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Abstract 

 

This thesis deals with the analog electronic and microcontroller study of the 

synchronization of coupled Van der Pol oscillators and application to the command of 

electromechanical systems. Polynomial and delay unidirectional couplings are considered. The 

intervals of coupling coefficients and delay leading to synchronization are determined 

experimentally using analog electronic circuits. Three cases are considered: autonomous Van der 

Pol oscillators, sinusoidally excited Van der Pol oscillators in the chaotic state and Van der Pol 

oscillators with two slowly sinusoidal excitations delivering periodic patterns of periodic pulses. 

It is found that increasing the degree of the polynomial coupling reduces the intervals of coupling 

coefficients leading to synchronization and the delay affects the coupling intervals in 

a periodic way. The experimental results agree qualitatively with the results of the mathematical 

(according to the Floquet theory) and the numerical investigations. We conduct the micro 

controller implementation of the synchronization of two Van der Pol oscillators submitted to 

disturbances of the pulse-like type. Three coupling schemes are used: the classical linear 

proportional coupling, a power order n coupling and an adaptive coupling. After obtaining the 

coupling coefficients for synchronization through numerical simulation, the micro controller 

implementation is carried out using simulation based on Euler algorithm. Qualitative agreement 

is found between both simulation strategies. Based on the microcontroller studies, we fabricate a 

simple generator of self-sustained, chaotic oscillator and special signals which can be used in 

laboratories for experimental works.    

 

Keywords: Van der Pol oscillator, synchronization, control, experimental studies, pulse signal 

patterns, microcontroller, generator.  

 

 

 

 

 

 



 

Résumé 

Cette thèse porte sur l’étude par simulation analogique et par microcontrôleurs de la 

synchronisation des oscillateurs de Van der Pol couplés. Des couplages unidirectionnels,  

polynomiaux et à retard sont considérés. Les intervalles de coefficients de couplage et de délai 

menant à la synchronisation sont déterminés expérimentalement à l'aide de circuits électroniques 

analogiques. Trois cas sont considérés: les oscillateurs de Van der Pol autonomes, les oscillateurs 

de Van der Pol excités et à l’état chaotique et les oscillateurs de Van der Pol soumis à l’excitation 

de deux forces lentes et sinusoïdales délivrant des motifs d’impulsions périodiques. On constate 

que l’augmentation du degré de couplage polynomial réduit les intervalles de coefficients de 

couplage conduisant à la synchronisation et que le retard affecte les intervalles de couplage d'une 

manière périodique. Les résultats expérimentaux s'accordent qualitativement bien avec les 

résultats de l'investigation mathématique (selon la théorie de Floquet) et numérique. Nous 

étudions la mise en œuvre par microcontrôleur de la synchronisation de deux oscillateurs de Van 

der Pol soumis à des perturbations de type pulsées. Trois schémas de couplage sont utilisés: le 

couplage proportionnel linéaire, le couplage de puissance net le couplage adaptatif. Après avoir 

obtenu les coefficients de couplage pour la synchronisation par simulation numérique, l’étude par 

microcontrôleur est effectuée à l'aide d'une simulation basée sur l'algorithme d'Euler. Un accord 

qualitatif est trouvé entre les deux stratégies de simulation. Sur la base des études avec les 

microcontrôleurs, nous fabriquons un générateur de signaux autoentretenus, chaotiques et 

spéciaux qui peuvent être utilisés dans des laboratoires pour les travaux pratiques. 

 

Mots clés: Oscillateur de Van der Pol, synchronisation, contrôle, études expérimentales, paquets 

de signaux pulsés, microcontrôleur, générateur



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General Introduction 

 



 

After some decades of theoretical and experimental studies on nonlinear phenomena, 

several researchers have focused their attention on the problems related to the synchronization 

and control in networks of identical and non identical nonlinear oscillators. Today, researchers 

are now engaged towards the applications of nonlinear behaviours (such as multi-periodic, quasi-

periodic oscillations and chaos) in different fields using different coupling schemes [1-8], 

different mathematical methods, numerical quantifiers and experimental methods. In Ref. [9], the 

authors studied theoretically the synchronization of two Van der Pol oscillators in the 

autonomous and non-autonomous states and linked by a linear coupling. They applied the 

Floquet theory approach on the variational equation describing the time dynamics of the 

deviation between the slave and master systems and came out with analytical conditions for 

synchronization and synchronization time. An interesting agreement was found between 

the analytical results and those obtained from the numerical simulation. But no experimental 

investigation was undertaken. An extension was conducted in Refs. [10-12] in case of a ring of 

two, four coupled Van der Pol oscillators with linear mutual (diffusive) coupling without delay. 

Both the theoretical and experimental studies were conducted in order to find the parameter 

leading to synchronization. 

 In some cases, the coupling mechanism can lead to time delay which has strong impact 

on synchronization conditions [13-18]. For instance, in Refs. [13-15], it was established that the 

critical coupling coefficient leading to synchronization of linearly coupled nonlinear oscillators is 

a periodic function of the delay.  

The work carried out in Ref. [9] presented some interesting results for the 

synchronization of two Van der Pol oscillators coupled in a master-slave configuration. One 

of the goals of the present work is to obtain experimentally the intervals of the coupling 

constants leading to synchronization of two Van der Pol oscillators considering in the first 

instance coupling of the polynomial form and coupling with delay, and in the second 

instance different excitation states of the Van der Pol oscillators (autonomous state, excited 

state generating chaos and excited state delivering patterns of periodic pulses). 

The World technologies are moving to embedded systems. An embedded system is a 

computer system used for specific applications such as in robotics and control. These embedded 

systems are based on microcontrollers which are used in several applications in different fields 

[19 –24]. In recent years, the scientific community working on nonlinear dynamical systems had 

been interested in using microcontrollers to provide complex dynamics. For instance, the 



 

implementation of a chaotic Lorenz oscillator into a simple low-cost microcontroller has been 

carried out in Ref. [25]. In the same line, the implementation of a novel robust transmission 

scheme for private digital communications using Arduino Uno board has been implemented in 

Refs. [26, 27] and other contributions appear in Refs. [28, 29]. The embedded technologies are 

thus new tools to master nonlinear dynamics (simulation and synchronization). This will be used 

in this work to analyze the synchronization of two Van der Pol oscillators working in the 

regular regime, but subjected to perturbations which generate phase difference. Three 

types of control schemes are considered: the usual proportional coupling/control, the 

proportional coupling with law power, and an adaptive coupling scheme [30]. Although 

these coupling schemes are known in the literature, their implementation based on 

microcontroller appears interesting as they will lead to new embedded strategies for control 

and synchronization in nonlinear dynamics. Thanks to this new technology of embedded 

systems, we fabricate in this thesis an experimental self-sustained and chaotic generator.  

The present work is divided in three chapters. In chapter one, we briefly give some 

background on dynamics of Van der Pol oscillator, synchronization of Van der Pol oscillators, 

self-sustained, microcontrollers studies and finished by the objectives of the thesis. In chapter 

two, we present the mathematical formalisms, numerical simulation methods, analog construction 

of differential equations ended by microcontroller simulation of differential equations. 

