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es − ea: Saturation vapor pressure deficit , [KPa]
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N
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Abstract

The Headwaters of the Benue River Basin (HBRB) located in the northern Cameroon, is the second
largest river in Cameroon and a major tributary of the Niger River Basin (NRB). It serves many water
resources functions including irrigation, hydropower production and navigation. The population in
the basin is mainly dependent on rain-fed agriculture and hydroelectricity represents more than 95%
of electricity production, therefore highly vulnerable to the spatial and temporal variability of rainfall
and Climate Change (CC). Recently, northern Cameroon has experienced water-related disasters
such as floods and droughts. This research aims to assess the potential impacts of CC on water
resources and hydropower potential in the HBRB. Hydrological simulations were performed with the
use of calibrated HBV-Light hydrological model and historical and projected scenarios of dynamically
downscaled temperature and precipitation from the REMO regional climate model (RCM) forced by
the boundary conditions data of the Europe-wide Consortium Earth System Model (EC-ESM) and
the Max Planck Institute-Earth System Model (MPI-ESM) general circulation models (GCMs).

Calibration and validation of the hydrological model is done again on measured discharge at three
outlet gage stations (Buffle Noir, Riao and Garoua), whereby the most sensitive out the numerous
“tuneable” calibration parameters in HBV-Light model have been selected by means of a sophisti-
cated sensitivity analysis. The uncertainties arising from the problem of identifying representative
model parameters in a hydrological model were investigated by using the Monte-Carlo procedure
and the sensitivity of the model outputs due to different Potential evapotranspiration (PET) inputs
was conducted through the dynamic and static sensitivity approaches. Consequently, a good calibra-
tion/validation model performance with a high Nash and Sutcliffe Efficiency (NSE) range between
0.66 − 0.89 is obtained. The results also revealed that the best simulations as well as the measured
streamflows lie inside the 95% uncertainty band of model predictions, indicating the insignificant im-
plications of the model parameters uncertainties to the model predictions. The different PET inputs
were found to have no or moderate impact on the model performance when we followed the dynamic
or static sensitivity analysis approaches respectively..

The ability of REMO RCM to simulate present climate in the HBRB was assessed and the
mean climate and hydrological variables for the historical (1981 − 2005) and the two future periods
(2041−2065 and 2071−2095) were compared to assess the potential impact of CC on water resources
and hydropower potential in the middle and late twenty-first century under three greenhouse gases
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Abstract

(GHGs) concentration scenarios, the Representative Concentration Pathways (RCPs) 2.6, 4.5 and
8.5. Our results show that (a) the REMO model was found to reproduce the annual cycle of rainfall,
2-m temperature and PET well, although some relative low biases still exist; (b) annual precipitation
will decrease between 1 and 10% while both annual temperature and PET will increase between 8−18
and 6− 30%, respectively, under scenarios, models and future periods; c) the combination of reduced
precipitation and increase of PET results in a significant decrease in streamflow in the HBRB (up to
51%) and this will negatively impact the hydropower potential of the Lagdo dam with a decrease.
The results also revealed that this region will be moved to extreme environmental drier conditions
due to the increase of PET greater than increase of actual ET.

Key words: Climate change, Water resources, Hydropower potential, HBV-Light hydrological
model, Regional climate model REMO
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Résumé

Le Bassin de la Bénoué, situé au Nord - Cameroun, est le deuxième plus grand fleuve du Cameroun
et un affluent majeur du bassin du fleuve Niger. Il possède un potentiel énorme en ressources en
eau, notamment l’irrigation, la production de l’hydroélectricité et la navigation. La population du
bassin est principalement dépendante de l’agriculture pluviale et l’hydroélectricité représente plus
de 95 % de la production d’électricité, donc très vulnérable à la variabilité spatiale et temporelle
des précipitations et aux changements climatiques (CC). Récemment, le Nord-Cameroun a connu
d’importantes catastrophes liées à l’eau telles que des inondations et des sécheresses. Cette étude vise
à évaluer les impacts des CC sur les ressources en eau et le potentiel hydroélectrique dans les hautes
eaux du Bassin de la Bénoué (HEBB). Les débits ont été simulés à l’aide du modèle hydrologique
HBV-Light forcé par les données de températures et de précipitations historiques et futures issues de
la descente d’échelle dynamique de deux modèles climatiques globaux (MCGs: EC-ESM et MPI-ESM)
par le modèle climatique régional REMO.

L’évaluation du modèle hydrologique s’est faite au moyen du test de calage/validation en utilisant
des débits mesurés à trois stations de jaugeage (Buffle Noir, Riao et Garoua), et les paramètres du
modèle les plus sensibles ont été sélectionnés au moyen d’une analyse de sensibilité. Les incertitudes
dues à la détermination des paramètres du modèle ont été analysées grâce à la procédure Monte-
Carlo. L’impact des différentes méthodes d’estimation de l’évapotranspiration potentielle (ETP) sur
la performance du modèle a été réalisé par les approches dynamiques et statiques de l’analyse de
sensibilité. Les résultats ont montré une bonne performance du modèle à simuler les débits aussi bien
en période de calage que de validation avec le critère d’efficacité de Nash et Sutcliffe (NSE) élévé et
compris entre 0, 66 et 0, 89. Les résultats ont également révélé que la meilleure simulation ainsi que
les débits mesurés se situent dans la bande d’incertitude à 95% des prévisions du modèle, indiquant
des implications insignifiantes des incertitudes dues aux paramètres du modèle sur les prévisions du
modèle. Les différentes entrées de l’ETP se sont avérées avoir un impact significatif ou pas sur la
performance du modèle en suivant les approches statique ou dynamique respectivement.

La capacité de REMO à simuler le climat actuel dans les HEBB a été évaluée et les variables
climatiques et hydrologiques pour la période historique (1981 − 2005) et les deux périodes futures
(2041−2065 et 2071−2095) ont été comparées pour évaluer l’impact potentiel du CC sur les ressources
en eau et le potentiel hydroélectrique au milieu et à la fin du XXIe siècle selon trois scénarii d’émission
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Résumé

des gaz à effet de serre (GES) RCP2.6, 4.5 et 8.5. Nos résultats montrent que a) REMO reproduit bien
le cycle annuel des précipitations, de la température à 2 m d’altitude et de l’ETP, bien que certains
biais relativement faibles existent; b) les précipitations annuelles diminueront de 1 à 10% alors que la
température annuelle et l’ETP augmenteront respectivement de 8−18% et 6−30%, selon les scénarii,
les modèles et les périodes futures ; c) la réduction des précipitations combinée à l’augmentation
de l’ETP entraîneront une diminution importante des débits dans les HEBB (jusqu’à 51%), ayant
comme conséquence directe une réduction du potentiel hydroélectrique du barrage Lagdo. Cette
région connaîtra des conditions environnementales extrêmement sèches en raison d’une augmentation
de l’ETP supérieure à l’augmentation de l’ET réelle.

Mots clés: Changements climatiques, Ressources en eau, Potentiel hydroélectrique,
Modèle hydrologique HBV-Light, modèle climatique régional REMO
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General introduction

Freshwater, known as earth’s fundamental natural resource, has various functions and is needed in all
aspects of life. Freshwater serves as drinking water for humans and animals, is needed for sanitation
issues and is vital to ecology, agriculture, economy, hydropower production and transport. In sub-
Saharan Africa continent, water is recognized as the most important impediment for socio-economic
development because more than 70% of the population practices rain-fed agriculture, which occupies
about 95% of the land use (Tarhule et al., 2009). Good crop development depends on precipitation
to maintain the needed level of soil water reserve. It is not the only activity dependent on water
resources: hydro-electricity production represents more than 80 to 90% of electricity in this region
(Magrin, 2007).

However, the last two decades have witnessed increasing pressure on the available African water
resources due to increased trend in population growth as well as land use and climate change, which
also triggered the prospect of water crisis in Africa. The water crisis of Cape-Town in 2018, the
decrease of water level of the Ubangui River in the Congo basin with implication on economic nav-
igation, and the shrinking of the Lake Tchad are just some of the few cases that we could mention,
and that reveal the urgent need of sustainable water resources management in the African continent.
In addition, West and Central Africa (WCA) are identified by the United Nations as one of the nine
climate change “hot spots” due to decrease on rainfall (Nicholson et al., 2000; Mahé and Paturel,
2009) which has broadly brought a depletion of water resources (Abrate et al., 2013), whereas popu-
lations’ water demands grow increasingly (FAOSTAT, 2012). It is also clear that developing regions,
such as WCA, are the most vulnerable region under global warming because of their poor adaptive
capabilities occasioned by lack of technical knowhow and poverty (Callaway, 2004; Solomon et al.,
2007). The United Nations Framework Convention on Climate Change (UNFCCC, 2007) further
observed that regions of the world that are least culpable for climate change are the most susceptible
to the projected climate change impacts. For instance, whereas the African region contributes less
to global warming because of the general low level of industrialization, warming is likely to be larger
than the global annual average over the continent (Christensen et al., 2007). Moreover, there is a clear
consensus amongst climate models on the increased warming over Central Africa (CA) towards 2100
(Mkankam, 2001; Haensler et al., 2013; Fotso-Nguemo et al., 2016; Mba et al., 2018). On the other
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hand, while there is no agreement amongst models as regards the direction of the future evolution of
precipitation, there is evidence that precipitation will change over CA towards 2100 (Fotso-Nguemo
et al., 2016; Sonkoué et al., 2018; Tamoffo et al., 2018; Mba et al., 2018).

As key components of the hydrological cycle, any change in climate that affect rainfall and tem-
perature will have proportionate impacts on the hydrological system in the area especially at the
basin scale. According to Pal and Al-Tabbaa (2011), any change in the hydrological cycle due to
global warming is likely to affect the distribution of water resources and consequently agriculture and
hydropower production in the region as well as the availability and quality of freshwater. The Fifth
Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC, 2013) also ar-
gued that the risk of water disasters, such as flood, drought and water shortage, will be exacerbated
due to climate change. Many authors also believe that the discharge and water quality are strongly
controlled by the rainy event (Khan et al., 2016; Sakho et al., 2017).

Cameroon is one of the countries blessed with abundant water resources, both surface and ground-
water. It contributes significantly to the economy of Central Africa (CA), its water resources being a
major source of this importance. Cameroon is the second country in Africa (after the Democratic Re-
public of Congo) in terms of quantity of available water resources and hydropower potential (Mafany
et al., 2006). It has a dense network of rivers most of which arise from the Adamawa Plateau of the
country and flow north and southwards. There are five main river basins in Cameroon: Lake Chad,
Niger, Sanaga, Congo and Coastal Rivers Basins, three of them (Lake Chad, Niger and Congo Basins)
are shared with neighboring countries. Cameroon is ranked 49th out of 182 countries in the world in
terms of abundant water supply (Rosen, 2000). However, due to variations in the topography, rainfall
pattern and climatic zones in Cameroon, these water resources are unequally distributed between the
northern and southern parts. The southern part (up to 6°N) experiences a wet sub-tropical climate
with annual precipitation ranging between 1500 and 4000 mm. In the northern part, the climate is
semi-arid to arid Sahelian with annual rainfall less than 400 mm in the northernmost (13°N) part
(Kamga 2001) and where many rivers dry up a few months after the rainy season. The Niger River
Basin (NRB) is a only perennial river in Northern Cameroon and holds huge water resource potential.

The Niger River Basin (NRB), home to approximately 100 million people, a third longest river
(4,200 Km) in Africa, is a vital, and complex asset for WCA. It is a trans-boundary river basin which
traverses nine countries (Benin, Burkina Faso, Cameroon, Chad, Ivory Coast, Guinea, Mali, Niger,
and Nigeria) of WCA. The NRB basin represents a great socio-economic importance in these areas
because their main socio-economic activities depend on their available water resources (Ogilvie et al.,
2010). For example, agricultural production including fishing which employs over 60% of the people
of the area relies on irrigation water supply from the basin. In addition, the NRB is the main source
of water supply for industrial and municipal use for the people through the construction of reservoirs
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at several points. Furthermore, a greater percentage of electricity supply in some of the countries in
the basin is through hydropower generation made possible by the dams constructed along the river
valleys at different points. As at the last count, over 260 dams of different sizes were said to have
been constructed in the basin to achieve the aforementioned purposes (Lienou, 2013). The river also
provides opportunities for transportation across and within the countries especially during the period
of high flows. However, despite his importance, recent reports have shown that the basin is drying
out and experiencing low flow especially within the Cameroonian catchment due to climate change
and poor management (Lienou, 2013; Dassou, 2019).

The headwaters of the Benue River Basin (HBRB), the main interest of this study, is the Cameroo-
nian part of the NRB and occupies 4.4% (66,000 km2) of the overall basin . It’s the second-largest
river in Cameroon and a major tributary for the NRB (Oguntunde and Abiodun, 2013). It is a
perennial river in Northern Cameroon where many rivers dry up a few months after the rainy season.
The HBRB holds huge water resources potential including hydropower, irrigation, and navigation
due to the construction of the Lagdo dam and its hydro power plant in 1982. The population of this
region practices rain-fed agriculture which is the main socio-economic activity of this region. Until
the recent improvement of the surface transportation system in Nigeria, the River Benue served as a
major navigation route from Lokoja to Garoua in the Cameroons during wet months; during recent
decades, along the river from the Nigerian-Cameroon border, several settlements and socio-economic
activities have emerged (Toro, 1997). Given also his great importance of water resources functions,
current projects include industrial plantations of irrigated rice, sugar cane, cotton and vegetable,
alongside the more traditional sorghum, maize and millet have been developed. The Lagdo dam is
also known at present as the main hydroelectricity plant in this region and neighboring areas. The en-
tire northern part of Cameroon is currently supplied with electricity from Lagdo, but, because of a low
development level of the region, only one third of the installed production capacity of 300 GWh/year
is exploited. It is planned to supply the Chad Republic in the near future and both northern Nigeria
and part of the Central African Republic in 5–10 years (Mkankam, 2001). In this context, in 2007,
the World Bank approved the second phase of the project known as “Niger Basin Water Resources
Development and Sustainable Ecosystems Management Project” with aims to increase hydropower
and irrigation capacity of the Lagdo dam (IRAP, 2015). In addition, Donfack et al. (2018) showed
that in irrigated agriculture, maize yield increases significantly in the dry season, which can equal
that of the rainy season in northern Cameroon.

However, northern Cameroon experiences water-related disasters such as floods (Sighomnou et al.,
2013) and droughts (Molua and Lambi, 2006; Gao et al., 2011). Additionally, water shortages in
northern Cameroon are also the result of population growth, which naturally increases the water
demand, poor water resources management (WRM), and changing environmental conditions (Cheo
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et al., 2013). Guenang and Mkankam (2014) found that the drought magnitude and duration in-
creased with time for both short and long time scales in the North of Cameroon, as a response of a
reduction in precipitation due to climate change. Arétouyap et al. (2014) showed an increase of tem-
perature, decrease of annual precipitation and standardized precipitation index (SPI) in the Northern
Cameroon during 1960-2010, with some visible consequences such as wetlands draining, wells dry-
ness, rise of static and piezometric levels in boreholes drilled. Dassou et al. (2016) also found the
negative trends of precipitation in the Northern Cameroon during the time period 1950-2013, while
Oguntunde et al. (2018) shown an increase in drought intensity and frequency over the NRB as a
result of statistically significant correlation between runoff and drought indices. Nonki et al. (2019)
also found that the HBRB will move to an extreme environmental drier conditions due to a decrease in
excess water and increase in evaporative demand under changing environmental conditions. There-
fore, proper planning of water resources in space and time under CC becomes a great priority to
propose the precise solutions in the water resources management (WRM) and development projects
in a country. It is also important and urgent to build the tools that can help the decision-makers and
water planners to better manage the water resources (planning, design, operation, and management
of water resources systems). However, managing water resources in the large river basins of Africa
involves problems of data paucity, lack of technical resources and the sheer scale of the problem.
These river basins are located in regions that are characterized by poverty, low levels of economic
development and little food security.

Nowadays, hydrological models are important and powerful tools for addressing the challenge of
present and future water management in the watershed (basin-scale level). The hydrological mod-
els are increasingly used to investigate water resources management scenarios, predict the impact of
extreme events such as floods and drought, describe nonlinear hydrological process and to analyze
the impact of future potential changes in climate and land use on water resources (Mkankam, 2001;
Tshimanga and Hughes, 2012, 2014; Hakala et al., 2019). However, the study of the hydrological
impacts caused by climate change has been widely applied on the regional scale using GCM simu-
lations (Mkankam, 2001). According to Chou et al. (2014), CC impact assessment at the regional
scale needs higher resolution spatial data. As impacts and vulnerabilities of a given region are linked
to regional and local forcings, GCMs with a coarse horizontal grid resolution do not capture these
local and regional effects Deb et al. (2015). It is therefore important to downscale the input variables
for a hydrological model to the spatial and temporal scales that resolve the local climate features
and are needed by the hydrological model. In this context, the Coordinated Regional Climate Down-
scaling EXperiment project (CORDEX; Giorgi et al. (2009); http://www.cordex.org), sponsored by
the World Climate Research Program (WCRP; http://www.wcrp-climate.org/) has produced many
downscaled climate data for Africa derived from several regional climate models (RCMs) that have
downscaled many GCMs. The data derive from a set of dynamically downscaled models, forced by
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GCMs from phase 5 of the Coupled Model Intercomparison Project (CMIP5).

Although downscaled climate data has been used to drive hydrological models in Africa catchments
(e.g. Blanco, 2011; Cherie, 2013; Tramblay et al., 2013; Li et al., 2015; Oloruntade, 2017), to
date, no study has assessed the impact of CC on water resources over this important watershed
by using downscaled precipitation and temperature data. Existing studies were based on GCM
data (Mkankam, 2001; Sighomnou, 2004). In this context, the main focus of this research is to
assess the impacts of climate change on water resources and hydropower potential in the HBRB,
Northern Cameroon through the hydrological modeling and downscaled data. This research will help
towards the development of early warning systems and risk assessment in the HBRB so as to develop
capabilities to mitigate the effects of climate uncertainty. It will also help to develop the new vision of
water management, long term strategy for electricity production and planning of water needs. This
study will be accomplished by addressing the following objectives:

1. Building a tool that can help decision-makers and water planners to better manage the water
resources (planning, design, operation and management of water resources systems), through
the calibration, validation, sensitivity and parameter uncertainty analysis and parameter opti-
mization of the hydrological model.

2. Proposing a comprehensive study for sensitivity analysis of hydrological simulations for model
input especially the potential evapotranspiration (PET) input, through the comparison between
the dynamic and static approaches for sensitivity analysis.

3. Analyzing the potential impacts of climate change on water resources and hydro power potential
in the HBRB by driving calibrated hydrological model with downscaled scenarios climate data
(precipitation, temperature and PET).

4. Analyzing the ecohydrological status of the watershed using the concept of water-energy budget.

This thesis comprises three chapters, the first chapter covers the literature review, which discusses
the earth climate system, climate change, the Representative Concentration Pathway (RCP) and cli-
mate models. It also contains methods of downscaling and the concept of hydrological modeling.
Chapter two includes geographical localization of the study area, his topography, climate and hydrol-
ogy. It further describes the data used, the statistical tools employed, the theoretical concepts of the
hydrological model, HBV-Light and the general modeling procedure and chapter three presents the
obtained results and their discussions. This thesis ended with a general conclusion, which includes
the main findings of this research and forthcoming work.
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Chapter 1

Literature review

Introduction

Climate is traditionally defined as the description in terms of the mean and variability of relevant
atmospheric variables such as temperature, precipitation, wind etc. Nowadays, there is a clear con-
sensus that climate is changing then goes affect the climate system and hydrological cycle. Given the
fact that it is too difficult to look back to the recent past to get an idea of what can happen later in
the Earth’s natural systems, scientific communities usually used the climate and hydrological models
to better understand the future climate and their impacts in order to develop adaptive strategies,
plan and better manage the natural resources such as water resources. This chapter provides in the
first part the description of the climate system, their main components and the main drivers of his
change. In the second part, a brief description of mathematical formulation of the climate models, as
well as the different techniques generally used to downscale these models from global scale to regional
or local scale are provided. In the third part, an overview of the hydrology and hydrological modeling
science is mentioned, while the last part focuses on the review of different impact studies done in the
NRB and especially in Cameroon.

1.1 Climate and climate change

1.1.1 Climate system

The climate system is a complex, interactive system consisting of the atmosphere (the gaseous en-
velope surrounding the Earth), the hydrosphere (liquid water, i.e. ocean, lakes, underground water,
etc), the cryosphere (solid water, i.e. sea ice, lake ice and river-ice, snow cover, glaciers, ice caps and
ice sheets, and frozen ground), the land surface and the biosphere (all the living organisms) (IPCC,
2007, Fig. 1).

However, the climate system evolves in time under the influence of its own internal dynamics and
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Figure 1: Schematic view of the components of the climate system, their processes and interactions (IPCC,

2007).

due to changes in external factors (called “forcing mechanisms”). External factors include natural
phenomena such as volcanic eruptions and solar variations, as well as human induced factors, like the
burning of fossil fuels and the depletion of the natural vegetation, both of which lead to changes in
the atmospheric composition. Over the longest timescales, the amount of incoming solar radiation on
the Earth’s atmosphere and surface is in balance with the amount of outgoing radiation, whereby the
latter is composed of short- and long-wave components. About half of the incoming solar radiation is
absorbed by the Earth’s surface. This energy is transferred in form of long-wave radiation back to the
atmosphere whereby it is warming the air in contact with the surface (sensitivity heat), by evaporated
water (latent heat) or is absorbed by clouds and greenhouse gases (GHGs). The atmosphere in turn
radiates long wave energy back to Earth as well as out to space (Kiehl and Trenberth, 1997).

