chains of a polypeptide chain in a β-sheet extend to

opposite sides of the sheet with a two-residue repeat distance of 7.0 Å.

Figure 1.3: β-sheet structure of proteins. Image taken from Scool of Biomedical Sciences

Kiki

1.1.2.3 Tertiary structure

The global form of a molecule simple protein is the spatial relationship of structures

secondary to one another. The tertiary structure is usually stabilized by nonlocal inter-

actions, but also across as alt bridge, hydrogen bonds, difulphide bonds, and level post-

translational modifications. The term "tertiary structure" is often used as synonymous
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with the fold limit.

Figure 1.4: Tertiary structure of proteins. Image taken from Frankly Chemestry, 11 july

2016 (Youtub)

1.1.2.4 Quaternary structure

Shape or structure results from the interaction of more than one molecule of protein,

usually called protein subunits in this context,that function as part of the larger assembly

or protein complex. Proteins are not the molecules completely rigid. In addition to

these levels of structure,proteins can shift betweens ever al related structures while they

perform their biological function. In the context of these functional rearrangements,

these structures tertiary or quaternary are usually referred to as "conformations, "and

transitions between them are called conformation changes. Such changes are often induced

by the attachment of a substrate molecule to an enzyme active location, or the physical

region of the protein that participates in chemical catalysis. In solution all the proteins

also undergo the variation of the structure by the vibration, thermal and collision with

other molecules, see animation on the right side. Proteins can be unofficially divided into

three main classes, which correlate with typical tertiary structures: proteins globular,

fibrous proteins, and membrane proteins.Almost all globular proteins are soluble and

many are enzymes. Fibrous proteins are often structural; of protein membrane serve

oftenreceptorsor provide channels for polar or charged molecules to go through the cell
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1.1 Protein chains 11

membrane.A special box of intramolecular hydrogen sticks in proteins, poorly protected

from water attack and therefore to promote their own dehydration, are called dehydrons

(Figure 1.2), [3]

Figure 1.5: Quaternary structure of proteins. Image taken from Kevin Ahern’s

Biochemestry (BB450/550) at organstate edu.

1.1.3 Structure determination

Discovering the tertiary structure of a protein, or structure quaternary complex, can

provide important clues about how the protein performs its function. The common ex-

perimental methods of structure determination include X-ray crystallography and NMR

spectroscopy, at which can produce the atomic information resolution.Cryoelectron mi-

croscopy is used to produce low-resolution structural information about very complex

large amounts of protein, including reunited viruses [1]; variant known as electron crys-

tallography canals op ro duce high resolution information in some cases, especially for two-

dimensional crystals membrane proteins [2]. Resolved structures are usually deposited in

Protein Data Bank (PDB), a resource freely available from the form of which one can

get structural data about thousands of cartesian coordinate proteins for each atom in

the protein. Many more gene sequences are known than protein structures. In addition,

the set of resolved structures is bi as ed towards proteins that can easily under reserves

the conditions required in X-ray crystallography, one of the main methods of structure

determination. In particular, globular proteins are comparatively easy to crystallize for

the purpose of ray crystallography X. Membrane proteins, on the other hand, are difficult
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to crystallize and are under-represented in PDB [3].

Genomics structural initiatives have tried to remedy these inadequacies in systematically

solving the structures representative of the main classes of folds. Forecast of protein struc-

ture the methods try to provide ways to produce a plausible structure for proteins whose

structures have not been experimentally determined. Proteins are organic molecules con-

sisting of a certain amino acid sequence linked together by a binding peptide. The carbonyl

group (C = O) and the amine group ( -NH ) of the peptic link look for a configuration

of low energy. One of the ways to minimize the internal energy of the molecule, and thus

to stabilize it, consists of creating hydrogen bonds [1]. But the group amine of a peptide

bond located in position n canto contract a bond of this type with the amine group of a

other chemical la is on located 4 amino acids further downstream in chain. And so on:

n + 1 creates an H link with n + 5. These hydrogen bonds force the protein to adopt a

helical conformation. When the bond involves the acids amines n and n + 4, we speak of

alpha helix. When it concerns the amino acids n and n + 3, we speak of helix 310 and

when it concerns the amino acids n and n + 5, we speak Propeller.

It can be considered that the beta sheet is actually a very stretched propeller. The alpha

helix therefore allows, as we have just see it, decrease the overall energy of the protein.

Why some regions of the protein adopt this configuration rather thana not her remains

the object of research. Only certain trends that certain amino acid sequences have have

been noted as appearing more often, statistically, in a alpha helix. This is due in large

part to the fact that peptides can "choose" to satisfy their hydrogen bond with side chains

of amino acids rather than with the peptide bonds.

There is however a case where the sequence Amino acid must adopt the helical conforma-

tion: when This is the part of a membrane protein that crosses the membrane. Indeed,

in this hydrophobic medium, the only way to make H bonds is to adopt a helical confor-

mation (or beta leaflet, but we saw that the beta leafletis a special case of the propeller).

There are several types of helices in proteins: The alpha helices, whose direction of gyra-

tion is hourly. He is by far the most represented helical structure in proteins. Weals of

ind propellers 310 right and alpha helices. These three types of propellers are allowed by

the Ramachandran diagram. The alpha helix being optically active [3], circular dichroism

measurements are used to determine the "elicitation rate" of a protein in solution [47].

The three forms of DNA: A, B, Z. We distinguish on the form B,center, the small furrow

in the center of the image, and two parts of the bigfurrowat the top and bottom of the
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image. Nucleic acids organize themselves into double helices to satisfy the links between

bases. This structure has the effect of making a stack of bases on each other, thereby

minimizing the energy of the system excluding water. This stacking is also the origin of

the hyperchromic effect of DNA (increase in the fluorescence emission of DNA when two

strands complementary separates).

In a DNA helix, we have a hydrophobic core constituted by the stacking of the bases

above the others and a skeleton formed by the bridges phosphorus and sugars (deoxyri-

bose) rather hydrophilic. The propeller type B, the most common, defines a large furrow

and a small furrow. Access to the bases contained in the great groove and in the little

furrow is different. In addition, certain proteins DNA-binding regulation show a higher

tropism for one of the furrows. Depending on the conditions of the environment (salinity,

content in water), but also to a certain extent depending on the composition in bases,

nucleic acids adopt one of the three conformations: Propeller B double helix right Helix

A double helix right Helix Z double helix left Presents the different levels of compaction

from DNA to chromosome These three types of helix are found in the DNA that we call

then B-DNA, A-DNA and Z-DNA. The most represented is B-DNA. RNA adopts helix

A.

1.2 Types of Proteins

There are two types of proteins namely fibrous proteins and globular proteins.

1.2.1 Fibrous proteins

The main fibrous proteins are collagen, keratin, fibrinogen and muscle proteins.

1.2.1.1 Collagen

Collagen is the most abundant protein in vertebrates. It is found in bones, skin,

tendons and cartilage. Its molecule usually contains three long polypeptide chains, each

composed of about one thousand amino acids. These chains curl into a regular triple helix,

responsible for the elasticity of the skin and tendons. When collagen fibrils are degraded

by intense heating, their chains shorten to form gelatin.
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Figure 1.6: Collagen structure.Image taken from wikimedia commons

1.2.1.2 Keratin

Keratin, present in the upper layers of the epidermis, in the hair, nails, scales, hooves

and feathers, wraps in a regular twist called "alpha helix". Charged with protecting

the body against the external environment, keratin is completely insoluble in water. Its

numerous disulfide bonds make it an extremely stable protein able to resist the action of

proteolytic enzymes.

1.2.1.3 Fibrinogen

Fibrinogen is a plasma protein that causes blood clotting. Due to the action of throm-

bin, fibrinogen is converted into fibrin molecules, an insoluble protein that clumps together

to form a clot.
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1.2.1.4 Muscle proteins

Myosin binds to actin, another muscle protein, to give actomyosin. Filaments of

actomyosin can shorten and cause contraction of muscles.

1.2.2 Globular proteins

Unlike fibrous proteins, globular proteins are spherical and highly soluble. They play

an important role in metabolism. Albumins, globulins, casein and protein hormones are

globular proteins. Albumins and globulins are abundant in animal cells, blood serum, milk

and eggs. Hemoglobin is a protein that carries oxygen in the body. She is responsible for

the color of the red blood cells. More than one hundred different human hemoglobins have

been discovered, including hemoglobin S, responsible for sickle cell anemia, a hereditary

disease endemic in black Africa. Sickle cell anemia is a form of anemia caused by an

alteration of the shape of red blood cells (RBCs), which take on the appearance of a sickle.

This is due to the presence of an abnormal form of hemoglobin, the protein responsible

for the transport of oxygen.

1.2.2.1 Enzymes

All enzymes are globular proteins that bind rapidly with other substances, called "sub-

strates", to catalyze the many chemical reactions of metabolism. These molecules have

catalytic sites on which the substrates are placed, as a key in a lock, and are transformed

into specific products.

1.2.2.2 Protein hormones

These proteins, which come from the endocrine glands, do not act like enzymes. They

stimulate target organs that, in turn, control important activities such as metabolic effi-

ciency or enzyme production. Insulin, secreted by pancreatic islets, regulates carbohydrate

metabolism by controlling blood glucose levels. Thyroglobulin, produced by the thyroid

gland, regulates the entire metabolism. Calcitonin, also produced by the thyroid, lowers

the level of calcium in the blood.
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1.2.2.3 Antibody

Also known as "immunoglobulins", antibodies are proteins present in the blood serum

whose role is to bind to antigens (substances or foreign bodies invading the body). A

single antigen can induce the production of many types of antibodies that neutralize it

by binding to it and facilitating its degradation.

1.2.2.4 Microtubules

The globular proteins can also assemble into tiny hollow tubes, serving both as a cell

skeleton and an intracellular transport vehicle. Each of these microtubules consists of two

types of proteins that are linearly linked to form a tube of great length. Microtubules make

up the internal structure of cellular eyelashes, appendages through which microorganisms

move in their environment.

1.3 Origin of the soliton concept

In 1834, a young engineer named John Scott Russell (1808-1882) while conducting

experiments to determine the most efficient design for canal boats, made a remarkable

scientific discovery [48]. As he described it in his Report on Waves: I was observing the

motion of a boat which was rapidly drawn along a narrow channel by a pair of horses,

when the boat suddenly stopped - not so the mass of water in the channel which it had

put in motion; it accumulated round the prow of the vessel in a state of violent agitation,

then suddenly leaving it behind, rolled forward with great velocity, assuming the form

of a large solitary elevation, a rounded, smooth and well-defined heap of water, which

continued its course along the channel apparently without change of form or diminution

of speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight

or nine miles an hour, preserving its original figure some thirty feet long and a foot to a

foot and a half in height. Its height gradually diminished, and after a chase of one or two

miles I lost it in the windings of the channel. Such, in the month of August 1834, was my

first chance interview with that singular and beautiful phenomenon which I have called

"the Wave of Translation. This event took place on the Union Canal at Hermiston, very

close to the Riccarton campus of Heriot-Watt University, Edinburgh.

The simulation of the observations made by J. S. Russell was been possible in 1995,

at the Heriot-Watt University at a conference dedicated to the solitons and for their
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applications, which took place in Edinburgh in 1982. Figure 1.4 shows it. On this figure,

we can see an example of the solitary wave.

John Scott-Russell first discovered the soliton phenomenon in 1834, and further re-

search led to understanding solitons as solutions to the KdV, modified KdV, and Sine-

Gordon equations [49, 50]. Zabusky and Kruskal [51] in 1965 investigated soliton solu-

tions of the KdV equation [49]. They demonstrated that solitons exist in one-dimensional

space. Gardner et al. [52] introduced the inverse scattering technique for solving the KdV

equation and proved that this equation is completely integrable. In 1972, Zakharov and

Shabat [53] found another integrable equation and finally it turned out that the inverse

scattering technique can be applied successfully to a whole class of equations (e.g. the

nonlinear Schrödinger and sine-Gordon equations). From 1965 up to about 1975, a com-

mon agreement was reached to reserve the term soliton to pulse-like solitary solutions

of conservative nonlinear partial differential equations that can be solved by using the

inverse scattering technique.

1.3.1 Different classes of soliton

The soliton is a wave packet that maintains its shape while it travels at constant

speed. Solitons are caused by a cancelation of nonlinear and dispersive effects in the

medium. The term "dispersive effects" refers to a property of certain systems where

the speed of the waves varies according to frequency. They arise as the solutions of a

widespread class of weakly nonlinear dispersive partial differential equations describing

physical systems [50]. They also have particle like behavior i.e., preserving their forms in

space or in time or both in space and time resulting in spatial, temporal or spatiotemporal

solitons, respectively. There are two types of solitons: the non-topological soliton and the

topological soliton [50].

1.3.1.1 Non-topological solitons

A soliton is non-topological when the propagation medium remains in the same state

before and after the wave has passed. These types of soliton are those observed in hy-

drodynamics (although some are also observed in solid mechanics). In hydrodynamics

environment, the non-topological soliton can be described by the KdV equation [49,50].
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where c0 =
√
gh is the speed of propagation of linear waves in the limits of great wave-

lengths, h the depth and η the height of the liquid surface above the level of balance.

The KdV equation has the following soliton solution [49, 50]
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2[
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η0
2h

]t)], (1.2)

where the width of the soliton L =
√
2/A varies with the amplitude A. It decreases when

the amplitude A increases and tend to the infinity when the amplitude tends to zero. The

KdV equation is one of the prototypes of the theory of solitons because it has remarkable

mathematical properties.

1.3.1.2 Topological solitons

A soliton is topological when the propagation medium is in different states before

and after the passing of the wave. The soliton can be described in this state by the sine-

Gordon (sG) equation [50]. This sG equation, which is derived from a chain of pendulum

of mass m and length l is given by

∂2θ

∂t2
− c20

∂2θ

∂x2
+ ω2

0 sin(θ) = 0, (1.3)

where ω2
0 = mgl

I
is the frequency, c20 = Ca2

I
is the velocity and g is the gravity; I is the

moment of inertia, C is the constant of torsion of the spring and a is the distance between

the pendulum. As the KdV equation, this equation is completely integrable and admits

exact soliton solutions. A soliton solution of this equation is [49, 50]:

θ(x, t)± = 4arctan[exp(±x− ct

L
)], (1.4)

where L = c0
ω0

√
1− c2

c20
measures the spatial extension of the solution.

1.3.2 Some applications of solitons

The remarkable properties of solitons have been used to explain many yet unexplained

phenomena such as the Fermi-Pasta-Ulam paradox [54], and to discover and establish

new theories in many aspects of science and technology [50, 55, 56]. In elastic tubes for
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example, the soliton results from the balance between nonlinearity from the hydrodynam-

ics of blood flow and dispersion related to the elasticity of the artery wall [57]. The soliton

model in neuroscience is a recent developed model that attempts to explain how signals

are conducted within neurons. This model proposes that the signals travel along the cell’s

membrane in the form of pulse solitons [58, 59]. As such the model presents a direct

challenge to the widely accepted Hodgkin-Huxley model [60] which proposes that signals

travel as action potentials. In hydrodynamics, tsunamis and rogue waves are well known

manifestations of solitons. Solitons are very important in telecommunications, especially

in data transmission system.

1.4 Davydov’s model

In 1973 scientists gathered at the New York Academy of Sciences to discuss an unan-

swered question in bioenergetics: How is chemical energy transduced and transported in

biological systems?. In the same year, Davydov projected a nonlinear mechanism for the

storage and transfer of vibrational energy in protein molecules [8]. The Davydov model

describes energy transfer in the hydrogen-bonded spines that stabilize protein α-helices.

Exploiting the regularity in the structure of α-helical proteins, he showed that simpli-

fied models of these proteins could self-focus, or trap energy in stable pulse-like waves

known as solitons. The Davydov model is based on the assumption that transport of

amide-I bond energy along the α-helical proteins is the same as transport in a molecular

crystal [8, 61, 62].

The idea is that the energy liberated in the hydrolysis of adenosine triphosphate (ATP)

creates up to two quanta of amide-I, an excited vibrational state in the peptide group that

is essentially a stretching vibration in the C=O bond. This vibration excitation propagates

from one group to the next because of the dipole-dipole interaction between the groups.

But it also interacts with the neighboring hydrogen bonds, leading to a deformation of

the lattice and a lower energy state. This new state, which is constituted by an amide-

I excitation and its associated hydrogen bond distortion, is the Davydov soliton. The

Davydov model which is otherwise known as the Davydov soliton, is able to predict that

nonlinear interactions between phonons and amide-I vibrations can produce a long-lived

combined excitation, which propagates along the α-helical proteins.

Solitons in the Davydov model are formed as a result of the dynamical balance between
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the dispersion due to the resonant interaction of internal vibrations and the nonlinear-

ity provided by the interaction of these vibrations with the local displacements of the

equilibrium positions of the peptide groups.

However, the Davydov model, due to its simplicity, has been thought to reduce the

whole dynamics of the complex α-helical protein to only one spine, as it was assumed that

the results for one hydrogen bonding spine summarizes the features of the whole α-helix

duplex. The nonlinear model proposed by Davydov is able to rationalize long distance

energy transduction. Davydov accommodated his idea by the following Hamiltonian

H = Hex +Hph +Hint, (1.5)

where Hex is the Hamiltonian for the amide-I vibrational excitations, which describes the

dynamics of intramolecular excitations or simply excitons. Hph is the Hamiltonian for

the displacements of the peptide groups also known as lattice vibrations and Hint is the

Hamiltonian for the interaction between the amide-I excitations and the displacements of

the peptide groups. Hex is given by

Hex =
∑
n

[
E0B

+
nBn − J(B+

nBn−1 +B+
nBn+1)

]
, (1.6)

where the term E0B
+
nBn defines the amide-I excitation energy, while B+

n (Bn) is the boson

creation (annihilation) operator for the intramolecular vibrations and the constant E0

the exciton energy on the nth site. These operators satisfy the commutation relations

[Bn, B
+
m] = δmn and [Bn, Bm] = 0. The constant J is the intersite transfer energy constant

produced by the dipole-dipole interactions. B+
nBn−1 and B+

nBn+1 represent transfer of

amide-I energy from site n to n± 1 due to the dipole-dipole interactions.

The energy Hph associated with displacing the peptide groups away from their equi-

librium positions is given in the harmonic approximation by

Hph =
∑
n

[
p2n
2M

+
K

2
(un − un−1)

2

]
, (1.7)

where K is the spring constant or elasticity coefficient of the hydrogen bonds forming the

linear chain. M is an effective mass of the peptide group. The operator un is the longi-

tudinal displacement of the peptide group parallel to the helical axis from its equilibrium

position. pn is the momentum operator conjugate to un. The operators un and pn satisfy

the commutation relations [un, pn] = i~.
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The exciton-phonon interaction Hamiltonian is given by

Hint =
∑
n

[
χ(un+1 − un−1)B

+
nBn

]
, (1.8)

where the coupling constant χ arises from modulation of the one-site energy by the molec-

ular displacements.

To understand the dynamics arising from the above Hamiltonian, the following ansatz

has been introduced [63]

|ϕ(t) >=
∑
n

an(t)B
+
n exp{− i

~
∑
n

[βn(t)pn − πn(t)un]}|0 >, (1.9)

where ~ is the Planck’s constant and |0 > the ground-state vector. an (a∗n) is the coherent

state representation of the operators Bn (B+
n ) and the function |an|2 characterizes the

probability amplitude for finding a quantum of Amide-I energy in a particular amino acid

satisfying the normalization condition.

< ϕ(t)|ϕ(t) >=
∑
n

|an|2 = 1. (1.10)

The coherent state representations for un and pn are βn and πn, respectively. We can

write the coherent states operators for Bn, B+
n , un and pn as

an(t) =< ϕ(t)|Bn|ϕ(t) > (1.11a)

a∗n(t) =< ϕ(t)|B+
n |ϕ(t) > (1.11b)

βn(t) =< ϕ(t)|un|ϕ(t) > (1.11c)

πn(t) =< ϕ(t)|pn|ϕ(t) > . (1.11d)

From the time-dependant Schrödinger equation

H|ϕ >= i~
d

dt
|ϕ >, (1.12a)

and the relations

i~
d

dt
< ϕ(t)|un|ϕ(t) >=< ϕ(t)|[un, H]|ϕ(t) > (1.12b)

i~
d

dt
< ϕ(t)|pn|ϕ(t) >=< ϕ(t)|[pn, H]|ϕ(t) >, (1.12c)

the equations of motion satisfied by an(t) and βn(t) are written as
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i~
dan
dt

= (E0 +W )an − J(an+1 + an−1) + χ(βn+1 − βn−1)an (1.13a)

M
d2βn
dt2

= K(βn+1 + βn−1 − 2βn) + χ(|an+1|2 − |an−1|2), (1.13b)

where W = 1
2

∑
n

[
π2
n

M
+K(βn+1 − βn)

2
]

represents the lattice phonon energy.

The Davydov idea has attracted a lot of interest, which has increased even further after

the appearance of a paper [61] in which Davydov and Kislukha demonstrated that the

corresponding system of equations for a molecular chain, in the continuum approximation

admits a solitonic solution.

In the continuum approximation, Eqs. (1.13) read

i~at(x, t) = [E0 +W − 2J ]a(x, t)− Jd2axx(x, t) + 2χβx(x, t)a(x, t) (1.14a)

Mβtt(x, t) = Kd2βxx(x, t) + 2χ1d(|a(x, t)|2)x, (1.14b)

where d is the lattice constant. Subscripts x and t represent partial derivatives with

respect to x and t, respectively.

We derive Eq. (1.13b) with respect to x once and define a new variable ξ = x − V t,

where V represents the velocity of the wave in the system. Then, Eq. (1.13b) becomes

βξξ = − 2χ

K(1− S2)d
(|a|2)ξ, (1.15)

where S = V
V0

and V0 = d
√

K
M

is known to be the longitudinal sound velocity in the chain.

We integrate two times this equation with respect to ξ, while annulling the integration

constants. We reconsider the variable x and obtain

βx = − 2χ

K(1− S2)d
(|a|2)x, (1.16)

We define a new function ψ such as a = ψ exp[−i (E0+W−2J)
~ t], Eqs. (1.13) reduce to a

sole NLS equation

i~ψt(x, t) + Pψxx(x, t) +Q|ψ(x, t)|2ψ(x, t) = 0, (1.17)

where P = Jd2 and Q = 4χ2

K(1−S2)
.

Equation (1.17) is the well-known completely integrable NLS equation and which has

soliton solutions. The one-soliton solution of this equation is [64]
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ψ(x, t) = A sech[B(x− vt)]e−i(κx−wt−σ), (1.18)

where A and B are the amplitude and the inverse width of the soliton, respectively. This

solution describes a self-trapped quasiparticle (a lump of vibrational Amid-I energy) that

propagates at constant velocity and is accompanied by a self-consistent chain deformation.

The velocity v of the soliton is related to the wave number κ by

v =
d

dt
(

∫∞
−∞ x|ψ|2dx∫∞
−∞ |ψ|2dx

) = −2Pκ (1.19)

and the frequency w by

w = P (B2 − κ2), (1.20)

while the relation between the soliton amplitude A and the inverse width B is

B = A

√
Q

2P
. (1.21)

The relation (1.21) introduces the constraint

PQ > 0. (1.22)

Equation (1.17) has infinitely many conserved quantities. The first two of them are

the energy E and linear momentum M that are respectively given by

E =

∫ ∞

−∞
|ψ|2dx = 2A (1.23)

and

M =
i

2

∫ ∞

−∞
(ψψ∗

x − ψ∗ψx)dx = −2κA. (1.24)

Note that the value of these conserved quantities are computed by the one-soliton solution

that is given by Eq. (1.18).

The Davydov model has been applied in a molecular theory of force generation in

muscle contraction [8,65,66]. It is well known that the active units in muscle contraction

are two molecules, a thicker one called myosin, with protruding parts called the heads,

which bind to the other unit, called actin and push against it. A proposal has been made

that the energy released by the hydrolysis of ATP can be transferred from one myosin head
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to the next via the actin molecule. If actin is substituted for myosin tail, this proposal

becomes very similar to that of Davydov. The Davydov theory for muscular contraction

relies on the coherent motion of the lattice contraction associated by the Davydov soliton.