Synchronization of Van der Pol oscillators: analog simulation results, synchronization/control 

results using microcontrollers, fabrication of self-sustained and chaotic signal generator are 

presented in Chapter three. We end with a general conclusion where the main results of the work 

are summarized and perspectives related to our present achievements are sketched. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter I: Literature Review 



 

I-1-       Introduction 

The aim of this chapter is to give the general information on the synchronization of self-sustained 

oscillators, to recall some knowledge on embedded technologies and present some known results 

on self-sustained electromechanical systems. The objective of the thesis will be presented as 

limits of some results known in the literature. Section I-2 is devoted to the generalities on the 

dynamics of the Van der Pol oscillator. In Section I-3, an overview on synchronization of Van 

der Pol oscillators is given. Section I-4 deals with information on microcontrollers. Section I-5 

will give the objectives of the thesis systems. Section I-6 will conclude the chapter. 

I-2-       Dynamics and synchronization of Van der Pol oscillator 

I-2-1-       The Van der Pol equation 

During the first half of the 20th century, Balthazar van der Pol pioneered the fields of radio 

and telecommunications. In an era when these areas were much less advanced than they are 

today, vacuum tubes were used to control the flow of electricity in the circuitry of transmitters 

and receivers. In 1927, experiments with the vacuum tube triode circuit lead to the conclusion 

that all initial conditions (different to zero) converged to the same periodic orbit of finite 

amplitude. Since this behavior is different from the solutions of linear equations, Van der Pol 

proposed a nonlinear differential equation which was the first example of a non-linear self 

oscillating system [31]. 

 2 2

01 0.x x x x                                                                                                           (1.1) 

According to the different values of the damping non linear coefficient  , Van der Pol oscillator 

presents two interesting behaviours as presented in the following subsection.  

I-2-2-       Different behaviors of the Van der Pol oscillator 

 , is the main parameter characterizing different dynamics exhibited by the Van der  Pol  

oscillator considering 
2

0 1  . 

o When 0  , there is no damping function and the equation becomes 

2

0 0.x x                                                                                                            (1.2) 



 

This is a form of the simple harmonic oscillator, and there is always conservation of 

energy [31]. Figure 1.1 presents the phase plan exhibited by the oscillator in the situation of 

equation (1.2). 

 

Figure 1.1: Phase portrait of the oscillator in the situation of 0  . 

o When  > 0 , two behaviors are presented.  

 For 0 <  < 1 , the system will present a limit cycle. In that case, the Van der Pol 

oscillator exhibits the sinusoidal wave form as a sine function. 

 Figure 1.2 presents the phase portrait exhibited by the Van der Pol oscillator in this situation. 

 

Figure 1.2: Phase portait of the oscillator in the situation of 0.3  . 

 For  > 1 , the system presents another type of limit cycle showing relaxation oscillations.  

Figure 1.3 shows the phase portrait exhibited by the Van der Pol oscillator in this situation. 
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Figure 1.3: Phase portrait of the oscillator in the situation of 5  . 

Van der Pol commented on the importance of relaxation oscillations [32], which have 

become the cornerstones of geometric singular perturbation theory. Van der Pol went on to 

propose a version of two that includes a periodic forcing term [33]. 

   2 2
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(1.3) 

Van der Pol and Van der Mark in their investigations of the oscillator behavior in the 

relaxation regime found that the subharmonic oscillations appeared during changes of natural 

frequency 0  of the system. The authors (in the September 1927 issue of the British journal 

Nature), noted the appearance of “irregular noise” before transition from one subharmonical 

regime to another. Moreover, they proposed an electrical model of the human heart consisting of 

three coupled relaxation oscillators [34]. 

According to these observations in the Van der Pol oscillator, Parlitz et al. found 

theoretically chaos in the forced oscillator as given in equation (1.3) by changing the values of a 

and  [35]. Figure 1.4 presents the bifurcation diagram obtained in Ref. [35].  



 

 

Figure 1.4: Enlargement of the bifurcation diagram and the corresponding evolution of the 

largest Lyapunov exponent  and the winding number while 0 1  . 

Figure 1.4 shows that for values of  2.457,  2.462 , the oscillator present periodic 

behaviors and when  2.462,  2.466 
 
the dynamics becomes chaotic. The largest Lyapunov 

exponent  confirms clearly these situations.   

I-2-3-       Applications of Van der Pol oscillators 

The motivations for considering this oscillator are wide, including amongst others: 

o The Van der Pol oscillator is a single non-linear component for implementation of a 

sinusoidal oscillator which is widely used in electronic devices and communication 

systems. 

o The frequency of operation can vary from a few Hertz up to the microwave region 

(kilohertz), depending on the technology used. 

o The Van der Pol oscillator exhibits rich dynamical behavior like many other second-order 

forced oscillator configurations analyzed as mentioned [35-37]. 

o According to its stability and different behaviors delivered (relaxation oscillations), the 

Van der Pol oscillator is used to model the human heart.  



 

o In the field of neurophysiology, it is used to model the Gastric Mill Central Pattern 

Generator of the Lobster with a relaxation-oscillator network. The cell model is a 

generalization and extension of the Van der Pol relaxation oscillator equations [38]. 

o In seismology, the van der Pol equation has been used in the development of model of 

the interaction of two plates in a geological fault [39].  

o In communication domain, excited Van der Pol oscillator produces chaos which is used 

to secure massages [40].  

 

I-2-4- Synchronization of two Van der Pol oscillators 

In 2002, Woafo and Kraenkel [9] consider the problem of stability and duration of the 

synchronization process between self-excited oscillators, both in their regular and chaotic states. 

Making use of the properties of Hill equation describing the deviation between the slave and the 

master, they derive the stability conditions and expressions of the synchronization time.  

Synchronization of nonlinear oscillators both in their regular and chaotic states is presently one of 

the main research topics in the field of nonlinear science [41-48], since the pioneering work of 

Pecora and Carrol [1]. Woafo and Kraenkel considered the coupled Van der Pol oscillators given 

by the equation (1.4). 
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(1.4) 

where k is the strength parameter for the synchronization process and E and Ω are respectively, 

the amplitude and frequency of the external excitation.   

H is the Heaviside function defined as 
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Van der Pol oscillator is sensitive to initial conditions. When two such oscillators x and u 

with the same parameters are set into motion with different initial conditions, they evolve in the 

same limit cycle, but with different phases 1  and 2 . One can thus synchronize by making the 

phases to be identical. 



 

To carry out such an investigation, the authors introduce the variable z as given in equation (1.6) 

z u x  .                                                                                                                        (1.6) 

z here is the deviation between the master and slave. Assuming small ,E and Ω taking equal to 

zero, it is found that z is described the following equation (1.7).  

   12 ( ) 0z F z G z      .                                                                                          (1.7) 

where  F  ,  G  ,   and  are the functions and expressions given in Ref.[9]. 

To discuss further the stability process, equation (1.7) is rewritten in a standard form. For this 

purpose, one uses the transformation (1.8) 
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                                                                                        (1.8) 

Inserting (1.8) into (1.7), it comes that w satisfies the following Hill’s equation (1.9) 

0 1 1 1( 2 sin 2 2 cos2 2 cos4 ) 0s c cw a a a a w       .                                                               (1.9) 

where the coefficients ai are given in Ref.[9].  

From equation (1.9) and using the Whittaker method, it was established in Ref. [9] that the 

synchronization is achieved under the following conditions (1.10): 

   
2
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0 02 na n a n a       with n=1, 2.                                                                   (1.10)   

Solving equation (1.10) has permitted to obtain the analytical results for small values of  

 ( 0.3  ). The analytical domain of synchronization agrees well with the numerical 

simulation. For example it is found from the analytical consideration that the synchronization 

process is unstable for  1.03,0k   while the numerical simulation gives  0.39,0k  .  