1.1.2 Climate change

According to IPCC, climate change is defined as a change in the state of the climate that can be
identified by changes in the mean and /or the variability of its properties that persists for an extended
period typically decades or longer (IPCC, 2007). Nowadays, there is evidence that the global climate
is already changing and that further change is certain. For instance, during the last century (between
1906 and 2005), the average global temperature rose by about 0.74◦C in two phases from 1910s and
1940s and more strongly from 1970s to the present (IPCC, 2007). In addition, as pointed out in the
IPCC-report, there is now enough observational evidence of an increase of global average sea levels,
while Northern hemisphere snow cover and ice amounts have also reduced (Fig. 2). As for the future
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development of the earth’s temperature, the IPCC (2007) states that the global average warming will
be 1.1− 6.4◦C by 2090-2100.

Figure 2: Observed changes in (a) global average surface temperature; (b) global average sea level from

tide gauge (blue) and satellite (red) data and (c) Northern Hemisphere snow cover for March-April. (IPCC,

2007)

The most plausible cause of the global temperature change in the last 50 years and that to be
expected for the near future is believed to be the presence of GHGs (Solomon et al., 2007), which
act as a partial blanket for the long wave radiation emanated back from the Earth’s surface. The
most important GHG are carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), Ozone (O3),
hydroflurocarbons (HFCS), Perfluorocarbons (PFCs) and sulphur hexafluoride (SF6) and are the
gases whose emissions are covered by the UNFCCC. They influence the absorption, scattering and
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emission of radiation within the atmosphere and at the Earth’s surface.

1.1.3 Drivers of climate change

Drivers of climate change are natural and man-made substances and processes that alter the Earth’s
energy budget (IPCC, 2013). They are also defined as the elements that contribute to GHG emissions,
directly or indirectly (Blanco et al., 2014). Although interactions amongst the various constituents of
the earth’s climate system can lead to climate change, studies have shown that changes in climate that
have been witnessed since 1950s are attributable to human activities (IPCC, 2001) and it is a lack of
consensus according to literature about climate change drivers. Some researchers have distinguished
between near and underlying or ultimate drivers (e.g. Angel et al., 1998; Geist and Lambin, 2002),
in which near drivers are described as activities that are directly or closely related to the generation
of GHGs and underlying or ultimate drivers are the ones that motivate the proximate drivers.

Given the difficulty to objectively define what the drivers can always be, there is not yet a unique
method to identify the drivers of climate change, mainly because anthropogenic activities manifest
themselves through a complicated network of interactions, and separating a clear cause-and-effect
for a certain phenomenon purely through the lens of scientific observation is often difficult. Hence,
the term ‘driver’ may not denote an actual causality but is used to signify a relationship to provide
insights on what constitutes general changes in global GHG emissions (Blanco et al., 2014). Thus,
within the literature, the major drivers of GHG emissions are consumption (Hertwich and Peters,
2009), international trade (Jakob et al., 2013), population growth (O’Neill et al., 2010), economic
growth (Carson, 2009; Lim et al., 2009), structural change to a service economy (Nansai et al., 2009)
and energy consumption (Malla, 2009). They have been so recognized because of their potential to
contribute to increased GHG emissions within the global environment.

Nevertheless, IPCC (2007) often evaluates the influence of a driver of climate change, in terms
of its radiative forcing (RF) and expressed in units of ‘Watts per square meter’. RF is a measure of
how the energy balance of the Earth-atmosphere system is influenced when drivers that affect climate
are altered. RF is the change in energy rate per unit area of the globe caused by a driver, and is
calculated at the top of the atmosphere. RF can be positive or negative, which means the energy
of the Earth-Atmosphere system increases or decreases respectively and leads to a warming or to a
cooling of the climate system (Fig. 3).

1.1.4 Emission scenarios

The impacts of climate change on the environment and society will depend not only on the response
of the Earth system but also on how humankind responds through changes in technology, economy,
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Figure 3: Summary of the principal components of the radiative forcing of climate change. All these

radiative forcings result from one or more factors that affect climate and are associated with human activities

or natural processes as discussed in the text. The values represent the forcings in 2005 relative to the start

of the industrial era (about 1750) (IPCC, 2007)

lifestyle and policy. These responses are uncertain, so future scenarios are used to explore the con-
sequences of different options. In climate change research, emissions scenarios describe plausible
trajectories of different aspects of the future that are constructed to investigate the potential con-
sequences of anthropogenic climate change. Scenarios represent many of the major driving forces -
including processes, impacts (physical, ecological and socioeconomic), and potential responses that
are important for informing climate change policy. They are used to hand off information from dif-
ferent research areas (e.g., from research on energy systems and greenhouse gas emissions to climate
modeling). They are also used to explore the implications of climate change for decision making (e.g.,
exploring whether plans to develop water management infrastructure are robust to a range of uncer-
tain future climate conditions). The goal of working with scenarios is not to predict the future but

Rodric M. Nonki 10 Ph.D thesis



Climate change and hydrological modeling

to better understand uncertainties and alternative futures, in order to consider how robust different
decisions or options may be under a wide range of possible futures”. IPCC (2007) stated that one
of the major reasons for developing emissions scenarios is to enhance coordinated studies of climate
change, climate impacts, and mitigation options and strategies. They were also developed for better
comparisons between various studies as well as easier communication of model results.

In order to address these issues, the IPCC published in 1992 the first set of climate change
scenarios, called Integrated Science (IS92). Based on the number of inconsistencies and assumptions
included in IS92 scenarios that are considered limited in the face of current uncertainty as to how the
world will develop over the next century, a new set of emission scenarios called “Special Report on
Emission Scenarios” (SRES) were approved for use by the IPCC in 2000 (Nakicenovic et al., 2000)
and used in the Third and Fourth assessment reports of the IPCC. In This SRES, 40 SRES scenarios
have been developed by six modeling teams and grouped into four qualitative storylines (include in
Fig. 4) called "families" : A1, A2, B1, and B2.

Figure 4: Schematic illustration of SRES family storylines (Nakicenovic et al., 2000)

Each storyline represents different demographic, social, economic, technological and environmental
developments, which is described in Table 1.

One problem with the SRES scenarios indeed, a fair criticism of them is that they do not explicitly
incorporate carbon emissions controls. While some of the scenarios involve storylines that embrace
generic notions of sustainability and environmental protection, the scenarios do not envision explicit
attempts to stabilize concentrations at any particular level. In the Fifth Assessment Report (AR5)
of the IPCC, a new set of scenarios, called Representative Concentration Pathways (RCPs), has been
introduced (IPCC, 2013).
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Table 1: Overview description of SRES storylines (Source: Nakicenovic et al., 2000).
A1 Storyline A2 Storyline B1 Storyline B2 Storyline

World Market-oriented Heterogeneous Convergent Local solutions

Economy faster per capita Regionally Service and Intermediate
growth oriented and lowest information economy

per capita growth based; lower development
growth than A1

Population peaks in 2050, continuously same as A1 Moderate
then decline increasing growth

Governance strong regional Self-reliance Global solution to Local and regional
interaction; income and preservation of economic, social and solutions to environmental

convergence local identities environmental and social equity
sustainability

Technology rapid introduction of new and Slowest and Clean and resource less rapid and
more efficient technologies more fragmented efficient more diversified

development technology than in A1/B1

1.1.5 The Representative Concentration Pathway (RCP)

RCPs introduced in the IPCC AR5 and used in this research, are prescribed pathways for greenhouse
gas and aerosol concentrations, together with land use change, that are consistent with a set of broad
climate outcomes used by the climate modelling community. These pathways are characterized by
the radiative forcing produced by the end of the 21st century. RCP scenarios are described to be
“representative” because each of them represents a larger set of scenarios in the literature and are
referred to as “pathways” in order to emphasize that their primary purpose is to provide internally
consistent sets and time-dependent projections of atmospheric GHG concentrations (van Vuuren et al.,
2011; IPCC, 2013). The RCPs are the product of an innovative collaboration between integrated
assessment modelers, climate modelers, ecosystem modelers as well as social scientists working on
emissions, economics, policy, vulnerability and impacts. The four RCPs are named according to
radiative forcing target level in year 2100 relative to the pre-industrial year (1750) – RCP2.6 for 2.6
W.m−2 , RCP4.5 for 4.5 W.m−2 , RCP6.0 for 6.0 W.m−2 and RCP8.5 for 8.5 W.m−2. They include one
mitigation scenario leading to a very low forcing level (RCP2.6), two medium stabilization scenarios
(RCP4.5 and RCP6) and one very high baseline emission scenario (RCP8.5). Table 2 gives the
overview description of each RCP, reference and model used to develop it.

The comparison between RCPs and SRES (Fig.5) scenarios reveals that the RCP8.5 is closest to
A1FI, RCP6 is closest to A1B, RCP4.5 is similar to B1, and RCP2.6 is lower than any of the standard
SRES scenarios.
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Table 2: Overview description of RCP scenarios (adopted from Moss et al., 2010)
Name Radiative Atmospherics Pathway Model providing Reference

forcing CO2 equivalent RCP∗

(parts per million)

RCP 8.5 >8,5 W.m−2 in 2100 >1370 equiv.- CO2 in 2100 Rising MESSAGE Riahi et al., 2011

RCP 6.0 ∼6 W.m−2 at ∼850 equiv.- CO2 at Stabilization IAM Hijioka et al., 2008
the stabilization the stabilization without
level after 2100 level after 2100 overshoot

RCP 4.5 ∼4,5 W.m−2 at ∼660 equiv.- CO2 at Stabilization GCAM Thomson et al., 2011
the stabilization the stabilization without
level after 2100 level after 2100 overshoot

RCP 2.6 Peak at ∼3 W.m−2 Peak at ∼490 Peak and IMAGE van Vuuren et al., 2011
before 2100, equiv.- CO2 decline
declining to before 2100

∼2.6 W.m−2 by 2100 then decline

Figure 5: Comparison of carbon dioxide concentrations for the 21st century from the RCPs and SRES

scenarios (Source: Jubb et al., 2013).

1.2 Climate models

Understanding past, present and future climate helps us to understand how Earth’s systems naturally
function. Since it is then impossible to look back to the recent past to get an idea of what can happen
later, the only tools available to the scientific community to try to find out what can happen in the
future are climate models, particularly global climate models (GCMs). Effects of the increases in at-
mospheric greenhouse gas concentrations on climate are also studied with climate model simulations.
Climate models are a simplified and numerical representation of the climate system, its components
and their interactions described through mathematical formulations of physical, biological and chem-
ical principles (Fig. 6). Some on these fundamental conservation laws are namely: the first law of
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thermodynamics (describing the movement of energy, Eq. 1.1), Newton’s second law of motion (it’s
about momentum of a particle, Eq. 1.2), three continuity equations (the conservation of mass, Eq.
1.3) and the ideal gas law (for the water vapor, Eq. 1.4) (Fotso-Nguemo, 2018).

Figure 6: Schematic representation of the development and use of a climate model (Source: Goosse et al.,

2010)

Cp

(
∂T

∂t
+−→V .−→∇T

)
= 1
ρa

dp

dt
+Q (1.1)

∂
−→
V

∂t
+−→V .−→∇−→V = −

−→
∇p
ρa
− 2−→Ω ×−→V +−→g +−→F (1.2)

∂ρa
∂t

+−→V .−→∇ρa = −ρa
−→
∇ .
−→
V (1.3)

p = ρaRT (1.4)

In these equations,
Cp is a specific heat at constant pressure;
T is the air temperature;
−→
V = u

−→
i + v

−→
j +w

−→
k is the wind speed, with (u, v) his horizontal component (zonal and meridional

respectively) and w his vertical component;
Q represents the sources and wells of internal heat from the sub-mesh processes;
p is the pressure;
ρa is the density of the air mass;
−→Ω is the Earth’s rotational speed;
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−→g is the gravity containing the term of the centrifugal force then slightly deviating the direction of
the gravity vector from the vertical;
−→
F = Fx

−→
i + Fy

−→
j + Fz

−→
k describes the sources and wells of the moment at scales smaller than the

grid (friction force);
R is the specific gas constant.

The terms −
−→
∇p
ρa

, −2−→Ω ×−→V , Cp
(
∂T
∂t

+−→V .−→∇T
)
, 1
ρa

dp

dt
and −ρa

−→
∇ .
−→
V correspond respectively to the

force of the pressure gradient that is directed towards the low pressures, the Coriolis force that acts
on a moving particle, the internal energy of the system under consideration, the work and the term
of compressibility. And the terms −→V .−→∇−→V , −→V .−→∇T and −→V .−→∇ρa are the advection terms, introducing
the non-linearity of the system. Indeed, non-linearity causes the sensitivity of the results to initial
conditions and limits the predictability of the climate.

Given the complexity of these equations, they are usually solved numerically. Consequently, cli-
mate models provide a solution which is discrete in space and time, meaning that the results obtained
represent averages over regions, whose size depends on model resolution and for specific times. Cli-
mate models used in climate research range from simple energy balance models to complex Earth
System Models (ESMs) requiring state of the art high-performance computing. Nowadays, ESMs
are the current state-of-the-art models, and they expand on Atmosphere Ocean General Circulation
Models (AOGCMs) to include representation of various biogeochemical cycles such as those involved
in the carbon cycle, the sulphur cycle, or ozone (Flato, 2011). These models provide the most com-
prehensive tools available for simulating past and future response of the climate system to external
forcing, in which biogeochemical feedbacks play an important role.

1.2.1 Uncertainties in Global Circulation Models (GCMs)

GCMs integrate known atmospheric physical processes, such as the heating effect of the sun, the
heat and moisture fluxes from oceans, the effect of land surface and vegetation, and the effect of
GHGs on the atmospheric temperature profile, in an attempt to simulate the global climate system
through time (Hewitson and Crane, 2006). Such processes are complex to integrate due to the scales
at which they occur, and can only be resolved through parameterization of climate models, which
leads to uncertainties in the outputs. Major sources of uncertainty in GCMs arise from the way they
are parameterized to represent variables of the global climate system, the internal structures of the
GCMs and the methods used to downscale the GCMs to allow projections at basin scales. This means
that different GCMs will yield different output variables, especially in the prediction of precipitation
changes (Haylock et al., 2006), depending on their skill to simulate the climate of a given region.
Hence, it may be difficult to draw conclusions from a single model output. Given this situation, some
recommended approaches to minimize uncertainties and to gain more confidence in the projection
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of climate change are the inclusion of many different types of global models, downscaling techniques
and emission scenarios as possible (Gachon and Dibike, 2007; Busuioc et al., 2006).

1.2.2 GCM Downscaling

Despite their advances and improvements in the modeling and their performance to reproduce the
features of the global climate system (Flato et al., 2014), GCMs provide weather data at global scale
and low resolution (currently about 200 km x 200 km) which are unable to resolve some important
processes related to sub-grid scale clouds and topographic effects that are of significance in many
impact studies (Fowler et al., 2007; Cherie, 2013). Therefore, it is important to downscale the GCMs
data to the spatial and temporal scales that resolve the local climate features and are needed by
the hydrological model. Thus, downscaling is the process of deriving finer resolution data (e.g. for
a particular site) from coarser resolution GCM data. Figure 7 presents a visual representation of
the concept of downscaling. Generally, there are two main approaches for downscaling: dynamical
downscaling and statistical downscaling.

1.2.2.1 Dynamical Downscaling

Dynamical downscaling (DD) involves the use of an Limited Area Models (LAMs) or high resolution
Regional Climate Models (RCMs) driven by the time-varying atmospheric lateral and data of GCMs
as boundary conditions to simulate regional or local climate (Wilby et al., 2002). This approach
is advantageous when supplied with appropriate sea surface and atmospheric boundary conditions.
When used for downscaling, RCMs require, as inputs, specifications of the following parameters
(Cherie, 2013):

• the initial state of the atmosphere and surface,

• time variations of any external forcing agents,

• the time-varying lateral fluxes of heat, mass, moisture, momentum and forcing agents (such as
aerosols) derived from a global AOGCM or reanalysis,

• time variations of all surface variables that are not produced prognostically by RCM.

Downscaling using high-resolution global AOGCMs requires all of the above inputs, except for
lateral fluxes.

1.2.2.2 Statistical Downscaling

The principle of statistical downscaling (SD) is based on the establishment of relationships between
variables observed at the local scale (often at the climate station scale) called [predictands] and
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Figure 7: Conceptual representation of downscaling (Source: Viner, 2000)

variables characteristic of large-scale GCMs called [predictors]. SD allows the generation of long
time series of variables from observational data and GCMs. SD uses several methods to develop the
empirical predictand-predictor relationships, among which we can mention:

• Linear methods such as Delta method, simple and multiple linear regression method (Matulla
et al., 2002), Canonical Correlation Analysis (CCA, von Storch et al., 1993) and Singular Value
Decomposition (SVD) methods (Olsson et al., 2001). They have the merits to be relatively
straightforward to apply, employ full range of available predictor variables. The greatest con-
straint is the requirement of a normal distribution of the predictor and the predictand values,
which means that it cannot be used to predict the distribution of daily rainfall because it is
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typically non-normal (frequent small amounts of rainfall and a few heavy events generally make
the distribution not symmetrical).

• Weather classifications such as analog method, cluster analysis, Artificial Neural Network
(ANN), Self-Organizing Map (SOM). These methods are particularly well suited for downscaling
non-normal distributions, such as daily rainfall. However, a large amount of observational daily
data (e.g., 30 years of daily data for the region of interest) is required in order to evaluate all
possible weather conditions. In addition, these methods are more computationally demanding
in comparison to linear ones, due to the large amount of daily data analyzed and generated.

• Weather generators such as Long Ashton Research Station Weather Generator (LARS-WG),
Non-homogeneous Hidden Markov Model (NHMM). These methods are able to simulate length
of wet and dry spells, to produce large number of series, which is valuable for uncertainty
analysis. Weather generators are data-intensive, require long sequences of daily data, and are
sensitive to missing or erroneous data in the calibration set (Wilby et al., 2009).

1.2.2.3 Summary and comparison of Statistical and Dynamical Downscaling

Despite the fact that both statistical and dynamical downscaling techniques own reasonable capacity
to translate the coarse resolution of CGMs to a fine spatial resolution, there are also some drawbacks
in their use. Some of the merits and demerits in the application of both techniques according to
studies (e.g. Fowler et al., 2007; Wilby et al., 2009) are enumerated in Table 3.
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Table 3: Advantages, disadvantages, outputs, requirements and applications of dynamical and statistical

downscaling (adopted from Trzaska and Schnarr, 2014)
Dynamical downscaling Statistical downscaling

Provides . 20–50 km grid cell information . Any scale, down to station-level information
. Information at sites with no observational data
. Daily and monthly time-series . Daily (only some methods) and monthly time-series
. Scenarios for extremes events . Scenarios for extremes events (only for some methods)

and scenarios for any consistently observed variable
Requires . High computational resources and expertise . Medium/low computational resources

. High volume of data inputs . Medium/low volume of data inputs

. Reliable GCM simulations . Sufficient amount of good quality observational data
. Reliable GCM simulations

Avantages . Based on consistent, physical mechanism . Computationally inexpensive and efficient, which allows
for many different emissions scenarios and GCM pairings

. Resolves atmospheric and surface processes . Methods range from simple to elaborate and are flexible
occurring at sub-GCM grid scale enough to tailor for specific purposes
. Not constrained by historical record so that novel .The same method can be applied across regions or

the entire globe, which facilitates comparisons across
scenarios can be simulated different case studies
. Experiments involving an ensemble ofRCMs are . Relies on the observed climate as a basis for driving
becoming available for uncertainty analysis future projections

. Can provide point-scale climatic variables for
GCM-scale output
. Tools are freely available and easy to implement and
interpret; some methods can capture extreme events

Disadvantages . Computationally intensive . High quality observed data may be unavailable
. Due to computational demands, RCMs are for many areas or variables
typically driven by only one or two GMC/emission . Assumes that relationships between large and local-scale
scenario simulations processes will remain the same in the future
. Limited number of RCMs available and no model (stationarity assumptions)
results for many parts of the globe . The simplest methods may only provide projections at a
. May require further downscaling and bias monthly resolution
correction of RCM outputs
. Results depend on RCM assumptions;
different RCMs will give different results
. Affected by bias of driving GCM

1.3 Hydrological modeling

1.3.1 Hydrological cycle and hydrology

The hydrological cycle describes the continuous movement and changes of the state of water between
the atmosphere and the earth. This cycle includes the processes illustrated in Figure 8: evapo-
transpiration (water going into the atmosphere), condensation (forming of clouds); precipitation (in
various forms, such as rain, snow, sleet and hail), runoff (flow of rainwater on the earth’s surface and
in surface water bodies) and percolation (water infiltrating into the earth to form and/or recharge
groundwater bodies). The water movement from the earth’s surface to the atmosphere is supported
by the solar radiation, while the water movement at and below the surface of the earth is mainly
driven by gravity. The main effect of the hydrological cycle is that of maintaining the heat balance
of the earth, trough moving and redistributing water masses.

Hydrology is the science that studies the water cycle, with particular focus on the processes
occurring at the land phase. The subject is very vast and complex, due to the huge variety of
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Figure 8: The hydrological cycle (from FISRWG, 1998).

processes involved in the cycle, their different temporal and spatial scales of occurrence and their
interaction with other environmental components.

The humans life is deeply dependent on the water resources (particularly on freshwater), which
are necessary for personal and domestic purposes, for recreation, as well as to support agriculture,
fishery, hydropower generation, industries and various kinds of other uses. On the other hand, water
can also constitute a threat, as, for example, in the case of floods. The strong connection between
humans and water makes it necessary in several practical applications to have the best knowledge
as possible on specific hydrological processes at the spatial and temporal scale of interest. This is
essential to effectively plan, develop and manage the water resources, as well as to prevent its dangers.
Hydrological models, which are introduced in the following part, are the primarily tools developed
for hydrological predictions and for gaining more insight into the physical processes.

1.3.2 Hydrological modeling and hydrological models

Hydrological modelling is the discipline that tries to quantitatively describe the land phase processes
of the hydrological cycle (Singh and Woolhiser, 2002). This is done by developing and setting up
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mathematical models, i.e. sets of linked mathematical equations, which describe in a simplified
form the behavior of the various components of the hydrological phenomena taking place in real
hydrological systems. A hydrological system is defined as a structure or volume in space, surrounded
by a boundary, that accepts water and other inputs, operates on them internally, and produces them
as outputs (Chow et al., 1988).

