
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          
    Thesis 

Submitted and defended in fulfillment of the requirements for the award 
of the degree of Doctor of Philosophy in Physics 

                                                                                                                                              
 

Par : GUEMKAM GHOMSI PATRICK 

Master of Science in Physics, Specialty: Mechanics 
 
 

Sous la direction de 
KOFANE Timoléon Crépin 
Professor 
University of Yaounde I 

 
Année Académique : 2017 - 2018

REPUBLIQUE DU CAMEROUN 

Paix – Travail – Patrie 

******** 

UNIVERSITE DE YAOUNDE I 

FACULTE DES SCIENCES 

DEPARTEMENT DE PHYSIQUE 

********* 

CENTRE DE RECHERCHE ET DE 

FORMATION DOCTORALE EN 

SCIENCES, 

TECHNOLOGIES ET GEOSCIENCE 

LABORATOIRE DE MECANIQUE, 

MATERIAUX ET STRUCTURES 

 

REPUBLIC OF CAMEROUN  

Peace – Work – Fatherland 

******* 

 UNIVERSITY OF YAOUNDE I 

FACULTY OF SCIENCE 

DEPARTMENT OF PHYSICS 

******* 

POSTGRADUATE SCHOOL FOR 

SCIENCES, TECHNOLOGY AND 

GEOSCIENCES 

LABORATORY OF MECHANICS, 

MATERIALS AND STRUCTURES 

SYNCHRONIZATION DYNAMICS AND 
DIFFUSION-INDUCED SPATIOTEMPORAL 

PATTERNS IN CELLS WITH 
ACTIVATOR-INHIBITOR PATHWAYS 





University of Yaoundé I
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Abstract

The cellular transport through the plasma membrane determines cells’ fate, function

and phenotype. It controls what enters or leaves the cells through both active and pas-

sive transport processes such as diffusion and osmosis, while relying on several impor-

tant signaling schemes involving both short and long range interactions. In this thesis,

we contribute to the understanding, on one part, of the impact of these two types of

coupling on the synchronization and control of the cellular rhythms crucial for their

coordinated collective behavior, in order to preserve homeostasis and enhance cellular

communication. On the other part, to highlight the emergence of both stable and unsta-

ble patterns which are fundamental in cellular exchange, organisms morphology, and

specialization amid living beings. In this framework, cells with activator-inhibitor path-

ways stand as our core biochemical models for these investigations. Firstly, synchroniza-

tion - wise, while bearing in mind the adaptive character of the extracellular medium,

we start by analyzing the effects of chemical, electrical and environment-mediated cou-

pling types on the exchange of metabolites across concentrations of cells, in order to

study the onset of phase and complete synchronization in the chaotic biochemical sys-

tem. In these contexts, the stability of the synchronization manifold is studied by means

of both mathematical and numerical tools such as the master stability function approach,

the conditional Lyapunov exponents, the rate of change of the Lyapunov function, the

construction of localized sets via Poincare sections, the phase difference, the Kuramoto

parameter for phase entrainment, and the phase space conditional observation spread-

ing parameter for stroboscopic maps. All these indicators continuously advocate for

the prevalence of a phase synchronized dynamics among the interacting cells in the

phase space. Yet, the results indicate that the system cannot completely synchronize un-

der the sole action of the chemical coupling. Both the combined effects of the chemical

and electrical couplings on one side, and the adaptive environment-mediated coupling

scheme with feedbacks and control mechanisms on the other side, are found to be of

capital importance in the onset of complete synchronization and high quality synchro-

nization in the system. Secondly, we ascertain the emergence of spatiotemporal struc-

tures in 1 − D and 2 − D spatial lattices of the biochemical system. In 1 − D ensembles,

we report several phenomena of patterns formation with and without suppression of

chaos in the heterogeneous lattices, with bubbling scenarios. Next, we also construct
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a normalized formalism emulating the dynamics of the morphogens concentrations in

two-dimensional spatial arrays of such pathways. The stability analysis of the spatially

homogeneous equilibrium state of our biochemical lattice is performed both analytically

and numerically. Some suitable parameter conditions are highlighted as conducive for

the occurrence of diffusion-driven instabilities, crucial for the emergence of spatiotem-

poral patterns. The patterning events include inhomogeneous stationary (Turing) spa-

tial patterns and oscillatory spatial patterns encompassing travelling wave phenomena

and spatiotemporal chaos. Their relevance in biology stems from their staple prevalence

in the communicative and developmental processes of cells.

Keywords: Chaos, synchronization, cell-cell communication, biochemical systems, Lya-
punov stability, spatiotemporal patterns, Turing instability.
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Résumé

Le transport cellulaire via la membrane plasmique determine le destin, les fonc-

tions et les caractéristiques visibles des cellules qui resultent des interactions entre leurs

constituants génétiques et leur environnement. Il contrôle les échanges cellulaires par

des processus de transport actifs et passifs tels que la diffusion et l’osmose, tout en

s’appuyant sur plusieurs mécanismes de couplages impliquant à la fois des interactions

directes et indirectes, à courtes et à longues portées. Dans cette thèse, nous contribuons

à la compréhension, d’une part, de l’impact de ces differents types de couplages sur la

synchronisation et le contrôle des rythmes cellulaires, cruciaux pour la coordination de

leurs activités, afin de préserver l’homéostasie et d’améliorer la communication cellu-

laire. D’une autre part, nous mettons en exergue l’émergence des structures stables et

instables qui sont fondamentaux au cours des échanges cellulaires, pour la morpholo-

gie des organismes, et pour la spécialisation entre les êtres vivants. Dans le cadre de

cette investigation, les cellules incorporant des séries de reactions biochimiques, et qui

régulent leurs concentrations internes en produits finis par rétrocontrôles, font l’objet

de notre étude. Premièrement, en ce qui concerne la synchronisation, tout en gardant

en vue le caractère adaptatif du milieu extracellulaire, nous analysons les effets des cou-

plages de types chimique, electrique, et adaptatif par le biais de l’environnement, sur les

échanges métaboliques dues aux différences de concentrations entre les cellules, dans le

but d’identifier l’apparition des phénomènes de synchronisation de phase et synchro-

nisation complète au sein d’un système biochimique à caractère chaotique. Dans ces

contextes, la stabilité de la solution synchrône est etudiée sur la base d’outils mathémati-

ques et numériques tels que la méthode de la fonction principale de stabilité, le taux de

variation de la fonction de Lyapunov, la construction géométrique de sous-espaces lo-

calisés par des sections de Poincaré, la différence de phase, le paramètre de Kuramoto

pour l’entrainement de phase, le paramètre de dispersion des observations condition-

nelles de l’espace de phase par stroboscopie. Tous ces indicateurs montrent la prévalence

d’un état de synchronisation de phase entre les cellules couplées dans l’espace de phase.

Cependant, les résultats indiquent que la synchronisation complète n’est pas acces-

sible sous l’unique action du couplage chimique. Seules les actions combinées des

couplages chimique et électrique d’une part, et du couplage adaptatif par médiation

de l’environnement d’une autre part, s’avèrent être d’une importance capitale pour
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l’instauration des états de synchronisation complets et robustes au sein du système

couplé. Deuxièmement, nous découvrons l’émergence de structures spatiotemporelles

dans les réseaux cellulaires en une et deux dimensions spatiales. Dans les réseaux uni-

dimensionnels hétérogènes, nous montrons plusieurs phénomènes de formations de

structures, avec et sans suppression de chaos, et formation de bulles. En proçédant

à une normalisation du modèle mathématique des concentrations du système cellu-

laire diffusément couplé en deux dimensions spatiales, nous étudions analytiquement

et numériquement la stabilité de l’état stationnaire spatialement homogène de notre re-

seau biochimique. Des conditions paramétriques promouvant une instabilité de l’état

stationnaire, induite par diffusion et pertinente pour l’apparition des motifs spatiotem-

porels, sont indiquées. Ces structures spatiotemporelles incorporent des motifs station-

naires de Turing spatialement hétérogènes, et des phénomènes oscillatoires tels que des

cas de propagation d’ondes et des états de chaos spatiotemporel. L’importance de ces

phénomènes en biologie vient de leur prévalence fondamentale au cours des processus

communicatifs et développementaux des cellules.

Mots clés: Chaos, synchronisation, communication cellulaire, systèmes biochimiques, sta-
bilité de Lyapunov, motifs spatiotemporels, instabilité de Turing.
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General Introduction

One of the prominent challenges formulated nowadays by many scientists in the fields of bio-

logical and nonlinear science, is the issue of understanding the functioning and failure of the

vital in-built biochemical pathways found in living cells. A pathway is a collection of step by

step modifications, whereby an initial substance used as substrate by an enzyme is transformed

into a product. This product will then become the substrate for the next reaction, until the ex-

act chemical structure necessary for the cell is reached. The biochemical pathways involved in

cellular metabolism can, depending on their parameter values, exhibit regular or chaotic dy-

namics. This latter erratic behavior is more naturally and widely observed in many biological

systems such as neural networks, cardiac pacemaker cells, animal gaits, metabolic networks

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], etc. The latter set includes arrays of cells with activator-inhibitor path-

ways [1, 11, 12]. In reality, there is nothing strange about this as it is well known that in nature,

disorder is more likely than order. Disorder happens more spontaneously while organization re-

quires energy. Thus, energy and organization are closely related. Epitome of the latter concept is

synchronization, which is a prerequisite for the coordinated collective behavior of cells. In a pio-

neering work on oscillating biochemical reactions, Higgins [13, 14, 15, 16] addressed the problem

of the way in which a coupling between individual cells can affect the resulting dynamics, for

example, by synchronizing their oscillations.

Synchronization, that is, the ability of coupled oscillators to lock to a common frequency, is a

general and ubiquitous feature of nature, since it occurs for mechanical or electrical oscillators,

lasers, chemical reactions and biological clocks, to mention just some well-known examples [17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. In the last named fields of studies, it was

observed that many living organisms naturally come together, organize themselves into coupled

systems, in order to perform certain functions, with the aim of maintaining the equilibrium in

their living environment and perpetuate life. This is also actually the case for the basic building

blocks of any living organism: the cells [13, 14, 32, 33]. So, the synchronization dynamics of cells

with activator-inhibitor pathways entails the existence of a potential energy of interaction among
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these biochemical systems, with suitable strength. This energy is brought in through several

signaling schemes listed in the literature such as the electrical, chemical, environmental coupling

types [1, 11, 12, 34]. Depending on the nature of the interactions involved, these couplings can

be of direct(or indirect), linear(or nonlinear) types [11, 12, 34, 35].

During the last decade, Turing instabilities have also been shown to be crucial for the ap-

pearance of stationary spatial patterns in physics, chemistry and biology [36, 37, 38]. Similarly,

the likelihood of the emergence of spatiotemporal patterns in the neighborhood of Turing-Hopf

bifurcations, where the formation of inhomogeneous stationary configurations due to Turing in-

stabilities, interact with the occurrence of oscillations caused by a Hopf bifurcation, has been

highlighted [39]. The mechanism pertaining in the emergence of such spatiotemporal patterns

has been thoroughly studied not long ago in physical and chemical systems [40, 41, 42]. It is

noteworthy that even though the two physical processes may coexist, they are usually separated

from one another. The Hopf or wave instability typically appears at significantly lower wave

numbers than the Turing mode. Therefore, their interactions may lead more generically to a

family of oscillating Turing-like patterns [43].

Since the seminal paper of Turing [44], a lot of attention has been given to theoretical models

in order to describe self-organized pattern formation in several different areas of physics, chem-

istry, biology, geology, ecology, etc [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,

62, 63, 64, 65]. The interesting findings derived from the above mentioned explorations have

paved the way for a relatively smooth understanding of processes pertaining in the emergence

of spatiotemporal structures. In this regard, recently, Turing instability mediated by voltage and

calcium diffusion in paced cardiac cells has been investigated [66]. A similar study has been

lately performed in a modified FitzHugh-Nagumo neuronal model for the emergence of spa-

tiotemporal chaos involving wave instability [67].

Furthermore, one fundamental property of coupled cells is that the coupling structure forces

the existence of subspaces that are flow-invariant under the associated coupled cell systems: the

synchrony subspaces. These should have an important role in the kinds of dynamics that can

occur, and represent a significant step in understanding the dynamics forced by the coupling of

these patterns of synchrony. Since the chemical coupling between cells is well known to change

the cells synchrony subspace [68, 69, 70, 71, 72], the analysis of coupled cells with activator-

inhibitor pathways under such circumstances is of capital importance in biological systems. Un-
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derstanding both the processes that influence the synchronization of individual biochemical os-

cillators and how the behaviors of living cells arise out of the properties of coupled populations

of cell oscillators are important goals in the study of biological systems, and a field of research

with enormous practical applications [73].

The phenomenon of synchronization in electrically coupled cells with activator-inhibitor

pathways has been extensively studied in [11, 34]. However, these works on coupled cells with

activator-inhibitor pathways limited their analysis on electrical coupling. This scenario, termed

short range interaction, suggests that cells are linked through electrical coupling or signal only.

However, in nature, the interactions among cells sharing the same living environment are more

complex and involve much more than just short range and linear interactions. They are in gen-

eral nonlinear, deterministic or stochastic and involve long range interactions with one or many

other cells. The chemical and electrical coupling schemes have proven their physical importance

in neural systems [68, 69, 70, 71]. In the first case (electrical), the coupling is linear and made

through gap junction and directly depend on the difference in the normalized concentrations of

the substances in the pathway of each cell. While in the second case (chemical), the coupling is

often modelled by a threshold nonlinear input or output function. In this last case, coupled cells

with activator-inhibitor pathways may exhibit a variety of synchronization behavior including

phase, partial and complete synchronization.

Moreover, it is well known that cells live in a common environment through which they

interact indirectly with the diffusion and transport of chemical species across their membrane,

and with the effects of the activation of receptors on their cellular membranes [13, 14, 15, 74,

75, 76, 77, 78, 79]. For example, Katriel experimentally observed the ability of thousand of cells

to synchronize their periodic activity, crucial for the generation of macroscopic oscillations like

circadian periodicities [80]. Cells perform numerous functions, and in order to carry out these

tasks aiming at perpetuating life, cells need resources, most of which is obtained from their

living environment. Competition for resources is therefore likely to occur among cells which

interact through the same environment. Cell’s fate, function and phenotype are therefore af-

fected by environmental cues. These interactions with the medium create indirect ties between

the cells. These connections among the biochemical pathways striving for resources shape bio-

logical niches. These interspecific interactions often limit the portion of their niche that they can

actually use. Therefore, over time, the cells will make many complex adjustments to community
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living, evolving together and forging relationships that give the community its character and

stability. Both competition and cooperation then play key roles as cooperation favors available

resource partitioning, by this means reducing competition that can lead to extinction. Thus, in

order to reach a balance, that is homeostasis in the medium, cells need to communicate. The state

of each cell influences the state of the environment, and the environment in turns influences the

cells. This phenomenon is called ”co-evolution”, where different biochemical organisms evolve

adjustments to one another over long periods of time. Biological systems have shown in many

cases this ability to display a sufficiently rich variety of mechanical regulatory directives be-

queathing them with the advantageous and useful skills of adaptation and learning [10].

In spite of the fact that nowadays reaction-diffusion systems are obviously no longer con-

sidered a topic of scientific oddity, but rather an important ingredient of the evolving world,

it still remains that a variety of pattern formation mechanisms which engender patterns, are

nonetheless unknown in a multiplicity of areas, and more specifically in a wide range of bio-

logical systems. Many research activities in developmental biology, both theoretical and experi-

mental, have indicated that the underlying processes which produce patterns and structures in

early developments are important. Special attention needs to be given to the issue of patterns

generation in arrays of cells with activator-inhibitor pathways. Many researchers have recently

explored the ability of these complex biochemical systems to exhibit a wide range of local and

global dynamical behaviors with spatiotemporal organization, comprising on one hand(locally),

alongside with quiescent states, periodic, quasi-periodic and chaotic regimes; and on the other

side(collectively), interesting events of occurrence of synchronization and, of emergence of trav-

elling and standing wave structures within one-dimensional spatial lattices [11, 12, 34, 81]. The

fact that more significant results could be retrieved from a further exploration of the processes of

reaction-diffusion taking place among these cells with activator-inhibitor pathways is motivat-

ing. In order to investigate for, and possibly unveil new facts about the advent of pattern-forming

scenarios, we will perform our analysis over some relatively large networks of such biochemical

systems, in a two-dimensional spatial domain.

Motivated by these facts, the aim of this thesis is to contribute first and foremost, to a bet-

ter understanding of the effect of the chemical coupling on the dynamics and synchronization of

coupled cells with activator-inhibitor pathways, and also to analyze the combined effects of elec-

trical and chemical couplings on the high quality synchronization process of the coupled cells.
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It is noteworthy that the method we shall use for the purpose of this inspection is quite appeal-

ing. It provides an optimal parameter value for the implementation of robust synchronization,

and is based on the rate of change of the Lyapunov function of the coupled system. Secondly,

we will explore the capacity of the previously mentioned indirect type of connection through an

adaptive dynamic environment to foster a synchronized dynamics among cells with activator-

inhibitor pathways as they diffuse in the environment their biochemical species referred to in

this case as ”synchronizing agents”. In our analysis, we shall take into account the ability of

these environmental connections to adapt to the biochemical changes occurring in the intercellu-

lar medium. This adaptation feature is crucial as we seek the synchronization dynamics of cells

with activator-inhibitor pathways in their chaotic regime. Adaptive law have been widely used

in the line of synchronization of chaotic systems ranging from chaotic oscillations, chaotic circuits

to chaotic biological systems [82, 83, 84, 85]. However, in this case, the adaptation law is brought

in the system through environmental coupling. Their respective trajectories are known to con-

tinuously distribute along unstable directions in the phase space, due to their extreme sensitivity

to initial conditions, inherently biasing them to flout synchronization. Lastly, but not the least,

our goal will be to throw more light on pattern generation mechanisms, using reaction-diffusion

processes in some biological systems, that can enable us to generate and control both small-scale

and large-scale structures, with the goal of mimicking natural processes. In an attempt to do so,

the individual cells will be considered to be identical, and assumed to have ostensibly the same

initial conditions, except otherwise stated.

This thesis is organized as follows:

In chapter 1, we carry out a comprehensive literature review on cells in general, and a special

attention is later on given to cells with activator-inhibitor pathways. We equally highlight some

ideas that are basic to our current understanding of the concepts of dynamical systems, chaos,

and to the phenomena of synchronization and pattern generation in biochemical pathways. An

emphasis is made on the concepts of complexity in dynamical regimes, synchronization, chaos

suppression and pattern formation in science as a whole, and in biological systems in particular.

Chapter 2 presents and describes the models, analytical and numerical methods used in the

investigation of synchronization and patterns generation phenomena amid cells with activator-

inhibitor pathways, under the chemical, adaptive environment-mediated and spatially extended

diffusive signalling schemes, respectively. The analytical methods mainly incorporate the linear
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stability analysis of the various models, alongside with the variational approach for their stability

assessment. Also are reported some numerical methods such as, the fourth-order Runge-Kutta

scheme, the Newton-Raphson algorithm and the dichotomy scheme, that have been used to

numerically integrate and examine the model equations used in this work.

In chapter 3, we present the main outcomes of this thesis. By performing a linear stability

analysis on the single cell model, we investigate for its equilibrium states whose instabilities cus-

tomarily lead to biochemical oscillatory rhythms via diverse Hopf bifurcation scenarios. By ap-

plying the variational approach in the form of the master stability function method, we carefully

appraise the stability conditions of the synchronization manifolds in various signalling schemes.

In the framework of the coexistence of both synaptical and electrical couplings, we investigate

analytically and numerically the impact of their interplay on the synchronized dynamics of the

pathways. By means of the Lyapunov function, we look for the requirements needed for the

instatement of a high quality synchronization within the coupled system. In the context of the

adaptive environment-mediated coupling scheme, both mathematical and numerical methods,

via a Lyapunov spectrum approach and a dichotomy scheme among others, provide the parame-

ter prerequisites in terms of coupling threshold, rate of degradation of substrates and maximum

velocity of the enzyme, that favors the emergence of a robust synchrony among the pathways.

Based on mathematical constructs, we normalize the dimensionless spatially extended model

of diffusively connected cells with activator-inhibitor pathways. Subsequently, we conduct a

linear stability analysis of the spatially homogeneous equilibrium state of large bi-dimensional

spatial networks of biochemical pathways and numerically expose the conditions conducive for

diffusion-driven instabilities, crucial in the occurrence of patterns generation in physical sys-

tems.

The thesis ends with a general conclusion and provides some future potential avenues of

research that could be explored.
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CHAPTER I

GENERALITIES ON CELLS AND

DYNAMICAL SYSTEMS

I.1 Introduction

A cell is a membrane-bounded unit that contains the DNA hereditary machinery and the cyto-

plasm. All organisms are cells or aggregates of cells. The general plan of cellular organization

varies in the cells of different organisms, but despite these modifications, all cells resemble each

other in certain fundamental ways. Before we begin our detailed examination of cell structure,

let us first summarize three major features all cells have in common: a plasma membrane, a

nucleoid or nucleus, and cytoplasm. The plasma membrane encloses a cell and separates its

contents from its surroundings. The plasma membrane is a phospholipid bilayer about 5 to 10

nanometers (5 to 10 billionths of a meter) thick with proteins embedded in it. Viewed in cross-

section with the electron microscope, such membranes appear as two dark lines separated by a

lighter area. This distinctive appearance arises from the tail-to-tail packing of the phospholipid

molecules that make up the membrane. The proteins of a membrane may have large hydropho-

bic domains, which associate with and become embedded in the phospholipid bilayer. The pro-

teins of the plasma membrane are in large part responsible for a cell’s ability to interact with its

environment. Transport proteins help molecules and ions move across the plasma membrane,

either from the environment to the interior of the cell or vice versa. Receptor proteins induce

changes within the cell when they come in contact with specific molecules in the environment,

such as hormones. Markers identify the cell as a particular type. This is especially important in

multicellular organisms, whose cells must be able to recognize each other as they form tissues.
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I.2 Central portion of the cell contains the genetic material

Every cell contains DNA, the hereditary molecule. In prokaryotes (bacteria), most of the ge-

netic material lies in a single circular molecule of DNA. It typically resides near the center of

the cell in an area called the nucleoid, but this area is not segregated from the rest of the cell’s

interior by membranes. By contrast, the DNA of eukaryotes is contained in the nucleus, which

is surrounded by two membranes. In both types of organisms, the DNA contains the genes

that code for the proteins synthesized by the cell. The cytoplasm comprises the rest of the cell’s

interior. A semifluid matrix called the cytoplasm fills the interior of the cell, exclusive of the

nucleus (nucleoid in prokaryotes) lying within it. The cytoplasm contains the chemical wealth

of the cell: the sugars, amino acids, and proteins the cell uses to carry out its everyday activities.

In eukaryotic cells, the cytoplasm also contains specialized membrane-bounded compartments

called organelles. From the cell theory, a general characteristic of cells is their microscopic size.

While there are a few exceptions like the marine alga Acetabularia, which can be up to 5 cen-

timeters long, a typical eukaryotic cell is 10 to 100 micrometers (10 to 100 millionths of a meter)

in diameter (Fig. 1); most bacterial cells are only 1 to 10 micrometers in diameter.

Because cells are so small, no one could observe them until microscopes were invented in

the mid-seventeenth century. Robert Hooke first described cells in 1665, when he used a mi-

croscope he had built to examine a thin slice of cork, a nonliving tissue found in the bark of

certain trees. Hooke observed a honeycomb of tiny, empty (because the cells were dead) com-

partments. He called the compartments in the cork ”cellulae” (Latin, ”small rooms”), and the

term has come down to us as cells. The first living cells were observed a few years later by the

Dutch naturalist Antonie van Leeuwenhoek, who called the tiny organisms that he observed

”animalcules,” meaning little animals. For another century and a half, however, biologists failed

to recognize the importance of cells. In 1838, botanist Matthias Schleiden made a careful study

of plant tissues and developed the first statement of the cell theory. He stated that all plants ”are

aggregates of fully individualized, independent, separate beings, namely the cells themselves.”

In 1839, Theodor Schwann reported that all animal tissues also consist of individual cells. The

cell theory, in its modern form, includes the following three principles:

1. All organisms are composed of one or more cells, and the life processes of metabolism and

heredity occur within these cells.
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Figure 1: The size of cells and their contents. This diagram shows the size of human skin cells, organelles,
and molecules. In general, the diameter of a human skin cell is 20 micrometers (µm) or 2 × 10−2 mm,
that of a mitochondrion is 2µm or 2 × 10−3 mm, that of a ribosome is 20 nanometers (nm) or 2 × 10−5

mm.
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Figure 2: Structure of a bacterial cell. Generalized cell organization of a bacterium. Some bacteria have
hairlike growths outside of the cell called pili.

2. Cells are the smallest living things, the basic units of organization of all organisms.

3. Cells arise only by division of a previously existing cell. Although life likely evolved spon-

taneously in the environment of the early earth, biologists have concluded that no additional

cells are originating spontaneously at present. Rather, life on earth represents a continuous line

of descent from those early cells.

