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Abstract

Recent advances in both micro electronics and energy harvesting allows nowa-
days the conception of truly autonomous devices, energetically speaking. Such a pos-
sibility, combined with a growing industrial and biomedical interest in autonomous
sensors and autonomous sensor networks, has led to important research and develop-
ment efforts in the field of smart structures and self-powered smart systems. Neverthe-
less, microgenerators that harvest energy from their environment have a very limited
amount of output power typically a few milliwatts, and new energy scavenging meth-
ods that enhance the harvesting pro cess would benefit in embedding more functions in
autonomous systems.

This thesis deals with a theoretical study of the conversion of the mechanical energy
of ambient vibrations into electrical energy. First of all, a discussion was given on current
advances in energy harvesting technologies as well as their economic and social interest.
Indeed, two theoretical physical models were retained for the harvesting of ambient
vibration energy.

Firstly, we consider a vibration energy harvesting system subjected to a harmonic
excitation and exhibiting fractional properties induced by losses due to ohmic resistance,
eddy currents and hysteresis phenomenon. The harmonic balance method is used to
predict the analytical response of the system. The analytical results and those obtained
numerically are in agreement and thus make it possible to justify the effectiveness of
the analytical technique used. On the one hand, the impact of the fractional derivative
order characterizing the memory effect brought by the inductance and the parametric
coupling induced by time variation magnetic field on the performances of the system
is analyzed. Subsequently, the effect of nonlinear damping on the output power of the
system is presented. Also, the dynamics of the system are examined in detail through
the plot, bifurcation diagrams, phase portraits, time series as well as spectral densities
of power. These results are corroborated by the 0-1 test. Through these indicators, we
identified the system parameters for which the system is chaotic, which characterizes a
maximum energy harvesting. From the frequency response of the system, our results
show that the resonance amplitude of the electrical vibration as well as the power gen-
erated by the system increases with the order of the fractional derivative. We also show
that the generated power also increases with the parametric coupling amplitude. More-
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over, by replacing the harmonic excitation by a random excitation, it is found that the
output power increases with the intensity of the noise characterizing the environment
in which the device will function.

In a second part, a hybrid model subjected to a Gaussian white noise was pre-
sented. Its dynamic behavior is studied using a probabilistic approach. The stochas-
tic mean method is used to predict analytically the stationary response of the system,
which allowed observing the stochastic bifurcation phenomenon. The concordance be-
tween the analytical results and those obtained numerically validates the effectiveness
of the analytical method used. The average square of the intensity of the current and the
voltage are obtained for different intensities of the white noise and other parameters of
the system. As in the first model, we saw an increase in the average power output with
the noise intensity, showing that the system performance can be improved by appro-
priate choice of noise intensity and other system parameters. Moreover, by combining
a random signal with a harmonic excitation, the stochastic resonance phenomenon is
observed. This phenomenon is reinforced with the increase of certain parameters of
the system such as; the amplitude of the periodic excitation, the coefficient of quadratic
nonlinearity and the coupling terms, this makes it possible to obtain large amplitudes of
vibrations and consequently improves the energy harvested.

The results presented in this thesis can provide a theoretical idea for the design and
optimization of the systems, and allow making an optimal choice of the environment in
which the energy harvesters could function. Moreover, the results obtained show the
need to use materials exhibiting fractional properties as well as the combination of sev-
eral technologies in order to make the energy harvesting systems more efficient.

Keywords: Electromechanical System, Fractional Derivative, Parametric Coupling, Stochas-
tic P-bifurcation, Probability, Stochastic Resonance.
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Résumé

Les récents progrès en microélectronique ainsi qu’en récupération d’énergie am-
biante permettent désormais d’envisager la conception de systèmes électroniques totale-
ment autonomes. Cette possibilité, combinée à une demande forte en termes de capteurs
autonomes de la part des secteurs industriel et biomédical, a conduit à une forte activité
de recherche et développement de systèmes intelligents autoalimentés. Cependant la
puissance délivrée par les microgénérateurs autonomes est encore limitée à quelques
microwatts. Pour celà, de nouvelles méthodes de récupération d’énergie qui optimisent
cette puissance permettraient l’ajout de nouvelles fonctions aux systèmes autonomes
embarqués.

Cette thèse porte sur une étude théorique de la conversion de l’énergie mécanique
des vibrations ambiantes en énergie électrique. Tout d’abord, une discussion est faite sur
les avancées actuelles des technologies de récupération d’énergie ainsi que leur intérêt
économique et social. En effet, deux modèles physiques théoriques sont retenus pour la
récupération de l’énergie de vibration ambiante.

Dans une première partie, nous considérons un système de récupération d’énergie
de vibration soumis à une excitation harmonique et exhibant des propriétés fraction-
naires induites par les pertes dues à la résistance ohmique, aux courants de Foucault et
au phénomène d’hystérésis. La méthode de la balance des harmoniques est utilisée dans
le but de prédire la réponse analytique du système. Les résultats analytiques et ceux
obtenus numériquement sont concordants permettant ainsi de justifier l’efficacité de la
méthode analytique utilisée. D’une part, l’impact de l’ordre de la dérivée fractionnaire
caractérisant l’effet mémoire qu’apporte l’inductance et de l’amplitude du couplage
paramétrique induit par la variation du champ magnétique avec le temps sur les perfor-
mances du système est analysé. Par la suite, l’effet de l’amortissement non-linaire sur
la puissance de sortie du système est présenté. D’autre part, la dynamique du système
est examinée à travers le tracé, des diagrammes de bifurcations, des portraits de phases,
des séries temporelles ainsi que des densités spectrales de puissance. Ces résultats sont
corroborés par le test 0-1. A travers ces indicateurs, nous identifions les paramètres
du système pour lesquels le système est chaotique, ce qui caractérise une récupération
d’énergie maximale. De la réponse fréquentielle du système, nos résultats montrent que
l’amplitude de résonance de la vibration électrique ainsi que la puissance générée par le
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système augmente avec l’ordre de la dérivée fractionnaire. Nous montrons aussi que la
puissance générée augmente également avec l’amplitude du couplage paramétrique. De
plus, en remplaçant l’excitation harmonique par une excitation aléatoire, on constate que
la puissance de sortie augmente avec l’intensité du bruit caractérisant l’environnement
dans lequel fonctionnera le capteur.

Dans une deuxième partie, un modèle hybride soumis à un bruit blanc gaussien
est présenté. Son comportement dynamique est étudié en utilisant une approche pro-
babiliste. La méthode de la moyenne stochastique est utilisée pour prédire analytique-
ment la réponse stationnaire du système, ce qui a permis d’observer le phénomène
de bifurcation stochastique. La concordance observée entre les résultats analytique et
ceux obtenus numériquement valide ainsi la méthode analytique utilisée. Les valeurs
quadratiques moyennes de l’intensité du courant et de la tension électrique sont obtenues
pour différentes intensités du bruit blanc et d’autres paramètres du système. Nous
constatons, comme dans le premier modèle, une augmentation de la puissance de sor-
tie moyenne avec l’intensit du bruit, montrant que les performances du système peu-
vent être améliorées par un choix approprié de l’environnement de fonctionnement et
d’autres paramètres du système. Par ailleurs, en combinant un signal aléatoire avec
une excitation harmonique, le phénomène de résonance stochastique est observé. Ce
phénomène est renforcé avec l’augmentation de certains paramètres du système tels
que, l’amplitude de l’excitation périodique, le coefficient de non linéarité quadratique
et les termes de couplage, ce qui permet d’obtenir de larges amplitudes de vibrations et
par conséquent, améliore l’énergie récoltée.

Les résultats présentés dans cette thèse peuvent fournir une idée théorique pour
la conception et l’optimisation des systèmes, et permettre de faire un choix optimal
de l’environne-ment dans lequel pourrait fonctionner le récupérateur d’énergie. Par
ailleurs, Les résultats obtenus montrent la nécessité d’utiliser des composants exhibant
des propriétés fractionnaires ainsi que la combinaison de plusieurs technologies dans le
but de rendre plus performants les systèmes de récupérations d’énergie.

Mots clés: Système électromécanique, Dérivée fractionnaire, Couplage paramétrique,
Bifurcation phénoménologique, Probabilité, Résonance stochastique.
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General Introduction

The development in recent years of low-power electronics and the increasing need

for autonomy energy of electronic microsystems have led to a renewal of research work

on the harvesting of renewable micro-energy, including their presence in the human en-

vironment. Important scientific and technical challenges including the replacement of

batteries with a low−power renewable energy harvesting system. These microsystems

were initially powered by batteries. However, the batteries have a very limited life and

are equipped with an energy reservoir. The main problem with the use of batteries as

a source of energy is maintenance related to their periodic replacement and recharging.

Several solutions have been envisaged to overcome this difficulty but which remain on

the same concept as the conventional batteries, that is to say which are based on energy

reservoirs. The first solution envisaged was the development of fuel cells, which are

currently undergoing extensive research. The main difficulty of adopting its batteries is

what are still expensive, difficult to miniaturize, and raises problems for the storage of

hydrogen. A more radical solution is to use nuclear batteries. These batteries have re-

markable characteristics that have thousands of times the energy density of Lithium-ion

batteries. They are perfectly harmless. However, their major problem is the collection

and reprocessing of spent batteries. Making these systems autonomous in terms of en-

ergy is at the heart of the researchers in charge of energy issues.

Our real environment is endowed with several sources of energy of which the best

known are: mechanical vibrations energy, solar energy, wind energy, radiofrequency

energy and thermal energy. The harvesting of these energies and their conversion into

electricity seems to be an best solution to make the electronic systems autonomous.

There are many physical effects able to convert thermal, mechanical, solar and RF en-
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ergy into micro − electric energy. Among all these effects that can be used in the energy

harvesting technique, coupling effects in active materials (piezoelectric, thermoelectric

and pyroelectric) are dominant in current research [1-4]. These are interdisciplinary

techniques with a material science that have a higher development potential. Therefore,

energy harvesting from mechanical vibrations is proposed as a solution to power these

wireless sensors. Many devices are commonly used for vibration-based energy harvest-

ing: electromechanical devices, piezoelectric devices and many others. Several authors

have looked at the study of energy harvesting from mechanical vibrations through ex-

perimental and theoretical work.

While converting mechanical vibrations into electrical energy is not a new concept,

the wide spread implementation of such systems has been the subject of much work. In

order to move forward with this design methodology, accurate modeling techniques for

energy harvesting systems are needed, this include; models of the energy harvester, the

power converter, and the electronic load/energy storage unit. As pointed by Williams

et al.[5], three transduction mechanisms are commonly used to converting vibrations

mechanics to electricity, namely piezoelectric [6-9], electromagnetic [10] and electrostatic

transduction [11, 12]. However many of the proposed harvesters are typically based on

linear mechanical principles [5, 10]. Such devices give appreciable response amplitude

only if the dominant ambient vibration frequency is closed to the resonance frequency of

the harvester. However, in order to make the energy harvesters devices more optimal,

nonlinearities are introduced through the electrical and mechanical elements such as

diodes, resistors, capacitors, inductances, damping and springs.

Advances in material science and mathematics in conjunction with technological

needs have triggered the use of material and electric components with fractional order

physical properties. Fractional behavior of materials is a very interesting physical phe-

nomenon and calculus theory based on it has been intensively studied since the 17th

century. Fractional calculus has gained considerable importance during the recent times

in the field of engineering modelling, design and control. In the field of electrical and

electronics engineering there is a rapid import of concepts from fractional calculus to
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explore their impact and determine the possible advantages of designing systems using

their properties. Fractional calculus has been successfully applied to model viscoelas-

ticity [13], economics problems [14], electric and magnetic phenomena [15, 16], elec-

trochemical processes [17], bioengineering problems [13], social sciences and ecological

interactions [16], distributed transmission lines [18], lossy capacitor [19], lossy coils [15],

constant phase elements [20] and flexible structures [21]. The use of fractional calculus

is encouraged in large part because of the reason that fewer parameters are sufficient in

the fractional model to describe the dynamics of the physical system compared with the

conventional models.

The conventional models used to describe the flux linking the coil and selfinduc-

tance fails in accurately describing the real behaviour of such circuits. The conventional

model consisting of an inductor, an iron loss resistor and a copper resistor only provides

a satisfactory description of coils with small eddy-current and hysteresis losses. Coils

with significant losses are better described by the fractional model [15]. Currently, a

great deal of research has been reported on fractional order inductance and its appli-

cations. Fouda et al., introduced the idea of fractional-order two-port networks with

fractional order inductor and capacitors and its application to impedance and admit-

tance parameters of fractional-order elements [22]. Machado and Galhano addressed

the implementation of inductive elements of any fractional order based on the skin ef-

fect. It was demonstrated that by designing the variation of the conductor electrical

conductivity we can get different fractional orders of the skin effect [23]. The concept of

fractional order inductance is used in design of filters [24], the advantages of fractional

order band pass filter over the integer order one are its sharper tuning characteristics

and narrower bandwidth. Recently fractional order self and mutual inductance based

linear variable differential transformer is designed and analysed in [25], this fractional

order system provide higher sensitivity, reduced nonlinearity and increase in the stroke

range as compared to the conventional system. This thesis investigates the impact of the

fractional order derivative on the output voltage and power generated by the system

trough the analytical and numerical techniques.
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The energy sources presented above are often insufficient to meet current needs

and can be complementary, hence the importance of evaluating the interest of solicit-

ing several for the same application. Indeed, in this millennium, the methodologies

to harvest existing dissipated powers not only supply input energy to our sophisticated

devices, but also contribute the current technological researches and developments. Sin-

gle harvester generator or harvesting single power source may remain insufficient for

the energy feed into the systems like electronic devices, biosensors, human, structural

and machine health monitoring, and wireless sensor nodes. To overcome this problem,

hybridization of energy harvesters (EHs) takes place to increase the limited energy gen-

eration of stand-alone EHs. From the model built in Ref. [26], we construct the hybrid

model combining piezoelectric and electromagnetic mechanisms enhancing thereby the

harvested energy. Another promising technique use in this work to improve the sys-

tem performance is to combine the harmonic and random excitation which gives rise

to the stochastic resonance phenomenon. This phenomenon (SR) gives the largest am-

plitude oscillation for a given excitation level, and reflects the transition in the system

response from single potential well oscillations to double well vibration characteristics

with hopping between the two potential wells.

In order to design energy harvesters capable of meeting current needs, The model

must not only capture the general behavior of the energy harvester under ideal design

conditions, but must also account for non-ideal effects, including changes in the vibra-

tion source and parasitic losses associated with the physical implementation of the sys-

tem. The design procedure is explained, an electromechanical coupling model of the

HEH is established. The energy harvesting characteristics are numerically simulated.

It is around of the problematic of design and optimization of the of the harvesters

systems in this research field that this research work has been organized.

The first chapter describes the state of the art on the batteries and the energy harvest-

ing devices by insisting on the works achieved in the vibrations energy harvesters. This

chapter also replaces the energy harvesting from the electrostatic, electromagnetic and

piezoelectric in their context by insisting on the motivations what have leaded at the
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development of the energy harvesters allowing thereby to power wearable appliances.

The second chapter of the thesis is devoted to the mathematical modeling of the

dynamics of two different models used in this thesis. The analytical and numerical

techniques used are presented with detail in this chapter.

chapter three is devoted to the presentation of the main results of this thesis by show-

ing on one hand the effect of a fractional inductance in the systems through the impact

of the order of the fractional derivative. The stochastic bifurcation phenomenon and

the stochastic resonance phenomena are discussed. A general conclusion from the the-

sis will establish the scientific breakthroughs gained during this work as well as the

prospects for future work.
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CHAPTER I

LITERATURE REVIEW ON ENERGY

HARVESTERS AND PROBLEMS

STATEMENTS

I.1 Introduction

This chapter highlights some of the most significant concepts developed in this the-

sis and presents the basic notions necessary for modeling the electromechanical energy

harvesters. In recent years, the development of mobile wireless applications has grown

remarkably. A challenge, emerged in the 90s, is to power these portable devices using

resources in the human environment. In parallel, the development of communicating

devices also has its own power supply problems, in particular related to battery change

operations. The self-feeding of all these devices becomes possible. Thanks to the con-

junction of the decline of the uses of electronic circuits, the possibility of producing ef-

ficient ambient energy harvesting and the progress made in the storage of electrical en-

ergy. Thus, after a brief review of the energy resources exploitable in the environment,

we are interested in this first chapter to the different principles of conversion of me-

chanical energy, thermal and photovoltaic to exploitable electrical energy. To illustrate

these different conversion principles, we rely on described systems in the literature. This

chapter also aims to present the problematic of this thesis, and consequently, to position

ourselves scientifically in relation to the work already carried out in this scientific com-

munity.
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I.2 Motivations

The modern industrial world faces an increasing energy problem; fossil fuels are fi-

nite and environmentally costly, and alternative energy sources can not yet fully replace

them. World consumption of energy is gradually increasing every year, and the main

energy sources being consumed are non-renewable coal, gas and oil. The concept of

energy harvesting generally relates to the process of using ambient energies, which are

converted primarily into electrical energy, in order to power small and autonomous

electronic devices. Energy harvesting has the potential to replace batteries for small,

low power electronic devices. This energy can be then used either to improve the effi-

ciency of existing technologies (e.g. the use of devices requiring no connection makes

it possible on the one hand to eliminate expensive and cumbersome wiring, and on the

other hand to be able to have the systems in any place).

Figure 1: Composition of toxic batteries (http://phys.org).

It can be noted that batteries present environmental problems, in particular with

regard to the recycling of the materials they contain (Fig.1). Energy harvesting devices

can also operate in harsher environments than batteries, which are for example very

sensitive to temperature (Fig.2).

Fig.3 shows the improvement of the constituents performance of the wearable de-

vices in the logarithmic scale between 1990-2003. It emerges from this figure that, the

performance of batteries don’t increases exponentially with the time, but seems to reach
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I.3 Energy Sources and Energy Harvesting Technologies 8

Figure 2: Self-discharge of Lithium-ion batteries according to the temperature of use
[28].

a certain saturation. This trend renders necessary the research of the alternative energy

source. It is in this context that we find the main motivation for this thesis.

Figure 3: Improvement of the constituents performance of the wearable devices in the
logarithmic scale between 1900 - 2003 [29]

I.3 Energy Sources and Energy Harvesting Technologies

Ambient energy harvesting, also known as energy scavenging, is the process where

energy is obtained and converted from the environment and stored for use in electronic
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I.3 Energy Sources and Energy Harvesting Technologies 9

applications. Usually this term is applied to energy harvesting for low power and small

autonomous devices, such as wireless sensor networks, and portable electronic equip-

ments. A variety of sources are available for energy scavenging, including solar power,

ocean waves, piezoelectricity, thermoelectricity, and physical motions. For example,

some systems convert random motions, including ocean waves, into useful electrical

energy that can be used by oceanographic monitoring wireless sensor nodes for au-

tonomous surveillance. This just shows that no single power source is sufficient for

all applications, selection of power sources must be considered according to the appli-

cation. Additionally, chemical and biological sources and radiation can be considered

ambient energy sources.This subsection presents some sources of energy and presents

various technologies used to convert energy.

I.3.1 Solar energy

This is certainly the most known of renewable energy sources [30]. Solar energy is

uncontrollable, but it can be predicted through daily and seasonal patterns [31]. Solar

power is transformed into electrical power using photovoltaic cells. The amount of out-

Figure 4: solar panels [32].

put power generated by a cell depends on the intensity of light as well as cell size and

effectiveness, according to the photovoltaic principle [32]. To increase the output power,

multiple cells are usually combined into modules, also known as solar panels(see Fig.4)

.
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I.3.2 Wind Energy

Wind power has been known and exploited for thousands of years through windmills

and navigation, for example. Today we can harness this energy with special propellers

that store wind and machines that transform it into electrical energy (see Fig.5). Wind

turbines are installed on land and at sea in places where the wind reaches a high and

constant speed.

Figure 5: wind turbine [33].

I.3.3 Thermal energy

Theoretically, thermal energy would seem like the better solution when designing

devices targeted to the industrial environment as wasted heat is present in abundance

in all types of system. Conversion can be based on Seebeck effect and thermocouple,

or exploiting the Pyroelectric effect (i.e. the property of certain materials to present

a temporary voltage following a temperature change). The conversion efficiency of a

thermal energy harvesting device is in any case related to Carnot’s law

η =
Tmax − Tmin

Tmax

(1)

Where Tmax and Tmin are the extreme values of the temperature gradient to which

the device is subjected, expressed in Kelvin. Application of Carnot Law usually yields

higher values of efficiency compared to the actual ones, because of the characteristic

efficiencies of the single devices that must be taken into account that are well below
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the simple Carnots rule. Hence, at least for now, the attainable electrical power density

turns out to be a small fraction of the one the material can offer with Carnot efficiency.

Attempts to mechanically harvest energy through heat flow have also been reported,

e.g., [34]. If the mechanical system experiences temperature variations, e.g., as in an

airplane wing, the pyroelectric effect can be used to harvest energy. Sebald et al. [35]

compare Seebeck harvesters and pyroelectric harvesters and explain the differences in

efficiency between the two effects. In the case of a gradient, the use of the effect Seebeck

on PN semiconductor junctions makes it possible to have thermoelectric devices making

it possible to convert a temperature gradient into continuous electrical quantities (Figure

6).

Figure 6: Example of thermoelectric generators: (a) principles and (b) realization [36].

I.3.4 RF-Based Sources

In the modern environment, there are multiple wireless sources of different frequen-

cies radiating in all directions, such as TV, mobile phone, etc. So, it is easy to think that

they would made a good source for energy harvesting purposes. For the conversion,

an antenna or an array of antennae must be used: hence, frequency selection is an im-

portant consideration to be made in the design phase. The common choice would be

Global System for Mobile communications (GSM), as mobile phone signals are preva-

lent and propagate well both in and out of buildings. Also, the distance from the RF

source is a very important parameter, since the antenna dimension depend on it. The
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extracted power range is wide as it is dependent on the aforementioned parameters. As

an example, GSM 900, yields about 7µW/cm3.

I.3.5 Vibration energy

Indoor operating environments may have reliable and constant mechanical vibra-

tion sources for ambient energy scavenging. For example, indoor machinery sensors

may have plentiful mechanical vibration energy that can be monitored and used reli-

ably. Vibration energy harvesting devices can be either electromechanical or piezoelec-

tric. Electromechanical harvesting devices, however, are more commonly researched

and used. Energy withdrawal from vibrations could be based on the movement of a

spring-mounted mass relative to its support frame. Mechanical acceleration is produced

by vibrations that, in turn, causes the mass component to move and oscillate. This rel-

ative dislocation causes opposing frictional and damping forces to be applied against

the mass, there by reducing and eventually extinguishing the oscillations. The damping

force energy can be converted into electrical energy via an electric field (electrostatic),

magnetic field (electromagnetic), or strain on a piezoelectric material. These energy con-

version schemes can be extended and explained under the three listed subjects because,

the nature of the conversion types differs even if the energy source is vibrating.

This part examines transduction methods used to convert mechanical vibrations

into electrical energy in an energy harvesting system. Three types of transduction are

examined in this paragraph; electrostatic, magnetic, and piezoelectric. The fundamental

physics used to convert mechanical vibrations into electrical energy are reviewed for

each method.

I.3.5.1 Electrostatic transduction

The electrostatic power generator consists of two conductors which move relative to

one another. They are separated by a dielectric and create a capacitor. As the conductors

move the energy stored in the capacitor changes, thus providing the mechanism for
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mechanical to electrical energy conversion. A simple parallel plate capacitor, shown in

Figure 7 can be used to illustrate the principle of electrostatic energy conversion. The

capacitance of this structure is given by

C =
ε0εrA

e
, (2)

Figure 7: Electrostatic Energy Harvester [37].

where ε0 is the permittivity of free space, εr is the relative dielectric permittivity, A is

the area of the plate overlap, and e is the plate spacing. The voltage across the capacitor

is given by

V =
Q

C
. (3)

The electrical energy stored on the capacitor can be expressed as

E =
Q2

2C
. (4)

Electrostatic generators can be classified into three types: in-plane overlap (Figure

8(a)) varying the overlap area between two electrode plates, in-plane gap closing (Figure

8(b)) varying the gap between electrode plates and out-of-plane gap closing (Figure 8(c))

varying the gap between two large electrode plates.

These three types can be operated either in charge-constrained or voltage- constrained
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(a) (b) (c)

Figure 8: Three types of electrostatic generators [38]; (a) In-plane overlap, (b) In-plane
gap closing, (c) Out-of-plane gap closing

cycles depending on the electric circuit used. In general, harvesters working in voltage

constrained cycles provide more energy than those in charge constrained cycles. The

primary disadvantage of electrostatic power generator is that they require a separate

voltage source to initiate the conversion process because the capacitor must be charged

up to an initial voltage for the conversion process to start.

I.3.5.1.1 State of the art of electrostatic system

The first category of the devices rely on an external bias to create a potential difference

between the two parallel plates. In the second type of device, electrets are used to create

a potential difference between the parallel plates. Electrets are essentially dielectric ma-

terials with permanent electrical polarization analogous to permanent magnet. It is well

known in the literature that, micro-electromechanical system based electrostatic energy

harvesters were firstly reported by Chandrakasan group at Massachusetts Institution of

Technology (MIT) [12] and further developed by Roundy [39]. Meninger examined the

energy conversion for both constant charge and constant voltage harvesters [12]. He

determined that the constant voltage case was capable of producing more power, but

required multiple external voltage sources. A hybrid design was proposed which in-

creased the power capability of the constant charge case, and an in-plane overlap style

transducer was designed. Simulation of this design produced output power of 8 µW at

a vibration frequency of 2520 Hz.

Roundy performed a thorough examination of the three different variable capacitor
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topologies and determined that the in-plane gap closing design was the most robust

with output power comparable to the other topologies [40]. Through simulation, with

an input acceleration of 2.25m/s2 at 120 Hz, Roundy calculated an optimal design could

produce 110 µW output power and be confined to 1 cm3. The power estimate was made

for a constant charge system, and does not take into account the power needed for the

bias control circuitry. Peano [41] developed a nonlinear dynamic model for an in-plane

overlap topology to be used for device optimization. For a 5 µm displacement at 911

Hz, it was shown that a device optimized for nonlinear operation could harvest 50 µW ,

while a linearly optimized device could only harvest 5.8 µW . Lo et. al [42] developed

a parylene HT electret material with 3.69 mC/m2. Using an in-plane overlap topology,

5.6 µW of power has been demonstrated with a 2 mmpp displacement at 50 Hz. The

device is comprised of movable brass electrodes over a glass substrate. The total de-

vice size is approximately 25 mm2. A 16 µm thick Cyclic Transparent Optical Polymer

(CYTOPTM) electret film was presented by Sakane [43] for use in a micromachined har-

vester. By doping the CYTOPTM, a charge of 1.5 mC/cm2 was achieved. When a 1.2

mmpp displacement was applied at 20 Hz, an output power of 0.585µW was delivered

to an optimal resistive load of 4 MΩ. The total volume of this device was not clearly

reported.

I.3.5.2 Piezoelectric transduction

The piezoelectric effect refers to a coupling between strain and polarization for certain

materials due to their crystalline structure. When a material with piezoelectric proper-

ties is mechanically strained, either in compression or tension, an electric potential is

induced in the material. This property, illustrated in Figure 9(a), is referred to as the

direct piezoelectric effect. Piezoelectricity is a reciprocal property, meaning that an ap-

plied electric potential induces a mechanical strain in the material. This is referred to

as the indirect piezoelectric effect and is shown in Figure 9(b). For harvesting vibration

energy, the direct piezoelectric effect is utilized to convert energy from the mechanical

domain to the electrical domain.
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(a) (b)

Figure 9: (a)The direct piezoelectric effect, (b) The indirect piezoelectric effect [46].

The presence of piezoelectric behavior in a material is determined by its crystal struc-

ture. Crystalline materials have atomic structures where the atoms are arranged in a

periodic lattice. The smallest arrangement of atoms that can accurately represent the

lattice is referred to as a unit cell [44]. In order for a material to exhibit piezoelectricity,

the crystalline structure must be noncentrosymmetric, meaning that there is no center

of symmetry within a unit cell. Of the 21 known noncentrosymmetric crystal configu-

rations, 20 have been shown to possess piezoelectric properties. When a piezoelectric

crystal is mechanically deformed, the lack of symmetry leads to the formation of elec-

tric dipoles which induce an electric field in the material [45]. Electrodes placed on the

surface of the material experience a voltage differential as a result of the induced field.

This effect was first demonstrated in quartz by Pierre and Jacques Curie in 1880. In ad-

dition to quartz, common piezoelectric materials include, lead zirconium titanate (PZT),

aluminum 37 nitride (AlN), zinc oxide (ZnO), and polyvinyldine fluoride (PVDF).

When using piezoelectric materials for vibration energy harvesting, there are two

available modes of electromechanical coupling, namely the 31 and 33 modes. The num-

bers are used to represent the different modes, 1, 2 and 3, which refer to the orthogonal

axes of a 3-dimensional coordinate system. By convention, the 3-direction refers to the

direction of polarization. The 31 mode therefore describes a transducer where strain is
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applied in the 1-direction, and the electric potential is generated in the 3-direction. Sim-

ilarly, the 33 mode is characterized by strain in the 3-direction and an electric potential

also in the 3-direction. Both modes, 31 and 33, are shown in Figure 10. The geometry

of the piezoelectric material and placement of the electrodes will ultimately determine

which electromechanical mode is harnessed for transduction.

Figure 10: Illustration of 33 mode and 31 mode operation of piezoelectric material [47].

I.3.5.2.1 Linear Theory of Piezoelectricity

In linear piezoelectricity, the equations of linear elasticity are coupled to the charge

equation of electrostatics by means of the piezoelectric constants. However, the electric

variables are not purely static, but only quasi-static, because of the coupling to the dy-

namic mechanical equations. Thus, in order to provide an appropriate theoretical basis

for the material covered in this standard, the relevant mechanical and electrical field

variables will be briefly defined and the pertinent mechanical and electrical equations

presented in this subsection.

The conservation of energy [48] for the linear piezoelectric continuum results in the

first law of thermodynamics:

U̇ = TijṠij + EiḊi (5)

where U is the stored energy density for the piezoelectric continuum. The electric

enthalpy [49] density H is defined by
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H = U − EiDi (6)

and from Eqs.(5) and (6) there results

Ḣ = TijṠij −DiĖi (7)

Eq.(7) implies H = H(Skl, Ek) and from Eq.(7) and next consideration, there result

Tij =
∂H

∂Sij
(8)

Di = − ∂H
∂Ei

(9)

where it should be noted that

∂Sij

∂Sji

= 0, i ̸= j (10)

in taking the derivatives called for in Eq.(8). In linear piezoelectric theory the form taken

by H is

H =
1

2
cEijklSijSkl − ekijEkSij −

1

2
εSijEiEj (11)

where cEijkl, ekij and εSij are the elastic, piezoelectric, and dielectric constants, respec-

tively. In general there are 21 independent elastic constants, 18 independent piezoelec-

tric constants, and 6 independent dielectric constants. From Eqs.(8), (9) and Eq.(11) with

Eq.(10) there result the piezoelectric constitutive equations:

Tij = cEijklSkl − ekijEk (12)

Di = eiklSkl + εSijEk. (13)
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Table 1: Matrix Notation
ij or kl p or q
11 1
22 2
33 3
23 or 32 4
31 or 13 5
12 or 21 6

where D is the electric displacement (charge per unit area, expressed inCoulomb/m2),

E the electric field (V/m), T the stress (N/m2) and S the strain, cE is the compliance when

the electric field is constant (inverse of the Youngs modulus), e is the piezoelectric con-

stant, and ε is the relative permittivity of the piezoelectric material. The subscripts i, j, k

and l are tensor notations and take values of 1, 2 and 3.

A compressed matrix notation that replaces i j or kl in equation (12) and (13) by p or

q is introduced to write the elastic and piezoelectric tensors in the form of a matrix. p

and q take the values 1, 2, 3, 4, 5, and 6 according to Table 1. The identifications,

cEijkl = cEpq, eikl = eip, Tij = Tp (14)

The matrix notation in Table 1 reduces equations (12) and (13) to

Tp = CE
pqSq − ekpEk (15)

Di = eiqSq + εSikEk (16)

where
Skl = Sq when k = l, q = 1, 2, 3

2Skl = Sq when k ̸= l, q = 4, 5, 6

(17)

The reduced equations (15) and (16) allow the constants to be expressed using the

polarization of the piezoelectric material.
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Figure 11 shows how to interpret the vectors in a piezoelectric material. The first

Figure 11: Definition of forces affecting a piezoelectric element relative to the polariza-
tion.

number in the subscript of the constants refers to the affected vector, and the second

number refers to the applied vector; e.g., e33 refers to how the charge in the polarized

vector 3 is affected by stress in the same vector (3). e31 refers to how the charge in

the polarized vector 3 is affected by the stress applied to the orthogonal vector 1. It

should be noted that when the compressed matrix notation is used, the transformation

properties of the tensors become unclear. Hence, the tensor indices must be employed

when coordinate transformations are to be made.