In a general conceptualized form, a hydrological model can be represented as illustrated in Fig-
ure 9: it is an entity (a system of equations) that receives certain inputs (meteorological variables
and model parameters) and transforms them into the desired output, the so-called model response.
The model inputs comprise meteorological time series, also defined as forcing data, such as rain-
fall, snow, temperature and sunshine hours, as well as a set of model parameters, which describe
the physical features of the hydrological system considered. The model parameters are divided into
physical parameters, representing physically measurable properties of the system (for example the
catchment area, the surface slopes and similar), and process parameters, describing characteristics
that are not directly measurable (such as the average depth of the root zone, the time constants of
various model storage blocks and similar). The outputs are defined depending on the system and
the scope of the modeling. They can be, for example, river runoff, in the case of rainfall-runoff (RR)
models, or groundwater flow and groundwater table elevation for groundwater (GW) models, while
integrated models can simultaneously simulate surface and sub-surface processes and other parts of
the hydrological cycle.

Figure 9: Schematic representation of a hydrological model (from Blasone, 2007).

The simplified mathematical form of a hydrological model is described in following equation:

Yt = f(Xt, Θ) (1.5)

It is a system of equations, represented by the operator f(.), which produces at every time step
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t, a number m of outputs (hydrological responses), given by the vector Yt:

Yt = (y1
t , ..., y

m
t ) (1.6)

The inputs of f(.) are a vector of p meteorological inputs, Xt:

Xt = (x1
t , ..., x

p
t ) (1.7)

and a vector of n model parameters Θ:

Θ = (Θ1, ..., Θn) (1.8)

1.3.3 Classification of hydrological models

Nowadays, a large number of hydrological models are currently available and there are several criteria
that can be used to classify them. Some important criteria are the degree of complexity of the different
processes taking place in the model, the spatial resolution and the temporal variation of the processes
in the model.

Based on the degree of complexity of the processes in the model, the hydrological models can be
classified in three main groups:

• Physical-based models that try to accurately represent in a deterministic way all the processes
occurring in the physical system and use partial differential equations in space and time.

• Black-box models that disregard any physical insight, often include stochastic components and
just relate outputs to inputs through a set of empirical functions, such as simple mathematical
expressions, time series equations, auto regressive moving average (ARMA) models and artificial
neural networks (ANN).

• Conceptual models that are somewhere in between, since they represent all the relevant parts
of hydrological processes but through a quite simplified description, often representing parts of
the system as series of tanks that exchange water with one another.

Based on the spatial resolution at which the processes are described, the models can be classified
as:

– Distributed in which the physical processes are represented, with varying degree of reso-
lution, at various points in space and the model variables are also defined as functions of
the space dimensions.
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– Lumped opposite of distributed that consider the hydrological system as a unit block in
which the properties are spatially averaged.

– Semi-distributed which are in between the first two, since the hydrological system is usually
divided into smaller subsystems, each represented by a lumped model.

Based on the temporal variation of the processes (Chow et al., 1988), the flow conditions can be
defined as steady and unsteady, the hydrological events can be accounted for in a continuous-
time or event-based way and stochastic models can be classified as time-independent and time-
correlated. However, steady conditions are normally assumed only in groundwater modeling
applications, whereas continuous temporal variation is used to model faster response phenomena

1.3.4 Hydrological model selection

Despite the fact that several hydrological models are now currently available, the relationship between
rainfall and runoff is a complex one as a result of landscape complexity brought about by tremendous
heterogeneities and variability associated with the occurrence of connectivity, similarity and unique-
ness of places at all scales (Wagener et al., 2007). For this reason, the selection of a hydrological
model in river basins is usually carried out based some specific considerations (Wagener et al., 2004)
such as:

• the model structure that is appropriate for the envisaged modeling purpose. The modeling
purpose defines aspects such as which hydrological processes need to be considered and what
modeling time step is required.

• the catchment characteristics. They are important criteria in determining what type of process
description is suitable.

• the available data which enable a certain degree of causality of process description and allow a
particular minimum spatial and temporal resolution.

Furthermore, the experience with a particular modeling code and the cost involved are equally
important (Beven, 2001).

In this research, the HBV (Hydrologiska Byråns Vattenbalansavdelning) model was selected be-
cause it:

• is a conceptual model for runoff simulation,
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• has a simple structure and is lumped or semi-distributed,

• is easy to understand, learn and apply,

• has been applied to many catchments in Sweden and abroad and provided good results in most
applications,

• needs a moderate amount of input data, can be run on a PC (286 or better) and exists in
different versions.

1.3.5 Uncertainties in hydrological modeling

Despite the recent advancements in developing hydrological models due to the actual level of knowl-
edge of the physical processes of the hydrological system and the computational advances of the last
years, hydrological modeling outputs are subject to uncertainty resulting from different sources of
errors, which are generally grouped into three categories and discussed by Liu and Gupta (2007):

• input data error: they are generally come from both meteorological measurements and the
hydrological observations used to evaluate the fit of the simulated outputs. This error affects
both the magnitude and the timing of the model outputs.

• model parameters error that arises because of the uncertainty in determining the values of
the model parameters. For calibrated models, this error also accounts for the fact that the
parameter set adjustment can compensate for the other types of errors (Melching, 1995)

• model structural errors that can have several origins, such as incorrect representation of the
processes (both in terms of physical description and of spatial and temporal discretization),
disregarding of processes which are not represented and implementation errors in numerical
algorithms and computer codes (Beven, 2005).

A realistic assessment of the uncertainty in model predictions is important for science-based
decision making (Refsgaard et al., 2006) as well as to direct the research towards model structural
improvements and uncertainty reduction. It is an accepted fact that hydrological model simulations
should explicitly include an estimate of their associated uncertainty.

Uncertainty analysis (UA) is the discipline that tries to quantify the degree of confidence in the
model outputs, based on the uncertainties in the model inputs (data or parameters). To date, many
approaches to address the issues of UA in hydrological modeling prediction have been developed and
grouped into two main categories according to Rosbjerg and Madsen (2006):
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• First-order analysis also known as Local UA that can generally represent in a deterministic
way only the uncertainty of the model output. This category includes Taylor-series expansion
methods (Melching, 1995; Tsai and Franceschini, 2005), nonlinear regression methods (Vecchia
and Cooley, 1987).

• Monte Carlo (MC) methods also known as Global UA, are stochastic techniques for probabilistic
representation of uncertainty, which are based on running a certain number of model simulations
(realizations) using a large random sample of the input variables. These methods can be used
for analysis of error propagation in model simulations, if the sampled prior distributions of the
inputs reflect the degree of knowledge on these variables. In this way, the input uncertainty
is mapped into the output space and the structure of the distributions of model outputs can
be defined. MC-based UA has become an active area of research in hydrological modeling and
nowadays, different methods have been introduced. They are grouped based on the way in
which they address the UA as: Bayesian methods (Thiemann et al., 2001; Vrugt et al., 2003;
Freer et al., 1996), multiple criteria methods (Yapo et al., 1998; Boyle et al., 2000; Madsen,
2003), recursive and sequential data assimilation (Thiemann et al., 2001; Vrugt et al., 2005;
Moradkhani et al., 2005), and set-theoretic methods (Klepper et al., 1991; van Straten and
Keesman, 1991).

1.4 Climate change impact studies in Cameroon and neigh-

boring areas

Cameroon is a sub-sahara Africa country and there is a clear consensus that the African climate
has experienced some changes over the past few decades (Christensen et al., 2007) and the changing
climate has impacted on many river basins in the region, including the Cameroonian rivers. For this
reason, several studies have been conducted to ascertain the level of impact and as well as his possible
future projections in many river basins in Africa. There is a general consensus that around 1970 an
abrupt change in precipitation and runoff regimes across Cameroon and across West Africa in general,
occurred (Tarhule et al., 2015; Liénou et al., 2008; Dzana et al., 2011; Amougou, 2018). However,
only a few studies have been published regarding the potential future changes in river regime for
Cameroon, particularly in such quantitative terms as required for this thesis and relevant for the
planning of future hydropower development in Cameroon.

Mkankam (2001) studied the impact of climate change on the runoff in the Upper BRB. For
this task, he used the calibrated Yates hydrological model forced by precipitation and temperature
derived from two GCMs (HadCM2 and ECHAM4/OPYC3) under three emissions scenario IS92a,
IS92c and IS92e. Compared to the baseline period (1961-1990), rainfall is expected to increase in the
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range of 4–13% and temperature from 1 to 3◦C. These lead to changes of 4–11% in annual potential
evapotranspiration. Under the same conditions, changes in annual river flow range from -3 to +18%.

Penlap et al. (2004) used the Empirical orthogonal functions followed by Canonical Analysis to
downscale statistically precipitation of ECHAM4/OPYC3 during the little rainy season (March-June)
in Cameroon. His result showed an increase of precipitation from 4 to 44% for the 2010-2050 horizon
in the North and North-West part of the country, and a decrease range between -14 to 4% in the
Southern of the country relative to the baseline period 1961-2000.

Sighomnou et al. (2007) focused the impact of climate changes on the runoff regime in the Sanaga
river during the 21st century. To this aim, runoff was simulated by driving GR2M hydrological model
with precipitation and PET from HadCM3 GCM under the A2 emission scenario. compared to the
baseline period (1971-2000), an increase of 3,4% in average annual precipitation is projected, along
with a gradual increase in PET, in the order of 30% increase by 2100. As a result of such large
increase in PET with only a modest increase in precipitation, runoff in the Sanaga basin could by
2100 decrease by as much as 20%.

Munang (2010) assessed climate change impacts on the hydro-energy potentials of the Sanaga basin
by using trend analysis. the relationship between temperature, precipitation and river runoff from
1960–2007 was established based on regression analysis. Results showed an increase in temperature
by 0.8◦C, a decline in precipitation by 112 mm/yr or 6.5% and a decline in river runoff by 142 m3/s

or 7.5% for the Sanaga Basin. Projections of these trends to 2037 indicated a decrease in Sanaga river
runoff by 355 m3/s (or 19% compared to the 1960s), that will negatively affects the hydro-energy
potential of the Sanaga River.

MINEP and UNDP (2012) studied the main risks of climate change on extreme climate risks
such as droughts, erosion, high winds and flooding by using dynamically downscaled data of RegCM
forced by the boundaries data conditions of one GCM (MPI-ECHAM5) under A1B emission scenario
and agro-ecological zone. Their obtained results revealed a slight increase in precipitation until 2035,
followed by a sharp and remarkable decrease by 2100 in nearly all agro-ecological zones except. The
annual average temperatures would rise by the end of the 21st century from 0.7◦C to 4.6◦C in the
northern part of Cameroon and from 0.5◦C to 3.5◦C in the forest zone in the South of the country.

The report of Grijsen (2014) presents a Climate Risk Assessment (CRA) for the five main river
basins of Cameroon, focusing on the potential climate change impacts on water resources availability
for hydro-energy generation, particularly in the Sanaga, Benue, Nyong and Ntem River Basins. For
this job, 15 GCMs runs from phase 3 of the Coupled Model Intercomparison Project (CMIP3) under
A1B emission scenario and the Turc-Pike rainfall runoff model were used. Results showed that the
Lom Pangar and Nachtigal storage and hydropower projects in the Sanaga Basin are economically
robust and climate resilient projects, but hydro-energy generated at Lagdo dam in the Benue basin
may suffer a significant decrease due to climate change.
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Conclusion

In this chapter, we have shown that the climate system is continually prone to the phenomenon of
climate change as a result of both natural factors (such as volcanic eruptions and solar variations)
and anthropogenic factors (such as the burning of fossils fuels and the depletion of the natural
environment). Some of the impacts of climate change include increased warming of the earth surface
that is usually aggravated by GHG emission to the atmosphere more especially since the second half
of the 20th century. In addition, high rainfall variability, sea level rise, increasing occurrence of floods
and droughts have also been reported as the hydrological impacts of climate change. However, it
has been revealed in the literature that the impacts of climate change will negatively impacted the
water availability for both industrial and domestic purposes in the developing nations especially in
Africa. The impacts on hydrology and water resources are already being felt and the situation could
become worse in the future, especially in river basins such as the NRB. Nevertheless, most activities
of the inhabitants of the NRB and particularly those living in the HBRB depend on the availability of
water. This underscores the need for continuous understanding the impacts of the changing climate
on water resources availability in the basin.

Although several studies in the literature review have focused on the impacts of climate change on
the larger NRB and the entire Cameroonian catchment, most of them are limited by their inability
to provide specific information needed for planning in the present study area, because those studies
used GCMs data and scenarios without mitigation and adaptation strategies taking into account.
Impacts and vulnerabilities of a given region are linked to regional and local forcings, GCMs with
a coarse horizontal grid resolution do not capture these local and regional effects. Consequently, in
order to fill the gaps, the present study embraces the application of a hydrological model and the use
of downscaled GCMs data to ensure proper combination of the most probable physical and climatic
conditions needed to mimic the climatic reality within the basin for the evaluation of the impacts
of climate change to provide reliable information for future planning. Moreover, differently from the
previous studies, this study includes scenarios that take into account the land use change, mitigation
and adaptation strategies.
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Chapter 2

Study area, data and methods

Introduction

Knowledge of the vegetation, climate and topography of the study area, as well as the techniques
used, facilitates the interpretation and analysis of the obtained results. This chapter presents the
study location, various data types and sources, and the analytical methods employed to achieve the
objectives of the research work. First the sensitivity and uncertainty analysis of the hydrological
model is examined, then the model optimization and performance assessment, followed by the RCMs
data evaluation and lastly the evaluation of future climate change impacts in the basin. The flowchart
of the research work is as shown in Figure 10.

Figure 10: Research Flowchart.
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2.1 Study area

2.1.1 Location

Generally, Cameroon is a Central African Nation located on the Gulf of Guinea between latitudes
2◦N and 13◦N of the equator and longitudes 8◦E and 16◦E of the Greenwich Meridian of the globe,
with a total land mass of 475, 650 km2, shares its boundary with Nigeria to the west, Central African
Republic and Chad to the east, Equatorial Guinea, Gabon and Congo to the south, and a small
portion of Lake Chad to the north.

The Headwaters of the Benue River Basin (HBRB), a Cameroonian part of the Benue River Basin,
and recognized as the important tributary of the Niger River Basin (NRB), is located in the Northern
Cameroon between latitudes 7◦N and 11◦N and longitudes 12◦E and 16◦E (Fig. 11), with a drainage
area of 66, 000 km2 and represents 4.4% of the total area of the NRB.

Figure 11: Localization and drainage area of the HBRB.

2.1.2 Topography

Based on the digital elevation matrix (DEM) at 90m, the elevations of the HBRB vary from 200 to
1800 m (Fig. 12) which can be divided into three main units (Dassou et al., 2016):

• The hilly regions which is characterized by the Mandara and Alantika Mountains. The elevation
ranges between 900 - 1885 m;
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• The Adamawa plateau (around 1100 m) in the southern part of the region which is surrounded
by volcanic mountains reaching up to 2400 m;

• The Northward plain which is characterized by low altitudes around 300 m. It consists of
degraded shrubby steppes on sandy clay soils.

Figure 12: Topography: Digital Elevation Model (DEM) at 90m of the HBRB.

2.1.3 Climate

The HBRB is located in the transition zone between the tropical/equatorial climate in the Center and
South of Cameroon and the Sahelian Climate in the Far North and enjoys a tropical humid climate
(Sudan climate). This climate is characterized by a dry and hot season stretches from November to
April and a wet and cooler season from May to October, during which rainfall occurs. It’s unimodal
rainfall region. The studied basin, like all the tropical regions of sub-Saharan Africa continent, is
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under the influence of two air masses which control the shift in the position of the intertropical
convergence zone (ITCZ, ground trace of the contact of the two air masses):

• Harmattan or continental tropical air, coming from the desert of Sahara, is a very dry air, at
high temperatures in summer, with a general direction from the North-East;

• the Monsoon or equatorial maritime air, humid and unstable, with relatively cool temperature,
come from the Saint Helena high, so from the southwest.

From November to April, under the influence of the Sahara high, the harmattan blows almost con-
tinuously from the northeast, slowly pushing the ITCZ towards the southwest which brings dryness.
From May to October, a Saharan depression gradually replaces the previous high, while the Saint
Helena high strengthens and moves a few degrees northward; the monsoon then invades upper Niger
and then the lake area. The return of the ITCZ to the North is first accompanied by an increase in
the hygrometric degree on the ground and dry tornadoes, then tornadoes short but violent.

2.1.3.1 Rainfall

Northern Cameroon’s rainfall decreases gradually from the south (the highland of the Adamawa
plateau) to the Far North (Chad plain). The length of the rainy season decreases from about six
months in the Adamawa to four around Lake Chad and concentrated over four months: June, July,
August and September. The annual rainfall in the Northern Cameroon ranges from 400 to 1800 mm
(Dassou et al., 2016). The maximum monthly rainfall are in August and September with values of
the same order for these two months. In October, the rainfall is decreasing very quickly (MINEE and
GWP, ).

2.1.3.2 Temperature

In contradiction to rainfall, northern Cameroon’s temperature increases gradually from the south
to the Far North. Due to the low altitude of the region, there is a significant increase in mean
temperature of between 24 and 28.7◦C in Tibati and Kaélé stations respectively. The maximum
monthly mean temperatures are observed in March for the Tibati station (26.2◦C) and in April for
the Garoua (32.9◦C), Kaélé (33.5◦C) and Poli (29.6◦C) stations. This marks the end of the dry
season. The minimum monthly mean temperatures are observed in August for all stations, which
corresponds to abundant rainfall (MINEE and GWP, ).

2.1.4 Vegetation and agriculture

Cameroon has a diversified agricultural sector, resulting from various agro-ecological zones. It is
characterized into five major agro-ecological zones with the major crops and livestock, production
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activities for each zone (see Fig. 13). According to Okolle et al. (2016), the vegetation of the HBRB
is mainly dominated by sudan and sahel savannah in the north and far north regions and high Guinea
savannah in the Adamawa. The major crops and livestock production activities for the region are
cotton, millet-sorghum, cowpea, onion, cattle, sesame, maize, yam and patatoes.

Figure 13: Map of Cameroon showing the different regions and agro-ecological zones (Adapted from Okolle

et al., 2016).

2.1.5 Hydrology and water resources

The Benue River Basin (BRB) with an entire length of 1400 km has only 350 km within the Cameroon
territory (Neba, 1987) and fed by tributaries from three catchment areas: the western highlands,
the Adamawa highlands and the Mandara mountains and joins the Niger at Lokoja in Nigeria. It
rises from the central northern slopes of the Adamawa plateau. Mayo Rey and Mayo Godi are the
tributaries originate from the eastern sector. From the central region is the Mayo Farda from the Poli
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mountains. The Faro, Mayo Njal and Mayo Deo, which form the western arm of the tributaries of
the Benue, all converge to join the Benue at the exit point into Nigeria. In the western highlands, the
tributaries of the Benue rise from the Bamenda highlands, the northern part of this catchment area.
The main tributary from the Mandara mountains is the Mayo Louti. To the south of the Diamare
plain is the Mayo Kebi and its tributaries flow through the Republic of Chad before meeting with
Mayo Kebbi.

The HBRB holds huge potentials for water resources, including hydropower, irrigation, navigation,
industry, domestic used and breeding. Table 4 summarized the water needs by sector in the HBRB
(MINEE and GWP, ).

Table 4: Summary of water needs by sector in the HBRB (source: MINEE and GWP, ).

Water volume Relative to the
Sector 10−3.km3.year−1 total needs (%)

Domestic needs 65.9 0.82

Needs for breeding 13.29 0.17

Needs for irrigation 377.08 4.68

Needs for hydropower 7600 94.33

Needs for industry 0.33 0.004

Total 8056.6 100

Since the year 1982, the Lagdo dam which is the one largest Reservoir for Cameroon country was
build by a combination of engineers and Chinese workers, along with Cameroonian laborers.

2.2 Data used

Data acquisition is the essential phase of any applied research. Data quality is a prerequisite for the
quality of a study. In modelling, data are used not only to develop a model but also to evaluate it.
Without data in sufficient quantity and quality, the model becomes unlikely efficient and operational.
For our study, we needed the traditional data used in rainfall-runoff modelling (rainfall and stream-
flows data) and specific data on climate variables (minimum, maximum and mean air temperatures,
relative air humidity, wind speed, sunshine duration).
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2.2.1 Hydrometeorological data

2.2.1.1 Meteorological data

Daily measured weather data (daily rainfall, mean, maximum and minimum air temperature at 2-m,
solar radiation, relative humidity and potential evapotranspiration (PET) derived from Penman’s
formula) from the Direction of the National Meteorology of Cameroon (DNM), recorded at the dif-
ferent weather stations located in the Basin and neighboring areas, were used in this study. Figure
14 shows the geographical positions of the stations and Table 5 indicates the names, geographical
positions (latitude and longitude), altitudes and record period of the stations.