The theory explains the attachment, pulling and detachment of the myosin heads as the

effect of the traveling of an asymmetric Davydov soliton along the α-helix bundles in the

myosin tails [65, 66]. An asymmetric soliton leads to a kink in an α-helix, centered at

the point where the quantum excitation is located. As the excitation moves, the kink

moves with it and first pushes the myosin heads against actin, then drags actin with it

and then, as the kink moves away, the heads detach from actin. The Davydov theory of

muscle contraction constitutes a mechanism for the transduction of chemical energy into

mechanical energy with a level of detail that has not been achieved even by other theories

of muscle contraction.

1.5 Concerns with the Davydov Model

The Davydov soliton model has been a subject of intensive investigations during the

last four decades. Just to cite a few, it has been generalized by taking into account the

long-range nature of exciton transfer and by considering amide-I solitons in acetanilide

[67–70]. Furthermore, extensive numerical calculations and slight modifications have

been done to refine the Davydov soliton model [71, 72]. The Davydov Hamiltonian has

been modified by Scott [73] by changing the relative lattice coordinates for the out-of-

phase motion of the hydrogen bond proton of each peptide group in order to remove the

unimportant dispersion of the phonon modes. Along the same lines, Takeno [74, 75] has

developed a theory of vibron solitons to show that the Davydov model can be formulated

in a more reasonable and quantitatively correct form by employing a nonlinear coupled

oscillator-lattice system. On this background, Simo and Kofané [76] further modified the

Davydov model by taking into account two intramolecular vibrations (excitons) coupled

to longitudinal displacements of the molecules from their equilibrium positions

Other work has been done on proteins such as those of Mvogo and all that have focused

on inhomogeneities and others on long range [41]; those of Mimche and all of which they

have taken into account interspine coupling [32]; those of Ondoua and all of which, they

have taken account of the terms of rotation [34]; we will not forget the work of Issa Sali

and all who have focused on the saturation of proteins [77].
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Experimentally, the first evidence for a Davydov-like state was obtained in the crys-

talline polymer acetanilide ((CH3CONHC6H5)X), or (ACN), an organic solid close to a

biological molecule, which includes hydrogen-bonded chains identical to those found in

proteins [70].

1.6 Experiment and applications of Davydov models

1.6.1 Experiment of acetanilide

The most convincing experimental evidence for the existence of solitons in proteins

does not come from protein or living cell spectra, but from the spectrum of the crystalline

acetanilide polymer ((CH3CONHCgH)) or ACN. ACN is organized into hydrogen-linked

chains that are held together transversely by Van der Waals forces. ACN was used as an

analgesic in the nineteenth century (its modern chemical cousin is Tylenol), but its interest

in our subject is its remarkable similarity to the chain structure of hydrogen-bonded

peptide groups in helical proteins. In the late 1960s, Careri noticed that the lengths and

angles of peptide bonding in ACN were very close to those of natural proteins. He began

an experimental program at the University of Rome to determine if ACN would show

unexpected physical properties that could be biological. Her intuition was rewarded in

1973 by observing an abnormal line in the ACN infrared absorption spectrum. Numerous

attempts by Careri and his colleagues to find a conventional assignment for this new

line failed throughout the 1970s. Then, in 1982, when Scott became aware of Careri’s

data, Careri’s group and he suggested that the abnormal line was due to a new type

of soliton, resulting from the coupling of the arnid-I vibration to a displacement out of

the plane. The soliton resulting from this coupling with the lower mass of the proton

can be excited directly by electromagnetic radiation, an ingredient necessary to explain

the ACN data.One of the unsolved problems of the Davydov soliton as the carrier of

energy transport along the helical structure of protein molecules remained it stability at

physiological temperature. Most studies conducted at absolute zero. In 1985, experiments

conducted at 300 K showed that Davydov solitons lasted for only a few picoseconds, and

so could not explain energy transfer [78]. In 1994 counter-arguments using quantum

mechanics suggest that Davydov solitons may have a longer lifespan [79, 80].
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Figure 1.7: Front-scatter geometry for collecting Raman scattering from solid samples.

Excitation beam reflections were blocked by a beamstop, while the wider angle scattering

from the sample was passed to the monochromotor. [81]

1.6.2 Mechanism for General Anesthesia

The first general anesthesia for human surgery was performed at Massachusetts Gen-

eral Hospital in Boston in 1846. The patient was asleep by breathing diethyl ether into a

glass vesicle and the surgeon quickly dissected a tumor under the jaw. After completing

the operation, the surgeon remarked to his audience, "Gentlemen, this is not a fool." Since

this first successful demonstration of diethyl ether, researchers have discovered more than

twenty drugs that induce general anesthetic effects. These drugs have physical properties

and very diverse chemical structures; as a whole, they give little knowledge of the proper-

ties of their mechanism of action. In order to overcome this perplexity, H. Meyer and E.

Overton (about the year 1900) originally proposed that the anesthetic potency might be

related to the solubility of lipids. Several other proposals followed; but the simplest idea

is that they act by binding directly to a particularly sensitive protein, which may or may

not be located in a lipid membrane and inhibit its normal function. In this discussion, we

will focus on a large class of general intravenous anesthetics that are only slightly soluble

in lipids and are capable of forming hydrogen bonds. These agents are mainly represented

by barbiturates. In Figure 1.8, it is easy to see that a barbiturate contains four H-N-C

= O groups in its ring. These H-N-C = 0 groups are very similar to the peptide groups

of proteins that play an important role in the propagation of solitons. The other drugs
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shown in Figure 1.8 also contain H-N-C = O groups, but to a lesser extent than the

barbiturates. Hydantoins contain three peptide groups, glutethimides and succinimides

contain two, and urethanes contain one. These drugs are not used as general anesthetics

as such, but nevertheless have a similar inhibitory effect on the central nervous system.

The potency of these six drugs seems to be directly related to the number of H-N-C = O

groups in the molecule. This is corroborated by the fact that N-methylated barbiturates

(which contain two H-N-C = O groups) are shorter.

Conclusion

In this chapter, we have discussed the generalities of molecular proteins, soliton theory,

and the Davydov soliton model. Davydov reports for interactions between vibrons and

phonons of proteins. These interactions induce a nonlinear dynamic that counterbalances

the dispersion created by the dipole dipole coupling. It gives the concept of Davydov

soliton whose dynamics is described by the NLS equation. As a result, the soliton appears

as a powerful vehicle capable of transferring bioenergy. However, it appears that the LRI

between peptide units due to dipole-dipole interactions, inhomogeneities due to defects

caused by the presence of additional molecules such as drugs, carcinogens, mutants and

dyes in specific sites of the helical alpha protein sequence bring significant changes in the

equations governing soliton dynamics in Helical Proteins-α. This aspect of the problem

will be studied throughout this work. In the next chapter, we will present the investigative

methodology used to obtain our results.
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Figure 1.8: The six drugs shown above, all of which contain H-N-C=0 groups, inhibit the

central nervous system. Hydantoins, succinimides, and trimethadione are used primarily

as antiepileptic agents, whereas glutethimides are used as sedatives. Ethyl urethane is a

common veterinary general anesthetic but is not used in humans because its actions are

not smooth. The presence of an alkyl or my1 group at R and R’ confers increasing lipid

solubility, and, generally, increased lipid solubility promotes cm increased drug potency.

[82]
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Chapter 2

Methodology of investigations

Introduction

The Davydov model as mentioned in the introduction is only the most idealized model

to explain the energy transfer along backbone of protein molecules. Our main objective

is to investigate the effect of LRI in the dynamics of solitons propagating trough the

α-helical proteins. In order to accomplish our aims, we employ some analytical and

numerical methods. Generally, from the proposed models, we show that the dynamics

of the system is governed by the NLS equation, the perturbed NLS equation or CNLS

equations, sometimes of which the dispersive coefficient depends on the LRI parameter.

Some of these equations are difficult to be solved and where sometimes the solutions

need to be approximated. There are many analytical methods which are used to obtain

these solutions. These analytical methods lead to many behaviors of the solutions. The

numerical methods are used to consolidate the analytical results. In the first part of this

chapter, we present the characteristics of our models. In the second part, we give general

information about our analytical methods; the third part is devoted for the presentation

of the numerical methods.
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2.1 Preliminary

2.1.1 Models with long-range energy modes in α−helix lattices

with inter-spine coupling

Protein molecules are in contact with many factors, which should be taken into ac-

count in the study of their nonlinear dynamics. For example, protein enzymes catalyze

the millions of chemical reactions occurring each moment in biological system, but they

do so in a molecular crowded environment and not as isolated entities. The effects of the

environment of the molecule is due to essentially of the variation of physical factors (tem-

perature and pressure) and chemical factors (pH). For this reason, one key of controlling

and manipulating biological molecules is to understand theses inhomogeneous processes

and systems from the fundamental point of view. Therefore, the protein dynamics can be

explained more viably through for example in an inhomogeneous model, rather than with

the homogeneous case. In recent years, the study of waves propagation, especially solitons

trough inhomogeneous or disordered one dimensional models of α-helical proteins has at-

tracted a lot of interest [83–88]. For instance, the effect of mass inhomogeneities on the

energy transfer by solitons in the α-helical proteins have been studied by Simo [83], where

it has been shown that in the cases light and heavy-mass-induced impurities, oscillatory

motion can be introduced by cn and dn-type solitons, respectively. The origination of the

Davydov soliton in the linear polymer chain of α-helical proteins, both ideal and with a

single impurity has been studied by Todorovic et al. [84,85] applying numerical analysis

to discrete equations of motion. It has been demonstrated that the soliton velocity is in-

versely proportional to the soliton amplitude [84] and that two exciton-phonon coupling

constants influence separately the soliton behavior [85]. Wang et al. have investigated

the effects of linear inhomogeneity in a generalized fourth-order nonlinear Schrödinger

equation describing the inhomogeneous α-helical proteins [86]. Since the inhomogeneous

coefficient of the equation h = αx + β, the soliton takes on the parabolic profile during

the evolution. The soliton velocity, amplitude and width have been found related to α

and the soliton position to β. The results obtained in all above studies rather encourage

us to extend the study in another cases. This will be attempted in Chapter 3. The in-

homogeneities in the α-helical proteins will be supposed on the one hand due to defects

caused by the presence of additional molecules such as drugs, mutants and carcinogens
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in specific sites of amino acid sequence, or due to the environment of the molecule on the

other hand. The following three-dimensional Hamiltonian describing the energy transport

and localization in α-helical proteins by Madiba and all [89] is investigated

H = Hexc +Hvib +Hint, (2.1)

where Hexc is the energy associated with intramolecular excitations, Hvib is the contribu-

tion from the displacements of peptide groups also known as lattice vibrations; Hint is

the interaction energy between the amide-I excitations and the displacements of peptide

groups. The energy Hexc is defined as:

Hexc =
∑
n,α

[
E0β

†
n,αβn,α −

∑
m̸=n

Jn−mβ
†
n,αβm,α + L (βn,α+1 + βn,α−1) β

†
n,α

]
, (2.2)

with the subscript n referring to the lattice index along a strand (or chain) α, where

α = 1, 2, 3. The expression ofHexc suggests that an individual amino acid will be identified

by the index pair (n, α), such that βn,α (β†
n,α) are boson creation (annihilation) operators

associated with intramolecular vibrations of the nth peptide group in the strand α. These

operators satisfy the usual commutation relations for bosons i.e. [βn,α, β
†
m,α] = δm,n and

[βn,α, βm,α] = 0. E0 is the local amide-I vibrational energy, in this context the term

E0β
†
n,αβn,α is the vibrational energy at the site (n, α). The term

∑
m̸=n

Jn−mβ
†
n,αβm,α is the

energy related to the LR interactions between molecular excitations on sites n and m,

belonging to the same chain. The coupling parameter Jn−m is the LR transfer integral

between sites n and m, here considered of the form:

Jn−m = J0|n−m|−r, (2.3)

with J0 the strength of the transfer integral and r a parameter range whose values are in

the interval [1,+∞[. However r covers different physical contexts, depending on its value.

For example if r → ∞ the LR interaction reduces to nearest-neighbor couplings, a case

corresponding to the models studied in Refs. [33,35]. For r = 5 the LR interaction is of a

dipole-dipole type, while for r = 3 the LR interaction is of the Coulomb type. We should

stress that the strongest interaction effects are due to smaller values of r. Therefore, the

case r = 1 is a particular one that implies strong LR forces among the peptide groups

that constitute the protein lattice. This may have some direct biological consequences on

the structural dynamics of the molecule and on the localization of energy. Some other
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contributions have recently considered the finite range interaction using the Kac-Baker

potential to model intermolecular interactions, an proposed strong LR coupling to be

responsible for stabilizing the protein chain structure [90].

The parameter L in formula (3.22) is the linear coupling energy between covalently

bonded peptide groups between different strands. Hvib describes the vibronic dynamics

of the molecular system, and includes both the radial and longitudinal displacements of

the peptide units from their equilibrium positions. Note that radial and longitudinal

displacements are related to the changes in radius R → R + vn,σ and the pitch b →
b+un,σ, and feature the distortions of the covalent and hydrogen bonds respectively. This

contribution to the total Hamiltonian is written as:

Hvib =
1

2

∑
n,α

{(
P u
n,α

)2
M

+

(
P v
n,α

)2
M

+ κ (un,α − un−1,α)
2 +

1

4
ϖ (vn,α − vn,α−1)

2

}
. (2.4)

M is the mass of a peptide group, κ and ω are the elasticity coefficients of the hydrogen and

covalent bonds, respectively. un,α is the longitudinal displacement of the molecule parallel

to the helical axis, and vn,α the displacements along the helix radius. The quantities P u
n,α

and P v
n,α are the momentum conjugate to un,α and vn,α respectively. The vibrational and

excitonic parts interact through the Hamiltonian

Hint =
∑
n,α

[
χ(un+1,α − un,α) +

1

2
η(vn,α+1 − 2vn,α + vn,α−1)

]
β+
n,αβn,α. (2.5)

In Eq.(3.25), the terms associated with the parameters χ and η represent the diagonal

coupling between the excitonic amplitude and the displacement of the peptide groups

in the longitudinal and radial directions, respectively. Otherwise, the adjacent bonds

oscillations are affected by the dynamics of the exciton as discussed in Refs. [33–35].

The following quantum state vector can be used to understand the collective excitation

of the system

|ψ(t)⟩ =
∑
n,α

An,α(t)β
†
n,α

{
exp

[
− i

~
∑
n,α

[
bn,α(t)P

u
n,α − ϕn,α(t)un,α

]
+
[
cn,α(t)P

v
n,α − πn,α(t)vn,α

]]}
|0⟩,

(2.6)

where ~ is the Planck constant and |0⟩ is the ground-state vector. An,α(A
∗
n,α) is the

coherent state representation of the operators βn,α (β†
n,α). We have introduced bn,α and

cn,α as the coherent state representations of un,α and vn,α respectively, and ϕn,α and πn,α

for their conjugate momenta P u
n,α and P v

n,α. Moreover, the coherent state representations
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of the operators for βn,α, β†
n,α, un,α, vn,α, P u

n,α and P v
n,α are written as

An,α(t) = ⟨ψ(t)|βn,α|ψ(t)⟩, A∗
n,α(t) = ⟨ψ(t)|β†

n,α|ψ(t)⟩,

bn,α(t) = ⟨ψ(t)|un,α|ψ(t)⟩, cn,α(t) = ⟨ψ(t)|vn,α|ψ(t)⟩,

ϕn,α(t) = ⟨ψ(t)|P u
n,α|ψ(t)⟩, πn,α(t) = ⟨ψ(t)|P v

n,α|ψ(t)⟩.

(2.7)

Ansatz Eq. (3.27) satisfies the normalization condition ⟨ψ(t)|ψ(t)⟩ =
∑
n,α

|An,α|2 = N ,

where |An,α|2 characterizes the probability amplitude for finding a quantum of Amide-I

energy in a particular amino acid. The Hamiltonian that gives the coherent states is

written in the form

⟨H⟩ = ⟨ψ(t)|H|ψ(t)⟩, (2.8)

which is written in the more expanded form

⟨H⟩ =
∑
n,α

{
A∗
n,α

[
(E0 +W )An,α −

∑
m̸=n

Jn−mAm,α − L(An,α+1 + An,α−1)

]

+ χ(bn+1,α − bn−1,α)A
∗
n,αAn,α +

1

2
(cn,α+1 − 2cn,α + cn,α−1)A

∗
n,αAn,α

}
,

(2.9)

with

W =
1

2

∑
n,α

{
(ϕn,α)

2

M
+

(πn,α)
2

M
+ κ (bn,α − bn−1,α)

2 +
1

4
ϖ (cn,α − cn,α−1)

2

}
. (2.10)

The dynamics of the system is easily understood by constructing the Heisenberg’s equation

of motion, i.e.,

i~
∂

∂t
⟨Xn,α⟩ = ⟨[Xn,α, H]⟩, (2.11)

where X stands for the dynamic variables An,α, bn,α, cn,α, ϕn,α and πn,α satisfying the

commutation relations [X,X∗] = 1 and [βn,α,Pn,α ] = [bn,α, ϕn,α] = [γn,α, Pn,α] = [cn,α, πn,α]

= i~. This leads to the following set of coupled equations:

i~
d

dt
An,α(t) = χ(bn+1,α − bn−1,α)An,α +

η

2
(cn,α+1 + 2cn,α + cn,α−1)An,α

− L(An,α+1 + An,α−1)−
∑
m̸=n

Jn−mAm,α (2.12)

d2

dt2
bn,α(t) = −κ(bn+1,α − 2bn,α + bn−1,α) + χ(|An+1,α|2 − |An−1,α|2) (2.13)

d2

dt2
cn,α(t) = − ϖ

4
(cn,α+1 + cn,α−1 − 2cn,α)−

η

2

(
|An,α+1|2 + |An,α−1|2 + 2 |An,α|2

)
.(2.14)

Another fact that is not negligible in the present model is that the velocity of the inter-

molecular transport of excitonic energy is much lower than the velocity of sound of the
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acoustic bond oscillations. This causes the terms of inertia to be negligible, leading to the

following adiabatic approximations:

bn,α − bn−1,α =− α

κ

(
A∗
n,αAn−1,α + A∗

n−1,αAn,α
)
+
χ

κ

(
|An−1,α|2 + |An,α|2

)
bn+1,α − bn,α =− α

κ

(
A∗
n,αAn+1,α + A∗

n+1,αAn,α
)
+
χ

κ

(
|An+1,α|2 + |An,α|2

)
cn,α+1 + cn,α−1−2cn,α =

2η

ϖ

(
|An,α+1|2 + |An,α−1|2 + 2 |An,α|2

)
, α = 1, 2, 3,

(2.15)

upon which the following set of coupled equation is obtained

i
∂An,α
∂t

=− χ2

κ

[
|An+1,α|2 + |An−1,α|2 + 2|An,α|2

]
An,α −

2η2

κ

[
|An,α−1|2 + |An,α+1|2 + 2|An,α|2

]
An,α

−
∞∑
l=1

J ′
l (An+l,α + An−l,α) + L(An,α+1 + An,α−1), α = 1, 2, 3,

(2.16)

which has been obtained after introducing the scaled quantities χ −→ ~√
MJ

3/2
0

χ, ϖ −→
~2
MJ2

0
ϖ, κ −→ ~2

MJ2
0
κ, η −→ ~2

MJ2
0
η, L −→ L

J0
, t −→ J0

~ t. In Eqs.(3.36), we have simplified

the LR term by considering l = n−m so that the dispersion term becomes
∞∑
l=1

J ′
l (An+l,α+

An−l,α), with J ′
l = |l|−r. Eqs.(3.36) are an ensemble of three CDNLS equations. In

the same chain, there are in fact two types of couplings, i.e., the nonlinear coupling term
χ2

κ
[|An+1,α|2 + |An−1,α|2 + 2|An,α|2]An,α and the linear or LR coupling term

∞∑
l=1

J ′
l (An+l,α+

An−l,α). Obviously, the nonlinear coupling term is restricted to nearest-neighbor pep-

tide groups. Interestingly, interaction among adjacent spine is insured by a linear term,

L(An,α+1+An,α−1), and the nonlinear term 2η2

κ
[|An,α−1|2 + |An,α+1|2 + 2|An,α|2]An,α. Based

on this, there is indeed a competition between nonlinear and dispersive terms. How-

ever, this is not enough to confirm the emergence of solitonic structures in the pro-

posed model. This requires more investigation related to the MI as done in the next

section. For the rest of the calculations, the following set of parameter values will be

used [4, 33, 34]: E0 = 0, 205eV=1, 55 × 10−22 Nm, κ = 19.36N, L = 2.46 × 10−22N.m,

ϖ = [91.0 − 155.5]Nm−1 J = 15.47 × 10−23J, I = [91.0 − 155.5]N.m−1, M = 1.9 × 10−25

Kg, χ = [2− 6]× 10−11N, η = [0.7− 1.2]× 10−11 N.

2.1.2 Models with long-range interaction effects

A great interest has been ported in the study of energy transfer trough nonlinear exci-

tations along the backbones of bio-molecules. By considering higher order excitations and
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interactions between internal molecular excitations, the nonlinear dynamics of α-helix has

been studied both at the discrete and continuum levels [87, 88, 91–97]. These studies

include molecular excitations along a single hydrogen bonding spine of the α-helical pro-

teins [87, 91, 95–97] and also the interspine coupling [87, 88, 92, 93]. However, in the

above studies only the nearest or next nearest-neighbor interactions of molecular excita-

tions have been taken into account, neglecting the fact that in the biomolecules, a group

of molecules interacts with more than its nearest and next nearest-neighbors. On this

subject, some authors have shown that the study of the LRI in nonlinear lattice mod-

els is very relevant, mainly in molecular chains and DNA molecules where Coulomb and

dipole-dipole interactions are of physical importance. In particular, it has been shown

by many authors that LRI play an active role in the stability of protein molecules.

Rau and Parsegian [98] studied experimentally the evidence for long-range attractive

hydrogen forces and emphasized that many forces could be responsible for LRI in the

biomolecules. Chen and Chaudhari [99] have shown that the establishment of protein

secondary structure, especially the regions of β-sheets, involves LRI between amino acids.

The results by Nagano [100] have strongly suggested that the topological pathway of

the polypeptide chain in three-dimensional space might be decided by the LRI between

an α-candidate and a β-candidate. On this background, the LRI have been used by

Sarker and Krumhansl [101] to investigate the thermodynamic properties, in connection

with topological solitons. Using a one-dimensional lattice with long-range coupling of

Lennard-Jones type, Ishimori [102] showed in the continuum limit that the value of the

force range parameter contributes to the dispersive terms in the equation of propagation.

Saha and Kofane [103] have studied the LRI effect between adjacent and distant bases

in a DNA and their impact on the ribonucleic acid polymerase-DNA dynamics. Recently,

the dynamics of the one spine model for α-helical proteins with LRI of Kac-Baker type

was developed by Grecu et al. [104]. The authors have obtained in the non-resonant case

the NLS equation [104] while in the resonant case the Zakharov -Benney equations [105]

have been found. Despite these rather interesting results, few work has been done so far

and the subject appearing particularly difficult to address due to the complexity of the

three dimensional α-helical structure.

In this work two types of LRI effects are used: The so-called Kac-Baber LRI and the

power-law LRI.
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2.1.2.1 Kac-Baber type long-range interactions

Beginning from the pioneering contributions by Baker [106], and Kac and Helfand

[107], studies with the Kac-Baber LRI have been the subject of great interest for a long

time. In the present work, it is taken in the form [87, 88]

Jmn = J
1− r

2r
r|m−n|, (2.17)

where the parameter Jmn is the coupling constant of the dipole-dipole interaction between

two peptide groups n and m and J is the dipole-dipole constant interaction between

the adjacent peptide groups along the hydrogen bonding spine. The parameter r with

0 ≤ r ≤ 1 defines the range of interaction. The absolute difference |m − n| measures

the distance between peptide groups n and m. For r = 0, the model is reduced to a

nearest-neighbor interaction. The limit r = 1, which should be taken only when the

number of excitations is infinite, corresponds to the infinite range problem, also called

the Van der Waals model since the behavior of the system in this limit is identical to a

Van der Waals model [106, 107]. The pre-factor 1− r is chosen to ensure that the total

potential experienced by one site due to all others is finite for all r, so that an energy

limit exists [108]. Then we have ∑
m̸=n

Jmn = J. (2.18)

Two models with the Kac-Baber LRI will be investigated in the present work: the

first model for the one spine α-helical protein model and the second for the three-spines

α-helical proteins model. The corresponding Hamiltonians are [87]

H =
∑
n

EB+
nBn −

1

2

∑
n̸=m

Jmn(B
+
n +B+

m)(Bn +Bm)

+
∑
n

[
p2n
2M

+
K

2
(un − un−1)

2] +
∑
n

χ(un+1 − un−1)B
+
nBn (2.19)

and [89]
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H =
∑
n,α

(E0B
+
n,αBn,α + E1B

+
n,αBn,αB

+
n,αBn,α)−

∑
n̸=m,α

Jmn(B
+
n,αBm,α +B+

m,αBn,α)

−
∑
n,α

J1(B
+
n,αBn+1,αB

+
n,αBn+1,α +B+

n,αBn−1,αB
+
n,αBn−1,α) +

1

2

∑
n,α

[
p2n,α
M

+
S2
n,α

M
+K(un,α − un−1,α)

2 + I(vn,α − vn,α−1)
2] +

∑
n,α

{χB+
n,αBn,α(un+1,α − un,α)

+λB+
n,αBn,α[(vn,α+1 − vn,α) + (vn,α−1 − vn,α)]}, (2.20)

respectively. The subscript n counts unit cells (H−N−C = O) along the infinite hydrogen

bonding spines while α specifies one of the three hydrogen bonding spines (α = 1, 2, 3).