 Woafo and Kraenkel established analytically the mathematical expression of the 

synchronization time. This expression was confirmed by the results of the numerical simulation. 

Extending the study to the non-autonomous case, leading to chaos (for 5E    and

 2.463,  2.466 ), it was found that intervals of synchronization alternate with the intervals 

where there is no synchronization.  

 



 

I-2-5- Synchronization of many Van der Pol oscillators 

 In 2006, Enjieu et al. [49] examine the synchronization dynamics in a ring of four 

mutually coupled biological systems described by Van der Pol's coupled oscillators. The coupling 

parameters were not identical between the oscillators. The stability limits of the synchronization 

process were first evaluated without the influence of local injection using the eigenvalue 

properties and the fourth order Runge-Kutta algorithm. The effects of a locally injected trajectory 

on system stability limits in synchronized states were analyzed using numerical simulations. In 

both cases, the stability limits and the main dynamic states were reported on the stability maps in 

a plane depending on the coupling parameters to better distinguish the synchronization domains 

of the coupled oscillators [50-53]. 

 During the same year, and following the same voice as Enjieu et al., Nana et al. [10, 54-

56] study different synchronization states in a ring of four Van der Pol oscillators coupled to each 

other. Stability analysis and numerical simulation were performed to determine the appropriate 

coupling parameters leading to high quality synchronization. The consequences of the differences 

in the parameters were also highlighted. The experimental realization is then used to show the 

existence of complete and partial synchronizations. 

 

I-3- Information on microcontrollers 

It was during 1970 and 1971 when Intel was working on inventing the worldâ€™s first 

microprocessor, that Gary Boone of Texas Instruments was working on quite a similar concept 

and invented the microcontroller [56]. Boone designed a single integrated circuit chip that could 

hold nearly all the essential circuits to form a calculator; only the display and the keypad were not 

incorporated. Surprisingly, this exceptional breakthrough in the field of electronics and 

communication was rather given a mundane name of TMS-1802-NC devise. It had 5000 

transistors providing 3000 bits of program memory and 128 bits of access memory. It was 

possible to program it to perform a range of functions. The image of this first one is present in 

figure 1.5.  



 

        

(a)                                                          (b)                     

Figure.1.5. (a) First memory calculator built by Intel and (b) the first real and complete 

microcontroller chip TMS 1802 NC built by Gary Boone. 

I-3-1- Definition and structure of microcontrollers 

A microcontroller is a small computer on a single integrated circuit. In modern 

terminology, it is similar to, but less sophisticated than, a system on a chip. This system on chip 

may include a microcontroller as one of its components. A microcontroller contains one or more 

processor cores along with memory and programmable input/output peripherals. Program 

memory in the form of ferroelectric RAM or ROM is also often included on chip, as well as a 

small amount of RAM. Microcontrollers are designed for embedded applications, in contrast to 

the microprocessors used in personal computers or other general purpose applications consisting 

of various discrete chips. As we can present, the basic architecture inside of the microcontroller 

can be simply resume in figure 1.6 as in Ref. [57-59]. 
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Figure 1.6: Basic architecture inside of the microcontroller (PIC’s family).   

According to the observations, microcontroller contains eight principle blocs: memory 

(program memory, EEPROM, SFR), input/output I/O (ports from A to C are the output, D and E, 

are the input), modulations (CCP1, CCP2 and PMW), serial communication (I²C and USART) 

and the timer (T0, T1, T2), instructions (CPU, interrupts WDT), converter (A/D), oscillator 

(QUARTZ) to cadence the executions and RESET (Power Supply). All these blocs work in 

interaction to produce the digital or analogical results. One also observes that from these different 

parts cited, it can be simple to conclude that microcontroller contains all the main parts of the 

computer.    

             Outside the microcontroller, figure 1.7 presents the names of each pin. Table 1.1 

completes the information concerning the microcontroller by presenting the others parameters 

especially for the PIC18F4550. With the development of embedded technologies, 

microcontrollers appear today as interesting devices that can help in the mitigation of the limits of 

the analog electronic circuits [21, 25, 27]. The choice of PIC18F4550 is due to the fact that it is 

cheap and simple, requires low power (some nanoWatt), presents a large number of utilities ports 

(three serial ports up to 10 Mbits/s), large amount of RAM memory for buffering and Enhanced 

Flash program memory and is appropriate for embedded control and monitoring applications that 



 

require periodic connection with a (legacy free) personal computer via USB for data upload, 

download and firmware updates. 

 

Figure1.7:  Pic 18F4550 and it architecture pin’s names. 

In figure 1.7, we notice that: RA, RB, RC, RD and RE’ ports are for the output 

information, OSCs (oscillation clock) are using to cadenced the pic, MCLR (Microcontroller 

Clear and Reset) is using to reset the pic, Vss and VDD are voltage polarization.  

We can summarize the characteristics of that Pic on table1.1 presents: 

PARTS OF MICROCONTROLLER PARAMETRICS 

Program Memory Type Flash 

Program Memory Size (kB) 32 

CPU Speed (Mbit/s) 12,16,80 

RAM (Bytes) 2,048 

Data EEPROM/ (bytes) 256 

Digital Communication Peripherals UART, I2C 

Timers 1 x 8-bit, 3 x 16-bit 

ADC Input 13 ch, 10-bit 

Number of Comparators 2 

Number of USB Modules 1 

Temperature Range (°C) -40 to 85 

Pin Count 40 

Tab1.1: Presentation of parametric of the Pic 18F4550. 



 

I-3-2- Applications of microcontrollers 

 

Microcontrollers are used in multiple industries and applications, including in the home 

and enterprise, building automation, manufacturing, robotics, automotive, lighting, smart energy, 

industrial automation, communications and internet of things deployments. The simplest 

microcontrollers facilitate the operation of MaEMS found in everyday convenience items, such as 

ovens, refrigerators, toasters, mobile devices, key fobs, video games, televisions and lawn-

watering systems. They are also common in office machines such as photocopiers, scanners, fax 

machines and printers, as well as smart meters and security systems. 

More sophisticated microcontrollers perform critical functions in aircraft, spacecraft, 

ocean-going vessels, vehicles, medical life-support systems and robots. In medical scenarios, 

microcontrollers can regulate the operations of an artificial heart, kidney or other organ. They can 

also be instrumental in the functioning of prosthetic devices [58]. Microcontroller has most 

applications in life as we can present some of them in the figure1.8. 

 
(a)                                                                         (b) 

 
(b)                                                                        (d) 

Figure 1.8: Some microcontroller applications. (a)Traffic road, (b) hard and hot work in industry, 

(c) space exploration and (d) spying’s machine. 

 

Today, microcontroller is used in the fundamental researches domain as electronics [25], electro-

mechanics and communication [27, 60].  
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I-3-3- Microcontroller simulation of dynamical systems 

 
Building experimental circuit by using components is one of the difficult roads to achieve 

fundamental studies in physics. It has been demonstrated recently that microcontroller simulator 

is more reliable and robust compare to the analog or discrete electronic circuits which have so far 

been used to study nonlinear dynamical regimes. 

Chiu et al. implemented for the first time, the chaotic Lorentz oscillator inside the simple 

PIC microcontroller. In the same ways, many works were followed [25-29]. Based on different 

research investigations and applications of chaos, microcontrollers are also used in nonlinear 

dynamics for the main application of chaos phenomenon: the chaos cryptography [27].  

In this thesis, theoretical and experimental simulations of dynamical systems (autonomous 

and non-autonomous Van der Pol oscillator)into a simple microcontroller are performed.  