Figure 14: Study area with the geographical locations of rainfall stations (indicated by numbers).
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Table 5: Temporal and spatial characteristics of the 25 rainfall stations used.
Station Station Latitude Longitude Altitude Record Missing
number name (◦N) (◦E) (m) period (%)
1 Mada 10.9 14.13 750 1950-2004 0.15
2 Guetale 10.89 13.90 490 1948-2003 0.39
3 Bogo 10.74 14.6 340 1953-2003 0.20
4 Mokolo 10.73 13.78 795 1950-2003 0.04
5 Maroua AGRO 10.63 14.30 402 1946-1990 3.50
6 Maroua Station 10.58 14.27 428 1927-2003 0.00
7 Maroua Salak 10.46 14.26 423 1950-2004 0.33
8 Hina-marbak 10.37 13.85 544 1950-2003 0.10
9 Yagoua AGRI 10.35 15.28 325 1948-2003 0.01
10 Bourrah 10.25 13.51 775 1954-2003 0.64
11 Lara 10.18 14.51 416 1950-2003 0.01
12 Guidiguis 10.14 14.71 362 1961-2003 0.10
13 Doukoula 10.12 14.02 340 1955-2001 0.40
14 Kaele 10.10 14.44 388 1944-2003 0.02
15 Lam 10.07 14.14 430 1953-2003 0.85
16 Guider 9.93 13.95 356 1948-2003 0.00
17 Pitoa 9.41 13.51 274 1961-2003 0.01
18 Garoua AERO 9.34 13.38 242 1950-2004 0.59
19 Garoua Ville 9.30 13.39 213 1950-2003 0.41
20 Fignole 8.57 13.05 523 1961-2003 0.00
21 Poli 8.48 13.23 436 1950-1995 0.03
22 Madingrin 8.45 15.00 430 1961-2003 0.00
23 Tcholire 8.4 14.17 392 1950-2003 0.02
24 Touboro 7.77 15.37 500 1950-2003 0.00
25 Ngaoundere 7.32 13.58 1138 1950-2001 0.15

Only one station (Maroua AGRO) has the percentage of missing values equal to 3.5 %. The
remaining stations have the missing values less than 1 %, while 05 of them have no missing values.
The PET was provided by only few full meteorological stations (Ngaoundéré, Garoua, Kaele and
Maroua). Rainfall data of some stations have been used to calibrate the Yates hydrological model
in HBRB (Mkankam, 2001), to divide Cameroon into different climatic zones (Penlap et al., 2004),
and to investigate the onset, retreat and length of the rainy season, and drought occurrence over
Cameroon (Guenang and Mkankam, 2012, 2014).

2.2.1.2 Hydrological data

Daily streamflow time series for three (03) monitoring stations (Buffle Noir, Garoua and Riao) lo-
cated in the basin, with different record periods, were obtained from the Hydrosciences Montpellier
- Système d’Informations Environnementales database (Boyer et al., 2006, SIEREM,
http://hydrosciences.fr/sierem). Table 6 gives the physiographic and hydrological characteristics of
the available streamflow gauging sites in the UBRB considered here as sub-catchments, as well as
the data quality analysis. The streamflow data of Riao gauging station were successfully used by
Mkankam (2001) to investigate the performance of Yates hydrological model in the HBRB.
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Table 6: Physiographic and hydrological characteristics of the available streamflow gauging sites in the

HBRB.
characteristics Garoua Riao Buffle Noir
Latitude (◦N) 9.3 9.05 8.12
Longitude (◦E) 13.38 13.68 13.83
Mean elevation (m a.s.l.) 174 185 350
Catchment size (km2) 64,000 30,650 3,220
Mean annual precipitation (mm/year) 1,130 1,285 1,500
Mean annual discharge (m3/s) 451.85 260.89 37.33
Extreme discharge (m3/s) 5820 3320 738

Land use
Savannah 59% 16% 0%
Wooded savannah 38% 78% 0%
Highland meadow 3% 6% 100%

Sub-catchment hypsometry
% below 500 m a.s.l. 74.5% 63% 0%
% between 500 and 1, 000 m a.s.l. 25.0% 35% 2%
% above 1, 000 m a.s.l. 0.5% 2% 98%

Daily streamflow data available
Record period 1930-1995 1950-1999 1955-1995
Number of Months 776 591 480
Missing Months (%) 26.80 08.97 14.79

2.2.2 Climate scenarios data

In this research, CORDEX precipitation and temperature data derived from REMO model, which has
been used in other studies over the region (Fotso-Nguemo et al., 2016, 2017; Vondou and Haensler,
2017; Tamoffo et al., 2018), were used to drive the hydrological model. The lateral boundary condi-
tions (LBC) data of two GCMs, Europe-wide Consortium Earth System Model (EC-ESM) and Low
Resolution of the Max Planck Institute-Earth System Model (MPI-ESM-LR) were downscaled by the
REMO model over the CORDEX African domain (Giorgi et al., 2009) and are termed respectively
REMO-EC and REMO-MPI. The REMO model is known to give a good representation of the present
climate of the region (Fotso-Nguemo et al., 2016, 2017; Vondou and Haensler, 2017; Tamoffo et al.,
2018).

2.2.2.1 REMO model description and experiment design

For the regional downscaling experiments, the hydrostatic version of the regional model REMO2009
is used (further denoted as REMO). REMO is a three-dimensional atmospheric model based on the
“Europa-Model” system (Jacob, 2001b; Jacob et al., 2012; Teichmann et al., 2013). It has been
developed in the context of the Baltic Sea Experiment (BALTEX) at the Max-Planck-Institute for
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Meteorology in Hamburg by using the physical package of the global circulation model ECHAM4
(Roeckner et al., 1996). The finite difference equations are solved on an Arakawa-C grid. The model
setup included a land surface scheme (Hagemann, 2002), radiation scheme (Morcrette, 1991) and a
semi-lagrangian advection scheme as well as the parameterization of sub-grid scale processes such
as convection (Tiedtke, 1989), cloud micro-physics (Lohmann and Roeckner, 1996) and turbulent
vertical diffusion (Louis, 1979). The horizontal grid resolution was 0.44◦ x 0.44◦ as specified by
CORDEX. More information about the model physics and dynamics is available in (Fotso-Nguemo,
2018) and at the REMO website (http://www.remo-rcm.de/).

The historical experiments are downscaled for 1950–2005 in which observed (GHGs) concentrations
were used. The GCM projections are downscaled from 2006-2100 and three RCP scenarios are
considered, namely, RCP2.6 (van Vuuren et al., 2011), RCP4.5 (Thomson et al., 2011) and RCP8.5
(Riahi et al., 2011).

2.2.2.2 Lateral boundary conditions data and experiments setup

The first GCM is EC-ESM version 2.3, which used the Integrated Forecasting System (IFS) from
the European Centre for Medium-range Weather Forecast (ECMWF) to represent the atmosphere
coupled to the Nucleus for European Modelling of the Ocean (NEMO) model. His spectral horizontal
resolution is T159 (triangular truncation at wave-number 159, roughly 1.125◦ x 01.125◦) with 62 ver-
tical levels. The distance between levels increases gradually with height with typically about 20 levels
to resolve the boundary layer. More information can be found at the website: http://ecearth.knmi.nl.
Clouds are described by prognostic equations for cloud water content and cloud fraction and are dis-
tinguished in convective and stratiform clouds (Tiedtke, 1993). The parametrization of the former is
based on the bulk mass flux approach (Tiedtke, 1989), whereas the formation of the latter is based
on non-convective processes, such as large scale lifting and/or diabatic cooling (Jacob, 2001a).

The second GCM is MPI-ESM, which consists of the GCM for the atmosphere ECHAM6 (Stevens
et al., 2013) coupled to the MPI Ocean Model (MPI-OM) (Jungclaus et al., 2013). The model system
is further coupled to dynamic process models for marine biogeochemistry of the Hamburg Model of
Ocean Carbon Cycling (HAMOCC5, Ilyina et al., 2013) and for the land biosphere of the Jena Scheme
for Biosphere-Atmosphere Coupling in Hamburg (JSBACH, Brovkin et al., 2013). Here, we used the
experiments conducted within the protocol of CMIP5 (Taylor et al., 2012) in the Low Resolution
(LR) configuration with spectral truncation of T63 (approximately 1.875◦ x 1.875◦) and 47 vertical
levels. MPI–OM is used with a bi-polar grid at 1.5◦ horizontal resolution and 40 vertical levels.

The historical experiment of those two GCMs started in 1850 from a pre-industrial control sim-
ulation with a total length of 1,000 years with prescribed constant natural climate forcing. Starting
from three different years of the pre-industrial control run, three realizations were integrated from
1850–2005 under observed natural and anthropogenic forcings, as well as anthropogenic land-cover
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change (Giorgetta et al., 2013). In this research, the first realization from 1950–2005 for the down-
scaling experiments was used and the global climate change experiments are conducted for the period
2006–2100 following the Representative Concentration Pathway (RCP) scenarios developed by Moss
et al. (2008) and anthropogenic land-use scenarios based on Hurtt et al. (2011).

2.2.3 Observation and reanalysis datasets

Assessing the model’s ability to simulate the current climate is prior for impact studies. In order to
take into account, the uncertainties associated with rainfall and 2-m temperature, we used different
observational (in situ and satellite) and reanalysis datasets that include:

• Climate Research Unit data (CRU) version TS3.22 beginning in 1901 from the University of East
Anglia that includes monthly precipitation and temperature at 0.5◦ × 0.5◦ latitude-longitude
resolution over land areas (Harris et al., 2014).

• National Center for Environmental Prediction/National Center for Atmospheric Research
(NCEP/NCAR) Reanalysis data (NCEP1) spans from 1948 to present and includes 6 hourly
daily precipitation rates and 2-m temperature at 2.5◦ × 2.5◦ spatial resolution (Kalnay et al.,
1996).

• The National Center for Environmental Prediction (NCEP) of the Department of Energy (DOE)
Atmospheric Model Intercomparison Project (AMIP-II) reanalysis data (NCEP2) spans from
1979 to 2016 and includes 6 hourly daily precipitation rate and 2-m temperature at 2.5◦ × 2.5◦

spatial resolution (Kanamitsu et al., 2002). NCEP2 is an improved version of NCEP1 that fixed
errors and updated parameterization of physical processes.

• The ERA-Interim (ERAIN) Reanalysis data, which is the recently Reanalysis data for the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) that includes daily precipitation
and 2-m temperature at 0.75◦ × 0.75◦ spatial resolution (Dee et al., 2011).

2.3 Methodology

2.3.1 Hydrological model description: HBV-Light rainfall-runoff model

concept

2.3.1.1 General description

The HBV-Light model (Seibert, 2005) selected for hydrological modeling in this research, was de-
veloped at Uppsala University in 1993 using Microsoft Visual Basic. It is a modified version on
the HBV (Hydrologiska Byråns Vattenavdelning, in English: Hydrological Bureau Water Balance
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section) model, originally developed by the water balance section of the Swedish Meteorological and
Hydrological Institute (SMHI) to assist hydropower operations in the 1970s (Bergström and Forman,
1973; Bergström, 1976) in the context on a strong snow covert. The aim was to create a conceptual
hydrological model with reasonable demands on computer facilities and calibration data. The name of
the model HBV is adapted from institute name where it was developed. During the last few decades,
the model was widely used in the Scandinavian and Sweden catchments (Bergström, 1992). HBV
model was chosen due to the relatively low demand for input data and the unexcessive number of free
model parameters compared with other models (Rusli et al., 2015). During the last few decades, the
model has proved flexibility and robustness in solving water resources problems, and it is used for a
broad range of applications in different version in many studies and projects in the World (Bergström,
2006). Additionally, in the West African context, the HBV model was also found to be suitable in
simulating discharge and for global change impact studies (Cornelissen et al., 2013; Poméon et al.,
2017; Kwakye and Bárdossy, 2020). The HBV-Light model (Seibert, 2005) used here has identical
structure to the model of Bergström (1992), with two small changes. The firstly is inclusion of a
spin-up period rather than requiring prescribed initial states, and secondly the MAXBAS routing
parameter can assume non-integer values. It was used here because his Matlab version provided by
Aghakouchak et al. (2013) includes Monte-Carlo procedure for calibration.

The model general water balance can be described as:

P − E −Q = d

dt
[SP + SM + SUZ + SLZ + LAKES] (2.1)

where P is precipitation, E is Evapotranspiration, Q is runoff, SP is snow pack, SM is Soil moisture,
SUZ is upper ground zone, SLZ is lower ground zone and LAKES is lakes water storage.

2.3.1.2 Model structure

The HBVmodel is classified as a conceptual hydrological model with either semi-distributed or lumped
model domain. The model works at daily time step and simulates discharge using precipitation,
temperature and long-term monthly potential evapotranspiration like input variables. It consists
on four (04) main conceptual subroutines: the snow routine representing snow accumulation and
snow melt by a degree-day method, the soil moisture and evaporative routine where groundwater
recharge and actual evaporation are computed as functions of actual water storage, the response
routine represented by three linear reservoir equations and channel routine modeled by a triangular
weighting function (Aghakouchak and Habib, 2010).

Given that the study area is snow free, the snow subroutine has been removed and the main
hydrological processes in the model are simplified by nine (09) model parameters, subdivided into
two (02) categories, namely:

• the physical parameters that describe the physical properties of the watershed, include the

Rodric M. Nonki 39 Ph.D thesis



Study area, data used and adopted methodology

field capacity (FC) parameter that describes the maximum capacity of the soil moisture, the
permanent soil wilt point (LP ) which is the value of soil moisture for which the current (actual)
evapotranspiration (AET) reaches the PET because soil moisture is a factor influencing the
AET.

• Empirical parameters that have little or no physical significance but are used to describe con-
ceptual processes include reservoir parameters (K0, K1, K2, PERC and UZL) representing
respectively the storage coefficients of near-ground flow, hypodermic flow, base flow, constant
percolation and threshold level in the upper reservoir, the shape coefficient (β) which deter-
mines the relative contribution to rainwater runoff and the MAXBAS parameter which is a
unit hydrograph of base time.

Model parameter, definitions, units and initial ranges are summarized in Table 7.

Table 7: Main components of hydrological processes and the parameters designed to represent them in the

HBV-Light model and their ranges used for the Monte Carlo simulations (source: Seibert and Vis, 2012.
Main hydrological Parameter Definition Units Minimum Maximum
Processes value value

FC Maximum value of soil moisture storage mm 50 500
Soil and evaporation LP Fraction of FC above which actual ET equals potential ET − 0.3 1
routine β Shape parameter for the soil moisture distribution function − 1 6

K0 Near surface flow routing rate constant day−1 0.05 0.5
Groundwater and K1 Interflow routing rate constant day−1 0.01 0.3
response routine K2 Baseflow routing rate constant day−1 0.001 0.1

UZL Threshold for Q0 flow mm 0 100
PERC Maximum rate of recharge between the upper mm.day−1 0 6

and lower groundwater boxes
Routing routine MAXBAS Length of triangular weighting function in routing routine day 1 5

For the soil moisture and evaporation routine, given that the watershed is snow-free, the rainfall
(P [mm]) is divided into water infiltration and water recharge depending on the relation between the
water content the soil box (SM [mm]) and its maximum value (FC [mm]). The second component,
usually known as effective precipitation (Peff [mm]) is computed as follows:

Peff = P.(SM
FC

)β (2.2)

where a parameter β determines the relative contribution to runoff from a millimeter of rain at a
given soil moisture deficit.

Then, the water content of the soil box is updated:

SM = SM + (P − Peff ) (2.3)

The actual evapotranspiration (AET ) is computed using the integrated converted method (Zhao
et al., 2013). This method uses the soil moisture extraction function to convert PET into AET based
on the following equation:

AET = PET.min(1, SM

FC.LP
) (2.4)

where LP is a parameter that controls the shape of the reduction curve for PET .
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The water content of the soil box is updated again:

SM = max(0, SM − AET ) (2.5)

The runoff response routine is organized around two conceptual reservoirs, which have linear
emptying laws, the first feeding the second by infiltration. The first reservoir receives the water
recharge and empties into three components:

• a surface runoff, Q0 takes place when the water level in the upper reservoir exceeds the threshold
value, UZL

Q0 = max(0, K0 × (SUZ − UZL)) (2.6)

where SUZ is the water level filling the upper reservoir and K0 is the near surface flow storage
coefficient.

Then, the water level filling the upper reservoir is updated:

SUZ = SUZ −Q0 (2.7)

• a sub-surface runoff, Q1

Q1 = K1 × SUZ (2.8)

where K1 is the interflow storage coefficient.

• a constant percolation, Qperc

Qperc = PERC × SUZ (2.9)

where PERC is the percolation storage coefficient.

Finally, the water level filling the upper reservoir is updated again:

SUZ = SUZ − (Q1 +Qperc) (2.10)

The lower reservoir receives the constant percolation Qperc and empties linearly into a base flow
(groundwater contribution), Q2

SLZ = SLZ +Qperc (2.11)

Q2 = K2 × SLZ (2.12)

where SLZ is the water level filling the lower reservoir and K2 is the is baseflow storage coefficient.
Then, the water level filling the lower reservoir is updated:

SLZ = SLZ −Q2 (2.13)

The total runoff at the time step t, QGW is then transformed by the parameter MAXBAS [day]
to give the modeled streamflow, Qsim [mm.day−1].

QGW (t) = Q0 +Q1 +Q2 (2.14)

Rodric M. Nonki 41 Ph.D thesis



Study area, data used and adopted methodology

Qsim (t) =
MAXBAS∑

i=1
C (i)QGW (t− i+ 1) (2.15)

where C(i) =
∫ i
i−1( 2

MAXBAS
− |u− MAXBAS

2 | × 4
MAXBAS2 )du.

The schematic view of different processes that occurs in the HBV-Light rainfall-runoff model used
in this study is presented in Figure 15.

Figure 15: Schematic view of the different hydrological processes in the HBV-Light model.(adopted from

Seibert, 2005)

The average value of input data over a catchment was computed using the Arithmetical Mean
Method (Rakhecha and Singh, 2009) as shown in Eq. (2.16):

Pavg = 1
n

n∑
i=1

Pi (2.16)

where Pavg is the average of the climate variable P over the catchment area (for a given time period);
n is the number of stations within the catchment; Pi is the value of the considering climate variable
at station i.

2.3.2 Model calibration and validation

Since the main hydrological processes in hydrological models are simplified by the model parameters
that cannot be determined directly from field measurements, their calibration is required. Calibration
is a technique that allows one to choose the best parameter set of the model, by adjusting manually
or automatically their numerical values to more reproduce the response at the outlet (Madsen et al.,
2002; Wu et al., 2012). According to Blasone (2007), this process is also called “model optimization”,
considering that his scope is the reduction of the model error; and also defined as “inverse modelling”,
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since the observations of the model outputs are used to estimate the parameter values. This may
be performed automatically, or manually. Manual calibration, which involve manual adjustment of
the parameter values until a satisfactory level of model behavior is obtained, needs an experienced
modeler who understands the behavior of the model and can be very time-consuming. A substitute to
the manual procedure is automatic optimization. Automatic calibration involves the use of a search
algorithm to determine best-fit parameters, and it offers a number of advantages over the manual
approach.

The calibrated model parameters should necessarily be validated. A model validation, also called
model testing is the process to check the reproducibility of the results by the calibrated parameters.
This can be achieved by generating model simulations for independent events and/or at independent
locations and verifying that the model fit to the observations is comparable to that achieved in the
calibration. A new data set different from that in the phase of the calibration is used.

In this research, the automatic calibration procedure and the split-sample procedure recommended
by Klemes̆ (1986) were used for calibration and validation. Our data time-series has been split into
two sub-periods. The rainfall-runoff model is calibrated in the first sub-period using the Monte-
Carlo simulations (Aghakouchak et al., 2013) and validated in the second sub-period, taking the first
year of each sub-period as spin-up period. A MCS is in actuality a broad class of computational
algorithms which employs random sampling algorithms used to obtain probability distributions of
an unknown variable (Robert and Casella, 2013). It is the strategy of choice because it is more
general and requires fewer assumptions than other methods (Mishra, 2009). In MCS, the uncertain
parameters are sampled from distributions, and a large number of simulations are computed. Each
simulation represents an independent and equally probable realization. MCS has several advantages:
(1) it avoids errors associated with linearization of the model; (2) it produces a distribution for
the uncertain output as well as the mean and standard deviation; (3) the method does not require
the computation of derivatives; and (4) can handle correlated and independent parameters. However,
MCS may not be the most efficient in terms of number of model runs when the parameter uncertainty
is poorly defined or the outcomes of interest are limited in number (Mishra et al., 2003).

Given that it’s often not possible to find one unique best parameters set, i.e. different parameter
sets give similar good results during a calibration period, leading to uncertainties in the model output
prediction (Uhlenbrook et al., 1999). Therefore, the assessment of uncertainty in hydrological mod-
eling is important, especially when their results are used to support decisions about the management
of water resources (Refsgaard et al., 2007). It is also an accepted fact that hydrological model simula-
tions should explicitly include an estimate of their associated uncertainty (Blasone, 2007). Sensitivity
analysis (SA) and parameter uncertainty analysis are the powerful tools used to reduce uncertainty in
hydrological modeling prediction by identifying the influential parameters on model output, reducing
the interaction between model parameters and time-consuming during the model calibration, and to
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enhance the model optimization efficiency (Saltelli et al., 2006; Refsgaard et al., 2007).

2.3.3 Sensitivity analysis of model parameters

Sensitivity Analysis (SA) investigates how the variation in the output of a numerical model can be
attributed to variations of its input factors. It is a powerful tool generally applied to hydrological
models in order to identify the influential model parameters affecting most the hydrological response
variations. The parameter will then say “influential” or “non-influential” if change in the parameter
value affect the result of simulation of the hydrological response or not. The non-influential parameters
could be used to reduce the number of parameters to be calibrated in the model. There are generally
two approaches for SA: local and global SA methods. The choice of the method highly depends of
the purposes of SA since differents methods are better suited to address differents questions (Pianosi
et al., 2016). Given that the main objective of this research is to provide an optimal calibration
model for the basin, it is therefore important to provide insights on how variations in the uncertain
parameters map onto variations of the performance metric that measures the model fit. For this task,
the local SA method especially One-factor-At-Time (OAT) method is highly recommended (Pianosi
et al., 2016). The model was first calibrated using different Multi-objective functions and the best
parameter set that reproduces the streamflow well was obtained. By using the random numbers
from a uniform distribution within the given ranges for each parameter, we generated 100 values of
each model parameter and the model was run by varying one parameter, while keeping the other
parameters constant and observe the results for the Absolute Percent Bias (PBIAS, refer to Eq. 2.20)
and the normalized Root Mean Square Error (RSR, refer to Eq. 2.21) in order to find the parameter
controlling the total volume error and high-flow series respectively (Abebe et al., 2010) (refer to
“Optimal calibration and model performance assessment” to found the equations of those criteria).