The mechanical model of the piezoelectric generator can be represented with the

simple mass-spring system of Fig 12.

(a) (b)

Figure 12: (a) Construction of the piezoelectric generator; (b) Mechanical model of the
piezoelectric generator [51].
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I.3.5.2.2 State of the art of piezoelectric system

Piezoelectric energy harvesting has been explored for a wide variety of applications.

This section focuses on small (cm scale and down) piezoelectric energy harvesters and

reviews work specifically designed for self powered systems. The majority of piezoelec-

tric vibrational harvesters use a cantilever beam with piezoelectric materials on the top

and bottom of the cantilever [52] with a proof mass at the tip of the cantilever [53-58] to

tune it to a specific frequency.

(a)

(b)

Figure 13: (a) A two-layer bender mounted as a cantilever [59], (b) Piezoelectric di-
aphragm generator developed by Xu et al. [60]

In 2003, Roundy et al. [40](see figure 13(a)) designed a bimorph beam using a com-
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Figure 14: Overview of the smart tag. (a) Perspective view of the smart tag, (b) Integra-
tion concept of the smart tag: lamination of different layers, (c) Layout of the smart tag
[61].

mercially available piezoelectric material, PSI-5A4E, from Piezo Systems Inc. The PZT

cantilevered beam was 28 mm x 3 mm with a tungsten proof mass at the tip for adjusting

the resonant frequency. The beam had top and bottom electrodes and operated in the

31 mode. From a base acceleration of 2.5 m/s2 at 120 Hz, 365 µW was delivered to a re-

sistive load. Xu et al. [60] have developed a piezoelectric generator of cylindrical shape

of volume 0.23 cm3 which recovers 12 mW at 113 Hz (Figure 13(b)), and for a vibration

acceleration of 1ms−2.

Zhu et al. [61] have proposed an example of the size of a credit card (see figure

14) designed to operate when subjected to vibrations of 67Hz and 3.9 ms−2, allows to

recover a maximum power of 240 µW .

Several examples have been reported that use piezoelectric harvesters mounted in

shoe to harvest mechanical energy due to human walk or running [62-66]. A representa-

tive photograph of shoe-mounted piezoelectric energy harvesters is shown in Fig.15(a)

[65]. Nathan et al. [66] designed a piezoelectric generator in shoe sole. Two methods

have been used, explained in Figure 15(b), of piezoelectrically converting shoe power in
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(a) (b)

Figure 15: (a) Prototype of the piezoelectric film energy harvesting device inserted in a
shoe [65], (b) Two approaches to harvest piezoelectric energy in shoes [66].

bending 3-1-mode operation. One way is to harvest the energy dissipated in bending the

ball of the foot, using a polyvinylidene fluoride (PVDF) stave under the sole. The other

way is to harvest foot strike energy by putting PZT dimorph under the heel. This device,

called a dimorph, consists of two back-to-back, single-sided unimorphs. Although this

application is very novel, its efficiency is relatively low. It can generate high voltage on

the order of hundred V, but very low current on the order of 10−7 A. After trying differ-

ent methods, they finally developed an off line, forwards witching converter, consisting

of a small number of inexpensive, readily available components and materials.

I.3.5.3 Electromagnetic transduction

I.3.5.3.1 The basics or electromagnetic transduction

This technique uses a magnetic field to convert mechanical energy to electrical energy.

The output power of electromagnetic vibration transducers is related to the particular

design of the electromagnetic coupling. Hence factors like size, material properties and

geometric configuration of magnet, coil and magnetic circuit play a vital key role in the

design process. So far conclusions from literature are often based on very simplifying

assumptions. Nevertheless the basic theory of magnetic induction is necessary in order

to understand how the electrical energy can be extracted. In electromagnetic vibration

transducers the transduction mechanism is based on Faradays law of induction. This
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law states that any change of magnetic flux through a conductive loop of wire will cause

a voltage to be induced in that loop.

Magnetic materials emanate magnetic fields, as shown for a typical bar magnet in

Figure 16. By convention, these fields originate from the magnetic north pole and termi-

nate at the magnetic south pole. The number of field lines passing normally through a

surface within the field is defined as the magnetic flux, Φb, which has units of Webers.

Figure 16: Bar magnet with magnetic field lines

The magnetic flux is defined as:

Φmag =

∫
A

−→
B .

−→
dA, (18)

where A indicates the area enclosed by the wire loop and B is the magnetic flux

density. The induced voltage is the socalled electromotive force (Vm) which is given by:

Vm = −dΦmag

dt
. (19)

The electrical and magnetic domains can be linked together through Faradays law of

magnetic induction. When the N loops of a closed circuit are placed into a magnetic

field, a voltage, (Vm), is induced equally to the time rate of change of the magnetic flux,

Vm = −N dΦmag

dt
. (20)
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Combining Eq.(18) and Eq.(20), the induced voltage can be expressed in terms of
−→
B as

Vm = −N d

dt

∫
A

−→
B .

−→
dA. (21)

Therefore, to induce a voltage in a closed circuit, either
−→
B .

−→
dA, or both, must be functions

of time.

Magnetic transducers convert vibration energy into electrical energy through mag-

netic induction described by Faradays law. Input vibration causes relative motion be-

tween a magnet and coil, which leads to a time-varying flux and induced voltage (Vm),

defined by Equation 20. The voltage induced by the changing flux causes current to flow

in the coil and delivers electrical energy to an external load.

If one substitutes the magnetic flux from Eq.18, then the induced voltage becomes:

Vm = −(
d
−→
A

dt

−→
B +

d
−→
B

dt

−→
A ). (22)

From this equation it is evident that for electromagnetic induction it does not matter

whether the magnetic field is changing within a constant area or the area is changing

within a constant magnetic field. This characteristic offers a wide range of possible

implementations of the electromagnetic coupling. Two basic arrangements are shown

in Fig.17. Both can be referred to the first term in the sum of equation (22). The coil in

Fig.17a has a rectangular cross section with concentrated windings whereas the coil in

Fig.17b has a circular cross section and the windings are spacious (more realistic case).

These arrangements are often used for analytical evaluation due to the simplicity in

calculation in contrast to arrangements where the (Vm) is produced through a diverging

magnetic field according to the second term in the sum of equation (22). For coils with

N windings the change of overlapping area follows N.
dA

dt
= Nl

dz

dt
= Nlż. Thus, (Vm)

becomes:

Vm = −NBlż. (23)
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(a) (b)

Figure 17: Popular models for linearized electromagnetic transducer analysis [67]. (a)
rectangular cross section and concentrated windings, (b) circular cross section with spa-
cious windings.

With the Lorentz force F = q(ż×B) (Force on point charge q in electromagnetic field) it is

apparent that only wire segments orthogonal to the velocity are responsible for the (Vm)

voltage. For coils with circular cross section the length l in Eq.(23) must be substituted

by l′ which can maximal be (R0 + Ri). Note that this is only valid for small amplitudes

in z(t) or small changes of l′. Now Eq.(19) can be extended using the chain rule:

Vm = −dΦmag

dz
.
dz

dt
= κtż, (24)

where κt is the transduction factor. The transduction factor equals the magnetic flux

gradient and is assumed to be constant in the analytical treatment.

A common configuration used for magnetic transduction is shown in Figure 18. A

permanent magnet, attached to the housing of the transducer with a mechanical spring,

is suspended above an induction coil attached directly to the housing. Vibrations ap-

plied in the vertical-direction cause oscillations in the position of the magnet relative to

the coil, which lead to a time-varying flux. A voltage is induced in the coils, and cur-

rent flows to the electrical load. A similar configuration is possible where the magnet is

stationary relative to the housing and the coils move in the presence of vibration.

The main benefit of magnetic transduction is the relatively high power densities that

can be achieved. A wide variety of magnetic materials exist which exhibit very high
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Figure 18: Electromagnetic Energy Harvester [68].

magnetic fields and provide good coupling between the mechanical and electrical en-

ergy domains. Unlike the capacitive method where an external bias is required to pro-

vide initial charge, magnetic transducers can operate without this constraint.

I.2.4.3.2 Transduction factor

Following Figure 19 shows the relative location and parameters of the magnet and

induction coil. In this section, the magnetic field will be calculated based on magnetic

dipole model. r1 and r2 are the inside and outside coil radius, respectively. hc is the

height of coil. The radial and axial positions of an arbitrary single wire of coil are r and

z1, respectively. z2 is the axial position of cylindrical magnet core. In this section we

follow the strategy of Zhenlong et al. [69] to determine the expression of the coupling

coefficient for a circular magnet., the electromotive force υmf in Eq.(20) is rewritten as

[70]

vmf = −dΦmag

dt
= −dΦmag

dz
.
dz

dt

= −AdB
dz

.ż = κt.ż.

(25)

where B is the magnetic flux density. A is the area enclosed by the wire loop, which is

considered as a constant value. κt is called the electromagnetic coupling coefficient. The
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Figure 19: Relative location and parameters of the magnet and induction coil [69].

magnet is considered as a dipole with magnetic moment vector −→m2 [71], the magnetic

field generated by the magnet can be expressed as

−→
B = −µ0

4π

[−→m2

r30
− 3r0(

−→m2.
−→r0 )

r50

]
(26)

where µ0 = 4π × 10−7 Hm−1 is the permeability of vacuum. r0 is the distance vec-

tor from center of the magnet to an arbitrary single wire. Assumed that the position

coordinates of an arbitrary wire and magnet core are (r, z1) and (0, z2) respectively. The

corresponding expression of
−→
B is

B⃗ =
BrV2
4π

.
3(z1 − z2)re⃗r − [r2 − 2(z1 − z2)

2] e⃗z

[r2 + (z1 − z2)2]
5/2

(27)

whereBr and V2 are the residual magnetic flux density and volume of the source magnet.

−→e r and −→e z are the unit vectors along r−and z−axis, respectively.

As can be seen from Equation Eq.(25), the magnetic flux gradient along the z-axis

direction is related to the induced voltage. For this reason, the magnetic flux density

along the z-axis is the focus of research. The magnetic flux through the area enclosed by

PhD. Thesis of Foupouapouognigni Oumarou Laboratory of Mechanics, Materials and Structures



I.3 Energy Sources and Energy Harvesting Technologies 29

the wire is

Φ =

∮
S

BdA =
BrV2r

2

2 [r2 + (z1 − z2)2]
3/2

(28)

The average magnetic flux over the cross-section of the coil can be given as

Φ̄ =
1

Ac

.

hc∫
0

R0∫
Ri

Φdrdz1 (29)

where Ac = (Ro −Ri)hc is the coil cross−sectional area. hc, Ro, and Ri are the height,

outer radius, and inner radius of the coil, respectively. Correspondingly, the total mag-

netic flux through the coil can be derived from Φmag = fcNΦ. fc =
NAw

Ac

is the coil fill

factor [50]. N is the number of turns in the coil. Aw is the cross-sectional area of single

wire. Consequently, the electromotive force emf can be expressed as

vmf = −d(fcNΦ̄)

dz
= κtż (30)

where κt is

κt = −BrV2fcN

2Ac

(κ10 + κ20) (31)

where

κ10 = ln
Ri +

√
R2

i + (z2 − hc)2

R0 +
√
R2

0 + (z2 − hc)2
+ ln

R0 +
√
R2

0 + z22

Ri +
√
R2

i + z22
, (32)

and

κ20 =
R0√

R2
0 + (z2 − hc)2

− R0√
R2

0 + z22
− Ri√

R2
i + (z2 − hc)2

+
Ri√
R2

i + z22
. (33)

It is assumed that the centers of the two magnets are always vertically aligned during

the vibration of the hybrid energy harvester (HEH).

The electromagnetic energy harvester makes use of the relative motion between the
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magnet and induction coil to change the vibration energy into electric power. In early

works, the electromagnetic coupling and magnetic field distribution are not often con-

cretized [72] or taken as linear electromagnetic coupling model [73].

The variation of dynamic magnetic field is highly nonlinear with respect to the gap

between the magnet and coil. Consequently, the electromagnetic coupling is nonlinear

[74, 75].

I.3.5.3.2 State of the art of electromagnetic transduction

Some of the first published work on magnetic transduction for vibration-based en-

ergy harvesting was performed by Williams et al. [5]. A device similar to that shown in

Figure 20 was fabricated using a bulk SmCo magnet and a polyimide membrane for the

spring. When the device was operated at its resonant frequency of 4.4 kHz with 0.5 µm

vibration amplitude, a power of 0.3 µ W was delivered to a 39 Ω resistor. The volume of

the device was approximated at 25 mm3.

Figure 20: Schematic of a general energy harvesting device, which is a single-degreeof-
freedom damped simple harmonic oscillator, as described by Williams and Yates [5].

With regard to macroscopic achievements, it was developed at the University of

Southampton in 2001 several systems whose structure involves 2 or 4 permanent mag-

nets fixed face to face at the free ends of a recessed mechanical beam, and a coil of copper

taking place between the magnets within the magnetic field [76]. In 2004, Glynne-Jones
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(a)

(b)

Figure 21: (a) Schematic design developed by Beeby et al. [78], (b) the electromagnetic
generator developed by Zhu et al. [79]
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et al. [77] recover with such a structure of 3.15 cm3 mounted on the engine of a car, a

maximum power of 3.9 mW and average of 157 µW on a journey of 1.24 km at an av-

erage speed of 25 km/h a miniaturized version of this system is developed in 2007 by

Deeby et al. [78] of total volume 0.15 cm3 generating 58 µW for ambient acceleration

vibration 0.59 m.s−2 and frequency 52 Hz (Figure 21(a)). It is shown that this generator

can power a wireless sensor system through the vibrations of an air conditioner or an

industrial air compressor. Finally, Zhu et al. [79] developed in 2011 a new planar struc-

ture of 4 mm thick, based on an arrangement of magnets allowing a strong gradient of

magnetic flux and reduced bulk (see Figure 21(b)). The generator harvested an average

power of 120 µW at 44.9 Hz. The harvested of vibrations of large amplitudes including

vibrations of the human body, was developed in 2006 by Sterken et al. [80]. It consists

of a tube in which circulates one or more permanent magnets pushed or not at the ends

of the tube, a coil is wound around the tube to recover the magnetic field variations. In

2008 Saha et al. [81] test a similar structure in a backpack during brisk walking or run-

ning: the generator with a volume of 12.4 cm3 produces between 0.3 mW and 2.46 mW.

In 2012, Rahimi et al. [82] developed a 4.5 cm3 system including the electromagnetic

generator, rectification circuit and storage capacity, delivering 11.6 µW at 12 Hz. Von

Büren et al. [83] in 2007 showed a similar multipole structure (Figure 22) with a volume

of 0.5cm3 recovering 35 µW on a suitable resistance when mounted under a knee during

a walk.

As far as microscopic systems are concerned, a lot of work has been done. These

systems are generally composed of a miniature magnet concentrating the dynamic mass

of the system at the center of a planar spiral spring, or at the end of a silicon beam. One

or more layers of planar coils are added on either side of this set. In 2007, Wang et al.

[84] used a 0.32 cm3 generator (figure 23)(a) and harvested 21.2 µW at 280 Hz and 8

ms−2. The power harvested experimentally is 0.83 mW, for an external vibration ampli-

tude 150 µm. Water et al. [85] realized a 27 cm3 generator consisting of a steel spring

supporting a magnet with a coil harvested 1.2 mW(figure 23)(d). In 2008, Kulkarni et al.

[86] produced 3 variants of electromagnetic silicone generators based on slightly differ-
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Figure 22: Electromagnetic generator developed by Von Büren et al. [83].

ent structures for a volume of 0.1 cm3. One of the variants consisting of an Neodymium

Magnet (NdFeB) magnet on a beam moving between two planar coils (figure 23)(c) gen-

erates a maximum power of 586 nW at 60 Hz for an acceleration of 8.83 ms−2. Owens

et al. [87] discussed the effects of linear and nonlinear transduction and demonstrated

that with a suitable design, nonlinear coupling is better than linear. Borowiec et al. [88]

proposed a beam consisted of substrate and sandwiched with a tip mass which trans-

duce the bending strains induced by the random horizontal displacement into electrical

charge.

They analyzed the efficiency of this nonlinear device by focusing on the region of

stochastic resonance where beam motion has a large amplitude. Nono et al. [89] used

the Melnikov theory to discuss the performance of a bistable harvester by analyzing

the critical condition for homoclinic bifurcation that could induce chaos in the system.

Coccolo et al. [90] have studied the electrical response of a bistable system, by using

a double-well Duffing oscillator, connected to a circuit through piezoceramic elements

and driven by both a low and a high frequency forcing, where the high frequency forc-

ing is the environmental vibration, while the low frequency is controlled by us. They

showed that the response amplitude at the low-frequency increases, reaches a maxi-
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(a) (b)

(c)

Figure 23: MEMS electromagnetic generators developed by (a) Wang et al. [84], (b)
Water et al. [85], (c) Kulkarni et al. [86].

mum and then decreases to a certain range of the high frequency forcing. They also

demonstrated in their work that by enhancing the oscillations, we can harvest more

electric energy. Shahruz [91] shows that a bistable configuration of the potential energy

of the system can be used to increase the output power. With a different perspective,

Masana and Daqaq [92] proposed a comparative analysis of harvesters having bistable

and mono-stable configuration of the potential energy, under harmonic excitation and

demonstrated the effects of the potential shape on the performance of the system, for

some ranges of frequencies. They concluded that mono-stable potential systems per-

form better than double-well systems for an excitation with a small amplitude. It is

worth noting that, regardless of the type of transduction mechanism, any one exhibits

advantage and disadvantage.
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Table 2: Comparison of different types of technologies [93]
Types Advantage Disadvantages
Electrostatic 1) No need of smart material 1) External voltage or charge source

2) Compatible with MEMS 2) Mechanical constraints needed
3) High voltage generated 3) Capacitive

Piezoelectric 1) No external voltage source 1) Depolarization and aging problems
2) Compatible with MEMS 2)Brittleness in PZT
3) High voltage generated 3) Poor coupling in piezo thin film
4) Compact configuration 4) charge leakage
5) High coupling in single crystal 5) High output impedance

Electromagnetic 1)No need of smart material 1) Difficult to integrate with MEMS
2) No external voltage source 2)Bulky size

3) Small voltage generated

I.3.6 The advantages and disadvantages of different types of energy

harvesting

Various studies have been able to summarize the advantages and disadvantages of

the main modes Technologies implemented for energy recovery, by comparing for ex-

ample, the ease of integration of electrostatic systems, the low voltages produced by

electromagnetic generators or the high output impedance of piezoelectric generators.

These general remarks are summarized in Table 2.

I.3.7 Power density of various technologies for energy harvesting

Comparing these different sources is tricky because dependent on many factors, and

the application considered. Nevertheless, classical comparative studies have been able

to compare the power densities of several classical sources. Results are listed in Table

3. It appears that the exploitation of energy from ambient vibrations makes it possible

to potentially obtain the second highest energy density after solar energy. This source

also has the advantage of being available in many fields of application, especially in

industrial environments, or transport, where the use of autonomous sensor networks

can be envisaged.
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Table 3: Power density of various technologies for energy harvesting [93]
Technologie Power density
Outdoor photovoltaic 15000µW/cm2

Indoor photovoltaic 100µW/cm2

Vibration (micro generator) 4µW/cm3(human motion)
Vibrations (Small microwave oven) 116µW/cm3

Vibration (piezoelectric) 200µW/cm3

Piezoelectric (inserts in shoe) 330µW/cm3

Acoustic Noise 0.96µW/cm3

Thermoelectric 60µW/cm2

I.3.8 Summary of Power Scavenging Sources

Based on this survey, it was decided that solar energy and vibrations offered the most

attractive energy scavenging solutions. Both solutions meet the power density require-

ment in environments that are of interest for wireless sensor networks. The question that

must then be asked is: is it preferable to use a high energy density battery that would

last the lifetime of the device, or to implement an energy scavenging solution? Figure

24 shows average power available from various battery chemistries (both rechargeable

and non-rechargeable) versus lifetime of the device being powered.

Figure 24: Power density versus lifetime for batteries, solar cells, and vibration genera-
tors [40].

The shaded boxes in the figure indicate the range of solar (lightly shaded) and vi-

PhD. Thesis of Foupouapouognigni Oumarou Laboratory of Mechanics, Materials and Structures



I.3 Energy Sources and Energy Harvesting Technologies 37

bration (darkly shaded) power available. Solar and vibration power output are not a

function of lifetime. The reason that both solar and vibrations are shown as a box in

the graph is that different environmental conditions will result in different power lev-

els. The bottom of the box for solar power indicates the amount of power per square

centimeter available in normal office lighting. The top of this box roughly indicates the

power available outdoors. Likewise, the area covered by the box for vibrations covers

the range of vibration sources under consideration in this study. Some of the battery

traces, lithium rechargeable and zinc-air for example, exhibit an inflection point. The

reason is that both battery drain and leakage are considered. For longer lifetimes, leak-

age becomes more dominant for some battery chemistries. The location of the inflec-

tion roughly indicates when leakage is becoming the dominant factor in reducing the

amount of energy stored in the battery. The graph indicates that if the desired lifetime

of the device is in the range of 1 year or less, battery technology can provide enough

energy for the wireless sensor nodes under consideration (100 µW average power dissi-

pation). However, if longer lifetimes are needed, as will usually be the case, then other

options should be pursued. Also, it seems that for lifetimes of 5 years or more, a battery

cannot provide the same level of power that solar cells or vibrations can provide even

under poor circumstances. Therefore, battery technology will not meet the constraints

of the project, and will not likely meet the constraints of very many wireless sensor node

applications

I.3.9 Potential applications

Energy harvesters have many applications and most particularly in the micro-electro-

mechanical system(MEMs) and in the many others domain. Indeed, use of energy har-

vesting helps to eliminate the need of battery replacement and maintenance and to pro-

long the lifetime of Wireless Sensors Nodes (WSN), this is rended possible thanks to

recent advance in wireless and micro electromechanical systems technology. There are

many potential applications of MEMS vibration energy harvesters to power low-power
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Wireless Sensors Node (WSNs) as indicated in Fig. 25.

Figure 25: Power consumption of wireless sensor nodes [94].

The mechanical energy converted in the electricity though the PZT is used to stim-

ulate the cardiac activity of the heart. Figure 26 shows an image of the ultra-flexible

piezoelectric energy harvester incorporate on the heart. From the relaxation and expan-

sion motion of the heart, the PZT nanogenerator can generate electrical energy and it

can be stored inside a specifically designed battery in the pacemaker [95]

Figure 26: PEH for pacemaker. Expansion and relaxation of the pacemaker for the gen-
eration of voltage [95].

In addition to biomedical applications, energy harvesting from car-tire vibrations
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to power tire pressure monitoring systems (TPMSs) is one of the most promissing ap-

plications. As of September 2007, all cars sold in the United States must be equipped

with a TPMS. In the Eurozone, from November 1st 2012 all cars must be installed with

TPMS as well as all vehicles manufactured after November 1st 2014. Energy harvest-

ing can still be used of Bridge stress monitoring [96], bridge health monitoring [97] or

structural health monitoring [98] are other potential applications. Energy harvesters can

be embedded into bridge or structural constructions to power these wireless monitoring

sensors.Moreover, wearable sensors, and implantable sensors are other targets of MEMS

vibration energy harvesters for applications [99, 100].

I.4 Fractional Property of Energy Harvesting Systems

The fractional calculus (FC) is a theory of integrals and derivatives of arbitrary real or

en complex order. It is a generalization of the classical calculus and therefore preserves

many of the basic properties. As an intensively developing area of the calculus during

the last couple decades it offers tremendous new features for research and thus becomes

more and more in use in various applications.

I.4.1 State of the art of fractional calculus

The beginning of the fractional calculus is considered to be the Leibniz’s letter to

L’Hospital in 1695, where the notation for differentiation of non-integer order
1

2
is dis-

cussed. In addition, Leibniz writes: ′′ Thus is follows that d
1

2 will be equal to x
√
dx : x.

This is an apparent paradox from which, one day, useful consequences will be drawn′′

(see Miller et al. [101]).

Nowadays, not only fractions but also arbitrary real and even complex numbers are

considered as order of differentiation. Nevertheless, the name fractional calculus is kept

for the general theory.

A lot of contributions to the theory of fractional calculus up to the middle of the
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20th century, of famous mathematicians are known: Laplace (1912), Fourier (1822), Abel

(1823), Liouville (1832), Riemenn (1847), Grunward (1867), Letnikov (1868), Heaviside

(1892), Weyl (1917), Erdélyi (1939) and many others (see Gorenflo et al. [102]). However,

this topic is a matter of particular interest just the last thirty years. The first specialized

conference on fractional calculus and its applications in 1974 at the University of New

Haven, USA, initiated the up-to-date books of Oldmam et al. [103], Miller et al. [101],

Podlubny [104], etc.

I.4.2 Fractional theory

Following [15], the conventional derivative can be extended to non-integer derivative

orders by using the following Fourier transform:

ℑ{f(t)} = f(ω) =
+∞∫
−∞

f(t)e−jωtdt,

ℑ−1
{
f(ω)

}
=

1

2π

+∞∫
−∞

f(ω)ejωtdt.

(34)

Letting

ℑ
{
dnf(t)

dtn

}
= (jω)nℑ{f(t)} , (35)

the fractional derivative of order q with q ∈ ℜ is defined as

dqf(t)

dtq
= ℑ−1 {(jω)qℑ{f(t)}} . (36)

Equations (34) and (36) are suitable only to a limited extent for realistically calculat-

ing a fractional derivative. If the integral exists, the following is equally valid:

dqf(t)

dtq
=

1

Γ(1− q)

t∫
−∞

f ′(τ)

(1− τ)q
dτ, q ∈ [0, 1[,

dqf(t)

dtq
=

1

Γ(2− q)

t∫
−∞

f ′′(τ)

(1− τ)q
dτ, q ∈ [1, 2[.

(37)

PhD. Thesis of Foupouapouognigni Oumarou Laboratory of Mechanics, Materials and Structures



I.4 Fractional Property of Energy Harvesting Systems 41

This definition includes the classical integer derivatives and satisfies the semigroup

condition

dq

dtq
(
dpf(t)

dtp
) =

dp

dtp
(
dqf(t)

dtq
) =

dp+qf(t)

dtp+q
, (38)

as well as the translation invariance which plays a major role in science applications

dqf(t)

dtq
= g(t) ⇔ dqf(t− τ)

dtq
= g(t− τ). (39)

Further, equation (37) proves the linear behaviour of the fractional derivative [103,

104]. In contrast to an integer derivative, a fractional derivative is a global operator. This

means that not only the actual values of the function to be derived but also its entire

past history have to be included in the actual value of the derivative. This can be well

demonstrated by means of a step. Comparable to an integer derivative, the fractional

derivative of a constant function f(t) = c gives

d
1/2f(t)

dt
1/2

=
1

Γ(1− 1

2
)

t∫
−∞

0

(t− τ)
1/2
dτ = 0. (40)

A step f(t) = c.σ(t) yields,

d
1/2f(t)

dt
1/2

=
c

Γ(
1

2
)

t∫
−∞

δ(τ)

(t− τ)
1/2
dτ =


0, t ≺ 0

c

Γ(
1

2
)
√
t

, t ≻ 0. (41)

Figure 27 shows that the step applied at the time instant t = 0 determines the history

of the fractional derivative also for t > 0. This clearly distinguishes the fractional from

the integer derivatives.

Further examples of fractional derivatives are

dqebt

dtq
= bqebt, (42)

PhD. Thesis of Foupouapouognigni Oumarou Laboratory of Mechanics, Materials and Structures



I.4 Fractional Property of Energy Harvesting Systems 42

Figure 27: The fractional derivative is a global operator [15].

dq sin(bt)

dtq
= bq sin(bt+

π

2
q), b ≻ 0. (43)

The handling of fractional derivatives in the time domain may involve some effort. In

the frequency domain, however, they can be easily applied. According to the definition

given by equation (36), the following applies:

ℑ
{
dqf(t)

dtq

}
= (jω)qℑ{f(t)} = (jω)qf(ω). (44)

Three main definitions have been established for mathematical analysis of fractional

order systems [106]

i) Grünwald-Letnikov definition

aDα
t f(t) = lim

h→0
h
−α

(
t− a

h
)∑

i=0

(−1)i

 α

i

 f(t− ih). (45)

ii) Riemann-Liouville definition suppose that α > 0, t > a, α, a ∈ ℜ. Then

aDα
t f(t) =

1

Γ(n− α)

t∫
a

(τ − t)n−α−1(− d

dτ
)nf(τ)dτ (46)
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iii) Caputo definition suppose that α > 0, t > a, α, a ∈ ℜ. Then

Dα
t f(t) =

1

Γ(n− α)

t∫
a

fn(τ)

(t− τ)α+1−n
dτ, n− 1 ≺ α ≺ n ∈ N . (47)

where Γ(.) is the gamma function. The Caputo definition is suitable for the analysis

of physical systems because it provides initial conditions, which physically can be ex-

plained [106]. Moreover, from an analytical point of view, it is quite simple to integrate.

I.4.3 Elements with fractional order physical properties

Recent research contributions have shown evidence of mechanical elements and elec-

trical components whose dynamics is well described by fractional order differential

equations or fractional order power law. In fact, considerable amount of research in

fractional calculus has been published in engineering and applied science literature.

I.4.3.1 Fractional resistor

Following [105], physical quantities are the electric field ε, the magnetic field B, the

electric flux density D, the magnetic field intensity H and electric current density J. Con-

sider a lossy material in the form of a cylinder of length l and cross section S of area A.

Assume a constant electric field in the direction of the axis of the cylinder z. The voltage

v(t) between the ends of the cylinder is

v(t) =
l∫
0

ε.zds = lε.z, (48)

whereas the total current i(t) is

i(t) =
∫
S
J.zds (49)

with

J(x, t) = σαD
1−α
t ε(x, t), 0 ≺ α ≤ 1. (50)
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Assume (50) is valid. We have

i(t) = AσαD
1−α
t ε.z. (51)

Hence

i(t) =
Aσα
l
D1−α

t v(t), (52)

let Rα =
l

Aσα
. It follows that the fractional resistor satisfies the Curie’s law

i(t) =
1

Rα

D1−α
t v(t). (53)

Notice that if α = 1, we have the classical law v = Ri.

I.4.3.2 Fractional capacitor

Following [105], consider two parallel plates confining a lossy material. Both plates

have charge of equal magnitude but opposite sign. If distance between the plates is small

compared with their size, there is no charge in the region between the plates. Charge

will reside mostly in the inner surfaces of the plates. The electric field is normal to the

plates away from the edges, say in the x direction, and zero in the interior of the plates.

Consequently, in the region between the plates the first Maxwell’s equation

∇.D = ρ, (54)

becomes

∇.D = 0. (55)

We propose the constitutive law

D = ϵβD
1−β
t ε, 0 ≺ β ≤ 1. (56)
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Since ε = −∇ϕ, the potential ϕ(x, y, z) ≡ ϕ(x) solves the equation

DxD
1−β
t Dxϕ = 0. (57)

We have

Dx(
1

Γ(β)
tβ−1Dxϕ) = 0, (58)

and for t > 0, D2ϕ = 0.

Let the plates be at x = a and x = b. As customary, suppose that the potentials are

constant on each plate and are ϕ(a) = va and ϕ(b) = vb. Then

ϕ(x) =
(vb − va) + bva − avb

b− a
, (59)

and the electric field

ε =
vab
b− a

, (60)

where, vab = vb − va.

Now choose δ such that δ << |b − a| and construct the cylindrical surface SC , with

axis in the x-direction. The plane top and bottom, of area A, are at x = a+
δ

2
and x = a

δ

2
.

From the integral form of equation (54) in the region confined by SC we obtain

qA =
∫
SC
D.nds, (61)

where q is the constant surface density of charge, positive on x = a. Let v(t) = vabH(t)

and Q(t) the total charge on the plate at x = a, namely Q(t) = qAH(t). From (56) and (60)

we have

Q =
ϵβA

b− a
D1−β

t v. (62)

We are led to a generalized governing equation of a capacitor
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Q(t) = CβD
1−β
t v(t), (63)

with Cβ =
ϵβA

b− a
.

I.4.3.3 Fractional inductor

Following [105], For later reference let us recall Ampere’s law and Faraday’s law of

induction. Namely

i(t) =
∮
C

H.tdl, (64)

∮
C

ε.tdl = − d

dt

∫
S
B.nds. (65)

The corresponding generalized constitutive relation between the magnetic field in-

tensity H and the magnetic field B is

µγH = D1−γ
t B, 0 ≺ γ ≤ 1. (66)

For the inductor it is considered a toroidal frame of rectangular cross section. The

inner and outer radii of the frame are r1 and r2 respectively, and the height is h. A

coil consisting of n turns of wire is tightly wound on the frame. There is a current of

magnitude i(t), t ≥ 0 in the conducting wire.