I-4-       Some problems and objectives of the thesis 

 As presented above, Woafo and Kraenkel investigated different states of synchronization 

in coupled autonomous and non autonomous Van der Pol oscillators [9].  The stability analysis, 

numerical simulation and mathematical resolutions were performed to determine the suitable 

coupling parameters leading to synchronization.  

In this thesis, one extends this idea by conducting the experimental investigation on 

synchronization of two Van der Pol oscillators with polynomial and delay unidirectional 

couplings. 

As indicated in section 1.4.3, microcontrollers are good device to produce complex 

electrical signals from dynamical systems. 

Thus the other objective of this work is to provide a microcontroller implementation 

of synchronization of two Van der Pol oscillators submitted to disturbances of the pulse-like 

type. Three cases are taken into consideration: proportional, power order n and adaptive 

coupling.  

This leads to the third objective of this thesis which is to power electromechanical 

systems by signal delivered by microcontrollers.  

 



 

I-5-       Conclusion 

In this chapter, we provided some background on Van der Pol oscillator dynamics, 

synchronization of Van der Pol oscillators, embedded technologies. The problems that we will 

have to solve in this thesis were also presented. The following chapter will be devoted to the 

mathematical formalisms, numerical and analog simulations methods used to solve the problems 

of this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter II: Theoretical and experimental 

methods 



 

II-1-       Introduction 

This chapter presents the mathematical formalisms, numerical and analog simulations methods, 

used to solve the problems of this thesis. Section II-2 deals with the mathematical formalisms and 

numerical methods used to solve the ordinary equations. In section II-3, we present the analog 

simulation method for dynamical systems, the hardware and software used. In Section II-4, 

analog construction of differential equation, tools and techniques are presented. Following in 

section II-5 presents the microcontroller simulation method for differential equations and section 

II-6 concludes the chapter. 

II-2- Mathematical formalisms 

       In this section II, we present the delayed coupled Van der Pol equations and the approaches 

to solve these equations. One needs some appropriate mathematical formalism and numerical 

methods which, are presented here. Depending on the coupling strength, the objective in this 

subsection is to identify various dynamical states which appear in the master and slave 

oscillators. 

II-2-1- Stability of the synchronization process 

 In the literature, several different tools to investigate the stability of the synchronization 

dynamics are proposed, such as the one developed by Butcher and Sinha [61]. But we prefer the 

Floquet theory [62] which is more indicated to find the stability boundaries. The Van der Pol 

oscillator is sensitive to initial conditions. When two such oscillators x and u with the same 

parameters are set into motion with different initial conditions, they evolve in the same limit 

cycle, but with different phases 1 and 2 . The phase lock so that 2 1 0   , the good strategy 

is to use the conventional feedback scheme in the following manner: 
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(2.1) 

x is the master function and u the slave one, k is the feedback strength as presented in [63]. The 

delay  here means the time spends by the master signal to come and forced the slave one.  

To find the stability or synchronization limits, one introduces the variable z defines as 



 

.xz u                                                                                                                                    (2.2) 

When introducing z in Eq. (2.1) and considering only linear terms, one obtains the following 

equation: 

•• • •
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where l is a function. Assuming small parameter of the functions of the nonlinearity, the delayed 

dynamics function can be described by:  

cos( ,  ,  ).x A                                                                                                               (2.4) 

where the amplitude A and the frequency  depend on the nonlinear parameter and  , the 

parameter depending on the different of phase and time t. Inserting in equation (2.3), one obtains 

the variational equation (2.5) .  

•• •
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(2.5) 

where j is a function, ( , )F   and ( , )G   are the functions depending on the parameter of the 

system, delay  and  .  

To discuss further the stability process, one rewrites Eq. (2.5) in a standard form. For this 

purpose, one uses the transformation 
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Introduce Eq. (2.7) in Eq. (2.5) one obtains the hill equation given by Equation (2.8) below 

        ,cos ,sin ,cos ,sin 0.W p k W   


                                                                   (2.8) 

where p is a function depending on  , k  and  .  

II-2-2- Whittaker formalism 

To solve Eq.(2.8), one uses the Whittaker formalism [9]by writing 

   exp sinW n       with n=1,2.                                                                               (2.9) 

 here means the characteristic exponent and  one simple parameter. Substituting W into the 

Hill polynomial as in Eq. (2.8), one finds that  is the solution of the equations (2.10). 
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where 
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l l
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 

   are the parameters of the Hill functions. Equations (2.10) 

have solutions different to zero if and only if   
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Solving equation (2. 11) allows us to better determine the analytical expression of the strength 

parameter k leading to synchronization. 

II-2-3- Development of the method 

When introducing z in Eq. (2.1) and considering only linear terms, one obtains the following 

equation: 
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Assuming small  , the master dynamics can be described by:  

1cos( ).x A t                                                                                                                (2.13) 

where the amplitude A and the frequency  depend on . If we let 1t    , inserting in the 

equation (2.12), one obtains the variational equation (2.14).  
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where the functions have the expression given below in Eq.(2.15) 
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(2.15)  



 

From the expression of G1, we find that if   1k  , z will grow indefinitely leading the slave to 

continuously drift away from its original limit cycle. In this case, the feedback coupling is 

dangerous since it continuously adds energy to the slave system. This boundary, obtained here 

from the simple analytical consideration, has been observed by Leung [64-65]. 

To discuss further the stability process, one rewrites Eq. (2.14) in a standard form. For this 

purpose, we use the transformation 
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Introduce Eq. (2.16) in Eq. (2.14) one obtains the Hill equation given by Equation (2.17) as 
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From Eq. (2.17), the parameters are  
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                                                               (2.18) 

For analyse deeply this stability process, let consider the adapted method which is the Whittaker 

formalism.   

 Whittaker formalism 

Solves Hill equation became to discuss the strength parameters k. For achieved the 

resolution of Eq. (2.17), one use the Whittaker formalism [9] which consists to discuss about the 

stability of this strength parameters. To investigate this procedure, let considered W given below 

   exp sinW n       with n=1, 2.                                                                                 (2.19) 



 

 here means the characteristic exponent of the stability and  one simple parameter. Substitute 

W in the Hill equation Eq. (2.17), one found that  is the solution of the system equations (2.20) 

given below 
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                                            (2.20) 

where 
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( ) 2 ( )nc ic

i

a a 


   are the parameters of the Hill function. The 

system of equations (2.20) has solution different to zero if and only if   
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According to Eq. (2.21), one obtains: 

2 2 2 2

0 04 ( )  nn a n a a      with 2 2 2( ) ( ) ( ).n ns nca a a                                                   (2.22) 

The synchronization process is stable when z in Eq. (2.14) goes to zero with increasing time. In 

that case, the real part of     should be negatives. According to this consideration, the 

stability condition can be taken as 

2 2.                                                                                                                              (2.23) 

Consequently, the synchronization process is stable under the condition concerning the Hill 

function: 
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0 02 > ( ).n nH a n a n a                                                                                   (2.24) 

This expression can be transform into the new expression allow us to obtain analytically the 

expression of the strength parameter depending of the delay. That is given by (2.25) below 
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 and under the stability condition (2.26)
  



 

2 2 2( )<4  na n                                                                                                                   (2.26)  

This last condition is satisfied only for 1n  .  