2.3.4 Parameter identifiability and uncertainty analysis

The uncertainty in model parameters is the problems in identifying and calibration parameters. Re-
liable hydrological models simulations require that model parameters are precisely identified. In
constraining model parameters to small ranges, high parameter identifiability is achieved. To identify
appropriate model parameter values, typically, a large number of model simulations with different
parameter combinations is carried out and analysed according to their impact on performance crite-
rion. For this, we used the Monte Carlo (MC) method. Fifty thousand (50,000) parameter sets were
generated using the random numbers from a uniform distribution within the given ranges for each
parameter. The model was run for each parameter set and the value of Nash-Sutcliffe efficiency (NSE,
Nash and Sutcliffe, 1970, Eq. 2.17) greater or equal to 0.70 was taken as acceptable simulations.

NSE is a normalized dimensionless method that determines the relative magnitude of the residual
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variance (“noise”) compared to the measured data variance (“information”). It is range between
−∞ to +1, with optimal value equal to 1. NSE = 0 indicates that the model predictions matching
the mean of the measured data, while a negative NSE shows that the measured mean is a better
predictor than the model. It is common and widely used method by the hydro-geologists to assess
the efficiency of the model (Moussa, 2008) and computed as follow:

NSE = 1−
∑n
t=1(Qobs,t −Qsim,t)2∑n
t=1(Qobs,t −Qobs)2 (2.17)

Where Qobs,t and Qsim,t are the observed and simulated stream flows in the time step t respectively.
Qobs is the average of observed stream flows and n the total number of time step in the period of
simulation.

The parameter will then say “Good/well” or “badly/ill” defined if it gives acceptable simulations
with a small or wide range of variations respectively (assessed using boxplot). The more the model
parameter ranges are reduced, the more precisely a parameter is identified. This also reduces the
impact of equifinality and thus reduces the uncertainty in selecting adequate parameter values (Shin
et al., 2015). It can be qualitatively assessed by plotting NSE (vertical axis) against the model
parameter values (horizontal axis), in which for a well-defined parameter, the upper boundary should
have a distinct peak while in ill-defined parameters the upper boundary will have a broad plateau.
Quantitatively, simple descriptive statistics such as the mean, range, standard deviation (StD, refer to
Eq. 2.18), coefficient of variation (CV, refer to Eq. 2.19) and the determination of maximum (max)
and minimum (min) values are also employed to gain preliminary understanding of the acceptable
model parameters.

StD =
√∑N

i=1(Θi −Θ)2

N
(2.18)

CV = StD

Θ
=
√∑N

i=1(Θi −Θ)2

N

1
Θ

(2.19)

where Θi is the model parameter value for the acceptable simulation i, Θ =
∑N

i=1Θi
N

is the mean
value of model parameter Θ for an ensemble of the acceptable simulations, and N the number of the
acceptable simulations.

2.3.5 Optimal calibration and model performance assessment

During this stage, the model parameters identified as non-influential to total volume error and high-
flow series are kept constant. The range of other parameters have been defined based on the lower
and upper limits of the 95% confidence intervals for the acceptable simulations obtained during the
calibration. Based on MC-Simulations, 50,000 parameter sets were derived and the model was run
for each parameter set. Then, the optimized parameter set was obtained by optimizing the different
objectives functions mentioned in the paragraph below. The best set of optimized parameters was
then used in validation period and the performance of the model will be assessed.
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To assess the model performance for the HBRB during the model calibration and validation phase,
graphical and statistical techniques have been used (ASCE, 1993; Legates and McCabe, 1999). The
graphical techniques include hydrographs used to identify the difference in timing and magnitude of
peak flows, model bias and shape of the curves of recession (ASCE, 1993) and flow duration curves
that can illustrate how well the model reproduces the frequency of measured daily flows throughout
the calibration and validation periods (van Liew et al., 2007). In addition to the graphical technique,
other statistical methods, in addition to the NSE criteria, will be used to evaluate the results of the
calibration and validation. Those have been recommended by Moriasi et al. (2007) are described as
follows:

Percent bias (PBIAS): PBIAS is an index error that measures the average tendency of the
modeled data to be larger or smaller than their observed counterparts (Gupta et al., 1999). His
optimal value is 0.0, while the positive values indicate model underestimation bias, and negative
values indicate model overestimation bias. PBIAS is computed based on the following equation.

PBIAS =
∑n
t=1(Qobs,t −Qsim,t)∑n

t=1(Qobs,t)
× 100 (2.20)

RMSE-standard deviation ratio (RSR): it is also an error index statistic and includes a
scaling/normalization factor. RSR is calculated as the ratio of the root mean square error (RMSE)
and standard deviation of observed data (StDobs), as shown in equation 2.20:

RSR = RMSE

StDobs

=

√∑n
t=1(Qobs,t −Qsim,t)2√∑n
t=1(Qobs,t −Qobs)2

(2.21)

RSR varies from the optimal value of 0, which indicates zero RMSE or residual variation and
therefore, perfect model simulation, to a large positive value. The lower value of RSR implies the
lower value of RMSE and then the better model simulation performance.

The coefficient of correlation R2 was also used in this study in order to describe the degree of
collinearity between simulated and measured data. It ranges from 0 to 1, with 1 being the perfect fit
between the simulated and the measured data and computed as follows:

R2 =
∑n
t=1(Qobs,t −Qobs)(Qsim,t −Qsim)√∑n

t=1(Qobs,t −Qobs)2
√∑n

t=1(Qsim,t −Qsim)2
(2.22)

where Qsim is the average of modeled streamflows.
More details and descriptions of those statistical techniques can be found in ASCE (1993); Legates

and McCabe (1999); Moriasi et al. (2007), while the table 8 gives their interpretation.
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Table 8: Interpretation of the statistical criteria obtained during the model calibration and validation (source:

Moriasi et al., 2007).

PBIAS NSE RSR Interpretation model
PBIAS < 10 0.75 < NSE ≤ 1.0 0.00 ≤ RSR < 0.50 Very Good

10 ≤ PBIAS < 15 0.65 < NSE ≤ 0.75 0.50 ≤ RSR < 0.60 Good
15 ≤ PBIAS < 25 0.50 < NSE ≤ 0.65 0.60 ≤ RSR < 0.70 Satisfactory
PBIAS ≥ 25 NSE ≤ 0.50 RSR ≥ 0.70 Unsatisfactory

2.3.6 Sensitivity analysis of HBV-Light model to PET input

Precipitation and evapotranspiration (ET) are the major components of water budget for a watershed,
mainly because precipitation that includes ice (snow, hail, graupel, sleet) and water (rain, drizzle), is
the main mechanism responsible for depositing the fresh water on the catchment, while ET, which is a
sum of evaporation from the soil, sublimation and transpiration from the plant canopy, is the primary
mechanism by which water is removed from a watershed. Also, quantification of AET is important to
focus the land use change impacts on water yield, environmental assessment, and development of best
management practices to protect the quality of both surface and ground water (Irmak et al., 2005).
Moreover, precipitation and ET represent the key inputs for hydrological models. However, unlike
precipitation, direct measurement of ET is hard, time consuming, and costly because ET is depended
on a number of factors that may vary both spatially and/or temporally, including changes in leaf
area, plant height, crop characteristics, rate of crop development, degree of canopy cover, canopy
resistance, soil and climate conditions, and management practices (Doorenbos and Pruitt, 1977).

In the rainfall-runoff model, ET is estimated based on a theoretical climatic variable known as
PET and depends on the soil moisture extraction function (Zhao et al., 2013). PET represents the
upper limit of ET when soil water is in sufficient quantity. Due to the fact that this variable is
difficult to measure, it is usually estimated based on other climatic variables like air temperature,
relative humidity, sunshine duration and wind speed. However, these variables are often not available
in data scarce regions like the Upper Benue River Basin in Northern Cameroon. Nowadays, several
PET estimation methods exist that vary from temperature-based to physically-based process models
(see Oudin et al., 2005; Djaman et al., 2019 for a comprehensive list).

Many studies have compared the performance of PET estimation methods under different climatic
conditions zone (Nonki, 2014; Djaman et al., 2015, 2019) and they found significant difference between
them. Although significant differences exist in estimating PET with different methods, there is not
a clear consensus concerning the impact of PET estimation methods on stream flows simulations.
Some authors found that the hydrological model is insensitive to PET input (Oudin et al., 2005, 2006;
Wang et al., 2006; Jung et al., 2014; Spies et al., 2015; Bai et al., 2016), while another found that the
simulated streamflow is strongly depended on the PET input (Vazquez and Feyen, 2003; Andreassian
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et al., 2004; Samains and Pauwels, 2013). Consequently lack of consensus concerning the approach
of sensitivity analysis (dynamic or static approach) as suggested by Andreassian et al. (2004) and
Oudin et al. (2006), and also the use of the raw and rescaling PET inputs in the sensitivity studies.
As far it is important to continuous search to improve our understanding about the influences of PET
estimation methods on the hydrological modeling, here we evaluate the impact of PET estimation
methods on the model parameters and efficiency of the hydrological model follow the dynamic and
static sensitivity analysis approaches.

1. A dynamic sensitivity studies involve a re-calibration of the hydrological model using the raw
and perfect PET estimation methods. The best set of optimized model parameter obtained using
each PET methods is then used to compute the streamflow during the validation period and
the model sensitivity is assessed by comparing modeled streamflows using each PET methods
and observed streamflows.

2. A static sensitivity studies consist to calibrate the model with a perfect PET considered to be
optimal. The best set of optimized parameters is leaving unchanged and the modeled stream-
flows is computed during the validation period using raw and perfect PET methods. Model
sensitivity is then assessed by comparing modeled streamflows simulated using each PET meth-
ods and observed streamflows.

The comparison between modeled and measured streamflow is assessed here by using, in addition
to NSE, RSR and R2, the cumulative balance error (CB, Oudin et al., 2005) given by the following
equation:

CB = 1− |1−
∑n
t=1 Qsim,t∑n
t=1 Qobs,t

| (2.23)

CB is used to compute the significant average values and to measure the ability of the model to
successfully simulate streamflow volumes over the studied period. His range between −∞ to +1, with
optimal value equal to 1.

2.3.6.1 Different PET estimation methods used in this research

PET is calculated by using several methods that are applied to the mean daily data. These include
two combinative methods (Penman, Priestley-Taylor), twelve radiation-based methods (Global Radia-
tion, Net Radiation, Hargreaves-Samani, Trajkovic, Berti, Ravazzani, Makkink, McGuinness-Bordne,
Jensen-Haise, Turc, Abtew, Caprio) and five temperature-based methods (Schendel, Thornthwaite,
Hamon, Blaney-Criddle, Romanenko). However, the Penman PET data were used as the standard
method to estimate daily PET because it is usually considered as the most appropriate by many
hydrologists (Jensen et al., 1990; Shuttleworth, 1993). The selected PET methods were based on
different climatic data need and available in the study area and on their performance tests and eval-
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uations under Sahelian climate condition (Djaman et al., 2015). Methods used, formulation, and
references can be found in Table 9.

Table 9: Different PET estimated methods used in this work (brief description in the text)
Methods name Formulation References
Penman (PEN) PET = ∆Rn+γ (es−ea)Ea

λρ(∆+γ) Penman, 1948
where Ea = 2.63(1 + 0.536U)

Priestley-Taylor (PT) PET = αpt∆Rn

(∆+γ)λ , where αpt = 1.26 Oudin et al., 2005
Schendel (SCH) PET = 16 Ta

Rh
Djaman et al., 2015

Thornthwaite (TH) PET = 1.067N24 ( 10Ta
I

)k, where Federer et al., 1996
I =
∑12

m=1(Tm
5 )1.514

k = 0.49 + 1.8( I
100 )− 0.77( I

100 )2 + 0.67( I
100 )3

Hamon (HAM) PET = 715.5N24
es

(Ta+273.2) Federer et al., 1996
Blaney-Criddle (BC) PET = k n

N
(0.46Ta + 8.13) Oudin et al., 2005

where k = 0.45
Romanenko (RO) PET = 4.5(1 + Ta

25 )2(1− ea
es

) Oudin et al., 2005
Global Radiation (GR) PET = −0.611 + 0.149Rg + 0.079Ta Irmak et al., 2003
Net Radiation (NR) PET = 0.489 + 0.289Rn + 0.023Ta Irmak et al., 2003

Hargreaves (HAR) PET = 0.0023 Ra

√
(Tmax−Tmin)

λ
(Ta + 17.8) Xu and Singh, 2002

Trajkovic (TRA) PET = 0.0023 Ra(Tmax−Tmin)0.424

λ
(Ta + 17.8) Djaman et al., 2015

Berti (BER) PET = 0.00193 Ra(Tmax−Tmin)0.517

λ
(Ta + 17.8) Djaman et al., 2015

Ravazzani (RAV) PET = (0.817 + 0.00022Z)0.0023 Ra(Tmax−Tmin)0.5

λ
(Ta + 17.8) Djaman et al., 2015

Makkink (MA) PET = 1
λ

(
0.7 Rg∆

(∆+γ)

)
Xu and Singh, 2002

McGuinness-Bordne (MB) PET = Ra
λ

(
Ta+5

68

)
Oudin et al., 2005

Jensen-Haise (JH) PET = Rg(0.025Ta+0.08)
λ

Xu and Singh, 2002
Turc (TU) PET = 0.013 Ta

Ta+15 (23.8846Rg + 50)(1 + 50−Rh
70 )

if Rh > 50, Kostinakis et al., 2011
PET = 0.013 Ta

Ta+15 (23.8846Rg + 50)
Abtew (AB) PET = 0.53 Rg(1−α)

λ
Oudin et al., 2005

Caprio (CA) PET = 6.1
10−9Rg(1.8Ta + 1.0) Kostinakis et al., 2011

In Table 9, ∆ is the slope of saturation vapor pressure versus air temperature curve (KPa.oC−1);
Rn is the mean daily net radiation (MJ.m−2.day−1); Rg the mean daily global radiation (MJ.m−2.day−1);
γ the psychometric constant (0.0671 KPa.oC−1 for 29.3m elevation (Z)); Ta the mean daily air tem-
perature at 2m height [(Ta = (Tmax+Tmin)/2), oC]; Tmax the daily maximum air temperature (oC);
Tmin the daily minimum air temperature (oC); Tm the mean monthly air temperature (oC); es is
the saturation vapor pressure KPa; ea the actual vapor pressure (KPa) and es − ea the saturation
vapor pressure deficit (KPa). α=0.22 is the albedo for Savannah vegetation surface. Rh is the mean
daily relative humidity; n the mean daily sunshine duration (hour). n

N
is the relative sunshine du-

ration [−] where N represents maximum possible sunshine duration in a day or daylight hours. The
latent heat of vaporization (λ) was taken as 2.45 [MJ.K−1

g ] and Ra is the extraterrestrial radiation
(MJ.m−2.day−1). Brief description and equation for all the constant are given in Allen et al. (1998)
and Nonki (2014).

The difference between those PET estimation methods was assessed by comparing PET values
computed using each PET method and Penman’s PET values considered here as the perfect PET
method by using different statistical criteria such as Mean Bias (MB), RMSE, PBIAS, Standard Error
of Estimation (SEE; Irmak et al., 2003 and Mean Ratio (MR; Djaman et al., 2015). Their equations
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are given as follow:
MB = 1

n

n∑
t=1

(xi − yi) (2.24)

RMSE =
√∑n

t=1(xi − yi)2

n
(2.25)

SEE =
√√√√[ 1
n(n− 2)][n

n∑
i=1

y2
i − (

n∑
i=1

yi)2 − [n∑n
i=1 xiyi − (∑n

i=1 xi)(
∑n
i=1 yi)]2

n
∑n
i=1 x

2
i − (∑n

i=1 xi)2 ] (2.26)

MR = 1
n

n∑
i=1

yi
xi

(2.27)

where xi is the Penman estimated PET; yi is PET estimated by other equations in the time step i
and n is the number of time step.

2.3.6.2 Rescaling factor of PET estimates to avoid systematic biases

Some PET formulas listed in Table 9 give mean accumulated PET values different from those given
by the original Penman formula. In order to achieve similar accumulated PET values over the tested
periods due to these under- or over-estimations which may yield systematic errors on stream flow
simulations, we chose to apply a rescaling factor given by Oudin et al. (2005) for each formula in
order to fit the annual mean Penman PET value by the following relation:

PETrescaling,j =
∑n
j=1 PETPenman,j∑n
j=1 PETformula,j

× PETformula,j (2.28)

where∑n
j=1 PETPenman,j is the sum of daily Penman PET,∑n

j=1 PETformula,j, PETrescaling,j, PETformula,j
represent respectively the sum of daily PET, the daily rescaling PET and daily PET computed using
different methods.

Introducing this scaling factor, only the relative importance of PET fluctuations over the studied
period for each PET method is tested, and thus to identify which atmospheric parameters would
lead to the best temporal fluctuations in the evolution of the watershed evaporative demand. It also
allows us to focus on the seasonal cycle of each formula in order to avoid the effects of systematic
biases.

2.3.7 REMO model evaluation and performance assessment

Evaluation of a model is a process which determines how well the model’s predictions are consistent
with reality (Jørgensen and Bendoricchio, 2001) and the degree to which the model gives the users a
realistic description of the real world. In this research, the ability of the REMO model to simulate
present climate (1983–2005) was assessed by comparing the annual cycle of outputs of the REMO
model with observational and reanalysis datasets and computed some statistic performance criteria
such as the Root Mean Square Error (RMSE), Mean Bias (MB) and correlation coefficient (R2).
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2.3.8 Evaluation of climate change signal on hydro-climatic variables

The climate change signal (CCS) can be defined as the difference between the mean climatological
values of the future and reference (or present, or baseline or historical) period. In this study, we
defined two future periods termed mid of the 21st century (2041-2065) and late 21st century (2071-
2095), while baseline period was spans from 1981-2005 as adopted by Tamoffo et al. (2018).

For each climate variable and water balance components simulated by the HBV-Light hydrological
model, the CCS is computed as follows:

CCS = Xfuture −Xpresent (2.29)

CCS(%) = (Xfuture −Xpresent)
Xpresent

× 100 (2.30)

where Xfuture and Xpresent respectively represent the climatic or hydrological variables in the future
and baseline period, and Xpresent is the average of this variable over the baseline present.

A positive value of CCS indicates an increase of the considerate climatic or hydrological variable,
while a negative value indicates a decrease.

2.3.9 Hydropower potential estimation of the Lagdo Dam and his future

change

Hydropower is energy from water sources such as the ocean, rivers and waterfalls. It is an efficient,
reliable, and renewable source of energy, specially in developing countries like Cameroon, where
hydropower potential is the main source of electricity production. It also represents an useful tool
to reduce the atmospherics greenhouse gas concentrations caused by human activities. The cost of
hydroelectricity is relatively low, making it a competitive source of renewable electricity. However, it
is the most sensitive industry to the global warming, mainly because climate change will directly affect
the quality, quantity of water resources (streamflow and runoff), which are the important drivers of
hydropower potential.

The hydropower potential is the total energy from all natural runoff at stream gradient over the
entire domain. It is achieved by converting the potential and kinetic energy of the water into electrical
energy by electro-mechanical means (Turbines and Generators). The two vital factors to consider are
the flow and the head of the stream or river. The flow is the volume of water which can be captured
and re-directed to turn the turbine generator, and the head is the distance the water will fall on its
way to the generator (see Fig. 16)
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Figure 16: Vital factors considered for hydropower generation.

2.3.9.1 Mathematical formulation of the hydropower potential

The hydropower potential is computed follow different steps:

• Let us consider a volume of water dV that moves from position 1 to position 2, the work done
by this volume of water is given by the following equation:

dW = ρw × g × dV ×H (2.31)

where dW is the Work done by mass of water in Joules, ρw is the water density in kg.m−3, g is
the acceleration due to gravity, dV is a volume of water and H is the Vertical distance moved
by the volume of water.

This equation actually represents the energy that the volume of water has at position 1 with
respect to position 2.

• Now, if this volume of water takes some time dt to move from 1 to 2, then the flow of water Q
is determined as:

Q = dV

dt
(2.32)
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• But the power extracted by the water is the rate of work done and can be mathematically
written as:

P = dW

dt
(2.33)

After substituting equation 2.31 in equation 2.33, we obtain:

dp = ρw × g × dV × h
dt

(2.34)

Equation 2.31 can also be written as dV = Q× dt, therefore the previous equation can now be
written as:

dp = ρw × g ×Q× dt×H
dt

(2.35)

which after integration over time reduces to:

P = ρw × g ×Q×H (2.36)

This equation actually gives the theoretical power expressed in Watts (W).

• Therefore, the actual output is reduced by the fact that the turbine and generator have losses
in transforming the potential and kinetic energy into mechanical and electrical energy. Thus
actual power output will be obtain using the following equation (de Oliveira et al., 2017):

Np = ρw × g ×Q×H × η (2.37)

where Np is the hydropower potential (W ), ρw is the water density in (Kg/m3), g is the
acceleration due to gravity in (m/s2), Q is the discharge through turbine in ((m3/s)), H is the
Gross head in (m) known as elevation difference between headwater and tail water, and η is the
overall plant efficiency.

2.3.9.2 Potential impacts of climate change on hydropower potential

Through Equation 2.37, reference and future simulated streamflows obtained by using the calibrated
HBV-Light hydrological model were used to estimate the reference and future hydropower potential
of the Lagdo dam. The potential impact of climate change on hydropower potential was computed
by using the Equations 2.29 or 2.30.

2.3.10 Ecohydrological status of the watershed: the concept of water-

energy budget

An ecohydrologic analysis of the watershed known as a concept of water-energy budget (Tomer and
Schilling, 2009; Milne et al., 2002) is the approach used to evaluate the efficiency of water and energy
used by an ecosystem, defined here as the vegetation within a watershed. It is also used to test the
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validity in assessing the interaction between increase PET and precipitation change as projected by
the RCM-GCM model. It is determined by plotting the unused water (Pex, given by Equation 2.38)
against unused energy (Eex, given by Equation 2.39) in the watershed (Yira et al., 2017).

Pex = (P − AET )
P

(2.38)

Eex = (PET − AET )
PET

(2.39)

where Pex is the unused water; Eex is the unused energy; P is the precipitation; AET is the actual
evapotranspiration; and PET is the potential evapotranspiration.

The shift in this status relative to the reference period detects the climate change signal, while the
direction of the shift indicates whether the catchment experienced water stress or increased humidity
(see Fig. 17).