Set cylindrical coordinates such that the zaxis is the axis of symmetry and the frame

is located between r = r1 and r = r2. Let Cr be a circular path within the toroidal

farme of radius r with r1 < r < r2. As customary, we assume axis symmetry so that the

magnetic field B ≡ B(r, z, t) only depends on r, z, and t. By Ampere’s law applied to the

surface of the disk bounded by Cr, we have

ni(t) = D1−γ
t

∫
Cr
B.tdl, (67)
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where t is the unit tangent to Cr.

Substituting B from (67) we obtain

µγni(t) = D1−γ
t

∫
Cr
B.tdl. (68)

After application of the Riemann-Liouville integral of order 1− γ we are led to

µγnJ
1−γ
t i(t) =

∫
Cr
B.tdl. (69)

If B is the magnitude of the magnetic field in the direction of t, then

∫
Cr
B.tdl =

2π∫
0

B(r, z, t)dl = 2πrB(r, z, t). (70)

So

B(r, z, t) =
µγn

2πr
J1−γ
t i(t). (71)

Let us apply Faraday’s law to one such surface S. Then the normal to this surface is

n = t. So if vS(t) is the induced voltage

vS(t) = − d

dt

∫
S
B.nds

= − d

dt

h∫
0

r2∫
r1

B(r, z, t)drdz

= −µγn

2π

h∫
0

r2∫
r1

1

r
drdz

d

dt
J1−γ
t i(t)

= −µγnh

2π
log(

r2
r1
)Dγ

t i(t).

(72)

Let v be the total voltage dropped. Since there are n such coils, we have

v(t) = LγD
γ
t i(t), (73)
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Table 4: Fractional and classical governing equations of circuit components
Component Fractional Equation Classical Equation
Resistor i(t) = 1

Rα
D1−α

t v(t) i(t) = 1
R
v(t)

Capacitor Q(t) = CβD
1−β
t v(t) Q(t) = Cv(t)

Inductor v(t) = LγD
1−γ
t i(t) v(t) = LDt[i(t)]

with Lγ =
µγn

2π
log(

r2
r1
).

Equation (73) is a generalization of the governing equation of an inductor. Table 4

summarizes the equations obtained in the previous section. In the second column the

fractional generalizations are shown, while the third column presents the limit behavior

of the fractional models. As expected the classical governing equations, representing

ideal components of a circuit, are obtained.

Some models of fractional coils have been modeled using massive ferromagnetic

nuclei. Its structures are presented in Fig.28

Figure 28: Modelling of coils using fractional derivatives (derivation of order β, lossy
inductance Lβ) [105].

I.4.3.4 Literature review of the fractional models

Recent studies brought FC into attention revealing that many physical phenomena in

nature exhibit fractional behavior and can be modeled by fractional differential Equa-

tions. The importance of fractional order models is that they yield a more accurate de-

scription and give a deeper insight into the physical processes underlying a long range

PhD. Thesis of Foupouapouognigni Oumarou Laboratory of Mechanics, Materials and Structures



I.4 Fractional Property of Energy Harvesting Systems 49

memory behavior.

Many recent studies revealed that FO nonlinear dynamical systems, in various ap-

plications, display rich and complex behaviors. Bagley et al. [109, 110, 111] pointed

out that half-order fractional derivative models can quite well describe the frequency

dependence damping of viscoelastic materials. Kelly et al. [112] have applied the frac-

tional Kelvin model to predict the seismic response of natural rubber bearings. Markris

et al. [113] presented a fractional derivative Maxwell model for a viscous damper and

validated their model using experimental results. Cao et al. [114] recently considered

an energy harvesting system with fractional order viscoelastic material. They showed

that the fractional order property of the material enhances high-energy chaotic motion

as well as inter-well periodic oscillation. Kwuimi et al. [115] proposed an electrome-

chanical energy harvesting system with a fractional order current voltage relation-ship

for the electrical circuit and fractional power law in the restoring force of its mechan-

ical part. The authors showed that under a single-well potential configuration, for a

small amplitude of the perturbation, as the order of derivative increases, the resonant

amplitude of mechanical vibration decreases while the bending degree remains fairly

constant. For a large amplitude of the perturbation, the output power increased, this is

due to the hardening effects. However, under a double-well configuration, the fractional

power stiffness strongly affects the crossing well dynamics and consequently the output

electrical power. Ducharne et al. [116] built and energy harvesting devices based on

piezoelectric Ericsson cycles in a piezoceramic material. They showed that by coupling

an electric field and mechanical excitation on Ericsson-based cycles, the amplitude of the

harvested energy can be highly increased, and can reach a maximum close to 100 times

its initial value. Ngueuteu et al. [117] considered an electromechanical system having a

fractional order capacitor and modeled by a fractional-order Duffing-quintic equation.

They studied its dynamics and synchronization, and concluded that the fractional order

component can strongly affect the performance of the system, especially the route to

chaos and the onset of synchronization. Atanackovic et al. [118] considered the forced

oscillations of a rod having fractional order viscoelastic physical properties, Deng et al.
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[119] and Hosseini et al. [120] considered the stochastic analysis of column of viscoelas-

tic material. They concluded that for both white noise and colored noise, the fractional

order µ of viscoelastic materials plays an important role in the system stability.

I.5 Hybrid systems

The synthesis of the energy harvesting potential in the human environment that we

have just established makes it possible to highlight the difficulty of converting the am-

bient resources and the low levels of recoverable powers by different transducers such

as electromagnetic, thermoelectricity, photovoltaic et c. These resources are often insuf-

ficient to meet current needs, and they can be complementary hence the importance of

evaluating the interest of soliciting several for the same application.

Hybrid systems consist of the combination of two or more complementary technolo-

gies to increase the supply of energy. Energy sources such as the sun and the wind do

not deliver constant power, and their combination can lead to more significant and con-

tinuous electricity generation. Hybrid systems operate such that batteries are charged

by solar panels (during the day) and by the wind generator (when there is wind) [121].

Gergaud [122], showed the relevance of multi-source production (wind and photo-

voltaic technology) on the design of a coupled decentralized electricity generation sys-

tem network and can be autonomous. Even if the energy sources of the sources en-

visaged are less correlated than wind and sun, we hope to enjoy the same benefits in

low power energy harvesting. We present here a state of the art of systems low power

hybrids described in literature.

I.5.1 State of the Art on hybrid Systems

A prototype was developed by superimposing a photovoltaic cell on the TEG [123].

The hybridization of these two resources made it possible to reduce the size and the

overall weight of the system (Figure 29 (a)) thus to improve the power density of the

generator. This hybrid generator recovers an average power of 1 mW for a consumption
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of the EEG of about 0.8 mW. Following this first application, a new hybrid generator

(TEG + PV) integrated into the clothing and used to feed an electrocardiogram (ECG)

[124] (Figure 29 (b))is proposed. The power levels recovered by the generator and con-

sumed by the ECG are similar to those of the previous application. The association of

a TEG with a PV cell is also discussed in [125] to increase the autonomy of a laptop.

The TEG recovers the heat of the microprocessor, and the PV generator the surrounding

light.

(a) (b)

Figure 29: (a) Wearable wireless EEG system with hybrid power supply [123], (b) Hybrid
generator for feeding an ECG [124].

Many other work on hybrid systems has been proposed. For examples, Wang et

al.[126] developed a Piezoelectric and electromagnetic hybrid energy harvester for pow-

ering wireless sensor nodes in smart grid. The authors showed that from current-

carrying conductor of 2.5 A at 50 Hz, the proposed harvester combining piezoelectric

components and electromagnetic elements can generate up to 295.3µW . Zhenlong et al.

[69] presented a novel tunable multi-frequency hybrid energy harvester. It comes out

from their studies that the magnitude and direction of magnetic force have significant

effect on the performance of the system. Friswell et al. [127] proposed a hybrid can-

tilever beam harvester with piezoelectric and electrostatic transducers for narrow band

base excitation using an applied DC voltage as a control parameter to change the reso-

nant frequency of the harvester to ensure resonance as the excitation frequency varies.

Wacharasindhu et al. [128] proposed a micro machine energy harvester from a key-

board typing motions, using combined electromagnetic and piezoelectric conversion.

Bin et al. [129] built a hybrid energy harvester combined piezoelectric with electromag-
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netic mechanism to scavenge energy from external vibration. They explored the effect

of the relative position of the coils and magnets on the PZT cantilever end and the pol-

ing direction of magnets on the output voltage of the harvested energy. Karami et al.

[130] proposed a hybrid model using piezoelectric and electromagnetic induction effect.

They showed that electromechanical coupling has a strong impact upon the system per-

formance. Mokem et al. [131] investigated the dynamics of sandwiched buckled beam

with axial compressive force under Gaussian white noise energy harvesting system. The

authors showed the optimization of the harvested energy when the stochastic resonance

phenomenon occurs.

I.6 Aims of this thesis

In the energy harvesting research field, the main challenge is to enhance the system

performance. This thesis is organized around the two bases models whose the first is

built by Siewe et al. [132] to demonstrate chaotic motion, and the second by Wen et al.

[26] as the energy harvesting device.

In the goal to use the model built by Siewe et al [132] as a electromagnetic energy

scavenging device, we introduced a fractional inductance on the model proposed in

[132] in order to study its impact on the power generated by the system. moreover, we

consider that the magnetic field varies with time. This give rise to a parametric coupling

which could play an important role in the improvement of the output power. We explain

the behavior of this energy harvester, particularly in the chaotic regime. This study of

the system behavior allows us to bound the regions of control parameters where the sys-

tem displays desired chaotic oscillations and thus characterize the maximal harvestable

power for this particular architecture.

The second model of this thesis is based on the model firstly built by Wen et al.

[26, 27]. The aim here is to optimize the among of energy harvested by the system [26]

and consequently, extended its application field. To reach our objective, we start by

considering the nonlinear damping which was absent in original model (Ref.[26, 27]).
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Besides, By combining the determinist and random excitation, the stochastic reso-

nance phenomenon could occur and improves the harvested energy. Always in the pur-

pose to overcome some limits observed in the Wen model [26, 27], we built the hybrid

model which combines piezoelectric and electromagnetic transduction. The compari-

son between the output power generated by the harvester without magnetic energy and

hybrid model proposed could show the interest to build the hybrid system.

I.7 Conclusion

In this chapter, a detailed review of ambient energy sources and some transduction

mechanisms were presented in order to understand the concepts and techniques of en-

ergy harvesting. A lot of models to convert ambient energy to electricity have been

presented.. However, many studies have shown that several physical phenomena are

described through systems exhibiting fractional properties. A state of the art on frac-

tional physical elements has been presented. In Chapter II, we will present a modeling

of the different study models as well as the analytical and numerical methods used in

this thesis.
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CHAPTER II

METHODOLOGY: MODELING

AND NUMERICAL METHODS

II.1 Introduction

In the previous chapter, we have presented they objectifs of our thesis. This chapter is

devoted to presents electromechanical harvesters to show the vibration energy harvest-

ing of electromagnetic and piezoelectric types as well as their mathematical modelings.

Two situations are discussed in this chapter; (1) the effect of a fractional inductance on

the system as well as the impact of parametric coupling, (2) we are interested in com-

paring the performance of conversion mechanisms through a hybrid model. In the last

part, we present the analytical and numerical techniques used in this thesis.

II.2 Nonlinear Electromechanical Energy Harvesters with

Fractional Inductance

II.2.1 Governing equations

The scheme of the investigated system is shown in Fig.30 and called electromagnetic

transducer. This transducer represents the simplest class of electromechanical system

with featuring complex dynamics, because it only records vertical component of ground

or support motion under low frequencies. Electromechanical device modeling leads

usually to nonlinear systems.

54
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Figure 30: Schematic model with the associated electric circuit [132].

Electrical subsystem

The model shown in Figure 30 is an electrical oscillator coupled through a magnet.

The electrical part consists of a linear resistor (LR), a linear condenser (LC) and an frac-

tional inductor L, all connected in series. The voltage of the condenser is a linear function

of the instantaneous electrical charge and is expressed by

vc =
q

C
(74)

where C is the linear value of the capacitor. The current-voltage characteristics of the

resistor is defined as

vR = Rq̇, (75)

where q is the instantaneous electrical charge and the dot over a quantity denotes the

time derivative (q̇ =
dq

dt
= i, where i is the current). R is the resistance in the electrical

part, and C is the linear part of the capacitive characteristic.

Existence of ideal inductance in reality is merely a hypothesis. Inductance for real
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time application is built by conductor loops or coils. The ideal relation between the

current through and voltage across the inductor v(t) = L
di

dt
does not describe the real

time inductance accurately. Several methods were proposed in the literature to model

an inductor taking into account the losses due to ohmic resistance, eddy-current and

hysteresis. In the field of mechanics the behaviour of magnetic core coils is compara-

ble to that of viscoelastic materials [15] and this motivated to use fractional calculus to

model coils. In [15] fractional derivatives are used for modelling coils and showed that

such models provide clearly more realistic description than the conventional model. the

current-voltage relation of a coil whose current-voltage characteristic has fractional or-

der has been presented in chapter I in section I.4 (see Eq.73). Thus, the current-voltage

characteristics of the fractional inductor is used in this thesis is defined by

vk(t) = Lκ
dκi

dtκ
, (76)

Where Lκ is the value of the equivalent inductance, i is the harvest current, t is the

time and κ is the degree of derivation between 0 and 1, (κ = 1 for an ideal inductor).

Fractional order inductance is extensively used in circuit design and simulation in

recent times [107]. Fractional order inductances are realized using impedance converter

circuit and a fractional element [108]. This author have been realized fractional inductor

(FI) using a two-terminal Fractional capacitor (FC) for the first time in a generalized

impedance converter (GIC) circuit.

Mechanical subsystem

The mechanical part is composed of a large suspended mass; its motion is determined

by the inherent forces of the mass-spring system and the natural forces acting on the

system. Let the time-dependent ground motion be F (t), which is due to the motion

of the seismic wave. We make the natural assumption that damping forces (friction,

air resistance, etc.) are present, and the associated spring is nonlinear with non linear

stiffness.
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Eq.(77) reports the equation of the nonlinear spring

k(y) = k0 + k1y
2, (77)

where k0 is the linear mechanical stiffness and k1 is the nonlinear stiffness that arises

due to the stretching of each springs neutral axis, which results from the boundary con-

ditions. The restoring force due to non linear spring stifness is given by

fr(y) = k0y + k1y
3. (78)

As pointed by Nguyen et al. [133], damping is important to the bandwidth because it

strongly affects the jump frequencies in frequency sweeps. Therefore, understanding the

behavior of damping against a variety of working conditions is needed for device per-

formance prediction. The common model with a linear damping force misses essential

physics in the device. Motivated by this, we introduce instead nonlinear damping-force

models in the form of polynomials in velocity and displacement ([133]).

fd(ẏ) = c1ẏ +
N∑
i=1

c2i+1(ẏ)
2i+1, (79)

where ẏ is the velocity of the mass, c1 and c2i+1 are the linear and nonlinear damping

coefficients respectively.

Several studies have been made theoretically and numerically the effect of a poly-

nomial dissipation in a model of energy harvesting. Nguyem et al. [133] have exper-

imentally validated a polynomial dissipation model by showing that a high velocity

expansion could successfully replicate the experimental results. A systematic experi-

ment was set up and revealed the dependency of the effective damping coefficient on

excitation level and bias voltage. Zaitsev et al. [134] have studied experimentally a

model of nonlinear dissipation. It follows from the model that nonlinear damping plays

an important role in the dynamics of the micro-mechanical beam oscillator. they pro-

posed many methods for experimental evaluation of the contribution of the nonlinear
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damping were proposed, applicable at different experimental situations. These methods

were compared experimentally and shown to provide similar results. The experimental

values of the nonlinear damping constant are non-negligible for all the beams measured.

The nonlinear damping introduced in this system is important insofar as it has been

shown that it can improve efficiency in the context of EHS [135, 136] Moreover, it is close

to the reality because experimental studies have been done recently or it appears that

nonlinear dissipation is the one, that offers better performances in terms of optimization.

This form has been adopted from the analytic an experimental work on modeling of the

nonlinear damping in a micro-mechanical oscillator in ref [133, 134].

In the mechanical part, the Laplace force
−→
Fc = i

−→
l ∧

−→
B , where l is the length of the

coil winding lying in the magnetic field
−→
B with a moving rod to which a body of each

mass m is attached. Since i
−→
l is orthogonal to

−→
B and i = q̇ we have Fc(q̇) = lBq̇.

In the electrical part, the Lorentz electromotive force for the expressed is derived

thanks to the Lenz law and the Faraday formula e = −
−→
l .(

−→
B ∧ ẏ

−→
k ). Since (

−→
l ,

−→
B , ẏ) is

direct, one has e(ẏ)=Fc(ẏ)=-lBẏ.

To derive the equations of motion of the electromechanical device show in Fig.30,

let us use the Kirchhoff’s law for the electrical part and the second Newton’s law of

dynamics for the mechanical part. The electromechanical system obeys to the following

dimensional two coupled differential equations

mÿ = −mf̈s(t)− fd(ẏ)− fr(y) + Fc(q̇)

vk(t) + vR + vC = Fc(ẏ)
(80)

Here m is the mass of the oscillator, fd(ẏ) is the damping force for the device (due,

for example, to friction, air resistance, or transduction of power)in this thesis, we took N

= 1 in the equation (79). fr(y) is the restoring force for the oscillator (due, for example,

to spring-like mechanical forces and electrostatic forces) and fs(t) is the displacement of

the base of the oscillator due to vibration.

Substituting Eqs.(74)-(79) into (80), we have:
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mÿ + c1ẏ + c3ẏ
3 + k0y + k1y

3 − lBq̇ = −mf̈s(t)

LkD
κ+1
t q +Rq̇ +

q

C
+ lBẏ = 0

(81)

where l is the length of the electrical wire inside the magnetic field B, c1 is the linear

damping constant, c3 is the nonlinear cubic damping constants, k0 is the linear spring

constant and k3 is the nonlinear cubic spring constant, y and q are the displacement of

the mass and charge respectively and (.) =
d

dt
.

Some clarifications regarding Eq.(81) are in order. The term c1ẏ is the linear dissipa-

tion. An additional dissipation term proportional to the cubed velocity c3ẏ
3, has been

added artificially. Such term, although not easily derived using the analysis sketched

above, may be required to describe some macroscopic friction mechanisms [137, 138],

such as losses associated with nonlinear mechanical components. It will be shown be-

low that the impact of this term on the behavior of the system.

The electromagnetic energy harvester makes use of the relative motion between the

magnet and induction coil to change the vibration energy into electric power. In early

works, the electromagnetic coupling and magnetic field distribution are not often con-

cretized [72] or taken as linear electromagnetic coupling model [73]. The variation of

dynamic magnetic field is highly nonlinear with respect to the gap between the magnet

and coil. Consequently, the electromagnetic coupling is nonlinear [74, 75].

In certain circumstances, some parameters of the self-sustained electromechanical

device can vary with time because of the functioning constraints. This is particularly

the case for the parameters of the electromagnetic coupling: i.e., time variations of the

magnetic field B and the region of electromagnetic action. We assume that the time

variation is periodic with frequency 2ω1. So that, B and l can be explained as

B(t) = B0(1 + γcos(2ω1t))

l(t) = l0(1 + γcos(2ω1t)).
(82)

B0 is the highest intensity that the field B reaches and l is the length of the electrical

wire inside the magnetic field B0. γ is the amplitude of the parametric coupling with
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0 < γ ≤ 1. The variation of the coupling coefficients is considered for the engineering

purpose.

In the context of coupled parametrically excited systems, Yamapi et al. [139, 140]

studied recently the dynamics of the forced parametric nonlinear electromechanical sys-

tem consisting of an electrical Duffing oscillator coupled magnetically and parametri-

cally to a linear mechanical oscillator. The frequency response and stability boundaries

of harmonic oscillatory states have derived. Effects of the parametric modulation of

the coupling coefficient on frequency response-curves and stability boundaries are an-

alyzed. Various types of bifurcation structures were reported using numerical simu-

lations of the equations of motion. Our goal in this thesis is to analyze the effects of

parametric coupling on dynamics, oscillatory states and bifurcation sequences of the

nonlinear electromechanical system. It is for this reason that only one form of temporal

variation of the equation (82) is considered, Eq.(81) become

mÿ + c1ẏ + c3ẏ
3 + k0y + k1y

3 − lB0 (1 + γ cos (2ω1 t)) q̇ = −mf̈s(t)

LkD
κ+1
t q +Rq̇ +

q

C
+ lB0 (1 + γ cos (2ω1 t)) ẏ = 0

(83)

Using the following transformation of coordinates ω2
0 =

k0
m
, y = lx, q = Q0z, α = κ+1

and by letting the time variable t =
τ

ω0

, the dimensionless equation is given by:

ẍ+ µ1ẋ+ µ3ẋ
3 + ϱx+ λx3 − ϑm(1 + γcos(2ωτ))ż = f(τ),

ż + βDα
τ z + µez + ϑe(1 + γcos(2ωτ))ẋ = 0

(84)

with

f(τ) = −f̈s(τ), ω =
ω1

ω0

, µ1 =
c1ω0

k0
, µ3 =

l2c3ω
3
0

k1
, ϑe =

l2B0

Q0R

λ =
l2k1
ωe

2m
,ϑm =

B0ω
3
0Q0

k0
, µe =

1

ω0RC
, β =

ωκ
0Lk

R
,Lκ = ω1−κ

0 L.

x and z are the dimensionless displacement and current respectively. The dot, as in x and

z, will indicate differentiation with respect to time. ϑi are parameters of the coupling
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terms, λ is parameter due to nonlinear stiffness, µi and γe are damping coefficients, γe

is the parametric coupling amplitude and L is the conventional value of inductance in

Henry. The external ground motion is assumed to be stochastic or periodic (fs(τ) =

E0

ω2
cos(ωτ)), where E0 and ω being respectively, the amplitude and frequency of the

harmonic excitation.

The nonlinearity observed in the spring stiffness involves a potential V (x) expressed

as follow:

V (x) =
ϱ

2
x2 +

1

4
µ3x

4, µ3 > 0, (85)

so that V(x) is monostable for ϱ ≥ 0 (x01 = 0) and bistable for ϱ < 0(x02 = ±
√

− ϱ

µ3

).

II.2.2 Harmonic balance method

Harmonic balance is a method used to calculate the steady-state response of nonlin-

ear differential equations and is mostly applied to nonlinear electrical circuits. It is a

frequency domain method for calculating the steady state, as opposed to the various

time-domain steady state methods. The name ”harmonic balance” is descriptive of the

method, which starts with Kirchhoff’s Current Law written in the frequency domain

and a chosen number of harmonics. A sinusoidal signal applied to a nonlinear compo-

nent in a system will generate harmonics of the fundamental frequency. Effectively the

method assumes the solution can be represented by a linear combination of sinusoids,

then balances current and voltage sinusoids to satisfy Kirchhoff’s law. The method is

commonly used to simulate circuits which include nonlinear elements, and is most ap-

plicable to systems with feedback in which limit cycles occur.

The essence of the method is to replace the nonlinear forces in the oscillating sys-

tems by specially constructed linear functions, so that the theory of linear differential

equations may be employed to find approximate solutions of the non-linear systems.

The linear functions are constructed by a special method, known as harmonic lineariza-
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tion. Let the given nonlinear function be

F (x, ẋ) ≡ ϵf(x, ẋ), ẋ =
dx

dt
(86)

where ϵ is a small parameter. Harmonic linearization is the replacement of F (x, ẋ)

by the linear function

Fl(x, ẋ) = k0x+ λ0ẋ, (87)

where the parameters k0 and λ0 are computed by the formulas

k0(a) =
ϵ

πa

∫ 2π

0
f(a cosφ,−aω sinφ) cosφdφ,

λ0(a) = − ϵ

πaω

∫ 2π

0
f(a cosφ,−aω sinφ) sinφdφ,

φ = ωt+ θ.

(88)

If x = a cos(ωt + θ), a = const, ω = const, θ = const. The non-linear force F (x, ẋ) is a

periodic function of time, and its Fourier series expansion contains, generally speaking,

an infinite number of harmonics, having the frequencies nω, n = 1, 2, , , i.e. it is in the

form

F (x, ẋ) =
∞∑
n=0

Fn cos(nωt+ θn) (89)

The term F1 cos(ωt + θ1) is called the fundamental harmonic of the expansion (89).

The amplitude and the phase of the linear function Fl coincide with the respective char-

acteristics of the fundamental harmonic of the non−linear force. For the differential

equation

ẍ+ ω2x+ F (x, ẋ) = 0, (90)

which is typical in the theory of quasi-linear oscillations, the harmonic balance method

consists in replacing by the linear function instead of equation (90), one then considers
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the equation

ẍ+ λ0ẋ+ k1x = 0, (91)

where k1 = ω2 + k0. It is usual to call Fl the equivalent linear force, λ0 the equivalent

damping coefficient and k1 the equivalent elasticity coefficient. It has been proved that

if the non-linear equation (90) has a solution of the form

x = a cos(ωt+ θ), (92)

where

ȧ = O(ϵ), ω̇ = O(ϵ), (93)

then the order of the difference between the solutions of (90) and (91) is ϵ2. In the

harmonic balance method the frequency of the oscillation depends on the amplitude a

(through the quantities k0 and λ0). The harmonic balance method is used to find pe-

riodic and quasi-periodic oscillations, periodic and quasi-periodic conditions in auto-

matic control theory, as well as stationary conditions, and in the studies of their stability

[142, 143].

II.2.3 Amplitude equation

We use the harmonic balance method describe in the next subsection to provide the

analytical solution of the model equation. To achieve our objective, we assume that the

approximative solution of the system (Eq.(84)) is defined as follows:

x(τ) = A cos (ωτ + φ1) (a)

z(τ) = B cos (ωτ + φ2) (b) (94)
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where

A =
√
A2

1 + A2
2 and B =

√
B2

1 +B2
2

(95)

are the amplitude of the mechanical and the electrical subsystem.

It is known in the literature that, there are many definitions of the fractional deriva-

tive. In this work, we used the Caputo’s definition [141] given as:

dαz

dτα
= Dα

τ [z(τ)] =
1

Γ(1− α)

τ∫
0

(τ − s)−αż(s)ds. (96)

where 0 < κ ≤ 1, while Γ(.) is the gamma function.

Substituting Eq.94(b) into Eq.(96), we obtain:

Dα
τ [Bcos(ωτ + φ2)] = Dα

τ [ς1 cos(ωτ)− ς2 sin(ωτ)] (97)

with

ς1 = Bcosφ2 ; ς2 = Bsinφ2, (98)

By using the following approximation,

z(τ − s) = B cos(ω(τ − s) + φ2) = B cos(θ2 − ωs), (99)

with

θ2 = ωτ + φ2.

Eq.(97) becomes:

Dα
τ [z(τ)] =

1

Γ(1− α)

d

dτ

[
B cos θ2

τ∫
0

cosωs

sα
ds+B sin θ2

τ∫
0

sinωs

sα
ds

]
(100)

By letting u = ωs, we obtain the following expression:

Dα
τ [z(τ)] =

ωα

Γ(1− α)
[−(ς1J1 + ς2J2)sinωτ + (ς1J2 − ς2J1)cosωτ ] (101)

with J1 and J2 are defined as [144-147]
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J1 =
τ∫
0

cosu

uα
du = Γ(1− α)ωα−1sin(

απ

2
), (102)

J2 =
τ∫
0

sinu

uα
du = Γ(1− α)ωα−1 cos(

απ

2
). (103)

Inserting Eq.(102) and Eq.(103) into Eq.(97) we have:

Dα
τ [z(τ)] = ωα(B1cos(ωτ) +B2sin(ωτ))(cos(

απ

2
)− sin(

απ

2
)). (104)

Substituting Eq.(104) and Eq.(94) into Eq.(84) and equating the coefficients of the

terms containing only sin(ωτ) and cos(ωτ) separately to zero, we obtain the following

equations:

(
ϱ− ω2 +

3

4
λA2

)
A1 + (µ1ω +

3

4
µ3ω

3A2)A2 + ζ2B2 − E0 = 0,

(−µ1ω − 3

4
µ3ω

3A2)A1 +

(
ϱ− ω2 +

3

4
λA2

)
A2 − ζ1B1 = 0,

δB1 + ωB2 +
ϑeζ2
ϑm

A2 = 0,

−ωB1 + δB2 −
ϑeζ1
ϑm

A1 = 0

(105)

where

δ = βωα(cos(
απ

2
)− sin(

απ

2
)) + µe,

ζ1 = ϑmω(1−
γ

2
), ζ2 = ϑmω(1 +

γ

2
).

Using some mathematics tools, the solution of Eq.(105), give rise to the amplitudes equa-

tion given as:

r10 A
10 + r8 A

8 + r6 A
6 + r4 A

4 + r2 A
2 + r1 = 0 (106)

and

B2 = b4 A
4 + b2 A

2 + b0 (107)
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with

r10 =
(
ω6µ3

2 + λ2
)2
,

r8 = −8

3
ω3µ3

(
ω6µ3

2 + λ2
)
(η1 − η4 − λ (η2 − η3)) ,

r6 =
16

9
ω6

(
η1

2 − 4 η1 η4 + 2 η2 η3 + η4
2
)
µ3

2 − 32

9
λω3 (η2 + η3) (η1 − η4)µ3

−16

9
λ2

(
2 η1 η4− η22 − 4 η2 η3− η32

)
,

r4 = −16

9
ω6E0

2µ3
2+

128

27
ω3 (η1 − η4) (η1 η4 − η2 η3)µ3−

16

27
λ
(
8 (η2 + η3) (η1 η4 − η2 η3) + 3λE0

2
)
,

r2 =
256

81
η1

2η4
2 +

(
128

27
ω3E0

2µ3 −
512

81
η2 η3 η4

)
η1 +

256

81
η2

2η3
2 − 128

27
η2 λE0

2,

r1 = −256

81
E0

2
(
η1

2 + η2
2
)
,

ξ = 12
(
(−η1 + η4)µ3ω

3 + η2 λ+ η3 λ
)
A2 − 16( η1 η4 − η2 η3) + 9

(
ω6µ3

2 + λ2
)
A4,

b0 =
256(η21ζ

2
2 + η2ζ

2
1 )ϑ

2
eE

2
0

(δ2 + ω2) ξ2ϑ2
m

,

b2 =
384(η2λζ

2
1 − η1ω

3ζ22µ3)ϑ
2
eE

2
0

(δ2 + ω2) ξ2ϑ2
m

,

b4 =
144(η22ω

6µ3 + λ2ζ21 )ϑ
2
eE

2
0

(δ2 + ω2) ξ2ϑ2
m

and

η1 = −ω µ1 −
ζ21ωϑe

ϑm(δ
2 + ω2)

,

η2 = −ω2 + ϱ− ζ1 ϑeδζ2
ϑm(δ2 + ω2)

,

η3 = −ω2 + ϱ− ζ1 ϑeδζ2
ϑm(δ2 + ω2)

,

η4 = −ω µ1 −
ζ22ωϑe

ϑm(δ
2 + ω2)

.

Eqs.(106) and (107) are the equations of the amplitudes of harmonic oscillatory states.

An expression for this power is derived by integrating the dimensionless form of the
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Table 5: Parameters
Parameter Value Unit
c1 0.55 Ns/m
c3 2.5 Ns3/m3

k0 25 N/m
k1 90 N/m
L 1.34 H
R 20.5 Ω
m 1.082 kg
l 0.17 m
C 0.01052 F

instantaneous power P = µe(ż)
2. The average output power is estimated using this

formula:

Pmax =
µe

2T

T∫
0

(
dz

dt
)2dt, (108)

where T =
2π

ω
is the period of the excitation source and an ideal transducer with zero

internal resistance is presumed. The physical parameters used in the simulation are

given in Table 5.

In equation (84), the efficiency conversion of energies dispersed in the environment

by the energy harvesting devices such as the electromechanical systems is the one of

the fundamental elements for evaluating the systems performance. Thus, the efficiency

conversion of the scavenger is defined as follows:

η =
pe
pm

× 100[%] (109)

where pe and pm are respectively, the electrical and the mechanical power effective

value. Let us notice that the power effective value is defined as:

pt =

√
1

T

∫ T

0
(pinst )2dt (110)

where pinst is the instantaneous power and T is the time.
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II.3 Hybrid Electromagnetic and Piezoelectric Vibration

Energy Harvester with Gaussian white Noise Excita-

tion

At present, the hybridization of resources for low power applications is finally little

discussed in the literature. We therefore chose to study a multi-source system used two

energy transduction mechanism to know electromagnetic and piezoelectric. At these

two mechanisms, we will associate a storage element, here an inductance.