I.3 Complexity of eukaryotic cells: far more complex than bacterial cells

Bacteria Are Simple Cells: Prokaryotes, the bacteria, are the simplest organisms. Prokaryotic cells

are small, consisting of cytoplasm surrounded by a plasma membrane and encased within a

rigid cell wall, with no distinct interior compartments (Fig. 2). A prokaryotic cell is like a one-

room cabin in which eating, sleeping, and watching TV all occur in the same room. Bacteria are

very important in the economy of living organisms. They harvest light in photosynthesis, break

down dead organisms and recycle their components, cause disease, and are involved in many

important industrial processes.
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Figure 3: Structure diagram of an animal cell with its internal organelles. (Generalized illustration)

Eukaryotic Cells Have Complex Interiors:

Eukaryotic cells (Fig. 3) are far more complex than prokaryotic cells. The hallmark of the

eukaryotic cell is compartmentalization. The interiors of eukaryotic cells contain numerous or-

ganelles, membrane-bounded structures that close off compartments within which multiple bio-

chemical processes can proceed simultaneously and independently. Plant cells often have a large

membrane-bounded sac called a central vacuole, which stores proteins, pigments, and waste ma-

terials. Both plant and animal cells contain vesicles, smaller sacs that store and transport a variety

of materials. Inside the nucleus, the DNA is wound tightly around proteins and packaged into

compact units called chromosomes. All eukaryotic cells are supported by an internal protein

scaffold, the cytoskeleton. While the cells of animals and some protists lack cell walls, the cells

of fungi, plants, and many protists have strong cell walls composed of cellulose or chitin fibers

embedded in a matrix of other polysaccharides and proteins. This composition is very different

from the peptidoglycan that makes up bacterial cell walls.
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I.4 Membrane and cellular transport

Biological membranes are fluid layers of lipid. Cells are encased by membranes composed of a

bilayer of phospholipid. Because individual phospholipid molecules do not bind to one another,

the lipid bilayer of membranes is a fluid. Proteins embedded within the plasma membrane de-

termine its character. A varied collection of proteins float within the lipid bilayer. Visualizing

a plasma membrane requires a powerful electron microscope. There are many kinds of mem-

brane proteins. These proteins in a membrane function in support, transport, recognition, and

reactions. Membrane proteins are anchored into the lipid bilayer by their non-polar regions.

Components of the Cell

A eukaryotic cell contains many membranes. While they are not all identical, they share the

same fundamental architecture. Cell membranes are assembled from four components:

1. Lipid bilayer: Every cell membrane is composed of a phospholipid bilayer. The other

components of the membrane are enmeshed within the bilayer, which provides a flexible matrix

and, at the same time, imposes a barrier to permeability.

2. Transmembrane proteins: A major component of every membrane is a collection of proteins

that float on or in the lipid bilayer. These proteins provide passageways that allow substances

and information to cross the membrane.

3. Network of supporting fibers: which are intracellular proteins that reinforce the membrane’s

shape. For example, a red blood cell has a characteristic biconcave shape because a scaffold of

proteins called spectrin links proteins in the plasma membrane with actin filaments in the cell’s

cytoskeleton.

4. Exterior proteins and glycolipids: Different cell types exhibit different varieties of glycopro-

teins and glycolipids on their surfaces, which act as cell identity markers.

Kinds of Membrane Proteins

The plasma membrane is a complex assembly of proteins enmeshed in a fluid array of phos-

pholipid molecules. This enormously flexible design permits a broad range of interactions with

the environment, some directly involving membrane proteins (Fig. 4). Though cells interact

with their environment through their plasma membranes in many ways, we will focus on six

key classes of membrane protein.

1. Transporters: Membranes are very selective, allowing only certain substances to enter or

Ph.D. Thesis of P. Guemkam Ghomsi Laboratory of Mechanics, Materials and Structures



I.4 Membrane and cellular transport 13

Figure 4: Functions of plasma membrane proteins. Membrane proteins act as transporters, enzymes,
cell surface receptors, and cell surface markers, as well as aiding in cell-to-cell adhesion and securing the
cytoskeleton.

leave the cell, either through channels or carriers. In some instances, they take up molecules

already present in the cell in high concentration.

2. Enzymes: Cells carry out many chemical reactions on the interior surface of the plasma

membrane, using enzymes attached to the membrane.

3. Cell surface receptors: Membranes are exquisitely sensitive to chemical messages, detecting

them with receptor proteins on their surfaces that act as antennae.

4. Cell surface identity markers: Membranes carry cell surface markers that identify them to

other cells. Most cell types carry their own identity tags, specific combinations of cell surface

proteins characteristic of that cell type.

5. Cell adhesion proteins: Cells use specific proteins to glue themselves to one another. Some

act like Velcro, while others form a more permanent bond.

6. Attachments to the cytoskeleton: Surface proteins that interact with other cells are often an-

chored to the cytoskeleton by linking proteins. Therefore, the many proteins embedded within a

membrane carry out a host of functions, many of which are associated with transport of materials

or information across the membrane.
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Figure 5: Diffusion. If a lump of sugar is dropped into a beaker of water (a), its molecules dissolve (b) and
diffuse (c). Eventually, diffusion results in an even distribution of sugar molecules throughout the water
(d).

Passive transport across membranes moves down the concentration gradient:

1- Diffusion is the random molecular motion which results in a net movement of molecules

to regions of lower concentration. Indeed, molecules and ions dissolved in water are in constant

motion, moving about randomly. This random motion causes a net movement of these sub-

stances from regions where their concentration is high to regions where their concentration is

lower, a process called diffusion (Fig. 5). Net movement driven by diffusion will continue until

the concentrations in all regions are the same. You can demonstrate diffusion by filling a jar to

the brim with ink, capping it, placing it at the bottom of a bucket of water, and then carefully

removing the cap. The ink molecules will slowly diffuse out from the jar until there is a uniform

concentration in the bucket and the jar. This uniformity in the concentration of molecules is a

type of equilibrium.

Facilitated transport:

Many molecules that cells require, including glucose and other energy sources, are polar and

cannot pass through the non-polar interior of the phospholipid bilayer. These molecules enter

the cell through specific channels in the plasma membrane. The inside of the channel is po-
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lar and thus ”friendly” to the polar molecules, facilitating their transport across the membrane.

Each type of biomolecule that is transported across the plasma membrane has its own type of

transporter (that is, it has its own channel which fits it like a glove and cannot be used by other

molecules). Each channel is said to be selective for that type of molecule, and thus to be se-

lectively permeable, as only molecules admitted by the channels it possesses can enter it. The

plasma membrane of a cell has many types of channels, each selective for a different type of

molecule.

Facilitated diffusion refers to a passive movement across a membrane which often takes place

through specific carrier proteins.

Diffusion of ions through channels: One of the simplest ways for a substance to diffuse across a

cell membrane is through a channel, as ions do. Ions are solutes (substances dissolved in water)

with an unequal number of protons and electrons. Those with an excess of protons are positively

charged and called cations. Ions with more electrons are negatively charged and called anions.

Because they are charged, ions interact well with polar molecules like water but are repelled

by the non-polar interior of a phospholipid bilayer. Therefore, ions cannot move between the

cytoplasm of a cell and the extracellular fluid without the assistance of membrane transport

proteins. Ion channels possess a hydrated interior that spans the membrane. Ions can diffuse

through the channel in either direction without coming into contact with the hydrophobic tails

of the phospholipids in the membrane, and the transported ions do not bind to or otherwise

interact with the channel proteins. Two conditions determine the direction of net movement of

the ions: their relative concentrations on either side of the membrane, and the voltage across

the membrane. Each type of channel is specific for a particular ion, such as calcium (Ca++) or

chloride (Cl−), or in some cases for a few kinds of ions. Ion channels play an essential role in

signaling by the nervous system.

2- Facilitated diffusion: In this case, the net movement always occurs from areas of high con-

centration to low, just as it does in simple diffusion, but carriers, another class of membrane

proteins, facilitate the transport process in between the cytoplasm and the extracellular medium.

For this reason, this mechanism of transport is sometimes called facilitated diffusion. A typical

example is the facilitated diffusion in red blood cells of ions in each direction: : Cl− in one direc-

tion and bicarbonate ion (HCO−

3 ) in the opposite direction via some red blood cell (RBC) carrier

proteins. This carrier is important in transporting carbon dioxide in the blood. A second im-
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portant facilitated diffusion carrier in RBCs is the glucose transporter. Red blood cells naturally

keep their internal concentration of glucose low.

3- Osmosis occurs when Polar solutes interact with water and can affect the movement of

water across semipermeable membranes. The cytoplasm of a cell contains ions and molecules,

such as sugars and amino acids, dissolved in water. The mixture of these substances and water

is called an aqueous solution. Water, the most common of the molecules in the mixture, is the

solvent, and the substances dissolved in the water are solutes. The ability of water and solutes to

diffuse across membranes has important consequences. It is keynote that osmosis is the diffusion

of water, but not solutes,across a membrane.

Molecules Diffuse down a Concentration Gradient:

Both water and solutes diffuse from regions of high concentration to regions of low concen-

tration; that is, they diffuse down their concentration gradients. When two regions are separated

by a membrane, what happens depends on whether or not the solutes can pass freely through

that membrane. Most solutes, including ions and sugars, are not lipid-soluble and, therefore, are

unable to cross the lipid bilayer of the membrane. Even water molecules, which are very polar,

cannot cross a lipid bilayer. Water flows through aquaporins, which are specialized channels for

water. The concentration of all solutes in a solution determines the osmotic concentration of the

solution. If two solutions have unequal osmotic concentrations, the solution with the higher con-

centration is hyperosmotic (Greek hyper, ”more than”), and the solution with the lower concen-

tration is hypoosmotic (Greek hypo, ”less than”). If the osmotic concentrations of two solutions

are equal, the solutions are isosmotic (Greek iso, ”the same”).

In cells, a plasma membrane separates two aqueous solutions, one inside the cell (the cyto-

plasm) and one outside (the extracellular fluid). The direction of the net diffusion of water across

this membrane is determined by the osmotic concentrations of the solutions on either side (Fig.

6). For example, if the cytoplasm of a cell were hypoosmotic to the extracellular fluid, water

would diffuse out of the cell, toward the solution with the higher concentration of solutes (and,

therefore, the lower concentration of unbound water molecules). This loss of water from the

cytoplasm would cause the cell to shrink until the osmotic concentrations of the cytoplasm and

the extracellular fluid become equal.

Maintaining Osmotic Balance:

Organisms have developed many solutions to the osmotic dilemma posed by being hyperos-
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Figure 6: Osmosis. In a hyperosmotic solution, water moves out of the cell toward the higher concen-
tration of solutes, causing the cell to shrivel. In an isosmotic solution, the concentration of solutes on
either side of the membrane is the same. Osmosis still occurs, but water diffuses into and out of the cell at
the same rate, and the cell doesn’t change size. In a hypoosmotic solution, the concentration of solutes is
higher within the cell than without, so the net movement of water is into the cell.
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motic to their environment.

Extrusion: Some single-celled eukaryotes like the protest Paramecium use organelles called

contractile vacuoles to remove water. Each vacuole collects water from various parts of the

cytoplasm and transports it to the central part of the vacuole, near the cell surface. The vacuole

possesses a small pore that opens to the outside of the cell. By contracting rhythmically, the

vacuole pumps the water out of the cell through the pore.

Isosmotic Solutions: Some organisms that live in the ocean adjust their internal concentration

of solutes to match that of the surrounding seawater. Isosmotic with respect to their environ-

ment, there is no net flow of water into or out of these cells. Many terrestrial animals solve the

problem in a similar way, by circulating a fluid through their bodies that bathes cells in an isos-

motic solution. The blood in your body, for example, contains a high concentration of the protein

albumin, which elevates the solute concentration of the blood to match your cells.

Turgor: Most plant cells are hyperosmotic to their immediate environment, containing a high

concentration of solutes in their central vacuoles. The resulting internal hydrostatic pressure,

known as turgor pressure, presses the plasma membrane firmly against the interior of the cell

wall, making the cell rigid. The newer, softer portions of trees and shrubs depend on turgor

pressure to maintain their shape, and wilt when they lack sufficient water.

4- Active transport across membranes is powered by energy from ATP:

While diffusion, facilitated diffusion, and osmosis are passive transport processes that move

materials down their concentration gradients, cells can also move substances across the mem-

brane up their concentration gradients. This process requires the expenditure of energy, typically

ATP, and is therefore called active transport. Like facilitated diffusion, active transport involves

highly selective protein carriers within the membrane. These carriers bind to the transported

substance, which could be an ion or a simple molecule like a sugar, an amino acid, or a nucleotide

to be used in the synthesis of DNA. Active transport is one of the most important functions of

any cell. It enables a cell to take up additional molecules of a substance that is already present

in its cytoplasm in concentrations higher than in the extracellular fluid. Without active trans-

port, for example, liver cells would be unable to accumulate glucose molecules from the blood

plasma, as the glucose concentration is often higher inside the liver cells than it is in the plasma.

Active transport also enables a cell to move substances from its cytoplasm to the extracellular

fluid despite higher external concentrations.
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I.5 Some relevant concepts on complex systems

I.5.1 Dynamical system

In this section, we look at equations of the following form:

ẋ = f(x, t; µ) , and (1)

x → g(x; µ) , (2)

with x ∈ U ⊂ R
n, and µ ∈ V ⊂ R

p, where U and V are open sets in R
n and R

p, respectively.

The overdot in Eq. (24) means ” dx
dt

”, and we view the variables µ as parameters. In the study

of dynamical systems, the independent variable is often referred to as ”time.” We will often use

this terminology. We refer to Eq. (24) as a vector field or ordinary differential equation and to

Eq. (2) as a map or difference equation. Both will be termed dynamical systems. By a solution of

Eq. (24), we mean a map, x, from some interval I ⊂ R
1 into R

n, which we represent as follows:

x : I → R
n , (3)

t → x(t) ,

such that x(t) satisfies Eq. (24), that is:

ẋ(t) = f(x(t), t; µ) . (4)

The map x has the geometrical interpretation of a curve in R
n, and Eq. (24) gives the tangent

vector at each point of the curve, hence the reason for referring to Eq. (24) as a vector field. We

refer to the space of dependent variables of Eq. (24) (i.e., R
n) as the phase space of Eq. (24),
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and, abstractly, our goal is to understand the geometry of solution curves in phase space. We

remark that in many applications, the structure of the phase space may be more general than

R
n; frequent examples are cylindrical, spherical, or toroidal phase spaces. However, we incur no

loss of generality if we take the phase space of our maps and vector fields to be open sets in R
n.

The solutions of differential equations have different properties depending on whether or not

the ordinary differential equation depends explicitly on time. Ordinary differential equations

that depend explicitly on time (i.e., ẋ = f(x, t; µ)) are referred to as non-autonomous or time-

dependent ordinary differential equations, or vector fields; and ordinary differential equations

that do not depend explicitly on time (i.e., ẋ = f(x; µ)) are referred to as autonomous or time-

independent ordinary differential equations, or vector fields.

I.5.2 Dependence on Initial Conditions

It may be useful to distinguish a solution curve by a particular point in phase space that it passes

through at a specific time, i.e., for a solution x(t), we have x(t0) = x0. We refer to this as spec-

ifying an initial condition. This is often included in the expression for a solution by writing

x(t, t0, x0). In some situations, explicitly displaying the initial condition may be unimportant, in

which case we will denote the solution merely as x(t). In still other situations, the initial time

may be always understood to be a specific value, say t0 = 0; in this case, we would denote the

solution as x(t, x0).

I.5.3 Dependence on Parameters

Similarly, it may be useful to explicitly display the parametric dependence of solutions. In this

case, we would write x(t, t0, x0; µ), or, if we weren’t interested in the initial condition, x(t; µ). If

parameters play no role in our arguments, we will often omit any specific parameter dependence

from the notation. It is keynote that there are several different terms which are somewhat syn-

onymous with the term solution of Eq. (24). x(t, t0, x0) may also be referred to as the trajectory

or phase curve passing through the point x0 at t = t0.

I.5.4 Nonlinearity and oscillations

Systems that oscillate in principle are usually called oscillators. But the systems we are interested

in should be capable of demonstrating oscillations that are self-sustained, or self-oscillations.
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The concept of self-oscillations was first proposed by Andronov, Khaikin and Vitt [86, 87, 88].

Self-oscillations form a special, but rather broad class of all oscillating processes and are char-

acterized by the following features: o First and foremost, they do not damp, i.e., the repetitive

motion of the system does not stop with the course of time, and does not show the tendency

to stop. o Second and equally important, they oscillate ”by themselves,” i.e., not because they

are repetitively kicked from outside. o The third feature is perhaps the most intriguing and fas-

cinating: the shape, amplitude and time scale of these oscillations are chosen by the oscillating

system alone. An outsider cannot easily change them, e.g., by setting different initial conditions.

Nonlinearity is crucial in self-sustained systems since a self-sustained system must be nonlinear.

Indeed, it is the interplay between the non-linear power supply and dissipation that makes self-

oscillations possible. It is then important to know what nonlinearity is all about. Suppose we

have a system about which we would like to find out whether it is linear or not. Apply some

perturbation x1 to it and record its response y1. Then, apply another perturbation x2 and record

the response y2 to that. Then, apply perturbation equal to (x1 + x2) and calculate the response

y3. Then, calculate the sum (y1 + y2) and compare the two quantities (y1 + y2) and y3. Are they

equal for any chosen x1 and x2? If yes, then the system is linear. If they are not equal, the system

is non-linear. Graphically, linearity can be illustrated as a straight line on the graph of response

y as a function of input x. Anything different from a straight line would represent a nonlinear

system. Examples of self-oscillators are a grandfather pendulum clock, a whistle, your throat

when you sing a musical note, as well as many musical instruments, your heart and many other

biological systems, a bottle of water with a narrow neck that is put vertically with its neck down

(water will come out in pulses). In order to prevent possible confusion, we would like to give

just one example of an oscillator which is not a self-sustained one. As counterexample, let us

consider a bob pendulum consisting of a load on a rope, whose other end is fixed. If we give the

load an initial kick, it will start to oscillate, but if we leave it alone, the oscillations will decay

and eventually stop due to friction of the whole construction with air, and also at the point of

the rope attachment. Of course, a repetitive kicking will resume the oscillations of the pendu-

lum, but these will not be self -sustained because they would damp without the kicks. What

if there were no friction in the system? Then the oscillations would not damp, but would that

make them self-sustained? No, because the properties of these oscillations would be completely

defined by the direction and strength of the initial kick made by an outsider who would wish
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to launch them: the harder one kicks, the larger the swing will be. This would contradict the

third feature of self-oscillations. Thus, for self-oscillations to occur, the oscillating system must

be designed in a special way. The following three features of the self-oscillating systems are most

essential: they must be non-linear systems, there must be dissipation in them, and there must

be a source of power. It is noteworthy that dissipation is a mechanism due to which energy is

being lost by the system while it changes its state, i.e., performs a motion. It has to be said that

most macroscopic systems are dissipative anyway, since there is always some sort of friction in

it. For example, mechanical systems lose energy because their details experience friction with

other details or surrounding air. In electronic systems, elementary particles bump into other

particles, the elements of the circuits heat and thus lose energy. This list can be continued, but

the main idea is clear: dissipation is everywhere. It would be pertinent to emphasize again that

the systems without (or almost without) dissipation are not self-oscillators. The study of physics

has changed in character, mainly due to the passage from the analysis of linear systems to the

analysis of nonlinear systems. Such a change began, it goes without saying, a long time ago but

the qualitative change took place and boldly evolved after the understanding of the nature of

chaos in nonlinear systems. The importance of these systems is due to the fact that the major

part of physical reality is nonlinear. Linearity appears as a result of the simplification of real

systems, and often, is hardly achievable during the experimental studies. Nonlinearity is closely

related to chaos, which plays a constructive part in several physical phenomena.

I.5.5 Chaos in biological systems

A simplified and pragmatic explanation is frequently used to explain this phenomenon as fol-

lows: Dynamical chaos appears in nonlinear systems with trajectories utterly sensible to minor

modifications of initial conditions. In that case, any person calculating a trajectory using a com-

puter, observes that the small uncertainty (difference) of initial conditions engenders chaotic

behavior (divergence). The universality of chaotic dynamics in mathematical and physical sys-

tems [89, 90, 91, 92] has prompted renewed interest in the application of nonlinear analysis to

biological processes [4,5]. Attention has also focused on the physiological and medical implica-

tions of these concepts [92, 93, 94, 95, 96, 97]. The prevailing viewpoint is that the dynamics of

health are ordered and regular and that a variety of pathologies represent a bifurcation to chaos

[94, 96, 98]. For example, Smith and Cohen [96] advanced the hypothesis that ventricular fib-
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rillation, the arrhythmia most commonly associated with sudden cardiac death, is a turbulent

process (cardiac chaos) that may result from a subharmonic bifurcation (period-doubling) mech-

anism. Some authors [95, 99, 100, 101, 102] have proposed an alternative viewpoint, contrary to

this notion of chaotic disease. In particular, they have suggested that chaos is useful in modelling

the constrained randomness [103] inherent in the healthy function of physiological systems. Due

to the importance of these phenomena in biological systems, a special interest will be given on

the concept of chaos in our thesis.

I.5.6 Synchronization in biological systems

In most general terms, synchronization means that different systems adjust the time scales of

their oscillations due to interactions, but there is a large variety of its manifestations and of

the accompanying fascinating phenomena. An essential contribution to this concept has been

made by Pikovsky, Rosenblum, and Kurths not long ago in their book [104], that has provided

a contemporary view on synchronization as a universal phenomenon that manifests itself in the

entrainment of rhythms of interacting self-sustained systems. It is a widespread phenomenon in

biology, namely in cellular systems such as in cardiac cells and neuronal networks[105, 106, 107].

Cell synchronization means that cells at different stages of the cell cycle in a culture are brought

to the same phase. Cell synchrony is required to study the progression of cells through the

cell cycle. Due to the fact that this concept is crucial for a collective organization and efficient

communication of cells, it will stand as a core aspect of our investigation.

I.5.7 Pattern formation

One of the most important aspects in complex systems is pattern formation. By pattern formation

we mean that certain systems have the ability to self-organize into spatially structured states,

from initially unstructured (or spatially homogenous) states. This behavior occurs all over the

place around us, in several fields of science such as in physics, in chemistry, in biology, in social

science, etc.

Examples of pattern forming in nature:

-In Physics: The most known example of spontaneous pattern formation in physics is proba-

bly Bénard convection. This happens when a liquid is heated from below at such a high rate that

the heat cannot dissipate through the system fast enough. In this case convection rolls or cells
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Figure 7: Bénard Convection.

emerge that transport the heat to the cooler regions of the liquid where heat is given off. The

cooled liquid then gets pushed to the bottom to be reheated (See Fig. 7).

-Chemistry:

There is an abundance of chemical reactions that, if they occur in a not-well-stirred sce-

nario, have the potential of generating patterns. One such reaction, the most famous one, is

the Belousov-Zhabotinsky reaction. This reaction uses essentially five reactions, in which partic-

ular chemicals in it start oscillating in their concentration. If the reaction takes place in a petri

dish, spiral and target wave form. This is because in its essence this reaction is an activator in-

hibitor system in which an autocatalytic reaction increases the abundance of a chemical which in

turn increases the abundance of a chemical that turns this reaction off. Fig. 8 shows a snapshot

of a pattern that the BZ reaction can generate.

Other notable pattern forming physical systems include hydrodynamical systems such as the

Taylor-Couette flow which is analogous to Rayleigh-Bénard convection in that it also involves

fluid moving in rolls; chemical reaction-diffusion systems such as those described by the com-

plex Ginzburg-Landau equation which describes the dynamics of the amplitude of the global

oscillatory modes that emerge from different local mechanisms, near a supercritical Hopf bifur-

cation. In general, the dynamics of all such models can be reduced to the complex Ginzburg-

Landau equation (CGLE). A typical example is the FitzHugh-Nagumo (FHN) model which was

Ph.D. Thesis of P. Guemkam Ghomsi Laboratory of Mechanics, Materials and Structures



I.5 Some relevant concepts on complex systems 25

Figure 8: Example of pattern generated by the Belousov-Zhabotinsky reaction.

originally developed to describe the function of neural cells and the propagation of neural sig-

nals along axons [108].

-Biology:

Biology is full of pattern forming systems, such as in cAMP signaling in Dictyostelium dis-

coideum, in the orientation maps in the visual cortex of primates and other higher mammals that

have binocular vision, the case of patterns on sea shell(see Fig. 9), as well as patterns in animal

fur(see Fig. 10). On Fig. 10, it is seen that some patterns are spotty, some consist of stripes of dif-

ferent wavelength. It turns out that with very few dynamic ingredients, one can devise a model

that is capable of generating all these patterns at different parameter values.

The above patterns in animals are a special case of something a lot more fundamental called

biological Morphogenesis, which focuses on the problem of how multicellular organisms with a

great diversity of function and cell morphology can develop from a single, homogeneous fertil-

ized egg. First, all cells in a multicellular organism have the same genome despite the variety in

shape and function. This can be the case because these cells differ in what genes are expressed,

i.e. active or repressed( inactive). On the way towards an adult organism, cells differentiate by

a sequential switching off and on of genes. This mechanism is responsible for spontaneously

introducing differences in embryos. For example in the drosophila melanogaster (fruit fly) em-

bryo, different genes are expressed in different regions. The combination of expression levels
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Figure 9: Patterns on sea shell.

Figure 10: Patterns in animal fur.
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Figure 11: Alan Turing.

introduces different cell fates for the cells in specific locations which eventually governs the de-

velopment of a full blown fly.

-Biological Morphogenesis and Turing instability

The scientist who first thought and published about the origins of spontaneous pattern for-

mation was Alan Turing, who published a seminal paper called ”The chemical basis of morpho-

genesis”. In this paper, published only shortly before his death, Turing argued that an abundance

of patterns observed in nature, many of the ones mentioned above, can be generated by the in-

teraction of three different ingredients: activation, inhibition and diffusion. The basic idea being

that essentially two types of agents (e.g. molecules, animals or other dynamical quantities) in-

teract. An activator that does autocatalysis, which means this activator generates more of itself.

Also, the activator triggers the generation of an inhibitor. The action of the inhibitor decreases

the abundance of the activator. We have seen examples of such dynamical systems.