2.1.2.2 Power-law type long-range interactions

In this work, the power-law long-range interactions are taken of the form [109]

Jn−m =
J

|n−m|r
, n ̸= m, (2.21)

where in the present case the parameter r covers different physical situations: for the

nearest-neighbor approximation r → ∞, for the dipole-dipole interaction r = 3 and for

the long-range Coulomb interaction r = 1. In this thesis, we will consider a wide class of

LRI that give fractional system of equations attributed to complex media in the continuum

limit.

The following Hamiltonian for the three-spines α-helical proteins model with the

power-law LRI is investigated [109]

H =
∑
n,α

{
E0B

+
n,αBn,α −

∑
m̸=n

Jn−mB
+
n,αBm,α − L

[
B+
n,α(Bn,α+1 +Bn,α−1)

]}

+
1

2

∑
n,α

[
p2n,α
M

+
S2
n,α

M
+K(un,α − un−1,α)

2 + I(vn,α − vn,α−1)
2]

+
∑
n,α

[
χ1(un+1,α − un−1,α)B

+
n,αBn,α + χ2(un,α − un−1,α)(B

+
n+1,αBn,α +B+

n,αBn+1,α)
]

+λB+
n,αBn,α[(vn,α+1 − vn,α) + (vn,α−1 − vn,α)]. (2.22)

In this work, we show that the power-law LRI leads to a nonlocal integral term in

the equations of motion. Indeed, the non-locality originating from the LRI results in the

dynamic equations with space derivatives of fractional order.
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2.2 Analytical method

In order to show effectively that energy can be localized and transferred in the α-

helical proteins, we use sophistical mathematical methods, such that: the modulational

instability, the perturbation soliton theory, the transform Fourier method and the Jaco-

bian elliptic functions method, just to cite a few. In that follows, we will present some of

these methods and the others will be applied directly in Chapter 3.

2.2.1 Modulational instability

Modulational instability is a universal process that is inherent to most nonlinear wave

systems in nature. Many theoretical and experimental works have revealed that MI is

the direct way through which localized patterns emerge in many nonlinear systems. It

is a result of the interplay between nonlinearity and dispersion and arises in continuous

as well as in discrete systems. The MI has been observed in many branch of physics

such as plasma physics [110], nonlinear optics [111], nonlinear electrical transmission

lines [112] and biological systems [113–117]. The increasing interest in the way energy

spread in protein molecules is a consequence of its importance in biology. Solitons and

localized structures have been intensively used during the recent years. The direct way to

emerge solitons and localized structures from nonlinear systems is through the activation

of modulational instability. MI consists in the input of continuous wave (with a constant

amplitude, but with an amplitude dependence of the dispersion relation) which propagates

through the system, which can become unstable for a small perturbation under specific

conditions.

Procedure of modulational instability

The analysis on the stability starts by assuming the steady-state solution of a given

equation which is an exact continuous wave solution in the form

ψ(x, t) = ψ0e
i(kx−ωt), (2.23)

where ψ0 is a real constant. The parameters k and ω are the wave number and the angular

frequency of the carrier wave, respectively. Substituting the plane wave solution into the

equation, we get the amplitude-dependent relationships between k and w known as the

nonlinear dispersion relation.
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The linear stability of the continuous wave solution (2.23) can be investigated by

seeking a solution in the form

ψ(x, t) = [1 +B(x, t)]ψ0e
i(kx−ωt), (2.24)

where the modulation of the amplitude B(x, t) is assumed to be small in comparison with

the corresponding parameters of the carrier wave. We substitute Eq. (2.24) into the

basic equation and neglecting the nonlinear terms, we obtain the linear equation for the

perturbation.

After, we assume the perturbation B, to be in the form of progressive and regressive

wave such that

B(x, t) = µei(Kx−Ωt) + νe−i(Kx−Ωt), (2.25)

where K and Ω represent the wave number and the frequency of the modulation, respec-

tively. By inserting Eq. (2.12) into the linear equation for the perturbation and having

performing the linearization, we end up with an eigenvalue problem for the perturbation

frequency Ω.

The dispersion relation that determines Ω, as a function of K and k, and the MI gain

G = |ImΩ(K, k)| is determined and solved numerically to determine the regions where

the plane wave is instable.

It is shown in this work that the MI is precursor of solitons and localized structures

formation in α-helical proteins even in the presence of thermal fluctuations of the envi-

ronment. For the analysis, the following three coupled chains model of molecule will be

considered [89]

H =
∑
n,α

(E0B
+
n,αBn,α + E1B

+
n,αBn,αB

+
n,αBn,α)−

∑
n̸=m,α

Jmn(B
+
n,αBm,α +B+

m,αBn,α)

−
∑
n,α

J1(B
+
n,αBn+1,αB

+
n,αBn+1,α +B+

n,αBn−1,αB
+
n,αBn−1,α) +

1

2

∑
n,α

[
p2n,α
M

+
S2
n,α

M
+K(un,α − un−1,α)

2 + I(vn,α − vn,α−1)
2] +

∑
n,α

{χB+
n,αBn,α(un+1,α − un,α)

+λB+
n,αBn,α[(vn,α+1 − vn,α) + (vn,α−1 − vn,α)]}, (2.26)

where the subscript n counts unit cells (H-N-C=O) along the chains while j specifies one

of the three chains.
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2.2.2 F-expansion method

The exact solutions of nonlinear partial differential equations constitute a crucial factor

in the progress of nonlinear dynamics and are a key access for the understanding of various

phenomena governing by these equations. In the recent years, wide variety of effective

methods to find all kinds of analysis solutions of NLPDEs have been investigated. Among

these, the powerful mathematical tool for solving NLPDEs has been revealed to be the

F-expansion method. Yomba [118–120] gave potential examples of the method to find

the soliton solutions of some NLPDEs. Also, the F-expansion method is a unifying frame

in which other methods could be presented as complementary viewpoints.

Basic idea of the method applied to coupled system of equations adapted

with the three-spines α-helical protein model

We consider a general coupled NLPDEs of the form

L1(u, ut, ux, utt, uxt, uxx, v, vx, w, wx, ...) = 0, (2.27a)

L2(v, vt, vx, vtt, vxt, vxx, u, ux, w, wx, ...) = 0. (2.27b)

L3(w,wt, wx, wtt, wxt, wxx, u, ux, v, vx, ...) = 0. (2.27c)

Using a traveling wave transformation

ξ = k(x− ct), (2.28)

where k and c are constants. We can write Eqs. (2.27) as the following nonlinear ordinary

differential equations:

M
′

1(u, u
′
, u

′′
, u

′′′
, v, v

′
, w, w

′
...) = 0, (2.29a)

M
′

2(v, v
′
, v

′′
, v

′′′
, u, u

′
, w, w

′
...) = 0, (2.29b)

M
′

3(w,w
′
, w

′′
, w

′′′
, u, u

′
, v, v

′
...) = 0, (2.29c)

where the prime denotes the derivative with respect to ξ. According to the method, we

assume that the solutions can be expressed in the form

uξ =

n1∑
j=0

ajf
j(ξ), (2.30a)

vξ =

n2∑
j=0

bjg
j(ξ), (2.30b)
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wξ =

n3∑
j=0

cjh
j(ξ). (2.30c)

To determine the values of n1, n2 and n3, we balance the linear term of highest order in

Eqs. (2.29) with the highest order nonlinear term.

The F-expansion method requires that we map the solutions of Eqs. (2.30) with those

of a ϕ4 model as shown below:

f 2
ξ = P1f

4(ξ) +Q1f
2(ξ) +R1, (2.31a)

g2ξ = P2g
4(ξ) +Q2g

2(ξ) +R2, (2.31b)

h2ξ = P3h
4(ξ) +Q3h

2(ξ) +R3. (2.31c)

We have introduced Pj, Qj, and Rj (j=1,2,3) and different functions of f(ξ), g(ξ)

and h(ξ) in order to determine different combinations of Jacobian elliptic functions in the

three spines. We can express the solutions in spines 2 and 3 in terms of the solution in

spine 1, inspired by the fact that there is always a relation among two Jacobian elliptic

functions [88]. Thus, we assume the following relations between g(ξ), h(ξ) and f(ξ)

g2(ζ) = ν1f
2(ξ) + ν2, (2.32a)

h2(ζ) = η1f
2(ξ) + η2. (2.32b)

Substituting Eqs. (2.32) into Eqs. (2.31), leads to

ν1 =
P1

P2

, (2.33a)

ν2 =
Q1 −Q2

3P2

(2.33b)

η1 =
P1

P3

(2.33c)

η2 =
Q1 −Q3

3P3

(2.33d)

Q2
1 +Q1Q2 − 2Q2

2 + 9P2R2 = 0, (2.33e)

Q2
1 −Q2

2 − 3P1R1 + 3P2R2 = 0, (2.33f)

Q2
1 +Q1Q3 − 2Q2

3 + 9P3R3 = 0, (2.33g)

Q2
1 −Q2

3 − 3P1R1 + 3P3R3 = 0. (2.33h)
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Substituting Eqs. (2.33) and (2.31) into Eqs. (2.27) and setting to zero all the coeffi-

cients of different power of f j(ξ)gn(ξ), f j(ξ)hn(ξ) (j = 0, 1, 2, 3, n = 0, 1), we obtain a set

of algebraic equations, which solving by Mathematica, k, c, aj, bj, cj can be expressed in

terms of Pj, Qj, Rj, ν1, ν2. To illustrate clearly the method.

2.3 Numerical method

It is worth that the stability of the solutions is a necessary condition for them to

be experimentally feasible. To confirm our analytical approaches, we verify the stability

of the solutions obtained. Many different methods have been proposed and used in an

attempt to solve accurately various types of ordinary and partial differential equations

such as the Runge-Kutta method. These methods discretize the differential system to

produce a discrete system of equation or map. In this work, we use the fourth order

Runge-Kutta method.

2.3.1 Fourth order Runge-Kutta method

The fourth order Runge-Kutta method is a much more locally accurate method.

Suppose that we have an equation of the form;

dU

dt
= f(t, U), (2.34)

with U(t0) = U0. Then if we know Un and set t = (n− 1)h, the value of Un+1 is given by

the sequence of operations

Un+1 = Un +
1

6
(k1 + 2k2 + 2k3 + k4) (2.35)

where k1, k2, k3 and k4 are the coefficients of the fourth order Runge-Kutta given by

the system below 
k1 = hf(t, Un)

k2 = hf(t+ h
2
, Un +

k1
2
)

k3 = hf(t+ h
2
, Un +

k2
2
)

k4 = hf(t+ h, Un + k3),

(2.36)

where h is the normalized integration time step. This method has many advantages:
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• It is easy to use and no equations need to be solved at each stage;

• It is highly accurate for moderate h values;

• It is a one step method i.e. Un+1 only depends on Un;

• It is easy to start and easy to code.

2.3.2 Split-step method

The Split-step method is based on the pseudo-spectral method [121]. This method

involves calculating the dispersive and nonlinear terms in the dynamical equations gov-

erning the protein chain using fast Fourier transforms and then propagating the resulting

ordinary differential equations forward in time t in Fourier space using the fourth order

Runge-Kutta method. In numerical analysis, the split-step (Fourier) method is a pseudo-

spectral numerical method used to solve nonlinear partial differential equations like the

nonlinear Schrödinger equation. The name arises for two reasons. First, the method re-

lies on computing the solution in small steps, and treating the linear and the nonlinear

steps separately (see below). Second, it is necessary to Fourier transform back and forth

because the linear step is made in the frequency domain while the nonlinear step is made

in the time domain. An example of usage of this method is in the field of light pulse prop-

agation in optical fibers, where the interaction of linear and nonlinear mechanisms makes

it difficult to find general analytical solutions. However, the split-step method provides a

numerical solution to the problem.

Description of the method

Consider, for example, the nonlinear Schrödinger equation [111]

i
∂A

∂x
− β

2

∂2A

∂t2
+ γ|A|2A = 0, (2.37)

where A(t, x) describes the pulse envelope in time t at the spatial position x. Rewriting

this equation as

∂A

∂x
= −iβ

2

∂2A

∂t2
+ iγ|A|2A = [D̂ + N̂ ]A. (2.38)

The equation can be split into a linear part,

∂AD
∂x

= −iβ
2

∂2A

∂t2
= D̂A. (2.39)

and a nonlinear part,
∂AN
∂x

= iγ|A|2A = N̂A. (2.40)
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Both the linear and the nonlinear parts have analytical solutions, but the nonlinear

Schrödinger equation containing both parts does not have a general analytical solution.

However, if only a ’small’ step h is taken along x, then the two parts can be treated sep-

arately with only a ’small’ numerical error. One can therefore first take a small nonlinear

step,

AN(t, x+ h) = exp[iγ|A|2h]A(t, x), (2.41)

using the analytical solution.

The dispersion step has an analytical solution in the frequency domain, so it is first

necessary to Fourier transform AD using

ÃD(w, x) =

∫ +∞

−∞
AD(t, x)exp[i(w − w0)t]dt, (2.42)

where w0 is the center frequency of the pulse. It can be shown that using the above

definition of the Fourier transform, the analytical solution to the linear step is

ÃD(w, x+ h) = exp
[
i
β

2
(w − w0)

2h
]
AD(w, x), (2.43)

By taking the inverse Fourier transform of ÃD(w, x+ h) one obtains AD(t, x+ h); the

pulse has thus been propagated a small step h. By repeating the above N times, the pulse

can be propagated over a length of Nh.

The above shows how to use the method to propagate a solution forward in space;

however, many physics applications, such as studying the evolution of a wave packet

describing a particle, require one to propagate the solution forward in time rather than in

space. The non-linear Schrodinger equation, when used to govern the time evolution of a

wave function, takes the form

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x2
+ γ|ψ|2ψ = [D̂ + N̂ ]ψ, (2.44)

where D̂ = − ~2
2m

∂2ψ
∂x2

and N̂ = γ|ψ|2, and that m is the mass of the particle and ~ is

Planck’s constant.

The formal solution to this equation is a complex exponential

ψ(x, t) = eit(D̂+N̂)ψ(x, 0). (2.45)
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Since D̂ and N̂ are operators, they do not in general commute. However, the Baker-

Hausdorff formula can be applied to show that the error from treating them as if they do

will be of order dt2 if we are taking a small but finite time step dt. We therefore can write

ψ(x, t+ dt) ≈ eidtD̂eidtN̂ψ(x, t). (2.46)

The part of this equation involving N̂ can be computed directly using the wave function

at time t, but to compute the exponential involving D̂ we use the fact that in frequency

space, the partial derivative operator can be converted into a number by substituting ik

for ∂
∂x

, where k is the frequency (or more properly, wave number, as we are dealing with a

spatial variable and thus transforming to a space of spatial frequencies-i.e wave numbers)

associated with the Fourier transform of whatever is being operated on. Thus, we take

the Fourier transform of eidtN̂ψ(x, t) recover the associated wave number, compute the

quantity e−idtk2 and use it to find the product of the complex exponentials involving and

in frequency space as below:

e−idtk
2
F
[
eidtN̂ψ(x, t)

]
,

where F denotes a Fourier transform. We then inverse Fourier transform this expression

to find the final result in physical space, yielding the final expression

ψ(x, t+ dt) = F−1
[
e−idtk

2

F
[
eidtN̂ψ(x, t)

]]
(2.47)

A variation on this method is the symmetrized split-step Fourier method, which takes

half a time step using one operator, then takes a full time step with only the other,

and then takes a second half time step again with only the first. This method is an

improvement upon the generic split-step Fourier method because its error is of order dt3

for a time step dt. The Fourier transforms of this algorithm can be computed relatively

fast using the fast Fourier transform (FFT). Compared to the typical finite difference

methods [122], the split-step Fourier method can therefore be much faster.

Conclusion

This chapter was devoted to present the protein dynamics models taking into account

inhomogeneity and LRI effects. We have presented the analytical and numerical methods

used in the study of the dynamics of solitary waves in protein molecules. The numerical

methods are used to consolidate the analytical results. The methods could have different
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schemes from the same differential equation, but they have the same aim; that the dynam-

ics of the system should correspond closely to the dynamics of the differential equation.

In the next chapter, we will present our results together with discussions.
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Chapter 3

Results and Discussions

Introduction

In previous chapters we have given generalities on protein molecules, soliton theory

and Davydov’s model. The different methods used to achieve our objectives were also

highlighted. The mathematical methods were based on MI, perturbation soliton theory

and Jacobian elliptic functions. To confirm the analytical methods and plot the different

curves, we use the Runge-Kutta algorithm of the fourth order and the Fourier method in

several steps. This chapter is based on our results. There is a lot of work on Davydov’s

model; but this thesis focuses on the effects of the long-range. We also investigate the gen-

eration of solitons and localized structures through the activation of MI in the particular

case of long-range.

3.1 Long-range effects

Many biological processes such as muscle contraction, active transport and enzyme

catalysis rely on energy. This energy, which is released through the hydrolysis of adeno-

sine triphosphate (ATP), is mainly transported and stored by proteins. Understanding

the subsequent phenomena, those related to the management of energy by proteins, have

been an active research topic since the pioneering work by Davydov [8]. Based on a

simple formulation of the problem Davydov showed that energy is carried by solitonic

structures, therefore establishing the relationship between such entities and lattice distor-

tions. Namely, considering the structure of α−helix proteins Davydov and Kislukha [6,7]
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used the exciton formalism to explain the self-trapping of the amide-I oscillations, as the

consequence of the interaction between the vibrational exciton and the distortion in the

protein structure resulting from the presence of the exciton. They established that as a

result of the interplay between nonlinearity and dispersion, the self-trapped vibrational

amide-I energy coupled to the protein structure deformation may travel as a soliton in

the protein strand [4, 5].

Earlier models on the issue of energy transport and storage in protein chains were

focused on a structure with only one strand of hydrogen-bonded peptide units, both in

the discrete and continuum regimes [6–8]. These models have been the subject of great

controversy, owing to their formulation involving inconsistencies in predictions on the

Davydov soliton lifetime, and more importantly its stability at the biological temperature

of 300K [9–16]. Nevertheless, numerical simulations have revealed that such solitons

may be stable at 300 K, but these studies were carried out from a purely classical point

of view with no consistent argument to prove their stability [4, 5, 17–22]. In order to

solve this issue, adopting a description of the α−helix protein in terms of a biological

system stabilized by three quasi-linear strands, turned out to be a suitable picture. Most

of the pioneering analytical and numerical contributions in that direction can be found

in Refs. [5, 23, 24]. In the same direction slightly modified Davydov models of α−helix

proteins were addressed by Daniel and Latha [25], in which both discrete and contin-

uum regimes were studied with a particular interest in the influence of the inter-spine

coupling and its consequences on the process of energy transport and storage among the

spines. Based on the fact that the process of modulational instability (MI) is a direct

mechanism leading to solitons and the formation of nonlinear structures [26–30], Tabi

and co-workers [31–33] showed that the process may also be envisaged in the context

of three-stranded molecular structures. More recently, a generalized model of α−helix

protein chains including the competition between diagonal and off-diagonal couplings was

proposed [34]. The subsequent modes of energy were found to be very sensitive to the

nonlinear effects introduced by the two types of couplings. In Ref. [33], using the model

by Hennig [35], Tabi et al. showed that during the process of energy transport covalent

bonds may be compressed, while hydrogen bonds display regular oscillating behaviors

leading to favourable condition for energy transport and storage in the coupled spines

via polaronic structures. Relying on data from X-ray analysis on proteins [36–38] it was

also shown that the tridimensional structure is favorable to energy and particle trans-
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fer in proteins, because of the significant presence of hidrogen (H) bridges between the

spines [39]. In other words the polarons that arise in protein dynamics may correspond

to the energy related to the electron transport, depending on the coupling strength to

vibrational motions [33, 35, 133]. Moreover, in recent investigations it was suggested

that long-range (LR) dispersive interactions may be responsible for interesting dynamical

behaviors, especially in molecular systems like DNA and proteins [40–42], neural [43,44]

and cell [45] networks.

Our main objective in this part is to show that LR dispersive interactions may enhance

the efficiency of energy transport and storage in three-stranded molecules with inter-spine

coupling. In this goal we shall use the theory of MI both analytically and numerically,

with emphasis on the importance of the competing effects between the LR interactions

among polypeptides units in individual protein helices and nonlinearity. The paper is

outlined as follows: in Section 3.2.3 we introduce the model Hamiltonian, and derive the

dynamical equations which are modified coupled discrete nonlinear Schrödinger (DNLS)

equations. In Section 3.2.3 the theory of MI is applied to the model starting with the

linear stability analysis for plane wave solutions, followed by full numerical simulations

to confirm pedictions of the linear stability analysis and the emergence of nonlinear wave

patterns with soliton features. The last section is devoted to concluding remarks.

3.1.1 Hamiltonian Model and dynamical equations

The generalized Hamiltonian for linked polypeptide chains arranged in three-dimensional

helix has been proposed using Davydov’s formulation [6,8]. It considers the coupling be-

tween amide-I vibration, and displacements of amino-acid residues. Its tridimensional

version, as proposed in Refs. [33–35], is given by:

H = Hexc +Hvib +Hint, (3.1)

where Hexc is the energy associated with intramolecular excitations, Hvib is the contribu-

tion from the displacements of peptide groups also known as lattice vibrations; Hint is

the interaction energy between the amide-I excitations and the displacements of peptide

groups. The energy Hexc is defined as:

Hexc =
∑
n,α

[
E0β

†
n,αβn,α −

∑
m̸=n

Jn−mβ
†
n,αβm,α + L (βn,α+1 + βn,α−1) β

†
n,α

]
, (3.2)
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with the subscript n referring to the lattice index along a strand (or chain) α, where

α = 1, 2, 3. The expression ofHexc suggests that an individual amino acid will be identified

by the index pair (n, α), such that βn,α (β†
n,α) are boson creation (annihilation) operators

associated with intramolecular vibrations of the nth peptide group in the strand α. These

operators satisfy the usual commutation relations for bosons i.e. [βn,α, β
†
m,α] = δm,n and

[βn,α, βm,α] = 0. E0 is the local amide-I vibrational energy, in this context the term

E0β
†
n,αβn,α is the vibrational energy at the site (n, α). The term

∑
m̸=n

Jn−mβ
†
n,αβm,α is the

energy related to the LR interactions between molecular excitations on sites n and m,

belonging to the same chain. The coupling parameter Jn−m is the LR transfer integral

between sites n and m, here considered of the form:

Jn−m = J0|n−m|−r, (3.3)

with J0 the strength of the transfer integral and r a parameter range whose values are in

the interval [1,+∞[. However r covers different physical contexts, depending on its value.

For example if r → ∞ the LR interaction reduces to nearest-neighbor couplings, a case

corresponding to the models studied in Refs. [33,35]. For r = 5 the LR interaction is of a

dipole-dipole type, while for r = 3 the LR interaction is of the Coulomb type. We should

stress that the strongest interaction effects are due to smaller values of r. Therefore, the

case r = 1 is a particular one that implies strong LR forces among the peptide groups

that constitute the protein lattice. This may have some direct biological consequences on

the structural dynamics of the molecule and on the localization of energy. Some other

contributions have recently considered the finite range interaction using the Kac-Baker

potential to model intermolecular interactions, an proposed strong LR coupling to be

responsible for stabilizing the protein chain structure [90].