II.3.1 Description and modelling of the hybrid model

R

RP

K
K

Magnet

Piezoceramic

Coil

l l

Xb
(t)

X (t)

o- -o

Figure 31: Schematic of the hybrid energy harvester

The traditional PE and EM energy harvester consists of a piezoelectric element and

an electromagnetic element. In the PE element, the piezoceramic material is excited at

the vibratory mass which modifies the stress distribution of the PZT layer, there by gen-

erating the output power via the piezoelectric effect. Electromagnetic output power is
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mainly obtained by placing a coil near the magnet, due to Faraday’s law on electromag-

netic induction. In order to generate a non-linear PE and EM hybrid energy harvester,

two springs are used, located symmetrically on the PE element and the ground (see

Fig.31). Introducing of spring as a nonlinear component in a hybrid piezoelectric and

electromagnetic energy harvester will produce a linear factor α1 and a nonlinear factor

α3 based on the reference [126]. The mechanical part is composed of the mass m, the

nonlinear spring and nonlinear damping.

II.3.1.1 Static analysis of the oblique springs

This section focuses on a static analysis of the two oblique springs and shows how

the arrangement results in a negative stiffness mechanism. Figure 32 shows a possi-

ble arrangement of the mass spring-damper. It consists of two linear oblique springs

connected to a mass and a damper. Unlike a linear system, when the springs are unex-

tended, they are inclined at an angle ±θ to the line x = 0. Although the springs provide

Figure 32: The force acting on the oblique spring

a linear restoring force along their axes, this particular arrangement yields a non-linear

restoring force in the x-direction. The purpose of this mechanism is to steepen the gradi-

ent of the displacement curve as a function of time so as to approximate a square wave.

The purpose of this arrangement is to aims to obtain a bistable potential that allows to
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obtain large oscillations, because it allows to harvest the maximum energy.

The total axial component of the spring force F at any displacement x is such that

F = 2f̃∆ (111)

where f̃∆ is the axial component of each spring force. The total axial restoring force

as a function of x is given by

f̃∆ = 2k(
√
x2 + l2 − l0) sin θ (112)

where
√
x2 + l2 is the length of the spring, l0 is the original length of the spring and

θ is the inclination of the spring with respect to the origin. Referring to Fig.32,

sin θ =
x√

x2 + l2
. (113)

Substituting this into (112) gives

F = 2k(1− l0√
x2 + l2

)x. (114)

The total elastic potential energy, U(x) is given by

U(x) = 2(
1

2
k(
√
x2 + l2 − lo)2). (115)

II.3.1.2 Governing equations

The Newton’s equation in standard form describes this displacement x(t); there by, a

differential equation of second order is given by:

mẍ(t) = −dU(x(t))
dx(t)

− fd(ẋ(t))− Γ1(v(t))− Γ2(i(t))−mẍb(t) (116)

Where;

• U(x(t)) corresponds to the non dimensionless potential given by Eq.(115),
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•fd(ẋ(t)) corresponds to non linear dissipative force given by Eq.(79),

• Γ1(v(t)) corresponds to force of reaction caused by piezoelectric transduction mech-

anism expressed by Γ1(v(t)) = ηv(t),

• Γ2(i(t)) corresponds to force of reaction caused by electromagnetic transduction

mechanism expressed by Γ2(i(t)) = θmi(t),

•mẍb(t) corresponds to the vibration force.

Using the Kirchhoff’s laws and combining the constitutive equations of electromag-

netic and piezoelectric we have,

Cpv̇(t) +
1

Rp

v(t)− ηẋ(t) = 0

Li̇(t) + (Rc +Rm)i(t)− θmẋ(t) = 0.

(117)

So, the equations of the hybrid system of figure 32 are given by

mẍ(t) + c1ẋ(t) + c3(ẋ(t))
3 + 2k(1− l0√

x(t)2 + l2
)x(t) + ηv(t) + θmi(t) = −mẍb(t)

Cpv̇(t) +
1

Rp

v(t)− ηẋ(t) = 0

Li̇(t) + (Rc +Rm)i(t)− θmẋ(t) = 0

(118)

where x(t) is the displacement of the mass magnet, m is the mass, k is the spring

stiffness, c1 and c3 are the linear and nonlinear damping coefficients, l0 is the original

length of the spring, l is the distance between the center and the edge of the frame, v is

the voltage across the load resistance, Cp is the capacitance of the piezoceramic, Rp and

Rm are load resistance of PE and EM element respectively,Rc andL refer to the resistance

and inductance of coils, θm and η are the PE and EM transfer factors, respectively, ẍb is

the base displacement. Using the following transformation of coordinate X =
x

l0
and

γ =
l

l0
, Eq.(118) can be rewritten as:
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Ẍ +
c1
m
Ẋ +

c3l
2
0

m
Ẋ3 +

2k

m
(1− 1√

X2 + γ2
)X +

η

l0m
v +

θ0
l0m

i = − ẍb
l0

v̇ +
1

CpRp

v − ηl0
Cp

Ẋ = 0

i̇+
R

L
i− θml0

L
Ẋ = 0,

(119)

where (.) = d
dt

.

The dimensionless potential energy is

U(X) =
2k

m
(
√
X2 + γ2 − 1)2. (120)

The equilibrium positions of the mechanical system are given by

X̃1 =
√
1− γ2{stable}, (121)

X̃2 = −
√
1− γ2{stable}, (122)

X̃3 = 0{unstable}. (123)

If the amplitude of the motion is small, the system will oscillate about one of its stable

equilibrium positions depending on the initial conditions. If the amplitude is large, the

system starts to oscillate between the two stable equilibrium positions, which can also

be described as cross-well motion.

In this work, we consider the weak amplitude of vibration. In this case, the non-

linear term in Eq.(119) can be expanded into the Taylor series at equilibrium (X0, 0).

Introducing the new variable X = z − X0, with X0 = X̃1 is the positive stable static

equilibrium position given by the Eq.(121), this term expressed as
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1√
γ2 + (z +X0)2

=
1√

γ2 +X2
0

− X0

(γ2 +X2
0 )

3

2

z +

− 1

2(γ2 +X2
0 )

+
3

2

X2
0

(γ2 +X2
0 )

2

(γ2 +X2
0 )

1

2

z2

+

3

2

X0

(γ2 +X2
0 )

2
− 5

2

X3
0

(γ2 +X2
0 )

3

(γ2 +X2
0 )

1

2

z3 + 0(z4)

(124)

substituting X0 =
√

1− γ2, Eq.(124) is rewritten as

1√
γ2 + (z +X0)2

= 1−
√

1− γ2z + (1− 3

2
)z2 + (

3

2

√
1− γ2 − 5

2
(1− γ2)

3

2 )z3 + 0(z4).

(125)

Using the following transformation of coordinates

ω2
1 =

2|k|(1− γ2)

m
, z = z0z, i = i0ρ, v = v0y (126)

and by letting the time variable t =
τ

ω1

, By omitting higher order terms in the result-

ing expanding expression, the dimensionless equation (Eq.(119)) is given by:

z̈ + ζ1ż + ζ3ż
3 + ω2

1z + α2z
2 + α3z

3 + ζmρ+ ζey = ξ(τ)(a),

ẏ + λy − ϑpż = 0(b),

ρ̇+ βρ− ϑeż = 0(c),

(127)

where

ζ1 =
c1ω1

2|k|(1− γ2)
, ζ3 =

(z0l0)
2c3ω

3
1

2|k|(1− γ2)
, ϑe =

θml0z0
i0L

λ =
1

ω1CpRp

, ζm = − θmi0
2z0l0|k|(1− γ2)

, ζe = − ηv0
2z0l0|k|(1− γ2)

,

β =
Rc +Rm

ω1L
, ϑp =

ηl0z0
v0Cp

, α3 =
z20γ

2(5γ2 − 4)

γ2 − 1
, α2 =

3z0γ
2

2
√

1− γ2
.
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ξ(τ) = − ẍb
2|k|l0(1− γ2)

is the Gaussian white noise verifying the statistic properties:

< ξ(τ)ξ(t+ τ ′) >= 2Dδ(τ),

< ξ(τ) >= 0,

(128)

where 2D is the intensity of noise and δ(τ), the Dirac function. The variables z, y and

ρ are the dimensionless displacement, voltage and current respectively. The dot in z, y

and ρ indicates differentiation with respect to the time. ϑp, ϑe, ζe and ζm are parameters

of the coupling terms, α2 is the coefficient of quadratic nonlinearity, α3 is the coefficient

of cubic nonlinearity, ζ1 and ζ3 are damping coefficients, λ is the impedance of the (PE)

system, β is the ratio of the resistance and inductance and ω1 = 1.

The non-dimensionless potential U(z) is defined as

U(z) =
ω2
1

2
z +

1

3
α2z

3 +
1

4
α3z

4. (129)

This potential U(z) depends on the values of the parameters α3, α2 and ω1.

II.3.2 Stochastic averaging method and stochastic p-bifurcation

II.3.2.1 Stochastic averaging method

A stochastic averaging analysis involves both stochastic averaging and deterministic

averaging that can be carried out in either order. The stochastic averaging accounts for

the averaged effects of random excitations multiplied by correlated response, and phys-

ically wide-band random excitations are replaced by mathematically Gaussian white

noise excitations. Thus, the slowly varying response quantities are approximated by a

vector of diffusive Markov process and the Fokker-Planck-Kolmogorov (FPK) equation

method can be applied to them. Following [148], the original method of stochastic av-

eraging was introduced by Stratonovich [149]. It may be viewed as an extension of the

deterministic averaging procedure of Bogoliubov and Mitropolsky [143], method is ap-
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plicable to lightly damped systems with small nonlinearities under broadband random

excitations of small magnitudes.

This method, known as the classical or standard stochastic averaging (CSA) ar to

its deterministic counterpart the effects of some nonlinear inertia terms and nonlinear

stiffness terms, such as the cubic displacement terms, in the governing second order

differential equation of motion of a sdof system are absent in the approximate solutions.

The implication is that the effects of these nonlinear terms on the stochastic system can

not be studied by applying the classical stochastic averaging (CSA) method. It was

suggested (see, for examples, page 149 of Ref [150], page 125 of Ref [151], and page 191

of Ref [152]) that in order to reveal the effects of these nonlinear terms a second order

averaging is required.

A closer examination of the equations in standard form for such a system reveals that

while it is true that the influence, of the nonlinear inertia terms and nonlinear stiffness

terms, such as the cubic displacement terms of a sdof system, on the amplitude solution

is absent, the influence of these nonlinear terms is present in the phase solution. Thus,

the influence of these nonlinear terms on the response statistics is retained since the

latter are functions of both amplitude and phase.

In the following the CSA method is introduced first. The procedure of application

of the CSA method is illustrated with several examples. Consider a set of differential

equations in standard form

dzj
dt

= εfj(Z, t) + ε

1

2 gjr(Z, t)ξr(t),

j = 1, 2, ..., n; r = 1, 2, ...,m.

(130)

where ε is a small positive parameter Z is an-dimension random vector process of re-

sponse state and zj j is its j′th component; fj and gjr are deterministic nonlinear func-

tions, while εr(t) is the r′th component of the stationary random excitation vector ε(t).

Elements of the latter vector are of zero mean and have cross correlation matrix Γ(τ)
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whose elements are

Γrv(τ) =< εr(t), εv(t+ τ) > . (131)

If the maximum of correlation times of the random excitations is much smaller than

the minimum of the relaxation times of the mdof system, then it can be shown that [155]

the state vector Z weakly converges to a diffusive Markov vector Z(0) with transition

probability density p(Z(0), t|Z(0)
0 , t0) or simply p, where the subscript 0 denotes at time

t0. The governing FPK equation is

∂P

∂t
= −ε∂(ajP )

∂Z
(0)
j

+
ε

2

∂2(bjkP )

∂Z
(0)
j ∂Z

(0)
k

, (132)

where the drift and diffusion coefficients, aj and bjk are given, respectively by

aj(Z
(0)) = T av

s {⟨fj(Z(0), s)⟩+ Iav}, (133)

in which

Iav =
∫ 0

−∞⟨∂gjr(Z
(0),s)

∂Z
(0)
k

gkv(Z
(0), s+ v)ξr(s)ξv(s+ τ)⟩dτ (134)

and

bjk(Z
(0)) = T av

s {
∫ +∞
−∞ ⟨gkv(Z(0), s+ τ)ξr(s)ξv(s+ τ)⟩dτ}, (135)

in which T av
s {.} denotes deterministic averaging of the enclosing quantity with re-

spect to time s. That is,

T av
t0

= lim
T→∞

1

T0
{
∫ t0+T0

t0
{.}dt (136)

in which the integration is performed over explicit time t. If the quantities in Eqs.(133)

and (135) are periodic, with period T0 for example, then Eq. (136) becomes
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T av
t0

=
1

T0
{
∫ t0+T0

t0
{.}dt (137)

and the results are independent of t0 . The implication of Eq.(137) is that if the func-

tion f1(Z
(0), s), for example, contains a periodic term, such as sin(

2πt

T0
) its effect on the

response will be zero after the deterministic averaging. The integral on the right-hand-

side (RHS) of Eq.(133) is related to the Wong and Zakari (WZ) or Stratonovich (S) cor-

rection term and therefore Eqs.(132), (133) and (135) are to be interpreted in the Itô’s

sense.

The Markov vector process Z(0) can be described by the following set of Itô stochastic

differential equations

dz
(0)
j = εmj(Z

(0))dt+ ε

1

2σjr(Z
(0))dWr(t)

(138)

where the unit Wiener processes are defined by

dWr(t) = ξr(t)dt (139)

The drift coefficients mj and diffusion coefficients σjr of the Itô equation, (138) are re-

lated to aj and bjk of the Fokker-Planck-Kolmogorov (FPK) equation, (132) by

mj(Z
(0)) = aj(Z

(0)), (140)

σjr(Z
(0))σkr(Z

(0)) = bjk(Z
(0)). (141)

In the Itô equations, (138), the diffusion matrix [σ] may not be unique though the

matrix product [σ][σ]T and the diffusion matrix [b] of FPK equation, (132) are unique.

The exact response statistics of the approximate solution of the given system defined by

Eq.(130) can be obtained from either the FPK equation (132) or Itô equations (138).
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II.3.2.2 Probability density

The fluctuating quantities considered as excitations in many mechanical systems can-

not always be adequately modeled by deterministic time functions. In fact, there are

several natural phenomena that vary in a random manner due to the effect of many un-

known factors, that fluctuate randomly over a wide band of frequencies and have to be

considered as stochastic functions of time, defined only in probabilistic terms [153]. Dy-

namic systems in such environments are subject to stochastic excitations. Then, in order

to examine their response and stability, a probabilistic approach employing the theory

of stochastic bifurcation is essential. The main purpose of this heading is to provide

the statistic response of the harvester through the Fokker -PlanckKomogorov equation

using the stochastic averaging technique developed by Stratonovich [154].

To achieve our objective, it is judicious to find the Ito stochastic differential equations

associated with the system Eq.(127). In the quasiharmonic regime, on assumption that

noise intensity is small, we introduce change of variables [153]

z (τ) = a (τ) cos (φ) ,

ż (τ) = −a (τ)ω0 sin (φ) ,
(142)

where φ = ω0τ + θ(τ), a(τ) is amplitude of mechanical subsystem. Substituting

Eq.(142) into Eq.127(b) and (c), we have:

y(τ) = C1(τ)e
(−λτ) +

aϑpω0

λ2 + ω2
0

(ω0 cosφ− λ sinφ), (143)

ρ(τ) = C2(τ)e
(−βτ) +

aϑeω0

β2 + ω2
0

(ω0cosφ− β sinφ). (144)

Where the first term and the second term in the right hand are the general solution

of the associated homogeneous equation and the special solution, respectively. For the

stationary responses concerned here, however, the general solution C1(τ) exp
(−λτ) and

C2(τ) exp
(−βτ) almost has not any influence due to the exponential decay nature. The
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steady-state of Eq.(143) and Eq.(144) are given by:

y(τ) =
aϑpω0

λ2 + ω2
0

(ω0 cosφ− λ sinφ) (145)

and

ρ(τ) =
aϑeω0

β2 + ω2
0

(ω0 cosφ− β sinφ). (146)

From Eq.(145),

ω0cosφ− λ sinφ =
√
λ2 + ω2

0(
ω0√
λ2 + ω2

0

cosφ− λ√
λ2 + ω2

0

sinφ) (147)

who can still put himself in the form

ω0cosφ− λ sinφ =
√
λ2 + ω2

0(cosΘcosφ− sinΘ sinφ) (148)

with

cosΘ =
ω0√
λ2 + ω2

0

and sinΘ =
λ√

λ2 + ω2
0

. (149)

Finally,

ω0cosφ− λ sinφ =
√
λ2 + ω2

0 cos(Θ + φ). (150)

Thus

y(τ) =
aϑpω0

λ2 + ω2
0

√
λ2 + ω2

0 cos(φ+ tan−1(
λ

ω0

)). (151)

In the steady state, the amplitude of the voltage expressed as follow:

V0 =
aϑpω0

λ2 + ω2
0

×
√
λ2 + ω2

0 =
aϑpω0√
λ2 + ω2

0

. (152)

Similarly, Eq.(146) in the steady state, the amplitude of the steady state current is
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I0 =
aϑeω0

β2 + ω2
0

×
√
β2 + ω2

0 =
aϑeω0√
β2 + ω2

0

. (153)

Substituting Eq.(145), Eq.(146) and Eq.(142) into Eq.(127) by letting ω1 = ω0 we

obtain:

ȧ = −ζ1a sin2 φ− ζ3ω
2
0a

3 sin4 φ+
α2a

2 sinφ cos2 φ

ω0

+
α3a

3 sinφ cos3 φ

ω0

+
ζeω0ϑpa sinφ cosφ

λ2 + ω2
0

−ζeϑpλa sin
2 φ

λ2 + ω2
0

+
ζmω0ϑea sinφ cosφ

β2 + ω2
0

− ζmϑeβa sin
2 φ

β2 + ω2
0

− sinφξ(τ)

ω0

,

(154)

θ̇ = −ζ1 cosφ sinφ− ζ3ω
2
0a

2 cosφ sin3 φ+
α2a cos

3 φ

ω0

+
α3a

2 cos4 φ

ω0

+
ζeω0ϑp cos

2 φ

λ2 + ω2
0

−ζeϑpλ cosφ sinφ

λ2 + ω2
0

+
ζmω0ϑe cos

2 φ

β2 + ω2
0

− ζmϑeβ cosφ sinφ

β2 + ω2
0

− cosφξ(τ)

ω0a
.

(155)

Thus, after applying the deterministic averaging method to Eq.(154) and (155), we

obtained the following approximated system:

ȧ = −3

8
ζ3ω

2
0a

3 − 1

2
(

λ2ς1 + λς2 + ς3
(λ2 + ω2

0)(β
2 + ω2

0)
)a− sinφξ(τ)

ω0

,

θ̇ =
3

8

α3a
2

ω0

+
1

2

ω0(ϑpζe(β
2 + ω2

0) + ϑmζm(λ
2 + ω2

0))

(λ2 + ω2
0)(β

2 + ω2
0)

− cosφξ(τ)

aω0

(156)

with

ς1 = ζmβϑe + (β2 + ω2
0)ζ1,

ς2 = (β2 + ω2
0)ζeϑp,

ς3 = ζmβϑeω
2
0 + (β2ω2

0 + ω4
0)ζ1.
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By applying the stochastic averaging method [156, 149], we can obtain the following

stochastic equations for a and θ :

da =

(
−3

8
ζ3ω

2
0a

3 − 1

2
(

λ2ς1 + λς2 + ς3
(λ2 + ω2

0)(β
2 + ω2

0)
)a+

D

2ω2
0a

)
dτ +

√
D

ω2
0

dη1 (τ) (a)

dθ = (
3

8

α3a
2

ω0

+
1

2

ω0(ϑpζe(β
2 + ω2

0) + ϑmζm(λ
2 + ω2

0))

(λ2 + ω2
0)(β

2 + ω2
0)

)dτ +

√
D

ω0
2a2

dη2 (τ) (b)

(157)

where η1(τ) and η2(τ) are two independent normalized Wiener processes. It is worth

pointing out that a and θ are independent, allowing us further to develop a probabil-

ity density for amplitude a, rather than a joint density for θ. The probability density

p(a, τ) of the instantaneous amplitude a satisfied the Fokker-Planck-Kolmogorov equa-

tions [157, 158]:

∂

∂τ
p (a, τ) = − ∂

∂a
[

(
χ1 +

D

2ω2
0a

)
p (a, τ)] +

1

2

∂2

∂a2
[p(a, τ)(

D

ω2
0

)] (158)

In the context of energy harvesting systems, we are primarily interested in the long-

term system behavior. Thus, the stationary solutions of Eq.(158) of mechanical part is

obtained as:

p (a) = N1a exp
−

1

16D
(3ζ3ω4

0a
4+K0a2)

,
(159)

where N1 is the normalization constant expressed by

N1 = | 3
√
Dζ3ω

4
0

√
πD exp(

1

192

K2
0

Dζ3ω4
0

)(1− erf(
K0

8
√
3ω2

0

√
Dζ3

))

|,
(160)

with

K0 = K1 +K2 +K3

and
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K1 =
8ω2

0λ
2(ζmβϑe + (β2 + ω2

0)ζ1)

(β2 + ω2
0)(λ

2 + ω2
0)

,

K2 =
8ω2

0λ(β
2 + ω2

0)ζeϑp)

(β2 + ω2
0)(λ

2 + ω2
0)
,

K3 =
8ω2

0(ζmβϑeω
2
0 + (β2ω2

0 + ω4
0)ζ1)

(β2 + ω2
0)(λ

2 + ω2
0)

.

Eq.?? can be rewritten in the potential form:

da = (−dU(a)
da

) +

√
D

ω2
0

dη1 (τ) (a) (161)

where U(a) denote the effective potential of mechanical subsystem given by:

U(a) = − 3

32
ζ3ω

2
0a

4 − 1

4
(

λ2ς1 + λς2 + ς3
(λ2 + ω2

0)(β
2 + ω2

0)
)a2 +

D ln(a)

2ω2
0

. (162)

Through a transformation from variables (a, θ) to the original variables (z, ż), an ex-

pression for the stationary density function of (z, ż) can be derived from Eq.(159) as

p(z, ż) =
1

2πω0a
p(a), (163)

by letting a = z2 +
ż2

ω2
0

, Eq.(163) becomes

p(z, ż) =
N1

2πω0

exp(− 1

16D
(3ζ3ω

4
0(z

2 +
ż2

ω2
0

)4) +K0(z
2 +

ż2

ω2
0

)2). (164)

Thus, the expected value of the mean square voltage of the piezoelectric circuit and

electric current of the magnetic circuit can be calculated following this formula:

< y2 >=< V 2
0 >=

ϑ2
pω

2
0

λ2 + ω2
0

< a2 > (165)

with

< a2 >=
∫ +∞
0

a2p(a)da. (166)
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Substituting Eq.(166) into Eq.(165), we obtain:

< y2 >=
ϑ2
pω

2
0

λ2 + ω2
0

∫ +∞
0

a2p(a)da =
ϑ2
p

√
DN1Λ

2
√
π(λ2 + ω2

0)K
2
4

. (167)

Similarly

< ρ2 >=
ϑ2
eω

2
0

β2 + ω2
0

∫ +∞
0

a2p(a)da =
ϑ2
e

√
DN1Λ

2
√
π(β2 + ω2

0)K
2
4

(168)

with

Λ = πK0

√
K4exp(

1

64

K2
0

DK4

)(erf(
1

8

K0√
K4D

)− 1) + 8
√
πDK4 (169)

and

K4 = 3ζ3ω
4
0.

The average output power harvested by the hybrid system is estimated using this

formula:

Phybrid =
β

2T

T∫
0

y2dτ +
λ

2T

T∫
0

ρ2dτ. (170)

Using the expressions of the mean square voltage of the piezoelectric circuit and

electric current of the magnetic circuit, Eq.(170) become

Phybrid = β < ρ2 > +λ < y2 > . (171)

II.3.2.3 Stochastic bifurcations

Contrarily to the determinist bifurcation, stochastic bifurcation is characterized with

a qualitative change of the stationary probability distribution (e.g. a transition from uni-

modal to bimodal and vis versa) called phenomenological (p) bifurcation, or a sudden

change of the lyapunov exponent called dinamical (D) bifurcation. It is also judicious to

notice that, D bifurcation is a dynamical concept, which is similar in nature to determin-
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Table 6: Parameters
Parameter Value Unit
c1 0.001 Ns/m
c3 4.5 Ns3/m3

k 0.05 N/m
L 10 H
R 20.5 Ω
m 0.04 kg
l0 0.075 m
cp 0.00005 F
Rp 10000 Ω
η 0.00025 N/V
z0 0.017 m
l 0.0735 m
v0 0.1 V

istic bifurcations, while p bifurcation is a static concept. This section aims at finding the

condition for which we can observe the phenomenon of stochastic p-bifurcation of the

harvester. By letting
∂p(a)

∂a
= 0, the extrema of the distribution Eq.(159) are the roots of

equations:

1− 3

4

ζ3ω
4
0a

4
m

D
− 1

8

K0a
2
m

D
= 0 (172)

am is the amplitude corresponding to the extremum of distribution Eq.(172) and m

is the index number of the extremum. For a suitable choice of system parameters, the

probability density function of the harvester can present one or two positive extrema

(one minimum and one maximum). By taking ζ3 > 0, the positive root of Eq.(172)

is

√
1

12

−K0 +
√

192Dζ3ω4
0 +K2

0

ζ3ω4
0

, and then the probability density function in Eq.(159)

has a maximum. However, by taking ζ3 < 0, there are two real positive roots of Eq.(172)

for a convenient choice of system parameters:√
1

12

−K0 +
√
192Dζ3ω4

0 +K2
0

ζ3ω4
0

and

√
− 1

12

K0 +
√
192Dζ3ω4

0 +K2
0

ζ3ω4
0

whose the shape is

similar to a crater.

The physical parameters used in the simulation are given in Tables 6.
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II.4 Numerical simulation techniques

The numerical simulations of the deterministic and stochastic nonlinear differential

equations are in the center of many of the advanced scientific computations. In the goal

to predict the system response of the different models proposed in this thesis, we inte-

grate numerically the mathematical models of the different physical models proposed.

This heading, present the different numerical technique used.

II.4.1 Algorithms of the numerical simulations

II.4.1.1 Fourth-order Runge-Kutta (RK4) algorithm for ordinary differential equations

In numerical analysis, the Runge-Kutta methods are an important family of implicit

and explicit iterative methods for the approximation of solution of ODEs. These tech-

niques were co-developed in 1901 by the German mathematicians Carl Runge and Mar-

tin Wilhelm Kutta [159] to solve ODE numerically. In the Runge-Kutta family, the most

used method is the fourth-order one, which extends the idea of the mid-point method.

Consider an initial value problem specified as follows

∂u

∂t
= f(t, u), u(t0) = u0 (173)

Here, u is an unknown function of time t which we would like to approximate. To have

the quantity u at time t + ∆t (∆t being the time step) knowing its value at time t, the
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RK4 method process as follows:

u(t+∆t) = u(t) +
1

6
(K1 + 2K2 + 2K3 +K4)

K1 = ∆tf(t, u);K2 = ∆tf(t+
∆t

2
, u+

K1

2
);

K3 = ∆tf(t+
∆t

2
, u+

K2

2
);

K4 = ∆tf(t+∆t, u+K3)

(174)

The RK4 presented above can be easily extended to a set of ODEs and for instance, in

this thesis, the differential equations describing the time evolution of nonlinear elec-

tromechanical energy harvester will be solved numerically in that way.

II.4.1.2 Euler-Maruyama algorithm

Following [160], the probabilistic response of multidimensional vibration system under

noisy random excitations in general can be considered to be governed by the following

set of first-order stochastic differential equations:

Ẋ(t) = f(X(t)) + g(X(t))ξ(t) (175)

where X(t) is the random response vector process, f(X(t)) and g(X(t)) are determinist

function vector. ξ(t) is a noisy random vector.

A scale autonomous Stochastic Differential Equations (SDE) can be rewritten in the

integral form as:

Ẋ(t) = X0 +

t∫
0

f(X(s))ds+

t∫
0

g(X(s))dξ(s), 0 ≤ t ≤ T (176)

Here, f and g are scalar functions and the initial condition X0 is a random variable.

The second integral on the right-hand side of Eq.(176) is to be taken with respect to
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Brownian motion, as discussed in the previous section, and we assume that the Itô ver-

sion is used. The solution X(t) is a random variable for each t. We do not attempt to

explain further what it means for X(t) to be a solution to Eq.(176) instead we define a

numerical method for solving Eq.(176), and we may then regard the solution X(t) as

the random variable that arises when we take the zero step size limit in the numerical

method. It is usual to rewrite Eq.(176) in differential equation form as:

dX(t) = f(X(t))dt+ g(X(t))dξ(t), X(0) = X0, 0 ≤ t ≤ T (177)

This is nothing more than a compact way of saying that X(t) solves Eq.(176). To keep

with convention, we will emphasize the SDE form Eq.(177) rather than the integral

form Eq.(176). (Note that we are not allowed to write
dξ(t)

dt
, since Brownian motion

is nowhere differentiable with probability).If g ≡ 0 and X0 is constant, then the problem

becomes deterministic, and Eq.(177) reduces to the ordinary differential equation

dX(t)

dt
= X(t) (178)

with X(0) = X0. To apply a numerical method to Eq.(177) over [0, T] , we first dis-

cretize the interval. Let ∆t =
T

L
for some positive integer L, and τj = ∆t. Our numerical

approximation to X(τj) will be denoted Xj . The Euler-Maruyama (EM) method takes

the form:

Xj = Xj−1 + f(Xj − 1)∆t+ g(Xj−1)(W (τj)−W (τj−1)), j = 1, 2, ...L (179)

To understand where Eq.(179) comes from, notice from the integral form Eq.(176)

that

X(τj) = X(τj−1) +

τj∫
τj−1

f(X(s))ds+

τj∫
τj−1

g(X(s))dW (s) (180)

Each of the three terms on the right-hand side of Eq.(179) approximates the corre-
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sponding term on the right-hand side of Eq.(180). We also note that in the deterministic

case (g ≡ 0 and X0 constant), Eq.(179) reduces to Euler’s method. The Euler algorithm

or more precisely the Euler-Maruyama algorithm is a generic algorithm generally used

for stochastic differential equation simulations [161].

II.4.1.3 Box-Muller algorithm

The Box-Muller algorithm is an important tool to generate two independent standard

Wiener processes ξ1 and ξ2. To do this, we consider four independent random number

between 0 and 1 with equal probability a1, a2, b1 and b2. Then, the two independent

standard Wiener processes are generate as

ξ1 =
√

−4∆t ln(a1) cos(2πb1) and ξ2 =
√
−4∆t ln(a2) cos(2πb2). (181)

II.4.1.4 Algorithm for generating standard Wiener process

We consider a standard Wiener process (or standard Brownian motion) ψ(t) that de-

pends continuously on t ∈ [0, T ] and satisfies the above mentioned properties. For

computational purposes, it is useful to consider discretized Brownian motion, where

ψ(t) is specified at discrete t values, i.e. the interval [0,T] is divided into a segments

0 = t0 < t1 < ... < tN−1 < tN = T . We thus set ∆t = T/N for some positive integer

N and let ψ(ti) with ti = i∆t, ψ0 = ψ(t0) = 0. The simulation of discretized Brownian

motion over [0, T ] is as follows: (1) Generate a new random number r from the standard

normal distribution; (2) set i to i+1; (3) set ψ(ti) = ψ(ti−1) + r
√
∆t; (4) if i ≤ N , iterate

from steps (1).

II.4.2 Stochastic resonance phenomenon

Stochastic resonance (SR) is a counter-intuitive phenomenon where the presence of

noise in a nonlinear system is essential for optimal system performance. It cannot occur

in a linear system (linear in this sense means that the output of the system is a linear
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transformation of the input of the system). It occurs in many systems including neurons

, electronic circuits and the energy harvesting systems. Many aspects have been hotly

debated by scientists for nearly 30 years, with one of the main questions being whether

biological neurons use stochastic resonance [162]. The term stochastic resonance was

first used in the context of noise enhanced signal processing in 1980 by Roberto Benzi

[162], at the NATO International School of Climatology to explain the periodicity of

earths ice ages. It is well known in the literature that, the eccentricity of the orbit of the

earth varies with a periodicity of about 105 years, but according to current theories the

variation is not strong enough to cause a dramatic climate change. Stochastic resonance

(SN) is a physical phenomenon where large vibration occurs when a weak sinusoidal

force is applied to a bi-stable or tri-stable system. The phenomenon of the stochastic

resonance requires three basic ingredients: (a) an energetic activation barrier such as the

double or triple potential well of a bi-stable system or tri-stable, (b) a weak coherent

input such as a periodic signal, and (c) a source of noise that is inherent to the system.