A Turing system consists of two or more coupled nonlinear partial differential equations

(PDEs), which describe reactions and diffusion of chemicals or morphogens. The remarkable

feature of the Turing mechanism is that it is capable of generating beautiful time-independent

spatial patterns from any random initial configuration provided that particular conditions are

satisfied [108]. The clue is that both activator and inhibitor can move in space diffusively dur-

ing the Turing patterning process which is basically due to instabilities. Turing instability is a

phenomenon that causes certain reaction-diffusion systems to spontaneously give rise to sta-

tionary patterns with a characteristic length scale from an arbitrary initial configuration. The
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key factor in inducing the instability is diffusion and this is why Turing instability is often called

diffusion-driven instability. A remarkable feature of Turing systems as compared to many other

instabilities in systems out of equilibrium [109, 110] is that the characteristics of the resulting

patterns are not determined by externally imposed length scales or constraints, but by the chem-

ical reaction and diffusion rates that are intrinsic to the system. The spirals, target patterns and

travelling waves generated by the Belousov-Zhabotinsky (BZ) reaction are not due to a Turing

instability since they are not stationary and the diffusion rates of the chemicals involved in BZ

reaction are usually more or less the same. The difference in the diffusion rates of the chemical

substances is a necessary, but not a sufficient condition for the Turing instability [108]. These ba-

sic ideas developed by Turing are highly valuable because of their impact on science as a whole,

and because it is still a topic of contemporary interest. This is the reason why the year 2012 has

been dedicated to him by the scientific community in recognition of his immense contribution to

science. A photographic representation of Alan Turing is shown in Fig. (11).

I.6 Literature review on cells with activator-inhibitor pathways

The most significant achievement of the reductionist approach of molecular biology has been

the elucidation of almost all the biochemical reactions or pathways controlling different func-

tions in the bacteria Eschericia-coli. Also known as E. coli, it is a gram-negative, facultatively

anaerobic, rod-shaped, coliform bacterium of the genus Escherichia that is commonly found in

the lower intestine of warm-blooded organisms (endotherms). These single-celled, often para-

sitic, microorganisms without distinct nuclei, or organized cells structures, are categorized into

various species. Most E. coli strains are harmless, but some serotypes can cause serious food

poisoning in their hosts, and are occasionally responsible for product recalls due to food contam-

ination. The harmless strains are part of the normal flora of the gut, and can benefit their hosts

by producing vitamin K2, and preventing colonization of the intestine with pathogenic bacteria.

Therefore, they actively partake in processes such as decay, fermentation, nitrogen fixation, and

many plants and animal diseases. E. coli is expelled into the environment within fecal matter.

The bacterium grows massively in fresh fecal matter under aerobic conditions for 3 days, but

its numbers decline slowly afterwards. E. coli and other facultative anaerobes constitute about

0.1 percent of gut flora, and fecal-oral transmission is the major route through which pathogenic

strains of the bacterium cause disease.
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Initially discovered by Theodor Escherich (1885) in goats fecal materials, this bacterium which

can be grown and cultured easily and inexpensively in a laboratory setting, has been intensively

investigated for over 60 years. E. coli is a chemoheterotroph whose chemically defined medium

must include a source of carbon and energy. E. coli is the most widely studied prokaryotic model

organism, and an important species in the fields of biotechnology and microbiology, where it has

served as the host organism for the majority of work with recombinant DNA. Under favorable

conditions, it takes only 20 minutes to reproduce.

As a fair approximation, a living cell can be considered as a collection of interacting biochem-

ical pathways integrated into an overall reaction network [111, 112] through both enzymatic and

genetic control elements (which are little more than molecules with conformational flexibility).

It is known that when elements of a certain degree of complexity become organized into a to-

tality of an entity belonging to a higher level of organization, the coherence of the higher level

depends on properties which the isolated elements could not exhibit until they entered into cer-

tain relations with one another [113]. If this is true for living systems, this then tells us that

the coherent behavior (or the property of coordinated activities) observed in the spatiotemporal

organization seen in more complex systems (i.e. higher organisms) which have evolved from

the simpler cells (which in turn are composed of basic biochemical elements) cannot always be

understood by reducing it to its rudimentary elements; and it is helpful to study different levels

of organizations to obtain valuable information about their functions and their interplay. Most

of the molecular processes controlling different cellular functions are regulated by a few com-

mon phenomena, such as, sequential reactions with rate limiting steps, competition for common

sites, allosteric changes, end-product inhibition or repression, etc. Hence it is useful to formulate

general models of different levels of complexity incorporating the above mentioned common

features and study their dynamical properties. Living systems seem to have taken advantage

of the variability in functional dynamics emerging from a few common components by simply

connecting them in different ways. Given the predominance of feedback processes and reac-

tion pathways with low connectivity observed in both metabolic and transcriptional regulatory

pathways in E.coli. [114, 115, 116], some authors have studied the canonical three-step single

negative feedback system with end product inhibition and compared it to a structurally more

complex system in terms of an additional positive feedback.

The aim of this section is to perform: on one hand, a relatively exhaustive review of the analy-
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sis of the different topologies of feedback processes, previously conducted by many researchers,

in isolation as well as when they are interacting with each other, and to highlight the types of

dynamics attainable by these designs under various genetic and biochemical alterations of the

pathway. We equally revisit the response of the pathway to perturbation in the end product

concentration in order to judge the robustness of the dynamics in that particular topology. Ac-

cording to many investigators, this approach could be a possible way of studying regulation

in cellular processes and arriving at a set of minimal designs adopted by nature. For this pur-

pose, we will present the results of studies performed by several researchers, on two generalized

biochemical control systems with: firstly, (a) a single negative feedback describing end-product

repression, and secondly, (b) a coupled negative and positive feedback mechanism representing

end-product inhibition and allosteric activation. On the other hand, at the multicellular level,

we will briefly report the impacts of the local coupling strength and system size on the local

and global dynamics in the pathway ensembles as specified in the literature, where interesting

events of occurrence of synchronization and patterns generations have been reported by some

investigators.

I.7 Model pathways: Presentation, description and cellular rhythms

A metabolic pathway consists of two interdependent flows: reaction pathways and control feed-

backs. Reaction pathways are composed of systems of enzymes with tightly linked specificities

for one another’s products and substrates. In many cases, these pathways are forked, with more

than one enzyme having specificity for a given product. As demonstrated by the citrate cycle,

pathways may also feed back into themselves, producing an iterative structure. Control feed-

back may be positive or negative, internal to the pathway, or caused by external metabolic or

signalling pathways. The citrate cycle for instance is regulated by substrates and products within

the cycle. Glycolysis is regulated by hormones, notably insulin. The functions of pathways are

either anabolic (constructive), catabolic (destructive), or amphibolic. Amphibolic pathways are

both anabolic and catabolic, and often link anabolic and catabolic pathways. In this section, we

present two different models pertaining in the description of the pathway rhythms in the E. coli.

Ph.D. Thesis of P. Guemkam Ghomsi Laboratory of Mechanics, Materials and Structures



I.7 Model pathways: Presentation, description and cellular rhythms 31
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Figure 12: Three-step biochemical pathway with end-product inhibition mediated by the formation of a
complex by the end-product with a repressor R. The arrows from the substrates S1, S2, S3 indicate the
degradation of the substrates and utilization of the end-product.

I.7.1 Model I

The abundance of negative feedback controls in biochemical reaction pathways helps maintain-

ing homeostasis in cellular functions. The basic three-step reaction module (process) considered

here (see Fig. 12) is a three step reaction involving the conversion of a substrate S1 into a product

S3 via an intermediate substance S2, where S3 inhibits the formation of S1 through a cooperative

process by combining with another molecule R [111]. This type of process is common in gene

regulation and is known as repressor-mediated repression [117, 118, 119]. This activity is equally

similar to the repressor-mediated repression of bacterial operons, where the end-product can re-

press the operon only after combining with the repressor molecule and these two interactions

have very different specificities and dissociation constants. The time evolution of such a process

can be written in non-dimensional form as:
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dx

dt
= (

γ

1 + γ
)

1

1 + (1 + γ)n
+

1

1 + γ
− α1x ,

dy

dt
= x − α2y , (5)

dz

dt
= y − α3z − g ,

where α1, α2, α3 are the degradation rates of S1, S2 and S3, whose dimensionless concentra-

tions are given by x, y and z, respectively. g is related to the rate of utilization of the end-product

(say, use of amino acids in protein synthesis in a cell), and γ is a parameter describing the strength

of repression. Here, it is assuming the complex [S3 − R] interaction is of the Michaelis-Menten

type with n as the cooperativity of repression. To study the above process, the tryptophan operon

was taken as the model system for which the parameter values are known from experiments

[119]. Numerical simulations and bifurcation analysis of the model pathways were carried out.

The basal parameter values, taken from the normal (wild-type) tryptophan biosynthetic path-

way in E.coli [118, 120, 121] are: γ = 10, g = 4, n = 2, α1 = 1, α2 = 0.01, α3 = 0.01, β = 0.33, and

k = 0.0173.

Subsequent to a linear stability analysis of the steady states and some numerical simulation

of the equations (5) near the steady states, Somdatta Sinha and Ramaswamy showed that the

following behavioral pattern of the system was observed, when one of the parameter, namely

the strength of the repression γ, was varied [111]:

STABLE → BISTABLE → PERIODIC.

To identify the minimal conditions under which the pathway may destabilize to induce os-

cillations, its behavior on varying γ is investigated [116]. The study shows that, at the basal

parameter values, as γ is increased, the steady state concentration of the end product reduces

drastically until it loses its stability through a subcritical Hopf bifurcation, and the pathway

shows bistable behavior, that is, coexistence of a stable limit cycle and equilibrium dynamics. It

is keynote to indicate that this phenomenon is known as hard excitation [14, 122].

In order to highlight the role of different parameters in the stability of the system, the authors
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Figure 13: The minimal biochemical reaction pathway: A three-step reaction sequence with the inhibition
of S1 by end-product S3 and activation of the allosteric enzyme E by S3.

in [116] described the effect of altering the rates of degradation, α1, α2, α3, with respect to the

rate of utilization of end-product, g, on the dynamics of the system.

It is noteworthy that the biochemical pathways in cells are subjected to fluctuations both

in the rates of various reactions and in the concentrations of the metabolites. To judge the ro-

bustness of the dynamics exhibited by the model pathway, the authors evaluated its dynamical

response under the effect of sudden perturbations in the end-product concentration z. When

the Model I pathway is at equilibrium or is oscillating(that is in the presence of only one stable

attractor, outside of the range of values of γ suitable for hard excitation), instantaneous pertur-

bation of z returns the pathway to its original dynamics. However, in the bistable region, the

effect of the perturbation depends on the strength of the perturbation.

I.7.2 Model II

As discussed above, negative feedback processes are crucial in biochemical activities. Yet, Though

less prevalent, positive feedback processes in both metabolic and genetic regulations are used for

important activities through amplification of signals, rapid response pathways, switching activ-

ities, and in cellular processes that show periodic and complex dynamics, such as glycolytic

oscillations in cells free extracts of yeast cells, peroxidase-oxidase reactions, insulin secretion in
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pancreatic beta cells, calcium oscillations and amplification of cAMP signal in the aggregation

of cellular slime molds.

To describe a higher level of organization, we consider the biochemical pathway model

shown in Fig. 13, which is a three-step reaction having substrates S1, S2 and end-product S3,

whose concentrations are regulated by a positive and a negative feedback process in terms of

end-product inhibition of S1 by S3 and autocatalytic activation of the allosteric enzyme E, by

S3. Here, the S2 to S3 reaction is catalyzed by an allosteric enzyme E, which is assumed to be

a dimer (that is a double molecule or a molecule made up of two simpler identical molecules),

obeying the concerted transition model (Fig. 13) [76]. The generalized dimensionless form of the

equations describing the above process is given as:

dx

dt
= F (z) − kx ,

dy

dt
= a3x − G(y, z) , (6)

dz

dt
= a4G(y, z) − qz ,

where F (z) and G(y, z) are given by:

F (z) =
a1

a2 + zn
, and G(y, z) =

Ty(1 + y)(1 + z)2

L + (1 + y)2(1 + z)2

,

where a1, a2, a3 and a4 are parameters which are functions of the pseudo-Michaelis constants

and dissociation constants of the reactions, k and q are the degradation rates of S1 and S3, which

are assumed to be of first order [111]. L and T are the allosteric constant and maximum activity

of the enzyme E. n denotes the cooperativity of repression. The values of the parameters can be

chosen from existing literature on both hypothetical metabolic reactions and specific processes

[15, 123, 124]. To reduce the dimensions of the parameter space to be explored, Somdatta Sinha

and Ramaswamy have fixed the values of a1, a2, a3, a4, L, T and n.

The time evolution of the normalized substrates in this pathway model can be described by

equation (6), where, x, y and z are the normalized concentration of the substrates, S1, S2 and S3,

respectively. The term F (z) is a nonlinear function describing the inhibition of S1 by the end-
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product, S3. We assume that this interaction follows cooperative kinetics and requires binding

of n molecules of z for inhibition. The positive feedback term, G(y, z), involves the allosteric en-

zyme E, obeying the concerted transition model. These nonlinear kinetic processes are common

in mechanisms of biochemical regulation and are widespread in both genetic and metabolic reac-

tions underlying cellular processes, such as the cell cycle, gene repression/induction, glycolysis,

hormonal signalling, cAMP oscillations in cellular slime moulds and calcium-induced-calcium-

release [14]. Many authors have studied the system in model II using a combination of analytical

and numerical methods. The values of the parameters were obtained from experimental systems

with similar regulatory mechanisms [111]. The basal values of the parameters are given as n = 4,

T = 10, L = 106, k = 1.0 and q = 0.01.

The authors in [107, 125, 126] have studied the behavior of the pathway by varying the rates

of degradation, k and q of S1 and S3, since the net accumulation of the substrates depends crit-

ically on these parameters. They found that the pathway shows a variety of dynamics, starting

from equilibrium to periodic, complex and chaotic oscillations with changing k and q.

A notable complex behavior of model II emerged in a new form of bistability known as

birhythmicity [15], and denotes the coexistence between two simultaneously stable attractors.

Effect of Perturbation on model II and collective cells dynamics

The coexistence of two very dissimilar attractors, or birhythmicity, has interesting implica-

tions. The basins of attraction map of the two attractors, Type I attractor and Type II , is found

to be fractal, having no well-defined boundary and so the asymptotic evolution of the pathway

is unpredictable. The fractal nature of the basins of attraction is of particular interest in the

presence of noise, since this means that the pathway dynamics are very sensitive to small varia-

tions in substrate concentrations in this birhythmic parameter regime. Since the concentrations

of biomolecules within the cells can fluctuate considerably, these results imply that the path-

way dynamics exhibited by individual cells within an isogenic population can show different

oscillatory phenotypes even under the same environmental conditions.

At the collective level, cell-to-cell communication is a crucial prerequisite for the develop-

ment and maintenance of structure and function of multicellular organisms. Nowadays, diverse

mechanisms of intercellular exchange of information have been documented, and the variations

in strength of communication have been found to be responsible of the changes in dynamical

states leading to disease [127]. Biochemical pathways with activator-inhibitor reactions under-
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lie many cellular functions and end-products of such pathways metabolically couple cells in

populations and tissues in order to induce a collective behavior. We have reviewed the collec-

tive behavior of a one dimensional ring of cells, diffusively coupled to their nearest neighbors

through the end product of a intracellular activator-inhibitor biochemical pathway. The individ-

ual cells, which are chaotic when uncoupled, were found to show multiple modes of synchro-

nized spatiotemporal dynamics, chaos suppression, phase synchronization, travelling wave, and

intermittent synchronization, for ranges of coupling strength. Along with suppression of chaos

to P4 oscillations, regular spatial patterns are also observed with cells in the lattice having phase

synchronized dynamics but with different amplitudes. Unlike other systems, here synchroniza-

tion does not persist for higher coupling after establishment. Phase synchronization observed in

this model has certain important and distinct features. Most of the earlier investigations were

concentrated on synchronization of either chaotic or limit cycle oscillators. Here, the phase en-

trainment is observed in a collection of oscillators whose intrinsic dynamics is a lower subhar-

monic state (period 4). Even when the pathways in individual cells continue to exhibit chaotic

dynamics, travelling waves were observed in the lattice. Travelling waves have long been shown

to underlie pattern formation in tissues [128].

I.8 Conclusion

In this chapter, we have reviewed and ascertained the high degree of complexity embedded in

living cells. We found that it is possible for a simple system to elicit a wide variety of dynamical

modes as seen in real biochemical reactions in cells. This type of variation in behavior for any

change in the parameters is possible due to the inherent nonlinearity of the regulatory processes.

The behavior ranges from equilibrium dynamics for a large range of parameters to more complex

behaviors for smaller range.

The occurrences of bistability either in the form of hard excitation (in Model I) or birhythmicity

(in Model II), show that it is possible for pathways with identical parameter values to exhibit

widely varying dynamics. In the specific case of birhythmicity, the fractal nature of the basins

of attraction in this region has interesting consequences for the system dynamics in presence

of small fluctuations in the substrates. The pathway dynamics can be quite unpredictable and

non-intuitive as it can continue in the same state, or switch between the two kinds of oscillations

with different amplitudes and time periods, or even show long transients. We have shown that
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the noise sensitivity is more prevalent in a restricted region of the phase space around the steady

state, where the switching of dynamics occurs. Thus, this pathway (Model II) is highly sensitive

to fluctuations in concentration, in contrast to the case of multiple steady states, which requires

a minimum threshold perturbation for effecting a change in the dynamics. The noise sensitivity,

therefore, can lead to ”spontaneous” alteration in dynamics even under small fluctuations. In

one-dimensional spatial lattices, these pathways are found to be able to cooperate and synchro-

nize via the help of local interactions, with sometimes the emergence of interesting collective

spatiotemporal dynamics.

These findings are extremely valuable in order to appreciate the natural complexity of bio-

chemical processes taking place at the cellular scales. However, despite these huge contribu-

tions, several questions still remain unanswered. Cellular signallings involve more than just

nearest neighbor interactions. Long range interactions and indirect links among their pathways

are equally crucial in the processes pertaining in their functional activities aiming at preserving

homeostasis. Assessing the impacts (both solely and simultaneously) of such connections on the

local and collective rhythms of the pathways shall be one of our foremost concern in the next

chapters.

Concomitantly, even though one-dimensional (ring-like) network models of cells with activator-

inhibitor pathways display tremendous dynamical features, we believe that the cooperativity of

the pathways in a two-dimensional spatial domain may exhibit more complex spatiotemporal

organization than what has been observed so far in one-dimensional spatial lattices. Therefore,

investigating the emergence of spatiotemporal conformations in the framework of diffusively

connected two-dimensional spatial arrays of such pathways will be a key point of interest in the

next parts of this piece of work.

In line with these objectives, and based on the massive background literature previously

reviewed on cells with activator-inhibitor pathways, the next chapter will be dedicated to the

presentation and description of models and methods, both analytical and numerical, that will be

brought into play, in the course of our investigations of the aforementioned phenomena.
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CHAPTER II

METHODOLOGY: MODELS

DESCRIPTION, MATHEMATICAL AND

NUMERICAL METHODS

II.1 Introduction

A wide array of cellular functions are performed by biochemical reactions within the cell. These

reactions form a complex network of interconnected pathways, consisting of both genetic and

metabolic reactions. These are controlled by variety of regulatory mechanisms. These pathways

are too complex to be understood by intuition and informal models alone. Mathematical models

have provided useful insights into the dynamics of these pathways. This chapter will concomi-

tantly cover, the depiction of some scientifically sanctioned (approved) mathematical models

pertaining in the description of the phenomenological features of biochemical pathways, the

report of some analytical and numerical methods essential in their exploration, and a tender

(suggestion) of how these methods can be used to understand and predict the properties of both

these biochemical pathways and the behavior of cells.

II.2 Mathematical modelling of biochemical pathways: Incisive aims

Until recently, experimental approaches have sought to understand cellular functions by using a

reductionist approach, breaking the system into modules and studying each module separately.

However, in addition to being expensive, cumbersome and time consuming, this method posed

problems when researchers attempted to put all the parts together into a coherent whole. With

the advances in technology, faster and more powerful methods have been developed, which al-

low scientists to conduct studies at much larger scale. Some of these include the high throughput

gene sequencing technologies, large-scale DNA microarrays, proteomics, metabolomics, etc. All
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these methods have generated huge amounts of data. Computers and computer-based methods

of storing, retrieving and analyzing the data have become indispensable in order to deal with

this explosion of data. Nowadays, scientists attempt to get a picture of the whole system by

taking the systems approach, which consists of taking inputs from more than one method and

additionally using mathematical models.

Mathematical models have the advantage that they help us to understand the essential, qual-

itative features of any system. Methods used in engineering, physics, mathematics and other

disciplines can be employed when we recognize that the basic features are similar. They help

us understand the non-intuitive behavior of the system, which is not apparent or obvious from

intuition alone. Using mathematics, we can make broad generalizations and organize disparate

information to gain a coherent picture of the whole system. Mathematical methods help us

think logically and clearly about the components and interactions that are important in a com-

plex system. Since we can examine situations, which may not be accessible to experiments, we

can uncover new strategies and answer complex ”what if ” questions, in order to predict possible

outcome of perturbation (or change). We can build new hypotheses and reject false hypotheses,

using such modelling approaches.

The most critical thing needed in modelling is to have a biological knowledge of the process

we are trying to model. For example, if we want to model cell division, we must understand

the different stages of the cell cycle, times scales, the pathways and the regulatory processes

involved in the process, and so on. We must have some idea of the concentrations of substances,

reaction mechanisms and rate constants, gene expression flux, protein turnover, degradation of

substances and maybe the topology or structure of the network. In addition, we would need

to know the environmental conditions such as temperature, pH , etc, which are required for the

reactions to take place. In case of multicellular models, we would also need information about

the kind of interactions that take place between the cells. With all this information in hand, one

can look at formulating a mathematical model.

While mathematical methods convert large problems into manageable tasks, there are still

inherent difficulties. The biggest challenge is the enormous complexity of biological systems.

In addition, their behavior differs in vivo (in cells or organisms) and in vitro (in experiments).

So, when we make generalizations based on models, we must be aware of the many pitfalls.

The controlling processes in biological systems are manifold, coupled and nonlinear. Over and
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above all this, these systems are constantly changing and adapting and often respond to change

in counterintuitive ways. For all these reasons, we must make assumptions and simplifications

in order to have a manageable model.

Noteworthily, expectations in terms of prediction from a model are diverse. They would vary

from model to model and method to method. When we formulate the models, therefore, we also

focus on what predictions and insights we are looking for. When we need simple predictions,

it makes sense to use a simple model. A more detailed model is not necessarily a better model.

More detailed models, or ones with higher level of complexity would obviously take longer to

simulate and the mathematical analysis would be harder. The tools required for the analysis use

mathematical and numerical approaches and there is a wide spectrum of these. We cannot cover

all of them, but in what follows, we shall expound some of those which have pertinence in the

current work.

II.3 Single cell and its dynamics

Since the 1980s, modelling has emerged as a novel tool to handle the rapidly growing in-

formation on the molecular parts list and the overwhelmingly complex interaction circuitry of

signalling networks. Following this development, Sinha et al [1, 105, 111] proposed in 1987 a

mathematical model of a biochemical system describing the dynamics of normalized concen-

tration of the substrates in a single cell with activator-inhibitor pathways. Since then, many

studies have been carried out on this model ranging from classical nonlinear dynamical analy-

sis to synchronization of electrically coupled network formed by units of single cell described

by this model [11, 34, 106, 107]. This cell, namely “the cell with activator-inhibitor pathway”,

has a biochemical pathway regulated by negative and positive feedback processes. Its model

describes actually a three-step sequential reaction having two substrates, and one end product.

Their concentrations are regulated by a positive and a negative feedback process respectively

in terms of end product inhibition of the first substrate (i.e. when the concentration of the end

product is large in the cell, the negative feedback induces an attenuation in the concentration of

the substrate in the intracellular medium (see Refs. [1, 105, 111] for more details )) as shown on

Fig. 14.
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S2S1 S3
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E

Figure 14: A three-step reaction sequence in the single cell model with the inhibition of S1 by end-product
S3 and activation of the allosteric enzyme E by S3.

The model is represented by the following set of ordinary differential equations:

dx

dt
= F (z) − kx ,

dy

dt
= x − G(y, z) , (7)

dz

dt
= G(y, z) − qz .

The present model describes a three-step sequential reaction having successively two sub-

strates and one end product whose normalized concentrations in the intracellular medium are

respectively represented by x, y and z. Therefore, x is the normalized concentration of the first

substrate, y is that of the second substrate, and z is the normalized concentration of the end

product. The end product is the signal molecule intended to be diffused into the extracellular

medium to other cells via the cells’s plasma membrane. As reported previously, these concen-

trations are regulated by a negative feedback process in terms of the end product inhibition of

the first substrate, as well as via an autocatalytic activation of the allosteric enzyme by the end

product. The functions F (z) and G(y, z) representing the negative and positive feedback pro-

cesses, are nonlinear processes designed following the concerted transition model described in

[14, 15, 76] and are given by:
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F (z) =
1

1 + z4
, and G(y, z) =

Ty(1 + y)(1 + z)2

L + (1 + y)2(1 + z)2
. (8)

The parameter ”k”, called the rate of degradation of the first substrate represents the speed

at which the first product’s normalized concentration decreases in time. The parameters T and

L are respectively, the maximum velocity of the enzyme which determines the maximum rate at

which the biochemical reaction transforming the second substrate into end product is performed;

and the allosteric constant of the enzyme determining how the alterability in the protein’s (i.e.

enzyme) activity takes place after reception at its binding site of the signal from the cell through

positive feedback, as one form of autocrine signaling. It is noteworthy that autocrine signaling

takes place when a cell sends some signals back to itself in order to regulate internal cellular

mechanisms vital for a good human body functional balance. q is the rate of degradation of

the end product. It determines the speed at which z decreases over time, especially when z is

sufficiently large in the intracellular medium of biological cells. Thus, the accumulations in first

substrate and end product depends critically on the parameters k and q.