                                                                                                              

II-3-Numerical methods 

II-3-1- Fourth-order Runge-Kutta method for ODEs 

       Runge-Kutta (RK) methods is one of the important numerical methods that we have used to 

solve the ODEs. It follows the scheme given below. Let consider the following ordinary 

differential equation: 

 
  

d
,

d

X t
f X t t

t
 with   0 0;X t X

                                                                             (2.27)
 

where  1 2,   ,.....,  nf f f f is a vectorial function with the unknown vectorial variable

        1 2, ,....., nX t x t x t x t . 

The RK4 scheme for this problem is given by [66-67]: 
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and i  runs for time incrementation related to ix . 1L , 2 L , 3 L and 4L are intermediate coefficients 

and t is the time step. 

II-3-2- Second-order delayed Runge-Kutta method for DDEs 

(2.29)

 

 



 

       In the case of DDEs, the dynamics at each t  depends on the value of the vector X at the 

same instant  t  and at  t  , with  0  is the delayed parameter [67-68]. If one introduces the 

delayed variable  X t  , the ODEs becomes 
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                                                                            (2.30)
 

where,  1 2,   ,.....,  nf f f f is a vectorial functions with the unknown vectorial variables 

        1 2, ,....., nX t x t x t x t and         1 2, ,....., nX t x t x t x t         with the initial 

condition    0 0x y t  , when  ,0t T  , T is the temporal amplitude of delay. The initial 

condition is a constant function in the finite interval. Let consider
T

T
N

t



,  t i t  where i in an 

integer and t is the time step. The solution of this equation is given by the RK2 scheme for 

ODEs [69] as follows 
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where  
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where i  runs for time incrementation and the variables related to ix 1L , 2 L are intermediate 

coefficients. 

II-3-3- Numerical criteria for synchronization 

In the numerical procedure, we consider that synchronization is achieved, when the 

deviation z obeys the following synchronization condition 

,   ,synz x u t T                                                                                                              (2.33) 

where x is the master and u the slave oscillators,  the synchronization process or tolerance, Tsyn 

the synchronization time instant at which the two trajectories are close enough to be considered 

as synchronized.  

(2.32)

 



 

 

 

 

II-4- Analog construction of DEs 

II-4-1- Electrical components 

To design electronically the mathematical operations (addition, substraction, derivatives, 

intergrals and multications), one needs to combine the basic electrical components such as 

resistors, capacitors and inductances with operational amplifiers and analog multipliers. 

o Operational amplifier  

The Operational Amplifier (Op-Amp) is an integrated circuit that which amplifies an input 

through a very high gain. The Op-Amp contains several transistors. An operational amplifier has 

two input terminals used for polarization. It has also two inputs which are the non-inverting and 

inverting inputs. Figure 2.1a presents an example of operational amplifier. Finally it has one 

terminal output used to obtain the output signal (see figure 2.1b).  

 

                      (a)                                                                      (b) 

Figure 2.1: (a) Operational amplifier component and (b) electrical equivalent of the operational 

amplifier. 

o Analog multiplier  

An analog multiplier produces an output signal which is the product of two input voltages. 

Figure 2.2 presents in (a) an example of analog multiplier and in (b) its equivalent electronic 

circuit [70]. Such circuits can be used to implement polynomial nonlinear functions. In the 

market, one can find different types of analog multipliers. The most used is the AD633 family 



 

analog device. The multiplication of the voltage differences  1 2X X  and  1 2Y Y  over 

10 Volts is added to the offset voltage Z  and the sum is obtained at the output terminal. 

                                                      

(a)                                                                               (b) 

Figure 2.2: (a) Example of analog multiplier AD633JN and (b) electrical equivalent of the analog 

miltiplier. 

II-4-2- Principle of construction of differential terms of a differential equation 

This section presents the basic analog operations used to design the electronic circuits for 

differential equations. Analog simulation principle is universal and its elementary operations are 

direct consequences of physics laws [71]. The basic operations are:  summation, multiplication 

integration and derivation which are presented in figure 2.3 

(a) Summation                                                                                           (b) Inversion  
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(c) Derivation                                                                              (d) Integrator 

Figure.2.3: Basic linear operations with Op-Amp.(a) summation, (b) inversion, (c) derivation and (d) 

integration. 



 

For the multiplication, according to the bloc diagram showing the electrical equivalent of 

the multiplier in Figure 2.4(b), the output signal W is given as 

  1 2 1 2
.

10

X X Y Y
W Z

 
                                                                                                       (2.34) 

 

II-4-3-     Analog construction of the coupling 

We use also the Op-Amp and linear components (resistors) to build the coupling function. This 

circuit is called differentiator.  Figure 2.4 presents the bloc of coupling function. 

 

                 Figure 2.4: Coupling function. 

In this thesis, we build the coupling function of power n by using the multipliers and the bloc of 

figure 2.4. For that propose, we consider that all the resistors are identical 0R R . Figure 2.5 

presents the situation for each power degree.  

 

(a)  2 1x x x                          (b)  
2

2 1x x x                        (c)  
3

2 1x x x   

Figure. 2.5:  Analog equivalent of coupling of power n.   

 

II-5- Microcontroller simulation of DEs. 

II-5-1- Principle 
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R
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To program DEs in microcontroller, one needs to follow these different steps.  

o Discrete  form of equation 

Many methods exist to discretize the DEs. In the literature, we can have Euler, Runge-Kutta 

of order 2 and 4, Runge-Kutta-Simpson, Adams-Bashforth methods and so on. The discrete 

equations can be implemented in a microcontroller program. In this thesis, we will use most of 

the time the Euler scheme.  

o Program  languages inside the microcontroller  

  To build a result coming from that component, one should know different languages of 

programming as C, C++, Assembler, Java Script, C for arduino and so on. The execution should 

be done by having the computer with software (Ccs blog, mikroC for PIC, Arduino...) installed 

inside. Using the C language and by the mickroC for PIC, one implements the discrete equations 

inside the microcontroller.  

o Insertion inside the microcontroller 

In electronic simulation domain, much of the software is used as Multisim, Pspice, 

Proteus and so on. Proteus is the software that we used to simulate the signal coming from 

differentials equation after programming in microcontroller software. One of the most advantages 

of Proteus is it includes microcontroller family of the PIC simulation, as well as integrated import 

and export features to the printed circuit board. After simulation in mikroC for PIC or Arduino 

and Proteus, one uses the setup presented in Figure 2.6 to insert the signal inside the 

microcontroller.  

 

Figure 2.6: Image of the implementation setup.  

o Analog signal outside the microcontroller 



 

. To obtain analog signal coming from the microcontroller, one has an active converter 

DAC0808 which needs external energy and a passive one built with resistors(R-2R) which does 

not need external energy. The one we use is the passive converter. The ports B and D of the 

microcontroller were coupled to a R-2R ladder resistors network, acting as a DAC (digital to 

analogical converter) (see figure 2.7).  

The microcontroller and the R-2R DAC were selected because they are cheap and very 

simple to configure. It works by the principle of superposition where switching on binary inputs 

adds more voltage at the output. Using a ladder network is a common way of creating an 8 bit 

DAC as each control bit contributes to a binary weighted output voltage. It presents a low 

experimental error of 4.16 %. The outputs of the DAC ports were taken from the resistors 

labelled as R7 and R16, and they correspond to outputs respectively [25]. After the signal passing 

cross the network of resistors then connected the cable to the oscilloscope, we obtain the 

analogical signal.  

II-5-2- Structure of operational bloc 

Figure 2.8 shows the operational bloc. To filter the signal out of the DAC, one uses the 

capacitors C1 and C2 to obtain clear and good signals coming from the microcontroller and 

viewed in the oscilloscope [72].  