Given these features, the response of the system undergoes resonance-like behaviors as

a function of the noise level, hence the name stochastic resonance. There are a lot of tech-

nique to characterize the SN [163] such as Signal-to-noise ratio (SNR), Mean Residence

Time (TMR) and probability distribution of residence times (P(TR)).

II.4.3 Mathematical formula for determining the mean amplitude re-

sponse in this thesis

Most studies of vibration energy harvesters have considered either sinusoidal exci-

tations and Gaussian white noise excitations. This is the case of the study conducted

in this thesis. Stochastic averaging method is mainly due to the reduction of dimen-

sions of the FPK equation while the essential behavior of the system is retained. It is

a convenient approximation approach to predict the stationary response of nonlinear

stochastic systems. For the stochastic system described by Eq.(127) the extrema of the

probability density function are the continuation of the limit cycles of the corresponding

PhD. Thesis of Foupouapouognigni Oumarou Laboratory of Mechanics, Materials and Structures



II.4 Numerical simulation techniques 90

deterministic system [164]. Noise can shifts the frequency of limit cycles [165], increases

the spectral bandwidth and induce a rapid decay of the limit cycle’s auto-correlation

[166]; such quasi-cycles are described by circular orbits whose radius is modulated by

an Ornstein-Uhlenbeck process [167]. Stationary states could be viewed as a formal ap-

proximation of sample paths that stay close to the limit cycle.

In this subsection we discuss the impact of the combination of the deterministic

and random signal on the system performance. The determinist excitation is expressed

as (E0 cos(ωτ)). It is well known in the literature that the adding of the coherent signal

to the random excitation can give rise to the stochastic resonance phenomenon which

can increase the bandwidth of the harvester and consequently, improves the system

performance [168, 169]. Let us remind that the system of equation obtained in the second

model are nonlinear and should exhibit many frequency components. For the large

value of time(τ 7→ ∞), the asymptotic solution of Eq.127(a) can be given as follows:

< z(τ) >as=
∑
j

xm(jΩ)cos[jΩτ − φm(jΩ)] (182)

where j is the positive real number, xm(jΩ) and m(jΩ) are the mean response am-

plitude and phase lag respectively at the frequency jΩ. In this manuscript, we limit

the study in the first harmonic i.e. j = 1. The mean amplitude response is defined as

[131, 168]:

zm(ω) =
√
A2

s + A2
c

(183)

where As and Ac are the sine and cosine components of the Fourier coefficients de-

fined by:

Ac =
2

nT

∫ nT

0
x(τ)cos(ωτ)dτ (184)

As =
2

nT

∫ nT

0
x(τ)sin(ωτ)dτ (185)
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where n is the integer number. In this work, n = 300, while T =
2π

ω
is the period of

the harmonic excitation. In the purpose to know the degree of optimization of the hybrid

model with respect to the piezoelectric circuit, we compute the increase rate using this

formula:

opmax =
phybrid − ppiezoelectric

ppiezoelectric
× 100[%] (186)

where phybrid and ppiezoelectric are the output power harvested by the hybrid system

and piezoelectric circuit. In the simulation, we took 100 realizations.

II.4.4 Bifurcation diagram, Poincaré maps, time history and power

spectral density

The definition of bifurcation diagram is based on the sudden change of topological prop-

erties of the phase portraits. Its indicates a range where values can be found to obtain

regular or chaotic behavior. An understanding of the way in which dynamical systems

evolve in time is facilitated by considering the concepts of phase space and time series.

These concepts were developed in the late 19th century by Ludwig Boltzmann, Henri

Poincaré and Willard Gibbs [170]. Phase portraits are basically used to appreciate the

shape of trajectories in the phase space on which the system evolves in time. They may

be sufficient to state whether the dynamic is regular or not. Nevertheless, they are not

practical when the phase space is of dimension greater than two. Moreover, we cannot

easily distinguish roughly between chaotic states and some quasi-periodic ones using

only phase portraits. The power spectral density is also useful here to determine, in

particular, the aspect of the energy in the case of regular periodic motion. A broad one

shows chaotic motion.
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II.4.5 Bifurcation diagrams

A dynamical system, in the abstract sense, consists of two things: a set of states

through which we can describe the evolution of a system, and a rule for that evolu-

tion. Although this viewpoint is very general and may be applied to almost any system

that evolves with time, often the fruitful and conclusive results are achievable when we

pose some mathematical structure on the dynamical system, for example, we often as-

sume the set of states form a linear space with nice geometric properties and the rule

of evolution has some order of regularity on that space. The prominent examples of

such dynamical systems are amply found in physics, where we use differential equa-

tions to describe the physical variables change in time. In this note, we specially focus

on dynamical systems that can be represented as

ẋ = f(x), (187)

where x is the state, an element of the state space S ⊂ ℜn, and f : S 7→ ℜn is a vector field

on the state space. Occasionally, we will specify some regularity conditions for f like

being smooth or a few times differentiable. We also consider dynamical systems given

by the discrete− time map

ẋt+1 = T (xt), t ∈ Z (188)

where x belongs to the state space S ⊂ ℜn, T : S 7→ S is the dynamic map and t is the

discrete time index. Just like the continuous-time system in (187), we may need to make

some extra assumptions on T. The discrete time representation of dynamical system does

not often show up in physical systems, but we can use it to represent continuous−time

systems, for example, through discrete-time sampling. This representation also has the

benefit of being more practical because the data collected from dynamical systems al-

most always comes in discrete−time samples.

Bifurcation analysis is the study of changes in the qualitative behavior of all the tra-
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jectories due to the changes in vector field f or the map T. For example, if we add some

forcing term to the vector field f, a stable fixed point might turn unstable or a limit cycle

might appear out of the blue. A physical example is the evolution of incompressible

flows given by Navier-Stokes equations: increasing the Reynolds number may funda-

mentally change the flow solution from steady to unsteady, or from laminar to turbulent.

Here is the traditional approach to study of dynamical systems: We first discover or

construct a mo del for the system in the form of (187) or (188). Sometimes, if we are

very lucky, we can come up with analytical (or approximate) solutions and use them

to analyze the dynamics, by which, we usually mean finding the attractors, invariant

manifolds, imminent bifurcations and so on. A lot of times, this is not possible and we

have to use various estimates or approximation techniques to evaluate the qualitative

behavior of the system, for example, construct Lyapunov functions to prove the stability

of a fixed point. But most of the times, if we want a quantitative analysis or prediction,

we have to employ numerical computation and then extract information by looking at a

collection of trajectories in the state space.

This approach has contributed the most to our knowledge of dynamical and physical

systems around us, but it is falling short in treating the high-dimensional systems that

have arisen in various areas of science and technology. A set of classic examples, which

regularly arises in physics, is the set of systems that are governed by partial differential

equations. In these systems, the state space is infinite-dimensional and the numerical

models that we use may have up to billions of degrees of freedom. Some examples

of more recent interest include climate system of the earth, smart cars and buildings,

power networks, and biological systems with interacting components like neural net-

works. The first problem with the traditional approach is that simulating the evolution

of trajectories for these systems is just devastating due to the large size of the problem.

Moreover, unlike the two- or three-dimensional system, the geometric objects in the

state space are difficult to realize and utilize. The second problem is the uncertainty in

the models or even the sheer lack of a model for simulation or analysis. As a result, the

field of dynamical analysis has started shifting toward a less model−based and more
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data-driven perspective.

II.4.6 Poincaré maps

Poincaré map section is a tool for graphical study of dynamic properties in the phase

space. So we can analyze the dynamic systems by studying their section of punched.

Making a Poincaré map section amounts to cutting the trajectory in the phase space, in

order to study the intersections of this trajectory with, for example in dimension three,

a plane. If the plane is suitably chosen, the trajectory will cross in the same direction at

a sequence of instants not necessarily constant, at points pk. We will retain, in numerical

calculus that the coordinate points pk in the plan. We then go from a dynamic system

in continuous time to a dynamic system with discrete time. This makes it possible to

reduce the size of the system by one unit, which contributes to savings in computation

time. Thus, the Poincaré map section makes it possible to distinguish.

II.4.7 Power Spectral Density

Spectral analysis considers the problem of determining the spectral content (i.e., the

distribution of power over frequency) of a time series from a finite set of measurements,

by means of either nonparametric or parametric techniques. The power spectral den-

sity is also useful here to determine, in particular, the aspect of the energy in the case

of regular periodic motion. Spectral analysis finds applications in many diverse fields.

In vibration monitoring, the spectral content of measured signals give information on

the wear and other characteristics of mechanical parts under study. In economics, me-

teorology, astronomy and several other fields, the spectral analysis may reveal hidden

periodicity in the studied data, which are to be associated with cyclic behavior or re-

curring processes. In speech analysis, spectral models of voice signals are useful in

better understanding the speech production process, and in addition can be used for

both speech synthesis (or compression) and speech recognition. In radar and sonar sys-

tems, the spectral contents of the received signals provide information on the location
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of the sources (or targets) situated in the field of view. In medicine, spectral analysis of

various signals measured from a patient, such as electrocardiogram (ECG) or electroen-

cephalogram (EEG) signals, can provide useful material for diagnosis. In seismology,

the spectral analysis of the signals recorded prior to and during a seismic event (such as

a volcano eruption or an earthquake) gives useful information on the ground movement

associated with such events and may help in predicting them. Seismic spectral estima-

tion is also used to predict subsurface geologic structure in gas and oil exploration.

II.4.8 phase space and time series methods

An understanding of the way in which dynamical systems evolve in time is facili-

tated by considering the concepts of phase space and time series. These concepts were

developed in the late 19th century by Ludwig Boltzmann, Henri Poincaré and Willard

Gibbs [170]. Phase space is a very efficient tool in the study of dynamical systems in

the sense that it presents the global behavior of these systems. Although time history

hardly reveals any qualitative features of the system dynamics, it provides a foundation

for the study of the qualitative behavior of the dynamics of the systems. The phase space

method is a technique for constructing and analyzing solutions of dynamical systems by

solving time-dependent differential equations. It is a space in which all possible state

of the system are represented, corresponding to one unique point in the phase space.

The method consists of first rewriting the equations as a system of differential equa-

tions that are first-order in time, by introducing additional variables. The original and

the new variables form a vector in the phase space. The solution then becomes a curve

in the phase space, parameterized by time. The curve is usually called a trajectory or

an orbit where the horizontal axis gives the position and the vertical one the velocity.

This phase-space trajectory of a dynamical system can be used as an indicator to deter-

mine whether its motion is chaotic. Beside, a time series is a sequence of data points,

measured typically at successive points in time spaced at uniform time intervals. Time

series are very frequently plotted via line charts. The horizontal axis presents the time
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while the vertical one is the position.

When we consider the possible forms trajectories can take in a two-dimensional

phase space, we see that they are very limited: we can have fixed points, curves that

end at or spiral toward or away from fixed points (without crossing each other), per-

haps closed loops (which describe periodic orbits), or simply families of curves that

neither terminate nor cross. Under suitable conditions these lead to an extremely strong

dependence on initial conditions and the resulting chaotic motion is called deterministic

chaos.

II.4.9 The 0-1 test for chaos

Recently a new test for chaos has been developed by Gottwatd and Melbourne [171].

It is used in this work to corroborate the result given by the bifurcation diagram. Unlike

the usual method that is the calculi of the maximum exponent of Lyapunov, this method

is applied directly to the data series and there is no construction of the phase space. Most

often, the dimension at the origin of the dynamic system and the form of the equations

intervening in it are not important. In input, we have the series of the data and in exit

we have 0 and 1, depending on the case of the non-chaotic or chaotic dynamics respec-

tively. The 0-1 test is also applicable to graphs, ordinary equations, partial differential

equations. This test is general and applicable to all systems.

To quantify the results obtained, we use the 0 − 1 test for chaos detection [171,

172]. This test combines both spectral and statistical properties of the system and can

distinguish different types of dynamics of the system by computing a number K ∈

{0, 1}. First of all, a change coordinates (x, ẋ) to a new set (p, q1) is required

p(n) =
n∑

j=1

x̃j cos(jc), q1(n) =
n∑

j=1

x̃j sin(jc) (189)

where x̃ = [x̃1, x̃2, x̃3, x̃4, ....] is the discrete time series sampled from the originally

simulated x using one-fourth of excitation period, while c is a constant (c ∈ [0, π]). The

Mean Square Displacement (MSD) is defined as in ref.[173, 174]:
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MSD(c, j) =
1

n− j

n−j∑
i=1

{
[p(i+ j)− p(i)]2 + [q1(i+ j)− q1(i)]

2} (190)

where j is the integer number varying as follows:

n

100
≤ j ≤ n

10
.

Thus, the asymptotic growth rate of MSD is given as:

K(c) =
Cov [j,MSD(c, j)]√

Cov [j, j] .Cov [MSD(c, j),MSD(c, j)]
(191)

where Cov (x, u) is the covariance of the series x, u. In this thesis, we let (x = j and

u =MSD(c, j)). The covariance of x, u is defined as:

cov [x, u] =
1

N

N∑
n=1

(x(n)− x̄)(u(n)− ū) (192)

where x and u are the average value of x and u, N is the element number of x and u are

given by:

x =
1

N

N∑
n=1

x(n), u =
1

N

N∑
n=1

u(n). (193)

II.5 Discrete schematic of the different models

II.5.1 Investigating Bifurcations and Chaos in Nonlinear electrome-

chanical energy harvesters with fractional inductance

The numerical schematic of the first model use the Runge-Kutta algorithm. By letting
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ẋ = u

u̇ = −µ1u− µ3u
3 − ϱx− λx3 + ϑm(1 + γ cos(2ωτ))v + E0 cos(ωτ)

ż = v

v̇ = − 1

β
(v + µez + ϑe(1 + γ cos(2ωτ))u).

(194)

The discrete equations can be written as:

xk+1 = xk +
1

6
(l1 + 2l2 + 2l3 + l4)

uk+1 = uk +
1

6
(p1 + 2p2 + 2p3 + p4)

zk+1 = zk +
1

6
(k1 + 2k2 + 2k3 + k4)

vk+1 = vk +
1

6
(r1 + 2r2 + 2r3 + r4).

(195)

II.5.2 Discrete schematic of the nonlinear analysis of a Nonlinear elec-

tromechanical energy harvesters with fractional

In the goal to provide the discrete schematic of Eq.(84), it is necessary to decompose the

system (Eq.(84)) into a set of equations of lower degree:
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D1
τx(τ) = u(τ)

D1
τu(τ) = −µ1u(τ)− µ3u(τ)

3 − ϱx(τ)− λx(τ)3 + ϑm(1 + γ cos(2ωτ))z(τ) + E0 cos(ωτ)

Dk
τ z(τ) = y(τ)

D1
τz(τ) = −βy(τ)− µez(τ)− ϑe(1 + γ cos(2ωτ))u(τ)).

(196)

The Newton-Leipnikov methods are an important family of implicit and explicit it-

erative methods for the approximation of solution of (FO). From Eq.(84), the discrete

equations are given by

x(k) = x(tk−1) + u(tk−1)h (197)

y(tk−1) = [z(tk−1 +
n−1∑
i=1

c
(α)
j z(tk−1)]h

−α (198)

u(tk) = [−µ1u(tk−1)− µpu(tk−1)
p − ϱx(tk−1)− λx(tk−1)

3

+ϑm(1 + γcos(2ω(tk−1)))z(tk) + E0cos(ω(tk−1))]h+ u(tk−1)

(199)

z(tk) = z(tk−1) + (−βy(tk−1)− µez(tk−1)− ϑe(1 + γcos(2ω(tk−1))))h (200)

where h is the integration step and the coefficients cj(α) satisfy the following recursive

relations:
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c0
(α) = 1, cj

(α) =

(
1− 1 + α

j

)
cj−1

(α). (201)

II.5.3 Discrete schematic of the probabilistic distribution and stochas-

tic P-bifurcation of a hybrid energy harvester under Gaussian

white noise

We also use in this model, the Euler algorithm. By introducing the new variable ż = u,

Eq.(127), the general form of nonlinear stochastic differential equations can be rewritten

in the form

ż = u

u̇ = −ζ1u− ζ3u
3 − ω2

1z − α2z
2 − α3z

3 − ζey − ζmρ+
√
2Dξ(τ)

ẏ = −λy + ϑpu

ρ̇ = −βρ+ ϑeu.

(202)

The discrete equations can be written as:

zn+1 = zn + un∆τ

un+1 = un − (ζ1un + ζ3u
3
n + ω2

1zn + α2z
2
n + α3z

3
n + ζeyn + ζmρn)∆τ + ξn(τ),

yn+1 = yn + (−λyn + ϑpun)∆τ,

ρn+1 = ρn + (−βρn + ϑeun)∆τ,

(203)

where ξn is a sequence of random numbers distributed normally by the Box-Mueller
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algorithm.

II.6 Conclusion

In this chapter we have presented different mathematical techniques and numeri-

cal methods used to study the dynamic behavior of the Energy harvesters model pro-

posed in this thesis. We have presented some analytical and numerical methods used.

These methods are used to obtain the results presented in chapter III. we used the har-

monic balance method to approximate the analytical amplitude response of the frac-

tional model. Besides, the stochastic average method is used to build the Fokker-Planck-

Kolmogorov equation which is necessary to study the P-bifurcation phenomenon in the

hybrid model under white noise. For the numerical simulations, RK4 algorithm has

been described in the case of harmonic perturbations whereas the Euler forward pro-

cedure with Box-Muller algorithm was used in that of the stochastic disturbances. The

next chapter deals with the results and discussions.
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CHAPTER III

RESULTS AND DISCUSSION

III.1 Introduction

In this chapter, we present and discuss the main results of our work using numer-

ical simulations. The first part examines the impact of the fractional inductance, the

non-linear damping as well as the amplitude of the parametric coupling on the output

power. Then, we deals with the effect of external white noise excitation on the non-

linear dynamics of the system through the mean square response. A second section is

dedicated to the study of stochastic bifurcation under Gaussian white noise through the

hybrid model, a comparison of the different output power generate by the system is

presented. Finally, we study the phenomenon of stochastic p-bifurcation and stochastic

resonance.

III.2 Nonlinear Electromechanical Energy Harvesters with

Fractional Inductance

III.2.1 Potential configuration

This potential V (x) depends on the values of the parameters µ3 and σ. We can have

a mono-stable or a bistable configuration according to the system parameters. Fig.33

shows the potential of the mechanical part under two configuration: mono-stable and

bistable for two values of linear coefficient of the stiffness. In the following, we discussed

the system performance under these two configurations.
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Figure 33: Potential of the system (84) for λ = 0.1, the dot line obtained for ϱ = 1.0 and
solid line for ϱ = −1.0.

III.2.2 Amplitudes of the harmonic oscillatory states

We must recall that the analytical analysis of the amplitude of harmonic oscillatory

states is described by Eqs.(106) and (107). Our aim is to analyse the effects of the higher

nonlinearity and fractional properties on the dynamics response of the electromechani-

cal energy harvesters.

Figs.34(a) and (c) show the comparison between the results obtained from analyti-

cal and numerical investigations. From these figures we notice the agreement between

the two results. The effects of the fractional derivative κ on the amplitude are depicted

in Figs.34(b) and 34(d). We notice that, the amplitude of the mechanical vibration are

almost unchanged when κ increases (see Fig.34(b)). However, in Fig.34(d), we observe

that, the enhancing of the fractional order derivative leads to increase the output power

change. We displayed on Figs.35(a)-(d), the mechanical and electrical response versus

frequency ω. In Figs.35(a) and 35(c), the impact of the amplitude of the parametric cou-

pling is presented. We notice in Fig.35(a) that when γ increases, the the response of

mechanical part is not change. However, in Fig.35(c), an increase of γ leads to enhance
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Figure 34: Amplitudes response-curves of the driving frequency ω and E0 = 0.5, κ =
0.25 with the parameters λ = 0.1, µ1 = 0.1, µ3 = 0.018, γ = 0.5, ϑm = 0.76, ϑe = 0.0056,
µe = 0.96 and ϱ = 1.0.
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the output charge, and consequently, an enhancing of the output power. Figs.35(c) and

35(d) show the impact of the linear (µ1 ̸= 0, µ3 = 0), cubic (µ3 ̸= 0, µ1 = 0) and poly-

nomial damping (µ1 ̸= 0, µ3 ̸= 0) upon the electrical response. It emerges from these

results that, the cubic and polynomial damping induced a reducing of harvested en-

ergy. Fig.36 show the impact of κ, γ, λ and damping upon the output power. We notice

in Figs.36(a)-(b) that, when κ and γ increase, the output power increases. Similar result

is observed in Fig.36(c). When the coefficient of the cubic nonlinearly increases. How-

ever, in Fig.36(d), an increase of the degree of the damping gives rise to the small output

power.

We show in Fig.37, the comparison between the mechanical and electrical power for

three value of γ. We notice in Figs.37(a-c) that for a fixed value of the γ, the resonance

occurs for the same value of the frequency. For γ = 0.9, the real maximum electric power

is obtained at ω = 1.17Hz and is about 2.7mW , for the corresponding input power(the

mechanical power) equal to 0.19W . We show in Fig.37(d) the efficiency conversion of

the system. We notice that an increase of the γ leads to the increase of efficiency. We also

notice in this figure that the efficiency is optimum when the resonance phenomenon

occurs (ω = 1.17Hz), this give rise to the maximum charge and output power (Figs.37(a)

and (c)).

Several works have been published in the field of energy harvesting using electrome-

chanical system. However, several authors have been used the standards materials

[176, 177] and other, the materials exhibiting the fractional properties. In contrarily in

the previous works [178, 115], a novelty of this present work is the introduction of the

fractional inductor in the electrical subsystem. Kwuimi et al.[115] have been showed

that for some value of amplitude of the excitation force, the voltage present the antag-

onistic phenomenon ie an increase of fractional order derivative leading to increase or

decrease the output voltage. In addition, Oumbé et al.[178] have been showed that,

Energy harvesting system with fractional order viscoelastic properties has better perfor-

mance at resonance. Indeed, small value of fractional derivative leads to large value of

the maximum output voltage. On major observation in our study reveal that, the system
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Figure 35: Amplitudes response-curves of the driving frequency ω and E0 = 0.5, κ =
0.25 with the parameters λ = 0.1, µ1 = 0.1, µ3 = 0.018, γ = 0.5, ϑm = 0.76, ϑe = 0.0056,
µe = 0.96 and ϱ = 1.0.
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Figure 36: Output electric power as function of the driving frequency with the param-
eters λ = 0.1, µ1 = 0.1, µ3 = 0.018, γ = 0.5, ϑm = 0.76, ϑe = 0.0056, µe = 0.96, ϱ = 1,
E0 = 0.5 and κ = 0.25.
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Figure 37: Effects on the amplitude of parametric coupling γ on the amplitude response
curve B and output power with the parameters λ = 0.1, µ1 = 0.1, µ3 = 0.018, ϑm = 0.76,
ϑe = 0.0056, µe = 0.96, ϱ = 1, E0 = 0.5 and κ = 1.0. (a) amplitude response B, (b)
mechanical input, (c) output electric power and (d) efficiency.
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performance is optimum for the high value of the fractional order derivative (see Fig.36).

However, for κ ∈ ]0, 1[, while the output power increase when κ go up, the standards

inductor (κ = 1) is better than the inductor exhibiting the fractional properties. It would

be advantageous in this research field, to use a standard inductance. The performance of

the system depends on the degree of nonlinear damping. In addition, the steady-state

solution under the same conditions except µ3 = 0 (i.e., no nonlinear damping) is also

plotted in Fig.35. We notice that, the existence of non-negligible nonlinear damping has

a strong impact on the frequency response of the system, specifically on the locations

of the jump points. In particular, for the polynomial damping only the cubic term pro-

vides power harvested while the linear term is considered as a loss. When a polynomial

damping is taken into account only, the cubic term is considered as power harvested. As

shown in Figure 36(d), the polynomial damping allows us to store less energy than the

linear and the cubic damping. This is due to the fact that the linear term is loss power.

The effects of the amplitude of the parametric modulation are found in the response

curves and output power. The amplitude of the parametric coupling can contribute to

increase the harvested output voltage. The performance of the system depends also on

the degree of nonlinearity of the potential and the electrical dissipation.

III.2.3 Numerical simulation of bifurcation diagram, 0−1 test, Poincaré

maps, Times History and Power Spectral Density

This section discusses numerical simulations of an incommensurate fractional-order sys-

tem. The dynamic behaviors of the system, are analyzed by evaluating the phase por-

trait, bifurcation diagrams, power spectral density and 0− 1 test.

The main purpose of this section is to show the qualitative behavior of the solution

of the extended electromechanical model. The system generates a complex behavior that

directly depends on the amplitude and frequency of the modulated force. We now use

the numerical simulations for examining the complicated behavior of Eq.(84). The ini-

tial conditions used in the numerical simulation are ((x(0) = 1.0, ẋ(0) = 0.0, z(0) = 0.0).
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Figure 38: Bifurcation diagram (a)-(b) and asymptotic growth rate kc (c) curves for sys-
tem (84) for E0 varying with the parameters λ = 0.1, µ1 = 0.1, µ3 = 0.018, γ = 0.5,
ϑm = 0.76, ϑe = 0.0056, µe = 0.96, ω = 1.0, ϱ = −1.0 and κ = 1.0.
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Figure 39: Phase portrait and times history of the bistable mechanical system for κ = 1;
(a-b)E0 = 0.0911; (c-d)E0 = 0.83; (e-f)E0 = 0.92. The parameters used are : λ = 0.1,
µ1 = 0.1, µ3 = 0.018, γ = 0.5, ϑm = 0.76, ϑe = 0.0056, µe = 0.96, ϱ = −1.0 and ω = 1.0.
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Figure 40: Phase portraits of the mechanical part for crossing well dynamics as function
of E0 for κ = 1 and the value of Fig.38: (a)E0 = 0.09, (b)E0 = 0.8, (c)E0 = 0.9, (d)E0 =
0.96, with the parameters λ = 0.1, µ1 = 0.1, µ3 = 0.018, γ = 0.5, ϑm = 0.76, ϑe = 0.0056,
µe = 0.96, ω = 1.0, ϱ = −1.0 and κ = 1.0.
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The fourth-order Runge-Kutta algorithm is used to check the threshold of harmonic ex-

citation amplitude for onset of possible chaos obtained for system (84). Fig.38 shows a

representative bifurcation diagram and the variation of the corresponding 0− 1 test ver-

sus the amplitudeE0 of mechanical part. A bifurcation diagram is displayed in Fig.38(a),

showing the dependence of the system response when E0 increases. We observe in this

figure the regions corresponding to regular motion (E0 ∈ [0, 0.78]), the region corre-

sponding to period-3 orbit ( E0 ∈ [0.8, 0.88]) and regions corresponding to the chaotic

states (E0 ∈ [0.78, 0799]∪ [0.88, 1]). In the goal to validate the result obtained in Fig.38(a),

the 0-1 text is provided (Fig.38(b)). The result obtained (Fig.38(b)) confirms this obtained

via the bifurcation diagram (Fig.38(a)).

The results are presented on the portraits and times series, which are generated by

sampling the system stroscopically with a fixed period as mentioned before. The por-

traits for different values of parameter E0 are shown in figure 39. It is seen from these

figures that the motion of the system is periodic when E0 = 0.0911 and chaotic when

E0 = 0.92. Explicitly it may be seen from figure 39 that, (1) when E0 = 0.0911, the por-

trait is closed curved and as shown in figure 38(a), the systems motion is quasi-periodic.

(2) when E0 = 0.83, the portrait is still a closed curve, but the curve has a double well,

and as shown in figure 38(a), the system shows a two-frequency quasi-periodic motion.

(3) when E0 = 0.92, relative to figure 38(a), the portrait is a strange attractor, and chaotic

motion takes place in the system.

The phase portrait provided in Fig.40, allow us to know the different regimes in

which the system involves. We observe a diffusive (Figs.40(c)- 40(d)) and bounded dy-

namic (Figs.40(a)-(b)) of the p(n) and q1(n) in the phase space (p, q1). Let us notice that, a

diffuse dynamic of p(n) and q1(n) corresponds to the chaotic motion, which increases the

bandwidth of oscillator there by allowing to enhance to output power. However, when

the dynamic of p(n) and q1(n) is bounded in the phase space, the motion is regular. In

such condition, the energy storage by the mechanical oscillator is concentrated within

its harmonic or super-harmonic.

We provide in Fig.41-43, the poincaré map, the time series and its corresponding
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power spectral density (PSD). We notice in Figs.41(a) and 41(c) that the regular mo-

tion. These result are confirmed in Figs.41(b) and 41(d) by plotting PSD. Only one peak

located to the dimensionless frequency (fpic = 0.16) is observed for the mechanical sub-

system. However, in Fig.41(d) three peaks are observed. In Figs.42(a) and 42(c), the

motion of the system is quasi-period characterized by three harmonics. The agreement

between these results and those obtained in Fig.42(b) is observed. Fig.42(d) shows tree

peaks. In this condition, the energy harvested by the system is high than obtained when

the dynamic of the system is periodic. In Figs.43(b) and 43(d), the system exhibits the

chaotic motion giving rise to the large bandwidth of the frequency allowing to harvest

more energy. These latters results are confirmed in Figs.43(b) and 43(d) which present

many harmonics.

III.2.4 Numerical simulation of the system Performance under the Gaus-

sian white Noise

The harmonic excitation is used in the previous section to investigate the system re-

sponse. However, in the real environment, wave oscillations, atmospheric turbulence

and seismic shocks, the vibration source are not harmonic but exists under a random

form ref[179, 180, 182]. Thus we replace in the previous section, the harmonic excitation

by a Gaussian white noise verifying the statistic properties:

< ξ(τ)ξ(t+ τ ′) >= 2Dδ(τ),

< ξ(τ) >= 0,

(204)

where 2D is the intensity of noise and δ(τ), the Dirac function. The impact of fractional

order derivative κ and γ upon the output power expressed in terms of mean square

voltage ⟨z2⟩ and mean displacement is presented in Figs.44(a)-(d). Let us notice that in

Figs.44(a)-(b), when x ≃ 0, the system oscillates by hopping symmetrically through the

potential barrier. However, x ≃ 1 indicates that the oscillating system is strapped in
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Figure 41: Poincaré maps, time history and power spectral density from system (84) for
κ = 1 and E0 = 0.0911 with the parameters: λ = 0.1, µ1 = 0.1, µ3 = 0.018, γ = 0.5,
ϑm = 0.76, ϑe = 0.0056, µe = 0.96, ϱ = −1.0 and ω = 1.0.
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Figure 42: Poincaré maps, time history and power spectral density from system (84) for
κ = 1 and E0 = 0.8284 with the parameters: λ = 0.1, µ1 = 0.1, µ3 = 0.018, γ = 0.5,
ϑm = 0.76, ϑe = 0.0056, µe = 0.96, ϱ = −1.0 and ω = 1.0.
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Figure 43: Poincaré maps, time history and power spectral density from system (84) for
κ = 1 and E0 = 0.9318 with the parameters: λ = 0.1, µ1 = 0.1, µ3 = 0.018, γ = 0.5,
ϑm = 0.76, ϑe = 0.0056, µe = 0.96, ϱ = −1.0 and ω = 1.0.
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one of the potential wells. Figs.44(c)-(d), the output power versus noise intensity for

three values of fractional order derivative κ and amplitude of the parametric coupling

γ. Because of the increased values of mean square current there will be enhancement of

the energy harvested. The value of the noise intensity at which the mean square current

begins to increase rapidly can be adjusted by varying the parameters κ and γ. Or for

a given noise intensity the parameters κ and γ can be suitably found to maximize the

value of the harvested power.
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Figure 44: Means square of the system with the parameters λ = 0.1, µ1 = 0.1, µ3 =
0.018,ϑm = 0.76, ϑe = 0.0056, µe = 0.96, ϱ = −1.0 and ω = 1.0.
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III.2.5 Discussion

The harmonic balance method (HBM) is the one of the best approximative analytical

method of the coupled dynamical system. It is advantageous for providing an efficient

analytical framework to assess steady-state dynamics. The inconvenient is inherent in

the assumption that the system response is the superposition of a number of harmonics,

and therefore the fidelity of the method is limited to the size of the truncated series. The

nonlinear damping enhances the bandwidth of the harvester by reducing the maximal

amplitude of the vibration.

The conventional models used to describe the flux linking the coil and self induc-

tance fails in accurately describing the real behaviour of such circuits. The conventional

model consisting of an inductor, an iron loss resistor and a copper resistor only provides

a satisfactory description of coils with small eddy-current and hysteresis losses. Coils

with significant losses are better described by the fractional model [15]. Currently, a

great deal of research has been reported on fractional order inductance and its applica-

tions.