II.4 Coupled system: Synchronization

II.4.1 Collective dynamics of multicellular systems: Dynamics of electrically cou-

pled cells

The two most important features of collective dynamics in any multicomponent, coupled sys-

tem are synchrony and spatiotemporal patterns [104, 108]. Here, the dynamics exhibited by the

”whole” ensemble can be quite different from the individual components’ behavior [129]. Spatial

patterns can also be set up in structured ensembles (e.g. embryos, cardiac tissue) whose length

scale spans that of its several components [130]. The focus of this section is to present a model

important for the study of the impact of nearest neighbor interactions and the role of scales of

measurement in the faithful description of collective spatiotemporal patterns and processes in a

multicellular ensemble.

The model single cells Eq. (6), are coupled with their two nearest neighbors by the dif-
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fusion of the end product of their respective activator-inhibitor reaction pathways, on a one-

dimensional lattice with periodic boundary conditions [11, 131, 132]. The coupled-cell model

can be written as:

dxi

dt
= F (zi) − kxi ,

dyi

dt
= xi − G(yi, zi) , (9)

dzi

dt
= G(yi, zi) − qzi − εzi +

ε

2
(zi−1 + zi+1) ,

with i = 1, N , and

where F (z) and G(y, z) are given by:

F (z) =
1

1 + z4
, and G(y, z) =

Ty(1 + y)(1 + z)2

L + (1 + y)2(1 + z)2
, (10)

and where, ε is the diffusive coupling strength of the end product, and, i, the cell number

that ranges from 1 to N , where N is the lattice size. For numerical simulations, the authors have

used the fourth-order Runge-Kutta scheme. Simulations have been performed on lattices with

varying number of cells, with random initial conditions uniformly distributed around the steady

state z∗, that is, z∗∓2, with z∗ ≈ 5.163. Simulations have been performed for t = 105, and results

were presented for the last 5000 time units.

For the multicellular ensemble in this context, we consider a simple model where the cells

are assumed to form a closed ring-like lattice structure, as is observed in cells in a plant root sec-

tion. Each cell in this one-dimensional lattice of N cells (Fig. 15 (b)) has the model biochemical

pathway described by Eq. (7) (shown in Fig. 15 (a)), and interacts through the diffusion of the

end-product z, from each cell (i) to its two neighboring cells ( i + 1 and i − 1 ).
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S3 i
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Figure 15: The model multicellular ensemble: (a): A single cell incorporating a three-step biochemical
pathway; (b): A model ring of cells, where each cell (node i, as shown in (a)) is diffusively coupled to its
nearest neighboring cells(nodes i − 1 and i + 1).

II.4.2 Chemically coupled cells

It is well known that the chemical synaptic coupling also considered as a fast threshold modu-

lation has been extensively used to model chemically connected neurons [69, 70, 71]. However,

this type of coupling can also be found in cells. In fact, there are two primary ways that cells

communicate with neighbors. Many cells (e.g. muscles and cardiac cells) are connected to their

immediate neighbors by gap junctions in the cell membrane that form a relatively nonselective,

low resistance, pore through which electrical current or chemical species can flow. Hence, a gap

junction is also called an “electrical synapse”. The second means of communication is through

a chemical synapse, in which the message is mediated by the release of a chemical from one cell

and detected by receptors on its neighbors [75]. Examples of this are endocrine signaling and

synaptic signaling [133]. Conscious of these facts, we proposed ourselves to use the sigmoidal

function type employed to represent the chemical coupling in neural network to portray the

chemical coupling among cells with activator-inhibitor pathways. We believe that it depicts the

naturally modulated long range interactions between cells. This may be triggered by their differ-

ence in signal molecules concentration, and being representative of the physiological processes

pertaining to a good cellular communication and functioning. For this purpose, we consider a
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pulsatile function modelled as a static sigmoidal nonlinear input-output function with a thresh-

old and a saturation parameter [69]. The equations describing the dynamics of the normalized

concentrations of the substrates in their intracellular media is given by:

dxi

dt
= F (zi) − kxi ,

dyi

dt
= xi − G(yi, zi) , (11)

dzi

dt
= G(yi, zi) − qzi + gs(zi − Vinh)

2
∑

j=1

cijH(zi, zj) ,

i, j = 1, 2, where the parameter gs is the chemical coupling strength and the coupling function

H(zi, zj) reads H(zi, zj) = H(zj) = Γ(zj) =
1

[1 + exp{−λ(zj − θs)}]
, and cii = −1 and cij = 1

if i 6= j. The parameter Vinh represents a control value for the concentration of the end-product

in the cells, since the values of the concentrations of the chemical products must not be found

out of a given range of values. Even though , cells with activator-inhibitor pathways regulate

these concentrations naturally, it has been observed through numerical studies that this coupling

scheme for some values of Vinh produces very large values of the concentration into the cells, for

the end-product, which is to avoid. The values Vinh = 2 and θs = −0.25 are chosen in order to

always maintain the quantity (zi − Vinh) > 0.

II.4.3 Electrically and chemically coupled cells

Even in clonal cell populations and under the most uniform experimental conditions, consid-

erable variations are observed in the rates of development, morphology and the concentration

of each molecular species in each cell. Organisms are biochemically dynamic and will be sub-

jected to different type of interactions. These interactions between cells usually represent the

coupling amongst them. Cells couple themselves in several ways: Adjacent cells can couple by

direct contact, each of them sending signals across gap junctions. Nearby cells that are not touch-

ing can communicate through paracrine signals. In paracrine signaling, secretions from one cell

have an effect only on cells in the immediate area. Two other systems mediate communication

over longer distances: in endocrine signaling the blood carries hormones to distant cells, and in

synaptic signaling nerve cells secrete neurotransmitters from long cellular extensions close to the

responding cells [133].

The complementary roles of electrical and chemical couplings have been studied in many
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biological systems [69, 71]. It was found that the chemical coupling is especially good at wiping

out the effects of initial conditions but cannot deal with significant heterogeneity, no matter how

strong it is. The electrical coupling acts to wipe the heterogeneity and foster synchronization in

the system. Our concern in this section is to understand this phenomenon in the case of coupled

cells with activator-inhibitor pathways. It is known that the electrical coupling between cells

with activator-inhibitor pathways favors synchronization [11, 34]. We are therefore interested

into investigating the contribution of chemical and electrical couplings to the global synchro-

nization dynamics of the biochemical cells. Therefore, we expect that the presence of electrical

coupling will reinforce the coupling between the cells. We then expect that the combination of

both coupling types will lead to an improvement into the global synchronization dynamics of

both cells.

Taking into account these two ways of coupling (electrical coupling and fast threshold cou-

pling), the equations describing the dynamics of the coupled pathways are given by:

dxi

dt
= F (zi) − kxi ,

dyi

dt
= xi − G(yi, zi) , (12)

dzi

dt
= G(yi, zi) − qzi − gs(zi − Vinh)

2
∑

j=1

cijΓ(zj) + gl(zj − zi) ,

i, j = 1, 2, where the parameter gl is the electrical coupling strength and gs as previously defined.

II.4.4 Adaptively environment-mediated coupled cells

In the present study, we consider two chaotic cells with activator-inhibitor pathways, indirectly

coupled through a common environment u, with feedback and adaptive control mechanism,

according to the following set of differential equations:
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dxi

dt
= F (zi) − kxi ,

dyi

dt
= xi − G(yi, zi) ,

dzi

dt
= G(yi, zi) − qzi − ǫ1βiu , (13)

du

dt
= −κu − ǫ2

(β1z1 + β2z2)

2
,

dκ

dt
= α(β1z1 + β2z2)

2 ,

i = 1, 2; with β1 = −β2 = 1 and 0 < α ≪ 1.

F (z) and G(y, z) are given by:

F (z) =
1

1 + z4
, and G(y, z) =

Ty(1 + y)(1 + z)2

L + (1 + y)2(1 + z)2
.

They stand for the negative and positive feedback processes present in the sequence of bio-

chemical reactions that internally contribute to maintain homeostasis in cellular functions by

suppressing stochastic variations [134] and regulating activities in cellular processes that show

periodic and complex dynamics. This is the case of glycolytic oscillations in cell free extracts

of yeast cells, peroxidase-oxidase reactions, calcium oscillations, etc. xi, yi and zi represent the

normalized concentrations of the substrates and end-product of these cells pathways. The pa-

rameters k and q are respectively the rate of degradation of the first substrate and the rate of

degradation of the end product. T and L are related to the maximum velocity of the enzyme

and the allosteric constant. The variable u stands for the concentration of various biochemical

species in the exterior of the cells, thereby globally determining the intrinsic dynamics of the en-

vironment which decays with κ as its damping parameter. κ varies depending on the feedback

from the systems, which in return enable the environment to sustain itself for extended periods

of time. ǫ1 is the strength of the feedback to the system and ǫ2 that to the environment. Here, we

assume that the biochemical components of the cells that take part in the coupling are the end-

products, as they diffuse through the environment with their respective normalized concentra-

tions zi. The nature of the feedback from and to the environment is prescribed by the values of β1

and β2. In the present case, the coupling is of difference type, that is (β1, β2) = (1,−1). A similar

model has been used by Resmi and Ambika [135] to couple Rössler and Lorenz systems through
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a common environment without adaptive feature. This coupling mechanism has the interesting

property that the common environment does not alter the local chaotic dynamics of the systems

as it attempts to synchronize them. In their synchronized regime, the systems preserve more or

less the same phase space structure of the uncoupled system. Our idea consists in tuning the gain

of a linear damping coefficient of the environmental coupling during the control procedure. We

wish to update this gain with a proper adaptation law such that the proposed feedback control

law can track and predetermine the optimal gain of the environmental controller.

Several references in the literature indicate that cells with activator-inhibitor pathways are

complex systems capable of exhibiting complex dynamics ranging from simple limit cycle to

chaotic behavior[11, 12, 34]. For their chaotic regime, the parameter values of their biochemical

pathways carrying nonlinearities will be taken as: q = 0.1, k = 0.003, L = 106 and T = 10. It

is noteworthy that cell signaling can occur in different forms. In the present work, we assume

that signal molecules released by cells can diffuse through the extracellular fluid to other cells. If

those molecules are taken up by neighboring cells, destroyed by extracellular enzymes or quickly

removed from the extracellular fluid in some other way, their influence is restricted to cells in

the immediate vicinity of the releasing cell. Such short-lived signals with local effects are called

paracrine signals. They play crucial roles in the early development of the cell, coordinating the

activities of clusters of cells. If a released signal molecule remains in the extracellular fluid, it may

enter the organism’s circulatory system and travel widely throughout the body. These longer-

lived signal molecules which may affect cells very distant from the releasing cell, are called

hormones and this type of intercellular communication is referred to as endocrine signaling.

Both animals and plants use this signaling mechanism extensively.

It is worth mentioning that homeostasis is crucial for the survival of any living being. It

refers to the maintenance of stable internal conditions in an organism living in a changing envi-

ronment. The relevance of this importance lies on the fact that cells function best within a limited

range of conditions. Therefore, for an active entity, temperature, blood sugar, acidity and other

conditions must be controlled. Failure to regulate these parameters may elicit detrimental func-

tional disorder within the cellular ensemble pertaining to illness. To prevent this scenario, cells

constantly convey their needs to the extracellular space in terms of organic resources by releas-

ing some chemical signals such as hormones across their plasma membrane in order to achieve

their numerous tasks. Consequently, all cells regularly respond to their environment through
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steady feedback reports about their states and needs. These reactions are systematic processes

that help our bodies to uphold their metabolic equilibrium states. Incidentally, it is the duty of

their common dynamic extracellular medium to cater for their consistent demands by providing

the required chemical resources. The aptitude of the environment to wisely make provisions

for these cells sets the pace that is paramount to instate a harmonious cooperation among their

pathways, thereby avoiding competition among them. Careful attention should be given to the

fact that rivalry within the cellular medium can be harmful for the smooth evolution and sta-

bility of the functional mechanisms involve in the developmental stages of the cells, aiming at

maintaining homeostasis and perpetuating life.

Based on these facts, the steadiness of these cellular responses towards the environment in

the course of time thereby enables us to assume in the present analysis that the strength of the

feedbacks of the biochemical pathways to their living medium and vice-versa are constant all

through, and that only the extracellular medium adjusts its parameter values in terms of avail-

able resources in order to care for the biochemical systems which there live as a community. To

achieve this, only the damping parameter κ of the dynamic environment will exhibit this adap-

tive feature, enabling the environment to constantly look for the optimal level in terms of avail-

ability and allocation of resources. Let us note that this optimal level also clearly depends on the

cellular demand, that is the strength of the feedbacks ǫ1 and ǫ2. This is the reason why the subse-

quent study will be concerned with looking for the suitable values of ǫ1 and ǫ2 vital(necessary)

to achieve this goal. Nonetheless, in other circumstances, these couplings(feedbacks) strengths

could equally be considered to be adaptive and assumed to be influenced by hormones from

other distant cells, that bind to receptors on the target cell’s membrane and trigger it to produce

a needed chemical compound. However, this aspect of their operations shall not be taken into

account in the present study. This may be the core of a later probe.

II.5 Coupled system: Pattern formation

The system of equations describing the sequence of biochemical reactions within such networks

of cells with activator-inhibitor pathways is given by:
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∂U

∂τ
= F (W ) − kU + Du∇

2U ,

∂V

∂τ
= U − G(V, W ) + Dv∇

2V , (14)

∂W

∂τ
= G(V, W ) − qW + Dw∇

2W ,

where τ denotes the time. U , V and W represent the normalized concentrations of the sub-

strates and end-product of these cells pathways. The parameters Du , Dv and Dw are the elements

of the diagonal matrix of positive constant diffusion coefficients.

The functions F (W ) and G(V, W ) are given by:

F (W ) =
1

1 + W 4
, and G(V, W ) =

TV (1 + V )(1 + W )2

L + (1 + V )2(1 + W )2
.

They account for the negative and positive feedback processes present in the sequence of

biochemical reactions that internally contribute to preserve homeostasis in cellular functions by

suppressing stochastic variations [134] and regulating activities in cellular processes that show

periodic and complex dynamics as it is the case for glycolytic oscillations in cell free extracts of

yeast cells, peroxidase-oxidase reactions, calcium oscillations, etc. These functions determine the

sequence of reactions occurring locally in each site of the space, that is at the level of each cell.

II.6 Analytical methods

II.6.1 Linear stability analysis for systems of ordinary differential equations

Consider the following two-dimensional system:

dx

dt
= f(x, y) ,

dy

dt
= g(y, z) , (15)

and suppose that (x, y) is a steady state, that is, f(x, y) = 0 and g(x, y) = 0.

The question of interest is whether the steady state is stable or unstable. Consider a small
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perturbation from the steady state by letting:

x = x + u ,

y = y + v , (16)

where both u and v are understood to be small. The question of interest translates into the

following: will u and v grow (so that x and y move away from the steady state), or will they

decay to zero (so that x and y move towards the steady state)?

In the former case, we say that the steady state is unstable, in the latter it is stable. To see

whether the perturbation grows or decays, we need to derive differential equations for u and v.

We do so as follows:

du

dt
=

dx

dt
, (since x is constant) (17)

= f(x, y) , (by definition)

= f(x + u, y + v) , (by substitution)

= f(x, y) +
∂f

∂x
(x, y)u +

∂f

∂y
(x, y)v + ...(Taylor series expansion around the steady state)

=
∂f

∂x
(x, y)u +

∂f

∂y
(x, y)v + ...

Similarly:

dv

dt
=

∂g

∂x
(x, y)u +

∂g

∂y
(x, y)v + ... (18)

The ... denote higher order terms, involving u2, v2, uv, etc. Since u and v are assumed to be small,

these higher order terms are extremely small. If we can safely neglect the higher order terms, we

obtain the following linear system of equations governing the evolution of the perturbations u

and v:
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du

dt
=

∂f

∂x
(x, y)u +

∂f

∂y
(x, y)v , (19)

dv

dt
=

∂g

∂x
(x, y)u +

∂g

∂y
(x, y)v . (20)

We refer to the related matrix as the Jacobian matrix of the original system at the steady state

(x, y). The above linear system for u and v has the trivial steady state (u, v) = (0, 0), and the

stability of this trivial steady state is determined by the eigenvalues of the matrix, as follows:

If the eigenvalues of the Jacobian matrix all have real parts less than zero, then the steady state

is stable. If at least one of the eigenvalues of the Jacobian matrix has real part greater than zero,

then the steady state is unstable. Otherwise, there is no conclusion (then, we have a borderline

case between stability and instability; such cases require an investigation of the higher order

terms we neglected, and this requires more sophisticated mathematical machinery discussed in

advanced courses on ordinary differential equations).

Last but not least, there is a theorem (the Hartman- Grobman Theorem) that guarantees that

the stability of the steady state (x, y) of the original system is the same as the stability of the

trivial steady state (0, 0) of the linearized system. Thus, the procedure to determine stability of

(x, y) is as follows:

1. Compute all partial derivatives of the right-hand- side of the original system of differential

equations, and construct the Jacobian matrix.

2. Evaluate the Jacobian matrix at the steady state.

3. Compute eigenvalues.

4. Conclude stability or instability based on the real parts of the eigenvalues.

Let us note that the theorem and procedure apply to N - dimensional systems.

II.6.2 Master stability function approach for synchronized coupled systems

Considerable progress toward developing a general approach to the assessment of the stabil-

ity of synchronization of identical coupled dynamical systems has been done lately [20]. The

consequence of this is a master stability equation, which allows us to calculate the stability (as

determined from a particular choice of stability measure, like Lyapunov or Floquet exponents).

Assuming that for N identical systems, there is an exactly synchronized solution for a cou-
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pled system, the synchronization manifold is defined by M={x1 = x2 = .... = xN = xs}.

To study the stability of the manifold M of our coupled system, we make use of this func-

tion (master stability function). For N coupled dynamical units, each of them giving rise to the

evolution of a 2-dimensional vector field xi ruled by a local set of ordinary differential equations

ẋi = F(xi), the equation of motion read:

ẋi = F(xi) − K

N
∑

j=1

GijH(xj) , i = 1, 2, ..., N, (21)

where ẋi = F(xi) governs the local dynamics of the ith node. K is a coupling strength. The

output function H(xi) is a vectorial function defined as an arbitrary function of each nodes vari-

ables that is used in the coupling. G(t) is a symmetric Laplacian matrix (
∑

j Gij = 0) describing

the networks connection.

The stability of the synchronization state can be determined from the variational equation

obtained by considering an infinitesimal perturbation δxi from the synchronous states, xi =

δxi + xs. The equation of motion for the perturbation δxi can be straightforwardly obtained

by means of Taylor series expansion of first order of the original coupled system around the

synchronized state which gives:

δxi = DF(xs)δxi − K

N
∑

j=1

GijDH(xs)δxi,

=
N

∑

j=1

[DF(xs)δij − KGijDH(xs)] · δxi , (22)

i = 1, 2, ..., N,

where DF and DH are the Jacobians of the vector field and the output function.

Equation (22) is referred to as a variational equation and is often the staring point for stability

determinations. This equation is rather complicated since, given an arbitrary coupling G, it

can be quite high dimensional. However, we can simplified the problem by noticing that the

arbitrary state δxi can be written as δxi =
∑N

i=1 vi

⊗

ξi(t), with ξi(t) = (ξ1,i, ξ2,i), where the

(vi) form the set of orthogonal eigenvectors of the matrix G, and which are associated to the

real eigenvalues γi, respectively, such that Gvi = γivi and vT
i vi = δij . By applying vT

i (t) to the

left side of each term in equation (8) one finally obtains a set of N blocks of equations for the
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coefficients ξi(t) (2N equations as a total for this specific case example where each dynamical

unit has two state variables). The first term with the Kronecker delta remain the same. This

results in a variational equation in eigenmode form:

ξ̇k = [DF(xs) + KγkDH(xs)] ξk , (23)

k = 0, 1, 2, ..., N − 1

We recall that γk is the eigenvalue of G. Also, we note that each equation in (23) corresponds

to a set of 2 conditional Lyapunov exponents λ
j
k (j=1,2) along the eigenmode corresponding to

the specific eigenvalue γk. For k = 0, we have the variational equation for the synchroniza-

tion manifold and its maximum Lyapunov exponent λmax = max(λ1
0, λ

2
0) is that of the isolated

dynamical unit.

The remaining variations ξk, k=1,2,...,N-1 are transverse to M, and describe the system’s

response to small deviations from the synchronization manifold, and then control the stability

of the synchronized state. Any deviation from the synchronization manifold will be reflected

in the growth of one or more of these variations. We note that the stability of the synchronized

state is ensured if arbitrary small transverse variations decay to zero. For k 6= 0, equations (23)

enable us to calculate the maximum Lyapunov exponent λmax
k of each mode k as the function of

the coupling parameter K.

II.6.3 Lyapunov exponents

Here, we consider the Lyapunov exponents [152, 153, 154, 155], which has proven to be the most

useful dynamical diagnostic for chaotic systems. Lyapunov exponents are the average expo-

nential rates of divergence or convergence of nearby orbits in phase space. Since nearby orbits

correspond to nearly identical states, exponential orbital divergence means that systems whose

initial differences we may not be able to resolve will soon behave quite differently, consequently

the predictive ability is rapidly lost. Any system containing at least one positive Lyapunov ex-

ponent is defined to be chaotic, with the magnitude of the exponent reflecting the time scale on

which system dynamics become unpredictable [155].

The method for finding Lyapunov exponents for dynamical systems can be highlighted as

follows. Here, we consider a two-dimensional dynamical system with state variables Xn and Yn.
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The linearization of its corresponding map can be written as:

[

δXn+1, δYn+1

]

= Jn

[

δXn, δYn

]

,

where Jn = Jn(Xn, Yn), is the Jacobi matrix, and Xn and Yn are the (n − 1)st iterates of

an arbitrary initial condition (X1, Y1). An orthonormal frame of principal axis vectors such as

((0, 1), (1, 0)) is evolved by applying the product Jacobian to each vector. For either vector, the

operation may be written as the multiplication of the latest Jacobi matrix with each current axis

vector, which is the initial vector multiplied by all previous Jacobi matrices. For example, for the

vector (0, l), by regrouping the terms, we have:

[

δXn, δYn

]

= Jn−1Jn−2.....J1

[

0, 1

]

.

The magnitude of each current axis vector diverges, and the angular separation between the

two vectors goes to zero (decreases). We locate the nearest neighbor (in the Euclidean sense) of

the evolving point with respect to the corresponding point on the fiducial trajectory and denote

the distance between these two points by L(to). At a later time t1, the initial length will have

evolved to length L′(t1). The length element is propagated through the attractor for a time short

enough so that only small scale attractor structure is likely to be examined. If the evolution time

is too large, we may see L′ shrink as the two trajectories which define it pass through a folding

region of the attractor. This would lead to an underestimation of λ1 , the largest Lyapunov expo-

nent. We now look for a new data point that satisfies two criteria reasonably well: its separation,

L(t1), from the evolved fiducial point is small, and the angular separation between the evolved

and replacement elements is small. If an adequate replacement point cannot be found, we re-

tain the points that were being used. This procedure is repeated until the fiducial trajectory has

evolved for a sufficiently large time, after which we estimate:

λ1 =
1

tM − to

M
∑

k=1

log2

L
′

(tk)

L(tk−1)
,

(24)

where M is the total number of replacement steps. In the fixed evolution time procedure, the
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time step ∆ = tk+1 − tk between replacements is held constant.

II.6.4 Conditional Lyapunov function approach

The Lyapunov stability method specialized for the linear time invariant systems has more the-

oretical importance than practical value and can be used to derive and prove other stability

results. The calculation of the Lyapunov function for ordinary differential equations is usually

very difficult to obtain. For the purpose of this work, we use the conditional Lyapunov func-

tion approach. It consists in looking for the Lyapunov function of the variational equations for

synchronization stability. We define the Lyapunov function L as:

L = ε2 + η2 + ρ2 , (25)

computed from a mathematical model of the system dynamics in the synchronization mani-

fold and the variational equations. The variables ε, η and ρ represent the dynamics transverse to

the synchronization manifold. The function L is equal to the square of the distance between the

trajectory and the synchronized state for small distances. Following the Lyapunov stability cri-

terium, a sufficient condition that all perturbations decay to the manifold without any transient

growth is given by
dL

dt
≤ 0. This condition can be used to quickly estimate the range of coupling

strengths that result in high-quality, burst-free synchronization of coupled nonlinear systems. To

do so, we define:

Lε = 2εε̇ , Lη = 2ηη̇ , and Lρ = 2ρρ̇ , (26)

characterizing the evaluation of the rate of change of the Lyapunov function along the prin-

cipal directions of the phase space of the transverse dynamics. The time derivative of the Lya-

punov function L is thus given by:

dL

dt
= Lε + Lη + Lρ . (27)
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This parameter LT is evaluated as the coupling setting varies. The range of values of the

coupling parameter corresponding to high quality synchronization, is obtained for LT strictly

negative. The consequence being that the synchronization manifold is completely stable.

II.6.5 Pattern formation: System normalization

The condition to obtain Turing instability in our coupled system via linear stability analysis is

to first of all normalize the system. Let us keep in mind that the dynamics observed at the level

of one cell is called the local dynamics, provided by the local model (or single cell model). In

this local model, all terms of motion, that is all terms of diffusion, are neglected; whereas, only

terms describing the cells dynamics in a point of the spatial domain are taken into account [65].

Next, assuming the existence of an equilibrium state with positive values for each substrate in

the local model, namely (Us, Vs, Ws), and considering periodic boundary conditions for equa-

tions (14), then the spatially constant function:

U(−→z ) = Us , V (−→z ) = Vs , W (−→z ) = Ws ,

(where −→z represents a spatial location or position) constitutes an equilibrium state for the

system. Making use of this steady state, we can perform a normalization of variables as:

u(−→z , τ) =
U(−→z , τ)

Us
,

v(−→z , τ) =
V (−→z , τ)

Vs
, (28)

w(−→z , τ) =
W (−→z , τ)

Ws
,

and the normalized functions are given by:

f(w) =
F (Wsw)

F (Ws)
,

g(v, w) =
G(Vsv, Wsw)

G(Vs, Ws)
. (29)

Substituting the sets of formulae (28) and (29) into equations (14), and making use of the fact
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that:

F (Ws) = kUs , G(Vs, Ws) = Us , and G(Vs, Ws) = qWs , (30)

conditions which hold in the spatially homogeneous steady state, we get:

∂u

∂τ
= k(f(w) − u) + Du∇

2u ,

∂v

∂τ
= αv(u − g(v, w)) + Dv∇

2v , (31)

∂w

∂τ
= q(g(v, w) − w) + Dw∇

2w ,

where αv = G(Vs,Ws)
Vs

.