The parameter L in formula (3.22) is the linear coupling energy between covalently

bonded peptide groups between different strands. Hvib describes the vibronic dynamics

of the molecular system, and includes both the radial and longitudinal displacements of

the peptide units from their equilibrium positions. Note that radial and longitudinal

displacements are related to the changes in radius R → R + vn,σ and the pitch b →
b+un,σ, and feature the distortions of the covalent and hydrogen bonds respectively. This

contribution to the total Hamiltonian is written as:

Hvib =
1

2

∑
n,α

{(
P u
n,α

)2
M

+

(
P v
n,α

)2
M

+ κ (un,α − un−1,α)
2 +

1

4
ϖ (vn,α − vn,α−1)

2

}
. (3.4)
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M is the mass of a peptide group, κ and ω are the elasticity coefficients of the hydrogen and

covalent bonds, respectively. un,α is the longitudinal displacement of the molecule parallel

to the helical axis, and vn,α the displacements along the helix radius. The quantities P u
n,α

and P v
n,α are the momentum conjugate to un,α and vn,α respectively. The vibrational and

excitonic parts interact through the Hamiltonian

Hint =
∑
n,α

[
χ(un+1,α − un,α) +

1

2
η(vn,α+1 − 2vn,α + vn,α−1)

]
β+
n,αβn,α. (3.5)

In Eq.(3.25), the terms associated with the parameters χ and η represent the diagonal

coupling between the excitonic amplitude and the displacement of the peptide groups

in the longitudinal and radial directions, respectively. Otherwise, the adjacent bonds

oscillations are affected by the dynamics of the exciton as discussed in Refs. [33–35].

The following quantum state vector can be used to understand the collective excitation

of the system

|ψ(t)⟩ =
∑
n,α

An,α(t)β
†
n,α

{
exp

[
− i

~
∑
n,α

[
bn,α(t)P

u
n,α − ϕn,α(t)un,α

]
+
[
cn,α(t)P

v
n,α − πn,α(t)vn,α

]]}
|0⟩,

(3.6)

where ~ is the PlanckŠs constant and |0⟩ is the ground-state vector. An,α(A
∗
n,α) is the

coherent state representation of the operators βn,α (β†
n,α). We have introduced bn,α and

cn,α as the coherent state representations of un,α and vn,α respectively, and ϕn,α and πn,α

for their conjugate momenta P u
n,α and P v

n,α. Moreover, the coherent state representations

of the operators for βn,α, β†
n,α, un,α, vn,α, P u

n,α and P v
n,α are written as

An,α(t) = ⟨ψ(t)|βn,α|ψ(t)⟩, A∗
n,α(t) = ⟨ψ(t)|β†

n,α|ψ(t)⟩,

bn,α(t) = ⟨ψ(t)|un,α|ψ(t)⟩, cn,α(t) = ⟨ψ(t)|vn,α|ψ(t)⟩,

ϕn,α(t) = ⟨ψ(t)|P u
n,α|ψ(t)⟩, πn,α(t) = ⟨ψ(t)|P v

n,α|ψ(t)⟩.

(3.7)

Ansatz Eq. (3.27) satisfies the normalization condition ⟨ψ(t)|ψ(t)⟩ =
∑
n,α

|An,α|2 = N ,

where |An,α|2 characterizes the probability amplitude for finding a quantum of Amide-I

energy in a particular amino acid. The Hamiltonian that gives the coherent states is

written in the form

⟨H⟩ = ⟨ψ(t)|H|ψ(t)⟩, (3.8)
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which is written in the more expanded form

⟨H⟩ =
∑
n,α

{
A∗
n,α

[
(E0 +W )An,α −

∑
m̸=n

Jn−mAm,α − L(An,α+1 + An,α−1)

]

+ χ(bn+1,α − bn−1,α)A
∗
n,αAn,α +

1

2
(cn,α+1 − 2cn,α + cn,α−1)A

∗
n,αAn,α

}
,

(3.9)

with

W =
1

2

∑
n,α

{
(ϕn,α)

2

M
+

(πn,α)
2

M
+ κ (bn,α − bn−1,α)

2 +
1

4
ϖ (cn,α − cn,α−1)

2

}
. (3.10)

The dynamics of the system is easily understood by constructing the Heisenberg’s equation

of motion, i.e.,

i~
∂

∂t
⟨Xn,α⟩ = ⟨[Xn,α, H]⟩, (3.11)

where X stands for the dynamic variables An,α, bn,α, cn,α, ϕn,α and πn,α satisfying the

commutation relations [X,X∗] = 1 and [βn,α,Pn,α ] = [bn,α, ϕn,α] = [γn,α, Pn,α] = [cn,α, πn,α]

= i~. This leads to the following set of coupled equations:

i~
d

dt
An,α(t) = χ(bn+1,α − bn−1,α)An,α +

η

2
(cn,α+1 + 2cn,α + cn,α−1)An,α

− L(An,α+1 + An,α−1)−
∑
m̸=n

Jn−mAm,α (3.12)

d2

dt2
bn,α(t) = −κ(bn+1,α − 2bn,α + bn−1,α) + χ(|An+1,α|2 − |An−1,α|2) (3.13)

d2

dt2
cn,α(t) = − ϖ

4
(cn,α+1 + cn,α−1 − 2cn,α)−

η

2

(
|An,α+1|2 + |An,α−1|2 + 2 |An,α|2

)
.(3.14)

Another fact that is not negligible in the present model is that the velocity of the inter-

molecular transport of excitonic energy is much lower than the velocity of sound of the

acoustic bond oscillations. This causes the terms of inertia to be negligible, leading to the

following adiabatic approximations:

bn,α − bn−1,α =− α

κ

(
A∗
n,αAn−1,α + A∗

n−1,αAn,α
)
+
χ

κ

(
|An−1,α|2 + |An,α|2

)
bn+1,α − bn,α =− α

κ

(
A∗
n,αAn+1,α + A∗

n+1,αAn,α
)
+
χ

κ

(
|An+1,α|2 + |An,α|2

)
cn,α+1 + cn,α−1−2cn,α =

2η

ϖ

(
|An,α+1|2 + |An,α−1|2 + 2 |An,α|2

)
, α = 1, 2, 3,

(3.15)

upon which the following set of coupled equation is obtained

i
∂An,α
∂t

=− χ2

κ

[
|An+1,α|2 + |An−1,α|2 + 2|An,α|2

]
An,α −

2η2

κ

[
|An,α−1|2 + |An,α+1|2 + 2|An,α|2

]
An,α

−
∞∑
l=1

J ′
l (An+l,α + An−l,α) + L(An,α+1 + An,α−1), α = 1, 2, 3,

(3.16)
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which has been obtained after introducing the scaled quantities χ −→ ~√
MJ

3/2
0

χ, ϖ −→
~2
MJ2

0
ϖ, κ −→ ~2

MJ2
0
κ, η −→ ~2

MJ2
0
η, L −→ L

J0
, t −→ J0

~ t. In Eqs.(3.36), we have simplified

the LR term by considering l = n−m so that the dispersion term becomes
∞∑
l=1

J ′
l (An+l,α+

An−l,α), with J ′
l = |l|−r. Eqs.(3.36) are an ensemble of three CDNLS equations. In

the same chain, there are in fact two types of couplings, i.e., the nonlinear coupling term
χ2

κ
[|An+1,α|2 + |An−1,α|2 + 2|An,α|2]An,α and the linear or LR coupling term

∞∑
l=1

J ′
l (An+l,α+

An−l,α). Obviously, the nonlinear coupling term is restricted to nearest-neighbor pep-

tide groups. Interestingly, interaction among adjacent spine is insured by a linear term,

L(An,α+1+An,α−1), and the nonlinear term 2η2

κ
[|An,α−1|2 + |An,α+1|2 + 2|An,α|2]An,α. Based

on this, there is indeed a competition between nonlinear and dispersive terms. How-

ever, this is not enough to confirm the emergence of solitonic structures in the pro-

posed model. This requires more investigation related to the MI as done in the next

section. For the rest of the calculations, the following set of parameter values will be

used [4, 33, 34]: E0 = 0, 205eV=1, 55 × 10−22 Nm, κ = 19.36N, L = 2.46 × 10−22N.m,

ϖ = [91.0 − 155.5]Nm−1 J = 15.47 × 10−23J, I = [91.0 − 155.5]N.m−1, M = 1.9 × 10−25

Kg, χ = [2− 6]× 10−11N, η = [0.7− 1.2]× 10−11 N.

3.1.2 Unstable energy patterns

The direct way to predict the emergence of nonlinear structures in physical sys-

tems is the through the activation of MI, i.e., the study of the stability of plane wave

solutions. Such waves solutions are generally considered to be of the form An,α =

A0,αe
i(qαn−ωαt) (α = 1, 2, 3) where qα and ωα are the wavenumbers and the frequen-

cies, respectively. The amplitudes A0,α are assumed to be real. The solutions verify the

linear dispersion relations

ωα = −−4χ2

κ
|A0,α|2 −

2η2

κ

[
|A0,α−1|2 + 2 |A0,α|2 + 2 |A0,α+1|2

]
− 2

∞∑
l=1

J ′
l cos qαl (3.17)

In order to study the stability of the plane wave solutions, we introduce small perturbations

into their amplitudes in the form An,α = A0,α(1 + Bn,α(t))e
i(qαn−ωαt) (α = 1, 2, 3), where

Bn,α(t) are the small perturbations, which, after linearizing around the unperturbed plane
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waves, are governed by the set of coupled equations

i
∂Bn,α

∂t
= −χ

2

κ
[(Bn+1,α +B+

n+1,α) + (Bn−1,α +B+
n−1,α) + 2(Bn,α +B+

n,α)]|A0,α|2

− 2η2

κ
[(Bn,α−1 +B+

n,α−1)|A0,α−1|2 + (Bn,α+1 +B+
n,α+1)|A0,α+1|2 + 2(Bn,α +B+

n,α)|A0,α|2]

−
∞∑
l=1

J ′
l [(Bn+l,α +Bn−l,α − 2Bn,α) cos qαl − i(Bn+l,α −Bn−l,α) sin qαl].

(3.18)

Moreover, solutions for Eqs. (3.38) are assumed in the form Bn,α = a0,αe
i(Qn−Ωt) +

b∗0,αe
−i(Qn−Ω∗t), with Q and Ω being the wavenumber and complex frequency of perturba-

tion. On introducing those solutions into (3.38), one finds the following linear homoge-

neous system for a0,1, b0,1, a0,2, b0,2, a0,3, b0,3:

Ω−m11 m12 m13 m14 m15 m16

m21 −Ω +m22 m23 m24 m25 m26

m31 m32 Ω +m33 m34 m35 m36

m41 m42 m43 −Ω +m44 m45 m46

m51 m52 m53 m54 Ω +m55 m56

m61 m62 m63 m64 m65 −Ω +m66





a0,1

b0,1

a0,2

b0,2

a0,3

b0,3


=



0

0

0

0

0

0


,

(3.19)

with the matrix elements mi,j being given by

m11 = −4χ2

κ
|A0,1|2 sin2

(
Q

2

)
− 4η2

κ
|A0,1|2 − 2

∞∑
l=1

J ′
l

{
2 sin2

(
Ql

2

)
cos q1l − sinQl sin q1l

}
,

m12 = −4χ2

κ
|A0,1|2 sin2

(
Q

2

)
− 4η2

κ
|A0,1|2, m21 =

2χ2

κ
|A0,1|2 cosQ+

6η2

κ
|A0,1|2,

m13 = m14 = m23 = m24 = m53 = m54 = m63 = m64 =
2η2

κ
|A0,2|2,

m15 = m16 = m25 = m26 = m35 = m36 = m45 = m46 =
2η2

κ
|A0,3|2,

m22 =
2χ2

κ
|A0,1|2 cosQ+

6η2

κ
|A0,1|2 − 2

∞∑
l=1

J ′
l

{
2 sin2

(
Ql

2

)
cos q1l + sinQl sin q1l

}
,
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m31 = m32 = m41 = m42 = m51 = m52 = m61 = m62 =
2η2

κ
|A0,1|2,

m33 = m44 = −4χ2

κ
|A0,2|2 sin2

(
Q

2

)
+

4η2

κ
|A0,2|2 − 2

∞∑
l=1

J ′
l

{
2 sin2

(
Ql

2

)
cos q2l − sinQl sin q2l

}
,

m34 = m43 = −4χ2

κ
|A0,2|2 sin2

(
Q

2

)
+

4η2

κ
|A0,2|2, m65 = −4χ2

κ
|A0,3|2 sin2

(
Q

2

)
+

4η2

κ
|A0,3|2,

m55 = −4χ2

κ
|A0,3|2 sin2

(
Q

2

)
+

4η2

κ
|A0,3|2 − 2

∞∑
l=1

J ′
l

{
2 sin2

(
Ql

2

)
cos q3l − sinQl sin q3l

}
,

m56 = −4χ2

κ
|A0,3|2 sin2

(
Q

2

)
+

4η2

κ
|A0,3|2 − 2

∞∑
l=1

J ′
l sinQl sin q3l,

m66 = −4χ2

κ
|A0,3|2 sin2

(
Q

2

)
+

4η2

κ
|A0,3|2 − 2

∞∑
l=1

J ′
l

{
2 sin2

(
Ql

2

)
cos q3l + sinQl sin q3l

}
.

The condition for the above system to admit non-trivial solutions is obtained by setting

its determinant to zero. One therefore finds a sixth-order polynomials

Ω6 + P5Ω
5 + P4Ω

4 + P3Ω
3 + P2Ω

2 + P1Ω + P0 = 0 (3.20)

whose solutions may easily be found via symbolic computation, with the coefficients

Pj being given in the Appendix. Solutions for Eq.(3.40) can be found analytically,

using symbolic computation, but this is cumbersome are requires more simplifications

and the study of some few cases. A more complete investigation of the solutions re-

quires the use of numerical schemes, which give all the possible solutions. In that re-

spect, such solutions may be real or complex depending on the values of parameters and

most of the features related to MI are due to complex solutions. For example, solu-

tions for Ω are generally in the form Ω = Ωr + iΩi, which modifies the perturbations

as Bn,α(t) = eΩit
[
a0,αe

i(Qn−Ωrt) + b0,αe
−i(Qn−Ωrt)

]
. Therefore, one clearly sees that the

imaginary part controls the stability/instability of the plane wave solutions. The rate of

instability is in general evaluated in terms of the instability gain G(q,Q) = |Im(Ω)|, from

which the onset of MI can be detected. As already indicated while presenting the model,

one should stress that the coupling among adjacent peptides is of two competitive types,

i.e., the LR and the nonlinear coupling. Previous works devoted to nearest-neighbor in-

teractions have proven that the two types of coupling indeed affect the process of energy

transport and storage in the three-stranded model [33, 34]. In the rest of this particular

work, we insist on the concomitant effects of LR interactions and nonlinear coupling. To

proceed, we first of all consider q1 = q2 = q3 = q and A10 = A20 = A30 = 0.1. For

weak values of the nonlinear coupling parameter, i.e., χ = 2, we have the features of
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Figure 3.1: The panels show plots of the MI gain, and the corresponding stabil-

ity/instability diagram, versus the wavenumbers Q and q, with changing χ and the range

parameter r. For χ = 2, r = 1.5 corresponds to panels (a1) and (a2), where there is only

one region of instability. For r = 1.2, additional instability sidebands appear for r = 1.2

(panels 3.6(b1)-(b2)), and persist for r = 1.1 (panels 3.6(c1)-(c2)). Panels (d1)-(d2),

(e1)-(e2) and (f1)-(f2) corresponds to χ = 8, where r takes the respective values as in the

previous case. Here, under strong LR effects, the numerous number of instability regions

tend to merge into one one instability zone.
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stability/instability given in Fig. 3.6. High values of the range parameter correspond to

weak LR interactions and, when r → ∞, the system behaves as restricted to nearest-

neighbor interactions. In that respect, for r = 1.5, we have the gain of Fig. 3.6(a1) and

its corresponding stability/instability diagram plotted in Fig. 3.6(a2), where there is only

one region of instability. With decreasing r, i.e., increasing the LRI effect, additional

instability sidebands appear for r = 1.2 (Figs. 3.6(b1)-(b2)), and persist for r = 1.1

(Figs. 3.6(c1)-(c2)). This shows that under weak nonlinear intra-spine interaction, LR

interactions may be responsible for the explosion of the instability domain, leading to the

emergence of other regions of instability. However, under strong nonlinear intra-strand

coupling, the comportment is found to be different as depicted in Figs. 3.6(d1)-(d2), (e1)-

(e2) and (f1)-(f2), where we have fixed χ = 8. Panels (d1)-(d2) correspond to r = 1.5,

value of the range parameter that gives rise to several regions of instability. Their number

drops progressively with decreasing r, as shown in panels (e1)-(e2) and (f1)-(f2), for which

r takes respectively the values 1.2 and 1.1. In the meantime, one should be aware that

when values of parameters are picked from one of the regions of instability, the plane waves

will be said to be unstable under modulation and will therefore be expected to break-up

into solitonic structures. Otherwise, they will propagate with their properties not being

changed, and will be said to be stable under modulation.

Beyond these information on the onset of MI, the linear stability analysis fails to

predict the behaviors of solitons and nonlinear structures at long timescale. Therefore,

in order to verify the accuracy of the linear stability analysis, we propose to integrate

directly the set of Eqs.(3.36) using the fourth-order Runge-Kutta computational scheme,

with periodic boundary conditions and timescale ∆t = 10−3. We consider the initial

condition An,α = A0,α (1 + 0.01eiqn) eiQn (α = 1, 2, 3) and to start, we fix A10 = 0.1

and A20 = A30 = 0, with the wavenumbers q and Q taking respectively the values 0.35π

and 0.28π and χ = 2. Particularly, we have excited only one strand in order to observe

the dynamical response of the other two strands and the effectiveness of the inter-spine

coupling. The chosen values of the wavenumbers fall well inside the regions of instability

depicted in Fig. 3.6(a1)-(a2), and are to this fact expected to support nonlinear pattern

formation. This is for example confirmed by the structures obtained in Fig. 3.7, whose

shape and characteristics are influenced by the change in the range parameter r. In gen-

eral, over longtime simulation they appear and have the shape of soliton-like patterns.

This is a direct proof of the accuracy between our analytical predictions and direct nu-
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Figure 3.2: Numerical energy patterns obtained for χ = 2 and: (aj)j=1,2,3 r = 1.5,

(bj)j=1,2,3 r = 1.2 and (cj)j=1,2,3 r = 1.1, with A10 = 0.1, A20 = A30 = 0, κ = 11 and

ω = 100.

merical calculations on the generic model. As only one of the spines has been excited,

one notices the response from the other two strands, which obviously have the same am-

plitude of excitation. This has been reported in a number of recent contributions, but

in the absence of LRI [32–35]. Nevertheless, they are the consequence of the interplay

between nonlinear and dispersive effects. More precisely, the trains of waves obtained
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Figure 3.3: Spatial energy modes corresponding to Fig. 3.8 at time t = 400, in the lattice

sequence 50 ≤ n ≤ 350. Line (A) is plotted for r = 1.5, line (B) for r = 1.2 and line (C)

for r = 1.1. The other parameters are χ = 2, A10 = 0.1, A20 = A30 = 0, κ = 11 and

ω = 100.

have features of pulse solitons, but while comparing Fig. 3.7(a1) to Figs. 3.7(a2) and

(a3), the presence of extended waves for |An,1| is a fact, while |An,2| and |An,3| display

patterns with periodic background. Figs. 3.7(aj)j=1,2,3 have been recorded for r = 1.5.

For r = 1.2, the manifestations of MI are shown in Figs. 3.7(bj)j=1,2,3, where the number

of breathing patterns has increased. Moreover, |An,2| and |An,3| display some initiation

of two-humped solitonic structures with filled profile, while for |An,1|, individual pulses

of energy are visible. In Fig. 3.8, the calculations of Fig. 3.7 have been repeated, where

line (A) corresponds to Figs. 3.7(aj)j=1,2,3, line (B) to Figs. 3.7(bj)j=1,2,3 and line (C) to

Figs. 3.7(cj)j=1,2,3. There, the energy density has been recorded versus space and one

clearly confirms the profile depicted in Fig. 3.7 with changing the value of the range

parameter. For small values of the later, energy is distributed among lattice sites and re-

mains available for intrinsic lattice dynamics. Interestingly, although there is still intrinsic

energy, sequences of high energy patterns emerge in the form of impulses as confirmed
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Figure 3.4: Spatial energy patterns related to strong intra-spine interaction, i.e., χ = 8,

in the lattice sequence 50 ≤ n ≤ 350 at time t = 400. Line (A) is plotted for r = 1.5,

line (B) for r = 1.2 and line (C) for r = 1.1. The other parameters are A10 = 0.1,

A20 = A30 = 0, κ = 11 and ω = 100.

by line (C) of Fig. 3.8. The result of line (C), however, shows the robustness of energy

localization in molecular models, especially monitored by solitonic structures under the

influence of any factor that may modify both the intrinsic nonlinearity and the dispersion

inherent to such systems. Like in DNA, the stored and transported energy is supposed

to adopt a specific profile for the process of its transport to be initiated [124]. That is

indeed why, when all the conditions are gathered, under the activation of MI, trains of

solitons as those observed in Fig. 3.8, line (C), may be observed. To remind, the results

of Fig. 3.7 and 3.8 have been recorded for weak nonlinear intra-spine coupling χ. In

Fig. 3.9, we have therefore increased its value as χ = 8. The obtained results suggest that

for r = 1.5, energy patterns display periodic profiles, with the excitonic patterns |An,2|
and |An,3| still having the same characteristics. For r = 1.2, the localized states described

in Ref. [35] appear, due to strong coupling χ and mainly because of the strength of the

LR coupling that increases. Remarkably, the spatial expansion of the obtained patterns
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Figure 3.5: Spatial energy patterns related to strong intra-spine interaction, i.e., χ = 14,

in the lattice sequence 50 ≤ n ≤ 350 at time t = 400. Line (A) is plotted for r = 1.5,

line (B) for r = 1.2 and line (C) for r = 1.1. The other parameters are A10 = 0.1,

A20 = A30 = 0, κ = 11 and ω = 100.

gets restrained, compared to the case of line (A). This persists when r = 1.1, where the

wave spatial expansion of |An,1| gets more narrower, therefore involving few sequences of

lattice sites. This phenomenon is ubiquitous to many molecular systems due to the strong

competition between nonlinearity and dispersion. Multi-humped solitonic structures were

already reported in a three-stranded model of α−helix proteins, but were shown to merge

into a single structure with increasing χ. The same behavior is obvious in Fig. 3.5, where

the value of χ has been increased to 14. In fact, the observed spectrum of behaviors is a

consequence of the coupled effects of nonlinear coupling and LRI, leading to an effective

transition from extended trains of waves to asymmetric solitonic humps when r becomes

small, i.e., under strong LRI. Line (A) of Fig. 3.5 has been plotted for r = 1.5, line (B)

for r = 1.2 and line (C) for r = 1.1. The existence of such waves in proteins was al-

ready suggested by Brown et al. [20–22] and Ivic et al. [123, 125, 126]. That was to

demonstrate that due to the structural modification taking place in real proteins during
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energy transport, the observed structures were suitable. Falvo and Pouthier [127, 128],

considering a three-spine model showed that the vibron dynamics was the consequence of

the competitive effects between inter-spine vibron hops, leading to some dressing effects,

capable of reducing vibrational exchange between spines, the direct consequence being

the emergence of energy patterns that move along a single spine, therefore reducing the

system to a one-dimensional Davydov model. In contrast, the nonlinear effects present

in the proposed model enhance the emergence of solitonic waves that, under appropri-

ate LR dispersive contribution in all the spines, reinforce inter-based energy storage and

distribution. Indeed, the model Eqs.(3.36) include coupling parameters to vibrational

dynamics, especially H-bonds among spines, which were already revealed to be vital for

mediating electronic transport in proteins [35,39,133]. They are indeed the driving force

in such a process, which to some extent is common to most of biological molecules. Due

to the presence of H-bonds, charge transport in DNA may be controlled and give rise to

important dynamical spectrum with appropriate biological implications [30, 129–132].