Figure 17: Conceptual model of ecohydrological shifts associated with changes in climate and land

use.(adopted from Tomer and Schilling, 2009).

This concept is also used to assess the change of streamflow as response of climate or land use
changes (Tomer and Schilling, 2009). Changes in land use will typically cause ecohydrologic shifts
towards increased Pex and Eex, or decreased Pex and Eex. Changes in climate are required to cause
increased Pex and decreased Eex (due to increase in P/PET ratio in time) or decreased Pex and
increased Eex (due to decrease in P/PET ratio in time). The direction of change in the P/PET
ratio indicates whether climate change results in increased or decreased humidity and precipitation
at the regional scale.
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Conclusion

In this chapter, we began with a detailed description of the study area. Next, we proposed an
observation-Modeling framework to quantify the effect of climate change on water balance components
and hydropower potential. The main parts of this framework are a hydrological model that can
simulate the observed streamflow, a RCMmodel that can downscale the GCMs, and the mathematical
formulation of the hydropower potential. The basic requirements of the framework are observed data:
meteorological data of the entire period to run the hydrological model; hydrological data to assess
the sensitivity and uncertainty analysis of the model parameter, and to calibrate and validate the
hydrological model; and the observation and reanalysis data to evaluate the performance of the RCM
model to simulate present climate in the study site.
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Chapter 3

Results and discussions

Introduction

The purpose of this chapter is to present the results obtained with the observation-Modeling frame-
work presented in the previous chapter. This includes the results of the hydrological modeling in the
first part, the sensitivity analysis of PET inputs for the model simulations results in the second part,
the results of climate change impacts assessment on the HBRB in the third part. The assessment
includes an analysis of the performance of the REMO RCM for the main climate variables at the
basin level, projections of water balance components and hydropower potential for the HBRB under
climate change (monthly, seasonal and annual), and ecohydrologic status of the watershed.

3.1 Hydrological modeling results

This section presents the results of the hydrological modeling in the headwaters of the Benue River
Basin. Sensitivity analysis, parameter identifiability, uncertainty analysis, parameter optimization,
stream flows for calibration and validation periods, and statistical performance of the model are per-
formed. Results show, in general, good model performance in representing the hydrological dynamic
of the study basin.

3.1.1 Individual sensitivity analysis

Figures 18 and 19 represent the individual sensitivity analysis of each parameter to PBIAS and RSR
respectively in the different gauging stations of the HBRB. The results indicate that the recession
coefficients (K0, K1, K2), the percolation coefficient (PERC) and the upper reservoir threshold (UZL)
parameters are insensitive to the PBIAS (Fig. 18) in the different gaging stream stations. In addition,
a routing routine parameter MAXBAS is insensitive to PBIAS in the Buffle Noir gaging station. Thus
they are non-influential parameters to the total volume balance error of this catchment. On the other
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hand, the soil and evaporation routine parameters (FC, β and LP), in addition with the recession
coefficient (K1) and the transformation routine parameter (MAXBAS) are the most or less influential
parameters for RSR (Fig. 19), thus influence the high-flow series of the catchment. But the soil and
evaporation routine parameters (FC, β and LP) are more sensitive to the volume balance error than
to the high-flow series, while the recession coefficient (K1) is the only routine response parameter
most sensitive to high-flow series.
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Figure 18: Sensitivity boxplot of parameters with reference to PBIAS objective function.
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Figure 19: Sensitivity boxplot of parameters with reference to RSR objective function.

From the model structure and formulation, FC, β and LP are the parameters that control the
water filling in the soil (infiltration), water lost (evapotranspiration) and water runoff. Thus, they
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influence the volume balance more than the high-flow series (Table 10). Specifically, considered as key
parameter in partitioning precipitation into soil moisture and runoff, a low value of FC implies that
the soil water storage capacity is very low and means that there is a small quantity of water available
for evapotranspiration and vice versa. This makes FC the main parameter to control volume error
and thus the sensitivity of this parameter to the PBIAS measure. As a parameter β is an exponent of
the ratio between soil moisture and his maximum value (FC), it represents the relative contribution
of precipitation to runoff at a given soil moisture deficit. For specific amount of soil moisture, the
higher value of β parameter implies the lower runoff, and vice versa. Then, it influences the amount
of soil moisture available for evapotranspiration and therefore strongly affects the volume error and
high-flow series. LP parameter, which controls the amount of water lost based on soil moisture
deficiency, influences both volume error and high-flow series because, when LP is close to 1, the
actual evapotranspiration will be higher, and vice versa.

Also based on model formulation, it is evident that parameters K0, K1, K2, PERC and UZL

control the response routine, thus will influence the high-flow series than total volume error. But
K0, K2, PERC and UZL parameters are non-influential parameters for high-flow series and volume
balance error. Specifically, K0 controls the surface runoff when an effective precipitation is above
threshold value UZL. Given the fact that the study catchment is a semi-arid zone (Guenang and
Mkankam, 2012) where precipitation is absent during sixth to eight months on the year (Dassou
et al., 2016), the received precipitation only contributes to the water feeling the soil box, water loosed
and water feeling the upper runoff reservoir without exceed his threshold value UZL, thus only
contributes to subsurface runoff. Therefore, the parameter KO that controls the surface runoff and
the UZL parameter are non-influential parameters for both high-flow series and volume balance error,
while the parameter K1 that controls the subsurface runoff is sensitive to high-flow series. In addition,
the percolation parameter PERC which plays a simple role of partitioning the effective precipitation
between the two runoff reservoirs based on the soil characteristics does not have an effect on both
high-flow series and total volume error; while K2 parameter, which controls the groundwater runoff
or base flow, and which is relatively low compared to K1 parameter is less sensitive to high-flow series
and not sensitive to total volume error.
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Overall, we found that for the nine parameters that represent the main components of hydrological
processes in the HBV-Light model, four parameters (FC, β, LP and MAXBAS) are sensitive to a
total volume error, while those four parameters in addition to K1 parameter are sensitive to high-flow
series in the HBRB. This result is comfortable with those found by Abebe et al. (2010) and Zelelew
and Alfredsen (2012). Abebe et al. (2010) used the Monte-Carlo procedure to identify the influential
and non-influential model parameters to the model response variations on the HBV model in the
semi-humid Leaf River catchment near Collins, Mississippi. They found that the parameters FC,
β and LP influence the total volume error, while UZL, K1, K0, and MAXBAS parameters that
control the response and transformation routines are the parameters that control the high-flow series
in this watershed. Zelelew and Alfredsen (2012) used the Sobol’s variance-based sensitivity analysis
method (VBSA, Sobol, 2001) in the twelve catchments located in Southern Norway to identify the
sensitive and non sensitive HBV model parameters on the model simulations. Their results showed
that for the fifteen free model parameters, they are four to six influential model parameters for high
flow conditions, and up to a minimum of six influential model parameters for low flow conditions.

3.1.2 Parameter identifiability

When the model parameters were sampled simultaneously, for the 50,000 simulations, about 1669, 40
and 1157 model runs gave fits with NSE values above 0.85 in the Garoua and Riao stations and NSE
above 0.70 in the Buffle Noir station respectively and identified as behavioral ones. The scatter plots
between the behavioral parameters and the values of NSE, which met his threshold value are shown
in Figure 20 to Figure 22 , while Figure 23 summarizes the uncertainty of the model parameters.
Based on these figures, it is clear that good simulations were obtained within wide ranges of response
routine parameters in the different gaging sites, except the recession parameter K1. Thus, they are
ill-defined or non-identifiable parameters in the HBV-Light model because there is not a distinct peak
when plotting NSE (vertical axis) against those parameter values (horizontal axis). We also notice
that the soil and evaporation routine parameters (FC, LP , β), in addition to recession parameter
(K1) and the routing routine parameter (MAXBAS) are found to be more or less well-defined or
identifiable parameters in this catchment, with K1 the most identifiable parameter. A closer look at
the formulation of the model shows that these parameters are the most important in their respective
model components. The results also reveal that FC shows more sensitivity in individual sensitivity
analysis as compared to his identifiability.
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Figure 20: Distribution of acceptable simulations of the nine model parameters after 50000 model runs at

the Garoua gage station (each point represents one model run and the red points represent the optimal values

of the objective function (NSE)).

100 200 300 400 500

FC [mm]

0.85

0.855

0.86

E
ff

ic
ie

n
c
y

0.4 0.6 0.8 1

LP [-]

0.85

0.855

0.86
Riao outlet

1 2 3 4 5 6

Beta [-]

0.85

0.855

0.86

0.1 0.2 0.3 0.4 0.5

K0 [/day]

0.85

0.855

0.86

E
ff

ic
ie

n
c
y

0.05 0.1 0.15 0.2 0.25 0.3

K1 [/day]

0.85

0.855

0.86

0.02 0.04 0.06 0.08 0.1

K2 [/day]

0.85

0.855

0.86

0 20 40 60 80 100

UZL [mm]

0.85

0.855

0.86

E
ff

ic
ie

n
c
y

0 2 4 6

PERC [mm/day]

0.85

0.855

0.86

1 2 3 4 5

MAXBAS [-]

0.85

0.855

0.86

Figure 21: Same as Figure 20 but at Riao gage station.
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Figure 22: Same as Figure 20 but at Buffle Noir gage station.
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Figure 23: Summary of the uncertainty of the model parameters, the standardized range refers to the ranges

used for the Monte Carlo procedure (Table 3).

In order to confirm this result, we expressed the uncertainty range of each parameter for acceptable
simulations by the 95% confidence intervals and the coefficient of variation (CV) and consigned in
Table 11.
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Table 11 shows that the confidence intervals for acceptable simulations of ill-defined parameters
were not significantly smaller than their initial ranges (Table 3), while the more or less identifiable
parameters have the confidence intervals relatively smaller than their initial ranges. For example,
before uncertainty analysis was performed, the threshold of the upper reservoir (UZL) parameter
had the value range [0, 100], but the confidence intervals for the acceptable simulations were [3.7,
98.3] (at Garoua station) and [4.3, 98.2] (at Riao station); while the initial range ([0.01, 0.3]) of the
recession coefficient parameter (K1) become [0.05, 0.17], [0.07, 0.12] and [0.04, 0.21] at Garoua, Riao
and Buffle Noir stations respectively. It can also be seen from Table 11 that the CV of the ill-defined
parameters were relatively large compared to those of most or less well-defined parameters.

3.1.3 Implications of the parameters uncertainties to the model predic-

tions

Figures 24 and 25 show the results of the model predictions based on the 95% confidence intervals for
the acceptable simulations during the calibration and validation periods respectively. These results
reveal that the simulations show a less evenly distributed band of uncertainty around the observed
streamflows. The results also show that there is a scope for using the Monte-Carlo procedure to
calibrate and to increase confidence in parameter estimation procedures and model predictions in the
HBRB. In all the gaging stations within the basin area, the best simulation as well as the observed
streamflows lie within the uncertainty band of model predictions from low to high flows. Some
discrepancies are noticed for the Buffle Noir outlet station where the high flows of the observed
streamflows lie outside the uncertainty band. These findings give the merit to the Monte-Carlo
procedure in calibrating, optimizing and predicting uncertainties in hydrological models because in
this method, the interactions between model parameters are implicitly taken into account (Seibert,
1997; Steele-Dunne et al., 2008; Tshimanga, 2012).
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Figure 24: Uncertainty band on the model simulations during the calibration period (envelope of the standard

deviation generated from the mean of the acceptable simulations) as well as measured and best simulated

discharge.
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Figure 25: Uncertainty band on the model predictions (envelope of the standard deviation generated from the

mean of the model simulations using the behavioral parameters in the validation period) as well as measured

and best simulated discharge .
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3.1.4 Optimal calibration and model performance evaluation

3.1.4.1 Optimized model parameters

Based on the lower and the upper limits of the 95% confidence intervals of the influential model
parameters, the model was re-calibrated. After the 50,000 model runs, the best set of optimized
model parameter which well performed the simulations in different outlets of the HBRB are given
in Table 12. Large values of FC, β and MAXBAS parameters are associated with more damped
and even hydrographs, and with the increasing channel length (Steele-Dunne et al., 2008). Based on
more damped and even hydrographs in a larger catchment, the recession coefficients (K0, K1 and K2)
are expected to decrease with increasing catchment size. The parameter K0 varies in the opposite
way. This can be explained by the fact that this parameter is the non-influential and worst defined
parameter in the model structure.

Table 12: Optimized value of model parameter obtained during the recalibration.

Main hydrological Parameter Garoua Riao Buffle Noir
Processes

FC 313.7 321.05 282.07
Soil and evaporation LP 0.64 0.99 0.98
routine β 2.99 4.45 1.90

K0 0.46 0.42 0.103
Groundwater and K1 0.076 0.093 0.077
response routine K2 0.0776 0.0365 0.0801

UZL 59.03 93.06 19.07
PERC 4.45 2.88 2.78

Routing routine MAXBAS 3.92 4.54 3.05

3.1.4.2 Calibration period

Figure 26 illustrates the model performance using daily observed and simulated hydro graphs as well
as the flow duration curves during the calibration period at the three gage stations within the basin
(Garoua, Riao and Buffle Noir). The model captures reasonably the timing and magnitude of high
and low flows, although some bias still exist. The flow duration curves also show that the model
reproduces the low flows more accurately than the high flows. Figure 27 shows the average monthly
streamflows for the calibration period at different outlets. The model represents the seasonality of
hydrological regime well with a maximum obtained in September, although a small difference exists in
the Buffle Noir outlet. Relationships between daily simulated and observed streamflows show a strong
correlation (Fig. 28), indicating good model performance (correlation greater than 0.90 at different
gaging sites). The goodness-of-fit of the model is also supported by other performance criteria which
are described with further detail in the statistical analysis section below.
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Figure 26: Comparison between observed and simulated hydro graphs and flows duration curves in the

HBRB during the calibration period: a) Garoua, b) Riao and c) Buffle Noir outlets respectively.
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Figure 27: Comparison between monthly average observed and simulated streamflow for the calibration

period in different outlets.
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Figure 28: Relationship between daily observed and simulated streamflow for the calibration period.

3.1.4.3 Validation period

Figure 29 shows the validated daily streamflows at different control stations. The model reproduced
the drought conditions in the basin; estimation of the observed streamflows was less better than
the calibration period. Relationship between simulated and measured streamflows shows a strong
correlation in the Garoua and Riao control stations (with R2 ≥ 0.90), otherwise in the Buffle Noir
control station, he shows a less correlation (R2 = 0.82) (Fig. 30). In general, the model exhibits good
performance in reproducing the streamflows in all control stations, although some errors in computing
high-flow series. In addition, average monthly streamflows for the validation period (Fig. 31) show an
excellent model performance, with an exception in August and September where significant difference
in magnitude is noted for all control stations.
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Figure 29: Comparison between observed and simulated hydro graphs and flows duration curves in the

HBRB during the validation period: a) Garoua, b) Riao and c) Buffle Noir outlets respectively.
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Figure 30: Comparison between monthly average observed and simulated streamflow for the validation period

in different outlets.
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Figure 31: Relationship between daily observed and simulated streamflow for the validation period.

3.1.4.4 Statistical analysis

Table 13 gives a statistical summary of the model performance for the calibration and validation
periods at all control stations. The model very few overestimates the total runoff volume during the
calibration period with a small volume error (less than 8%), while there is an underestimation of the
total runoff volume during the validation period at all gaging stations with the volume error relatively
high (greater than 15%), except the Buffle Noir outlet. Likewise, Table 13 presents the Nash-Sutciffe
Efficiency (NSE) for daily streamflows ranging from 0.76-0.89 for the calibration period, and 0.66-0.81
for the validation period, indicating good model performance. Comparing to the Table 8, the model
performance varies from good to very good. The worst and the best simulations are obtained in the
Buffle Noir and Garoua stations respectively. This result was expected because at the Buffle Noir
station, the basin has a very clear torrential character. The flow variations are very sudden; each
tornado or heavy rainfall gives rise to a distinct flood peak, which can last less than a day. This is
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the reason why the hydrograph of the flows in the Garoua and Riao stations during the rainy season
is much less serrated than in the Buffle Noir (Figs 26 and 29). The ratio between Root mean square
error and observed standard deviation (RSR) ranges from 0.33 to 0.49 and 0.43 to 0.58 for calibration
and validation stages, respectively. This reinforced the greater ability of the model to simulate the
hydrological characteristics of the basin. In general, the model better performed during the calibration
stage than in the validation stage and also more accurate in reproducing the flows in downstream
stations than upstream station, as shown by the NSE, RSR, and correlation coefficients. Despite
the good performance of the model, errors could be attributed to the uncertainty in estimating of
measured streamflows and the average climatology data used for the catchment, as well as the complex
hydrological characteristics of the basin (topography and size of catchments).

Table 13: Summary of statistical results for daily simulated and measured streamflows.

outlet Period NSE R2 RSR PBIAS(%)
Garoua Calibration 1961-1970 0.89 0.95 0.33 -3.69

Validation 1971-1980 0.81 0.93 0.43 18.98
Riao Calibration 1961-1970 0.86 0.93 0.38 -4.21

Validation 1971-1979 0.78 0.90 0.47 15.01
Buffle Noir Calibration 1961-1968 0.76 0.92 0.49 -7.03

Validation 1971-1978 0.66 0.82 0.58 3.33

3.2 Sensitivity of hydrological model to PET input

This section presents the results of the sensitivity analysis of model parameters and efficiency due to
the variation of the model input especially potential evapotranspiration (PET). Comparison between
different PET estimation methods is performed and their impact to the model parameters and effi-
ciency is assessed follow both dynamic and static approaches. Results show, despite the significant
differences in PET computation methods, model performance is insensitive and little sensitive to PET
input when we follow dynamic and static approaches respectively.

3.2.1 Difference between PET estimation methods

Table 14 shows a statistical summary of the performance of each PET estimation method compared
to the Penman method. There is a large spread between PET methods employed. Some methods
such as McGuinness-Bordne, Jensen-Haise, Schendel, and Blanney-Criddle methods systematically
overestimate the PET (in comparison to the chosen reference given by the Penman formula) with
the PBIAS of 28.81%, 22.20%, 21.43% and 18.06% respectively. While Abtew, Makkink and Tra-
jkovic methods systematically under-estimate it with the PBIAS of −35.84%,−24.45% and −18.12%
respectively.
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Table 14: Performance evaluation of the 18 PET estimation methods at the HBRB.

Methods name PBIAS RMSE MB SEE MR

(%) (mm.day−1) (mm.day−1) (mm.day−1) (–)
Priestley-Taylor (PT) -15.13 1.29 -0.83 0.63 0.86
Schendel (SCH) 21.43 1.51 1.17 0.74 1.24
Thornthwaite (TH) 7.93 2.08 -0.43 1.95 1.06
Hamon (HAM) 16.80 1.34 -0.94 0.58 0.85
Blaney-Criddle (BC) 18.06 1.92 0.99 1.63 1.18
Romanenko (RO) 18.24 1.68 1.00 1.32 1.19
Global Radiation (GR) -14.04 1.23 -0.77 0.43 0.88
Net Radiation (NR) -10.96 1.16 -0.60 0.45 0.91
Hargreaves (HAR) -0.55 0.91 -0.03 0.63 1.02
Trajkovic (TRA) -18.12 1.36 -0.99 0.46 0.84
Berti (BER) -12.84 1.16 -0.70 0.56 0.89
Ravazzani (RAV) -13.41 1.18 -0.73 0.55 0.88
Makkink (MA) -24.45 1.67 -1.34 0.52 0.77
McGuinness-Bordne (MB) 28.81 1.92 1.58 0.74 1.33
Jensen-Haise (JH) 22.20 1.58 1.22 0.96 1.24
Turc (TU) -15.32 1.29 -0.84 0.55 0.86
Abtew (AB) -35.84 2.24 -1.97 0.45 0.66
Caprio (CA) 20.45 1.50 1.12 0.96 1.22

Multi-scale statistics evaluation shows that the Hargreaves-Samani method (PBIAS = −0.55%;
MB = −0.03 mm.day−1; SEE = 0.63 mm.day−1 and MR = 1.02) is among the eighteen considered
methods the most similar to the chosen reference (Penman formula). Relationship between daily
PET estimated using each method versus the daily Penman PET shows an acceptable correlation,
indicating a good coherence among the various PET methods(with correlation greater than 0.5)
(Fig. 32), although some important underestimation (Abtew, Makkink) and overestimation (Blaney-
Criddle, Jensen-Haise) are noticed. Figure 33 shows the average monthly and annual PET estimated
using different methods. These methods reasonably capture the seasonality of the PET in this
area, which a peak is obtained in March with most methods and the minimum obtained during the
rainy season specifically in August. The Hargreaves-Samani method also reasonably captures both
the annual cycle and the inter-annual variability of the PET in this area compared to the Penman
method. Thus it is the best method in computing daily, average monthly and annual PET in this
area. This result is similar to those of (Allen et al., 1998) and (Sabziparvar and Tabari, 2010) who
suggested the use of Hargreaves-Samani method to compute PET in data scarce contexts where only
temperature is available, but contrary to those of (Djaman et al., 2015) who found that this method
performed poorly under Sahelian conditions over the Senegal River Valley.