 

Figure 2.7: Electronic circuit used to implement in a microcontroller the controlled and 

synchronized Van der pol oscillators. 

RA0/AN0
2

RA1/AN1
3

RA2/AN2/VREF-/CVREF
4

RA3/AN3/VREF+
5

RA4/T0CKI/C1OUT/RCV
6

RA5/AN4/SS/LVDIN/C2OUT
7

RA6/OSC2/CLKO
14

OSC1/CLKI
13

RB0/AN12/INT0/FLT0/SDI/SDA
33

RB1/AN10/INT1/SCK/SCL
34

RB2/AN8/INT2/VMO
35

RB3/AN9/CCP2/VPO
36

RB4/AN11/KBI0/CSSPP
37

RB5/KBI1/PGM
38

RB6/KBI2/PGC
39

RB7/KBI3/PGD
40

RC0/T1OSO/T1CKI
15

RC1/T1OSI/CCP2/UOE
16

RC2/CCP1/P1A
17

VUSB
18

RC4/D-/VM
23

RC5/D+/VP
24

RC6/TX/CK
25

RC7/RX/DT/SDO
26

RD0/SPP0
19

RD1/SPP1
20

RD2/SPP2
21

RD3/SPP3
22

RD4/SPP4
27

RD5/SPP5/P1B
28

RD6/SPP6/P1C
29

RD7/SPP7/P1D
30

RE0/AN5/CK1SPP
8

RE1/AN6/CK2SPP
9

RE2/AN7/OESPP
10

RE3/MCLR/VPP
1

U1

PIC18F4550

R1

2k2

R2

2k2

R3

2k2

R4

2k2

R5

2k2

R6

2k2

R7

2k2

R8

1k1

R9

2k2

R10

2k2

R11

2k2

R12

2k2

R13

2k2

R14

2k2

R15

2k2

R16

2k2

R17

1k2

R18

1k2

R19

1k2

R20

1k2

R21

1k2

R22

1k2

R23

1k2

R24

1k2

R25

1k2

R26

1k2

R27

1k2

R28

1k2

R29

1k2

R30

1k2

R31

1k2

R32

1k2

U1(RE3/MCLR/VPP)

C1
150p

C2
1.5p

A B C D



 

II-6-       Conclusion 

This chapter has been devoted to the presentation of the different methods used in the 

thesis. Firstly, we have presented the mathematical formalisms used to find synchronization 

condition. Secondly, the numerical methods have been presented. Thirdly, we have provided the 

basic principles of analog simulations techniques. Finally the new method using microcontrollers 

to simulate differential equations has been presented. The results obtained in the course of our 

PhD research works are presented in the next chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter III: Results and discussions 



 

III-1-       Introduction 

This chapter presents the results obtained in the thesis. In the first section, the analogical 

simulation results of the delayed coupled Van der Pol oscillator are presented. The second one is 

devoted to synchronization and control simulation using microcontroller and the third one is on 

the fabrication of a self-sustained nonlinear signal generator.  

III-2- Synchronization of Van der Pol oscillatiors: analog simulation 

results 

The aim of this section is to present the mathematical models and build the corresponding 

electrical circuits. These electrical models will be used to find the experimental synchronization 

strength parameter in different cases as polynomial coupling, delayed coupling both for 

autonomous and excited Van der Pol oscillators. 

III-2-1-     Mathematical models 

Considering our proposed model taking into account the power on the control function 

and the excitation form, the coupled Van der Pol oscillators appear in equation (3.1)  
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                                                                 (3.1) 

where n is the integer parameter, 1,2,3,...n Ω and Em are respectively the frequency and 

amplitude of the excited function. 

From this mathematical model, one has built the electrical models presented in the subsection 

below.  

 

III-2-2 Electronic circuits for experiments  

The circuit’s diagrams of the oscillators are shown in figure 3.1 for the three values of n. 

These oscillators were built using the multipliers AD633 JN and operational amplifiers TL-082. 

The TL-082 was used to minimize the output drift due to offset and bias current. The term 



 

( )nu x is built by using operational amplifiers and multipliers. The different circuits on figure 

3.1 are those used in experiment.  

            

(a)                                                               (b) 

              

                               (c)                                                                (d) 

 

(e) 

Figure 3.1 Electronic schemes of the oscillators: (a) linear coupling for n = 1, (b) square 

nonlinear coupling for n = 2, (c) cubic nonlinear coupling for n = 3 and (d) delayed coupling 

circuit and (e) experimental circuit in operation in the laboratory. 



 

Applying the Kirchhoff’s law in each circuit and use: s=ω01t= ω02t, where s is the dimensionless 

parameter, ω01 and ω02arethe equal natural frequencies; one globally obtains the differential 

equations (3.3).   
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Then, we set the parameters:
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                    (3.4) 

Since, we assume identical oscillators, we can set  

14 13 24 23100   100 .R R and R R 
               

(3.5) 

and 1 2 1 2 01 02;  =   .m m mE E E and       
                        

(3.6) 

The relation between the damping coefficient d and the resistance R16 and R26 is given by: 

3 3

16 263.1 10 3.1 10 .R R     
                                                                                  

 (3.7) 

                                                                                  

One can thus vary d by adjusting the value of R16 or R26 using a potentiometer.  The experimental 

values of the resistances and capacitors are given in the Table 3.1. 

 

Résistors (kΩ) 

Capacitors (nF) 

Oscillators 1 & 2 

R13=R23 0.1 

R11=R21 10.0 

R12=R22 1.0 

R15=R25 10.0 

R10 0.1 

R14=R24 10.0 

R0 180.0 

RC 0 – 22 (potentiometer) 

C11=C21 12.0 

C12=C22 12.0 

 

Table 3.1 Experimental values of the resistors and capacitors used. 

To better present the result coming from all these electrical circuits, let start by the 

synchronization intervals in the case of polynomial coupling then study the effect of delay. 

(3.3) 



 

III-2-3 Synchronization intervals in the case of polynomial coupling 

In this section, two cases will be presented to better study these synchronization intervals. 

For the first, we will study the case of Em=0 and the second Em taking different values.  

o Coupling intervals for synchronization in the autonomous case (Em=0). 

Let us start with the case where the autonomous Van der Pol oscillator exhibits sinusoidal 

oscillation. This is obtained by having small value for the nonlinear damping coefficient µ. 

Taking R16=R26=10 kΩ, one obtains 0.31  . To detect experimentally the synchronization 

intervals, we vary Rc using a potentiometer. Table 3.2 summarizes our findings along with the 

boundaries giving by the numerical simulation.  
 

n µ Synchronization boundaries obtained 

from the numerical simulation of 

equations (3.1) with Em=0 (k) 

Synchronization boundaries obtained 

from the experiment RC and (k) 

1 0.3  

 1;15.0k  
 0.653,  1.15CR k  ,  

this corresponds to  53.1;87.0k  

2 0.3  

 18.0;09.0k  
 2.37,  9.61CR k   

this corresponds to  0.104;0.421k   

3 0.3  

 0.06;0.13k   
 0.65;  0.74CR k   

this corresponds to  1.37;1.52k   
 

Table 3.2 Synchronization intervals obtained experimentally and through numerical simulation 

for µ=0.3 and different degrees of the coupling polynomials. 

 

From Table 3.2, one finds that the synchronization interval decreases as the nonlinearity 

in the coupling increases. Otherwise, one observes that the amplitude of the intervals of the 

experimental results decreases when the values of n increase. Numerically, the intervals of the 

coupling parameter decrease when n increases particularly at the borders.  