3.1.3 Conclusion

This investigation considered a three-stranded α−helix protein model with LR dis-

persive interactions and inter-spine coupling. The improved quantum model for exciton-

phonon dynamics has been reduced to a set of three coupled modified DNLS equations

with LR interactions. The MI analysis has therefater been conducted, and regions of

instability detected. Those regions, where the plane wave solutions are supposed to disin-

tegrate into trains of soliton-like objects, have been found to be very sensitive to the LR

and nonlinear coupling parameters, r and χ respectively. For small values of χ, strong

LR interaction, i.e., small r, tends to induce additional instability sidebands which reduce

to only one region when r decreases. Contrarily, for high values of χ, the spectrum of

instability displays many regions of instability that are annihilated by strong LR effects.

This has been confirmed numerically, using instability parameters. In that respect, it has

been confirmed that when parameters fall well inside instability zones, there appear trains

of solitonic entities due to the balanced effect of nonlinearity and dispersion. More impor-

tantly, for small χ, ordinary extended waves transform progressively into trains of pulses

with decreasing r. Although this remains obvious for big χ and high r, more spatially

restrained structures emerge under strong LR effects. This gets more pronounced when

χ increases. In view of the above, solitonic structures are robust in H-bonded molecules,
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especially in proteins and DNA. In that respect, they may be of different significance, de-

pending on the backbone structure of the studied biomolecule. However, most of the cases

rely on the strong relationship between vibrational and excitonic dynamics. In DNA for

example, solitonic energy patterns have been found to be more effective when the H-bonds

linking the bases in pairs are compressed, leading to slight breathing oscillations of the

strand under the activation of MI [30,129,131,132], and the same seems to be effective

in proteins. Understanding the various mechanisms and factors related to such processes

is of paramount importance both in biology and nanobioelectronic. This requires the elab-

oration of more suitable models, that may bring together as many interactions as possible,

including those related to the direct molecular environment of the protein such as thermal

fluctuations, dissipation and LR coupling among peptide groups. Investigations in those

directions are ongoing.

3.2 Fractional dynamic effects

3.2.1 Introduction

In the last decades, the understanding of energy transport and storage in biomolecules

has received a remarkable development mainly based on the seminal contribution of Davy-

dov [8]. It has been well-established that the energy which is transported via proteins

originates from the hydrolysis of adenosine triphosphate (ATP) [8]. Namely, considering

the structure of α−helix proteins, Davydov and Kislukha [6,7] used the exciton formalism

to explain the self-trapping of the amide-I oscillations as the consequence of the interaction

between the vibrational exciton and the distortion in the protein structure, resulting from

the presence of the exciton. They established that the interplay between nonlinearity and

dispersion may favor solitons to travel in the protein strand and carry the self-trapped

vibrational amide-I energy. Many of the contributions that followed focussed on the ex-

istence of only one exciton state [4, 5, 31–33, 42, 77, 134–136]. Works by Pouthier and

Falvo [127,128,137] however insisted on the existence of at least two excited states as a

way of stabilizing the self-trapped energy. Merlin and Latha [138,139]also addressed such

aspects and rather showed, based on a paper from Ekobena et al. [31], that anharmonicity

may play an important role when more that one excitations are considered. The soliton

that are usually obtained in this context are solutions of coupled nonlinear Schrödinger

Madiba Epanè Stéphane Ph.D-Thesis



3.2 Fractional dynamic effects 64

(NLS) equations, each describing a specific excitonic state [32,33,41,77,135]. Attention

has been given recently to protein structures with long-range (LR) intermolecular inter-

actions, leading to space-fractional NLS equations [41, 140]. In this framework, Tarasov

and Zaslavsky [141, 142] have shown that in the presence of power-law LR interactions,

it was possible to reduce a purely discrete problem to its space-fractional formulation.

A three-stranded model of α−helix proteins was used recently as an example by Mvogo

et al. [41], but further approximations were made to recover a classical set of coupled

NLS equations, therefore avoiding the complexity imposed by the fractional terms. More

recently, the modulational instability (MI) of a fractional NLS equation was addressed,

where Zhang et al. [143] showed that the fractional-order parameter may have impor-

tant influence on the onset and long-time evolution of nonlinear modulated patterns.

Tabi [140] also studied the MI of plane wave in an α−helix model and brought out the

effect of the fractional derivative on the process of energy transport and storage along a

single protein strand. This work is a generalization of such a model, i.e., when more that

one excitonic degree of freedom is considered. We show that for a two-exciton model,

transport and storage of energy can fully be described by a set of nonlinearly coupled

space-fractional NLS equations. The linear stability analysis of their plane wave solutions

is then performed with emphasis on the effect of changing both the fractional-order pa-

rameters and the coefficient of nonlinearity. Numerical experiments are used to confirm

the analytical predictions through the long-time behaviors of the subsequent modulated

trains of waves. Concluding remarks end the paper.

3.2.2 Model and dynamical equation

3.2.2.1 Model

The generalized Hamiltonian corresponding to the dynamics of two excitons in a pro-

tein lattice has been proposed in some recent works as an improvement of the Davydov

model [6, 8]. In the presence of LR intrachain molecular interaction between molecular

excitations, the Hamiltonian writes

H =
∑
n

[
~ω0(A

†
nAn +B†

nBn)−
∑
m̸=n

J
(1)
n−m(A

†
nAm + AnA

†
m)−

∑
m̸=n

J
(1)
n−m(B

†
nBm +BnB

†
m)

+
g1
2
(A†

nA
†
nAnAn +B†

nB
†
nBnBn) + g2A

†
nAnB

†
nBn

]
,

(3.21)
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with the subscript n referring to the lattice index along the strand (or chain). The

expression of H suggests that an individual amino acid will be identified by the index pair

n, such that An (A†
n) and Bn (B†

n) are boson creation (annihilation) operators associated

with intramolecular vibrations of the nth peptide group. These operators satisfy the usual

commutation relations for bosons, i.e., [An, A†
m] = δm,n, [An, Am] = 0, [Bn, B

†
m] = δm,n and

[Bn, Bm] = 0. ~ω0 is the local amide-I vibrational energy, and the terms ~ω0A
†
nAn and

~ω0B
†
nBn are the vibrational energies at the site n from the two exciton bound states. The

terms
∑
m̸=n

J
(1)
n−m(A

†
nAm + AnA

†
m) and

∑
m̸=n

J
(2)
n−m(B

†
nBm + BnB

†
m) are the energies related

to the LR interactions between molecular excitations on sites n and m. The coupling

parameters J (1)
n−m and J

(2)
n−m are the LR transfer integrals between sites n and m, here

considered of the form [43–45,144]:

J
(1)
n−m = J1|n−m|−s1 and J

(2)
n−m = J2|n−m|−s2 , (3.22)

with J1 and J2 being the strengths of the transfer integral between the chain and each

of the excitations. si (i = 1, 2) are range parameters whose values belong to the interval

[1,+∞[. However si cover different physical contexts, depending on its value. For example

if si → ∞, the LR interaction reduces to nearest-neighbor couplings. For si = 5, the LR

interaction is of a dipole-dipole type, while for si = 3, the LR interaction is of the Coulomb

type. We should stress that the strongest interaction effects are due to smaller values of

si.

We make use of the Heisenberg formulation and obtain the following exciton equations:

i~
∂An
∂t

= ~ω0An −
∑
m̸=n

J
(1)
n−mAm + (g1AnA

†
n + g2BnB

†
n)An, (3.23a)

i~
∂Bn

∂t
= ~ω0Bn −

∑
m̸=n

J
(2)
n−mBm + (g1BnB

†
n + g2AnA

†
n)Bn. (3.23b)

In order to study coherent states, it will be useful to rewrite Eq.(3.23) in terms of eigen-

functions of the operators An, A†
n, Bn and B†

n so that, if the Glauber coherent states

|{αn}⟩ =
∏

n |αn⟩, An|αn⟩ = αn|αn⟩, |{βn}⟩ =
∏

n |βn⟩ and Bn|βn⟩ = βn|βn⟩ are intro-

duced [?], the set of Eqs.(3.23) becomes

i~
∂αn
∂t

= ~ω0αn −
∑
m̸=n

J
(1)
n−mαm + (g1|αn|2 + g2|βn|2)αn, (3.24a)

i~
∂βn
∂t

= ~ω0βn −
∑
m̸=n

J
(2)
n−mβm + (g2|αn|2 + g1|βn|2)βn. (3.24b)
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Eqs.(3.24) are a set of nonlinearly coupled NLS equations with LR dispersive interactions.

When g2 = 0, the two equations will be completely decoupled and will reduce to individual

discrete NLS equations. For instance, we can get rid of the terms ~ω0αn and ~ω0βn via

the gauge transformations αn(t) = un(t)e
−iω0t and βn(t) = vn(t)e

−iω0t. This yields

i
∂un
∂t

= −
∑
m̸=n

J
(1)
n−mum + (g1|un|2 + g2|vn|2)un, (3.25a)

i
∂vn
∂t

= −
∑
m̸=n

J
(2)
n−mvm + (g2|un|2 + g1|vn|2)vn, (3.25b)

where we have further made the change of variable t→ t/~.

3.2.2.2 The coupled NLS equation with fractional derivative

In order to obtain the fractional-derivative formulation of Eqs.(3.25), we introduce the

functions [41, 141,142]

ϕ(k, t) =
+∞∑

m=−∞

e−ikndun(t), ψ(k, t) =
+∞∑

m=−∞

e−ikndvn(t) and J(k) =
+∞∑

m=−∞

e−ikndJn,

(3.26)

where the parameter k is a wavenumber, d is the lattice spacing and Jn is given by Eq.

(3.22). Inversely, the functions un(t) and un(t) are respectively related to ϕ(k, t) and

ψ(k, t) through the relations

un(t) =

∫ π

−π
eikndϕ(k, t)dk and vn(t) =

∫ π

−π
eikndψ(k, t)dk. (3.27)

In the continuum approximation, i.e., un(t) → u(x, t) and vn(t) → v(x, t), with x = nd,

when k → 0, relations (3.26) and (3.27) become

ϕ(k, t) =

∫ +∞

−∞
e−ikxu(x, t)dx, ψ(k, t) =

∫ +∞

−∞
e−ikxv(x, t)dx,

u(x, t) =
1

2π

∫ +∞

−∞
eikxϕ(k, t)dk, v(x, t) =

1

2π

∫ +∞

−∞
eikxψ(k, t)dk.

(3.28)

Applying all the above to Eq.(3.25) in the continuum approximation leads to

i
∂u(x, t)

∂t
= −J1(0)u(x, t)−

∫ +∞

−∞
dydxK1(x−y)

∂u(x, t)

∂x
+
(
g1|u(x, t)|2 + g2|v(x, t)|2

)
u(x, t)

(3.29a)

i
∂v(x, t)

∂t
= −J2(0)v(x, t)−

∫ +∞

−∞
dydxK2(x−y)

∂v(x, t)

∂x
+
(
g2|u(x, t)|2 + g1|v(x, t)|2

)
v(x, t),

(3.29b)
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where the Kernels Ki(x) (i = 1, 2) are given by

Ki(x) =
1

π

∫ +∞

−∞
eikx

Gi(k)

k2
dk, i = 1, 2, (3.30)

with Gi(k) = Ji(0)− Ji(k), Ji = ζ(si)
−1, with the ζ−function being given by ζ =

∞∑
1=1

n−s.

For the specific case where 2 ≤ si < 3, the function G(k) is in the form

Gi(k) =
πJi

Γ(σi + 1) sin
(
πσi
2

) |k|σi , (3.31)

where where Γ(σ) is the Γ−function, with σ = s − 1 and Γ(σ + 1) = σΓ(σ). Therefore,

given the possible values of s, the values of σ will be found between 1 and 2. Under such

considerations, the continuum equations (3.29) become

i
∂u(x, t)

∂t
= −J1(0)u(x, t)− P1

∂σ1

∂|x|σ1
u(x, t) +

(
g1|u(x, t)|2 + g2|v(x, t)|2

)
u(x, t), (3.32a)

i
∂v(x, t)

∂t
= −J2(0)v(x, t)− P2

∂σ2

∂|x|σ2
v(x, t) +

(
g2|u(x, t)|2 + g1|v(x, t)|2

)
v(x, t), (3.32b)

where the coefficients Pi (i = 1, 2) are given by

P1 =
πJ1

Γ(σ1 + 1) sin
(
πσ1
2

) and P2 =
πJ2

Γ(σ2 + 1) sin
(
πσ2
2

) . (3.33)

The Riesz fractional derivatives are given by [146,147]

∂σ1

∂|x|σ1
u(x, t) = − 1

2π

∫ +∞

−∞
|k|σ1ϕ(k, t)dk and

∂σ2

∂|x|σ2
v(x, t) = − 1

2π

∫ +∞

−∞
|k|σ2ψ(k, t)dk.

(3.34)

By making use of the gauge transfomations u(x, t) → u(x, t)eiJ1t and v(x, t) → v(x, t)eiJ2t,

we finally obtain

i
∂u(x, t)

∂t
= −P1

∂σ1

∂|x|σ2
u(x, t) +

(
g1|u(x, t)|2 + g2|v(x, t)|2

)
u(x, t), (3.35a)

i
∂v(x, t)

∂t
= −P2

∂σ2

∂|x|σ2
v(x, t) +

(
g2|u(x, t)|2 + g1|v(x, t)|2

)
v(x, t), (3.35b)

which is a set of coupled NLS equations with space-fractional derivatives. Obviously,

the dispersion terms Pi are functions of the fractional-order parameters σi. However, the

Riesz fractional derivative is also expressed as [146,147]

∂2σ

∂|x|σ
f(x, t) = −

(
− ∂2

∂|x|2

)σ/2

f(x, t) = − 1

2 cos
(
πσ
2

) [−∞Dσ
xf(x, t) + xDσ

+∞f(x, t)
]
,

(3.36)
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Figure 3.6: The panels show plots of the of the coefficients R and S of Eq. (3.42) and its

discriminant ∆ = R2 − 4S, versus the perturbation wavenumber λ. The fractional-order

parameters change as shown in the legends, with g1 = g2 = −0.05 and J1 = J2 = 0.08.
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Figure 3.7: The panels show plots of the MI growth rate (3.45) versus the perturbation

wavenumber λ. (a) corresponds to g1 = −0.5, (b) to g1 = −0.1 and (c) to g1 = −0.08.

We have fixed g2 = −0.05, while the fractional-order parameters change as displayed by

the legends, with J1 = J2 = 0.08.

where −∞Dσ
xf(x, t) and xDσ

+∞f(x, t), are the left- and right-side Riemann-Liouville frac-

tional derivatives of order σ, that are respectively given by [146,147]

xDσ
+∞f(x, t) =

1

Γ(n− σ)

∂n

∂xn

∫ x

−∞

f(ξ, t)dξ

(x− ξ)σ−x+1
,

−∞Dσ
xf(x, t) =

(−1)n

Γ(n− σ)

∂n

∂xn

∫ x

−∞

f(ξ, t)dξ

(ξ − x)σ−x+1
.

(3.37)
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3.2.3 Modulational instability analysis

The set of Eqs.(3.35) admits the plane waves u(x, t) = u0e
iω1t and v(x, t) = v0e

iω2t as

solutions, with the frequencies and amplitudes u0 and v0 being related by

ω1 = −(g1|u0|2 + g2|v0|2) and ω2 = −(g1|v0|2 + g2|u0|2). (3.38)

We consider small perturbations χ1 and χ2 into the above solutions, i.e., u(x, t) = u0(1 +

χ1(x, t))e
iω1t and v(x, t) = v0(1 + χ2(x, t))e

iω2t. This leads, after linearizing around the

unperturbed plane waves, to the set of equations

i
∂

∂t
χ1(x, t) = −P1

∂σ1

∂|x|σ1
χ1(x, t) + g1|u0|2(χ1 + χ∗

1) + g2|v0|2(χ2 + χ∗
2), (3.39a)

i
∂

∂t
χ2(x, t) = −P2

∂σ2

∂|x|σ2
χ2(x, t) + g1|v0|2(χ2 + χ∗

2) + g2|u0|2(χ1 + χ∗
1) (3.39b)

for the perturbations. Moreover, the problem can be efficiently solved by separating real

from imaginary parts, i.e., χ1 = a1 + ib1 and χ2 = a2 + ib2, leading to the equations

∂

∂t
a1(x, t) = −P1

∂σ1

∂|x|σ1
b1(x, t),

∂

∂t
b1(x, t) = P1

∂σ1

∂|x|σ1
a1(x, t)− 2g1|u0|2a1(x, t)− 2g2|v0|2a2(x, t),

∂

∂t
a2(x, t) = −P2

∂σ2

∂|x|σ2
b2(x, t),

∂

∂t
b2(x, t) = P2

∂σ2

∂|x|σ2
a2(x, t)− 2g1|v0|2a2(x, t) + 2g2|u0|2a1(x, t).

(3.40)

Solutions for Eqs.(3.40) can be considered in the form of the following Fourier transfroms:

ã1(λ,Ω) =

∫ ∫ +∞

−∞
a1(x, t)e

i(λx+Ωt)dxdt,

ã2(λ,Ω) =

∫ ∫ +∞

−∞
a2(x, t)e

i(λx+Ωt)dxdt,

b̃1(λ,Ω) =

∫ ∫ +∞

−∞
b1(x, t)e

i(λx+Ωt)dxdt,

b̃2(λ,Ω) =

∫ ∫ +∞

−∞
b2(x, t)e

i(λx+Ωt)dxdt.

(3.41)

Replacing the above solutions into Eqs.(3.40) leads to a homogeneous system for ã1, b̃1,

ã2 and b̃2. The condition for such a system to admit non-trivial solutions is obtained by

setting its determinant to zero, which leads to the nonlinear dispersion relation

Ω4 −RΩ2 + S = 0, (3.42)
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Figure 3.8: Plots of the MI growth rate versus the perturbation wavenumber λ and the

fractional-order parameter σ2. Panels (aj)j=1,2,3 correspond to g1 = −0.5 and g2 = −0.05,

and panels (bj)j=1,2,3 gives Γ for g1 = −0.08 and g2 = −0.05. Columns (a1)-(b1) are

obtained for σ1 = 1.1, (a2)-(b2) for σ1 = 1.4 and (a3)-(b3) for σ1 = 1.8, with J1 = J2 =

0.08.

where

R = P2|λ|σ2(2g1|v0|2 − P2|λ|σ2) + P1|λ|σ1(2g1|u0|2 − P1|λ|σ1),

S = P1P2|λ|σ1+σ2
[
4g22|u0|2|v0|2 − (P1|λ|σ1 − 2g1|u0|2)(P2|λ|σ2 − 2g1|v0|2)

]
.

(3.43)

Obviously, the coefficients of the dispersion relation (3.42) depend on the fractional-order

parameters σ1 and σ2. However, the plane wave solutions will remain stable if the condi-

tions R > 0, S > 0 and ∆ = R2 − 4S > 0 are simultaneously satisfied. In order to find

the intervals of parameters where such condition can be satisfied, we have plotted R, S

and ∆ in Fig. 3.6 versus the perturbation wavenumber λ.

The condition R > 0 is studied in Fig. 3.6(a), where the stability region is found in the

interval 0 < λ < λ+. However, depending on the value of the fractional-order parameters

σ1 and σ2, that interval can get expanded or reduced. It gets expanded for σ1 = 1.4 and
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σ2 = 1.1, and drops for σ1 = 1.8 and σ2 = 1.1.

The condition S > 0 is addressed in Fig. 3.6(b). For {σ1 = σ2 = 1.1} and {σ1 =

1.4;σ2 = 1.1}, there is an interval λ− < λ < λ+ (with λ− > 0) where wave stability is

expected. However, there is a change of behavior for {σ1 = 1.8;σ2 = 1.1}, where stable

plane wave are possible in the interval λ− < λ <∞.

The discriminant ∆ has been plotted in Fig. 3.6(c). The plane wave will remain stable

where ∆ is positive. Its sign changes with the fractional-order parameters. Under such a

condition, Eq. (3.42) admits two solutions given by

Ω2
+ =

1

2

(
R +

√
R2 − 4S

)
, Ω2

− =
1

2

(
R−

√
R2 − 4S

)
. (3.44)

On the other hand, if ∆ = R2 − 4S < 0, there exists a domain of the wavenumber λ for

which Ω2 is negative. In this range, the solution of (3.42) are complex so that Ω2 has a

nonvanishing imaginary part. The plane waves will be unstable if this imaginary part of

Ω is positive, causing the perturbation to grow exponentially. Then, the plane wave tends

to self-modulate with a wavenumber λ corresponding to the growth rate

Γ = Im
(
Ω2

±
)
= ±1

2

√
4S −R2. (3.45)

The above growth rate of instability implies that the condition
√
4S −R2 > 0 should be

satisfied for wave instability to take place. The growth rate of instability (3.45) is plotted

in Fig. 3.7, versus the wavenumber λ, where the effect of the fractional-order parameters

is obvious. To plot Fig. 3.7(a), we have fixed g2 = −0.5 and σ2 = 1.1. For σ1 = σ2 = 1.1,

the plane wave is unstable in the region 0 < λ < 0.5 which gets extended to 0 < λ < 0.58

for σ1 = 1.4. For σ1 = 1.8, the region of instability gets reduced and restricted to the

interval 0.26 < λ < 0.48. The same behavior is obvious in all the other cases, where g2 =

−0.1 (Fig. 3.7(b)) and g2 = −0.05 (Fig. 3.7(c)), but with a delocalization phenomenon

of the instability domain. To remind, g2 is the nonlinear coupling parameter between

Eqs. (3.35a) and (3.35b), which when set to zero reduces the system to ordinary fractional

NLS equations. Its interplay with space-fractional terms (or fractional dispersion) is

responsible for the emergence of regions of instability as further confirmed by the growth

rate diagrams plotted in Fig. 3.8, where the upper line corresponds to g2 = −0.5 and the

lower line to g2 = −0.08. Therefore, when parameters fall inside regions of instability,

the plane wave solutions will be said to be unstable under modulation. Otherwise, the

plane wave solutions will be expected to remain stable, keeping their initial characteristics.
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Figure 3.9: Plane wave modulation in the two-exciton chain for: Line (A) g1 = g2 =

−0.05, Line (B) g1 = −0.08 and g2 = −0.05, and Line (C) g1 = −0.1 and g2 = −0.05.

The first column on the left correspond to σ1 = σ2 = 1.1. The middle column corresponds

to σ1 = 1.4 and σ2 = 1.1, and the right column corresponds to σ1 = 1.8 and σ2 = 1.1. We

have fixed λ = 0.3 and J1 = J2 = 0.08.
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Further details on the instability features of the plane wave solutions are given in Fig. 3.9,

where the fractional CNLS Eqs.(3.35) have been solved numerically using the standard

split-step Fourier method [145]. In order to verify both the dispersive and nonlinear

coupling effects, we have assumed v0 = 0 as initial condition of Eq. (3.35b), while the

initial condition for Eq. (3.35a) is considered to be a perturbed plane wave solution with

the perturbation wavenumber λ = 0.3. Lines (A) of Fig. 3.9 correspond to the case

g1 = g2 = −0.05, where g2 is the nonlinear coupling coefficient between the two vibrational

equations. The same panels from left to right respectively correspond to {σ1 = σ2 =

1.1}, {σ1 = 1.4; σ2 = 1.1} and {σ1 = 1.8; σ2 = 1.1}. Obviously, the obtained

patterns are trains of solitonic structures whose features changes with increasing σ1. This

strongly support the fact that solitons are robust in such systems and may display different

behaviors due to the interplay between nonlinear and dispersive effects. Lines (B) of

Fig. 3.9 depict the case g2 = −0.08 with g1 keeping the same value as previously. σ1 and

σ2 also keep the same values as previously. The coupling process remains effective here

and the initial solitons tend to spread into radiations. However, the two excitonic parts

contribute to maintain permanent energy transport under the activation of MI. The last

case of Fig. 3.9, i.e., Lines (C), has been recorded for g2 = −0.1. Each of the modes still

displays trains of solitonic structures, except that for high values of the fractional-order

parameter σ1, the wave objects become narrow in space and highly localized. We should

remind that only one of the modes has been excited and that is exactly the one that

shows highly localized structures. Energy transport, to be efficient has been shown to be

supported by such waves, especially during the process of replication and transcription,

where the hydrogen bonds that link bases in DNA pairs are broken [30,42,144,148–150].

In proteins, it was shown that they may also emerge as exact solutions, depending on the

used method and the corresponding biological implications [41, 77, 89]. However, the

fractional-order parameters σ1 and σ2 bring about new features into wave localization in

proteins, and can be used as control parameters by suitable biological processes for specific

purpose.