Rodric M. Nonki 72 Ph.D thesis



Results and discussions

2 4 6 8 10 12
2

4

6

8

10

12

P
T

 P
E

T

polyfit

best fit

2 4 6 8 10 12
2

4

6

8

10

12

S
C

H
 P

E
T

2 4 6 8 10 12
2

4

6

8

10

12

T
H

 P
E

T

2 4 6 8 10 12
2

4

6

8

10

12

B
C

 P
E

T

2 4 6 8 10 12
2

4

6

8

10

12

R
O

 P
E

T

2 4 6 8 10 12
2

4

6

8

10

12

G
R

 P
E

T

2 4 6 8 10 12
2

4

6

8

10

12

N
R

 P
E

T

2 4 6 8 10 12
2

4

6

8

10

12

H
A

R
 P

E
T

2 4 6 8 10 12
2

4

6

8

10

12

H
A

M
 P

E
T

y=0.41x+2.41

R2=0.63

y=0.54x+3.7

R2=0.68

y=1.45x-2.04

R2=0.68

y=0.39x+2.42

R2=0.65

y=0.84x+1.88

R2=0.54

y=0.325x+2.94

R2=0.69

y=0.31x+3.2

R2=0.65

y=0.48x+2.8

R2=0.7

y=0.79x+2.16

R2=0.6

2 4 6 8 10 12
2

4

6

8

10

12

T
R

A
 P

E
T

2 4 6 8 10 12
2

4

6

8

10

12

B
E

R
 P

E
T

2 4 6 8 10 12
2

4

6

8

10

12

R
A

V
 P

E
T

2 4 6 8 10 12
2

4

6

8

10

12

M
B

 P
E

T

2 4 6 8 10 12
2

4

6

8

10

12

J
H

 P
E

T

2 4 6 8 10 12

Penman PET

2

4

6

8

10

12

T
U

 P
E

T

2 4 6 8 10 12

Penman PET

2

4

6

8

10

12

A
B

 P
E

T

2 4 6 8 10 12

Penman PET

2

4

6

8

10

12

C
A

 P
E

T

2 4 6 8 10 12
2

4

6

8

10

12

M
A

 P
E

T

y=0.37x+2.48

R2=0.7

y=0.43x+2.42

R2=0.69

y=0.42x+2.44

R2=0.7

y=0.34x+2.3

R2=0.63

y=0.38x+5.01

R2=0.54

y=0.77x+2.51

R2=0.71

y=0.36x+2.65

R2=0.64

y=0.78x+2.31

R2=0.72

y=0.23x+2.41

R2=0.55

Figure 32: Relationship between the daily potential evapotranspiration (PET) estimates of each method

versus the Penman PET (mm.day−1 ) over HBRB.
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Figure 33: Annual cycle (a) and inter-annual variability (b) of potential evapotranspiration estimates of each

method. The sky Blue band represents simulating uncertainty (envelope of the standard deviation generated

from the mean of the computed PET with different PET inputs)

3.2.2 Effect of different PET inputs on optimized model parameters of

the HBV-Light model

In this stage, the HBV-Light model was calibrated using each PET estimation method listed in Table
9 and the optimized model parameters set was obtained after 20,000 model runs by using Multi-
objectives function. Figure 34 shows the marginal distribution of the optimized model parameter
obtained using the different PET estimation methods, while Table Table 15 summarizes the statis-
tics regarding median, mean, standard deviation (StD) and coefficient of variation (CV ) of each
parameter.
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Figure 34: Marginal distribution of the set of optimized parameters obtained by using 19 PET method. In

all the box-and-whisker plots, the whiskers represent the minimum and maximum of each model parameter.

Table 15: Descriptive statistics of the variation of the optimized model parameters using 19 PET methods

during the calibration.

Methods name Min. Max. 25th Median Mean 75th StD CV (%)
Percentile Percentile

FC 240.5 494.8 322.8 380.2 371.1 399.8 69.40 18.70
LP 0.33 0.93 0.44 0.51 0.58 0.74 0.2 34.58
β 2.11 3.72 2.51 2.68 2.725 2.9 0.43 15.81
K0 0.08 0.49 0.20 0.27 0.27 0.33 0.12 43.24
K1 0.051 0.124 0.074 0.084 0.085 0.097 0.02 20.01
K2 0.007 0.081 0.031 0.045 0.047 0.065 0.02 47.11
UZL 6.04 99.03 29.01 61.75 54.91 80.48 31.1 56.64
PERC 0.14 5.60 1.21 2.65 2.68 3.97 1.77 65.99
MAXBAS 2.94 4.97 3.845 4.17 4.175 4.44 0.52 12.42

The results show that the model parameters vary according to different PET input. Two param-
eters of the soil and evaporation routine (FC and β), the recession coefficient of subsurface runoff
(K1) and the transformation routine parameter (MAXBAS) are less sensitive to PET input. These
parameters have been found to be well identifiable parameters in the HBV-Light model at this wa-
tershed. The response and groundwater routine parameters (K0, K2, PERC, UZL) are the most
sensitive parameters to PET input. This can be explained by the fact that those parameters are
found to be non-influential parameters for both total volume runoff and high-flow series in this wa-
tershed and each value taking in the initial ranges can perform well. In addition, a shape coefficient
parameter (LP ), which has been identified as less well-defined and more sensitive parameter for both
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total volume runoff and high-flow series is most sensitive to PET. In the internal structure and for-
mulation of the model, FC and LP are the parameters that control the soil moisture extraction
function. LP is the fraction of maximum soil moisture capacity (FC) above which actual ET equals
PET. When LP is close to 1, the actual ET will be higher, and vice versa. Thus, the over/under
estimation of PET results in an increase/decrease of this parameter. For example, the McGuinness-
Bordne method systematically over-estimated PET, has the higher value of LP (LP = 0.93), while
the Abtew method which systematically underestimated the PET, gives the lower value of LP . This
means that the over/under-estimation PET compared to the Penman method is compensated by
the model parameter. This result suggests that, in this basin, the optimized model parameters are
sensitive to PET estimation in a way similar to what has been found in other studies (Vazquez and
Feyen, 2003; Andreassian et al., 2004; Oudin et al., 2006; Birhanu et al., 2018).

3.2.3 Effect of different PET inputs on the model efficiency of the HBV-

Light model

3.2.3.1 Dynamic sensitivity approach

The best set of optimized model parameters obtained during the calibration period using each PET
estimation method was used to simulate the streamflows in the validation period (1971–1980). The
statistical criteria between observed and simulated streamflows were then computed to assess the im-
pact of different PET inputs on the model performance. The results show that all the PET estimation
methods used in this study reproduce the annual cycle of monthly streamflows well, although there
is overestimation of monthly streamflows in August and September (Fig. 35a). The marginal dis-
tribution of each statistical criteria obtained using different PET formulation is presented in Fig.36,
while the statistics of each criterion are summarized in Table 16. Each PET method simulated the
daily streamflows well during the validation period with values of NSE ranging between 0.78 and
0.87. The CV for each statistical criterion is closer to relatively low values (less than 7%). This
suggests that the rainfall-runoff model efficiency is insensitive to PET estimation methods, which is
also reinforced by the narrow band of uncertainty in the model simulations by using different PET
inputs (Fig. 35a). This means that the model adapts its parameters to the over- or under-estimation
of the PET during the calibration period as found in the previous studies (Oudin et al., 2006; Bai
et al., 2016; Birhanu et al., 2018). This also confirms that the best set of model parameters obtained
from each PET estimation method are representative for basin scale hydrological simulation. Of the
four statistical criteria used in this work, R2 is the least sensitive, while RSR is the most sensitive.
Therefore, the different PET inputs influence peak flows more than the streamflow volumes over the
studied period.
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Figure 35: Annual cycle of monthly streamflows simulated by using different PET inputs by follow the

dynamic approach (first line of the panel) and the static approach (Second line of the pannel). The streamflows

was simulated by using both raw (First column of the panel) and rescaling (Second column of the panel) PET

inputs. The sky Blue band represents simulating uncertainty (envelope of the standard deviation generated

from the mean of the simulated streamflows with different PET inputs).
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Table 16: Descriptive statistics of the variation of the model efficiency using raw/rescaling PET inputs

during the validation period.
Methods name Min. Max. 25th Median Mean 75th StD CV (%)

Percentile Percentile

Dynamic sensitivity approach
NSE 0.78/0.745 0.87/0.85 0.83/0.795 0.84/0.81 0.84/0.81 0.85/0.82 0.02/0.025 2.5/3.09
R2 0.93/0.92 0.96/0.94 0.94/0.935 0.94/0.94 0.94/0.94 0.94/0.94 0.005/0.004 0.54/0.47
RSR 0.36/0.39 0.47/0.5 0.39/0.42 0.4/0.44 0.4/0.44 0.41/0.44 0.025/0.03 6.33/6.46
CB 0.78/0.74 0.91/0.86 0.82/0.78 0.845/0.81 0.85/0.80 0.87/0.83 0.04/0.03 4.42/3.95

Static sensitivity approach
NSE 0.66/0.81 0.87/0.88 0.71/0.85 0.79/0.87 0.79/0.86 0.84/0.88 0.07/0.02 8.45/2.44
R2 0.93/0.935 0.94/0.94 0.94/0.94 0.94/0.94 0.94/0.94 0.94/0.94 0.003/0.001 0.36/0.16
RSR 0.36/0.34 0.58/0.435 0.4/0.35 0.46/0.36 0.46/0.37 0.53/0.385 0.07/0.03 15.74/7.38
CB 0.57/0.80 0.885/0.998 0.64/0.85 0.79/0.91 0.75/0.90 0.85/0.94 0.11/0.06 14.32/6.90
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Figure 36: Distribution of each statistical criterion obtained using different PET estimation methods fol-

lowed the dynamic sensitivity approach. In all the box-and-whisker plots, the whiskers represent the minimum

and maximum of each model performance criterion. The outer edges of the boxes and the horizontal lines

within the boxes represent the 25th, 75th, and 50th (Median) percentiles of each model performance criterion.

The filled circle represents the average value of each statistical criterion.

3.2.3.2 Static sensitivity approach

Using the same set of optimized model parameters obtained during the calibration period with the
Penman’s PET, which we consider in this study, as the best PET method, the HBV-Light model
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performance using each of the PET estimation methods was evaluated. Figure 37 represents the
dispersion of each performance criteria obtained by using all 19 PET models. This highlights the
presence of largest uncertainty rates in model performance. This can be explained by the fact that
some PET inputs systematically over- or under-estimate the modeled streamflows and they are not
within the large range of the model simulations (see Fig. 35c). The result is reinforced by a larger CV
(greater than 8%) for all the model performance except the The coefficient of correlation R2 (Table
16). Several differences are noted between the dynamic and static approaches. Firstly, the dynamic
sensitivity approach reproduced streamflows simulations better than the static approach (Table 16).
Secondly, in the static approach the PET method had a large impact on streamflow simulation (Fig.
35c) with the model performance generally affected. The result is not surprising because the over-
or under estimation of PET impacts the river flow given that the optimized model parameters are
unchanged. We conclude that the different PET input has moderated impact to the rainfall-runoff
model efficiency and suggest that hydrological models compensate for the efficiency loss in the runoff
simulation caused by different PET inputs through the model parameter calibration. Therefore, the
dynamic approach is the best for hydrological studies.
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Figure 37: Same at figure 36 but for the static sensitivity approach.
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3.2.4 What is the impact of the rescaling factor of PET methods on

model efficiency?

The rescaling factor was applied to PET in the calibration, and validation periods. In the first step,
the model was calibrated by using each rescaling PET and the set of optimized model parameters
were obtained for each PET method. In the second step, the model was validated by using each
rescaling PET and his corresponding set of optimized model parameters (dynamic approach). In
the last step, the model was validated by using each rescaling PET and the set of optimized model
parameters obtained with Penman’s PET input. The dispersion of each model performance can be
found in Fig. 38. The results reveal that in this basin, the rescaling factor of PET doesn’t improve
the performance of the model and the model remains insensitive to different rescaling PET inputs
when following the dynamic approach (Fig. 35b) because the CV for each statistical criteria (NSE,
RSR, CB and R2) is less than 7% for both raw and rescaling PET inputs (Table 16). However, in the
static approach, the model performance is systematically improved, and the rescaling PET input has
a moderate impact on model simulations (Fig. 35d). For example, when we use the different raw PET
inputs, the mean of NSE is 0.76 and his CV is 8.45%, while the use rescaling PET better performed
the model simulations with the mean of NSE equals to 0.86, with a small dispersion (CV=2.4%).
Therefore, the use of different PET methods without rescaling factor or recalibration, particularly
when using a static sensitivity, can lead to a deterioration of model simulations and performance as
reported in the previous studies (Oudin et al., 2005; Samains and Pauwels, 2013; Bai et al., 2016).
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Figure 38: Boxplot of each statistical criteria obtained using raw and rescaling PET inputs: dynamic

approach (top) and static approach (bottom) [RF = Rescaling Factor].
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3.3 REMO model evaluation

This section describes the performance of the two outputs termed REMO–EC and REMO–MPI gen-
erated by the REMO model in simulating the present climate within the reference period 1983–2005.
The annual cycle of precipitation, 2-m temperature, and estimated PET is shown in Figure 39, while
Table 17 summarizes the values of the different statistical criteria used.

Figure 39: Climatological annual cycle of mean monthly precipitation (a), 2-m temperature (b) and potential

evapotranspiration (c) in all observational datasets (ERAI, CRU, NCEP1 and NCEP2) and the REMO

model simulations (REMO-EC and REMO-MPI) over HBRB. The sky Blue band represents observational

uncertainty (envelope of the standard deviation generated from the mean of the observation and reanalysis

data).

The reanalysis and observation data have similar variability of the annual cycle of monthly rainfall,
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Table 17: Summary of statistical evaluation of monthly precipitation, 2-m temperature and potential

evapotranspiration (REMO-EC and REMO-MPI) with the ERAINT, CRU, NCEP1 and NCEP2 data for

the current 23-yr period (1983–2005) over the BRB.

Precipitation
ERAINT CRU NCEP1 NCEP2

MB R2 RMSE MB R2 RMSE MB R2 RMSE MB R2 RMSE

REMO-EC 0.96 0.97 1.48 0.05 0.97 0.64 -0.52 0.90 1.43 -0.43 0.95 0.95
REMO-MPI 1.17 0.98 1.72 0.26 0.98 0.65 -0.73 0.96 0.95 -0.22 0.93 0.98

2-m temperature
REMO-EC 1.95 0.54 3.03 0.88 0.88 2.18 0.86 0.57 2.34 -0.15 0.96 0.77
REMO-MPI 0.62 0.52 2.42 0.51 0.87 1.32 -0.47 0.54 2.26 -1.47 0.95 1.67

Potential evapotranspiration
REMO-EC 0.43 0.69 0.64 0.24 0.95 0.31 0.18 0.71 0.48 -0.03 0.97 0.17
REMO-MPI 0.13 0.66 0.53 -0.06 0.94 0.24 -0.06 0.69 0.24 -0.12 0.97 0.50

2-m temperature and PET over BRB, even though there exist some errors in time and magnitude.
Most notable errors are found in the ERAINT and NCEP1 during the rainy season in which there
are an over-estimation and under-estimation of rainfall respectively. When the magnitude of uncer-
tainties in the observation and reanalysis data are taken into account, the REMO model represents
the seasonality of temperature, PET and rainfall well with a unimodal character of rain (maximum
obtained in August). Although the peak of rainfall intensity in all the two REMO simulations is lower
compared with CRU and NCEP2 observation and reanalysis datasets, the REMO results sit within
the spread of the combined reanalysis and CRU data. The annual cycle of 2-m temperature and PET
do not exhibit a large variability between the different datasets (simulations and observations) as in
case of mean monthly precipitation. In summer, the two REMO simulations overestimate the PET,
while there is a stronger under-estimation of both 2-m temperature and PET during the Septem-
ber–October–November (SON) and December–January–February (DJF) seasons when compared to
ERA and NCEP1.

These results are reinforced by recent studies (Fotso-Nguemo et al., 2016; Vondou and Haensler,
2017; Tamoffo et al., 2018), which demonstrated the ability of the REMO model to simulate well
various aspects of the present climate such as daily, seasonal and annual cycle of precipitation over
CA. In addition, Vondou and Haensler (2017) found that REMO model captures the variability in
precipitation anomalies between different events associated with El Nino/Southern Oscillation, while
Tamoffo et al. (2018) show that REMO adequately simulates the frequency of wet days, the threshold
of extreme rainfall and the cumulative frequency of daily rainfall over CA.
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3.4 Effect of climate change on the different climate and

hydrological components in the HBRB

This section focuses on the potential changes of hydro-climatic conditions (precipitation, temperature,
PET, AET, soil moisture and streamflow) by the near (2041–2065) and late (2071–2095) of the twenty-
first century under RCPs 2.6, 4.5 and 8.5 relative to the baseline period (1981–2005).

3.4.1 Changes in monthly, seasonal and annual precipitation

The rainy season over the HBRB extends from May to October with a maximum in August (see
Fig. 39). Under RCP2.6 and RCP4.5, rainfall changes for the months May–August is uncertain as
results are both weakly positive and negative depending on the driving GCM and future period (Fig.
40). However, under the RCP8.5 scenario, decreases in rainfall are projected in both the near and
late future for these months. During September, large decreases in rainfall are projected under all
scenarios in both time periods. The signal is strongest in the REMO–EC combination under RCP2.6,
although in RCP8.5 both models show a strong decrease. During October, large increases in rainfall
are projected by the REMO–EC model combination especially in the far future under RCPs 4.5 and
8.5. However, the REMO–MPI model combination projects effectively no change to a small decrease
in rainfall in October rainfall. The projected change in October rainfall is, therefore, more uncertain
than in September. Under RCP2.6, the signal in August is uncertain during the far future as results
are both weakly negative and positive depending on the driving GCM.

Seasonally, the signal changes with changing RCP. In RCP2.6 there is a projected decrease in
MAM rainfall, an increase in JJA rainfall and a decrease in SON. In RCP4.5, there is a near-term
increase but far-term decrease in MAM rainfall, smaller magnitudes in JJA changes than in RCP2.6
and a mixed signal of change in SON in both time slices. In RCP8.5, both near and far future show
general decreases in rainfall in all seasons by most models. However, the SON season needs to be
interpreted in the context of the monthly changes in September and October, particularly for the
REMO–EC model combination that shows large, opposite signals in each respective month.

Although the decrease in annual rainfall increases with increased GHGs concentration scenario,
the rainfall change under RCP2.6 is larger than that of RCP4.5 and RCP8.5 in the near future with
the REMO-EC. We also notice an increase in annual rainfall in the far future under RCP2.6 with
REMO-MPI and in the near future under RCP 4.5 with REMO-EC.
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Figure 40: Projected monthly (top), seasonal and annual (bottom) changes in precipitation over the HBRB

under the three scenarios (RCP2.6, RCP4.5, RCP8.5) for the two future periods (2041-2065 and 2071-2095)

relative to the baseline period (1981-2005).

In summary, with increasing RCP, rainfall is projected to decrease during the rainy season with
the largest impact during the key rainfall months of August and September under RCP8.5. The large
projected increase in rainfall during October is only evident in one driving GCM (EC) so it should
be interpreted with caution. A similar negative trend was reported by Mbaye et al. (2015) in the
Upper Senegal Basin and Oguntunde and Abiodun (2013) in the NRB by using REMO and RegCM4
RCMs, respectively. These results are also consistent with future dry conditions previously projected
over CA (Fotso-Nguemo et al., 2016, 2017; Sonkoué et al., 2018; Mba et al., 2018; Tamoffo et al.,
2019, 2018).

3.4.2 Changes in monthly, seasonal and annual temperature

Projected monthly, seasonal and annual temperature changes over HBRB for the near and late twenty-
first century under RCP2.6, RCP4.5 and RCP8.5 scenarios simulated with REMO-EC and REMO-
MPI are presented in Figure 41. In general, the temperature was predicted to increase in all months
and seasons under scenarios, models and future periods. In particular, under RCP2.6, the increase is
low than under RCP4.5 and RCP8.5, while RCP8.5 gave high value (up to 5◦C), as expected in higher
equivalent CO2 concentrations. The late of the twenty-first century predicted a high increase under
RCP4.5 and RCP8.5 with all data while under RCP2.6 the highest value was predicted in the near
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future with REMO-EC data. This feature is common to all multi-model ensembles studies performed
in this region (Mkankam, 2001; Oguntunde and Abiodun, 2013; Fotso-Nguemo et al., 2017; Mba
et al., 2018).

Figure 41: Projected monthly (top), seasonal and annual (bottom) changes in temperature over the BRB

under the three scenarios (RCP2.6, RCP4.5, RCP8.5) for the two future periods (2041-2065 and 2071-2095)

relative to the baseline period (1981-2005).

3.4.3 Changes in monthly, seasonal and annual PET

Projected monthly, seasonal and annual changes in potential evapotranspiration (PET) derived from
REMO-EC and REMO-MPI in the study area are shown in Figure 42. The impact of climate change
on PET is similar to the pattern of changes in temperature with potential increase among scenarios,
models and future periods. This result was expected given that temperature and PET are strongly
correlated (Mkankam, 2001). The increase is more important for RCP8.5 scenario ranges between
0.5-1.8 mm/day, while the RCP2.6 scenario gives the lower increase in PET less than 0.5 mm/day.
We also notice that the maximum increase of monthly, seasonal and annual PET will be observed in
the far future under RCP4.5 and RCP8.5 scenarios with all models, while the maximum increase will
be predicted in the near future under RCP2.6. The REMO-EC data predict the maximum increase of
monthly, seasonal and annual PET under RCP2.6 scenario while the maximum increase of monthly,
seasonal and annual PET will be predicted by REMO-MPI data under RCP4.5 and RCP8.5.
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Figure 42: Projected monthly (top), seasonal and annual (bottom) changes in potential evapotranspiration

(PET) over the BRB under the three scenarios (RCP2.6, RCP4.5, RCP8.5) for the two future periods (2041-

2065 and 2071-2095) relative to the baseline period (1981-2005).

3.4.4 Changes in monthly, seasonal and annual AET

The monthly, seasonal and annual change of actual evapotranspiration presented in Figure 43 shows a
small decrease of AET during very hot dry months (January-April), while there is an increase during
the important wet months (June-October) and November. Under RCP2.6, the change signal in May
is uncertain as results are both weakly positive and negative depending of the driving GCM. This is
also true for scenarios RCP4.5 and 8.5 where a contrasting runs’ signal is observed in January, April
and May under both time periods and models (RCP4.5), and in May and December during the late of
twenty-first century (RCP8.5) respectively. The possible explanation of the decrease and increase of
AET during the dry months and wet months respectively will be due to the fact evapotranspiration
is influenced by the available water and energy. During the dry months, the water is unavailable
and there is an increase available energy (increase temperature), thus result in a decrease AET. Or,
during the wet months, both water and energy are available, then result in an increase AET.
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Figure 43: Projected monthly (top), seasonal and annual (bottom) changes in actual evapotranspiration

(AET) over the BRB under the three scenarios (RCP2.6, RCP4.5, RCP8.5) for the two future periods

(2041-2065 and 2071-2095) relative to the baseline period (1981-2005).