Subsequently, by the means of time and space normalization, we get from the set of equations

(31), the transformation (τ,−→z ) → (t,
−→
X ), yielding the normalized system:

∂u

∂t
= f(w) − u + ∇2u ,

∂v

∂t
= ρrv(u − g(v, w)) + ρdv∇

2v , (32)

∂w

∂t
= ρrw(g(v, w) − w) + ρdw∇

2w ,

where t = kτ ,
−→
X =

√

k
Du

−→z , ρrv = αv

k
, ρdv = Dv

Du
, ρrw = q

k
and ρdw = Dw

Du
.

−→
X = (x, y) is the two-dimensional position of a cell with spatial coordinates x and y.

Thus, following this transformation, the system of equations (32) is a normalized set which

admits the spatially homogeneous state:
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us(x, y) = 1 , vs(x, y) = 1 , ws(x, y) = 1 , (33)

as its equilibrium state.

II.7 Numerical methods

II.7.1 Fourth-order Runge-Kutta scheme

Initially designed by Runge in 1894, then improved by Kutta in 1901, it is a computational

method of integration based on Trapeze and Simpson integration scheme.

Assuming a first order ordinary differential equation of the form:

dy

dx
= f(x, y) . (34)

The aim is to find the exact value y of y that corresponds to x = x0+h, assuming we know the

value y = y0 at x0, and where h is a discretization (mesh or grid) step in the domain of existence

of the variable x. In some cases, such an issue can be addressed by means of analytical and

classical methods such as the method of separation of variables, the integrating factor, Laplace

transforms, to name just a few. When no analytical method can enable us to calculate the general

solution of the equation, there is then a need to use numerical methods in order to estimate the

desired solution.

Integrating equation (34), we get:

y = y0 +

∫ x

x0

f(x, y)dx . (35)

We then get:
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y = y0 +

∫ x0+h

x0

f(x, y)dx . (36)

It is at this stage that the fourth-order Runge-Kutta (RK4) scheme intervene in order to assess

numerically the value of the above integral. Its iterative scheme reads:

yk+1 = yk +
1

6
(L1 + 2L2 + 2L3 + L4) , (37)

with:

L1 = hf(xk, yk) ;

L2 = hf(xk +
h

2
, yk +

L1

2
) ;

L3 = hf(xk +
h

2
, yk +

L2

2
) ; (38)

L4 = hf(xk + h, yk + L3) .

Several other Runge-Kutta schemes exist but the fourth-order Runge-Kutta scheme is the

most popular of all.

II.7.2 Newton-Raphson scheme (or tangent method)

Even though this method has been given by Raphson in 1698, Newton formulated a similar

method some months before him. A unified scheme has then been elaborated in 1960 under the

name Newton-Raphson method for the resolution of nonlinear algebraic equations of the form:

f(x) = 0 .

It consists in taking first a coarsely chosen solution x0, referred to as the zeroth order ap-

proximation of the solution. In the eventuality of a physical problem, such a solution may be

suggested by the physical meaning of the issue at hand, or by a suggesting curve. Generally, we
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define an interval [a, b], such that x0 lies in it. If x = x0 + h is the sought solution, then, based on

the Taylor series expansion of f(x) in the vicinity of x0, we can obtain a first order approximation

of the solution x, by means of the Newton-Raphson scheme as:

x = x1 ,

= x0 −
f(x0)

f
′(x0)

. (39)

For successive approximations, the general scheme reads:

xn+1 = xn −
f(xn)

f
′(xn)

, (40)

where f
′

(x) is the derivative of the function f(x) with respect to x.

It is keynote that when f(x0)f
′′

(x0) > 0, then, the sequence in equation (40) is monotonous,

bounded and converges towards the exact solution x. In case there is no convergence, it is ad-

vised to change the initial guess value x0 of the solution.

II.7.3 Dichotomy scheme or bisection method

This is an alternative method for the resolution of nonlinear algebraic equations. Let us assume

that f(a) < 0 < f(b), and f(x) is strictly increasing on the interval [a, b].

The solution x0 of the equation f(x) = 0, belongs to [a, b]. The middle of the interval is

d = a+b
2 . If f(a) and f(d) have opposite signs, then x0ǫ[a, d]. If instead f(b) and f(d) have

opposite signs, then x0ǫ[d, b]. In either case, the size of the interval reduces by half of its initial

size. A new bisection is then performed on the new interval containing the bisecting element,

and so on. Thus, after n steps, if the interval size which is now b−a
2n has become small enough,

we can then capture the sought solution with a given degree of accuracy.
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II.8 Conclusion

In this chapter, we have presented and described some mathematical models, alongside with

some analytical and numerical methods used in the survey of the dynamics, both local and col-

lective, of cells with activator-inhibitor pathways. The described analytical methods include

the variational approach and the linear stability analysis. We have shown that the variational

approach allows us to construct a master stability function for synchronized coupled systems,

providing a stability criterion for the synchronous solutions. The linear stability analysis pre-

sented here helps in investigating the stability of the equilibrium states of the systems, both

coupled and uncoupled. The results obtained with the analytical methods need to be compared

to those found through numerical simulations of the original equations. Numerical solutions can

be constructed by means of different computational schemes. We have outlined some numerical

methods for ordinary differential equations and nonlinear algebraic equations. They include the

fourth-order Runge-Kutta, Newton-Raphson and dichotomy schemes.

In the following, we will apply the aforesaid methods in order to examine some relevant

phenomena such as the advent of synchronized dynamics and patterns generation settings in

pathway networks, in response to the different previously highlighted signalling schemes and

network topologies, crucial for cells communication and pertaining in the smooth development

of biological organisms.
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CHAPTER III

RESULTS AND DISCUSSION

III.1 Introduction

There is a remarkable diversity as well as similarity in functions, behavior and processes across

all species of life. All biological systems are composed of the same type of molecules and have

similar organizations at the cellular level. Although biologists still rely on experiments to make

sense of the way cells function and evolve, they now recognize that mathematical and theo-

retical methods can provide powerful tools for systems wide studies. In the previous chapter,

we have expounded some of these techniques, both analytically-wise and computationally-wise,

and ascertained their relevance in the present context. Indeed, their importance can’t be over-

stated. Therefore, this chapter is fully dedicated to the presentation and discussion of the main

outcomes of our inquiries, by means of the applications of the aforementioned methods in prob-

ing the spatiotemporal dynamical features of arrays of cells with activator-inhibitor pathways.

Synchronization and patterns generation in metabolic ensembles are crucial for cellular commu-

nication and tissues development. Hence, investigating the requirements for the occurrences of

such physical phenomena in biochemical pathway arrays is then the hub of this research work.

III.2 Single cell and its dynamics

III.2.1 Fixed points and their stability

In order to analyze the linear stability of the system, we start by finding the fixed points of the

system (7). The fixed points are obtained by setting dx
dt

= dy
dt

= dz
dt

= 0. These conditions can be

rewritten as






















z5 + z − 1
kq

= 0,

x = qz,

x[L + (1 + y)2(1 + z)2] − Ty(1 + y)(1 + z)2 = 0.

(41)

63
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From the following, the fixed points are obtained whenever the three equations in (41) are sat-

isfied. However, it is not possible to obtain analytical solution for this system. We thus proceed

by solving numerically the first equation of the system using the Newton Raphson’s algorithm.

Substituting this solution into the two other one, we obtain the fixed point solution (x0, y0, z0).

A plot of the solutions z0 with respect to the parameter k and T is presented in figure (16).

Figure 16: Fixed points obtained as a function of the rate of degradation of the first substrate k. The other
parameters are as in figure for T = 10.

It is seen from this figure that the larger value of the concentration of the end product are

obtained for very low value of the rate of degradation of the first substrate k. Meanwhile the

maximum velocity of the enzyme plays a little role.

We wish now to study the stability of the fixed points that are inherent in the dynamics of

the cell. To investigate for the stability of the cell’s dynamics in these fixed states defined by

the normalized concentrations of the end-product z0. In the vicinity of the solution (x0, y0, z0),

we perform a first order Taylor expansion of equations (7) making use of the transformation

x = x0 + u, y = y0 + v and z = z0 + w, where u, v and w are small perturbations produced on

the fixed states. These states are stable if and only if the variables u, v and w remain bounded as
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time goes on. The linear analysis approach performed on this study case leads to an eigenvalue

problem whose characteristic equation is given by:

λ3 + (k + q − Gy0
− Gz0

)λ2

+[k(q − Gy0
− Gz0

) − qGy0
]λ (42)

−Gy0
(kq − Fz0

) = 0.

The fixed points are stable when all the eigenvalues obtained from the characteristic equation

are of negative real part, that is according to the Routh-Hurwitz conditions:























−Gy0
(kq − Fz0

) > 0,

(k + q − Gy0
− Gz0

) > 0,

(k + q − Gy0
− Gz0

)[k(q − Gy0
− Gz0

) − qGy0
] − Gy0

(kq − Fz0
) > 0.

(43)

The stability maps is depicted in Figure (16.b). The darker regions correspond to the stable

domains. One can particularly notice that when the maximum velocity of the enzyme T is greater

than 12.6, no fixed point is stable, this, irrespective of the value of the rate of degradation of the

first substrate k. It is also notice that the lower values of k favor the existence of more stable fixed

points to the system.

III.2.2 Complex chaotic dynamics

Deterministic chaos has attracted widespread interest in the physical and biological sciences over

the past two decades. It represents one of the three fundamental classes of dynamical behavior

(stationary, periodic, and chaotic) and, hence, is of central importance in characterizing dynam-

ical systems. The variety of behavior exhibited by this system, under different conditions, were

explored in [11, 34, 107]. They includes steady state, simple limit cycle oscillations, complex os-

cillations and period bifurcations leading to random oscillations or chaos. The system also shows

the existence of two distinct limit cycles (bi-rhythmicity), as well as chaotic regimes under the

variation of a single parameter.

Although chaos is usually studied in biochemical systems, several recent investigations have

demonstrated that transient chaos may occur in closed biochemical systems, where the changing
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Figure 17: Single cell dynamics: (a): (y,z) phase portrait, (b): time series, (c): return map and (d):
maximum Lyapunov exponent.

composition of the system, as reactants are consumed, serves as the bifurcation parameter [14,

15, 136]. Following these results, this section focus on chaos and associated complex periodic

oscillations found in the biochemical systems as the rate of degradation of the first substrate and

the maximum velocity of the enzyme change.

For parameters k = 0.003, q = 0.1, the pathway exhibits chaotic oscillations. Fig. 17 shows

various aspects of the chaotic behavior in a single cell.

The (y − z) phase portrait in Fig. 17 (a), and the time series of z in Fig. 17 (b) clearly show

that the oscillations of multiple time scales are associated with the chaotic state of the cell. Ear-

lier studies [107] have shown that there are more than one overlapping attractors that exhibit

period-doubling to chaos in this system. The multilayered structure of the return map in Fig.

17 (c), constructed from the successive maxima of z, shows evidence of homoclinic chaos [163].

The Lyapunov exponent in Fig. 17 (d) constructed from the time series of z shows divergence be-

tween initially infinitesimally close orbits, symptomatic of sensitivity to initial conditions. At this

stage, we have ascertained the complex biochemical rhythms exhibited by the aforementioned
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pathway under different biochemical assumptions based on simple models.

The dynamical behavior of nonlinear systems can be quantified by the Lyapunov exponents

spectrum, since the exponent values measure the divergence (or convergence) rates of trajecto-

ries in the directions of the flow. For our continuous-time three-dimensional nonlinear systems,

for example, the Lyapunov exponents spectrum has three values, and the dynamical behavior

can be described analyzing the exponent signs. In general, with one positive exponent, one null,

and the third negative the system’s behavior is chaotic. With the largest exponent of the Lya-

punov exponent spectrum, we have constructed a colorful Lyapunov exponent diagram, vary-

ing simultaneously two parameters of the system and keeping fixed the other parameters, to

study its complex behavior. The corresponding diagram is shown in Fig. 18. One notices the

abundance of chaotic dynamics in the system for low value of k and as the values of k increase,

periodicity regions increase. Larger values of T favor the presence of chaotic motion in the

system. In order to gain more insight into the dynamics of the system, we will examine two

bifurcation diagrams following this parameter space. The first one using the maximum velocity

of the enzyme T as the bifurcation parameter and the second using k.
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Figure 18: The Lyapunov diagrams of system (7), showing periodic regions in black (blue) and chaotic
region gray (red) as functions of the maximum velocity of the enzyme T and the rate of degradation of the
first substrate k. The other parameter been fixed as L = 106 and q = 0.1.

The bifurcation diagram of Fig. 19 (a) presents the evolution of the concentration of the
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substrate as a function of the maximum velocity of the enzyme. zmax stands for the maximal

amplitude of oscillation attained by the normalized concentration in end-product dynamics in

the single cell. The first observation is that the maximum velocity of the enzyme should be

greater than 1, in order to observe oscillations in the biochemical system. This has never been

discussed before concerning this biochemical system. The phenomenon observed here, common

in biological systems, is similar to the one observed in biological neuron, where a minimum

initial excitation current of I ≈ 1.37 is required to set the Hindmarsh-Rose neuron into an active

state [69]. As T increases beyond 1, the system reaches periodic oscillations and remains periodic

although the oscillations can exhibit several bursts in their time series over a period. Further

increase of the maximum velocity of the enzyme T abruptly takes the system to a chaotic domain

at T ≈ 3.3. Furthermore, one observes bands of chaotic and periodic motions succeeding to

each other alternatively. Most importantly, the system falls into two different attractors when T

reaches the value of 8.26, one chaotic and the other periodic. At this level, one can guess that the

presence of these two attractors will be determined with the initial condition of the system. This

could also explain the bi-stability between two oscillatory states, a phenomenon that is often

seen in systems of coupled oscillators. Many forms of multi-stability occurring in biochemical

systems have been reported earlier [34, 136, 137]. Beyond the value T ≈ 11.2, follows an inverse

period doubling cascade, interrupted by a small chaotic window, and leading to a sequence of

periodic orbits. This result is supported by the Lyapunov exponent curve shown in Fig. 19 (b),

right below the bifurcation diagram.

The bifurcation diagram of Fig. (20) is plotted as the rate of the degradation of the first

substrate (k) changes. It is observed from the bifurcation diagram and the corresponding Largest

Lyapunov exponent in Fig. 20 (a) and Fig. 20 (b), respectively, that the system follows a backward

bifurcation to move from pronounced chaotic dynamics to periodic dynamics as k increases. We

should remind ourselves that the rate of degradation of the first substrate has been found to play

an important role in the existence of chaotic and bi-rhythmic behavior in the model of cells with

activator-inhibitor pathways [34]. We should also recall that bi-rhythmicity is a situation where

for the same parameter value, the system possesses two types of rhythmic behavior different

significantly in period and amplitude and taking place around different mean substrate levels.

Each stable limit cycle possesses its own basin of attraction, defined as the set of initial conditions

from which the system evolves to the particular periodic solution [14].
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Figure 19: Bifurcation diagram (a) and Largest Lyapunov exponent (b) describing the dynamics of the
system as a function of the maximum velocity of the enzyme T for k = 0.003, L = 106 and q = 0.1.
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Figure 20: Bifurcation diagram (a) and Largest Lyapunov exponent (b) describing the dynamics of the
system as a function of the rate of degradation of the first substrate k. The other parameters are as in Fig.
16 for T = 10.
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III.3 Chemically coupled cells: Synchronization

III.3.1 Stability of the synchronous cells

The stability analysis of the synchronization manifold can predict whether there exists a synchro-

nized solution. In principle, the behavior of the Largest Lyapunov exponent fully determines

the linear stability of the synchronized solutions. However, the Lyapunov exponent spectrum

evaluation for high dimensional systems is time consuming. More recently, the Master Stability

Function (MSF) based on the transverse Lyapunov exponent has been established to be a neces-

sary condition to detect synchronization, enabling us to reduce the dimensionality of the coupled

system [20, 21]. The MSF measures the exponential rate at which an infinitesimal perturbation of

the synchronization manifold grows. In the present context of dynamical systems, the MSF is the

maximum transverse Lyapunov exponent of the synchronization manifold. A necessary condi-

tion for stable synchronization in the network is the negativity of the MSF. The MSF approach is

appealing because it allows the properties of the local system to be separated from the coupling

matrix characterizing the network topology. That is, the MSF can be obtained independent of

the network topology even for networks containing a very large number of biochemical systems

[20, 21, 22, 23, 24].

The starting point on the study of the synchronization and its stability is the determination of

the synchronization manifold, representing the common state of the coupled systems when syn-

chronization is achieved. In this case, the synchronous solution on the synchronization manifold

takes the form:

dx

dt
= F (z) − kx,

dy

dt
= x − G(y, z), (44)

dz

dt
= G(y, z) − qz − gs(z − Vinh)Γ(z),

where F (z) and G(y, z) are defined as in Eq. (7). It is observed here that the dynamics of the

system changes on the synchronization manifold as the coupling parameter also changes. This

is due to the fact that the threshold modulation form of the coupling scheme remains present in

the system even when completely synchronized [69, 70, 71].

In order to gain more insight into the dynamics of the system in the synchronization mani-
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Figure 21: Reverse bifurcation diagram describing the dynamics of the synchronous solutions of the
coupled system as a function of the fast threshold coupling strength gs, and in the box, a zoom on the
bifurcation showing how the system moves from periodic oscillations to pronounced chaotic dynamics, and
to periodic regimes through the sequence of period doubling bifurcations as gs decreases. The parameters
are the same as in Fig. 19 for T = 10.

fold, we plotted the bifurcation diagram of the synchronous solutions as the coupling strength

changes and it is depicted in Fig. 21, where zmax refers to the peaks in amplitude for the os-

cillations of the normalized concentrations in end-product in each of the cell when they are in

a completely synchronized regime. It presents a rich variety of dynamical behaviors ranging

from chaotic to periodic dynamics as shown in the figure. This is an interesting feature of the

synchronous regime produced by the chemical coupling scheme. We plot a backward bifurca-

tion diagram starting from large values of gs to smaller values. The road from initially periodic

motion to chaotic motion involves successive bifurcations, each undergoing period doubling bi-

furcation. Each bifurcation occurs increasingly close to a chaotic explosion in the system dynam-

ics, until a point is reached where through another explosive bifurcation, the system undergoes

chaotic motion and hence the oscillation is chaotic. This backward bifurcation diagram enables

us to recover a classical period doubling scenario observed in most of the dynamical systems.

In addition to periodicity obtained for large gs, we should remind ourselves that the system has

lost its extreme sensibility to initial conditions, hence favorable for synchronization.

It is then clear from the bifurcation diagram that the synaptic coupling strength gs plays a

control role over the dynamics of the synchronous state of the cells. As the coupling increases,
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the dynamics of the synchronization manifold moves from pronounced chaotic dynamics to a

sudden drop in the degree of chaos and then to a periodic state. It is noteworthy that fixed

points appear for gs > 0.157.

Assuming the coupled systems in the Master-Slave configuration, further analysis of the sta-

bility of the synchronization, is obtained by defining the directions transverse to the synchro-

nization manifold, as: ε = x1 − x2 , η = y1 − y2 , ρ = z1 − z2. Substituting this into the coupled

system Eq. (11), the dynamics of the transverse perturbations to the synchronization manifold

of the system are described by:

ε̇ = Fz(z)ρ − kε,

η̇ = Gy(y, z)η − Gz(y, z)ρ, (45)

ρ̇ = Gy(y, z)η + Gz(y, z)ρ − qρ

−gsΓ(x)ρ + gs(Vinh − z)Γz(z)ρ,

where the functions Fz(z), Gy(y, z)and Gz(y, z) and Γz(z) are given in the Appendix due to their

complex form. The complete transverse Lyapunov spectrum related to the above variational

equations and characterizing the dynamics transverse to the synchronization manifold, are plot-

ted as a function of the chemical coupling strength, and are depicted in Fig. 22.

Surprisingly, the largest transverse Lyapunov exponent (Fig. 22 (a)) is never negative, imply-

ing the absence of complete synchronization in the coupled cells. From the graph, we can see

that increasing the strength of the chemical coupling does not decrease the heterogeneity in the

coupled cells. However, as the coupling increases, the second transverse Lyapunov exponent

crosses completely from positive to negative values (Fig. 22 (b)) showing convergence towards a

state of phase synchronization in the coupled biochemical systems. Therefore, even though the

complete synchronous regime remains unstable, as the coupling strength increases, both systems

progressively stepped into a state of stable phase synchronization at gs = 0.0442.

In conclusion, the inhibitory chemical coupling type used in this work has a pronounced role

on the control of the concentration of the biochemical system than facilitating complete synchro-

nization regime into the system. However, the phase synchronization is abundant in the coupled

cells with inhibitor - activator pathways. At this stage, we need to stress out the importance of

this lastly named type of synchronization, observed among these cells with activator-inhibitor
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Figure 22: (a): Master Stability Function based on the Transverse Lyapunov Exponents with respect to
the coupling strength (gs), (b): Second Largest Transverse Lyapunov Exponent. The other parameters are
as in Fig. 21.

pathways, when coupled chemically. The phase synchronization phenomena can be summa-

rized in general as describing coupled systems whose phase difference is bounded, despite the

fact that their amplitudes are chaotic. It differs from all other types of synchronization by the

remarkable property that it is the first type of synchronization that appears as one increases the

coupling strength from zero to a small value different from zero. This has never been considered

in the case of cells with activator-inhibitor pathways and will be the subject of the next section.

III.3.2 Phase synchronization

Phase synchronization is the process by which two or more cyclic signals tend to oscillate

with a repeating sequence of relative phase angles. Many examples of biological phase synchro-

nization, some of them quite startling, have been documented in the literature, but currently,

theoretical understanding of the phenomena lags behind experimental and field-studies. In the

present section, phase synchronization is investigated in the context of biochemical systems.

Note that phase coherence guarantees that the populations oscillate at almost constant frequency

which is characterized by a predominant peak in the power spectrum [138]. The motivation of

this comes from the fact that in the preceding section, it has not been possible to observe com-
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plete synchronization into the chemically coupled biochemical system studied here. However,

from Fig. 22, the weaker kind of synchronization, the phase synchronization was suggested to

take place. The approach to detect phase synchronization in this section consists in defining

maps, which are a natural extension of the stroboscopic map, to coupled chaotic oscillators, in

which the oscillators are observed at special times. Phase synchronization implies the existence

of maps of the attractor that appear as localized structures in the accessible phase space. The

fact that phase synchronization produces subsets of the attractor that are localized structures, by

particular observations was previously used as a way to detect phase synchronization in chaotic

oscillators ([139, 138] and references therein). In order to observe the phase synchronization in

our case, we used the Poincaré section by defining the stroboscopic map as z = 10, with the con-

strain ż > 0. This is motivated by the extension of the approach of localized map by Pereira et

al. [139], by demonstrating that localized sets can be constructed while in phase synchronization

by means of any typical physical observation.

We illustrate this behavior of localized structure in Fig. 23. For gs = 0.00125, the set is

not localized over the attractor of the chemically coupled cells on Fig. 23(a). The set of points

which are obtained on the second cell’s attractor through the poincaré section of the first cell’s

attractor spread out over the attractor. Recall that the Poincaré section is defined at z = 10, with

the constrain ż > 0. Therefore, there is no phase synchronization, i.e., the time series of the

phase difference show divergence. The phase difference is not bounded it diverges . Indeed, on

Fig.23 (b), the calculation shows that the phase difference increases up to 4000. As we increase

the coupling, Phase Synchronization appears. In particular, for gs = 0.0025 and gs = 0.005,

the sets of points are localized [on Fig.23 (c) and on Fig.23 (e), respectively]. Hence, the phase

difference are bounded [on Fig.23 (d) and on Fig.23(f), respectively]. A close look at the curve of

the second largest transverse Lyapunov exponent in Fig. 22 allows us to identify three different

parameter regions where phase synchronized dynamics occur. These intervals of values of gs are:

[1.3×10−4; 2.6×10−3], [4.9×10−3; 1.4×10−2] and [4.6×10−2; 1]. Besides the phase synchronization

of the coupled cells with activator-inhibitor pathways, the coupling controls the dynamics of

the system as described earlier in the bifurcation diagram of the synchronous solutions. As an

illustrative relevant importance to phase synchronization investigated here, it confers positive

functional advantages to the organism, including temporal organization, spatial organization,

and efficiency for communication between them.
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Figure 23: Onset of phase synchronization in two coupled cells with activator-inhibitor pathways coupled
through fast threshold. Figures (a), (c), (e) are the plots of the attractor of the first cell (continue line) and
the stroboscopic projection of the attractor of the second cell on the cross section of the first cell (dots), for
different values of the coupling strength [the points are localized as the coupling increases, indicating the
onset of phase synchronization in the system]. Figures (b), (d), (f) are Time series of the phase difference of
the two coupled cells for different values of the coupling. As the coupling increases, the phase difference is
bounded, confirming the onset of phase synchronization in the biochemical system.
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III.3.3 Electrically and chemically coupled cells

Following the analysis of the preceding section, it is found that the synchronization manifold is

also defined by Eq. (44). On the contrary of the analysis done in that section, electrical coupling

does not affect the dynamics of the synchronous solutions.