3.2.4 Conclusion

In this part, we have studied the two-exciton energy transfer in α−helix molecular

chains, in the presence of LR dispersive interactions. We have shown that in the continuum

limit, using Fourier formalism may reduce the initial discrete problem to a set of coupled
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NLS equations with space-fractional derivatives. The theory of MI has thereafter been

used to study the onset of solitonic structures, via the linear stability analysis, followed by

direct numerical simulations for confirmation. The effect of changing the fractional-order

parameters has been studied and, together with the change in the nonlinear coupling

coefficient, it has been found to enhance the localization of energy, especially involving

the two excitonic modes. This has been found to be in agreement with the predictions and

supports once more the robustness of solitonic waves in molecular structures, especially

when nonlinear and dispersive effects are involved, for specific biological purposes.
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General Conclusion

Our study focused on "Energy transport and localization in complex protein struc-

tures with long-range intermolecular interactions". To achieve this, we have subdivided

the presentation of our thesis into three chapters. The first chapter presents the gener-

alities on protein chains with particular emphasis on their dynamics; first, speaking of

protein chains, we first presented the amino acids and peptide bonds, followed by the

structure of the proteins and finally the determination of the structure, following it; sec-

ondly, we talked about the types of proteins namely fibrous proteins and globular proteins;

thirdly, the origin of the concept of the soliton has been investigated, here we have focused

on the different classes of solitons and some applications of solitons; then we presented

Davydov’s original model; in the end we presented the literature review on models that

took into account certain parameters; we will not forget to talk about the experience and

applications of Davydov’s model. The LRI between peptide units due to dipole-dipole in-

teractions, inhomogeneities due to defects caused by the presence of additional molecules

such as drugs, carcinogens, mutants, and dyes in specific sites of the alpha helical protein

sequence make significant changes in the equations governing the dynamics of solitons in

Helical Proteins. The second chapter was devoted to the investigation methodology. To

achieve this, we have subdivided this chapter into three parts namely, the preliminaries

in which we presented models with long-range energy modes in alpha-helix networks with

inter spin coupling in a foreground and in in the background, we presented models with

long-range interaction effects; subsequently the analytical method used has been presented

namely the MI; in the end, the numerical method used, namely the Ronge-Kutta method.

These methods might have different diagrams of the same differential equation, but they

have the same purpose; that the dynamics of the system should closely correspond to

the dynamics of the differential equation. The third chapter was devoted to the results

of our work and the discussions. Here we have presented the effects of long range in a

three-dimensional model and then the long-range dynamic effects in fractional The re-
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sults have confirmed the fact that on the dynamics of solitons, a detailed study of the

three-chain model has revealed that the amplitude and the width of the soliton depend on

LRI’s parameter. We have found that the growth rate of instability has a singular point

for the long-range parameter r, where it is maximal. By using the power-law LRI, the

non-locality originating from the LRI has resulted in the dynamic equations with space

derivatives of fractional order. New theoretical frameworks to study exciton-phonon dy-

namics have been derived. The work may be interesting for all those professionals or not

who want to refresh their knowledge and to obtain information or to find the appropriate

keys for the understanding of biological and pathological phenomenons.

Open problems and future directions

Many interesting results have thus been obtained in the present thesis. However nu-

merous points related to this topic remain unsolved, and then may be subject to future

investigations.

• Usually we assume for LRI that each chain particle acts on all chain particles. There

are systems where this assumption cannot be used. In general, the chain cannot be

considered as a straight line (Davydov model). For example, the linear polymers can be

represented as some compact objects. The tertiary structure of enzymes is often compact,

globular shaped. In this case, we can consider that the chain particle is interacted with

particles of a ball with radius R.

• We considered a three-dimensional long-range chain. For the future, the studied

model will be two-dimensional at long range, and we will take into account the thermal

fluctuations for the alpha-helix model in its physiological environment, then we will pro-

ceed to the numerical verification of the proposed results, where a comparison will be

made. made between cases without dissipation of thermal fluctuations and that taking

into account dissipation and thermal fluctuations.

• Stochastic resonance has continuously attracted considerable attention over the last

two decades. The term is given to a phenomenon that is manifest in nonlinear systems

whereby generally feeble input information (such as a weak signal) can be amplified and

optimized by the assistance of noise. The stochastic resonance in inhomogeneous molec-

ular chains with LRI will be studied.

• It is well known that ionizing radiation has an undeniable impact on the structure

of biological molecules. The effect of ionizing radiation on the dynamics of solitons in
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molecular systems such as DNA and proteins will also be studied in the near future.
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• Long-range dispersive interactions are considered in a tridimensional model of α-helix proteins.
• Model equations are derived in the form of discrete and coupled nonlinear Schrödinger equations.
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• Trains of solitons and their characteristics are sensitive to nonlinear and LR coupling effects.
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a b s t r a c t

A system for three-strand α-helix proteins, with long-range dispersive interactions among
polypeptide units, is considered. The associate improved Davydov model is shown to be
fully described by a set of modified coupled discrete nonlinear Schrödinger equations,
which involve long-range interactions between peptide groups along the protein strands.
By means of the modulational instability theory, the competition between nonlinearity
and long-range intermolecular interactions are shown to modify the domain of instability
of plane waves. The impact of the competition between nonlinearity and long-range
interactions, on the process of energy transport and storage, is also addressed numerically.
It is shown that nonlinearity and the long-range couplings conspire to the emergence
of trains of solitonic structures, when parameters are well chosen within the domain of
instability of plane waves. The relevance of the improved model as well as the biological
implications of the account of long-range intermolecular interactions, are discussed in
the contexts of energy transport and storage in hydrogen-bonded molecular structures in
general, and in α-helix proteins in particular.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Many biological processes such as muscle contraction, active transport and enzyme catalysis rely on energy. This energy,
which is released through the hydrolysis of adenosine triphosphate (ATP), is mainly transported and stored by proteins.
Understanding the subsequent phenomena, those related to the management of energy by proteins, have been an active
research topic since the pioneeringwork byDavydov [1]. Based on a simple formulation of the problemDavydov showed that
energy is carried by solitonic structures, therefore establishing the relationship between such entities and lattice distortions.
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Namely, considering the structure of α-helix proteins Davydov and Kislukha [2,3] used the exciton formalism to explain
the self-trapping of the amide-I oscillations, as the consequence of the interaction between the vibrational exciton and
the distortion in the protein structure resulting from the presence of the exciton. They established that as a result of the
interplay between nonlinearity and dispersion, the self-trapped vibrational amide-I energy coupled to the protein structure
deformation may travel as a soliton in the protein strand [4,5].

Earlier models on the issue of energy transport and storage in protein chains were focused on a structure with only
one strand of hydrogen-bonded peptide units, both in the discrete and continuum regimes [1–3]. These models have
been the subject of great controversy, owing to their formulation involving inconsistencies in predictions on the Davydov
soliton lifetime, and more importantly its stability at the biological temperature of 300 K [6–13]. Nevertheless, numerical
simulations have revealed that such solitons may be stable at 300 K, but these studies were carried out from a purely
classical point of view with no consistent argument to prove their stability [4,5,14–19]. In order to solve this issue, adopting
a description of the α-helix protein in terms of a biological system stabilized by three quasi-linear strands, turned out
to be a suitable picture. Most of the pioneering analytical and numerical contributions in that direction can be found in
Refs. [5,20,21]. In the same direction slightly modified Davydov models of α-helix proteins were addressed by Daniel and
Latha [22], in which both discrete and continuum regimes were studied with a particular interest in the influence of the
inter-spine coupling and its consequences on the process of energy transport and storage among the spines. Based on
the fact that the process of modulational instability (MI) is a direct mechanism leading to solitons and the formation of
nonlinear structures [23–27], Tabi and co-workers [28–30] showed that the process may also be envisaged in the context of
three-strandedmolecular structures.More recently, a generalizedmodel ofα-helix protein chains including the competition
between diagonal and off-diagonal couplings was proposed [31]. The subsequent modes of energy were found to be very
sensitive to the nonlinear effects introduced by the two types of couplings. In Ref. [28], using the model by Hennig [32],
Tabi et al. showed that during the process of energy transport covalent bonds may be compressed, while hydrogen bonds
display regular oscillating behaviors leading to favorable condition for energy transport and storage in the coupled spines
via polaronic structures. Relying on data from X-ray analysis on proteins [33–35] it was also shown that the tridimensional
structure is favorable to energy and particle transfer in proteins, because of the significant presence of hydrogen (H)
bridges between the spines [36]. In other words the polarons that arise in protein dynamics may correspond to the energy
related to the electron transport, depending on the coupling strength to vibrational motions [28,32,37]. Moreover, in recent
investigations it was suggested that long-range (LR) dispersive interactions may be responsible for interesting dynamical
behaviors, especially in molecular systems like DNA and proteins [38–40], neural [41,42] and cell [43] networks.

Our main objective in this paper is to show that LR dispersive interactions may enhance the efficiency of energy
transport and storage in three-stranded molecules with inter-spine coupling. In this goal we shall use the theory of MI both
analytically and numerically, with emphasis on the importance of the competing effects between the LR interactions among
polypeptides units in individual protein helices and nonlinearity. The paper is outlined as follows: in Section 2 we introduce
the model Hamiltonian, and derive the dynamical equations which are modified coupled discrete nonlinear Schrödinger
(DNLS) equations. In Section 3 the theory ofMI is applied to themodel startingwith the linear stability analysis for planewave
solutions, followed by full numerical simulations to confirm predictions of the linear stability analysis and the emergence of
nonlinear wave patterns with soliton features. The last section is devoted to concluding remarks.

2. Hamiltonian model and dynamical equations

The generalized Hamiltonian for linked polypeptide chains arranged in three-dimensional helix has been proposed using
Davydov’s formulation [1,2]. It considers the coupling between amide-I vibration and displacements of amino-acid residues.
Its tridimensional version, as proposed in Refs. [28,31,32], is given by:

H = Hexc + Hvib + Hint , (1)

where Hexc is the energy associated with intramolecular excitations, Hvib is the contribution from the displacements of
peptide groups also known as lattice vibrations; Hint is the interaction energy between the amide-I excitations and the
displacements of peptide groups. The energy Hexc is defined as:

Hexc =

∑
n,α

⎡⎣E0β†
n,αβn,α −

∑
m̸=n

Jn−mβ
†
n,αβm,α + L

(
βn,α+1 + βn,α−1

)
β†
n,α

⎤⎦ , (2)

with the subscript n referring to the lattice index along a strand (or chain) α, where α = 1, 2, 3. The expression of Hexc
suggests that an individual amino acid will be identified by the index pair (n, α), such that βn,α (β†

n,α) are boson creation
(annihilation) operators associated with intramolecular vibrations of the nth peptide group in the strand α. These operators
satisfy the usual commutation relations for bosons i.e. [βn,α, β

†
m,α] = δm,n and [βn,α, βm,α] = 0. E0 is the local amide-I

vibrational energy, in this context the term E0β
†
n,αβn,α is the vibrational energy at the site (n, α). The term

∑
m̸=n Jn−mβ

†
n,αβm,α

is the energy related to the LR interactions betweenmolecular excitations on sites n andm, belonging to the same chain. The
coupling parameter Jn−m is the LR transfer integral between sites n and m, here considered of the form:

Jn−m = J0|n − m|
−r , (3)
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with J0 the strength of the transfer integral and r a parameter range whose values are in the interval [1,+∞[. However r
covers different physical contexts, depending on its value. For example if r → ∞ the LR interaction reduces to nearest-
neighbor couplings, a case corresponding to the models studied in Refs. [28,32]. For r = 5 the LR interaction is of a dipole–
dipole type, while for r = 3 the LR interaction is of the Coulomb type. We should stress that the strongest interaction
effects are due to smaller values of r . Therefore, the case r = 1 is a particular one that implies strong LR forces among
the peptide groups that constitute the protein lattice. This may have some direct biological consequences on the structural
dynamics of the molecule and on the localization of energy. Some other contributions have recently considered the finite
range interaction using the Kac–Baker potential to model intermolecular interactions, an proposed strong LR coupling to be
responsible for stabilizing the protein chain structure [44].

The parameter L in formula (2) is the linear coupling energy between covalently bonded peptide groups between
different strands.Hvib describes the vibronic dynamics of themolecular system, and includes both the radial and longitudinal
displacements of the peptide units from their equilibrium positions. Note that radial and longitudinal displacements are
related to the changes in radius R → R + vn,σ and the pitch b → b + un,σ , and feature the distortions of the covalent and
hydrogen bonds respectively. This contribution to the total Hamiltonian is written as:

Hvib =
1
2

∑
n,α

{(
Pu
n,α

)2
M

+

(
Pvn,α

)2
M

+ κ
(
un,α − un−1,α

)2
+

1
4
ϖ

(
vn,α − vn,α−1

)2}
. (4)

M is the mass of a peptide group, κ and ω are the elasticity coefficients of the hydrogen and covalent bonds, respectively.
un,α is the longitudinal displacement of the molecule parallel to the helical axis, and vn,α the displacements along the helix
radius. The quantities Pu

n,α and Pvn,α are the momentum conjugate to un,α and vn,α respectively. The vibrational and excitonic
parts interact through the Hamiltonian

Hint =

∑
n,α

[
χ (un+1,α − un,α) +

1
2
η(vn,α+1 − 2vn,α + vn,α−1)

]
β+

n,αβn,α. (5)

In Eq. (5), the terms associatedwith the parametersχ andη represent the diagonal coupling between the excitonic amplitude
and the displacement of the peptide groups in the longitudinal and radial directions, respectively. Otherwise, the adjacent
bonds oscillations are affected by the dynamics of the exciton as discussed in Refs. [28,31,32].

The following quantum state vector can be used to understand the collective excitation of the system

|ψ(t)⟩ =

∑
n,α

An,α(t)β†
n,α

{
exp

[
−

i
h̄

∑
n,α

[
bn,α(t)Pu

n,α − φn,α(t)un,α
]
+

[
cn,α(t)Pvn,α − πn,α(t)vn,α

]]}
|0⟩, (6)

where h̄ is the Planck’s constant and |0⟩ is the ground-state vector. An,α(A∗
n,α) is the coherent state representation of the

operators βn,α (β†
n,α). We have introduced bn,α and cn,α as the coherent state representations of un,α and vn,α respectively,

and φn,α and πn,α for their conjugate momenta Pu
n,α and Pvn,α . Moreover, the coherent state representations of the operators

for βn,α , β
†
n,α , un,α , vn,α , Pu

n,α and Pvn,α are written as

An,α(t) = ⟨ψ(t)|βn,α|ψ(t)⟩, A∗

n,α(t) = ⟨ψ(t)|β†
n,α|ψ(t)⟩,

bn,α(t) = ⟨ψ(t)|un,α|ψ(t)⟩, cn,α(t) = ⟨ψ(t)|vn,α|ψ(t)⟩,

φn,α(t) = ⟨ψ(t)|Pu
n,α|ψ(t)⟩, πn,α(t) = ⟨ψ(t)|Pvn,α|ψ(t)⟩.

(7)

Ansatz Eq. (7) satisfies the normalization condition ⟨ψ(t)|ψ(t)⟩ =
∑

n,α |An,α|
2

= N , where |An,α|
2 characterizes the

probability amplitude for finding a quantum of Amide-I energy in a particular amino acid. The Hamiltonian that gives the
coherent states is written in the form

⟨H⟩ = ⟨ψ(t)|H|ψ(t)⟩, (8)

which is written in the more expanded form

⟨H⟩ =

∑
n,α

{
A∗

n,α

⎡⎣(E0 + W )An,α −

∑
m̸=n

Jn−mAm,α − L(An,α+1 + An,α−1)

⎤⎦
+χ (bn+1,α − bn−1,α)A∗

n,αAn,α +
1
2
(cn,α+1 − 2cn,α + cn,α−1)A∗

n,αAn,α

}
,

(9)

with

W =
1
2

∑
n,α

{(
φn,α

)2
M

+

(
πn,α

)2
M

+ κ
(
bn,α − bn−1,α

)2
+

1
4
ϖ

(
cn,α − cn,α−1

)2}
. (10)
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The dynamics of the system is easily understood by constructing the Heisenberg’s equation of motion, i.e.,

ih̄
∂

∂t
⟨Xn,α⟩ = ⟨[Xn,α,H]⟩, (11)

where X stands for the dynamic variables An,α , bn,α , cn,α , φn,α and πn,α satisfying the commutation relations [X, X∗
] = 1 and

[βn,α,Pn,α ] = [bn,α, φn,α] = [γn,α, Pn,α] = [cn,α, πn,α] = ih̄. This leads to the following set of coupled equations:

ih̄
d
dt

An,α(t) = χ (bn+1,α − bn−1,α)An,α +
η

2
(cn,α+1 + 2cn,α + cn,α−1)An,α

− L(An,α+1 + An,α−1) −

∑
m̸=n

Jn−mAm,α (12)

d2

dt2
bn,α(t) = −κ(bn+1,α − 2bn,α + bn−1,α) + χ (|An+1,α|

2
− |An−1,α|

2) (13)

d2

dt2
cn,α(t) = −

ϖ

4

(
cn,α+1 + cn,α−1 − 2cn,α

)
−
η

2

(⏐⏐An,α+1
⏐⏐2 +

⏐⏐An,α−1
⏐⏐2 + 2

⏐⏐An,α
⏐⏐2) . (14)

Another fact that is not negligible in the presentmodel is that the velocity of the intermolecular transport of excitonic energy
is much lower than the velocity of sound of the acoustic bond oscillations. This causes the terms of inertia to be negligible,
leading to the following adiabatic approximations:

bn,α − bn−1,α = −
α

κ

(
A∗

n,αAn−1,α + A∗

n−1,αAn,α
)
+
χ

κ

(⏐⏐An−1,α
⏐⏐2 +

⏐⏐An,α
⏐⏐2)

bn+1,α − bn,α = −
α

κ

(
A∗

n,αAn+1,α + A∗

n+1,αAn,α
)
+
χ

κ

(⏐⏐An+1,α
⏐⏐2 +

⏐⏐An,α
⏐⏐2)

cn,α+1 + cn,α−1− 2cn,α =
2η
ϖ

(⏐⏐An,α+1
⏐⏐2 +

⏐⏐An,α−1
⏐⏐2 + 2

⏐⏐An,α
⏐⏐2) , α = 1, 2, 3,

(15)

upon which the following set of coupled equation is obtained

i
∂An,α

∂t
= −

χ2

κ

[
|An+1,α|

2
+ |An−1,α|

2
+ 2|An,α|

2] An,α −
2η2

κ

[
|An,α−1|

2
+ |An,α+1|

2
+ 2|An,α|

2] An,α

−

∞∑
l=1

J ′l (An+l,α + An−l,α) + L(An,α+1 + An,α−1), α = 1, 2, 3,
(16)

which has been obtained after introducing the scaled quantities χ −→
h̄

√
MJ3/20

χ , ϖ −→
h̄2

MJ20
ϖ , κ −→

h̄2

MJ20
κ, η −→

h̄2

MJ20
η, L −→

L
J0
, t −→

J0
h̄ t . In Eqs. (16), we have simplified the LR term by considering l = n − m so that the dispersion

term becomes
∑

∞

l=1 J
′

l (An+l,α + An−l,α), with J ′l = |l|−r . Eqs. (16) are an ensemble of three CDNLS equations. In the same
chain, there are in fact two types of couplings, i.e., the nonlinear coupling term χ2

κ

[
|An+1,α|

2
+ |An−1,α|

2
+ 2|An,α|

2] An,α
and the linear or LR coupling term

∑
∞

l=1 J
′

l (An+l,α + An−l,α). Obviously, the nonlinear coupling term is restricted to nearest-
neighbor peptide groups. Interestingly, interaction among adjacent spine is insured by a linear term, L(An,α+1 + An,α−1), and
the nonlinear term 2η2

κ

[
|An,α−1|

2
+ |An,α+1|

2
+ 2|An,α|

2] An,α . Based on this, there is indeed a competition between nonlinear
and dispersive terms. However, this is not enough to confirm the emergence of solitonic structures in the proposed model.
This requires more investigation related to the MI as done in the next section. For the rest of the calculations, the following
set of parameter values will be used [4,28,31]: E0 = 0, 205 eV = 1, 55 × 10−22 N m, κ = 19.36 N, L = 2.46 × 10−22 N m,
ϖ = [91.0 − 155.5] N m−1 J = 15.47 × 10−23 J, I = [91.0 − 155.5] N m−1, M = 1.9 × 10−25 kg, χ = [2 − 6] × 10−11 N,
η = [0.7 − 1.2] × 10−11 N.

3. Unstable energy patterns

The direct way to predict the emergence of nonlinear structures in physical systems is the through the activation of
MI, i.e., the study of the stability of plane wave solutions. Such waves solutions are generally considered to be of the form
An,α = A0,αei(qαn−ωα t) (α = 1, 2, 3) where qα and ωα are the wavenumbers and the frequencies, respectively. The
amplitudes A0,α are assumed to be real. The solutions verify the linear dispersion relations

ωα = −
−4χ2

κ

⏐⏐A0,α
⏐⏐2 −

2η2

κ

[⏐⏐A0,α−1
⏐⏐2 + 2

⏐⏐A0,α
⏐⏐2 + 2

⏐⏐A0,α+1
⏐⏐2] − 2

∞∑
l=1

J ′l cos qα l (17)

In order to study the stability of the plane wave solutions, we introduce small perturbations into their amplitudes in the
form An,α = A0,α(1 + Bn,α(t))ei(qαn−ωα t) (α = 1, 2, 3), where Bn,α(t) are the small perturbations, which, after linearizing
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around the unperturbed plane waves, are governed by the set of coupled equations

i
∂Bn,α

∂t
= −

χ2

κ
[(Bn+1,α + B+

n+1,α) + (Bn−1,α + B+

n−1,α) + 2(Bn,α + B+

n,α)]|A0,α|
2

−
2η2

κ
[(Bn,α−1 + B+

n,α−1)|A0,α−1|
2
+ (Bn,α+1 + B+

n,α+1)|A0,α+1|
2
+ 2(Bn,α + B+

n,α)|A0,α|
2
]

−

∞∑
l=1

J ′l [(Bn+l,α + Bn−l,α − 2Bn,α) cos qα l − i(Bn+l,α − Bn−l,α) sin qα l].

(18)

Moreover, solutions for Eqs. (18) are assumed in the form Bn,α = a0,αei(Qn−Ωt)
+ b∗

0,αe
−i(Qn−Ω∗t), with Q and Ω being the

wavenumber and complex frequency of perturbation. On introducing those solutions into (18), one finds the following linear
homogeneous system for a0,1, b0,1, a0,2, b0,2, a0,3, b0,3:⎛⎜⎜⎜⎜⎜⎝

Ω − m11 m12 m13 m14 m15 m16
m21 −Ω + m22 m23 m24 m25 m26
m31 m32 Ω + m33 m34 m35 m36
m41 m42 m43 −Ω + m44 m45 m46
m51 m52 m53 m54 Ω + m55 m56
m61 m62 m63 m64 m65 −Ω + m66

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
a0,1
b0,1
a0,2
b0,2
a0,3
b0,3

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎠ , (19)

with the matrix elementsmi,j being given by

m11 = −
4χ2

κ
|A0,1|

2 sin2
(
Q
2

)
−

4η2

κ
|A0,1|

2
− 2

∞∑
l=1

J ′l

{
2 sin2

(
Ql
2

)
cos q1l − sinQl sin q1l

}
,

m12 = −
4χ2

κ
|A0,1|

2 sin2
(
Q
2

)
−

4η2

κ
|A0,1|

2, m21 =
2χ2

κ
|A0,1|

2 cosQ +
6η2

κ
|A0,1|

2,

m13 = m14 = m23 = m24 = m53 = m54 = m63 = m64 =
2η2

κ
|A0,2|

2,

m15 = m16 = m25 = m26 = m35 = m36 = m45 = m46 =
2η2

κ
|A0,3|

2,

m22 =
2χ2

κ
|A0,1|

2 cosQ +
6η2

κ
|A0,1|

2
− 2

∞∑
l=1

J ′l

{
2 sin2

(
Ql
2

)
cos q1l + sinQl sin q1l

}
,

m31 = m32 = m41 = m42 = m51 = m52 = m61 = m62 =
2η2

κ
|A0,1|

2,

m33 = m44 = −
4χ2

κ
|A0,2|

2 sin2
(
Q
2

)
+

4η2

κ
|A0,2|

2
− 2

∞∑
l=1

J ′l

{
2 sin2

(
Ql
2

)
cos q2l − sinQl sin q2l

}
,

m34 = m43 = −
4χ2

κ
|A0,2|

2 sin2
(
Q
2

)
+

4η2

κ
|A0,2|

2, m65 = −
4χ2

κ
|A0,3|

2 sin2
(
Q
2

)
+

4η2

κ
|A0,3|

2,

m55 = −
4χ2

κ
|A0,3|

2 sin2
(
Q
2

)
+

4η2

κ
|A0,3|

2
− 2

∞∑
l=1

J ′l

{
2 sin2

(
Ql
2

)
cos q3l − sinQl sin q3l

}
,

m56 = −
4χ2

κ
|A0,3|

2 sin2
(
Q
2

)
+

4η2

κ
|A0,3|

2
− 2

∞∑
l=1

J ′l sinQl sin q3l,

m66 = −
4χ2

κ
|A0,3|

2 sin2
(
Q
2

)
+

4η2

κ
|A0,3|

2
− 2

∞∑
l=1

J ′l

{
2 sin2

(
Ql
2

)
cos q3l + sinQl sin q3l

}
.