Seasonally, there is an increase of AET in Summer (JJA) and Autumn (SON) under the scenarios,
models and time periods. Under RCP8.5, the increase is maximum due the maximum increase of
temperature under the same scenario as shown in Figure 41. During DJF and MAM seasons, the
change signal is uncertain under RCP4.5 and 8.5, while there is a decrease in RCP2.6.

In general, the change in average annual AET is projected to decrease under the scenarios, models
and time periods. In particular, under RCP4.5, the change signal in the REMO-EC is large during the
late of twenty-first century than that during in the near twenty first century. Or, with REMO-MPI,
there is a contradiction.

3.4.5 Changes in monthly, seasonal and annual soil moisture

Figure 44 shows relative change in monthly, seasonal and annual soil moisture under the scenarios,
models and time periods. In general, the average monthly, seasonal and annual soil moisture is
projected to decrease under the scenarios, models and time periods. In particular, the maximum
decrease of monthly, seasonal and annual soil moisture will be observed under RCP8.5 in the two
future periods. This will the result of the combination of the maximum decrease of rainfall and
maximum increase of PET and AET under the same scenario. Additionally, under RCP8.5, the
change signal in the REMO-MPI combination is larger than that of the REMO-EC, while we note a
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contradiction under RCP2.6.

Figure 44: Projected monthly (top), seasonal and annual (bottom) changes in soil moisture over the BRB

under the three scenarios (RCP2.6, RCP4.5, RCP8.5) for the two future periods (2041-2065 and 2071-2095)

relative to the baseline period (1981-2005).

3.4.6 Changes in monthly, seasonal and annual streamflow

Figure 45 shows relative changes in monthly, seasonal and annual streamflow under the scenarios,
models and time periods. Although there were some differences between scenarios, models and future
periods, in general, streamflows are projected to decrease. During September, large decreases in
streamflows are projected under all scenarios, models and future periods. The signal is strong in the
REMO–MPI combination under RCP8.5 during the late of the twenty-first century. The dry months
(November–April) do not exhibit a change signal which can be explained by the absence of rainfall
during the period.

Seasonally, the sensitivity of streamflows to CC differed between the wet and dry seasons. In
particular, a considerable decrease in streamflows is found in SON. Under those scenarios, seasons
and time periods, the streamflow change is larger in the REMO–EC combination than that of the
REMO–MPI combination, except under RCP8.5, which REMO–MPI predicted a larger streamflows
change in SON. This can be explained since REMO–MPI projects a large change in rainfall than
does REMO–EC in the same season (SON). The ranges of relative changes in annual streamflow are
smaller than those in seasonal streamflow.
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Figure 45: Projected monthly (top), seasonal and annual (bottom) changes in streamflow over the BRB

under the three scenarios (RCP2.6, RCP4.5, RCP8.5) for the two future periods (2041-2065 and 2071-2095)

relative to the baseline period (1981-2005).

Although the decrease in annual streamflows increases with increased GHGs concentration sce-
nario, the streamflow change under RCP2.6 is larger than that of RCP4.5 with REMO–EC in the
two time periods. This result was expected because streamflow is usually very sensitive to changes in
precipitation (as shown in Fig. 46) and the rainfall change under RCP2.6 is larger than the change
under RCP4.5 with the same model. The results also reveal that the relative change in annual stream-
flows in the two time periods are relatively larger with REMO–EC under RCP2.6 and RCP4.5 than
that of REMO–MPI, while under RCP8.5, the maximum annual decrease in streamflows is obtained
with REMO–MPI simulations (Table 18). The projected late twenty-first century change in annual
streamflows is larger than that in the mid twenty-first century under all scenarios and models except
REMO–MPI under RCP2.6. This can be explained by the increase of precipitation in the near future
with REMO–MPI under the same scenario and the change in streamflow is strongly correlated with
the change in PET (Fig. 46) with the same model under the same scenario.
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Figure 46: Change in the inter-annual streamflow as a response to precipitation and potential evapotran-

spiration change under emission scenarios RCP2.6, RCP4.5 and RCP8.5. Projected precipitation, potential

evapotranspiration, and streamflow changes are calculated comparing period 1981–2005 to periods 2041-2065

(first and second line of the pannel) and 2071–2095 (third and fourth lines of the pannel). REMO-MPI [first

column of the pannel (a, b, c, d)] and REMO-EC [second column of the pannel (e, f, g, h)].
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Results and discussions

In summary, with increasing RCP, streamflow is projected to decrease during the rainy season
with the largest impact during the key high flow month of September. The similar negative trend of
streamflow was also found in several studies using the REMO model in Upper Senegal, Térou and
Ouémé catchments, respectively, by Mbaye et al. (2015), Cornelissen et al. (2013) and Bossa et al.
(2014).

Compared to previous studies of the BRB (Mkankam, 2001; Sighomnou, 2004), we produced
opposite results. This can be explained given that streamflow can strongly relate to the combined
change in precipitation and PET (Fig. 46). Mkankam (2001) and Sighomnou (2004) found the
increase of precipitation in the BRB by using HadCM2 and ECHAM4/OPYC3, and HadCM3 GCMs
respectively, which naturally predict the increase of streamflows.

These findings demonstrate the importance of forcing hydrological models with higher resolution
climate data for impact studies, and the need for regional climate information over Africa (Lennard
et al., 2018), because Fotso-Nguemo et al. (2017) found that GCMs (EC-Earth and MPI-ESM-LR)
predict an increase of rainfall over CA, while the REMO model forced by those GCMs predict a
decrease. A similar result was also reported by Oguntunde and Abiodun (2013) when comparing
RegCM3 RCM with ECHAM5 GCM.

3.5 Changes in monthly, seasonal and annual hydropower

potential of the Lagdo Dam

This section presents the results of the potential impacts of climate change on hydropower potential
of the Lagdo dam under different scenarios. The hydropower potential was computed based on
the modeled streamflows under both scenarios and time periods. Figure 47 shows relative changes in
monthly, seasonal and annual hydropower potential under the scenarios, models and time periods. The
impact of climate change on hydropower potential is similar to the pattern of changes in streamflows.
In general, hydropower potential of the Lagdo dam is projected to decrease. During September, the
signal is strong under all scenarios, models and time periods, with the maximum decrease observed
in the REMO-MPI combination during the late of the twenty-first century. The dry months do not
exhibit a change signal which can be explained by absence of rainfall, thus very few streamflow.
Under RCP2.6, the signal in August is uncertain during the late of the twenty-first century as results
are both weakly positive and negative depending on the driving GCM. This is also true for scenarios
RCP4.5 and 8.5 where an uncertain signal is observed in October and November for the two future
periods (RCP4.5), and in November during the end of the century (RCP8.5) respectively.
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Figure 47: Projected monthly (top), seasonal and annual (bottom) changes in hydropower potential of the

Lagdo dam under the three scenarios (RCP2.6, RCP4.5, RCP8.5) for the two future periods (2041-2065 and

2071-2095) relative to the baseline period (1981-2005).

Seasonally, the December-January-February (DJF) and March-April-May (MAM) seasons do not
exhibit a change signal, while the June-July-August (JJA) and September-October-November (SON)
seasons exhibit a clear decrease on hydropower potential. This can be explained by a combination
of reduced precipitation, increased of both potential and actual evapotranspiration and reduced soil
moisture, that result in a decrease in streamflows and thus hydropower potential in summer (JJA)
and autumn (SON). The results also reveal that the relative change in seasonal as well as in annual
hydropower potential are relatively larger with REMO–EC than that of REMO–MPI under both
scenarios and time periods, except in SON under RCP8.5, where the signal is relatively large with
REMO-MPI than that of REMO-EC in the two time periods. These seasonal and annual changes in
hydropower potential are similar than those in streamflows. This can be explained by the fact that
the streamflows and head are the main drivers of hydropower potential, and head is a constant, thus
any change of streamflows characteristics will significantly impact the hydropower potential in the
same direction. Relationship between change in inter-annual streamflows and in hydropower potential
shows a strong and significant correlation (R2 = 1) (see Fig. 48).
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Figure 48: Relationship between change in inter-annual streamflow and hydropower potential change under

emission scenarios RCP2.6, RCP4.5 and RCP8.5.

In summary, the seasonal and annual hydropower potential will decrease under both scenarios and
time periods. The magnitude of the signal should vary according to the scenarios and time periods.
This finding is consistent with that of Grijsen (2014). He used 15 GCMs runs from phase 3 of the
Coupled Model Intercomparison Project (CMIP3) under A1B emission scenario and the Turc-Pike
rainfall runoff model to study the potential impact of climate change on hydro-energy in different
watersheds in Cameroon and found that hydro-energy generated at Lagdo dam in the Benue basin
may suffer a significant decrease due to climate change.

3.6 Ecohydrological status of the watershed

This section presents the results of the Ecohydrological status of the HBRB determined by plotting the
unused water (Pex) versus unused energy (Eex) in order to test the validity in assessing the interaction
between increase PET and precipitation change as projected by the RCM-GCM. Figure 49 shows the
ecohydrological status of the HBRB under scenarios, models and time periods. The results reveal a
clear change signal under scenarios, models and time periods. The direction of the shift relative to
the baseline period implies the drier environmental conditions in the watershed (water stress) due to
a decrease in excess water (precipitation) and an increase in evaporative demand (according to Fig.
15). This led to a decrease of streamflow in the watershed and denotes an increase in PET higher
than the increase in AET as reported in Table 18. According to Tomer and Schilling (2009), the
change signal is not associated with a change in land use but rather with a change in climate.
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Figure 49: Plot of excess precipitation (Pex) Vs. evaporative demand (Eex) for the reference period

(1981–2005) and emission scenarios RCP2.6, RCP4.5 and RCP8.5 [2041–2065 (diamond) and 2071-2095

(filled circle)] for the REMO-MPI and REMO-EC. The shift in RCP dots compared to the reference period’s

dot indicates the effects of climate change on the catchment hydrology. Pex and Eex for each period are

calculated from the annual average rainfall, potential evapotranspiration, and actual evapotranspiration.

Drier environmental conditions of the watershed will be more evident under the RCP8.5 scenario
than under the RCP4.5 and RCP2.6 scenarios, respectively. This can explain the important decrease
of streamflow and hydropower potential under the RCP8.5 scenario as shown in Table 18. The result
also reveals that the REMO–MPI projects an extreme drier environmental condition than REMO–EC
under RCP8.5. The same result was reported by Fotso-Nguemo et al. (2016) over the CA region.

In summary, in the future, the HBRB will be move to a water stress. This result can be reinforced
by those found by Guenang and Mkankam (2014) and Oguntunde et al. (2018). Guenang and
Mkankam (2014) have assessed the drought occurrences in Cameroon over recent decades and found
that the drought magnitude and duration increased with time for both short and long timescales in
the North of Cameroon, as a response of a reduction in precipitation due to CC. Oguntunde et al.
(2018) have studied the impacts of climate variability and change on drought characteristics in the
NRB and found an increase in drought intensity and frequency over the NRB as a result of statistically
significant correlation between runoff and drought indices.
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Conclusion

In this chapter, we have analyzed the performance of the HBV-Light hydrological model to simulate
the measured streamflows and the capacity of REMOmodel forced at it’s lateral and surface boundary
by two GCMs (EC-Earth and MPI-ESM) to simulate present climate in the HBRB. The impacts of
climate change on hydro-climatic variables and hydropower potential were analyzed during the two
future periods (2041–2065 and 2071–2095) relative to the baseline period (1981-2005) under RCP2.6,
4.5 and 8.5 scenarios.

The HBV-Light hydrological model performed well in the HBRB. It simulated the annual cycle of
streamflows, low and high flows well although some bias. The uncertainties arising from the problem
of identifying and optimizing model parameters insignificant impact on model predictions, while the
model outputs are found to be significantly or not impacted by different PET inputs when we followed
the static or dynamic sensitivity approaches respectively. The REMO model was found to reproduce
the annual cycle of rainfall, 2-m temperature and PET well, although some relative low biases still
exist. Under RCPs scenarios and time periods, the region will move to an extreme environmental
drier conditions with the decrease of rainfall, increase of PET and temperature. This will negatively
impact the streamflows and the hydropower potential of the Lagdo dam.
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1 General conclusion

In the area where rainfed agriculture is the most important socioeconomic activity and where hy-
dropower is the major source of electricity production, impact studies of future water resources are
highly important for adaptation, or for inclusion in the design of new systems purpose. The main
focus of this research was to evaluate the influence of the projected temperature and precipitation
change on water resources and hydropower potential in the HBRB, Northern Cameroon. Streamflow
used to compute the hydropower potential was produced by coupling dynamically downscaled pre-
cipitation and temperature from the REMO regional climate model (RCM) forced by the boundary
conditions data of the Europe-wide Consortium Earth System Model (EC-ESM) and the Max Planck
Institute-Earth System Model (MPI-ESM) general circulation models (GCMs) and the HBV-Light
hydrological model under three (GHGs) concentration scenarios (RCP2.6, RCP4.5, and RCP8.5)
during the future and baseline periods.

The successful application of hydrological models for water resource management of the catchment
mostly depends on the quantification and reduction of uncertainties arising from model structure and
model parameters. Identification of influential and non-influential model parameters that controlling
the model outputs variations, as well as the parameter identifiability are valuable tools for reducing
the model parameter dimension and limiting prediction uncertainty while maintaining a high quality
solution for model calibration. The first stage of this study focused on the optimization and the
performance evaluation of the HBV-Light hydrological model in the HBRB. For this task, a detailed
analysis of the model parameter sensitivity and uncertainty to the model response was performed by
using the Monte-Carlo procedure and multiple objective functions. The results showed that the soil
and evaporation routine parameters (FC, β and LP ) in addition with the recession coefficient (K1)
and the transformation routine parameter (MAXBAS) are the most or less influential parameters of
the HBV-Light model to the volume error and high-flow series in the HBRB. Thus other parameters
(K0, K2, PERC and UZL) can be kept constant during the calibration of the model. The most
or less influential parameters to the model response are also found to be more or less well-defined
parameters in the model structure. The recalibration of the model based on the lower and upper limits
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of the confidence interval showed that the optimized model parameters high performed the model
in the HBRB during the calibration and validation stages, although some errors in simulating peak
flows. The model predictions uncertainties revealed that the best simulation as well as the measured
streamflows lie inside the 95% uncertainty band of model predictions, indicating the insignificant
implications of the model parameters uncertainties to the model predictions and giving the merit
to the Monte-Carlo procedure in calibrating and predicting uncertainties in model. Therefore, the
HBV-Light hydrological model, with his set of optimized model parameters can be used as a tool by
the decision-makers, water planners and scientific community to better manage the water resources in
the HBRB, to predict extreme events such as floods and droughts and to address the future challenge
on water resources and hydropower potential under climate change scenarios.

Unlike rain, direct measurement of evapotranspiration (ET) is hard, time consuming and costly
because ET is depended on a number of factors that may vary both spatially and/or temporally. In
practice, estimation of actual ET is often made by using information about Potential evapotranspi-
ration (PET) and soil moisture. Several methods exist to estimate PET, ranging from using a single
climate variable to combination methods. However, developed initially for agricultural applications,
this approximation at the watershed scale is either unproven or inappropriate. There are advan-
tages in using PET in the hydrological modeling as this considerably simplifies the representation
of evaporation processes in a watershed but can considerably impact the model simulations and the
optimized model parameters. In the second stage of this study, nineteen (19) PET estimation meth-
ods of different data requirements were applied in order to assess their effect on model performance,
optimized parameters, and robustness of the HBV-Light hydrological model. The Monte-Carlo pro-
cedure was implemented to calibrate the HBV-Light model for each PET input while considering
similar objective functions and dynamic and static sensitivity analysis approaches were used. The
results revealed that, although significant differences between PET estimation methods, the hydro-
logical model performance was satisfactory for each PET input in the calibration and validation
periods. The model simulations and resultant efficiency are insensitive to PET inputs when we follow
the dynamic approach. However, when using the static sensitivity approach the model simulations
and efficiency are influenced by the PET inputs. This means that the over and under-estimation of
PET is compensated by the model parameter during the calibration period. The hydrological model
parameters were found to be sensitive to the 19 PET inputs. The ill defined model parameters are
significantly affected by the PET inputs than the well defined parameters except the soil moisture
threshold for reduction of ET parameter (LP) which is the most sensitive of well defined parameters
to the PET inputs. In addition, the hydrological model performance was found to be insensitive to
the rescaling PET inputs for both dynamic and static approaches. We also noted that, by following
the static SA approach, the model performance is systematically improved when the rescaling factor
of PET is used. Hargreaves method was also found to be best in computing PET in the HBRB and
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therefore can be for agricultural applications when the data is not available in sufficient quantity
over the study time period. This analysis provides a plausible explanation of the conflicting results
obtained in the previous sensitivity analysis studies and now that we understand this we can suggest
to the global hydrological modeling community the dynamic approach for impact assessment studies
and for sensitivity of discharge projections to potential evapotranspiration estimation. This approach
is the more reliable approach in simulating discharge because during the model recalibration, hydro-
logical model has the potential to adapt its model parameters to the influence of both random and
systematic errors in input data. However, if static sensitivity approach is used, then rescaling of input
data should be done to avoid poor model results.

In the last stage of this research, the ability of the REMO model to simulate the present climate
was evaluated prior to future climate change impact assessment. The REMO model was found to
reproduce the annual cycle of rainfall, 2-m temperature and PET well, although some relative low
biases still exist (MB less than 1 mm/day). The correlation coefficient between the REMO model
and reanalysis (ERAINT, NCEP1, NCEP2) and observation (CRU) datasets are around 0.95 for
precipitation, thus a strong correlation. Annual temperature and PET are projected to consistently
increase under all scenarios, models and future periods. Although there is some uncertainty, annual
precipitation is generally projected to decrease in the HBRB up to 10% under the RCP8.5 scenario
in the late twenty-first century. This potential increase of both temperature and PET and a decrease
of precipitation may lead to a decrease in the soil moisture and the increase of water stress of the
plants. The agricultural production is likely to decline and with the decline of vegetation cover, the
amplification of desertification in this area will increase. The combination of reduced precipitation
increased PET and reduced soil moisture, resulting in a decrease in streamflow in the HBRB. This
important decrease of streamflow will also negatively affect the hydropower potential of the Lagdo
Dam, water irrigation and navigation in both future periods and importantly will move the region
into a drier environmental conditions as shown by (Eex)–(Pex) plot.

The results of this research might be useful for decision makers and planners in better managing
the water resources and in developing adaptation strategies so as to limit the risks associated with
global warming.

2 Outlook

One major caveat of this study is that only one RCM has been used. Likewise, results indicate
that rainfall change in October is uncertain with contrasting runs’ signal. Therefore, further works
with a multi-model ensemble from CORDEX-Africa matrix are needed to quantify the range of
uncertainty in this signal. Despite the fact that this study highlights the importance of using RCMs
instead of GCMs for impact studies, both RCMs and GCMs are still biased, therefore, bias-correction
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General conclusion and recommendations

techniques needed to be performed for impact studies. We also found that the hydrological model
efficiency is slightly sensitive to different PET inputs, it will be also much interesting to assess the
impact of different PET inputs on the climate change impact signal. Until Lumped and conceptual
hydrological model better performed in this catchment, the use of the semi-distributed or distributed
hydrological models will be envisage-able in other to take into account the land use and land cover
change in the impact studies.
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Abstract
The Benue River Basin (BRB) is a major tributary of the Niger River Basin (NRB) and the second-largest river in Cameroon. 
It serves many water resource functions including irrigation, hydroelectricity production and navigation. Previous research 
has indicated that recent climate change (CC) has had significant impacts on local and regional hydrological regimes of this 
watershed. In this study, CC scenarios were integrated with a hydrological model to evaluate the influence of CC on water 
resources in the BRB. Historical and projected scenarios of dynamically downscaled temperature and precipitation from the 
REMO regional climate model (RCM) forced by the boundary conditions data of the Europe-wide Consortium Earth System 
Model (EC-ESM) and the Max Planck Institute-Earth System Model (MPI-ESM) general circulation models (GCMs) were 
used. The historical runs of the REMO simulations were first evaluated after which downscaled temperature and precipitation 
data were used as input for the HBV-Light hydrological model to simulate water balance components. The mean climate and 
hydrological variables for the historical (1981–2005) and the two future periods (2041–2065 and 2071–2095) were compared 
to assess the potential impact of CC on water resources in the middle and late twenty-first century under three greenhouse 
gases (GHGs) concentration scenarios, the Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5. Our results 
show that (a) the HBV-Light hydrological model could effectively simulate the streamflow change in the BRB; (b) annual 
precipitation will decrease between 1 and 10% while both annual temperature and potential evapotranspiration (PET) will 
increase between 8–18 and 6–30%, respectively, under both scenarios, models and future periods; c) the combination of 
reduced precipitation and increase of PET results in a significant decrease in streamflow in the BRB (up to 51%) and this will 
move the basin to a much drier environmental state. Therefore, CC adaptation strategies and future development planning 
in this region must consider these important decreases of discharge.

Keywords Climate change · Water resources · REMO model · HBV-Light hydrological model · Dynamical downscaling · 
Benue River Basin

Introduction

Cameroon contributes significantly to the economy of Cen-
tral Africa (CA), its water resources being a major source of 
this importance. However, within Cameroon, water is also 
recognized as the most important impediment for socioeco-
nomic development because more than 70% of the popula-
tion practices rainfed agriculture, which occupies about 95% 
of the land use (Molua and Lambi 2007). Other activities are 
also dependent on water resources: hydroelectricity produc-
tion represents more than 95% of electricity in Cameroon. 
Additionally, Cameroon has the second-highest hydropower 
potential in CA after the Democratic Republic of Congo. 
However, in Cameroon, water resources are unequally 
distributed between the northern and southern parts. The 
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