Due to experiment artifacts, the boundaries of intervals generated from the experiment are 

different to those obtained by the numerical simulation. Indeed, the numerical simulation 

assumes perfectly identical oscillators while in the experiment; it is not possible to have perfect 

identical oscillators. These explanations also hold for the results presented in the rest of the work.  

 

 

 



 

As indicated above, the synchronization is decided during the numerical simulations by 

using the condition at Eq (2.33) or using the phase portrait (x, u).  In the experiment, the 

synchronization is decided by plotting the phase portrait in the (x, u) plane.  Figure 3.2 presents 

an example of phase portraits before the coupling and Figure 3.3 when there is no 

synchronization despite the coupling while Figure 3.4 presents a state of synchronization.  

                                    
(a)                                                                 (b) 

Figure 3.2 Phase portrait exhibited by one oscillator before the coupling: (a) Experiment and (b) 

Numerical. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

n, k and RC values Experimental results Numerical results 

 

n=1 

RC=90.kΩ  

Corresponding to k=0.056.  

 

 

 
(a) 

 

 
(b) 

 

n=2 

RC=34.1.kΩcorresponding to  

k=0.15 

 

 

 
(c) 

 

 
(d) 

 

n=3 

Rc=73.kΩ corresponding to 

k=0.07.  

 

 
 

(e) 

 

 
(f) 

 

Figure 3.3 Phase portraits: (a)-(f) are for the coupled oscillators showing the case of no 

synchronization for different values of parameters n, k and RC in the case of µ=0.3. 

After coupling the oscillators, one finds the synchronized situation and Figure 3.4 displays this 

case with different values of n, Rc and their corresponding values k.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

n, k and RC values Experimental results Numerical results 

 

n=1 

RC=73.kΩ 

corresponding 

to k=0.07.  

 

 
(a) 

 

 
(b) 

 

 

n=2 

RC=51.kΩ 

corresponding 

to k=0.1.  

 

 

 

 

 

 
(c) 

 

 
(d) 

 

n=3 

RC=63.75.kΩ 

corresponding 

to k=0.08.  

 

 

 
 

                            (e) 

 

 
(f) 

 

Figure 3.4 Phase plans (a)-(f) are for the coupled oscillators showing the case of synchronization 

for different values of n in the case of µ=0.3. 

 

 

 

 

 

 

 

 

 

 



 

From both these tables, one observes some good agreements between the numerical and 

experimental results.  

Now let us consider the state where the autonomous Van der Pol delivers relaxation oscillations. 

They are obtained for large values of µ. We have considered µ=5 corresponding to 

3 3

1 16 2 263.162 10  et  3.162 10   R R                                                                            (3.8) 

To obtain that value of µ, one takesR16=R26=25MΩ.  The synchronization intervals are displayed 

in Table 3.3. 
 

 

n µ Synchronization boundaries obtained 

from the numerical simulation of 

equations (3.1) with Em=0 (k) 

Synchronizations boundaries obtained 

from the experiment RC and (k) 

1 5  

 0.01;  1k   
 0.653,  1.15  CR k  , 

this corresponds to  46.1;93.0k  

2 5  

 0.01;0.885k   
 1.05,  1.75CR k  ,  

this corresponds to  95.0;57.0k  

3 5  

 0.01;0.75k   
 0.98;  1.34  CR k  , 

this corresponds to  02.1;75.0k  

 

Table 3.3 Synchronization intervals obtained experimentally and through numerical simulation 

for µ=5 and different degrees of the coupling polynomials. 
 

 

From Table 3.3, one observes that the decreasing behavior of the synchronization interval 

as n increases is still present at the same manner as explains above. Figure 3.5 presents an 

example of phase portraits before the coupling and Figure 3.6 when there is no synchronization 

while Figure 3.7 presents a state of synchronization.  
 

                       

   (a)                                                           (b) 

Figure 3.5: Phase portrait exhibited by one oscillator before the coupling. (a) Numerical and (b) 

Experimental.  



 

 

n, k and RC values Experimental results Numerical results 

 

n=1 

RC=30.kΩ, 

corresponding to  

k=0.06. 

 

 
(a) 

 

 
(b) 

 

 

 

n=2 

RC=24.5.kΩ, 

corresponding to  

k=0.071. 

 

 

 

 

 
(c) 

 

 

 
(d) 

 

n=3 

RC=3.6.kΩ, 

corresponding to  

k=0.5. 

 

 
(e) 

 

 

 
(f) 

 

Figure 3.6 Phase portraits. (a)-(f) are those of coupled oscillators showing the case of no 

synchronization for different values of parameters n, k and RC in the case of µ=5. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

n, k and RC values Experimental results Numerical results 

 

n=1 

RC=60.kΩ, 

corresponding to  

k=0.03. 

 

 
(a) 

 

 
(b) 

 

n=2 

RC=18.kΩ, 

corresponding to  

k=0.1. 

 

 
(c) 

 

 
(d) 

 

n=3 

RC=2.2.kΩ, 

corresponding to  

k= 0.82. 

 

 
(e) 

 

 
(f) 

 

Figure 3.7 Phase portraits. (a)-(f) are those of coupled oscillators showing the case of 

synchronization for different values of nin the case of µ=5. 

 

 

o Coupling intervals in the non autonomous case (Em ≠ 0). 

 According to the parameters obtained in the ref. [35], one can consider these values 

of Ω excitation:  2.463,2.466 . For example we take 2.465  Hz . By setting E= 0.5, 

meaning Em = 5 V and µ = 5 (see equation (3.4)). 

Synchronization occurs in that case for the values of n and RC given in equation (3.9).   

    1,  2,  3 ,  k ;  3.5 .n    
                                                                                               

(3.9) 

Figure 3.8 presents the phase plane before the coupling. 

 



 

                
 

                                             (a)                                           (b) 

Figure 3.8 Chaotic phase portrait exhibited by of each oscillator before the coupling; (a) 

experiment, (b) numerical simulation. 

 

As before, we check the synchronization state using the phase portraits (x, u).  Figure 3.9 

presents a state where there is no synchronization while Figure 3.6 corresponds to a state of 

synchronization. Experimentally, it has been found that there is no clear interval for 

synchronization for the positive value of the potentiometer Rc. Synchronization occurs for some 

selected values of the resistance. Indeed, by varying Rc, one obtains that the chaos 

synchronization is achieved only for RC=0.6 kΩ, corresponding to k=1.7. This is in conformity 

with the results of Ref. [9] where it was shown that, for positive k, various intervals of 

synchronization (sometimes limited to a single value) alternate with the no synchronization 

intervals.  

                          
(a)                                                       (b) 

                               

Figure 3.9 Phase portrait of the coupled oscillators showing the case of no synchronization for 

Rc =900 Ω corresponding to k=1.1. (a) experiment and (b) numerical. 

 

Figure 3.10 presents the synchronization state for all the values of n.  

 

                          
  (a)                                                      (b) 

Figure 3.10 Phase portrait of the coupled non autonomous oscillators (with n=3) showing the 

case of synchronization for RC=0.6 kΩ corresponding to k=1.7: (a) experimental result, (b) 

numerical results 



 

III-2-4- Effects of time delay on the synchronization intervals 
 

In this subsection, we will study the effect of delay in the borders of synchronization.  