The condition for the above system to admit non-trivial solutions is obtained by setting its determinant to zero. One therefore
finds a sixth-order polynomials

Ω6
+ P5Ω5

+ P4Ω4
+ P3Ω3

+ P2Ω2
+ P1Ω + P0 = 0 (20)

whose solutions may easily be found via symbolic computation, with the coefficients Pj being given in the Appendix.
Solutions for Eq. (20) can be found analytically, using symbolic computation, but this is cumbersome are requires more
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Fig. 1. The panels show plots of theMI gain, and the corresponding stability/instability diagram, versus thewavenumbersQ and q, with changingχ and the
range parameter r . For χ = 2, r = 1.5 corresponds to panels (a1) and (a2), where there is only one region of instability. For r = 1.2, additional instability
sidebands appear for r = 1.2 (panels 1(b1)–(b2)), and persist for r = 1.1 (panels 1(c1)–(c2)). Panels (d1)–(d2), (e1)–(e2) and (f1)–(f2) corresponds to
χ = 8, where r takes the respective values as in the previous case. Here, under strong LR effects, the numerous number of instability regions tend to merge
into one instability zone.

simplifications and the study of some few cases. Amore complete investigation of the solutions requires the use of numerical
schemes,which give all the possible solutions. In that respect, such solutionsmay be real or complex depending on the values
of parameters andmost of the features related toMI are due to complex solutions. For example, solutions forΩ are generally
in the formΩ = Ωr +iΩi, whichmodifies the perturbations as Bn,α(t) = eΩit

[
a0,αei(Qn−Ωr t) + b0,αe−i(Qn−Ωr t)

]
. Therefore, one

clearly sees that the imaginary part controls the stability/instability of the plane wave solutions. The rate of instability is in
general evaluated in terms of the instability gain G(q,Q ) = |Im(Ω)|, from which the onset of MI can be detected. As already
indicated while presenting the model, one should stress that the coupling among adjacent peptides is of two competitive
types, i.e., the LR and the nonlinear coupling. Previous works devoted to nearest-neighbor interactions have proven that the
two types of coupling indeed affect the process of energy transport and storage in the three-stranded model [28,31]. In the
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rest of this particular work, we insist on the concomitant effects of LR interactions and nonlinear coupling. To proceed, we
first of all consider q1 = q2 = q3 = q and A10 = A20 = A30 = 0.1. For weak values of the nonlinear coupling parameter, i.e.,
χ = 2, we have the features of stability/instability given in Fig. 1. High values of the range parameter correspond to weak LR
interactions and,when r → ∞, the systembehaves as restricted tonearest-neighbor interactions. In that respect, for r = 1.5,
we have the gain of Fig. 1(a1) and its corresponding stability/instability diagram plotted in Fig. 1(a2), where there is only
one region of instability. With decreasing r , i.e., increasing the LRI effect, additional instability sidebands appear for r = 1.2
(Figs. 1(b1)–(b2)), and persist for r = 1.1 (Figs. 1(c1)–(c2)). This shows that under weak nonlinear intra-spine interaction,
LR interactions may be responsible for the explosion of the instability domain, leading to the emergence of other regions
of instability. However, under strong nonlinear intra-strand coupling, the comportment is found to be different as depicted
in Figs. 1(d1)–(d2), (e1)–(e2) and (f1)–(f2), where we have fixed χ = 8. Panels (d1)–(d2) correspond to r = 1.5, value of
the range parameter that gives rise to several regions of instability. Their number drops progressively with decreasing r , as
shown in panels (e1)–(e2) and (f1)–(f2), for which r takes respectively the values 1.2 and 1.1. In the meantime, one should
be aware that when values of parameters are picked from one of the regions of instability, the plane waves will be said
to be unstable under modulation and will therefore be expected to break-up into solitonic structures. Otherwise, they will
propagate with their properties not being changed, and will be said to be stable under modulation.

Beyond these information on the onset of MI, the linear stability analysis fails to predict the behaviors of solitons and
nonlinear structures at long timescale. Therefore, in order to verify the accuracy of the linear stability analysis, we propose
to integrate directly the set of Eqs. (16) using the fourth-order Runge–Kutta computational scheme, with periodic boundary
conditions and timescale ∆t = 10−3. We consider the initial condition An,α = A0,α

(
1 + 0.01eiqn

)
eiQn (α = 1, 2, 3) and

to start, we fix A10 = 0.1 and A20 = A30 = 0, with the wavenumbers q and Q taking respectively the values 0.35π and
0.28π and χ = 2. Particularly, we have excited only one strand in order to observe the dynamical response of the other
two strands and the effectiveness of the inter-spine coupling. The chosen values of the wavenumbers fall well inside the
regions of instability depicted in Fig. 1(a1)–(a2), and are to this fact expected to support nonlinear pattern formation. This is
for example confirmed by the structures obtained in Fig. 2, whose shape and characteristics are influenced by the change in
the range parameter r . In general, over longtime simulation they appear and have the shape of soliton-like patterns. This is
a direct proof of the accuracy between our analytical predictions and direct numerical calculations on the generic model. As
only one of the spines has been excited, one notices the response from the other two strands, which obviously have the same
amplitude of excitation. This has been reported in a number of recent contributions, but in the absence of LRI [28,30–32].
Nevertheless, they are the consequence of the interplay between nonlinear and dispersive effects. More precisely, the trains
of waves obtained have features of pulse solitons, but while comparing Fig. 2(a1) to Figs. 2(a2) and (a3), the presence of
extended waves for |An,1| is a fact, while |An,2| and |An,3| display patterns with periodic background. Figs. 2(aj)j=1,2,3 have
been recorded for r = 1.5. For r = 1.2, the manifestations of MI are shown in Figs. 2(bj)j=1,2,3, where the number of
breathing patterns has increased.Moreover, |An,2| and |An,3| display some initiation of two-humped solitonic structureswith
filled profile, while for |An,1|, individual pulses of energy are visible. In Fig. 3, the calculations of Fig. 2 have been repeated,
where line (A) corresponds to Figs. 2(aj)j=1,2,3, line (B) to Figs. 2(bj)j=1,2,3 and line (C) to Figs. 2(cj)j=1,2,3. There, the energy
density has been recorded versus space and one clearly confirms the profile depicted in Fig. 2 with changing the value of the
range parameter. For small values of the later, energy is distributed among lattice sites and remains available for intrinsic
lattice dynamics. Interestingly, although there is still intrinsic energy, sequences of high energy patterns emerge in the form
of impulses as confirmed by line (C) of Fig. 3. The result of line (C), however, shows the robustness of energy localization
in molecular models, especially monitored by solitonic structures under the influence of any factor that may modify both
the intrinsic nonlinearity and the dispersion inherent to such systems. Like in DNA, the stored and transported energy is
supposed to adopt a specific profile for the process of its transport to be initiated [45]. That is indeed why, when all the
conditions are gathered, under the activation ofMI, trains of solitons as those observed in Fig. 3, line (C), may be observed. To
remind, the results of Fig. 2 and 3 have been recorded for weak nonlinear intra-spine coupling χ . In Fig. 4, we have therefore
increased its value as χ = 8. The obtained results suggest that for r = 1.5, energy patterns display periodic profiles, with the
excitonic patterns |An,2| and |An,3| still having the same characteristics. For r = 1.2, the localized states described in Ref. [32]
appear, due to strong couplingχ andmainly because of the strength of the LR coupling that increases. Remarkably, the spatial
expansion of the obtained patterns gets restrained, compared to the case of line (A). This persists when r = 1.1, where the
wave spatial expansion of |An,1| gets more narrower, therefore involving few sequences of lattice sites. This phenomenon is
ubiquitous to many molecular systems due to the strong competition between nonlinearity and dispersion. Multi-humped
solitonic structures were already reported in a three-stranded model of α-helix proteins, but were shown to merge into a
single structure with increasing χ . The same behavior is obvious in Fig. 5, where the value of χ has been increased to 14. In
fact, the observed spectrum of behaviors is a consequence of the coupled effects of nonlinear coupling and LRI, leading to an
effective transition from extended trains of waves to asymmetric solitonic humps when r becomes small, i.e., under strong
LRI. Line (A) of Fig. 5 has been plotted for r = 1.5, line (B) for r = 1.2 and line (C) for r = 1.1. The existence of such waves
in proteins was already suggested by Brown et al. [17–19] and Ivic et al. [46–48]. That was to demonstrate that due to the
structuralmodification taking place in real proteins during energy transport, the observed structureswere suitable. Falvo and
Pouthier [49,50], considering a three-spinemodel showed that the vibron dynamics was the consequence of the competitive
effects between inter-spine vibron hops, leading to some dressing effects, capable of reducing vibrational exchange between
spines, the direct consequence being the emergence of energy patterns that move along a single spine, therefore reducing
the system to a one-dimensional Davydov model. In contrast, the nonlinear effects present in the proposed model enhance
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Fig. 2. Numerical energy patterns obtained for χ = 2 and: (aj)j=1,2,3 r = 1.5, (bj)j=1,2,3 r = 1.2 and (cj)j=1,2,3 r = 1.1, with A10 = 0.1, A20 = A30 = 0,
κ = 11 and ω = 100.

the emergence of solitonic waves that, under appropriate LR dispersive contribution in all the spines, reinforce inter-based
energy storage and distribution. Indeed, themodel Eqs. (16) include coupling parameters to vibrational dynamics, especially
H-bonds among spines, which were already revealed to be vital for mediating electronic transport in proteins [32,36,37].
They are indeed the driving force in such a process, which to some extent is common to most of biological molecules. Due
to the presence of H-bonds, charge transport in DNAmay be controlled and give rise to important dynamical spectrumwith
appropriate biological implications [27,51–54].

4. Conclusion

This paper considered a three-stranded α-helix protein model with LR dispersive interactions and inter-spine coupling.
The improved quantum model for exciton–phonon dynamics has been reduced to a set of three coupled modified DNLS
equations with LR interactions. The MI analysis has thereafter been conducted, and regions of instability detected. Those
regions, where the plane wave solutions are supposed to disintegrate into trains of soliton-like objects, have been found
to be very sensitive to the LR and nonlinear coupling parameters, r and χ respectively. For small values of χ , strong LR
interaction, i.e., small r , tends to induce additional instability sidebands which reduce to only one region when r decreases.
Contrarily, for high values of χ , the spectrum of instability displaysmany regions of instability that are annihilated by strong
LR effects. This has been confirmed numerically, using instability parameters. In that respect, it has been confirmed that
when parameters fall well inside instability zones, there appear trains of solitonic entities due to the balanced effect of
nonlinearity and dispersion. More importantly, for small χ , ordinary extended waves transform progressively into trains of
pulses with decreasing r . Although this remains obvious for big χ and high r , more spatially restrained structures emerge
under strong LR effects. This gets more pronounced when χ increases. In view of the above, solitonic structures are robust
in H-bonded molecules, especially in proteins and DNA. In that respect, they may be of different significance, depending
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Fig. 3. Spatial energy modes corresponding to Fig. 3 at time t = 400, in the lattice sequence 50 ≤ n ≤ 350. Line (A) is plotted for r = 1.5, line (B) for
r = 1.2 and line (C) for r = 1.1. The other parameters are χ = 2, A10 = 0.1, A20 = A30 = 0, κ = 11 and ω = 100.

Fig. 4. Spatial energy patterns related to strong intra-spine interaction, i.e., χ = 8, in the lattice sequence 50 ≤ n ≤ 350 at time t = 400. Line (A) is plotted
for r = 1.5, line (B) for r = 1.2 and line (C) for r = 1.1. The other parameters are A10 = 0.1, A20 = A30 = 0, κ = 11 and ω = 100.
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Fig. 5. Spatial energy patterns related to strong intra-spine interaction, i.e., χ = 14, in the lattice sequence 50 ≤ n ≤ 350 at time t = 400. Line (A) is
plotted for r = 1.5, line (B) for r = 1.2 and line (C) for r = 1.1. The other parameters are A10 = 0.1, A20 = A30 = 0, κ = 11 and ω = 100.

on the backbone structure of the studied biomolecule. However, most of the cases rely on the strong relationship between
vibrational and excitonic dynamics. In DNA for example, solitonic energy patterns have been found to be more effective
when the H-bonds linking the bases in pairs are compressed, leading to slight breathing oscillations of the strand under
the activation of MI [27,51,53,54], and the same seems to be effective in proteins. Understanding the various mechanisms
and factors related to such processes is of paramount importance both in biology and nanobioelectronic. This requires the
elaboration of more suitable models, that may bring together as many interactions as possible, including those related to
the direct molecular environment of the protein such as thermal fluctuations, dissipation and LR coupling among peptide
groups. Investigations in those directions are ongoing.
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Appendix. Coefficients of Eq. (20)

P5 = m22 + m44 − m55 − m33 + m66 − m11,

P4 = m22m33 + m22m11 + m22m55 + m44m55 + m55m66 − m56m65 + m33m66 + m33m44 − m33m55

−m33m66 − m22m44 + m11m66 + m11m44 − m11m55 − m11m33 − m44m66 − m12m21 − m2
34,

P3 = −m22m33m44 + m22m11m55 + m22m56m65 + m2
34m66 − m2

34m55

+m11m33m66 + m11m33m44 − m22m11m44 + m22m11m33

−m22m11m66 − m44m55m66 − m33m44m66 + m33m4m55 + m33m55m66

−m11m33m55 − m33m56m65 + m11m55m66 + m44m56m65 − m11m44m66 − m11m2
34

+m11m44m55 − m22m56m66 + m22m2
34 − m11m56m65
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P2 = m11m44m56m65 − m11m33m44m66 + m11m33m44m55 + m11m33m55m66 − m11m33m56m65

− m12m15m31m66 − 2m34m13m55m15 − m13m44m65m15 + m13m44m15m66

+ m13m44m55m15 − m13m44m15m56 − m11m44m55m66

+ m31m22m33m13 − m31m65m15m11 + m31m15m11m66 − m31m22m65m15

+ m31m22m15m66 + m12m21m55m66 − m12m21m56m65 + m12m21m33m44

+ m12m21m33m66 − m12m21m33m55 − m12m21m44m66 + m12m21m44m55

+ m22m33m44m66 − m22m33m44m55 − m22m33m55m66 − m15m31m21m66

+ 2m34m13m15m56 + m33m44m56m65 − m33m13m65m15 + m33m13m15m66

− m33m13m15m56 + m33m13m55m15 + 2m34m13m65m15 − 2m34m13m15m66

− m22m2
34m66 − m22m11m34m55 − m22m15m55m66 + m22m11m56m65

− m22m11m33m44 − m22m11m33m66 + m22m11m33m55 − m33m44m55m66

+ m56m21m15m31 + m22m11m2
34 − m2

34m56m65 + m22m2
34m55

+ m2
34m55m66 + m11m2

34m66 − m12m21m2
34 − m11m2

34m55 − m21m55m15m31

+ m15m31m65m21 + m31m13m11m44 − 2m31m34m13m11 + m31m22m13m44

− 2m31m22m34m13 + m31m33m13m11 + m22m33m56m65 + m22m11m44m66

− m31m21m13m44 + 2m31m21m34m13 − m31m21m33m13 + m31m55m15m11

− m31m15m11m56 + m31m22m55m15 − m31m22m15m56 + m22m44m55m66

− m12m55m15m31 + m12m56m15m31 + m12m15m31m65 − m12m33m13m31

− m12m13m31m44 + 2m12m34m13m31 − m22m44m56m65

P1 = m22m11m2
34m55 + m22m2

34m56m65 − m22m2
34m55m66 − m12m21m2

34m55

+ m12m21m2
34m66 + 2m31m21m34m13m55 + m11m2

34m55m66

− m22m11m2
34m66 − m11m2

34m56m65 + m31m22m44m65m15

+ m31m33m15m11m66 − m31m33m65m15m11 + m12m21m33m44m55

− m31m22m44m15m66 − m31m44m55m15m11 + m31m22m33m15m66

− m31m22m33m65m15 + m31m44m15m11m56 + m31m21m33m15m56 − m31m21m33m55m15

− m11m33m44m55m66 + m22m11m33m56m65 − m22m11m33m55m66

− m22m11m33m44m55 + m22m11m33m44m66 − m22m11m44m56m65

+ m22m11m44m55m66 + m11m33m44m56m65 − m11m33m13m15m56

+ m11m33m13m15m66 − m11m33m13m65m15 − m12m33m13m31m55

+ m11m33m13m55m15 + m12m13m31m44m66 + m12m33m13m31m66

+ m12m44m15m31m66 + m12m44m55m15m31 − m12m44m15m31m65

− m12m44m56m15m31 − m12m13m31m44m55 − m12m33m15m31m66

− m12m33m55m15m31 + m12m33m15m31m65 + m12m33m56m15m31 − m11m13m44m15m56

+ m11m13m44m55m15 + m11m13m44m15m66 − m11m13m44m65m15 + m22m13m44m15m56

− m22m13m44m55m15 − m22m13m44m15m66 + m22m13m44m65m15

− m22m33m13m55m15 + m22m33m13m15m56 − m22m33m13m15m66

+ m22m33m13m65m15 − m22m33m44m56m65 + m22m33m44m55m66

− 2m11m34m13m15m66 + 2m11m34m34m65m15 − m12m21m33m44m66

+ m12m21m44m56m65 − m12m21m44m55m66 − m31m44m15m11m66 + m31m44m65m15m11

+ m31m22m33m13m55 − m31m22m33m13m66 + m31m33m13m11m55

− m31m33m13m11m66 + m31m22m13m44m55 − m31m22m13m44m66 + m31m13m11m44m55

− m31m13m11m44m66 + 2m31m34m13m11m66 + 2m22m34m13m55m15

− 2m22m34m13m15m56 + 2m22m34m13m15m66 − 2m22m34m13m65m15

− 2m12m34m13m31m66 + 2m12m34m13m31m55 − 2m11m34m13m55m15

+ 2m11m34m13m15m56 − 2m31m22m34m13m55 + 2m31m22m34m13m66

− 2m31m34m13m11m55 − m12m21m33m56m65 + m31m33m55m15m11

− m31m33m15m11m56 + m31m21m33m13m66 + m12m21m33m55m66

+ m31m21m33m65m15 − 2m31m21m34m13m66 + m31m21m44m15m66

− m31m21m44m15m56 + m31m21m44m55m15 + m31m21m13m44m66

+ m31m22m33m55m15 + m31m22m44m15m56 − m31m21m44m65m15 − m31m22m44m55m15

− m31m21m33m13m55 − m31m22m33m15m56 − m31m21m13m44m55 − m31m21m33m15m66,

P0 = P (1)
0 + P (1)

0 + P (2)
0 ,
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with

P (1)
0 = m12m21m2

34m55m66 − m12m21m2
34m56m65 − m12m21m33m44m55m66 + m12m21m33m44m56m65

− m12m21m33m13m65m15 + m12m21m33m13m15m66 − m12m21m33m13m15m56

+ m12m21m33m13m55m55 + 2m12m21m34m13m65m15 − 2m12m21m34m13m15m66

+ 2m12m21m34m13m15m56 − 2m12m21m34m13m55m15 − m12m2
34m55m15m31

− m12m2
34m15m31m66 + m12m2

34m56m15m31 + m12m2
34m15m31m65 − m12m21m13m44m65m15

+ m12m21m13m44m15m66 + m12m21m13m44m55m15 − m12m21m13m44m15m56

− m22m11m2
34m55m66 + m22m11m2

34m56m65 − 4m31m21m34m13m65m15

+ 4m31m21m34m13m15m66 − 4m31m21m34m13m15m56 + 4m31m21m34m13m55m15

+ 2m31m21m13m44m65m15 − 2m31m21m13m44m15m66 − 2m31m21m13m44m55m15

+ 2m31m21m13m44m15m56 + m31m21m13m44m55m66 − m31m21m13m44m56m65 − 2m31m21m34m13m55m66

+ 2m31m21m34m13m56m65 + m31m21m33m13m55m66 − m31m21m33m13m56m65

+ 2m31m21m33m13m65m15 − 2m31m21m33m13m15m66 + 2m31m21m33m13m15m56.

P (2)
0 = −2m31m21m33m13m55m15 − m31m21m33m44m65m15 + m31m21m33m44m15m66

− m31m2
34m65m15m11 + m31m2

34m15m11m66

+ m31m22m2
34m15m66 − m31m22m2

34m65m15 + m31m21m33m44m55m15

− m31m21m33m44m15m56 + m31m2
34m55m15m11

− m31m2
34m15m11m56 − m31m22m2

34m15m56 + m31m22m2
34m55m15

+ m22m11m33m44m55m66 − m22m11m33m44m56m65 + m22m11m33m13m65m15

− m22m11m33m13m15m66 + m22m11m33m13m15m56

− m22m11m33m13m55m15 − 2m22m11m34m13m65m15 + 2m22m11m34m13m15m66

− 2m22m11m34m13m15m56 + 2m22m11m34m13m55m15 + m22m11m13m44m65m15

− m22m11m13m44m15m66 − m22m11m13m44m55m15

+ m22m11m13m44m15m56 − 2m12m13m44m15m31m66 + 2m12m13m44m15m31m65

− 4m12m34m13m15m31m65 + 4m12m34m13m15m31m66 + 2m12m34m13m31m56m65

− m12m33m13m31m56m65 + m12m33m13m31m55m66

+ m12m13m31m44m55m66 + 2m12m33m13m15m31m65 − 2m12m33m13m15m31m66

− m12m33m44m56m15m31 − m12m33m44m15m31m65 + m12m33m44m55m15m31

+ m12m33m44m15m31m66 − 2m12m34m13m31m55m66

− 4m12m34m13m56m15m31 + 4m12m34m13m55m15m31 − m12m13m31m44m56m65

− 2m12m13m44m55m15m31 + 2m12m13m44m56m15m31 + 2m12m33m13m56m15m31

− 2m12m33m13m55m15m31 − m31m21m2
34m15m66.

P (2)
0 = + m31m21m2

34m65m15 + m31m21m2
34m15m56 − m31m21m2

34m55m15 − m31m13m11m44m55m66

+ m31m13m11m44m56m65 + 2m31m34m13m11m55m66 − 2m31m34m13m11m56m65

+ 4m31m34m13m65m15m11 − 4m31m34m13m15m11m66 + 4m31m34m13m15m11m56

− 4m31m34m13m55m15m11 − 2m31m13m44m65m15m11

+ 2m31m13m44m15m11m66 + 2m31m13m44m55m15m11 − 2m31m13m44m15m11m56

+ 4m31m22m34m13m65m15 − 4m31m22m34m13m15m66 + 4m31m22m34m13m15m56

− 4m31m22m34m13m55m15 − 2m31m22m13m44m65m15

+ 2m31m22m13m44m15m66 + 2m31m22m13m44m55m15 − 2m31m22m13m44m15m56

− m31m22m13m44m55m66 + m31m22m13m44m56m65 + 2m31m22m34m13m55m66

− 2m31m22m34m13m56m65 − m31m33m13m11m55m66

+ m31m33m13m11m56m65 − 2m31m33m13m65m15m11 + 2m31m33m13m15m11m66

− 2m31m33m13m15m11m56 + 2m31m33m13m55m15m11 − m31m22m33m13m55m66

+ m31m22m33m13m56m65 − 2m31m22m33m13m65m15

+ 2m31m22m33m13m15m66 − 2m31m22m33m13m15m56 + 2m31m22m33m13m55m15

+ m31m33m44m65m15m11 − m31m33m44m15m11m66 + m31m22m33m44m65m15

− m31m22m33m44m15m66 − m31m33m44m55m15m11

+ m31m33m44m15m11m56 − m31m22m33m44m55m15 + m31m22m33m44m15m56.
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Abstract

Coupled fractional nonlinear Schrödinger equations are derived from a two-exciton energy transfer

model of α−helix proteins. Space-fractional terms are due to the presence of long-range inter-

molecular interactions. The linear stability analysis of plane wave solutions reveals the existence of

regions of instability, where solitonic waves can emerge as the consequence of the competition be-

tween nonlinear and dispersive effects. The parametric expansion of the growth rate of instability is

found to be sensitive to the variations in the fractional-order parameters and the nonlinear coupling

coefficient. Numerical evidence of analytical predictions is given via the long-time emergence and

behavior of solitonic structures, whose characteristics change with variations in the fractional-order

parameters.