The utilization of the inductance exhibiting fractional properties in the energy scav-

enging research field is a promising solution to optimize the harvested energy [115].

For the best choice of the self inductance, the energy harvested by the system can be

improved.

In contrast to the usual technique of evaluating the Maximum Lyapunov Exponent

that requires phase-space reconstruction, the 0− 1 test is a method is applied directly to

the times series data. The input is the time series data and the output is 0 or 1 depending

on whether the dynamics is regular or chaotic.

The numerical simulation showed that the dynamical system behavior can be peri-

odic and chaotic according to the value of external loading. In the chaotic regime, the

vibration amplitude is large than this observed in regular.
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III.3 Numerical simulation of the probabilistic distribu-

tion and stochastic P-bifurcation of a hybrid energy

harvester with Gaussian white noise excitation

III.3.1 Potential configuration and bifurcation diagram

As we said above, the phenomenon of the stochastic resonance requires three basic in-

gredients among which an energetic activation barrier such as the double potential well

of a bi-stable system. We can have a mono-stable or a bistable configuration according

the sign of the nonlinear cubic term, the potential energy presents two configurations:

monostable and bistable several patterns of potential are shown in Fig.45.
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Figure 45: One-dimensional potential governed by Eq.(129) with parameters ω1 = 1,
α2 = 0.72 and metastable potentials α3 = 0.13, symmetric bistable potentials α3 = 0.115
and asymmetric bistable potentials α3 = 0.097.

Here, following [181], activation energy may be denoted as the minimum energy

necessary for a specific event to occur (for example for switching between two station-
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ary states or limit cycle oscillation (LCO). The activation energy can be pictured as an

energy hill that must be overcome in order to get to the valley of stability on the other

side. Fig.46 represents the effective potential under varying, the amplitude of mechani-

cal subsystem for three values of noise intensity D. It shows a single-well potential with

an unstable equilibrium point (a1) and a stable point (a2). When the system is trapped

in the unstable equilibrium point, the effective potential U(a) moves from the left to the

right and vice-versa depending on the initial condition. We also observe that when the

intensity of Gaussian white noise D increases, the depth or the height of the barrier ∆U

decreases. For a suitable choice of system parameters, the probability density function

of the harvester can present one or two positive extrema(one minimum and one maxi-

mum).

Limit cycle oscillations (LCO) of an energy harvester was exploited for enhancing

piezoelectric power generation. The extremely large amplitudes characteristic of these

LCO was recorded as greatly increasing the efficacy of piezoelectric transduction. The

LCO mechanism leads to both stable and unstable states that might be useful in a piezo-

electric system designed for energy harvesting, so that large-amplitude response can be

obtained. Stable LCO of acceptable amplitude in nonlinear piezoelectric systems can

provide an important source of persistent electrical power. The goal is then to lower the

threshold condition leading to LCO, and giving the condition for living a less desirable

LCO for a more one.

By taking ζ3 > 0, the positive root of Eq.(172) is

√
1

12

−K0 +
√
192Dζ3ω4

0 +K2
0

ζ3ω4
0

, and

then the probability density function in Eq.(163) has a maximum (Fig.47(b)). However,

by taking ζ3 < 0, there are two real positive roots of Eq.(172) for a convenient choice

of system parameters:

√
1

12

−K0 +
√
192Dζ3ω4

0 +K2
0

ζ3ω4
0

and

√
− 1

12

K0 +
√

192Dζ3ω4
0 +K2

0

ζ3ω4
0

whose the shape is similar to a crater, and then the probability density function P(a) pre-

sented in Fig.47(b) has one maximum and one minimum respectively. Thus, a transition

from a craterlike distribution to the unimodal distribution observed in Fig.47(b) can be

defined as a type of P-bifurcation.
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Figure 46: Effective potential U(a) versus amplitude a for various values of noise inten-
sity
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Figure 47: (a)Bifurcation diagram of Eq.(172) in the parameter plane (µ3, µ1), (b) Station-
ary probability density of amplitude for three value of ζ3. The other parameters used
are given as: ζ1 = 0.25, α1 = 0.72, α3 = 0.97, ζe = 0.84, λ = 2.0, ζm = 0.057, ϑp = 0.38,
β = 2.05, ω0 = 1.0, ϑe = 0.05 and D = 0.4.
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Figure 48: (a) Amplitude response of mechanical subsystem versus ζ1 for D=0.4 , (b)
Amplitude response of mechanical subsystem versus D for ζ3 = −0.064. The parameters
are the same as those in Fig.47.
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Figure 49: Amplitude response of mechanical subsystem versus noise intensity D for
various (a) electro-magnetic coupling coefficient ϑp, (b) impedance λ. The parameters
are the same as those in Fig.47.
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We plotted in figure(47(a)), the bifurcation diagram of Eq.(172), for a fixed value

of the noise intensity D. However, in region I, two positive roots are observed and give

rise to the craterlike distribution. In region II, we have only one positive root, the distri-

bution is unimodal.

Fig.48(a)-(b) show the amplitudes of the mechanical subsystem, when varying the

noise intensity and for three fixed values of ζ1 and ζ3. In Fig.48(a), we observe that,

an increase of ζ3 lead to decrease the maximum amplitude. However, an opposite phe-

nomenon is observed in Fig.48(b) when ζ1 increase: an increase of ζ1 leads to increase the

maximum amplitude. In Figure 49, a similar behavior to that of figure 48(a) is observed.

III.3.2 Numerical simulation of the probability density of the system

With the goal to verify the efficiency of the analytical technique used, the numerical

simulation of the system Eq.(127) is made.

In this heading, we numerically and analytically plotted in Fig.50, the probabil-

ity density of mechanical subsystem for two values of noise intensity D and electrical

impedance λ. We notice in Figs.50(a) and (b) that, when D increase, the peak of the prob-

ability density function decreases. However, when the electrical impedance λ increases,

the peak of probability density increases by shifting towards the weak amplitude val-

ues of (Figs.50(c-d)). Within this framework, when the probability density reaches his

maximum for a fixed value of electrical impedance coefficient, the amplitude a and the

accumulated energies of the ambient energy collector are higher than those received in

any oscillation. The agreement between the numerical and analytical simulation justifies

the efficiency of the analytical technique used.

In Figs.51(a) and (b), we studied the impact of a linear and nonlinear damping

coefficient ζ1 and ζ3 on probability density function P(a). One can observe in Fig.51(a)

that, the probability distribution has only one maximum situated in the vicinity of zero

for the high value of ζ1. In Fig.51(b), one interesting phenomenon is observed when

we enhance ζ3. A transition from a craterlike distribution to an unimodal distribution
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Figure 50: Stationary probability density of mechanical subsystem for different values
of electrical impedance λ. The other parameters used are given as : ζ1 = 0.25, ζ3 = 0.064,
α1 = 0.72, α3 = 0.97, ζe = 0.84, ζm = 0.057, ϑp = 0.38, β = 2.05, ω0 = 1.0, ϑe = 0.05. The

initial conditions: (z(0),
dz(0)

dτ
, y(0), ρ(0)) = (0, 0, 0, 0).
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Figure 51: Stationary probability density function of mechanical system: (a) for different
values of linear damping with ζ3 = 0.064, (b) for different values of nonlinear damping
with ζ1 = 0.25. The other parameters used are given as : α1 = 0.72, α3 = 0.97, ζe = 0.84,
λ = 2.0, ζm = 0.057, ϑp = 0.38, β = 2.05, ω0 = 1.0, ϑe = 0.05 and D = 0.4.
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Figure 52: Stationary probability density function of mechanical system: (a) for different
values of noise intensity D with λ = 2.0, (b) for different values of impedance λ with
D = 0.4. The other parameters used are given as : ζ1 = 0.25, ζ3 = −0.064, α1 = 0.72,
α3 = 0.97, ζe = 0.84, ζm = 0.057, ϑp = 0.38, β = 2.05, ω0 = 1.0, ϑe = 0.05.
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Figure 53: Stationary probability density of the system in 3D representation for: (a) D =
0.09; (b) D= 0.2; (c) D= 0.4; (d) D=0.6. The other parameters used are given as : ζ1 = 0.25,
ζ3 = −0.064, α1 = 0.72, α3 = 0.97, ζe = 0.84, ζm = 0.057, ϑp = 0.38, β = 2.05, ω0 = 1.0,
ϑe = 0.05 and λ = 2.0.
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Figure 54: Stationary probability density of the system in 3D representation for: (a)
ϑe = 0.01; (b) ϑe = 0.05; (c) ϑe = 0.1; (d) ϑe = 0.15. The other parameters used are given
as : ζ1 = 0.25, ζ3 = −0.064, α1 = 0.72, α3 = 0.97, ζe = 0.84, ζm = 0.057, β = 2.05, ω0 = 1.0,
ϑp = 0.38, λ = 2.0 and D=0.4.
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Figure 55: Stationary probability density of the system in 3D representation for: (a)
ϑp = 0.05; (b) ϑp = 0.18; (c) ϑp = 0.38; (d) ϑp = 0.5. The other parameters used are given
as : ζ1 = 0.25, ζ3 = −0.064, α1 = 0.72, α3 = 0.97, ζe = 0.84, ζm = 0.057, β = 2.05, ω0 = 1.0,
ϑe = 0.05, λ = 2.0 and D=0.4.

occurs. We also observe in these figure (Fig.51(b)) that, the increasing of ζ3 leads to the

enhancement of the probability density function by shifting its maximum towards small

amplitude values. This means that the system energy could be optimized for the small

values of linear and non- linear damping coefficient. In Figs.52(a) and (b), we studied

the impact of a noise intensity D and impedance λ on probability density function P(a)

for ζ3 < 0. One can observed in Fig.52(a) that, the amplitude distribution has only one

minimum situated in the vicinity of zero for the high value of D. However, beyond

the peak, the probability density function decreases when D increases. In Fig.52(b),

an enhancement of impedance λ leads to decrease, the maximum value of peak and

increases its maximum.

The joint stationary probability density (normalized p(z, ż)) of the mass displace-

ment and velocity amplitudes of Eq.(164) are shown in Figs.53-(55). In Figs.53(a)-(b),

the unimodal distribution is observed. However, in Figs.53(c)-(d), the craterlike distri-

bution characterized by one maximum and one minimum is observed. From Figs.54

and 55, the influences of the coupling parameters on the the joint stationary probability
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density have been investigated. The joint stationary probability density decreases as the

values of ϑe increases as shown in Fig. 54 and and electro-magnetic coupling coefficient

ϑp(see figure 55). As we have seen in this study, noise can stabilize unstable equilibria

and shift bifurcations, i.e., the parameter value at which the dynamics changes qualita-

tively. Noise can also lead to transitions between coexisting deterministic stable states or

attractors such as in birhythmic or bistable system. Fokker-Planck equation allows the

analytic derivation of activation energies associated to the switching between different

attractors.

III.3.3 Mean Square Current and voltage

In this section, we use equations Eq.(165)- Eq.(168) giving respectively the expressions

of the mean square values of the voltage for the piezoelectric circuit < y2 > and mean

square values of the instantaneous electrical current for the magnetic circuit < ρ2 >. We

provided in Figs.56(a)-(b), the mean square values of the instantaneous electrical current

for the magnetic circuit < ρ2 > and mean square voltage versus coupling coefficient of

the piezoelectric circuit ϑp and the magnetic circuit ϑe for three values of the noise inten-

sity. In Fig.56(a), we observed that, the output power in terms of mean square voltage

increases when the noise intensity increases. Similar result is observed in Fig.56(b) when

the noise intensity increase. We plotted in Figs.57(a)-(b),the output power versus D for

three values of the ϑe and ϑp. We notice in these figures that, an increase of ϑe and ϑp

leads to increase of the output power.

Fig.58 demonstrates the mean square electric current < ρ2 > and mean square

(PE) voltage < y2 > as function of noise intensity D for different system parameters. As

the noise intensity D increases, the mean square electric current< ρ2 > and mean square

voltage< y2 > increases monotonously. In Figs.58(a-b), the mean square electric current

< ρ2 > and mean square (PE) voltage < y2 > decreases with increases of damping

coefficient ζ3. The mean square electric current < ρ2 > decrease as the values of β

increases as shown in Fig.58(c). Finally, The mean square voltage < y2 > decrease as the
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values of λ increases as shown in Fig.58(d).

Fig.59 demonstrates the total mean output power of hybrid energy harvester

Phybrid as function of noise intensity D for two coupling parameters. As the noise in-

tensity D increases, the total mean output power of hybrid energy harvester increases

monotonously. In Figs.59(a)-(b), the total mean output power harvested by the hybrid

system increases with increases of coupling coefficient ϑe and ϑp. In Figs. 60(a-b), we

observes the similar results. the total mean output power of hybrid energy harvester

Phybrid as function of coupling parameters. the mean output power of hybrid increases

with increases of noise intensity D.

The mean square values of the current and the voltage in the piezoelectric layers

are calculated from the PDFs and are shown respectively in Figs.(56)-(57) as a function

of white noise intensity . It is seen from the figures that the mean square value of the

current and voltage with an increase in the excitation intensity. It has been shown that

this increase depends on large limit cycle oscillations (LCO) and bimodality of the PDF.

Large limit cycle oscillations (LCO) can be used for energy harvesting [183], by provid-

ing an important source of persistent electrical power [184]. Some authors have demon-

strated the advantage of energy harvesting from LCO on high-energy orbits [185]. Be-

cause of the increased values of mean square voltage there will be enhancement of the

energy harvested. The value of the noise intensity at which the mean square voltage

begins to increase rapidly can be adjusted by varying the parameters ϑe and ϑp. Or for

a given noise intensity the parameters ϑe and ϑp can be suitably found to maximize the

voltage mean square value in the piezoelectric layers.

III.3.4 Stochastic Resonance

In the above study we have pointed out that the energy harvesting system is a bistable

system driven by a harvestable noise source. In addition, for an energy harvesting sys-

tem located in certain zone such as the industrial zones where large rotating machines

are observed as well as large cars entering and leaving the factory, the energy harvester
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Figure 56: (a) Evolution of mean square current of magnetic circuit versus ϑe for ϑp =
0.38; (b) Evolution of mean square voltage of piezoelectric circuit versus ϑp for ϑe = 0.05.
The other parameters are given as: ζ1 = 0.25, ζ3 = 0.064, α1 = 0.72, α3 = 0.115, ζe = 0.84,
ζm = 0.057, β = 2.05, ω0 = 1.0 and λ = 2.0.
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Figure 57: (a) Evolution of mean square current of magnetic circuit versus noise intensity
D for ϑp = 0.38; (b) Evolution of mean square voltage of piezoelectric circuit versus noise
intensity D for ϑe = 0.05. The other parameters used are given as: ζ1 = 0.25, ζ3 = 0.064,
α1 = 0.72, α3 = 0.115, ζe = 0.84, ζm = 0.057, β = 2.05, ω0 = 1.0 and λ = 2.0.
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Figure 58: The mean square value < ρ2 > of the electric current and mean square value
< y2 > of the voltage versus noise intensity D for various (a)-(b) nonlinear damping
coefficient ζ3, (c) resistance and inductance ratio β, (d) impedance of the (PE) system λ.

PhD. Thesis of Foupouapouognigni Oumarou Laboratory of Mechanics, Materials and Structures



III.3 Numerical simulation of the probabilistic distribution and stochastic P-bifurcation
of a hybrid energy harvester with Gaussian white noise excitation 133

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

D

P
h

y
b

ri
d

 

 

ϑ
e
=0.05

ϑ
e
=0.2

ϑ
e
=0.36

(a)
0 0.2 0.4 0.6 0.8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

D
P

h
y

b
ri

d
 

 

ϑ
p
=0.18

ϑ
p
=0.38

ϑ
p
=0.5

(b)

Figure 59: Output power harvested by the hybrid system as function of the driving noise
intensity with the parameters ζ1 = 0.25, ζ3 = 0.064, α1 = 0.72, α3 = 0.115, ζe = 0.84,
ζm = 0.057, β = 2.05, ω0 = 1.0 and λ = 2.0.
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Figure 60: (a) Evolution of output power harvested by the hybrid system versus ϑe for
ϑp = 0.38; (b) Evolution of output power harvested by the hybrid system versus ϑp for
ϑe = 0.05. The other parameters are given as: ζ1 = 0.25, ζ3 = 0.064, α1 = 0.72, α3 = 0.115,
ζe = 0.84, ζm = 0.057, β = 2.05, ω0 = 1.0 and λ = 2.0.
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Figure 61: Increase rate opmax versus noise intensity, (a) overall view; (b) detailed view
for ζ1 = 0.25, ζ3 = 0.064, α1 = 0.72, α3 = 0.115, ζe = 0.84, ζm = 0.057, ϑp = 0.38, β = 2.05,
ϑe = 0.05 and λ = 2.0 and ω = 0.35.
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Figure 62: Comparison of the output power with E0 = 0.05; with the parameters ζ1 =
0.25, ζ3 = 0.064, α1 = 0.72, α3 = 0.115, ζe = 0.84, ζm = 0.057, ϑp = 0.38, β = 2.05,
ϑe = 0.05 and λ = 2.0 and ω = 0.35.
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could be subjected to the combination of the harmonic and random excitation. In order

to improve vibrational energy harvesting, theoretical studies have clearly shown that

the phenomenon of stochastic resonance can be used to generate large-amplitude vibra-

tions [186]. Stochastic resonance applied to harvesting requires three basic ingredients:

an energetic activation barrier such as the double well potential of a bistable system, a

weak but coherent control input in the form of a periodic signal, and a source of ambient

vibration that is inherent to the system to be harvested [187, 188, 189]. In these cases,

one wants to measure the response of the system in the presence of the input E0 cosωτ

compared to the case when the system is solely subject to a random term.
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Figure 63: Mean response amplitude versus noise intensity D; with the parameters ζ1 =
0.25, ζ3 = 0.064, α1 = 0.72, α3 = 0.115, ζe = 0.84, ζm = 0.057, ϑp = 0.38, β = 2.05,
ϑe = 0.05 and λ = 2.0 and ω = 0.35.

We depicted in Fig.61, the increase rate opmax versus D, for four values of ampli-

tudes of the harmonic excitation E0. This figure reveals that, an increase of E0 leads to

decrease the opmax. In addition, we also observed in this figure that, regardless of the

value of the harmonic excitation, when the noise intensity is large, opmax decreases and

tends towards the constant value.
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Figure 64: Mean response amplitude versus noise intensity D for various (a) linear
damping ζ1, (b)nonlinear damping ζ3, (c) quadratic nonlinear coefficient α2 and (d)
electro-magnetic coupling coefficient ζe.
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We provided in Figs.62 and 63, the comparison between the output power harvested

respectively in the piezoelectric circuit, the electromagnetic circuit and the overall sys-

tem and the mean amplitude response versus noise intensity D. We notice in Fig.62 that,

the energy harvested by the hybrid model is higher than that harvested by the piezo-

electric or electromagnetic circuit (Fig.62). Fig.63 show the mean amplitude response

versus noise intensity , for four values of the amplitude of the harmonic excitation E0.

One observes that, for some values of amplitude of the noise excitation, the mean am-

plitude response presents a maximum. This maximum is a signature of the stochastic

resonance, which gives the largest oscillation amplitude for a given excitation level, and

reflects the transition in the system response from single well to double well oscillations.

In addition, we can note in this figure (Fig.63) that, the maximum amplitude response is

obtained for the highest amplitude of the harmonic excitation.

3.3.4.1 Effect of parameters on stochastic resonance

With the deduced analytical expression of the mean response amplitude in the bistable

stage of the vibrational energy harvesting system, the mean response amplitude as a

function of noise intensity D with different system parameters are shown in Figs.64.

From Figs.63 and 64, there is a maximum in the mean response amplitude. It means that

there is an optimal noise intensity D at which the mean response amplitude of the system

is maximum that identifies as characteristic of the stochastic resonance phenomenon.

An increase in the maximum of the mean response amplitude means that the stochas-

tic resonance phenomenon is enhanced, and vice versa. In Figs. 64(a)-(b), the maximum

of the mean response amplitude decreases on increasing linear damping coefficient ζ1

and nonlinear damping coefficient ζ3. Meanwhile, the positions of the maximum are

shifted to the larger value of noise intensity D. From Fig.64(c), the maximum of the mean

response amplitude increases on increasing quadratic nonlinear coefficient α2. The po-

sitions of the maximum are shifted to the smaller value of noise intensity D. Fig. 64(d)

shows that the impacts of electro-magnetic coupling coefficient ζe on the maximum of

the mean response amplitude is very small. However the locations of the maximum
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value are shifted to the larger value of noise intensity D.

In Fig. (63) and (64), we observe the stochastic resonance phenomenon which gives

the largest oscillation amplitude for a given excitation level, and reflects the transition

in the system response from single well to double well oscillations characteristics; with

hoppings between the two potential wells. We also notice from figure 64(c)-(d) that, an

increase of the quadratic nonlinear coefficient α2 and electromechanical coupling term ζe

leads to the increases of the mean amplitude response before the stochastic resonance as

concluded from analytical study. However, the mean amplitude response is enhanced

Its maximum value slightly shifts towards the high value of noise intensity D. We also

notice from figure 64(a)-(b) that, an increase of the nonlinear damping term a ζ1 and cu-

bic damping term ζ3 leads to the decreases of the mean amplitude response the stochas-

tic resonance. Noise may play a very constructive role in energy harvesting. It may

enhance a system’s sensitivity to a small periodic deterministic signal by amplifying it.

Stochastic resonance is the physical phenomenon through which the throughput of en-

ergy within an oscillator excited by a modulating excitation source can be boosted by

adding a small stochastic perturbation [190]. For energy harvesting from noise, it was

confirmed that active power can be increased at stochastic resonance, in the same way

of the relationship between energy and phase at an appropriate [191]. Experiments have

validated this observation, showing that the response can indeed be amplified and indi-

cate that the available power generated under stochastic resonance is noticeably higher

than the power that can be collected under other harvesting conditions [187].

The curve of the mean output power increases with increasing noise intensity, electro-

mechanical coupling coefficient and electro-magnetic coupling coefficient. That is, these

parameters paly an active role in improving the performance of the energy harvester.

This is of great significance to energy harvesting because these parameters are impor-

tant to characterize performance of nonlinear vibration energy harvester under random

excitations. While the curve of the mean output power decreases as there damping coef-

ficients increases. For the proposed harvester, the present work opens up another possi-

ble way to increase the harvested energy from ambient environment via the exploitation
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of the stochastic resonance phenomenon. The stochastic resonance phenomenon is en-

hanced on increasing, quadratic nonlinear coefficient and coupling terms. While the

stochastic resonance phenomenon is weakened on increasing damping coefficient.

In this section, the dynamic behavior of the hybrid energy harvester under Gaus-

sian white noise using probabilistic approach is investigated. By applying a stochastic

averaging method on this system, the stochastic response is obtained. The results ob-

tained show that, the shape of the statistic response strongly depends on the coefficient

of the nonlinear damping. The impact of the system parameters is investigated with de-

tail. The obtained results show that, when the coupling coefficients and noise intensity

increase, the harvested energy is improved. In addition, the stochastic bifurcation phe-

nomenon characterized by the qualitative change of the stationary probability density

is observed and allows to obtain the best value of the bifurcation parameter for which

the harvester presents a high limit cycle. Besides, combining the harmonic force to the

random signal, the stochastic resonance phenomenon occurs and improves the system

performance. The comparison between the harvested energy by the hybrid model to

that harvested by the piezoelectric model is investigated. The impact of the amplitude

of the harmonic excitation is investigated on the system performance. The results ob-

tained in this manuscript show the interest to build the hybrid harvester.

III.3.5 Discussion

While, most studies of vibration energy harvesters have considered sinusoidal exci-

tations. It would be judicious to consider the finite bandwidth random vibrations, i.e.,

external Gaussian white noise. Stochastic averaging could be used to study the effect of

the gaussian white noise on the performance of the nonlinear hybrid energy harvesters.

Stochastic averaging method is mainly due to the reduction of dimensions of the Fokker-

Planck-Kolmogorov equation while the essential behavior of the system is retained. It

is a convenient approximation approach to predict the stationary response of nonlinear

stochastic systems. For an energy harvesting system located in certain zone such as the
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industrial zones where large rotating machines are observed as well as large cars enter-

ing and leaving the factory, the energy harvester could be subjected to the combination

of the coherent (harmonic) and random excitation.

In fig.58, we observe the stochastic resonance phenomenon which gives the largest

oscillation amplitude for a given excitation level, and reflects the transition in the sys-

tem response from single well to double well oscillations characteristics; with hoppings

between the two potential wells.

Noise may play a very constructive role in energy harvesting. It may enhance a

systems sensitivity to a small periodic deterministic signal by amplifying it. Stochastic

resonance is the physical phenomenon through which the throughput of energy within

an oscillator excited by a modulating excitation source can be boosted by adding a small

stochastic perturbation. For energy harvesting from noise, it was confirmed that active

power can be increased at stochastic resonance, in the same way of the relationship

between energy and phase at an appropriate.

Experiments have validated this observation, showing that the response can indeed

be amplified and indicate that the available power generated under stochastic resonance

is noticeably higher than the power that can be collected under other harvesting condi-

tions [192].

III.4 Conclusion

This chapter presents the results of the study of the dynamic behavior of they models

proposed in this thesis. Through the first model, the combined effect of the fractional

derivative order, the amplitude of the parametric coupling in the model, we have shown

that the model under these parameters presents some nonlinear phenomena such as the

jump phenomenon, the aperiodic phenomenon and the chaotic behavior. These results

show that fractional inductance and parametric coupling increase output power. We

also studied the influence of Gaussian white noise in our model. We got a beneficial

role from this noise. For this second model, we showed that the power harvest by the
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hybrid system was high. The combined effect of a Gaussian white noise and a periodic

excitation in our model has a beneficial role on the system performance. The harvested

energy is very significative for the high value of the amplitude of the periodic excitation.
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Main results

In this thesis, two physical models of the vibrations energy harvesters, subjected to

the periodic and stochastic excitation have been proposed in the goal to harness ambi-

ent vibration energy. A detailed review of ambient energy sources and some transduc-

tion mechanisms were presented in order to understand the concepts and techniques of

energy harvesting.

•Firstly, we investigate the impact of fractional inductance and parametric cou-

pling in the energy harvester system. The analytical investigation is carried out by using

harmonic balance method. Using the Newton-Leipnik algorithm, the analytical results

obtained are checked. The agreement between these two methods justified the efficiency

of the proposed technique. The impact of fractional inductance and parametric coupling

upon the system’s performance is discuss with detail showing the optimization of out-

put voltage and power of the system for a fixed value of the control parameter E0. We

follow our investigation by discussing the influence of the nonlinear damping (µ3) on

the system response. The result obtained show a decrease of the output power for the

large values of nonlinear damping. In the numerical simulation, the presence, of chaotic

vibrations involves an enhancing of the bandwidth frequency of the harvester there by

increasing the level of harvested energy.

• Secondly, we investigate the probabilistic distribution and stochastic P-bifurcation

of a hybrid energy harvester under gaussian white noise. A two dimensional model

have been proposed and the main dimensionless equations governing the dynamical of

structure are derived. By applying the method of stochastic averaging based on a per-
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turbation technique, we have obtained the stationary probability density function of me-

chanical amplitude. One type of qualitative change was found namely the p-bifurcation

when certain system parameters vary. The stochastic p-bifurcation based on this quali-

tative change of the shape of probability density function is observed. We also discuss

the extrema of the distribution. The probability density which has been obtained via

the stochastic averaging method was numerically checked through the Euler algorithm.

The agreement between numerical and analytical results justifies the efficiency of the

used analytical technique.

Thereafter, we investigate hybridization of two energy harvesting transduction mech-

anisms and vibration source, in order to achieve greater power generation. The com-

parison between the output power generated by the piezoelectric circuit, electromag-

netic circuit and the hybrid model is made. As indicated, it is seen that hybrid energy

harvesters generate greater power outputs than their single harvester components, and

that the combination of noisy and periodic vibrating sources could induce high output

power. Combining the noise signal with harmonic signal, the phenomenon of stochastic

resonance is observed which gives rise to the large amplitude of vibrations and con-

sequently, optimize the output power. The results presented in this thesis can provide

a theoretical idea for the design and optimization of the systems, and allow making an

optimal choice of the environment in which the energy harvesters could function. More-

over, the results obtained show the need to use materials exhibiting fractional properties

as well as the combination of several technologies in order to make the energy harvest-

ing systems more efficient.

Perspectives

Like future work based in this thesis, we have:

•The achievement of experimental study in order to verify the theoretical results,

•The study by taking a higher order dissipation in the presence of a colored noise,

•The synchronization of several energy harvesters.
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In this paper, an electromechanical energy harvesting system exhibiting the fractional properties and sub- 

jected to the harmonic excitation is investigated. The main objective of this paper is to discuss the system 

performance with parametric coupling and fractional derivative. The dynamic of the system is presented, 

plotting bifurcation diagram, poincaré map, power spectral density and phase portrait. These results are 

confirmed by using 0 − 1 test. The harmonic balance method is used with the goal to provide the ana- 

lytical response of the electromechanical system. The numerical simulation validates the results obtained 

by this analytical technique. In addition, replacing the harmonic by the random excitation, the impact 

of noise intensity, the fractional order derivatives κ and the amplitude of the parametric coupling γ is 

investigated in detail. It points out from these results that for the best choice of D, κ and γ , the output 

power can be improved. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the past two decades, fractional calculus has attracted the 

attention of scientists and engineering, resulting to the develop- 

ment of many applications [1–3] . However, this field of research 

did not grow until recently, largely because the underlying math- 

ematics was difficult. Thanks to the many methods for approx- 

imation of the fractional derivative and integral available in the 

literature nowadays, this barrier is considerably eliminated. Thus, 

fractional-order systems have been intensively studied in various 

areas namely, in biology, physics, chemistry, traffic systems, genetic 

algorithms and control systems [4–13] . Indeed, the concept of frac- 

tional derivative goes back to discussing that Leibniz and l’Hospital 

had over three under years ago about the half order derivatives. 

The interest accorded to this term is due to the experiments in- 

vestigations which had shown, fractional order derivative appears 

to render real phenomena meaningful. For instance, in mechani- 

cal engineering, one used it to model viscoelastic properties in the 

physical system. 

In physics, most particulary in the domain of energy harvest- 

ing, scientific research is mainly focused on enhancing the effi- 

ciency of the system. Many researchers groups [14–17] had consid- 
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bucknono@yahoo.fr (C. Nono Dueyou Buckjohn), martinsiewesiewe@yahoo.fr (M. 

Siewe Siewe), ctchawoua@yahoo.fr (C. Tchawoua). 

ered nonlinear effects to reach widening the frequency bandwidth 

of the system. C.Nono et al. [19] used the Melnikov theory to dis- 

cuss the performance of a bistable harvester by analyzing the crit- 

ical condition for homoclinic bifurcation that could induce chaos 

in the system. Owens and Mann [20] discussed the effects of lin- 

ear and nonlinear transduction and demonstrated that with a suit- 

able design, nonlinear coupling is better than linear. Borowiec et al. 

[21] proposed a beam consisted of substrate and sandwiched with 

a tip mass which transduce the bending strains induced by the 

random horizontal displacement into electrical charge. They ana- 

lyzed the efficiency of this nonlinear device by focusing on the re- 

gion of stochastic resonance where beam motion has a large am- 

plitude. Coccolo et al. [22] have studied the electrical response of 

a bistable system, by using a double-well Duffing oscillator, con- 

nected to a circuit through piezoceramic elements and driven by 

both a low and a high frequency forcing, where the high frequency 

forcing is the environmental vibration, while the low frequency is 

controlled by us. They showed that the response amplitude at the 

low-frequency increases, reaches a maximum and then decreases 

to a certain range of the high frequency forcing. They also demon- 

strated in their work that by enhancing the oscillations, we can 

harvest more electric energy. 

Recently, a large amount of work in engineering vibrations 

showed that long-memory factor exists in many practical systems, 

which are difficult to be accurately described by integer-order 

models [23–28] . Bagley and Torvik [29–31] pointed out that half- 

order fractional derivative models can quite well describe the fre- 

http://dx.doi.org/10.1016/j.chaos.2017.05.019 

0960-0779/© 2017 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.chaos.2017.05.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2017.05.019&domain=pdf
mailto:oumarfoupouagnigni@yahoo.fr
mailto:bucknono@yahoo.fr
mailto:martinsiewesiewe@yahoo.fr
mailto:ctchawoua@yahoo.fr
http://dx.doi.org/10.1016/j.chaos.2017.05.019


O. Foupouapouognigni et al. / Chaos, Solitons and Fractals 103 (2017) 12–22 13 

quency dependence damping of viscoelastic materials. Kelly et al. 

[32] have applied the fractional Kelvin model to predict the seis- 

mic response of natural rubber bearings. Markris et al. [33] pre- 

sented a fractional derivative Maxwell model for a viscous damper 

and validated their model using experimental results. Cao et al. 