0

20

40

60

 Z
1

,Z
2

 

8 8.1 8.2 8.3 8.4 8.5 8.6

x 10
4

0

20

40

60

 Time 

(b)(b)

(a)

Figure 24: Time series superposition of the trajectories of the two biochemical systems for gs = 0.0005;
(a): gl = 0 and (b): gl = 0.72. When the electrical coupling gl is turned on 0.72, the biochemical system
behaves in synchrony as a unique entity.

The dynamics of the system in the synchronous state remains the same as described in the

preceding section. However, when we take gl = 0.72, the two coupled cells are always com-

pletely synchronized. The time series superposition, of the coupled cells for different values of

gl, and for gs = 0.0005 presented in Fig. 24(a) and Fig. 24(b) attest for that. Following the differ-

ent dynamical regimes observed on Figure 5 for the bifurcation diagram of the synchronization

manifold with respect to gs, we can reliably display a summary of the different synchronization

regimes observed by changing the value of gs, keeping gl = 0.72, as summarized in Table 1.

The same observations can also be made for smaller value of the electrical coupling strength.
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Table 1: Different synchronization regime after the combine effect of electrical and chemical coupling for
gl = 0.72

values of gs synchronized dynamics

0 → 0.004 chaos
0.004 → 0.007 period - 4
0.007 → 0.008 chaos
0.008 → 0.0165 period - 2
0.0165 → 0.017 quasi-periodicity
0.017 → 0.0185 period - 4
0.0185 → 0.157 period - 1

0.157 → 1 quiescent state

In the next section, we will perform numerical simulation on the model to gain more information

about the role played by each of the two types of coupling. For example, intact yeast cells can

synchronize their oscillations with each other. When two equally large populations of yeast cells

that oscillate with opposite phases are mixed, they at first seem to extinguish each other. How-

ever, in the course of some periods, the amplitude grows again, and eventually, the autonomous

oscillation with constant amplitude is reestablished [140]. As reported earlier, this suggests that

some oscillating metabolite in coupled cells chain is able to permeate cellular membranes and

affects the coupled cells kinetics of neighboring cells. Somehow, chemical and electrical coupling

are able to affect the dynamics of the autonomous oscillations of the concentration of the cells,

such that eventually all cells oscillate in phase again and on the same limit cycles.

III.3.4 Numerical simulations of the electrically and chemically coupled cells.

The stability of the synchronous solution is checked by plotting the largest transverse Lya-

punov exponent (MSF), as function of coupling parameters gs and gl. It is seen from the graphs

that the largest transverse Lyapunov exponent is negative for some values of the coupling strength,

confirming the fact that the cells can completely synchronized. It is therefore clear that the pres-

ence of the electrical coupling increases greatly the degree of synchronization even when the

synaptic strength is large. For this analysis, we have chosen two values for the maximum veloc-

ity of the enzyme, T = 3.1 and T = 10, respectively, corresponding to the cases of periodic and

chaotic dynamics of the single cell pathways. For T = 3.1, Fig. 25(a), parameter space indicates

that for gl > 0.23, a stable synchronization dynamics is established among the cells since from

this value, the MSF < 0 for all values of gs. The simulations are made with the values of gl and
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gs varying between 0 and 1. Nevertheless, for the values of gl < 0.23, one can have MSF < 0,

for low values of the chemical coupling gs, that is between 0.005 and 0.1 only.
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Figure 25: Two dimensional contour plot of the Master stability function defined by the Largest Lyapunov
Exponent as a function of the fast threshold coupling strength gs and the electrical coupling strength gl.
The parameters are as in Fig. 22 and for two different values of the maximum velocity of the enzyme (a):
T = 3.1, and (b): T = 10.

On Fig. 25(b), obtained for T = 10, we observe the same phenomenon. However, due to

the nature of the system at T = 10 (chaotic), the value of the electrical coupling should be larger

(gl > 0.55) in order to obtain MSF < 0 for all gs, i.e. a stable synchronous regime fostered among

the cells. The region of stable synchronous solution is more smaller in this case. Specifically,

when 0.1 < gl < 0.55, as gs increases, we move from a region where MSF < 0 to a region where

MSF > 0, showing that in these coupling conditions, when the chemical coupling strength

becomes strong enough, it destroys the stability of the manifold. It then requires a large amount

of electrical coupling to fully establish a stable synchronization manifold for all the values of gs.

On the contrary of what was observed in Fig. 25(a) for T = 3.1 we see that as gs increases, the

region of stable synchronization reduces. In other words, there exists an optimal value of gl for
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each value of gs, which is the characteristic signature of complete synchronization. Note that

the peak position of gl is shifted to a large value of the coupling strength when gs is increased.

The mechanism can be understood as follows. When the chemical coupling between cells is

increased, each cell may be excited by the other even though it may be unable to respond to the

external stimulus. They then behave like uncoupled cells with common impute leading to larger

dispersions. As a whole, the coherence of the motion in the coupled system is enhanced by the

introduction of the electrical coupling between them and if the electrical coupling is stronger,

the excited cells become synchronized and behave as a single element. So the larger the chemical

coupling strength is the larger the electrical coupling strength needed to be to achieve complete

synchronization. The cells with activator inhibitor pathway become completely synchronous to

either a limit cycle for large chemical coupling strength or to a chaotic attractor for small chemical

coupling strength.
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Figure 26: Two dimensional contour plot of the Master stability function defined by the Largest Lyapunov
Exponent as a function of the fast threshold coupling strength gs and the maximum velocity of the enzyme
T . The parameters are as in Fig. 22 and for gl = 0.72.

The synchronous dynamics of the concentration of the cells with activator-inhibitor path-
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ways may strongly depend on the maximum velocity of the enzyme T and the amount of the

external chemical input gs. Therefore, it is important to evaluate the threshold of synchronization

for these two parameters and for fixed value of the electrical coupling gl. The synchronization

regions as functions of T and gs for electrical coupling coefficient fixed at gl = 0.72 is shown in

Fig. 26. The system exhibits synchronization in a wide region of the parameter space, as shown

in Fig 26. However, for a relatively smaller value of chemical coupling and smaller value of the

maximum velocity of the enzyme, the synchronization regimes are not found into the coupled

cells. Meanwhile, large value of the two parameters foster synchronization in the coupled cells.

Note that large values of the fast threshold coupling type control the dynamics of the system by

wiping out effect of heterogeneity created by initial conditions in the coupled system hence fa-

vorable for synchronization. Furthermore, the more the amount of the chemical coupling input

is, the smaller the range of the maximum velocity of the enzyme for which synchronization can

be found.

In summary, two cells with activator-inhibitor pathways do not easily synchronize their dy-

namics when they are coupled chemically only. However, the interplay of the chemical and

electrical couplings tremendously fosters the establishment of the stability and robustness of

the synchronization dynamics of both cells. This could be of capital importance in biochemical

systems since in metabolic pathway, the fluxes and the concentrations generally depend on the

activities and kinetic properties of all of the involved enzymes simultaneously ([140]and refer-

ences therein).

III.3.5 Detecting coupling range for high quality synchronization

From the previous section, it has been seen that the complete synchronous solution was stable

under the combined effect of chemical and electrical coupling. Using the Runge Kutta inte-

gration algorithm, we integrate equation (44) and (45) over a very large interval of time, after

discarding the transient time, we compute the mean value of the rate of change of the Lya-

punov function L and defined by LT =

〈

dL

dt

〉

. This parameter LT is evaluated as the coupling

strength changes. The range of values of the coupling parameter corresponding to high quality

synchronization, are obtain for LT strictly negative. The consequence being that the synchro-

nization manifold is completely stable. The plots of LT with respect to the coupling strength are

displayed in the figures Fig. 27 and Fig. 28. In these figures, LT is plotted in the parameters
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space, (gs, gl) and (gs, T ) to localize the regions for high quality synchronization dynamics of the

coupled cells.
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Figure 27: Stability region for high quality synchronization obtained from numerical simulation of the
mean value LT of the rate of change of the Lyapunov function in the parameter space (gs, gl) for two
different values of the maximum velocity of the enzyme (a): T = 3.1 and (b): T = 10. The parameter
values are the same as that of Fig. 25. The values of the parameters for high quality synchronization are
in black (blue).

The plot of Figs. 27 are reflecting different dynamical regions with the occurrence of robust

synchronization in the cells in the parameter space of the two types of coupling (gs, gl). The

analysis are done for two different values of the maximum velocity of the enzyme T . For T = 3.1

(the system is periodic), in Fig. 27(a), the region for high quality synchronization is obtained for

any value of gs when gl ≥ 0.26. So, the stable synchronization dynamics detected by the MSF

in the preceding section ( see Fig. 25) for gl > 0.23 becomes robust when gl > 0.26 for all gs.

So, in the region between 0.23 < gl < 0.26, the synchronous dynamics is of low quality and
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the error dynamics could just be bounded. A similar observation is made when the maximum

velocity of enzyme is T = 10. However, the region of robust synchronization is reduced due

to the chaotic nature of the system as shown in Fig. 27(b). Also, as gs increases, the parameter

region for the robustness of the stability of the manifold is reduced meanwhile in the previous

case, the increase of the coupling gs was accompanied by an increase of the region for robust

synchronization.
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Figure 28: Stability regions for high quality synchronization as functions of the maximum velocity of the
enzyme T and the chemical coupling coefficient gs. The system exhibits high quality synchronization in a
wide region of the parameter space for low values of the coupling parameter. In the present simulation, gl

is fixed at 0.72.

A look at the result of the investigation done in the parameter space (T, gs) for gl = 0.72

shows the same result as in the case of the master stability. The region of onset of robust syn-

chronization based on the mean value on the rate of change of the Lyapunov function LT , on

Fig. 28, indicates that even though there is a large parameter region where the robustness of the

synchronization is achieved, for 0.81 < gs < 1 and 11 < T < 15, the value of LT > 0, show-

ing that the synchronization dynamics of both cells loose their robustness as observed for larger
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values of T and gs.

With the result highlighted here, it is clear that the existence of elaborate control mechanisms

for the various biochemical processes inside and within living cells is responsible for the coherent

behavior observed in its spatio-temporal organization. Stability and sensitivity are both neces-

sary properties of living systems and these are achieved through negative and positive feedback

loops as in other control systems. From a general point of view external forcing of cellular pro-

cesses is important in many application areas ranging from bioengineering to biomedicine. At

the specific level of biochemical systems, the problem is to supply specific input coefficient to the

coupling of the cells such that the biochemical processes of the cell achieve robust synchroniza-

tion objectives.

III.4 Adaptively environment-mediated coupled cells: Synchroniza-

tion

In coupled systems, synchronization refers to an adjustment of the time scales of their oscillations

due to interaction between the oscillating processes. It is the most fundamental phenomenon that

occurs in oscillating processes. At this stage, we wish to investigate the simultaneous existence

and stability of a complete synchronous regime. In order to achieve this, we need to remind our-

selves about the fact that the complete synchronized state lies on the synchronization manifold

where the cells have exactly identical biochemical pathways, that is x1 = x2, y1 = y2 and z1 = z2.

III.4.1 Stability of the Complete Synchronous solution: Linear stability analysis of

the coupled adaptive systems

Here, we investigate the stability of the synchronous state of two systems coupled via the scheme

of equation (13). Let ξ1, ξ2, v and η be the deviations from the synchronized state of the two cou-

pled systems, the environment and the damping parameter, respectively, which are all dynamic.

Their dynamics is governed by the linearized equations obtained from equation (13) which in

matrix form can be written as:
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dX1

dt
= f(X1) + ǫ1γβ1u,

dX2

dt
= f(X2) + ǫ1γβ2u,

du

dt
= −κu −

ǫ2

2
γT (β1X1 + β2X2), (46)

dκ

dt
= α[γT (β1X1 + β2X2)]

2,

where X1, X2, u and κ have dimension 3, 3, 1 and 1, respectively. γ is a column matrix (3×1)

with elements zero or one and it decides the components of Xi that take part in the coupling. We

then get:

dξ1

dt
= f

′

(X1)ξ1 + ǫ1γβ1v,

dξ2

dt
= f

′

(X2)ξ2 + ǫ1γβ2v,

dv

dt
= −κv −

ǫ2

2
γT (β1ξ1 + β2ξ2) − vη, (47)

dη

dt
= 2α[γT (β1X1 + β2X2)]γ

T (β1ξ1 + β2ξ2).

For a completely synchronized regime, that is X1 = X2, equation (47) can be reduced by

defining:

ξ0 = β1ξ1 + β2ξ2. (48)

Then equation (47) reads:

dξ0

dt
= f

′

(X1)ξ0 + ǫ1(β
2
1 + β2

2)γv,

dv

dt
= −κv − vη −

ǫ2

2
γT ξ0, (49)

dη

dt
= 2αγT (β1X1 + β2X2)γ

T ξ0.
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The fixed point (0, 0, 0) of Equation (49) corresponding to the synchronized state will be sta-

ble if all the Lyapunov exponents derived from Equation (47) are negative. A significant de-

velopment can be made if we assume that the time average values of f
′

(X1) and f
′

(X2) are

approximately the same and can be replaced by an effective constant value µ [135]. Similarly,

β1X1 + β2X2 can be replaced by its time average constant value ω. In this approximation, we

treat ξ1 and ξ2 as scalars. This type of approximation has been employed in reference [156], and

it was observed that it describes the overall features of the phase diagram judiciously well. Thus

using ξ0 defined by Equation (48), Equation (47) can be written as:

dξ0

dt
= µξ0 + 2ǫ1v, (50)

dv

dt
= −κv − vη −

ǫ2

2
ξ0, (51)

dη

dt
= 2αωξ0, (52)

where we have β2
1 + β2

2 = 2.

Differentiating Equation (50) with respect to time and eliminating v from equation (50) and

equation (48), we derive an equation for ξ0 given as:

ξ̈0 = (µ − κ − η)ξ̇0 + [µ(κ + η) − ǫ1ǫ2]ξ0. (53)

After differentiating again Equation (53) with respect to time and discarding all the deviation

terms of order two(namely ξ0ξ̇0, ξ2
0 , ξ̈0η and ηξ̇0), we find the equation:

d3ξ0

dt3
+ (κ − µ)ξ̈0 + [ǫ1ǫ2 + αω2 − µκ]ξ̇0 − µαω2ξ0 = 0. (54)

Assuming a solution of the form ξ0 = Aemt, we obtain the eigenvalue equation:
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m3 + (κ − µ)m2 + [ǫ1ǫ2 + αω2 − µκ]m − µαω2 = 0. (55)

The parameter values of µ and ω can be obtained numerically from the time series of the

coupled system as the temporal averaging values of the functions żi and β1z1 + β2z2 over a

long period of time (because the coupling scheme is implemented via the third variable, that is

the end-product concentration) when weak perturbations are performed on the synchronization

manifold. In this regard, the values of µ ≈ 0.00612611845 and ω ≈ 1.0 are found. For the sake

of simplicity, we will choose the value κ = 1.0 in order to ensure that the value of the damping

parameter be greater than all of the optimal values of κ observed numerically (depending on

the initial conditions). This is necessary to obtain a synchronous solution, when the coupling

strength is suitable to instate a synchronized regime in the coupled system. We take α = 3.5001×

10−9.

Based on the above considerations and on the assumption that ǫ1 = ǫ2 = ǫ, we solve equation

(55) for the eigenvalues of our system making use of the dichotomy scheme, for different values

of ǫ. The solutions obtained are depicted on Fig. (29a) and it is observed that all the eigenvalues

m (orange online) are always less than or equal to zero provided that the coupling strength

ǫ > 0.0771. This indicates that for this range of values of the coupling the synchronous state

is stable. This is in close agreement with the previous result observed numerically on Fig. (30)

through the plot of the evolution of the Lyapunov spectrum as a function of ǫ, where a similar

trend was noticed for ǫ > 0.07. To ascertain this fact, an enlargement of the region ǫ < 0.0771

indicated by the rectangular box in Fig. (29a) is shown in Fig. (29b). This figure clearly suggests

that for ǫ ≤ 0.0771, there exists at least one eigenvalue which visibly exceeds zero and which will

contribute to the generation of an unstable synchronization manifold. As inference, we can say

that both numerical and analytical tools advocate for the suitable interval of value of ǫ > 0.0771,

for which the synchronized regime attained through our adaptive feedback-control scheme of

two environmentally coupled cells with activator-inhibitor pathways is stable.
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Figure 29: The spectrum of eigenvalues as a function of ǫ: (a): Eigenvalue spectrum for which the syn-
chronized state is unstable, ǫ ≤ 0.0771 in dark line (blue online); Eigenvalue spectrum for which the
synchronized state is stable, ǫ > 0.0771 in gray line (orange online). (b): Zoom of the small box in (a)
as an evidence of the existence of at least one eigenvalue which exceeds zero, thereby yielding an unstable
synchronization manifold, when ǫ ≤ 0.0771. The parameter values are µ = 0.00612611845, ω = 1.0,
κ = 1.0 and α = 3.5001 × 10−9.

III.4.2 Numerical simulations of the Lyapunov Spectrum

Our study of the stability of this manifold will be based on the calculation of the Lyapunov

spectrum of the coupled system. Lyapunov exponents are known to assess the fast exponential

divergence of two trajectories of the same dynamical system, which started from almost indis-

tinguishably close initial conditions in the phase space and with the course of time. In the actual

case study, when the coupled systems are completely synchronized, they act as one unique en-

tity on the synchronization manifold, thereby making the dimension of the coupled cells to settle

from 8 to 4. In the event where perturbations are produced on the manifold in directions trans-

verse to it, that dimension unfold again in phase space and grows above 4, leaving the system

unsynchronized. A survey of how these perturbations grow in the phase space over a long

period of time can be perceived through the calculation of the whole spectrum of Lyapunov ex-
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ponents corresponding to the coupled system for a given value of the coupling strength. The

technique for the obtention of this spectrum is described in reference[141]. It produces 8 Lya-

punov exponents. First and foremost, the largest of them, λ1, is an indicator of whether there is

a chaotic dynamics on at least one of the coupled systems. In our case, because of the chaotic

dynamics of the cells, λ1 is always strictly positive for all the values of ǫ. Secondly and extremely

important, the second largest exponent λ2 of our coupled system detects whenever a fully stable

synchronized regime is instated among the cells by the coupling. This occurs when λ2 becomes

strictly negative. Finally and not the least, the third Lyapunov exponent λ3 provides information

about the presence of a phase synchronized dynamics among the cells.
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Figure 30: The three Largest Lyapunov Exponent of the coupled system as a function of the coupling
strength ǫ. The parameter values are q = 0.1, k = 0.003, L = 106, T = 10.

Before closing this discussion, we support the previous relevant comments made on the

ability of this feedback-control adaptive environmental coupling to preserve the local intrinsic

chaotic behavior of cells while synchronizing them, by plotting the three largest Lyapunov expo-

nents of our 8-dimensional coupled system as a function of the environmental coupling scheme.

This is presented in Fig. (30) where it is observed that the largest Lyapunov exponent is always

Ph.D. Thesis of P. Guemkam Ghomsi Laboratory of Mechanics, Materials and Structures



III.4 Adaptively environment-mediated coupled cells: Synchronization 89

strictly positive irrespective of the value of ǫ, showing that the global dynamics of the coupled

system is always chaotic. Also, we observe that the third largest Lyapunov exponent definitely

becomes negative when ǫ > 0.066, indicating the onset of phase synchronization. In addition,

when ǫ > 0.07, the second largest Lyapunov exponent becomes steadily negative, indicating in

its turns the onset of complete chaotic synchronization for the coupled cells. These results are in

agreement with our previous observations.

Therefore, in order to enquire about the existence and stability of the synchronous solution,

we will rely on the observations made on the evolution of λ2 as we vary the strength of the

coupling among the cells. Figure (31a) depicts the domains of stability of the synchronized state

in the (ǫ, k) parameter space based on λ2. It is observed that cells find it easy to synchronize for

most of the couple of values (ǫ, k) of the coupling strength and the rate of degradation of the

first substrate, except mainly when (ǫ, k) ∈ [0.028, 0.055] × [0, 0.18]; and for some few isolated

points spread in the lower region of the parameter space. Figure (31b) shows the same analysis

performed in the (ǫ, T ) parameter space, where we see that the domain of stability is still large.

But, the stable synchronized state is not accessible when the maximum velocity of the enzyme is

such that T ∈ [1, 3.8], and mostly when (ǫ, T ) ∈ [0, 0.065] × ([1, 7.5] ∪ [9.1, 11.2]).

Evidence of these observations are portrayed in Fig. (32) where we plot both the time series

superpositions of the cells and their phase portrait correlations for two different values of ǫ. The

parameter values are still those for the chaotic dynamics of the pathways. When ǫ = 0, Fig. (32a)

shows that the cells are not synchronized and their phase portrait correlation graph shows that

they are uncorrelated as seen on Fig. (32c). However, when ǫ = 0.15, Fig. (32b) and Fig. (32d)

show that the cells have their biochemical pathways perfectly synchronized and correlated via

their end-product normalized concentration.

It then becomes obvious that the proposed adaptive environmental coupling scheme is capa-

ble of producing a robust synchrony among the coupled cells with activator-inhibitor pathways.

The adaptation and learning skills of this coupling involve dynamical processes that tend to rein-

force themselves through long-term repeated experience of encoding, assimilating and decoding

of information produced both endogenously and exogenously. Figure (33) portrays the adaptive

character of this indirect coupling scheme with feedback control, where it is observed that for the

value of the coupling ǫ = 0, the damping parameter κ of the environment continuously grows

with time, indicating that the coupled system cannot reach a stable synchronized dynamics. But,
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Figure 31: The Lyapunov diagrams of the coupled system (13), defined by the Second Largest Lyapunov
exponent of the spectrum, showing domains of stability of the synchronization manifold as functions of
the coupling strength ǫ and: (a): the rate of degradation of the first substrate k, (b): the maximum velocity
of the enzyme T . The other parameters being fixed as L = 106 and q = 0.1.

for a suitable value of the coupling, κ increases and rapidly attains a constant value, correspond-

ing to its optimal value when synchronization is established among the cells.

III.4.3 Phase Synchronization

When seeking procedures to assess to degree of synchronization between two oscillators, suffi-

cient attention must be given to their respective ”stages” of oscillations, that is their positions

inside the specified cycle of oscillations; namely the beginning, the first quarter, the middle, the

third quarter, the end, etc. The quantity responsible of characterizing the stage of oscillations

of each oscillator at any instant of time is called the phase of that oscillator(φ(t)). For harmonic
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Figure 32: Complete synchronization in two indirectly coupled cells with activator-inhibitor pathways
coupled through an adaptive environment with feedback control mechanism. Figures (a): ǫ = 0: no
synchronization, (b): ǫ = 0.15: synchronization; are the plots of the superposition of the time series of the
two coupled cells. Figures (c): ǫ = 0: no synchronization, (d): ǫ = 0.15: are the correlation graphs for
different values of the coupling. For a suitable coupling strength, a complete synchronized dynamics is
obtained.

oscillations, the phase is a linear function of time, while for more complex dynamics such as

quasi-harmonic and chaotic oscillations, it has a more complex shape. Accordingly, the concept

of phase is intimately associated with the phenomenon of synchronization. Phase therefore rep-

resents a convenient tool for the detection of whether two oscillators are synchronized or not.

Specifically, considering the phase difference between oscillators, if the phase difference hap-

pens to be a constant or to slightly swing around a constant, this would typically suggest that

the oscillators are 1 : 1 synchronized. In this case, there is the appearance of frequency locking

mechanisms due to the effect of suitable coupling scheme and strength, forcing the oscillators to

vibrate ”in phase”. Alternatively, if the phase difference grows in time, there is no 1 : 1 synchro-

nization.

As well as in nature it is hard to find two exactly identical systems, complete synchroniza-
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Figure 33: Time series of the damping parameter of the environment κ for: (a): ǫ = 0, (b): ǫ = 0.15

tion is more challenging to find compared to phase synchronization. Mindful of this fact, phase

synchronization therefore occurs more naturally in coupled biological systems. It is the weakest

form of synchronization and is usually obtained when the strength of interactions is low. As the

coupling strengths become large, more ordered levels of synchronization regimes appear such as

lag synchronization, followed by the strongest synchronized dynamics: the complete synchro-

nization [11]. The intermittency in the phase synchronized dynamics usually takes place at the

values of the coupling strength where transitions between these different types of synchronized

regimes are obtained. This intermittency is characterized by intervals of loss of synchronization

disconnecting epochs of synchronization.

In coupled dynamical systems, several indicators of the presence of a phase synchronized dy-

namics can be used such as the average phase difference between two systems, the stroboscopic

poincaré maps, the Lyapunov exponents, the phase space diffusion and correlation parameters,

namely the Kuramoto parameter to name just a few. First, it is noteworthy that a strong evi-

dence of the existence of phase synchronization in coupled chaotic oscillators is the localization

of conditional sets obtained from the observations of the position of one cell’s trajectory at the

time another cell makes any physical event [142]. This concept is an extension of the approach

of localized map by Pereira et al. [139] who demonstrated that localized sets can be constructed
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while in phase synchronization by means of any physical observation. In the present study, we

define our physical event based on the Poincaré section of the attractor of the first cell through

the plane defined by z = 10, with the constrain that ż > 0. In this manner, based on the repeated

realizations in the phase space of the defined event by the trajectory of the first cell, a strobo-

scopic map is derived for the second cell through observations of its positions at the times the

event takes place. A set of points is therefore constructed in phase space for the second cell for a

given value of the coupling strength. For the sake of simplicity, we assume that ǫ1 = ǫ2 = ǫ as in

the preceding analysis.

To have a clear picture of when phase synchronization might appear between the two cou-

pled chaotic cells, we show in Fig. (34a) the plot of the quantity:

χ =
max(zj

2) − min(zj
2)

max[z2(t)] − min[z2(t)]
, (56)

where z
j
2 represents the value of z2 at the instant the trajectory of the first cell makes the

jth event. Thus χ is related to how broad the conditional observations spread over the whole

attractor [17]. Figure (34b) depicts the captured values of z
j
2 on the attractor of the second cell in

phase space at the times the event occurs, for different values of ǫ. It appears from both figures

that when ǫ > 0.066, phase synchronization takes place, as the conditional observations obtained

for the second cell when the first one makes the event always produce a localized set of points.