∗Corresponding author: conrad@aims.ac.za or tabic@biust.ac.bw (C. B. Tabi)
†madibaes@yahoo.com (S. E. Madiba)
‡hekobena@gmail.com (H. P. F. Ekobena)
§tckofane@yahoo.com (T. C. Kofané)
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1 Introduction

In the last decades, the understanding of energy transport and storage in biomolecules has received

a remarkable development mainly based on the seminal contribution of Davydov [1]. It has been

well-established that the energy which is transported via proteins originates from the hydrolysis of

adenosine triphosphate (ATP) [1]. Namely, considering the structure of α−helix proteins, Davydov

and Kislukha [2, 3] used the exciton formalism to explain the self-trapping of the amide-I oscillations

as the consequence of the interaction between the vibrational exciton and the distortion in the

protein structure, resulting from the presence of the exciton. They established that the interplay

between nonlinearity and dispersion may favor solitons to travel in the protein strand and carry

the self-trapped vibrational amide-I energy. Many of the contributions that followed focussed

on the existence of only one exciton state [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Works by Pouthier

and Falvo [16, 17, 18] however insisted on the existence of at least two excited states as a way of

stabilizing the self-trapped energy. Merlin and Latha [19, 20] also addressed such aspects and rather

showed, based on a paper from Ekobena et al. [8], that anharmonicity may play an important role

when more that one excitations are considered. The soliton that are usually obtained in this context

are solutions of coupled nonlinear Schrödinger (NLS) equations, each describing a specific excitonic

state [7, 9, 10, 13, 21]. Attention has been given recently to protein structures with long-range (LR)

intermolecular interactions, leading to space-fractional NLS equations [21, 22]. In this framework,

Tarasov and Zaslavsky [23, 24] have shown that in the presence of power-law LR interactions, it was

possible to reduce a purely discrete problem to its space-fractional formulation. A three-stranded

model of α−helix proteins was used recently as an example by Mvogo et al. [21], but further
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approximations were made to recover a classical set of coupled NLS equations, therefore avoiding

the complexity imposed by the fractional terms. More recently, the modulational instability (MI)

of a fractional NLS equation was addressed, where Zhang et al. [25] showed that the fractional-

order parameter may have important influence on the onset and long-time evolution of nonlinear

modulated patterns. Tabi [22] also studied the MI of plane wave in an α−helix model and brought

out the effect of the fractional derivative on the process of energy transport and storage along a single

protein strand. This work is a generalization of such a model, i.e., when more that one excitonic

degree of freedom is considered. We show that for a two-exciton model, transport and storage of

energy can fully be described by a set of nonlinearly coupled space-fractional NLS equations. The

linear stability analysis of their plane wave solutions is then performed with emphasis on the effect

of changing both the fractional-order parameters and the coefficient of nonlinearity. Numerical

experiments are used to confirm the analytical predictions through the long-time behaviors of the

subsequent modulated trains of waves. Concluding remarks end the paper.

2 Model and dynamical equation

2.1 Model

The generalized Hamiltonian corresponding to the dynamics of two excitons in a protein lattice

has been proposed in some recent works as an improvement of the Davydov model [1, 2]. In the

presence of LR intrachain molecular interaction between molecular excitations, the Hamiltonian

writes

H =
∑
n

[
h̄ω0(A

†
nAn +B†

nBn)−
∑
m̸=n

J
(1)
n−m(A

†
nAm + AnA

†
m)−

∑
m̸=n

J
(1)
n−m(B

†
nBm +BnB

†
m)

+
g1
2
(A†

nA
†
nAnAn +B†

nB
†
nBnBn) + g2A

†
nAnB

†
nBn

]
,

(1)

with the subscript n referring to the lattice index along the strand (or chain). The expression of

H suggests that an individual amino acid will be identified by the index pair n, such that An (A†
n)
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and Bn (B†
n) are boson creation (annihilation) operators associated with intramolecular vibrations

of the nth peptide group. These operators satisfy the usual commutation relations for bosons,

i.e., [An, A
†
m] = δm,n, [An, Am] = 0, [Bn, B

†
m] = δm,n and [Bn, Bm] = 0. h̄ω0 is the local amide-I

vibrational energy, and the terms h̄ω0A
†
nAn and h̄ω0B

†
nBn are the vibrational energies at the site n

from the two exciton bound states. The terms
∑
m̸=n

J
(1)
n−m(A

†
nAm + AnA

†
m) and

∑
m̸=n

J
(2)
n−m(B

†
nBm +

BnB
†
m) are the energies related to the LR interactions between molecular excitations on sites n and

m. The coupling parameters J
(1)
n−m and J

(2)
n−m are the LR transfer integrals between sites n and m,

here considered of the form [26, 27, 28, 29]:

J
(1)
n−m = J1|n−m|−s1 and J

(2)
n−m = J2|n−m|−s2 , (2)

with J1 and J2 being the strengths of the transfer integral between the chain and each of the

excitations. si (i = 1, 2) are range parameters whose values belong to the interval [1,+∞[. However

si cover different physical contexts, depending on its value. For example if si → ∞, the LR

interaction reduces to nearest-neighbor couplings. For si = 5, the LR interaction is of a dipole-

dipole type, while for si = 3, the LR interaction is of the Coulomb type. We should stress that the

strongest interaction effects are due to smaller values of si.

We make use of the Heisenberg formulation and obtain the following exciton equations:

ih̄
∂An
∂t

= h̄ω0An −
∑
m̸=n

J
(1)
n−mAm + (g1AnA

†
n + g2BnB

†
n)An, (3a)

ih̄
∂Bn

∂t
= h̄ω0Bn −

∑
m̸=n

J
(2)
n−mBm + (g1BnB

†
n + g2AnA

†
n)Bn. (3b)

In order to study coherent states, it will be useful to rewrite Eq.(3) in terms of eigenfunctions

of the operators An, A
†
n, Bn and B†

n so that, if the Glauber coherent states |{αn}⟩ =
∏

n |αn⟩,

An|αn⟩ = αn|αn⟩, |{βn}⟩ =
∏

n |βn⟩ and Bn|βn⟩ = βn|βn⟩ are introduced [30], the set of Eqs.(3)
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becomes

ih̄
∂αn
∂t

= h̄ω0αn −
∑
m̸=n

J
(1)
n−mαm + (g1|αn|2 + g2|βn|2)αn, (4a)

ih̄
∂βn
∂t

= h̄ω0βn −
∑
m̸=n

J
(2)
n−mβm + (g2|αn|2 + g1|βn|2)βn. (4b)

Eqs.(4) are a set of nonlinearly coupled NLS equations with LR dispersive interactions. When

g2 = 0, the two equations will be completely decoupled and will reduce to individual discrete NLS

equations. For instance, we can get rid of the terms h̄ω0αn and h̄ω0βn via the gauge transformations

αn(t) = un(t)e
−iω0t and βn(t) = vn(t)e

−iω0t. This yields

i
∂un
∂t

= −
∑
m̸=n

J
(1)
n−mum + (g1|un|2 + g2|vn|2)un, (5a)

i
∂vn
∂t

= −
∑
m̸=n

J
(2)
n−mvm + (g2|un|2 + g1|vn|2)vn, (5b)

where we have further made the change of variable t→ t/h̄.

2.2 The coupled NLS equation with fractional derivative

In order to obtain the fractional-derivative formulation of Eqs.(5), we introduce the functions [21,

23, 24]

ϕ(k, t) =
+∞∑

m=−∞

e−ikndun(t), ψ(k, t) =
+∞∑

m=−∞

e−ikndvn(t) and J(k) =
+∞∑

m=−∞

e−ikndJn, (6)

where the parameter k is a wavenumber, d is the lattice spacing and Jn is given by Eq. (2).

Inversely, the functions un(t) and un(t) are respectively related to ϕ(k, t) and ψ(k, t) through the

relations

un(t) =

∫ π

−π
eikndϕ(k, t)dk and vn(t) =

∫ π

−π
eikndψ(k, t)dk. (7)
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In the continuum approximation, i.e., un(t) → u(x, t) and vn(t) → v(x, t), with x = nd, when

k → 0, relations (6) and (7) become

ϕ(k, t) =

∫ +∞

−∞
e−ikxu(x, t)dx, ψ(k, t) =

∫ +∞

−∞
e−ikxv(x, t)dx,

u(x, t) =
1

2π

∫ +∞

−∞
eikxϕ(k, t)dk, v(x, t) =

1

2π

∫ +∞

−∞
eikxψ(k, t)dk.

(8)

Applying all the above to Eq.(5) in the continuum approximation leads to

i
∂u(x, t)

∂t
= −J1(0)u(x, t)−

∫ +∞

−∞
dydxK1(x− y)

∂u(x, t)

∂x
+
(
g1|u(x, t)|2 + g2|v(x, t)|2

)
u(x, t) (9a)

i
∂v(x, t)

∂t
= −J2(0)v(x, t)−

∫ +∞

−∞
dydxK2(x− y)

∂v(x, t)

∂x
+
(
g2|u(x, t)|2 + g1|v(x, t)|2

)
v(x, t), (9b)

where the Kernels Ki(x) (i = 1, 2) are given by

Ki(x) =
1

π

∫ +∞

−∞
eikx

Gi(k)

k2
dk, i = 1, 2, (10)

with Gi(k) = Ji(0)− Ji(k), Ji = ζ(si)
−1, with the ζ−function being given by ζ =

∞∑
1=1

n−s. For the

specific case where 2 ≤ si < 3, the function G(k) is in the form

Gi(k) =
πJi

Γ(σi + 1) sin
(
πσi
2

) |k|σi , (11)

where where Γ(σ) is the Γ−function, with σ = s − 1 and Γ(σ + 1) = σΓ(σ). Therefore, given the

possible values of s, the values of σ will be found between 1 and 2. Under such considerations, the

continuum equations (9) become

i
∂u(x, t)

∂t
= −J1(0)u(x, t)− P1

∂σ1

∂|x|σ1
u(x, t) +

(
g1|u(x, t)|2 + g2|v(x, t)|2

)
u(x, t), (12a)

i
∂v(x, t)

∂t
= −J2(0)v(x, t)− P2

∂σ2

∂|x|σ2
v(x, t) +

(
g2|u(x, t)|2 + g1|v(x, t)|2

)
v(x, t), (12b)
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where the coefficients Pi (i = 1, 2) are given by

P1 =
πJ1

Γ(σ1 + 1) sin
(
πσ1
2

) and P2 =
πJ2

Γ(σ2 + 1) sin
(
πσ2
2

) . (13)

The Riesz fractional derivatives are given by [31, 32]

∂σ1

∂|x|σ1
u(x, t) = − 1

2π

∫ +∞

−∞
|k|σ1ϕ(k, t)dk and

∂σ2

∂|x|σ2
v(x, t) = − 1

2π

∫ +∞

−∞
|k|σ2ψ(k, t)dk. (14)

By making use of the gauge transfomations u(x, t) → u(x, t)eiJ1t and v(x, t) → v(x, t)eiJ2t, we

finally obtain

i
∂u(x, t)

∂t
= −P1

∂σ1

∂|x|σ2
u(x, t) +

(
g1|u(x, t)|2 + g2|v(x, t)|2

)
u(x, t), (15a)

i
∂v(x, t)

∂t
= −P2

∂σ2

∂|x|σ2
v(x, t) +

(
g2|u(x, t)|2 + g1|v(x, t)|2

)
v(x, t), (15b)

which is a set of coupled NLS equations with space-fractional derivatives. Obviously, the dispersion

terms Pi are functions of the fractional-order parameters σi. However, the Riesz fractional derivative

is also expressed as [31, 32]

∂2σ

∂|x|σ
f(x, t) = −

(
− ∂2

∂|x|2

)σ/2

f(x, t) = − 1

2 cos
(
πσ
2

) [−∞Dσ
xf(x, t) + xDσ

+∞f(x, t)
]
, (16)

where −∞Dσ
xf(x, t) and xDσ

+∞f(x, t), are the left- and right-side Riemann-Liouville fractional deriva-

tives of order σ, that are respectively given by [31, 32]

xDσ
+∞f(x, t) =

1

Γ(n− σ)

∂n

∂xn

∫ x

−∞

f(ξ, t)dξ

(x− ξ)σ−x+1
,

−∞Dσ
xf(x, t) =

(−1)n

Γ(n− σ)

∂n

∂xn

∫ x

−∞

f(ξ, t)dξ

(ξ − x)σ−x+1
.

(17)
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Figure 1: The panels show plots of the of the coefficients R and S of Eq. (22) and its discriminant
∆ = R2 − 4S, versus the perturbation wavenumber λ. The fractional-order parameters change as
shown in the legends, with g1 = g2 = −0.05 and J1 = J2 = 0.08.
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Figure 2: The panels show plots of the MI growth rate (25) versus the perturbation wavenumber λ.
(a) corresponds to g1 = −0.5, (b) to g1 = −0.1 and (c) to g1 = −0.08. We have fixed g2 = −0.05,
while the fractional-order parameters change as displayed by the legends, with J1 = J2 = 0.08.
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3 Modulational instability analysis

The set of Eqs.(15) admits the plane waves u(x, t) = u0e
iω1t and v(x, t) = v0e

iω2t as solutions, with

the frequencies and amplitudes u0 and v0 being related by

ω1 = −(g1|u0|2 + g2|v0|2) and ω2 = −(g1|v0|2 + g2|u0|2). (18)

We consider small perturbations χ1 and χ2 into the above solutions, i.e., u(x, t) = u0(1+χ1(x, t))e
iω1t

and v(x, t) = v0(1+χ2(x, t))e
iω2t. This leads, after linearizing around the unperturbed plane waves,

to the set of equations

i
∂

∂t
χ1(x, t) = −P1

∂σ1

∂|x|σ1
χ1(x, t) + g1|u0|2(χ1 + χ∗

1) + g2|v0|2(χ2 + χ∗
2), (19a)

i
∂

∂t
χ2(x, t) = −P2

∂σ2

∂|x|σ2
χ2(x, t) + g1|v0|2(χ2 + χ∗

2) + g2|u0|2(χ1 + χ∗
1) (19b)

for the perturbations. Moreover, the problem can be efficiently solved by separating real from

imaginary parts, i.e., χ1 = a1 + ib1 and χ2 = a2 + ib2, leading to the equations

∂

∂t
a1(x, t) = −P1

∂σ1

∂|x|σ1
b1(x, t),

∂

∂t
b1(x, t) = P1

∂σ1

∂|x|σ1
a1(x, t)− 2g1|u0|2a1(x, t)− 2g2|v0|2a2(x, t),

∂

∂t
a2(x, t) = −P2

∂σ2

∂|x|σ2
b2(x, t),

∂

∂t
b2(x, t) = P2

∂σ2

∂|x|σ2
a2(x, t)− 2g1|v0|2a2(x, t) + 2g2|u0|2a1(x, t).

(20)

9



Solutions for Eqs.(20) can be considered in the form of the following Fourier transfroms:

ã1(λ,Ω) =

∫ ∫ +∞

−∞
a1(x, t)e

i(λx+Ωt)dxdt,

ã2(λ,Ω) =

∫ ∫ +∞

−∞
a2(x, t)e

i(λx+Ωt)dxdt,

b̃1(λ,Ω) =

∫ ∫ +∞

−∞
b1(x, t)e

i(λx+Ωt)dxdt,

b̃2(λ,Ω) =

∫ ∫ +∞

−∞
b2(x, t)e

i(λx+Ωt)dxdt.

(21)

Replacing the above solutions into Eqs.(20) leads to a homogeneous system for ã1, b̃1, ã2 and b̃2.

The condition for such a system to admit non-trivial solutions is obtained by setting its determinant

to zero, which leads to the nonlinear dispersion relation

Ω4 −RΩ2 + S = 0, (22)

where

R = P2|λ|σ2(2g1|v0|2 − P2|λ|σ2) + P1|λ|σ1(2g1|u0|2 − P1|λ|σ1),

S = P1P2|λ|σ1+σ2
[
4g22|u0|2|v0|2 − (P1|λ|σ1 − 2g1|u0|2)(P2|λ|σ2 − 2g1|v0|2)

]
.

(23)

Obviously, the coefficients of the dispersion relation (22) depend on the fractional-order parameters

σ1 and σ2. However, the plane wave solutions will remain stable if the conditions R > 0, S > 0

and ∆ = R2 − 4S > 0 are simultaneously satisfied. In order to find the intervals of parameters

where such condition can be satisfied, we have plotted R, S and ∆ in Fig. 1 versus the perturbation

wavenumber λ.

The condition R > 0 is studied in Fig. 1(a), where the stability region is found in the interval

0 < λ < λ+. However, depending on the value of the fractional-order parameters σ1 and σ2, that

interval can get expanded or reduced. It gets expanded for σ1 = 1.4 and σ2 = 1.1, and drops for

σ1 = 1.8 and σ2 = 1.1.

10



Figure 3: Plots of the MI growth rate versus the perturbation wavenumber λ and the fractional-
order parameter σ2. Panels (aj)j=1,2,3 correspond to g1 = −0.5 and g2 = −0.05, and panels (bj)j=1,2,3

gives Γ for g1 = −0.08 and g2 = −0.05. Columns (a1)-(b1) are obtained for σ1 = 1.1, (a2)-(b2) for
σ1 = 1.4 and (a3)-(b3) for σ1 = 1.8, with J1 = J2 = 0.08.
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The condition S > 0 is addressed in Fig. 1(b). For {σ1 = σ2 = 1.1} and {σ1 = 1.4;σ2 = 1.1},

there is an interval λ− < λ < λ+ (with λ− > 0) where wave stability is expected. However, there is

a change of behavior for {σ1 = 1.8;σ2 = 1.1}, where stable plane wave are possible in the interval

λ− < λ <∞.

The discriminant ∆ has been plotted in Fig. 1(c). The plane wave will remain stable where ∆

is positive. Its sign changes with the fractional-order parameters. Under such a condition, Eq. (22)

admits two solutions given by

Ω2
+ =

1

2

(
R +

√
R2 − 4S

)
, Ω2

− =
1

2

(
R−

√
R2 − 4S

)
. (24)

On the other hand, if ∆ = R2− 4S < 0, there exists a domain of the wavenumber λ for which Ω2 is

negative. In this range, the solution of (22) are complex so that Ω2 has a nonvanishing imaginary

part. The plane waves will be unstable if this imaginary part of Ω is positive, causing the pertur-

bation to grow exponentially. Then, the plane wave tends to self-modulate with a wavenumber λ

corresponding to the growth rate

Γ = Im
(
Ω2

±
)
= ±1

2

√
4S −R2. (25)

The above growth rate of instability implies that the condition
√
4S −R2 > 0 should be satisfied

for wave instability to take place. The growth rate of instability (25) is plotted in Fig. 2, versus the

wavenumber λ, where the effect of the fractional-order parameters is obvious. To plot Fig. 2(a),

we have fixed g2 = −0.5 and σ2 = 1.1. For σ1 = σ2 = 1.1, the plane wave is unstable in the

region 0 < λ < 0.5 which gets extended to 0 < λ < 0.58 for σ1 = 1.4. For σ1 = 1.8, the region

of instability gets reduced and restricted to the interval 0.26 < λ < 0.48. The same behavior is

obvious in all the other cases, where g2 = −0.1 (Fig. 2(b)) and g2 = −0.05 (Fig. 2(c)), but with

a delocalization phenomenon of the instability domain. To remind, g2 is the nonlinear coupling

parameter between Eqs. (15a) and (15b), which when set to zero reduces the system to ordinary
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Figure 4: Plane wave modulation in the two-exciton chain for: Line (A) g1 = g2 = −0.05, Line (B)
g1 = −0.08 and g2 = −0.05, and Line (C) g1 = −0.1 and g2 = −0.05. The first column on the left
correspond to σ1 = σ2 = 1.1. The middle column corresponds to σ1 = 1.4 and σ2 = 1.1, and the
right column corresponds to σ1 = 1.8 and σ2 = 1.1. We have fixed λ = 0.3 and J1 = J2 = 0.08.

fractional NLS equations. Its interplay with space-fractional terms (or fractional dispersion) is

responsible for the emergence of regions of instability as further confirmed by the growth rate

diagrams plotted in Fig. 3, where the upper line corresponds to g2 = −0.5 and the lower line to

g2 = −0.08. Therefore, when parameters fall inside regions of instability, the plane wave solutions

will be said to be unstable under modulation. Otherwise, the plane wave solutions will be expected
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to remain stable, keeping their initial characteristics. Further details on the instability features

of the plane wave solutions are given in Fig. 4, where the fractional CNLS Eqs.(15) have been

solved numerically using the standard split-step Fourier method [33]. In order to verify both the

dispersive and nonlinear coupling effects, we have assumed v0 = 0 as initial condition of Eq. (15b),

while the initial condition for Eq. (15a) is considered to be a perturbed plane wave solution with

the perturbation wavenumber λ = 0.3. Lines (A) of Fig. 4 correspond to the case g1 = g2 = −0.05,

where g2 is the nonlinear coupling coefficient between the two vibrational equations. The same

panels from left to right respectively correspond to {σ1 = σ2 = 1.1}, {σ1 = 1.4; σ2 = 1.1}

and {σ1 = 1.8; σ2 = 1.1}. Obviously, the obtained patterns are trains of solitonic structures

whose features changes with increasing σ1. This strongly support the fact that solitons are robust

in such systems and may display different behaviors due to the interplay between nonlinear and

dispersive effects. Lines (B) of Fig. 4 depict the case g2 = −0.08 with g1 keeping the same value

as previously. σ1 and σ2 also keep the same values as previously. The coupling process remains

effective here and the initial solitons tend to spread into radiations. However, the two excitonic

parts contribute to maintain permanent energy transport under the activation of MI. The last

case of Fig. 4, i.e., Lines (C), has been recorded for g2 = −0.1. Each of the modes still displays

trains of solitonic structures, except that for high values of the fractional-order parameter σ1, the

wave objects become narrow in space and highly localized. We should remind that only one of the

modes has been excited and that is exactly the one that shows highly localized structures. Energy

transport, to be efficient has been shown to be supported by such waves, especially during the

process of replication and transcription, where the hydrogen bonds that link bases in DNA pairs

are broken [12, 29, 34, 35, 36, 37]. In proteins, it was shown that they may also emerge as exact

solutions, depending on the used method and the corresponding biological implications [13, 21, 38].

However, the fractional-order parameters σ1 and σ2 bring about new features into wave localization
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in proteins, and can be used as control parameters by suitable biological processes for specific

purpose.

4 Concluding remarks

In this paper, we have studied the two-exciton energy transfer in α−helix molecular chains, in

the presence of LR dispersive interactions. We have shown that in the continuum limit, using

Fourier formalism may reduce the initial discrete problem to a set of coupled NLS equations with

space-fractional derivatives. The theory of MI has thereafter been used to study the onset of

solitonic structures, via the linear stability analysis, followed by direct numerical simulations for

confirmation. The effect of changing the fractional-order parameters has been studied and, together

with the change in the nonlinear coupling coefficient, it has been found to enhance the localization of

energy, especially involving the two excitonic modes. This has been found to be in agreement with

the predictions and supports once more the robustness of solitonic waves in molecular structures,

especially when nonlinear and dispersive effects are involved, for specific biological purposes.
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[14] M. Daniel and M. M. Latha, Phys. Lett. A 252 (1999) 92.

[15] E. N. N. Aboringong and A. M. Dikandé, Eur. Phys. J. E 41 (2018) 35.
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