[34] recently considered an energy harvesting system with frac- 

tional order viscoelastic material. They showed that the fractional 

order property of the material enhances high-energy chaotic mo- 

tion as well as inter-well periodic oscillation. Kitio et al. [35] pro- 

posed an electromechanical energy harvesting system with a frac- 

tional order current voltage relation-ship for the electrical circuit 

and fractional power law in the restoring force of its mechani- 

cal part. They authors showed that under a single-well potential 

configuration, for a small amplitude of the perturbation, as the or- 

der of derivative increases, the resonant amplitude of mechanical 

vibration decreases while the bending degree remains fairly con- 

stant. For a large amplitude of the perturbation, the output power 

increased, this is due to the hardening effects. However, under a 

double-well configuration, the fractional power stiffness strongly 

affects the crossing well dynamics and consequently the output 

electrical power. Ducharne et al. [36] built and energy harvesting 

devices based on piezoelectric Ericsson cycles in a piezoceramic 

material. They showed that by coupling an electric field and me- 

chanical excitation on Ericsson-based cycles, the amplitude of the 

harvested energy can be highly increased, and can reach a maxi- 

mum close to 100 times its initial value. Several electromechanical 

models have been the subject of such study, in particular this of 

Oumbé et al. [37] . In this work, the authors studied the effect of 

a nonlinear inductance induced by the saturation of the magnetic 

circuit. Siewe et al. [38] worked on an unsaturated magnetic circuit 

where they focused on the study of dynamics of the model (study 

of chaos via the Melnikov method) and the energy transfer from 

the mechanical to electrical subsystem without interesting to the 

impact of inductance upon system performance. The present work 

is based on this model. An originality of this work comes from 

the fact that we have taken into account the fractional character 

of the inductance [35,39] . In this previous work, the authors as- 

sume that the inductance is linear and the magnetic field through 

the air-gap of the permanent magnet varies with the coil position. 

In this case, the voltage through the self is defined as U = L di 
dt 

. Let 

us notice that in the experimental investigation, the coil exhibit 

the fractional properties [39] . Thus, the relationship between the 

current and voltage is defined as follows [35] U L = L d 
κ i 

d t κ
. The one 

of the purpose of this present paper is to investigate the impact of 

fractional inductance on the model propose in Ref. [38] . 

As pointed by Yamapi et al. [40,41] , in certain circumstances, 

some parameters of the electromechanical device can vary with 

time because of the functioning constraints. This is particularly the 

case for the parameters of the electromagnetic coupling. In this 

present work, we consider that the magnetic field varies with time. 

This give rise to a parametric coupling which could play an impor- 

tant role in the improvement of the output power. The remain of 

the manuscript is organized as follows: Section 2 is devoted to the 

description of the system by a system equation. In Section 3 , we 

evaluate analytical and numerically, the mechanical and electrical 

response of the system. This section is followed by the numerical 

simulation in Section 4 . In Appendix , we have the conclusion. 

2. The model and governing equations 

As pointed by siewe et al. [38] , the electromechanical device 

shown in Fig. 1 is composed of two fundamental parts: The me- 

chanical part is composed of the mass m , the nonlinear spring and 

nonlinear damping, while the electrical subsystem is composed of 

fractional inductor L , a linear capacitor C and the linear resistor R . 

We particularly consider the dissipative force with nonlinear dis- 

Fig. 1. Schematic model with the associated electric circuit. 

sipation term proportional to the power of velocity ( y ′ ) 3 . The ex- 

pressions defining damping force is as follows: [43] 

f d = c 1 y 
′ + c 3 (y ′ ) 3 . (1) 

Where y ′ is the velocity of the mass, c 1 and c 3 , the linear and 

nonlinear damping coefficients. The nonlinear damping introduced 

in this system is important insofar as it has been shown that it 

can improve efficiency in the context of EHS [42,43] Moreover, it is 

close to the reality because experimental studies have been done 

recently or it appears that nonlinear dissipation is the one, that of- 

fers better performances in terms of optimization. The mathemat- 

ical expression of the magnetic field is defined as in Ref. [40] 

B = B 0 (1 + γ cos (2 ω 1 t)) , (2) 

where B 0 is the highest intensity that the field B reaches, γ is the 

amplitude of the parametric coupling. The motion equation of the 

system is given as follows [38] : 

my ′′ + g(y, y ′ ) − lB 0 ( 1 + γ cos ( 2 ω 1 t ) ) q 
′ = F (t) 

LD 

κ+1 
t q + Rq ′ + 

q 
C 

+ lB 0 ( 1 + γ cos ( 2 ω 1 t ) ) y 
′ = 0 

(3) 

with 

g(y, y ′ ) = c 1 y 
′ + c 3 (y ′ ) 3 + k 0 y + k 1 y 

3 . 

where ( ′ ) = 

d 
dt 

, y and q are the displacement of the mass and 

charge respectively, k 0 and k 1 is the linear and nonlinear stiffness 

of the spring, while l is the length of the air gap. Using the follow- 

ing transformation of coordinates: 

ω 

2 
0 

= 

k 0 
m 

, y = lx, q = Q 0 z, α = κ + 1 and by letting the time vari- 

able t = 

τ
ω 0 

, the dimensionless equation is given by: 

ẍ + f (x, ˙ x ) − ϑ m 

(1 + γ cos (2 ωτ )) ̇ z = F (τ ) , 

˙ z + βD 

α
τ z + μe z + ϑ e (1 + γ cos (2 ωτ )) ̇ x = 0 

(4) 

with 

f (x, ˙ x ) = μ1 ̇ x + μ3 ̇ x 
3 + 	x + λx 3 

and 

ω = 

ω 1 

ω 0 

, μ1 = 

c 1 ω 0 

k 0 
, μ3 = 

l 2 c 3 ω 

3 
0 

k 1 
, ϑ e = 

l 2 B 0 

Q 0 R 

λ = 

l 2 k 1 
ω e 

2 m 

, ϑ m 

= 

B 0 ω 

3 
0 Q 0 

k 0 
, μe = 

1 

ω 0 RC 
, β = 

ω 

κ
0 

L 

R 

. 
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Fig. 2. Potential of the system (4) for λ = 0 . 1 , the dot line obtained for 	 = 1 . 0 and 

solid line for 	 = −1 . 0 . 

x and z are the dimensionless displacement and current respec- 

tively. Contrary to the equations to the partial derivatives gotten in 

the case of the beams, the dot, as in x and z, will indicate differ- 

entiation with respect to time. ϑi are parameters of the coupling 

terms, λ is parameter due to nonlinear stiffness, μi and γ e are 

damping coefficients, γ e is the parametric coupling amplitude. 

Throughout the paper, we consider an harmonic function with 

constant amplitude which can be expressed by mathematical pre- 

sentation as: 

F (τ ) = E 0 cos (ωτ ) , (5) 

where E 0 and ω being respectively, the amplitude and frequency 

of the harmonic excitation. 

Fig. 2 shows the potential of the mechanical part under two 

configuration: mono-stable and bistable for two values of linear 

coefficient of the stiffness. In the following, we discussed the sys- 

tem performance under these two configurations. 

2.1. Harmonic balance method 

In this section, we use the harmonic balance method [44] to 

provide the analytical solution of the model equation. To achieve 

our objective, we assume that the approximative solution of the 

system Eq. (4) is defined as follows: 

x (τ ) = A cos ( ωτ + ϕ 1 ) (a ) 

z(τ ) = B cos ( ωτ + ϕ 2 ) (b) 
(6) 

where A = 

√ 

A 

2 
1 

+ A 

2 
2 

and B = 

√ 

B 2 
1 

+ B 2 
2 

are the amplitude of the 

mechanical and the electrical subsystem. 

It is known in the literature that, there are many definitions of 

the fractional derivative. In this work, we used the Caputo’s defini- 

tion [45–47] given as: 

d 

αz 

d τα
= D 

α
τ [ z(τ )] = 

1 

�(1 − α) 

∫ τ

0 

(τ − s ) −α ˙ z (s ) ds. (7) 

where 0 < κ ≤ 1, while �(.) is the gamma function. 

Substituting Eq. 6 (b) into Eq. (7) , we obtain: 

D 

α
τ [ B cos (ωτ + ϕ 2 )] = D 

α
τ [ ς 1 cos (ωτ ) − ς 2 sin (ωτ )] (8) 

with 

ς 1 = B cos ϕ 2 ;ς 2 = B sin ϕ 2 , 

By using the following approximation, 

z(τ − s ) = B cos (ω(τ − s ) + ϕ 2 ) = B cos (θ2 − ωs ) , 

with 

θ2 = ωτ + ϕ 2 . 

Eq. (8) becomes: 

D 

α
τ [ z(τ )] 

= 

1 
�(1 −α) 

d 
dτ

[
B cos θ2 

∫ τ
0 

cos ωs 
s α

ds + B sin θ2 

∫ τ
0 

sin ωs 
s α

ds 
] (9) 

By letting u = ωs, we obtain the following expression: 

D 

α
τ [ z(τ )] 

= 

ω α

�(1 −α) 
[ −(ς 1 J 1 + ς 2 J 2 ) sin ωτ + (ς 1 J 2 − ς 2 J 1 ) cos ωτ ] 

(10) 

with J 1 and J 2 are defined as [48] : 

J 1 = 

∫ τ
0 

cos u 
u α

du = �(1 − α) sin ( απ
2 

)) + 

sin u 
u α

+ 0(u 

−α−1 ) , (11) 

J 2 = 

∫ τ
0 

sin u 
u α

du = �(1 − α) cos ( απ
2 

)) − cos u 
u α

+ 0(u 

−α−1 ) , (12) 

Taking into account Eqs. (11) and (12) , Eq. (8) becomes: 

D 

α
τ [ z(τ )] 

= ω 

α(B 1 cos (ωτ ) + B 2 sin (ωτ ))( cos ( απ
2 

) − sin ( απ
2 

)) . 
(13) 

Substituting Eqs. (13) and (6) into Eq. (4) and equating the co- 

efficients of the terms containing only sin ( ωτ ) and cos ( ωτ ) sepa- 

rately to zero, we obtain the following equations: (
	 − ω 

2 + 

3 

4 

λA 

2 
)

A 1 + 

(
μ1 ω + 

3 

4 

μ3 ω 

3 A 

2 
)

A 2 + ζ2 B 2 − E 0 = 0 

(−μ1 ω − 3 

4 

μ3 ω 

3 A 

2 ) A 1 + 

(
	 − ω 

2 + 

3 

4 

λA 

2 
)

A 2 − ζ1 B 1 = 0 

δB 1 + ωB 2 + 

ϑ e ζ2 

ϑ m 

A 2 = 0 

−ωB 1 + δB 2 − ϑ e ζ1 

ϑ m 

A 1 = 0 (14) 

where 

δ = βω 

α
(

cos 

(
απ

2 

)
− sin 

(
απ

2 

))
+ μe , 

ζ1 = ϑ m 

ω 

(
1 − γ

2 

)
, ζ2 = ϑ m 

ω 

(
1 + 

γ

2 

)
. 

Using some mathematics tools, the solution of Eq. (14) , give rise to 

the amplitudes equation given as: 

r 10 A 

10 + r 8 A 

8 + r 6 A 

6 + r 4 A 

4 + r 2 A 

2 + r 1 = 0 (15) 

and 

B 

2 = b 4 A 

4 + b 2 A 

2 + b 0 , (16) 

where all the coefficients of Eqs. (15) and (16) are defined in the 

appendix. The average output power is estimated using this for- 

mula: 

P max = 

1 

2 T 

∫ T 

0 

(
dz 

d t 

)2 

dt. (17) 

2.2. Numerical simulation 

With the goal to verify the efficiency of the analytical technique 

used, the numerical simulation of the system Eq. (4) is made. The 

physical parameters used in the simulation are given as follows: 

c 1 = 0 . 55 kg /s, c 3 = 2 . 5 kg /s , k 0 = 25 N/m, L = 1 . 34 H, l = 0 . 17 m, m = 

1 . 082 kg , R = 20 . 5�, k 1 = 90 N/m, C = 0 . 01052 . The initial condi- 

tions used are (x (0) = 0 . 0 , ˙ x (0) = 0 . 0 , z(0) = 0 . 0) . 
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Fig. 3. Amplitudes response-curves of the driving frequency ω and E 0 = 0 . 5 , κ = 0 . 25 with the parameters λ = 0 . 1 , μ1 = 0 . 1 , μ3 = 0 . 018 , γ = 0 . 5 , ϑ m = 0 . 76 , ϑ e = 0 . 0056 , 

μe = 0 . 96 and 	 = 1 . 0 . 

Fig. 4. Amplitudes response-curves of the driving frequency ω and E 0 = 0 . 5 , κ = 0 . 25 with the parameters λ = 0 . 1 , μ1 = 0 . 1 , μ3 = 0 . 018 , γ = 0 . 5 , ϑ m = 0 . 76 , ϑ e = 0 . 0056 , 

μe = 0 . 96 and 	 = 1 . 0 . 
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Fig. 5. Output electric power as function of the driving frequency with the parameters λ = 0 . 1 , μ1 = 0 . 1 , μ3 = 0 . 018 , γ = 0 . 5 , ϑ m = 0 . 76 , ϑ e = 0 . 0056 , μe = 0 . 96 , 	 = 1 , 

E 0 = 0 . 5 and κ = 0 . 25 . 

Fig. 6. Effects on the amplitude of parametric coupling γ on the amplitude response curve B and output power with the parameters λ = 0 . 1 , μ1 = 0 . 1 , μ3 = 0 . 018 , ϑ m = 

0 . 76 , ϑ e = 0 . 0056 , μe = 0 . 96 , 	 = 1 , E 0 = 0 . 5 and κ = 1 . 0 . (a) amplitude response B, (b) mechanical input, (c) output electric power and (d) efficiency. 



O. Foupouapouognigni et al. / Chaos, Solitons and Fractals 103 (2017) 12–22 17 

The numerical scheme used in this paper is based on the 

Newton–Leipnikov algorithm [50] , Eq. (4) can be rewritten as: 

x (k ) = x (t k −1 ) + u (t k −1 ) h (18) 

y (t k −1 ) = 

[ 
z(t k −1 + 

n −1 ∑ 

i =1 

c (α) 
j 

z(t k −1 ) 
] 

h 

−α (19) 

u (t k ) = [ −μ1 u (t k −1 ) − μp u (t k −1 ) 
p − 	x (t k −1 ) 

−λx (t k −1 ) 
3 + ϑ m 

(1 + γ cos (2 ω(t k −1 ))) z(t k ) 

+ E 0 cos (ω(t k −1 ))] h + u (t k −1 ) (20) 

z(t k ) = z(t k −1 ) + (−βy (t k −1 ) − μe z(t k −1 ) 

−ϑ e (1 + γ cos (2 ω(t k −1 )))) h (21) 

where h is the integration step and the coefficients c j 
( α) satisfy the 

following recursive relations: 

c 0 
(α) = 1 , c j 

(α) = 

(
1 − 1 + α

j 

)
c j−1 

(α) . (22) 

u (t k ) = [ −μ1 u (t k −1 ) − μp u (t k −1 ) 
p − 	x (t k −1 ) 

−λx (t k −1 ) 
3 + ϑ m 

(1 + γ cos (2 ω(t k −1 ))) z(t k ) 

+ E 0 cos (ω(t k −1 ))] h + u (t k −1 ) (23) 

Fig. 3 (a) and (c) show the comparison between the results ob- 

tained from analytical and numerical investigations. From these 

figures we notice the agreement between the two results. The ef- 

fects of the fractional derivative κ on the amplitude are depicted 

in Fig. 3 (b) and (d). We notice that, the amplitude of the me- 

chanical vibration are almost unchanged when κ increases (see 

Fig. 3 (b)). However, in Fig. 3 (d), we observe that, the enhancing of 

the fractional order derivative leads to increase the output power 

change. We displayed on Fig. 4 (a)–(d), the mechanical and electri- 

cal response versus frequency ω. In Fig. 4 (a) and (c), the impact 

of the amplitude of the parametric coupling is presented. We no- 

tice in Fig. 4 (a) that when γ increases, the response of mechanical 

part is not change. However, in Fig. 4 (c), an increase of γ leads 

to enhance the output charge, and consequently, an enhancing of 

the output power. Fig. 4 (c) and (d) show the impact of the linear 

(μ1 � = 0 , μ3 = 0) , cubic (μ3 � = 0 , μ1 = 0) and polynomial damping 

( μ1 � = 0, μ3 � = 0) upon the electrical response. It emerges from 

these results that, the cubic and polynomial damping induced a 

reducing of harvested energy. Fig. 5 show the impact of κ , γ , λ
and damping upon the output power. We notice in Fig. 5 (a) and 

(b) that, when κ and γ increase, the output power increases. Sim- 

ilar result is observed in Fig. 5 (c). When the coefficient of the cubic 

nonlinearly increases. However, in Fig. 5 (d), an increase of the de- 

gree of the damping gives rise to the small output power. 

We show in Fig. 6 , the comparison between the mechanical and 

electrical power for three value of γ . We notice in Fig. 6 (a)–(c) that 

for a fixed value of the γ , the resonance occurs for the same value 

of the frequency. For γ = 0 . 9 , the real maximum electric power is 

obtained at ω = 1 . 17 Hz and is about 2.7 mW , for the corresponding 

input power(the mechanical power) equal to 0.19 W . We show in 

Fig. 6 (d) the efficiency conversion of the system. We notice that an 

increase of the γ leads to the increase of efficiency. We also notice 

in this figure that the efficiency is optimum when the resonance 

phenomenon occurs ( ω = 1 . 17 Hz), this give rise to the maximum 

charge and output power ( Fig. 6 (a) and (c)). 

Several works have been published in the field of energy har- 

vesting using electromechanical system. However, several authors 

Fig. 7. Bifurcation diagram (a) and asymptotic growth rate k c (b) curves for system 

(4) for E 0 varying with the parameters λ = 0 . 1 , μ1 = 0 . 1 , μ3 = 0 . 018 , γ = 0 . 5 , ϑ m = 

0 . 76 , ϑ e = 0 . 0056 , μe = 0 . 96 , ω = 1 . 0 , 	 = −1 . 0 and κ = 1 . 0 . 

have been used the standards materials [17,18] and other, the ma- 

terials exhibiting the fractional properties. In contrarily in the pre- 

vious works [35,37] , a novelty of this present work is the introduc- 

tion of the fractional inductor in the electrical subsystem. Kwimi 

et al. have been showed that for some value of amplitude of the 

excitation force, the voltage present the antagonistic phenomenon 

ie an increase of fractional order derivative leading to increase or 

decrease the output voltage. In addition, Oumbé et al. have been 

showed that, Energy harvesting system with fractional order vis- 

coelastic properties has better performance at resonance. Indeed, 

small value of fractional derivative leads to large value of the max- 

imum output voltage. On major observation in our study reveal 

that, the system performance is optimum for the high value of 

the fractional order derivative (see Fig. 5 ). However, for κ ∈ ]0, 1[, 

while the output power increase when κ go up, the standards in- 

ductor (κ = 1) is better than the inductor exhibiting the fractional 

properties. It would be advantageous in this research field, to use 

a standard inductance. The performance of the system depends on 

the degree of nonlinear damping. In addition, the steady-state so- 

lution under the same conditions except μ3 = 0 (i.e., no nonlinear 

damping) is also plotted in Fig. 4 . We notice that, the existence of 

non-negligible nonlinear damping has a strong impact on the fre- 

quency response of the system, specifically on the locations of the 

jump points. In particular, for the polynomial damping only the cu- 

bic term provides power harvested while the linear term is consid- 

ered as a loss. When a polynomial damping is taken into account 

only, the cubic term is considered as power harvested. As shown 

in Fig. 5 (d), the polynomial damping allows us to store less en- 

ergy than the linear and the cubic damping. This is due to the fact 
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Fig. 8. Phase portraits of the mechanical part for crossing well dynamics as function of E 0 for κ = 1 and the value of Fig. 6 .: (a) E 0 = 0 . 09 , (b) E 0 = 0 . 8 , (c) E 0 = 0 . 9 , (d) E 0 = 

0 . 96 , with the parameters λ = 0 . 1 , μ1 = 0 . 1 , μ3 = 0 . 018 , γ = 0 . 5 , ϑ m = 0 . 76 , ϑ e = 0 . 0056 , μe = 0 . 96 , ω = 1 . 0 , 	 = −1 . 0 and κ = 1 . 0 . 

Fig. 9. Poincaré maps, time history and power spectral density from system (4) for κ = 1 and E 0 = 0 . 0911 with the parameters: λ = 0 . 1 , μ1 = 0 . 1 , μ3 = 0 . 018 , γ = 0 . 5 , 

ϑ m = 0 . 76 , ϑ e = 0 . 0056 , μe = 0 . 96 , 	 = −1 . 0 and ω = 1 . 0 . 

that the linear term is loss power. The effects of the amplitude of 

the parametric modulation are found in the response curves and 

output power. The amplitude of the parametric coupling can con- 

tribute to increase the harvested output voltage. The performance 

of the system depends also on the degree of nonlinearity of the 

potential and the electrical dissipation. 

2.3. Description of 0-1 test and numerical study 

With the aim to deeply characterize the long time dynamic of 

the system, we have used many standard indicators, namely bifur- 

cation diagrams, phase portraits, power spectral density and com- 

putation of the 0-1 test. 
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Fig. 10. Poincaré maps, time history and power spectral density from system (4) for κ = 1 and E 0 = 0 . 8284 with the parameters: λ = 0 . 1 , μ1 = 0 . 1 , μ3 = 0 . 018 , γ = 0 . 5 , 

ϑ m = 0 . 76 , ϑ e = 0 . 0056 , μe = 0 . 96 , 	 = −1 . 0 and ω = 1 . 0 . 

2.3.1. Description of the 0-1 text 

To quantify the results obtained, we use the 0-1 test for chaos 

detection [51,52] . This test combines both spectral and statistical 

properties of the system and can distinguish different types of dy- 

namics of the system by computing a number K ∈ {0, 1}. First of 

all, a change coordinates (x, ˙ x ) to a new set ( p, q 1 ) is required 

p(n ) = 

n ∑ 

j=1 

˜ x j cos ( jc) , q 1 (n ) = 

n ∑ 

j=1 

˜ x j sin ( jc) (24) 

where ˜ x = [ ̃ x 1 , ̃  x 2 , ̃  x 3 , ̃  x 4 , . . . . ] is the discrete time series sampled 

from the originally simulated x using one-fourth of excitation pe- 

riod, while c is a constant ( c ∈ [0, π ]). The Mean Square Displace- 

ment (MSD) is defined as in Ref. [49,53] : 

MSD (c, j) = 

1 

n − j 

n − j ∑ 

i =1 

{
[ p( i + j) − p(i ) ] 

2 + [ q 1 ( i + j) − q 1 (i ) ] 
2 
}

(25) 

where j is the integer number varying as follows: 

n 

100 

≤ j ≤ n 

10 

. 

Thus, the asymptotic growth rate of MSD is given as: 

K(c) = 

Cov [ j, MSD (c, j) ] √ 

C ov [ j, j ] .C ov [ MSD (c, j) , MSD (c, j) ] 
(26) 

where Cov ( x, u ) is the covariance of the serie x, u. In this paper, 

we let ( x = j and u = MSD (c, j)) . The covariance of x, u is defined 

as: 

cov [ x, u ] = 

1 
N 

N ∑ 

n =1 

(x (n ) − x̄ )(u (n ) − ū ) (27) 

where x and u are the average value of x and u, N is the element 

number of x and u are given by: 

x = 

1 
N 

N ∑ 

n =1 

x (n ) , u = 

1 
N 

N ∑ 

n =1 

u (n ) . (28) 

2.3.2. Numerical study 

The main purpose of this section is to show the qualitative be- 

havior of the solution of the extended electromechanical model. 

The system generates a complex behavior that directly depends on 

the amplitude and frequency of the modulated force. We now use 

the numerical simulations for examining the complicated behav- 

ior of Eq. (4) . The initial conditions used in the numerical sim- 

ulation are ( (x (0) = 1 . 0 , ˙ x (0) = 0 . 0 , z(0) = 0 . 0) . The fourth-order 

RungeKutta algorithm is used to check the threshold of harmonic 

excitation amplitude for onset of possible chaos obtained for sys- 

tem (4). Fig. 7 shows a representative bifurcation diagram and 

the variation of the corresponding 0 − 1 test versus the ampli- 

tude E 0 of mechanical part. A bifurcation diagram is displayed in 

Fig. 7 (a), showing the dependence of the system response when E 0 
increases. We observe in this figure the regions corresponding to 

regular motion ( E 0 ∈ [0, 0.78]), the region corresponding to period- 

3 orbit ( E 0 ∈ [0.8, 0.88]) and regions corresponding to the chaotic 

states ( E 0 ∈ [0.78, 0799] ∪ [0.88, 1]). In the goal to validate the re- 

sult obtained in Fig. 7 (a), the 0-1 text is provided ( Fig. 7 (b)). The 

result obtained (( Fig. 7 (b))) confirms this obtained via the bifur- 

cation diagram ( Fig. 7 (a)). The phase portrait provided in Fig. 8 , 

allow us to know the different regimes in which the system in- 

volves. We observe a diffusive ( Figs. 8 (c)- 8(d)) and bounded dy- 

namic ( Fig. 8 (a) and (b)) of the p(n) and q 1 ( n ) in the phase space 

( p, q 1 ). Let us notice that, a diffuse dynamic of p(n) and q 1 ( n ) cor- 

responds to the chaotic motion, which increases the bandwidth of 

oscillator there by allowing to enhance to output power. However, 

when the dynamic of p(n) and q 1 ( n ) is bounded in the phase space, 

the motion is regular. In such condition, the energy storage by the 

mechanical oscillator is concentrated within its harmonic or super- 

harmonic. 

We provide in Figs. 9–11 , the poincaré map, the time series 

and its corresponding power spectral density (PSD). We notice in 

Fig. 9 (a) and (c) that the regular motion. These result are con- 

firmed in Fig. 9 (b) and (d) by plotting PSD. Only one peak located 
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Fig. 11. Poincaré maps, time history and power spectral density from system (4) for κ = 1 and E 0 = 0 . 9318 with the parameters: λ = 0 . 1 , μ1 = 0 . 1 , μ3 = 0 . 018 , γ = 0 . 5 , 

ϑ m = 0 . 76 , ϑ e = 0 . 0056 , μe = 0 . 96 , 	 = −1 . 0 and ω = 1 . 0 . 

Fig. 12. Means square of the system with the parameters λ = 0 . 1 , μ1 = 0 . 1 , μ3 = 0 . 018 , ϑ m = 0 . 76 , ϑ e = 0 . 0056 , μe = 0 . 96 , 	 = −1 . 0 and ω = 1 . 0 . 
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to the dimensionless frequency ( f pic = 0 . 16) is observed for the 

mechanical subsystem. However, in Fig. 9 (d) three peaks are ob- 

served. In Fig. 10 (a) and (c), the motion of the system is quasi- 

period characterized by three harmonics. The agreement between 

these results and those obtained in Fig. 10 (b) is observed. Fig. 10 (d) 

shows five peaks. In this condition, the energy harvested by the 

system is high than obtained when the dynamic of the system 

is periodic. In Fig. 11 (b) and (d), the system exhibits the chaotic 

motion giving rise to the large bandwidth of the frequency allow- 

ing to harvest more energy. These latters results are confirmed in 

Fig. 11 (b) and (d) which present many harmonics. 

3. Investigation of the system performance under the Gaussian 

white noise 

The harmonic excitation is used in the previous section to in- 

vestigate the system response. However, in the real environment, 

wave oscillations, atmospheric turbulence and seismic shocks, the 

vibration source are not harmonic but exists under a random form 

Ref. [54–56] . Thus we replace in the previous section, the harmonic 

excitation by a Gaussian white noise verifying the statistic proper- 

ties: 

〈 ξ (τ ) ξ (t + τ ′ ) 〉 = 2 Dδ(τ ) , 

〈 ξ (τ ) 〉 = 0 , (29) 

where 2 D is the intensity of noise and δ( τ ), the Dirac function. 

The impact of fractional order derivative κ and γ upon the output 

power expressed in terms of mean square voltage 〈 z 2 〉 and mean 

displacement is presented in Fig. 12 (a)–(d). Let us notice that in 

Fig. 12 (a) and (b), when x � 0, the system oscillates by hopping 

symmetrically through the potential barrier. However, x � 1 indi- 

cates that the oscillating system is strapped in one of the potential 

wells. Fig. 12 (c) and (d), the output power versus noise intensity 

for three values of fractional order derivative κ and amplitude of 

the parametric coupling γ . We notice in these figures that an en- 

hancing of κ and γ leads to increase the output power. 

4. Conclusion 

In summary, the analytical investigation of the system response 

of the electromechanical energy harvesting system is presented. 

The harmonic balance method is used in this manuscript and gives 

rise to the amplitude equation. The results obtained by this ana- 

lytical technique are checked numerically. The agreement between 

these two methods validates the analytical technique used. The im- 

pact of fractional order derivative and amplitude of the parametric 

coupling is investigated with detail. It emerges from these results 

that, the fractional order derivative κ and amplitude of the para- 

metric coupling γ enhance the output power when these two pa- 

rameters increase. The effect of linear cubic and polynomial damp- 

ing is also investigated. We notice that a large value of the degree 

of the damping reduces the output power. In addition, replacing 

the harmonic excitation by the random force, the impact of noise 

intensity is investigated. It appears from these results that, the out- 

put power could be optimized for the best choice of the noise in- 

tensity D, the fractional order derivative κ and amplitude of the 

parametric coupling. 
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• The study of the stochastic p-bifurcation allows to know the value of the bifurcation parameter forwhich the system energy is improved.
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a b s t r a c t

In this work, we investigated the dynamical behavior of the hybrid energy harvester under
Gaussian white noise using probabilistic approach. We find that under the influence of
this kind of noise, the dynamics of the nonlinear electromechanical system exhibited the
stochastic bifurcation which is characterized by a qualitative change of the stationary
probability distribution. A stochastic averaging method is applied in this system in the
aim to build the Itô Stochastic differential equations. From these equations, the Fokker–
Planck Equations (FPE) of the electromechanical system is constructed whose the solution
at the stationary state is a probability density. By combining the harmonic excitation to
the random force, the harvested energy is improved. We also provided the optimization
rate of the hybrid systemwith respect to the piezoelectric system. Besides, the comparison
between the power obtained by the hybrid model, piezoelectric and electromagnetic
energy harvester shows the interest to build the hybrid model. The analytical results agree
very well with numerical simulation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The technological advance these last years in the electronics area and the growing need to render the electronics
system autonomous drove to a renewal of the works of research on the renewable micro-energy harvesting. One of the
challenge in this research field is the replacement of the batteries in the microelectronics system by a energy harvesting
device, allowing to guarantee the energy needs in the embarked system without interruption. Several energy sources are
available in the environment and can be used to power microelectronics systems. Among these energy sources, vibrations
mechanics are the subject of the many investigation. As pointed by Williams et al. [1], three transduction mechanisms

∗ Corresponding author.
E-mail addresses: oumarfoupouagnigni@yahoo.fr (O. Foupouapouognigni), bucknono@yahoo.fr (C. Nono Dueyou Buckjohn),

martinsiewesiewe@yahoo.fr (M. Siewe Siewe), ctchawa@yahoo.fr (C. Tchawoua).

https://doi.org/10.1016/j.physa.2018.06.026
0378-4371/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physa.2018.06.026
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2018.06.026&domain=pdf
mailto:oumarfoupouagnigni@yahoo.fr
mailto:bucknono@yahoo.fr
mailto:martinsiewesiewe@yahoo.fr
mailto:ctchawa@yahoo.fr
https://doi.org/10.1016/j.physa.2018.06.026


O. Foupouapouognigni et al. / Physica A 509 (2018) 346–360 347

are commonly used to convert vibrations mechanics to electricity, namely piezoelectric [2–5], electromagnetic [6,7] and
electrostatic [8,9] transduction. However the most of the proposed harvesters are typically based on linear mechanical
principles [1,10]. Such devices give appreciable response amplitude only if the dominant ambient vibration frequency is
close to the resonance frequency of the harvester. In the goal to improve the efficiency of devices, nonlinear phenomena
have been considered. Thus, Shahruz [11] shows that a bistable configuration of the potential energy of the system can be
used to increase the output power. Coccolo et al. [12] have studied the electrical response of a bistable harvester driven by
both a low and a high frequency forcing. The authors showed that the response amplitude at the low-frequency increases,
reaches a maximum and then decreases to a certain range of the high frequency forcing. With a different perspective,
Masana and Daqaq [13] proposed a comparative analysis of harvesters having bistable and mono-stable configuration of
the potential energy, under harmonic excitation and demonstrated the effects of the potential shape on the performance of
the system, for some ranges of frequencies. They concluded that mono-stable potential systems perform better than double-
well systems for an excitation with a small amplitude. Considering the linear and nonlinear nature of the electromagnetic
coupling, Owens and Mann [14] showed that depending on the system parameters, nonlinear coupling can be better than
linear coupling. It is worth noting that, regardless of the type of transduction mechanism, any one exhibits advantage and
disadvantage.