Alongside this analysis, we carry out a temporal survey of the data using the parameter:

R =

√

(
∑2

i=1 sin(φi))2 + (
∑2

i=1 cos(φi))2

2
, (57)

defined by Kuramoto in 1984 as a rigorous quantity for the assessment of mutual phase en-

trainment and synchronization among coupled phase oscillators [143]. φi stands for the phase of

the ith cell. For a given set of parameters, we compute the temporal average < R > of R and its

amplitude δR = maxt(R) − mint(R). For full(complete) synchronization to be established, we

consider that the following conditions must be fulfilled:

< R > is strictly greater than < R >threshold= 0.98, and that δR < δRthreshold = 0.001

Both < R >threshold and δRthreshold have values chosen arbitrarily. Figures (34c) and (34d)
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show the evolutions of < R > and δR, respectively, obtained over a long period of time, as the

environmental coupling ǫ varies. As previously indicated in the case of the generation of condi-

tional sets, it is observed that when ǫ > 0.066, phase synchronization takes place, immediately

followed by the emergence of a high quality full synchronization.

Figure 34: Onset of phase synchronization in two indirectly coupled cells with activator-inhibitor path-
ways coupled through an adaptive environment with feedback control mechanism. Figures (a): Occupation
of the conditional observations with respect to the attractor, χ; (b): End-product Normalized concentration

z
j
2 of the second cell when the first cell makes the jth crossing with the section z = 10, for ż > 0; (c): Mean

value of the Kuramoto parameter < R >; (d): The Kuramoto amplitude δR; as a function of the coupling
strength ǫ1 = ǫ2 = ǫ, detecting the emergence of phase synchronization in the coupled biochemical system.
The parameter values are q = 0.1, k = 0.003, L = 106, T = 10.

As illustrative evidences of the above remarks, we present respectively in figures (35a) and

(35c) the set of points obtained in dark dots (blue online) from the second cell’s attractor through

the poincaré section of the first cell’s attractor at the times the defined event takes place, and

the time series of the phase difference between the cells, when ǫ = 0. It is observed that the set

of points are not localized and the time series of the phase difference show divergence as it is

not bounded. The calculations indeed show in Fig. (35c) that the phase difference goes up to
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4 × 104. For a larger value of the environmental coupling, namely ǫ = 0.15, the set of points

become localized as seen on Fig. (35b). Hence, the corresponding phase difference between

the biochemical pathways on Fig. (35d) becomes perfectly zero due to the fact that they are

completely synchronized for the given value of the environmental coupling.
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Figure 35: Onset of phase synchronization in two indirectly coupled cells with activator-inhibitor path-
ways coupled through an adaptive environment with feedback control mechanism. Figures (a): ǫ = 0,
(b): ǫ = 0.15: are the plots of the attractor of the first cell in gray lines (pink online) and the stroboscopic
projection of the attractor of the second cell in dark dots (blue online) on the cross section of the first cell,
for different values of the coupling strength [the points are localized as the coupling increases, indicating
the onset of phase synchronization in the system]. Figures (c): ǫ = 0, (d): ǫ = 0.15: are Time series of the
phase difference of the two coupled cells for different values of the coupling. As the coupling increases, the
phase difference is bounded, confirming the onset of phase synchronization in the biochemical system. The
parameter values are the same as that of Fig. (34) .

We finalize our study on the appearance of phase synchronization in the coupled system by

investigating in the parameter spaces (ǫ, k) and (ǫ, T ) suitable requirements for the emergence of

this synchronized regime, based on the mean value of the Kuramoto parameter. On both param-

eter space diagrams, the domains of phase synchronization are depicted in black (blue). From

Fig. (36a), it appears that a phase synchronized regime is almost always present in the coupled
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Figure 36: The Kuramoto diagrams of the coupled system (13), based on the mean value of the Kuramoto
parameter, showing phase synchronization regions in black (blue) and regions of unsynchronized dynamics
white (white) as functions of the coupling strength ǫ and: (a): the rate of degradation of the first substrate
k, (b): the maximum velocity of the enzyme T . The other parameters being fixed as L = 106 and q = 0.1.

system as soon as ǫ > 0.066, except in general for k ∈ [0.0028, 0.029] where the synchronized

dynamics is more or less reluctant to appear for a large range of values of ǫ. Exception made of

that, the domain of existence of phase synchronization in the parameter space (ǫ, k) is very large.

Thus the coupled cells are more inclined to synchronize their biochemical pathways for a wide

range of parameter points (ǫ, k). Figure (36b) equally shows that in the parameter space (ǫ, T )

there is a narrow band of points for which the maximum velocity of the enzyme T ∈ [1.7, 3.4]

and the coupling strength ǫ ∈ [0, 0.07233], where the coupled system defies synchronization. But

exception made of these regions, a wide part of the parameter space (ǫ, T ) is greatly in favor of

the emergence of a phase synchronized dynamics. The above analysis performed on the concept

of phase synchronization in coupled systems is particularly important since it determines im-

mensely the spatiotemporal organization of coupled biological systems and the efficiency with

which information is transferred from one cell to another.
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III.5 Diffusively coupled system: Pattern formation

III.5.1 One-dimensional spatially heterogeneous networks: Suppression of chaos

and spatial pattern formation

Since homogeneity in both neighborhood and behavioral parameters among the sub-populations

in a meta-population does not capture the patchiness of the real world, the primary concern of

this section is to address the role of realistic biochemical and behavioral features such as, pat-

tern formation, in the spatiotemporal dynamics of rings of cells with activator inhibitor path-

ways, both in the presence and absence of local and global chaotic features. Sub-populations of

organisms in different habitat patches may differ from each other in biotic (for instance inher-

ent growth rate and interaction strength) and abiotic (such as climatic and landscape pattern)

components. In reality, a population of cells can have different parameters due to intrinsic and

extrinsic noise that permeates its environment. Such heterogeneity can influence the mode and

extent of dispersal of individuals among these sub-populations, which, in turn, may regulate

their spatiotemporal dynamics. Thus, as far as in real life situation, it is almost impossible to

have perfectly identical systems, even in clonal populations, the pathways in the cells can be as-

sumed to differ from one another to some extent(though marginally), in their intrinsic biochemi-

cal parameter conditions. In order to model such heterogeneous networks with weak parameter

mismatch with respect to the rate of degradation of the first substrate, the values of k in each

pathway are initially randomly distributed around the value k=0.003, so as to literally preserve a

local chaotic dynamics in all the cells. Thus, a numerical treatment of the one-dimension model

prescribed by Equation (9) yields the following outcomes.

A- Spatial pattern formation

Figures 16a and 16b compare the long-term spatial distribution of the maxima zmax of all

cells for the uncoupled, and coupled (ε = 0.138) cells in a lattice of N = 50 for 4000 time units.

It shows the inherent chaotic dynamics of each uncoupled cell, as the peak values are dis-

tributed in an irregular manner in Fig. 37 (a). A similar plot in Fig. 37 (b) for the coupled cells,

showing regular standing wavelike spatial pattern in the lattice which emerge as two horizontal

”8” structures closed with boundary points. The pattern in the periodic lattice remains constant,
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Figure 37: Profile of the peaks of (a): uncoupled cells; (b): coupled cells showing spatial pattern; (c):
return maps of the 34th and 40th cells in the lattice; and (d): snapshots of the cells’ profile at intervals of
382 time units. N = 50, ε = 0.138.
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except for a phase shift, for any other initial condition. A closer look shows that each cell’s local

dynamics corresponds to a period 4 (P4) oscillation although with different amplitudes. This is

shown in Fig. 37 (c) by the return maps of two representative cells belonging to two different

parts of the wave pattern: the boundary cell (40th cell) and a cell with maximum zmax, (34th cell).

The boundary cells show P4 dynamics but with minimum separation of amplitude, whereas the

32nd cell shows P4 dynamics with large deviation in the maxima. All other cells have P4 dynam-

ics with comparatively smaller deviations among the four peaks. To show that the spatial wave,

once established, repeats about every 382 time units, snapshots of the lattice were plotted every

382 time units in Fig. 37 (d). This spatial pattern is indicative of standing wave where concen-

trations of z in some cells in space vary much more widely compared to others. Such patterns

have been shown to occur in other model systems [144], and have been implicated in pattern

formation in biological tissues [145].

B- Phase relationship of the cells

The phase synchronization with suppression of chaos and the spatial pattern shown by the

coupled cells has important and distinct features. Firstly, the inherent chaotic dynamics in each

cell is suppressed to a lower periodic state (P4) having four local maxima of different amplitudes,

which, when arranged in the descending order of heights, are ordered as (1, 4, 2, 3). Secondly,

there is phase entrainment with a phase slip among the cells that lead to the spatial pattern in Fig.

37 (b), and a unique global temporal pattern of ”two high peaks followed by two smaller peaks”

in the maxima of z. To show the distribution of phases that underlies the spatiotemporal pattern

in the lattice, we plot the time series of three cells from the lattice in Fig. 38. They are perfectly

synchronized (PS). As also seen in Fig. 37 (c), the peaks of the oscillations of the boundary cell

(40th in solid line) are very similar. The temporal behavior of z in two cells (34th and 46th cells)

belonging to the opposite phases of the spatial wave are shown by dashed and dotted lines. It

can be seen that the two cells are phase synchronized, but the amplitude maxima are temporally

arranged as (1, 4, 2, 3) (for 34th cell) and (3, 1, 4, 2) (for 46th cell) leading to a phase lag by one-

fourth of the period of the P4 cycle due to the fixed phase slip. All cells on the two sides of the

boundaries show the same phase slip. This leads to the shift of the highest peak of all the 50 cells

such that the overlapped time series consists of ”two high peaks followed by two smaller peaks”
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Figure 38: Superposition of the time series showing the T
4 phase slip. A boundary cell 40th in solid line,

and two cells at opposite phases of the spatial wave 34th and 46th in dashed and dotted line, respectively.
N = 50, ε = 0.138.

in the time series of the N = 50 cells are superimposed. This phase synchronization with phase

slip behavior underlies the spatiotemporal pattern in the lattice of coupled cells.

C- Incidental events of interplay between chaos and patterning

Numerous other structurally different spatiotemporal organizations could be retrieved from

further investigations. Highlights of these remarkable structures as they emerge for increasing

values of ε are provided in what follows. The emerging structures can be sorted in three main

categories: (a) the case of pattern formation in the presence of chaos, (b) the case of pattern for-

mation with suppression of chaos, and (c) the case of suppression of chaos without patterning.
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Firstly, It is noteworthy that beyond the usual typical case of pattern generation via suppression

of chaos previously encountered in the case of homogeneous lattices of such biochemical path-

ways, novel scenarios of patterning in the presence of chaos could be ascertained, both at low

and moderate coupling strengths. Such structures can be spotted on Figs. 39 (a) and (c), on Fig.

40 (a), on Figs. 41 (a) and (c), where they usually arise as a sequence(succession) of chaotic bub-

bles spreading all over the closed spatial domain. In some cases, the chaotic bubbles distribute

themselves along a bi-layered structure (Fig. 41 (a) and (c)). The corresponding spatial profiles

of the lattice is provided besides each of them. These snapshots show the states of the lattice at

some given points of their temporal evolutions. Amid these profiles, some interesting events of

capture of multiple-humps structures are noticed (Fig. 39 (b), 39 (d), and on Fig. 41 (b), 41 (d)).

These chaotic patterns are symptomatic of the fact that the degree of variability of the rhythms of

end-product concentrations differ tremendously from one cell to another. While some pathways

exhibit relatively moderate variations (bubbles’ boundaries), some others (with several peaks of

amplitudes embedded in the chaotic bubbles) experience large fluctuations in the course of their

metabolism. This unevenness in their biochemical activities is the core of the emergence of these

remarkable spatial patterns. Besides, on Fig. 41 (a)and (c), we notice that the local dynamics

within the lattice is variable, with some pathways exhibiting local chaotic dynamics while others

exhibit periodic rhythms.

Secondly, archetypal phenomena of pattern generation with suppression of chaos are inci-

dentally observed. We can sometimes detect them with slight increments in ε from the values

at which chaotic bubbles were observed. From there, the chaotic character of the patterns often

tends to disappear, with the elimination due to the effect of the coupling, of some few unstable

cycles in the attractors of the cells, thereby fostering the emergence of patterns with local periodic

rhythms. Figs. 40 (c)and Figs. 42 (a) display examples of such cases.

Equally, another structurally different spatiotemporal setting with suppression of chaos can

be noticed in Figs. 42 (a), which depict scenarios whereby suppression of chaos occurs without

emergence of notable spatial patterns along the lattice. They are indicative of the existence of

evenly(uniformly) distributed P8 and P5 local dynamics along the cellular ensembles. The N =

50 pathways remain phase synchronized, with P8 and P5 oscillatory regimes for ε = 0.36 and

ε = 0.37 respectively. Therefore, it appears that the interplay between the heterogeneity of the
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Figure 39: Coupled cells showing spatial pattern. ε = 0.1050: (a): Profile of the peaks ; (b): snapshots of
the cells’ profile at an arbitrary time after discarding transients ; ε = 0.1181: (c): Profile of the peaks ; (d):
snapshots of the cells’ profile at an arbitrary time after discarding transients.
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Figure 40: Coupled cells showing spatial pattern. ε = 0.20: (a): Profile of the peaks ; (b): snapshots of
the cells’ profile at an arbitrary time after discarding transients ; ε = 0.28: (c): Profile of the peaks ; (d):
snapshots of the cells’ profile at an arbitrary time after discarding transients.
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Figure 41: Coupled cells showing spatial pattern. ε = 0.29: (a): Profile of the peaks ; (b): snapshots of
the cells’ profile at an arbitrary time after discarding transients ; ε = 0.30: (c): Profile of the peaks ; (d):
snapshots of the cells’ profile at an arbitrary time after discarding transients.
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Figure 42: Coupled cells showing spatial pattern. ε = 0.37: (a): Profile of the peaks ; (b): snapshots of
the cells’ profile at an arbitrary time after discarding transients ; ε = 0.41: (c): Profile of the peaks ; (d):
snapshots of the cells’ profile at an arbitrary time after discarding transients.
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lattice, the coupling strength and the lattice size can trigger the emergence of new spatiotemporal

organization in the network of pathways, both in presence and absence of local chaos. These

phenomena had not been observed in the case of homogeneous lattices where suppression of

chaos was continually preceding patterning.

III.5.2 Stability of the spatially homogeneous state

With the aim of investigating the stability of the spatially homogeneous equilibrium:

us(x, y) = 1 , vs(x, y) = 1 , ws(x, y) = 1, (58)

with respect to perturbations (of the form exp(i−→κ .
−→
X )) with wave vector −→κ = (κx, κy), we

linearize equations (32) in the vicinity of the equilibrium state. The stability of the spatially

homogeneous equilibrium state is then determined by the eigenvalues of the matrix:

J(κ2) =













−1 − κ2 0 γ

ρrv −ρrvφ − ρdvκ
2 −ρrvψ

0 ρrwφ ρrw(ψ − 1) − ρdwκ2













,

where:

γ =
df(w)

dw
|w=1 , φ =

∂g(v, w)

∂v
|v=1,w=1 , ψ =

∂g(v, w)

∂w
|v=1,w=1. (59)

It is noteworthy that, when neglecting the diffusion terms in equations (32), we obtain the

Jacobian matrix for the local model given as: J = J(0).

Also, the values assignments for the system parameters ψ, φ and γ determines the numerical

assessment of Us, Vs and Ws based on the functional kinetics of the local dynamics of the path-

ways. Following some mathematical treatment, we can obtain:
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γ =
−4W 4

s

1 + W 4
s

, φ =
VsGV (Vs, Ws)

G(Vs, Ws)
, ψ =

WsGW (Vs, Ws)

G(Vs, Ws)
, (60)

where GV (V, W ) = ∂G(V,W )
∂V

and GW (V, W ) = ∂G(V,W )
∂W

.

The eigenvalue problem yields a characteristic equation which reads:

λ3 + a1λ
2 + a2λ + a3 = 0, (61)

with the coefficients a1, a2 and a3 given as:

a1(κ
2) = ρrvφ + 1 − ρrw(ψ − 1) + κ2(ρdv + ρdw + 1), (62)

a2(κ
2) = ρrvψρrwφ + (ρrvφ + ρdvκ

2)(1 + κ2)

+ (ρdwκ2 − ρrw(ψ − 1))(ρrvφ + ρdvκ
2 + 1 + κ2), (63)

a3(κ
2) = (1 + κ2)[(ρdwκ2 − ρrw(ψ − 1))(ρrvφ + ρdvκ

2) + ρrvψρrwφ] − γφρrvρrw. (64)

It is important to recall that, we typically seek conditions suitable for diffusion-driven insta-

bilities. For this purpose, an essential requirement is that, the homogeneous steady state must

be stable in the absence of diffusion, that is when κ2 = 0. In this case, when κ2 = 0, we have:

a1(0) = ρrvφ + 1 − ρrw(ψ − 1),

a2(0) = ρrvφ + ρrw(ρrvφ − ψ + 1), (65)

a3(0) = ρrvρrwφ(1 − γ).

According to the Routh-Hurwitz stability criteria, the spatially homogeneous steady state is
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stable in the absence of diffusion whenever:

a1(0) > 0 , a3(0) > 0 , a1(0)a2(0) > a3(0); (66)

that is we have a set of three simultaneous conditions:

0 < ρrvφ + 1 − ρrw(ψ − 1),

0 < ρrvρrwφ(1 − γ), (67)

0 < (ρrvφ + 1 − ρrw(ψ − 1))(ρrvφ + ρrw(ρrvφ − ψ + 1))

− ρrvρrwφ(1 − γ).

On the other hand, in the presence of diffusion (κ2 6= 0), the destabilization of the aforemen-

tioned stable homogeneous steady state occurs if:

a1(κ
2) ≤ 0 , or a3(κ

2) ≤ 0 , or a1(κ
2)a2(κ

2) ≤ a3(κ
2). (68)

But a1(κ
2) is always strictly positive according to equations (67). Thus, diffusion-driven in-

stabilities for the equilibrium state can occur whenever:

a3(κ
2) ≤ 0, or

a1(κ
2)a2(κ

2) ≤ a3(κ
2). (69)

Therefore, the likelihood of the emergence of diffusion-driven patterns in our biochemical

networks relies on the simultaneous fulfillments of the sets of conditions (67) and (69). This set
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of requirements becomes necessary whenever perturbations with suitable wave numbers (κ2) are

chosen, in order to destabilize the equilibrium state, within some given parameters conditions.

In order to highlight the possibility of occurrence of such instabilities, we plot on Fig. (43)

the curves of a1(κ
2), a3(κ

2) and a1(κ
2)a2(κ

2) − a3(κ
2) as functions of κ2.
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Figure 43: Plots of the instability criteria for a1(κ
2) in black, a3(κ

2) in red, and a1(κ
2)a2(κ

2)−a3(κ
2) in

blue. The parameter values are: (a): γ = −2.0, ψ = 10.1, φ = 1.12, ρrv = 12.5, ρrw = 1.1, ρdv = 10.1,
ρdw = 0.1; (b): γ = −2.0, ψ = 100.1, φ = 1.12, ρrv = 6.5, ρrw = 10.1, ρdv = 1.1, ρdw = 100.1.

On Fig. (43a), we observe that there is a wide range of values of κ2 for which either a3(κ
2) ≤ 0

or a1(κ
2)a2(κ

2) ≤ a3(κ
2), indicating that the spatially homogeneous steady state is unstable

with respect to the related perturbation, for the given set of system parameters. In this case, let

us note the fact that the two instability conditions are simultaneously fulfilled on the observed

range of values of κ2. Alternatively, their fulfillments needs not to be achieved simultaneously.

In this regard, Fig. (43b) shows a scenario where the fulfillment of only one of them may occur.
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Therein, we see that different ranges of values of κ2 determine whenever either a3(κ
2) ≤ 0 or

a1(κ
2)a2(κ

2) ≤ a3(κ
2), implying instability set-ups for the equilibrium state. In the view of this,

we can confidently assert that the destabilization of the spatially homogeneous steady state of

our networks of diffusely connected biochemical pathways is possible in some given parameters

conditions.

Next, we extend our investigation about the requirements for the emergence of instabilities

for our homogeneous steady state, in different parameters planes. In this framework, we plot

in Fig. (44) the parameters domains favorable for the presence of instabilities of our equilib-

rium state. It is noteworthy that these domains include all regions of occurrence of instabilities,

diffusion-driven or not. The parameter domains include the (ρdv, ρdw), (ρdv, ψ), (ρdv, φ), (ρdw, ψ),

(ρdw, φ) and (φ, ψ) parameters spaces presented in Fig. (44a), (44b), (44c), (44d), (44e) and (44f)

respectively. In what proceeds, we have taken the value of κ2 = 1.0, commonly obtained as

destabilizing factor during our simulations, and equally for the sake of simplicity. These dia-

grams present colored regions, which are favorable for instabilities and related to the fulfillment

of each instability condition: a1 ≤ 0 (brown), a3 ≤ 0 (green) and a1a2 ≤ a3 (Yellow).

Equally important, the curves on these diagrams indicates frontiers along which a1 = 0

(black), a3 = 0 (red) and a1a2 = a3 (blue), and which determines the limits of the instability

domains. From Fig. (44), we acknowledge the prevalence of conditions conducive for the desta-

bilization of the spatially homogeneous steady state of our biochemical networks. This depicts

the richness in the opportunities to prospect patterns development in our cellular system. In the

next section, we shall explore the different patterning scenarios that may result from a survey of

some relatively large sets of such biochemical pathways.

III.5.3 Spatiotemporal patterns

At this stage, it is necessary to reiterate how important patterns generation and wave phenomena

are in biology. Although this is clear from the previously discussed facts, they are probably

even more crucial in tissue communication, as it is the case during the process of embryological

development for instance. The generation of steady state spatial pattern and form is, in this

regard, a concept of high relevance. The patterning issues are quite diverse and are found in

several different fronts such as in bacterial patterns, spatial patterning in slime molds, and in the

early patterning in the embryo of the fruit fly [146].
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Figure 44: Instability domains for the spatially homogeneous steady state in different parameter spaces:
(a): (ρdv, ρdw); (b): (ρdv, ψ); (c): (ρdv, φ); (d): (ρdw, ψ); (e): (ρdw, φ); (f): (φ, ψ). The parameter values
are: γ = −2.0, ψ = 10.1, φ = 1.12, ρrv = 6.5, ρrw = 10.1, ρdv = 1.1, ρdw = 100.1.

It is well known that cellular division begins after fertilization. When sufficient cell division

has taken place in a developing embryo, the foremost concern is about the way the homogeneous

biochemical mass of the cells are spatially organized so that the sequential process of develop-

ment can progress. Cells differentiate, in a biological sense, depending on where they are in the

spatial organization. They also move around the embryo. This latter phenomenon is a relevant

factor in morphogenesis, and has given rise to a new perspective to the generation of patterns

and forms.

A phenomenological concept of pattern formation and differentiation called ”positional in-

formation” was proposed by Wolpert (1969) [147]. He suggested that cells are preprogrammed

to react to a chemical (or morphogen) concentration, and differentiate accordingly, into differ-
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ent kind of cells such as cartilage cells. Indeed, it is a simple and attractive concept, which has

resulted in significant advances in our knowledge of certain aspects of development. For this

reason, we propose ourselves to take our reaction-diffusion model of two-dimensional spatial

networks of diffusely connected cells with activator-inhibitor pathways as a possible framework

for generating biological patterns.

The chemical pre-pattern view point of embryogenesis separates the process of development

into several steps, among which the essential first step is the creation of a morphogen concen-

tration spatial pattern. The name ”morphogen” is used for such a chemical because it effects

morphogenesis. The notion of ”positional information” relies on a chemical pre-specification, so

that the cell can read out its position in the coordinates of chemical concentration, and differen-

tiate, undergo appropriate cell shape change, or migrate accordingly. Therefore, once the spatial

pre-pattern of morphogen is established, morphogenesis becomes a slave process.

A crucial point arising from theoretical models is that any pattern contains its own history.

Let us consider the following simple engineering analogy in our attempt to understand a bio-

logical process. It is one thing to suggest that a bridge requires a thousand tons of steel, that any

less will result in a too weak structure, and any more will result in excessive rigidity. It is quite

another matter to instruct the works on how best to put the pieces together. In morphogenesis,

for example, it is conceivable that the cells involved in tissue formation and deformation have

enough expertise that, given the right set of ingredients and initial instructions, they could be

persuaded to construct whatever element one wants. It is in this perspective that, starting from

our initial spatially homogeneous steady state, and given the right set of instructions via suitably

chosen parameter conditions, we then hope to unveil some interesting events of pattern forma-

tion scenarios. In this regard, we present in Fig. (45) some notable structures emanating from the

diffusion-driven instability of the spatially homogeneous equilibrium state of our biochemical

networks.

Fig. (45a) displays the spatially homogeneous state of the biochemical network which is sta-

ble within some given parameters conditions. These plots have been generated with respect to

the normalized variable w. Fig. (45b) and Fig. (45c) depict typical examples of inhomogeneous

stationary (Turing) spatial patterns on which the system can collapse after being driven away

from the unstable equilibrium state by diffusion. On Fig. (45b), we can observe long stripes

structures paraded by the morphogen concentrations all over the spatial domain. Also Fig. (45c)
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Figure 45: Stationary Patterns: (a): Spatially homogeneous steady state: γ = −2.0, ψ = 10.1, φ = 1.12,
ρrv = 6.5, ρrw = 10.1, ρdv = 1.1, ρdw = 115.1. (b): Spatially inhomogeneous stationary pattern with
stripes: γ = −2.0, ψ = 10.1, φ = 1.12, ρrv = 17.9, ρrw = 115.1, ρdv = 1.1, ρdw = 100.1. (c): Spatially
inhomogeneous stationary pattern with spots: γ = −2.0, ψ = 10.1, φ = 1.12, ρrv = 6.5, ρrw = 10.1,
ρdv = 0.0, ρdw = 110.1. (d): Local time series of the first cell in the lattice: Same parameter values as in
(b).

shows that the biochemical pathways of the cells can converge towards another form of station-

ary pattern exhibiting dark spots and circular stripes. Fig. (45d) presents the local time series of

a biochemical unit when the lattice converges towards a stationary Turing structure. We observe

that after being initially deviated away from its original state value of w = 1.0, it evolves over

the time and settles on a value w ≃ 1.0 when the system stabilizes in a spatially inhomogeneous

stationary state.

It is important to reiterate the fact that these patterns are obtained from the normalized sys-

tem of equations (32), which mimics the original system of equations (14). In this regard, if the

normalized model can generate such patterns, it suggests too that even the original one can dis-
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play similar characteristics. In order to bring this fact to light, we present in Fig. (46) and Fig.

(47), the stationary Turing patterns obtained from equations (14) based on the end-product con-

centrations W . These patterns include among others undulating stripes on Fig. (46a), Fig. (46d)

and Fig. (47a); bright and dark spots structures on Fig. (46d), Fig. (47b), Fig. (47d); and dappling

structures on Fig. (46b), Fig. (46c) and Fig. (47c).

Figure 46: Stationary Turing patterns: (a): Du = 1.98, Dv = 2.0, Dw = 0.72; (b): Du = 0.0,
Dv = 0.05, Dw = 0.72; (c): Du = 0.9, Dv = 1.0, Dw = 0.72; (d): Du = 0.9, Dv = 1.0, Dw = 1.72.
The other parameter values are k = 0.003, q = 0.1, T = 10.0 and L = 106.

An extensive analysis of this cellular system under appropriate conditions shows that it dis-

plays more than just stationary patterns. Indeed, oscillatory patterns could equally be ascer-

tained. Among them, we discern both regular and irregular oscillatory patterns disseminating

all over the spatial domain. Fig. (48) reveals a typical example of regular oscillatory spatial pat-

terns that emerge in the form of travelling wave structures propagating continuously all over
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Figure 47: Stationary Turing patterns: (a): Du = 0.0, Dv = 0.0, Dw = 0.72; (b): Du = 0.03, Dv = 0.1,
Dw = 0.84; (c): Du = 0.1, Dv = 0.1, Dw = 0.72; (d): Du = 1.03, Dv = 1.2, Dw = 1.52. The other
parameter values are k = 0.003, q = 0.1, T = 10.0 and L = 106.

the two-dimensional spatial networks of biochemical pathways. Fig. (48a) shows a snapshot of

the lattice at a particular time, after the transients have been discarded. Fig. (48b) presents the

local time series of the midpoint of the lattice, as an indicator of the transition (subsequent to

perturbation) of the local dynamics from an initial unstable steady equilibrium state w = 1.0 for

the system, towards a regular oscillatory dynamics that persists over time. This is suggestive of

what happens all over the spatial domain.

In the same footing, Fig. (49) presents an archetype of irregular oscillatory pattern arising

from our biochemical ensemble in the form of spatiotemporal chaos. Fig. (49a) displays a snap-

shot of the array of biochemical pathways at a particular time after transients have been dis-

carded. Fig. (49b) shows the local time series of the midpoint of the lattice as an indicator of
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Figure 48: Travelling waves propagating over the spatial domain of the biochemical pathways. The pa-
rameter values are γ = −2.0, ψ = 10.1, φ = 1.12, ρrv = 15.5, ρrw = 10.1, ρdv = 101.1, ρdw = 120.1.

the transition (subsequent to perturbation) of the local dynamics from an initial unstable steady

equilibrium state w = 1.0 for the system, towards a chaotic dynamics that persists over time.

This is symptomatic of what happens all over the spatial domain for the given set of parameters

values.

The previously reported facts derived from our inquiry enable us to assert that our biochem-

ical networks are capable of engendering stunning patterns, both stationary and oscillatory. As

predicted earlier, it is then a good candidate model for the exploration of such spatiotemporal

phenomena in biological systems. the patterns presented here don’t have the claim to be exhaus-

tive enough. However, we believe that they judiciously serve us right to highlight the propensity

of sets of such biological units to come together and generate complex structures during the bio-

chemical processes taking place through the developmental stages of living beings.
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Figure 49: Spatiotemporal chaos spreading over the spatial domain of the biochemical pathways. The
parameter values are γ = −2.0, ψ = 10.1, φ = 1.12, ρrv = 6.5, ρrw = 10.1, ρdv = 1.1, ρdw = 120.0.

III.6 Discussions

The foregone outcomes derived from our models provide good reenactments about the inter-

nal processes pertaining in high quality physiological activities occurring in living beings, as

observed through many practical inspections. In the specific case of the environmentally re-

layed signalling scheme with regulatory mechanisms, it is worth mentioning that our model,

which is inspired by several preceding works addressing a broad area of valid problems encom-

passing indirectly coupled biological and complex systems, and sometimes unveiling promi-

nent chaotic activities with time-delay schemes, is supported by key data collected in culture

experiments [80, 148, 149, 150]. Specifically, some data have enabled the authors in [80, 148] to

draw a comprehensive set of valuable assumptions on an analogous model of Gonadotropin-
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Releasing Hormone(GnRH) from synchronized hypothalamic nerve cells. The analysis of the

dependence of the equilibrium levels of α − subunits, of Ca2+ and cAMP on G-proteins on the

basis of experimental data has been implemented. This study showed the adaptive character of

these elements. The simulations of many heterogeneous neurons have revealed the robustness

of their synchronization mediated by a common pool of diffusible GnRH, which there plays the

role of synchronizing agent in the midst of the nerve cells. Likewise, [151] proposes a similar ap-

proach to model biochemical signal transduction systems based on a defined aggregate objective

function that likely accounts for the evolutionarily optimized efficiency in signal transmission in

the extracellular medium. Starting from the ground that concentration adjustment in the cellu-

lar milieu exists to maintain effective signal transmission, the author showed that her model is

self-organizing, as perturbations in proteins concentrations or changes in extracellular signalling

automatically lead to adaptation. After systematic perturbations in the protein concentrations,

she observed the responses and reaction times(that is the delays) of 27 molecular species in-

volved in a set of 23 chemical reactions seemingly driving the optimization. Hypothesizing that

an efficient signal transmission would maximize the responses of the molecular species to the

input, she defined the objective function so as to minimize the delay and maximize the response.

This procedure had pertinence in explaining the adaptation scenarios.

Also, Reference [10] clearly reports some experimental observations obtained about the func-

tional responses of the environmental properties, with relevance in the instatement of a harmo-

nious development in the cellular milieu. Therein, it is clearly given account about the fact that

the animal body has evolved over a long period of time, and specialization( that is the richness

in the diversity of species) has increased. With pertinence in each specie, cells are found to be so-

phisticated machines finely tuned to carry out a precise role within the body. Such specialization

of cells is possible only when extracellular conditions are kept within narrow limits. Tempera-

ture, pH , the concentration of glucose and oxygen, and many other factors must be kept con-

stant for cells to function efficiently and interact properly with one another. Homeostasis, which

is essential for life, may then be defined as the dynamic constancy of the internal environment.

The term dynamic is used because conditions are never absolutely constant, but fluctuate contin-

uously within narrow limits. However, in the present analysis we ideally assume through our

model their constancy for the sake of simplicity, that is the constancy of the damping parameter κ

of the environment whenever complete synchronization is achieved, as shown in fig(??(b)). This
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optimal value of κ helps stabilizing the environmental conditions and concomitantly annihilates

the cellular differentiation. In order to maintain homeostasis, vertebrates possess several sensors

that are able to measure each environmental condition. They constantly monitor the extracellu-

lar conditions and relay this information, usually(via nerve signals) to an integrating center which

contains the set point, that is the proper value for that condition (see Chapter 58:”Maintaining the

internal environment” in [10]).

The integrating center is often a particular region of the brain or spinal cord, but it can also

sometimes be cells of the endocrine glands. It receives messages from several sensors, weighing

the relative strengths of each sensor inputs, and then determines whether the value of the condi-

tion is deviating from the set point. When a deviation in a condition occurs, which is referred to

in this case as a stimulus, the integrating center sends a message to increase or decrease the activity

of particular effectors, which are generally muscles or glands that can change the value of the

condition in question, back towards to the set point value: This is referred to as the response. The

effectiveness of this mechanism relies on a type of control system known as negative(or reverse)

feedback loop. For example, it is well known that if the body(or blood) temperature(which fun-

damentally determines the fate of biochemical reactions in the intra-inter cellular medium, cells

being osmoregulator) exceeds 37◦C(98.6◦F ), sensors in a part of the brain detect this deviation.

Acting via an integrating center also located in the brain(namely the hypothalamus), these sensors

stimulate effectors, including sweat glands, that lower the temperature, thereby protecting the

set points of the body against deviations. Conversely, if the temperature happens to go below

37◦C, a different set of responses is generated, such as shivering and the constriction of blood

vessels in the skin, which help to raise the body temperature and correct the initial challenge

to homeostasis. These regulations are in the reverse (or negative) directions, and are therefore

referred to as negative feedback loops crucial for the maintenance of homeostasis, and that ulti-

mately cause the effectors to be turned off. In this way, constancy in environmental conditions is

maintained, thereby enhancing a coordinated collective agreement among the environmentally

connected biochemical pathways of the cells. Therefore, the regulation of body temperature,

blood glucose and other environmental parameters in the cellular milieu has as end objective

the stabilization of environmental patterns aiming at ensuring optimal conditions for the emer-

gence of a harmonious cellular development.

Subsequent to this perusal of experimental observations, and all together with our theoretical
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results, it appears evident that our proposed model reliably depicts a fairly faithful description

of the importance of the steadiness in an optimal level(set point), of the parameter values of the

environment, herein portrayed by its damping parameter κ, and achieved via adaptive feed-

back control mechanisms. Its regulatory feature has as an end result the promotion of a robust

synchronized dynamics among the cells with activator-inhibitor pathways, which can efficiently

communicate via stable environmentally relayed signallings.

Furthermore, the life of an organism starts from a single cell. This cell has virtually no pattern

to it. Yet, it evolves to a very complicated organism, sometimes exhibiting complex patterns.

These patterns are often the same across species. The subject of pattern formation is of central

interest in the field of reaction-diffusion systems.

It is noteworthy that morphogenesis is the study concerned with the shapes of tissues, or-

gans and entire organisms, and the position of the various specialized cell types. Correspond-

ingly, a morphogen is a substance governing the pattern of tissue development, and the position

of various specialized cell types within a tissue. It spreads from a localized source, and forms a

concentration gradient across a developing tissue. In developmental biology, a morphogen is rig-

orously used to mean a signaling molecule that acts directly on cells to produce specific cellular

responses dependent on the morphogen concentration. Therefore, any substance that diffuses into

the cellular tissue and somehow persuades it to develop along different lines from those which

would have been followed in its absence, qualifies as a morphogen.

Looking at each cell as a single biochemical unit, diffusion means that if there is a high con-

centration of a material in one cell, it will flow to another cell that has less concentration. Fun-

damentally, the process of diffusion is a destabilizing mechanism, sometimes naturally leading

to the instatement in cellular tissues of a steady state, but one which varies in space, thereby re-

sulting in a spatially inhomogeneous pattern. The key idea behind these processes is that a state

which is stable in the local system, should become unstable in the presence of diffusion, which

is commonly associated with a globally stabilizing effect. This fact has pertinence in yielding

adequate treatments and giving satisfactory explanations to some undeniably captivating phe-

nomena observed in animals, insects and plants such as gastrulation, polygonally symmetrical

structures, leaf arrangements and color patterns in some animals and insects, emerging in the

forms of stripes, spots, dappling, etc. Equally, the important feature of nonlinearity, typically

peculiar to many biological systems, inherently plays a crucial role in the emergence of such
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patterns. These nonlinearities are usually embedded in the kinetic functions describing the local

dynamics of the biochemical systems.

The reaction-diffusion theory, which now has a relatively vast literature, is a field of research

in its own right. It must be stressed that, strictly speaking, the mathematical and phenomeno-

logical descriptions of patterning scenarios are not explanations to the biochemical mechanisms

pertaining in their generations. Yet, they are generally accepted, as these studies serve to high-

light where our knowledge is deficient, since none of the individual models found in the liter-

ature can be considered so far as a complete model. These studies, including the present work,

suggests directions in which fruitful experimentation might lead us. Indeed, a critical probe of

these theoretical constructs, is in their impact on the experimental community.

III.7 Conclusion

In conclusion, in this chapter we have dealt with the analytical and numerical studies of the syn-

chronization dynamics of cells with activator-inhibitor pathways based on distinct models emu-

lating some pertinent signalling schemes that have relevance in cellular communication, namely

the chemical, electrical and adaptive environmentally relayed connections. The advent of spa-

tiotemporal organization in two-dimensional spatially extended networks of such biochemical

pathways has equally been appraised in the presence of diffusion phenomena.

The chapter begins with the exposure of the complex oscillatory regimes which are inher-

ent in the pathway. By using the linear stability analysis approach, we have investigated the

existence and stability of its equilibrium states. A comprehensive bifurcation analysis of the sys-

tem’s state has been conducted with respect to both the rate of degradation of the first substrate

and the maximum velocity of the enzyme. The findings show the abundance of biochemical

rhythms within the cell. At a collective level, the Runge-Kutta scheme has been used to in-

tegrate the coupled system. First, the chemical coupling has been shown to able to instate a

phase synchronized regime among the coupled pathways. The stability analysis of the complete

synchronous solution has been performed based on the master stability function approach. It

was numerically shown that the chemical coupling is unable to foster a completely synchronous

regime amid the cells. However, numerical simulations suggest that the interplay between the

chemical and electrical coupling schemes can tremendously enhance the synchronization dy-

namics of the pathways by establishing a complete synchronous regime among the cells. Next,
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the parameter requirements necessary for the emergence of high quality synchronization be-

tween the pathways are obtained by means of the Lyapunov function used as a powerful tool

for the detection of robust synchrony. Interestingly, via some bifurcation analysis, the dynamics

of the synchronization manifold has been shown to be determined mainly by the strength of the

synaptic coupling.

We have also examined propensity of the adaptive environment-mediated coupling scheme,

though weak because of the indirect connections it establishes among the pathways, to promote

a robust chaotic synchronization dynamics in their midst. A stability analysis of the complete

synchronous solution is carried out both analytically and numerically in this framework, by

using respectively the linear stability analysis method, the dichotomy scheme for the obtention

of the coupled system eigenvalues, the master stability function approach based on a variational

analysis method for a comprehensive calculation of the complete Lyapunov spectrum of the

coupled system. Several prerequisites that favor this desired collective dynamical regime were

found. The concept of phase synchronization has also been assessed based on indicators such

as the Kuramoto parameter for phase entrainment, the calculation of the phase difference, the

construction of stroboscopic localized maps and the occupational phase diagrams correlation

parameter, in the phase space. The parameter conditions favoring this synchronous state were

found to be abundant.

Next, the predisposition of large networks of diffusively connected cells with activator-inhibitor

pathways to patterning phenomena was investigated. On one-dimensional spatial domains, het-

erogeneous lattices have shown to be capable of yielding spatial patterns, both with and without

suppression of chaos. On two-dimensional homogeneous lattices, a generalized normalization

procedure of the coupled system has been analytically implemented in this context. The lin-

ear stability analysis of the spatially homogeneous steady state of the system is conducted and

numerical results provide the conditions under which diffusion-driven instabilities, crucial for

patterns generation can occur. Some spatiotemporal patterns are retrieved and presented. They

include both stationary and oscillatory Turing patterns, with some interesting events of occur-

rence of travelling waves and spatiotemporal chaos.

It is noteworthy that all the analytical and computational techniques used within the frame-

work of these explorations were in perfect agreement and confirmed the reliability and robust-

ness of our results.
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In this thesis, the synchronization dynamics, its stability and the advent of diffusion-induced

spatiotemporal patterns amid cells with activator-inhibitor pathways have been probed. The

aim of this work was to use concepts and techniques from physics to throw more light on quite a

number of exciting concerns raised by biology in understanding the functioning, and collapse, of

the networks of nonlinear biochemical interactions inside a living cell, and which have relevance

in cellular communication and tissue development. In order to achieve this goal, three major

steps have been considered.

The first chapter of this treatise is devoted to a literature review on cells with activator-

inhibitor pathways. A reexamination of the available key results that pertain to them has been

performed based on standard models. The complex dynamics of both a single biochemical path-

way and a network of electrically coupled pathways have been expounded. Several interesting

cellular rhythms have been reported via numerous bifurcation scenarios. They include among

others, first locally, equilibrium states, hard excitation state, periodic and birhythmic oscillatory

state, quasiperiodic and chaotic regimes. On a larger scale, events of synchronization, travel-

ling wave phenomena and spatial patterns emergence with suppression of chaos were noticed

depending on the coupling strength and the system size.

Some limitations of the available mathematical models have been discussed and some mod-

els that go beyond their description scope have been presented. In this regard, the second chapter

is keen on the presentation and description of the aforesaid models, and on some analytical and

numerical methods useful for their analysis. Among these new proceedings in the context of

coupled biochemical pathways, are found some specific signalling schemes which encompass

the chemical coupling and the environmental coupling scheme with regulatory mechanisms.

These schemes take into account the long range, and sometimes indirect natures of the inter-

actions among cells, as well as the potential adaptive character of some cellular connections in

the course of their metabolism. Some methods such as the linear stability analysis, the varia-

tional approach for the derivation of the master stability function, the fourth-order Runge-Kutta

123



General Conclusion 124

scheme, the Newton-Raphson scheme and the dichotomy scheme were exposed.

The main results and contributions of this thesis are presented in the third chapter.

First and foremost, let us recall that from a theoretical perspective, the numerous pathways

embedded within many biological systems usually experience oscillations. Some are transient

while others are sustained. Researchers are still debating the cause and function of these chem-

ical oscillations. Analyzing a large biochemical network is difficult because it is rare that all of

the relevant parameters for the chemical reactions are known. For example, it is not always clear

how the enzymes behave under natural conditions in the densely crowded environment of the

cell. An additional difficulty that impedes both experimental and theoretical work is the dense

connectivity between the elements in biochemical networks. Any attempt to study a system

by artificially perturbing it will generally alter the flow of metabolites. Thus a perturbation of-

ten induces changes in all parts, which complicates inferring causal relationships, such as how

accelerating one reaction influences another.

The dynamics of a metabolic pathway are typically modelled by a system of ordinary dif-

ferential equations. These are constructed to give the time evolution of the concentrations of

the different metabolites by following the rate laws that describe the individual chemical reac-

tions. The dynamics of the equations are then explored by numerical simulations. However,

these simulations have to run for a while to actually observe the ”natural” (long term) dynamics

of a particular pathway. While a simulation approaches the long-term limit, it generates at all

times an instantaneous description of the system. Since this information is often not desired, it is

typically discarded in the analysis. However, it costs considerable computational time and can

make exploring large parameter spaces by simulation tedious. Alternatively, systems of differ-

ential equations can be studied analytically. This has the advantage of revealing the dynamics

in the whole parameter space, but is limited to small pathways because of the nonlinearity and

complexity of the equations.

In general, for most real systems, computing the stationary states reveals little new informa-

tion, as they are often accessible by direct observation. However, analyzing the stability and

dynamical transitions (bifurcations) of these stationary states, can reveal deep insights into the

dynamics of the system, cutting directly to how it functions and how it could potentially fail.

Once the stationary states are known, a local stability and bifurcation analysis can be carried out

straightforwardly, either numerically or analytically. This procedure has been implemented in
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this framework on the single cell model. The findings reveal that the equilibrium state can loose

its stability and settle in various types of biochemical rhythms.

With the knowledge of these facts, the main results of this research work are postulated in the

third chapter as follows. From the onset, we have explored the rich dynamical behavior of a cell

with activator-inhibitor pathway. Under well defined circumstances, the system exhibits steady

states, periodic oscillations as well as complex dynamics, namely a chaotic behavior. The sys-

tem also exhibits reverse period doubling bifurcations when the rate of degradation of the first

substrate changes. The synchronization process of two coupled cells under the chemical and the

combined effects of chemical and electrical couplings is also analyzed in their chaotic regime. It

is found that even though the synchronous solution affected by the chemical coupling exhibits

a variety of rich dynamics, the coupled system presents some difficulties to achieve a stable

complete synchronization regime under the single effect of chemical coupling scheme. This is

essentially due to the fact that the fast threshold coupling scheme used in this work is on the in-

hibitory form. However, the pathways can enter into a stable phase synchronization state, whose

importance has been shown to be crucial in cellular communication. The combined effect of both

the electrical coupling and chemical coupling has been shown to enhance the synchronization

dynamics by facilitating the appearance of stable complete synchronization states. The concept

of high quality synchronization, initially brought to light by Gautier et al [160, 161] was used to

find the values of the coupling parameters for robust complete synchronization in the coupled

cells by calculating the average rate of change of the Lyapunov function. We believe that this is

of capital importance specially for experimentalist and for chemical Engineering. The method

used here is appealing due to its reliable ability to detect robust synchronization in biochemi-

cal oscillators, because the synchronization problem does not need to be framed as a tracking

feedback control problem as presented in many other works ([73]and references therein).

In lattices, cells with activator-inhibitor pathways are also known to display, depending on

their population size, interesting features of spatiotemporal organization, when directly inter-

acting under steady coupling conditions [1, 11, 12, 34]. In a subsequent inquiry, we have inves-

tigated their synchronized dynamics assuming that they interact indirectly through a dynamic

environment with adaptive feedback control mechanism, aiming at promoting a cooperative pat-

tern between the biochemical pathways of the chaotic cells, by stabilizing in the phase space their

trajectories that lean towards disseminating themselves along unsteady directions, setting them
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to flout synchronization. Though a weak form of coupling, this coupling mode has proven itself

capable of engendering robust synchrony among cells with activator-inhibitor pathways. The

stability analysis of the synchronized state has been carried out in this framework and the nu-

merical simulations suggest the existence of many suitable conditions that favor the emergence

of this highly desirable collaborative arrangement among the cells.

On the same footing, we have investigated the liability of relatively large two-dimensional

spatial networks of such biological units to generate some beguiling spatial patterns, forms and

wave phenomena, via diffusion-driven instabilities. These patterns formation scenarios include

both stationary and oscillatory Turing patterns. The latter set embraces interesting wave phe-

nomena such as travelling wave structures and spatiotemporal chaos in two-dimensional spatial

lattices. The relevance of these phenomena in biology has been highlighted and we believe that

the outcomes of this work will help pave the way for scientists to take advantage of the lim-

ited opportunities we have, for communicating with the workforce underlying the emergence of

patterns in science as a whole, so as to direct experiments towards an acceptable end-product.

It can’t be overemphasized that several analytical and computational methods have been

used in the course of these investigations, and their mutual agreements all through the analysis

are in favor of bestowing a valuable degree of consistency to the obtained outcomes.

Open problems and future directions

Though this thesis presents many interesting new results, there still remains numerous impor-

tant issues that need to be addressed in future works.

♠ In any physical or biological system, time delays are unavoidable in signal transmission.

Neural synchronization for instance was reported to occur between the brain areas separated by

distances up to several centimeters [169, 170, 171]. Time delay seems to facilitate synchronization

between the distant cortical areas. These facts may equally suggest that long range cellular syn-

chronization is possible between areas which are coupled with predominantly low connectivity

strengths [172]. Investigating this phenomenon in cells with activator-inhibitor pathways may

bring significant insights on the mechanisms pertaining in cellular functions.

On the same footing, the concept of time delayed coupling in physical systems usually leads

to the typical issue of anticipating synchronization. This synchronization regime has been often
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described as a rather counterintuitive phenomenon because of the possibility of a slave system

anticipating the evolution of the master [173, 175, 177]. However, not long ago, the synchro-

nization of chaotic systems in a unidirectional coupling configuration has attracted great interest

due to its potential applications to secure communication systems [22]. Particular attention has

been paid to this so called ”anticipating synchronization” regime where two identical chaotic sys-

tems can be synchronized by unidirectional delayed coupling in such a manner that ”the slave”

(the system with coupling) anticipates ”the master” (the one without coupling). This regime has

been theoretically studied in several systems [174, 175, 176], electronic circuits [177], and chaotic

semiconductors [178]. Interestingly, this regime has lately been reported in excitable systems

with unidirectional delayed coupling when subjected to the same external forcing [179]. There-

fore, since many biological systems such as neurons and heart cells exhibit excitable behavior

and often operate in a feedback regime in a noisy environment, the study of the delayed cou-

pling effects in the presence of noise is certainly of wide concerns. This therefore yields major

perspectives in this framework such as:

♠ Investigating the mechanisms of synchronization (anticipatory or not) of cells with activator-

inhibitor pathways as they communicate efficiently and constructively within a noisy environ-

ment in the presence of time delayed couplings.

♠ Examining the possibility of reasonably modelling tissues of such cells as excitable me-

dia with information processing phenomena via the generation and propagation of nonlinear

localized waves of excitation.
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Definition of the functions Fz(z), Gy(y, z), Gz(y, z) and Γz(z)

Fz(z) =
−4z3

(1 + z4)2

Gy(y, z) =
T (1 + z)2(1 + 2y)(L + (1 + y)2(1 + z)2) − 2Ty(1 + y)2(1 + z)4

(L + (1 + y)2(1 + z)2)2

Gz(y, z) =
2Ty(1 + z)(1 + y)(L + (1 + y)2(1 + z)2) − 2Ty(1 + y)3(1 + z)3

(L + (1 + y)2(1 + z)2)2

Γz(z) =
λ exp{−λ(z − θs)}

[1 + exp{−λ(z − θs)}]2
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