In order to overcome some disadvantage met in the transduction mechanism announced above, the construction of
the hybrid model is essential. Wang et al. [15] developed a Piezoelectric and electromagnetic hybrid energy harvester for
powering wireless sensor nodes in smart grid. The authors showed that from current-carrying conductor of 2.5 A at 50 Hz,
the proposed harvester combining piezoelectric components and electromagnetic elements can generate up to 295.3 µW.
Zhenlong et al. [16] presented a novel tunable multi-frequency hybrid energy harvester. It comes from their study that
the magnitude and direction of magnetic force have significant effect on the performance of the system. Friswell et al. [17]
proposed a hybrid cantilever beamharvesterwith piezoelectric and electrostatic transducers for narrowbandbase excitation
using an applied DC voltage as a control parameter to change the resonant frequency of the harvester to ensure resonance
as the excitation frequency varies. Wacharasindhu et al. [18] proposed a micro machined energy harvester from a keyboard
typingmotions, using combined electromagnetic and piezoelectric conversion. Bin et al. [19] built a hybrid energy harvester
combined piezoelectric with electromagnetic mechanism to scavenge energy from external vibration. They explored the
effect of the relative position of the coils and magnets on the PZT cantilever end and the poling direction of magnets on the
output voltage of the harvested energy. Karami et al. [20] proposed a hybrid model using piezoelectric and electromagnetic
induction effect. They showed that electromechanical coupling has a strong impact upon the system performance. This
manuscript gets an interest on the model of Wen et al. [15], where the full study of the piezoelectric energy harvester
subjected to the harmonic excitation is consider. However, in the real environment, the vibrationmechanics is not harmonic
but is presented in the most of the time under the random signal. Thus, this manuscript considers that the mechanical
subsystem is subjected to the stochastic excitation. Besides, from themodel built in Ref. [15], we construct the hybrid energy
harvester combining piezoelectric and electromagnetic mechanisms subjected to the stochastic excitation. In the order to
enhance the harvested energy by the harvester, many research groups combined a coherent and random signal, which
gives rise to the stochastic resonance phenomenon [21,22]. Mokem et al. [23] investigated the dynamics of sandwiched
buckled beam with axial compressive force under Gaussian white noise energy harvesting system. The authors showed the
optimization of the harvested energy when the stochastic resonance phenomenon occurs. Borowiec et al. [24] investigated
the effect of noise on the performance of an energy harvester. They showed that noise component of the excitation impact
on the system stability.

We extend our study in this paper by considering the dynamics of the hybrid energy harvester combining piezoelectric
and electromagneticmechanisms under harmonic and stochastic excitation.We explore the effects the Gaussianwhite noise
and harmonic excitation on the system performance. The remain of paper is organized as follows: Section 2 is devoted
to the description of the system with model equation. In Section 3.1, the stochastic averaging method is theoretically
carried out to build the Fokker–Planck equation whose the solution in the stationary state is a probability density. The
stochastic bifurcations are discussed in Section 3.2. Section 4 is devoted to the numerical simulation. Finally in Section 5 we
conclude.

2. The model and governing equations

As pointed byWen et al. [15], the electromechanical device shown in Fig. 1 is composed of three fundamental parts: The
mechanical part is composed of the mass m, the nonlinear spring and nonlinear damping, while the electrical subsystem
is composed of linear inductance L, a linear capacitor C and the linear resistor R. The nonlinear damping introduced in this
system is important insofar as it has been shown that it can improve efficiency in the context of EHS [25,26]. We consider
the dissipative force with nonlinear dissipation term proportional to the power of velocity ẋ3 [25]. The expressions defining
the damping force is given as follow [25]:

fd = c1ẋ + c3ẋ3 (1)
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Fig. 1. Schematic of the hybrid energy harvester.

where ẋ is the velocity of the mass, c1 and c3, the linear and nonlinear damping coefficients. The governing equations can be
derived for Newton’s law and Kirchhoff’s law [15]:

mẍ + ψ1(x, ẋ) + ηv + θmi = −mẍb

Cpv̇ +
1
Rp
v − ηẋ = 0

Li̇ + Ri − θmẋ = 0

(2)

with

ψ1(x, ẋ) = c1ẋ + c3ẋ3 + 2k(1 −
l0

√
x2 + l2

)x

where m is the mass, x is the displacement of the mass, k is the spring stiffness, l0 is the original length of the spring, l is
the distance between the center and the edge of the frame, θm and η are the electromechanical coupling, v is the voltage
across the load resistance, Cp is the capacitance of the piezoceramic, Rp is the resistance, θ is the inclination of the spring
with respect to the horizontal, and ẍb is the base displacement. Using the following transformation of coordinate X =

x
l0

and

γ =
l
l0
, Eq. (2) can be rewritten as:

Ẍ + ψ2(X, Ẋ) +
η

l0m
v +

θ0

l0m
i = −

ẍb
l0

v̇ +
1

CpRp
v −

ηl0
Cp

Ẋ = 0

i̇ +
R
L
i −

θml0
L

Ẋ = 0

(3)

with

ψ2(X, Ẋ) =
c1
m

Ẋ +
c3l20
m

Ẋ3
+

2k
m

(1 −
1√

X2 + γ 2
)X .

In this work, we consider the weak amplitude of vibration. In this case, the nonlinear term in Eq. (3) can be expanded into
the Taylor series at equilibrium (X0, 0). By omitting higher order terms in the resulting expanding expression and shifting
the origin of the coordinate by introducing the new variable X = z − X0, with X0 is the positive stable static equilibrium

position obtained by solving the non-dimensional potentialU(X) =
2k
m

(
√
X2 + γ 2−1)2. Using the following transformation
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Fig. 2. One-dimensional bistable potential governed by Eq. (4)(a) with parameters ω1 = 1, α2 = 0.72 and Metastable potentials α3 = 0.13, symmetric
bistable potentials α3 = 0.115 and asymmetric bistable potentials α3 = 0.097.

of coordinates ω2
1 =

2|k|(1 − γ 2)
m

, z = z0z, i = i0ρ, v = v0y and by letting the time variable t =
τ

ω1
, the dimensionless

equation is given by:

z̈ + ψ3(z, ż) + ζmi + ζev = ξ (τ ) (a),

ẏ + λy − ϑpż = 0 (b),

ρ̇ + βρ − ϑeż = 0 (c),

(4)

where the potential U(z) is defined as

U(z) =
ω2

1

2
z +

1
3
α2z3 +

1
4
α3z4,

ψ3(z, ż) is Eq. (4) is given by

ψ3(z, ż) = ζ1ż + ζ3ż3 + ω2
1z + α2z2 + α3z3

where

ζ1 =
c1ω1

2|k|(1 − γ 2)
, ζ3 =

(z0l0)2c3ω3
1

2|k|(1 − γ 2)
, ϑe =

θml0z0
i0L

λ =
1

ω1CpRp
, ζm = −

θmi0
2z0l0|k|(1 − γ 2)

, ζe = −
ηv0

2z0l0|k|(1 − γ 2)
,

β =
R
ω1L

, ϑp =
ηl0z0
v0Cp

, α3 =
z20γ

2(5γ 2
− 4)

γ 2 − 1
, α2 =

3z0γ 2

2
√
1 − γ 2

.

ξ (τ ) = −
−ẍb

2|k|l0(1 − γ 2)
is the Gaussian white noise verifying the statistic properties:

⟨ξ (τ )ξ (t + τ ′)⟩ = 2Dδ(τ ),

⟨ξ (τ )⟩ = 0,
(5)

where 2D is the intensity of noise and δ(τ ), the Dirac function. The variables z, y and ρ are the dimensionless displacement,
voltage and current respectively. The dot in z, y and ρ indicates differentiation with respect to the time. ϑp, ϑe, ζe and ζm are
parameters of the coupling terms, α2 is the coefficient of quadratic nonlinearity, α3 is the coefficient of cubic nonlinearity,
ζ1 and ζ3 are damping coefficients, λ is the ratio of the resistance and inductance and ω1 = 1.

The potential U(z) depends on the values of the parameters α3, α2 and ω1. We can have a mono-stable or a bistable
configuration according to the system parameters. Several patterns of potential are shown in Fig. 2. One can clearly observe
that the height of the right potential well goes up when α3 decreases.
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3. Stochastic averaging method and stochastic P-bifurcation

3.1. Stochastic averaging method

In this section, the objective is to study the stochastic bifurcation. To reach this objective, it is necessary to construct the
Fokker–Planck equation. Eq. (4) can be rewritten in the following form:

ż = u

u̇ = −ϕ3(z, u) − ζmρ − ζey + ξ (τ ),

ẏ = −λy + ϑpu,

ρ̇ = −βρ + ϑeu

(6)

with

ϕ3(z, u) = ζ1u + ζ3u3
+ ω2

1z + α2z2 + α3z3.

According to the principle of the stochastic averaging method, the amplitude of the oscillations vary slowly in the period
scale. For this raison, the derivative of the amplitude with respect to the time is neglected. In the quasi-harmonic regime,
we assume that noise intensity is small, we introduce a change of variables

z (τ ) = a (τ ) cos (ϕ) ,

ż (τ ) = −a (τ ) ω0 sin (ϕ) ,

(7)

where ϕ = ω0τ + θ (τ ), a(τ ) is amplitude of mechanical subsystem. Substituting Eq. (7) into Eq. (4)(b) and (c), we have:

y(τ ) = C1(τ )e(−λτ ) +
aϑpω0

λ2 + ω2
0
(ω0 cosϕ − λ sinϕ), (8)

ρ(τ ) = C2(τ )e(−βτ ) +
aϑeω0

β2 + ω2
0
(ω0cosϕ − β sinϕ). (9)

The first term and the second term in the right hand are the general solution of the associated homogeneous equation and
the special solution, respectively. For the stationary responses concerned here, the terms C1(τ ) exp(−λτ ) and C2(τ ) exp(−βτ )

in Eqs. (8)–(9) tends to zero when the time (τ ) is large. Thus, Eqs. (8) and (9) can be rewritten as:

y(τ ) =
aϑpω0

λ2 + ω2
0
(ω0 cosϕ − λ sinϕ) (10)

and

ρ(τ ) =
aϑeω0

β2 + ω2
0
(ω0 cosϕ − β sinϕ). (11)

The term (ω0cosϕ − λ sinϕ) in Eq. (10) can be rewritten as follows:

ω0cosϕ − λ sinϕ =√
λ2 + ω2

0(
ω0√
λ2 + ω2

0

cosϕ −
λ√

λ2 + ω2
0

sinϕ)

=

√
λ2 + ω2

0(cosΘcosϕ − sinΘ sinϕ)

(12)

with
cosΘ =

ω0√
λ2 + ω2

0

and sinΘ =
λ√

λ2 + ω2
0

.

Finally,

ω0cosϕ − λ sinϕ =

√
λ2 + ω2

0 cos(Θ + ϕ). (13)

Thus

y(τ ) =
aϑpω0

λ2 + ω2
0

√
λ2 + ω2

0 cos(ϕ + tan−1(
λ

ω0
)). (14)
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In the steady state, the amplitude of the voltage is expressed as follow:

V0 =
aϑpω0

λ2 + ω2
0

×

√
λ2 + ω2

0 =
aϑpω0√
λ2 + ω2

0

. (15)

Similarly, the amplitude of the steady state current (Eq. (11)) is given as:

I0 =
aϑeω0

β2 + ω2
0

×

√
β2 + ω2

0 =
aϑeω0√
β2 + ω2

0

. (16)

Substituting Eqs. (10), (11) and (7) into Eq. (4) by letting ω1 = ω0 we obtain:

ȧ = −ζ1a sin2 ϕ − ζ3ω
2
0a

3 sin4 ϕ +
α2a2 sinϕ cos2 ϕ

ω0

+
α3a3 sinϕ cos3 ϕ

ω0
+
ζeω0ϑpa sinϕ cosϕ

λ2 + ω2
0

−
ζeϑpλa sin2 ϕ

λ2 + ω2
0

+
ζmω0ϑea sinϕ cosϕ

β2 + ω2
0

−
ζmϑeβa sin2 ϕ

β2 + ω2
0

−
sinϕξ (τ )
ω0

(17)

θ̇ = −ζ1 cosϕ sinϕ − ζ3ω
2
0a

2 cosϕ sin3 ϕ +
α2a cos3 ϕ

ω0

+
α3a2 cos4 ϕ

ω0
+
ζeω0ϑp cos2 ϕ
λ2 + ω2

0
−
ζeϑpλ cosϕ sinϕ

λ2 + ω2
0

+
ζmω0ϑe cos2 ϕ
β2 + ω2

0
−
ζmϑeβ cosϕ sinϕ

β2 + ω2
0

−
cosϕξ (τ )
ω0a

(18)

Thus, after applying the deterministic averaging method to Eqs. (17)–(18), we obtained the following approximated
system:

ȧ = χ1 −
sinϕξ (τ )
ω0

,

θ̇ = χ2 −
cosϕξ (τ )

aω0

(19)

where

χ1 = −
3
8
ζ3ω

2
0a

3
−

1
2
(
λ2ς1 + λς2 + ς3

(λ2 + ω2
0)(β2 + ω2

0)
)a,

χ2 =
3
8
α3a2

ω0
+

1
2
ω0(ϑpζe(β2

+ ω2
0) + ϑmζm(λ2 + ω2

0))
(λ2 + ω2

0)(β2 + ω2
0)

(20)

and

ς1 = ζmβϑe + (β2
+ ω2

0)ζ1,

ς2 = (β2
+ ω2

0)ζeϑp,

ς3 = ζmβϑeω
2
0 + (β2ω2

0 + ω4
0)ζ1.

By applying the stochastic averaging method [27,28], we can obtain the following stochastic equations for a and θ :

da =

(
χ1 +

D
2ω2

0a

)
dτ +

√
D
ω2

0
dη1 (τ ) (a)

dθ = χ2dτ +

√
D

ω0
2a2

dη2 (τ ) (b)

(21)
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where η1(τ ) and η2(τ ) are two independent normalized Wiener processes. It is worth pointing out that a and θ are
independent, allowing us further to develop a probability density for amplitude a, rather than a joint density for θ . The
probability density p(a, τ ) of the instantaneous amplitude a satisfied the Fokker–Planck–Kolmogorov equations [29,30]:

∂

∂t
p (a, τ ) = −

∂

∂a
[

(
χ1 +

D
2ω2

0a

)
p (a, τ )]

+
1
2
∂2

∂a2
[p(a, τ )( D

ω2
0
)]

(22)

In the context of energy harvesting systems, we are primarily interested in the long-term system behavior. Thus, the
stationary solutions of Eq. (22) of electrical and mechanical part respectively are obtained as:

p (a) = N1a exp
−

1
16D

(3ζ3ω4
0a

4
+K0a2)

,
(23)

where N1 is the normalization constant expressed by

N1 = |
3
√
Dζ3ω4

0

N0
|, (24)

with

N0 =
√
πD exp(

1
192

K 2
0

Dζ3ω4
0
)(1 − erf (

K0

8
√
3ω2

0
√
Dζ3

)), (25)

K0 = K1 + K2 + K3

and

K1 =
8ω2

0λ
2(ζmβϑe + (β2

+ ω2
0)ζ1)

(β2 + ω2
0)(λ2 + ω2

0)
,

K2 =
8ω2

0λ(β
2
+ ω2

0)ζeϑp

(β2 + ω2
0)(λ2 + ω2

0)
,

K3 =
8ω2

0(ζmβϑeω
2
0 + (β2ω2

0 + ω4
0)ζ1)

(β2 + ω2
0)(λ2 + ω2

0)
.

Through a transformation from variables (a, θ ) to the original variables (z, ż), an expression for the stationary density
function of (z, ż) can be derived from Eq. (23) as

p(z, ż) =
1

2πω0a
p(a), (26)

by letting a = z2 +
ż2

ω2
0
, Eq. (26) becomes

p(z, ż) =
N1

2πω0
exp(−

1
16D

(3ζ3ω4
0(z

2
+

ż2

ω2
0
)4) + K0(z2 +

ż2

ω2
0
)2). (27)

Thus, the expected value of themean square voltage of the piezoelectric circuit and electric current of themagnetic circuit
can be calculated following this formula:

⟨y2⟩ = ⟨V 2
0 ⟩ =

ϑ2
pω

2
0

λ2 + ω2
0
⟨a2⟩ (28)

with

⟨a2⟩ =
∫

+∞

0 a2p(a)da. (29)

Substituting Eq. (29) into Eq. (28), we obtain:

⟨y2⟩ =
ϑ2
pω

2
0

λ2 + ω2
0

∫
+∞

0 a2p(a)da =
ϑ2
p

√
DN1Λ

2
√
π (λ2 + ω2

0)K
2
4
. (30)
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Fig. 3. (a) Bifurcation diagram of Eq. (35) in the parameter plane (µ3, µ1), (b) Stationary probability density of amplitude for three value of ζ3 . The other
parameters used are given as: ζ1 = 0.25, α1 = 0.72, α3 = 0.97, ζe = 0.84, λ = 2.0, ζm = 0.057, ϑp = 0.38, β = 2.05, ω0 = 1.0, ϑe = 0.05 and D = 0.4.

Similarly

⟨ρ2
⟩ =

ϑ2
e ω

2
0

β2 + ω2
0

∫
+∞

0 a2p(a)da =
ϑ2
e

√
DN1Λ

2
√
π (β2 + ω2

0)K
2
4

(31)

with

Λ = πK0
√
K4exp(

1
64

K 2
0

DK4
)(erf (

1
8

K0
√
K4D

) − 1) + 8
√
πDK4 (32)

and

K4 = 3ζ3ω4
0.

The average output power harvested by the hybrid system is estimated using this formula:

Phybrid =
β

2T

∫ T

0
y2dτ +

λ

2T

∫ T

0
ρ2dτ . (33)

Using the expressions of the mean square voltage of the piezoelectric circuit and electric current of the magnetic circuit,
Eq. (33) become

Phybrid = β⟨ρ2
⟩ + λ⟨y2⟩. (34)

3.2. Stochastic bifurcations

This subsection is devoted to discuss the stochastic bifurcation through qualitative changes of the stationary probability
density function (SPDF). The SPDF of prototype dynamical system Eq. (4) for amplitude a would be either unimodal or
bimodal, which implies the transitions between unimodal and bimodal distributionwith the variation of certain parameters.

Moreover, by letting
∂p(a)
∂a

= 0, the extrema of the distribution Eq. (23) are the roots of equations:

1 −
3
4
ζ3ω

4
0a

4
m

D
−

1
8
K0a2m
D

= 0 (35)

am is the amplitude corresponding to the extremum of distribution Eq. (35) andm is the index number of the extremum.
For a suitable choice of system parameters, the probability density function of the harvester can present one or two positive

extrema (oneminimumand onemaximum). By taking ζ3 > 0, the positive root of Eq. (35) is

√
1
12

−K0+

√
192Dζ3ω4

0+K2
0

ζ3ω
4
0

, and then

the probability density function in Eq. (26) has amaximum (Fig. 3(b)). However, by taking ζ3 < 0, there are two real positive

roots of Eq. (35) for a convenient choice of system parameters:

√
1
12

−K0+

√
192Dζ3ω4

0+K2
0

ζ3ω
4
0

and

√
−

1
12

K0+

√
192Dζ3ω4

0+K2
0

ζ3ω
4
0

whose the

shape is similar to a crater, and then the probability density function P(a) presented in Fig. 3(b) has one maximum and one
minimum respectively. Thus, a transition from a craterlike distribution to the unimodal distribution observed in Fig. 3(b)
can be defined as a type of P-bifurcation.
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Fig. 4. (a) Amplitude response of mechanical subsystem versus ζ1 for D = 0.4, (b) Amplitude response of mechanical subsystem versus D for ζ3 = −0.064.
The parameters are the same as those in Fig. 3.

We plotted in (Fig. 3(a)), the bifurcation diagram of Eq. (35), for a fixed value of the noise intensity D. However, in region
I, two positive roots are observed and give rise to the craterlike distribution. In region II, we have only one positive root, the
distribution is unimodal.

Fig. 4(a)–(b) show the amplitudes of the mechanical subsystem, when varying the noise intensity and for three fixed
values of ζ1 and ζ3. In Fig. 4(a), we observe that, an increase of ζ3 lead to decrease the maximum amplitude. However, an
opposite phenomenon is observed in Fig. 4(b) when ζ1 increase: an increase of ζ1 leads to increase themaximum amplitude.

4. Numerical simulations

4.1. Algorithm of numerical simulations

The numerical simulations aremade by integrating Eq. (4). By introducing the new variable ż = u, Eq. (4) can be rewritten
in the form

ż = u

u̇ = −ζ1u − ζ3u3
− ω2

1z − α2z2 − α3z3 − ζey − ζmρ + ξ (τ )

ẏ = −λy + ϑpu

ρ̇ = −βρ + ϑeu.

(36)

The discrete equations can be written as:

zn+1 = zn + un∆τ

un+1 = un − (ζ1un + ζ3u3
n + ω2

1zn + α2z2n + α3z3n
+ζeyn + ζmρn)∆τ + ξn(τ ),
yn+1 = yn + (−λyn + ϑpun)∆τ ,
ρn+1 = ρn + (−βρn + ϑeun)∆τ ,

(37)
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Fig. 5. Stationary probability density of mechanical subsystem for different values of electrical impedance λ. The other parameters used are given as
: ζ1 = 0.25, ζ3 = 0.064, α1 = 0.72, α3 = 0.97, ζe = 0.84, ζm = 0.057, ϑp = 0.38, β = 2.05, ω0 = 1.0, ϑe = 0.05. The initial conditions:

(z(0),
dz(0)
dτ

, y(0), ρ(0)) = (0, 0, 0, 0).

Fig. 6. Stationary probability density function of mechanical system: (a) for different values of linear damping with ζ3 = 0.064, (b) for different values of
nonlinear damping with ζ1 = 0.25. The other parameters used are given as : α1 = 0.72, α3 = 0.97, ζe = 0.84, λ = 2.0, ζm = 0.057, ϑp = 0.38, β = 2.05,
ω0 = 1.0, ϑe = 0.05 and D = 0.4.

where ξn is a sequence of random numbers distributed normally by the Box–Mueller algorithm. The Box–Mueller algorithm
[31,32] is used to generate the Gaussian white noise from two random numbers a1 and b1 which are uniformly distributed
on the unit interval [0, 1]. Thus, for each step∆t , it is worth nothing that ξn is defined as:

ξn =
√

−4D∆tlog(a1)cos(2πb1) (38)

with a time step for numerical simulations equal to∆t = 0.01.

4.2. Numerical simulation of probability density

With the goal to verify the efficiency of the analytical technique used, the numerical simulation of the system Eq. (4)
is made. The physical parameters used in the simulation are given as follows: c1 = 0.001 N s/m, c3 = 4.5 N s3/m3,
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Fig. 7. Stationary probability density function of mechanical system: (a) for different values of noise intensity D with λ = 2.0, (b) for different values of
impedance λ with D = 0.4. The other parameters used are given as : ζ1 = 0.25, ζ3 = −0.064, α1 = 0.72, α3 = 0.97, ζe = 0.84, ζm = 0.057, ϑp = 0.38,
β = 2.05, ω0 = 1.0, ϑe = 0.05.

Fig. 8. Stationary probability density of the system in 3D representation for: (a) D = 0.09; (b) D = 0.2; (c) D = 0.4; (d) D = 0.6. The other parameters
used are given as : ζ1 = 0.25, ζ3 = −0.064, α1 = 0.72, α3 = 0.97, ζe = 0.84, ζm = 0.057, ϑp = 0.38, β = 2.05, ω0 = 1.0, ϑe = 0.05 and λ = 2.0.

k = 0.05 N/m, L = 10 H, l0 = 0.075 m, R = 20.5 �, m = 0.004 kg, cp = 0.00005 F, Rp = 10 000 �, η = 0.00025 N/V,
l = 0.0735 m, z0 = 0.017 m and v0 = 0.1 V.

In this heading, we numerically and analytically plotted in Fig. 5, the probability density of mechanical subsystem for two
values of noise intensity D and electrical impedance λ. We notice in Figs. 5(a) and (b) that, when D increase, the peak of the
probability density function decreases. However, when the electrical impedance λ increases, the peak of probability density
increases by shifting towards the weak amplitude values of (Figs. 5(c–d)). Within this framework, when the probability
density reaches his maximum for a fixed value of electrical impedance coefficient, the amplitude a and the accumulated
energies of the ambient energy collector are higher than those received in any oscillation. The agreement between the
numerical and analytical simulation justifies the efficiency of the analytical technique used. In Figs. 6(a) and (b), we studied
the impact of a linear and nonlinear damping coefficient ζ1 and ζ3 on probability density function P(a). One can observe in
Fig. 6(a) that, the probability distribution has only one maximum situated in the vicinity of zero for the high value of ζ1.
In Fig. 6(b), one interesting phenomenon is observed when we enhance ζ3. A transition from a craterlike distribution to an
unimodal distribution occurs. We also observe in these figure (Fig. 6(b)) that, the increasing of ζ3 leads to the enhancement



O. Foupouapouognigni et al. / Physica A 509 (2018) 346–360 357

Fig. 9. (a) Evolution of mean square voltage of magnetic circuit versus ϑe for ϑp = 0.38; (b) Evolution of mean square current of piezoelectric circuit versus
ϑp for ϑe = 0.05. The other parameters are given as: ζ1 = 0.25, ζ3 = 0.064, α1 = 0.72, α3 = 0.115, ζe = 0.84, ζm = 0.057, β = 2.05, ω0 = 1.0 and
λ = 2.0.

Fig. 10. (a) Evolution of mean square voltage of magnetic circuit noise intensity D for ϑp = 0.38; (b) Evolution of mean square current of piezoelectric
circuit versus noise intensityD forϑe = 0.05. The other parameters used are given as: ζ1 = 0.25, ζ3 = 0.064,α1 = 0.72,α3 = 0.115, ζe = 0.84, ζm = 0.057,
β = 2.05, ω0 = 1.0 and λ = 2.0.

Fig. 11. Output power harvested by the hybrid system as function of the driving noise intensity with the parameters ζ1 = 0.25, ζ3 = 0.064, α1 = 0.72,
α3 = 0.115, ζe = 0.84, ζm = 0.057, β = 2.05, ω0 = 1.0 and λ = 2.0.

of the probability density function by shifting its maximum towards small amplitude values. This means that the system
energy could be optimized for the small values of linear and nonlinear damping coefficient. In Figs. 7(a) and (b), we studied
the impact of a noise intensity D and impedance λ on probability density function P(a) for ζ3 < 0. One can observed in
Fig. 7(a) that, the amplitude distribution has only one minimum situated in the vicinity of zero for the high value of D.
However, beyond the peak, the probability density function decreases when D increases. In Fig. 7(b), an enhancement of
impedance λ leads to decrease, the maximum value of peak and increases its maximum.
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Fig. 12. Increase rate opmax versus noise intensity, (a) overall view; (b) detailed view for ζ1 = 0.25, ζ3 = 0.064, α1 = 0.72, α3 = 0.115, ζe = 0.84,
ζm = 0.057, ϑp = 0.38, β = 2.05, ϑe = 0.05 and λ = 2.0 and ω = 0.35.

Fig. 13. (a) Comparison of the output power with E0 = 0.05; (b) Mean response amplitude versus noise intensity D; with the parameters ζ1 = 0.25,
ζ3 = 0.064, α1 = 0.72, α3 = 0.115, ζe = 0.84, ζm = 0.057, ϑp = 0.38, β = 2.05, ϑe = 0.05 and λ = 2.0 and ω = 0.35.

Figs. 8(a)–(d) show the probability density in 3D representation for four values of noise intensity. In Figs. 8(a)–(b), the
unimodal distribution is observed. However, in Figs. 8(c)–(d), the craterlike distribution characterized by onemaximum and
one minimum is observed. A similar result was observed in Ref. [23].

4.3. Mean square electrical charge

In this section, we use equations Eqs. (28)–(31) giving respectively the expressions of the mean square values of the
voltage for the piezoelectric circuit ⟨y2⟩ and mean square values of the instantaneous electrical current for the magnetic
circuit ⟨ρ2

⟩. We provided in Figs. 9(a)–(b), the mean square values of the instantaneous electrical charge ⟨z2⟩ and mean
square voltage versus coupling coefficient of the piezoelectric circuit ϑp and the magnetic circuit ϑe for three values of the
noise intensity. In Fig. 9(a), we observed that, the output power in terms of mean square voltage increases when the noise
intensity increases. Similar result is observed in Fig. 9(b) when the noise intensity increase.

We plotted in Figs. 10(a)–(b), the output power versus D for three values of the ϑe and ϑp. We notice in these figures that,
an increase of ϑe and ϑp leads to increase of the output power.

We also provided in Figs. 11(a)–(b), the total output harvested by the hybrid system versus the noise intensity D for three
values of the coupling coefficient ϑe and ϑp. It emerges from these figures that, when ϑe and ϑp increase, the amount of
harvested energy by the system is improved. This result obtained in previous figure (Figs. 11(a)–(b)) shows the interest to
build the hybrid model.

4.4. Stochastic resonance

In this subsection we discuss the impact of the combination of the deterministic and random signal on the system
performance. The determinist excitation is expressed as (E0 cos(ωτ )). It is well known in the literature that the adding of
the coherent signal to the random excitation can give rise to the stochastic resonance phenomenon which can increase the
bandwidth of the harvester and consequently, improves the system performance [33,34]. In this manuscript, the response
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amplitude zm(ω) at the frequency ω is calculated using Fourier coefficients as follow [23]:

zm(ω) =
√
A2
s + A2

c (39)

where As and Ac are the sine and cosine components of the Fourier coefficients defined by:

Ac =
2
nT

∫ nT
0 x(τ )cos(ωτ )dτ (40)

As =
2
nT

∫ nT
0 x(τ )sin(ωτ )dτ (41)

where n is the integer number. In this work, n = 300, while T =
2π
ω

is the period of the harmonic excitation. In the purpose
to know the degree of optimization of the hybrid model with respect to the piezoelectric circuit, we compute the increase
rate using this formula:

opmax =
phybrid − ppiezoelectric

ppiezoelectric
× 100 [%] (42)

where phybrid and ppiezoelectric are the output power harvested by the hybrid system and piezoelectric circuit. In the simulation,
we took 100 realizations.

We depicted in Fig. 12, the increase rate opmax versus D, for four values of amplitudes of the harmonic excitation E0. This
figure reveals that, an increase of E0 leads to decrease the opmax. In addition, we also observed in this figure that, regardless
of the value of the harmonic excitation, when the noise intensity is large, opmax decreases and tends towards the constant
value.

We provided in Figs. 13(a)–(b), the comparison between the output power harvested respectively in the piezoelectric
circuit, the electromagnetic circuit and the overall system and the mean amplitude response versus noise intensity D. We
notice in Fig. 13(a) that, the energy harvested by the hybrid model is higher than that harvested by the piezoelectric or
electromagnetic circuit (Fig. 13(a)). Fig. 13(b) show the mean amplitude response versus noise intensity , for four values of
the noise intensity D. One observes that, for some values of amplitude of the noise excitation, the mean amplitude response
presents amaximum. Thismaximum is a signature of the stochastic resonance, which gives the largest oscillation amplitude
for a given excitation level, and reflects the transition in the system response from single well to double well oscillations. In
addition, we can note in this figure (Fig. 13(b)) that, the maximum amplitude response is obtained for the highest amplitude
of the harmonic excitation.

5. Conclusion

In this manuscript, the dynamic behavior of the hybrid energy harvester under Gaussian white noise using probabilistic
approach is investigated. By applying a stochastic averaging method on this system, the stochastic response is obtained.
The results obtained show that, the shape of the statistic response strongly depends on the coefficient of the nonlinear
damping. The impact of the system parameters is investigated with detail. The obtained results show that, when the
coupling coefficients and noise intensity increase, the harvested energy is improved. In addition, the stochastic bifurcation
phenomenon characterized by the qualitative change of the stationary probability density is observed and allows to obtain
the best value of the bifurcation parameter for which the harvester presents a high limit cycle. Besides, combining the
harmonic force to the random signal, the stochastic resonance phenomenon occurs and improves the system performance.
The comparison between the harvested energy by the hybrid model to that harvested by the piezoelectric model is
investigated. The impact of the amplitude of the harmonic excitation is investigated on the system performance. It emerges
from this result that, the harvested energy is very significative for the high value of the E0. The results obtained in this
manuscript show the interest to build the hybrid harvester.
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