 

o Mathematical results 

To better study the mathematical part, one will progressively consider the stability of the 

synchronization process which develops the Floquet theory and allow us to obtain the Hill 

equation. To solve this equation and obtain the stable analytical strength parameter, one will use 

the Whittaker method.   

 Stability of the synchronization process 

Considering equation (2.1) where   is the nonlinear coefficient as we have studied in section I-

2-1 and following the procedure explained in chapter 2, one solve Eq (2.25) taking into account 

the condition (2.26).  It is found that the synchronization takes place for  

     1 2, ( ) ( ),1k k k     .                                                                                            (3.10)    

where  
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o Experiment results 

 

To achieve the experiments result of the time delayed coupling system, one use the electrical 

circuit of figure 3.1(d). Analytical results are obtained by plotting solution (3.10). The numerical 

one is obtained by plotting Eq. (3.10) using Runge-Kutta 2 delay. According to the experimental 

results, one built the delayed bloc [73-82] given by figure 3.11. 



 

 

Figure 3.11 Delayed Bloc diagram. 

 

 This diagram is constituted by using five components which are one operational amplifier, 

two resistors, one capacitor and potentiometer, by varying the potentiometer; one obtains 

different values of the delay. Table 3.4 gives the different values of the parameters. 

 

Résistors (kΩ) 

Capacitors (nF) 

Values 

RD 6.8 

RDV (potentiometer) 10.0 

CD 330.0 

 

Table 3.4 Different values of delayed bloc diagram.  

 

        To build the values of the delay, one notes 02;  D DV D DT R C T   . By varying the 

capacitor and using the valueω01 ≈ ω02 ≈ 1.16 x103 rad/s, one obtains the maximal value of delay: 

TD≈ 3, 3ms which is the experimental value and it correspond to τ ≈ 3.828for the mathematical 

and numerical case. To test the efficiency of the bloc diagram, a sinusoidal signal x is sent at the 

input of the delayed bloc diagram and we measure the output xτ. Figure 3.12 presents the test 

results for some selected values of the delay. From the results presented in Figure3.13, it is clear 

that the bloc diagram is efficient.  

 

 

 

 

 

 

 



 

Time delay value and their 

 experiment value 

 

Experiments figures 

 

 

τ = 0, corresponds to  

TD=0 ms 

 

 

 
(a) 

 

 

τ = 0.1, corresponds to  

TD≈ 0.0862 ms 

 

 
(b) 

 

 

τ = 1, corresponds to 

 TD≈ 0.862  ms 

 

 
(c) 

 

Figure 3.12 Presentation of the delayed bloc diagram and some tests for µ=0.3. 

(a) for τ = 0.0, (b) for τ = 0.1 and (c) for τ = 1. 

 

Now using the delayed bloc diagram in the coupling scheme, we have analyzed the effects of 

the delay on the synchronization interval. These effects appear in Table 3.5 and Figure 3.13. One 

finds that, experimentally, the borders of the synchronization intervals vary periodically as 

obtained theoretically. The period of this variation is: 
3

2
T  .  

 

 

 



 

Values of the delay 

τ(ms)
 

Synchronization 

interval 

0  0.87;  1.53  

0.1  0.81;  1.08  

0.3  0.8;  0.92  

0.6  0.13;  0.16  

0.9  0.1;  0.12  

1.2  0.55;  0.71  

1.5  1.14;  1.19  

1.8  1.11;  1.16  

2.1  0.09;  0.13  

2.4  0.1;  0.18  

2.7  0.42;  0.57  

3.0  1.07;  1.21  

3.3  1.07;  1.17  

3.5  0.62;  0.73
 

3.83  0.23;  0.35  

 

Table 3.5 Presentation of the different synchronization intervals for several values of τ. 

 

Figure 3.13 Upper boundary of the synchronization intervals versus the delay. 



 

III-2-5- Oscillators subjected to the slowly varying periodic excitations 

Van der Pol oscillators submitted to  the action of two slowly varying signals present 

special dynamics consisting of patterns constituted of periodic appearance of packages of 

periodic/bursting oscillations. These patterns can even show chaotic shape (see Refs.[83–90], for 

more details). These bursting patterns of electrical nature are interesting as they are special 

electronic signals, but can also be used to mimic biological signals in artificial devices such as 

pacemakers. Considering their synchronization is thus of interest and is the subject of this  

part of the work. The system is described by the following set of equations 

   

   

•• •
2

1 1 2 2

•• •
2

1 1 2 2 0

(1 ) cos cos ,

(1 ) cos cos ( ) ( ),   

x x x x t t

u u u u t t k u x H t T

  

  

      

         

                                        (3.11) 

where the frequencies Ω1 and Ω2 are less than 1. δ1 and δ2 are positive parameters. We have taken 

the following values: 

1 2 1 21.1;  0.4;  0.01;  0.02.                                                                                 (3.12) 

For the experiment, the parameters of the excitations are derived from those given in Eq. (3.12) 

using the following relations.  

12 12
1 01 2 02

10 10

R
 and = .

R

R
E E

R
 

                                                                                            

(3.13) 

where E01 and E02 are the voltage amplitudes coming from each frequency generator. Thus one 

obtains.  

01 02 1 210 ;  3.7 ;  1.5 ;  3.0 .E V E V Hz Hz     
                                                             

(3.14) 

where ω1 and ω2 are the frequencies delivered by the generators. The output delivered by the 

oscillator subjected to such a signal appears in Figure 3.14 for d=5 and using the parameters in 

equation 3.28.  
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Time trace 

 

 

(a) 

 

 

(b) 

 

 

 

Phase plan 

 

 

 

 

 

(c) 

 

 

(d) 

 

Figure 3.14 Time histories and phase plane exhibited by the oscillators before the coupling. (b) 

and (d) are numerical results and (a) and (c) are experimental results. 

 

Now, analyzing the synchronization in the case of bursting oscillations, Table 3.6 shows 

the synchronization domains for µ=5.  

 
Synchronization boundaries obtained from 

the numerical simulation of Eq. (3.28) 

Synchronizations boundaries obtained from 

the experiment RC and (k) 

 

 0.3;  1k   

 0.830;  1.13Rc k  ,  

this corresponds to  0.88;  1.21k 
 

 

Table 3.6 Synchronization intervals obtained experimentally and through numerical simulation 

for µ=5. 

 

From Table 3.6, one observes some values of k given the boundaries of the synchronization 

intervals.  



 

III-3- Synchronization and control results using microcontrollers. 

In the above sections, the experimental tools have been based on analog simulation. The 

analog simulation poses some problems related to the choice of the electronic components and 

the stability of their values. In this section III-3, we use microcontrollers for the same tasks, but 

with the goal of controlling the oscillator trajectory when it deviates because of some 

perturbations.  

III-3-1- Numerical results. 

This section is devoted to the determination of coupling coefficient intervals leading to 

synchronization using direct numerical simulation.  

o Linear proportional control 

In this case, the dynamics of the Van der Pol with perturbation and coupling scheme is given as 

follows:  

 

•• •
2

•• •
2

1

(1 ) 0,

(1 ) ,

s s s sx x x x

u u u u p t u





   
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(3.15) 

In this equation, xs is the reference oscillator and u the actual oscillator which can be submitted to 

perturbation.u1 is the proportional control function whose expression is given by  

1 * *( ) with .s su kp e kp x x e x x    
                                                                          

(3.16) 

where kp is the coupling coefficient. p(t) is a pulse-like perturbation having the following 

expression  

 1 0 0( ) sec .ip t s h s t t                                                                                               (3.17) 

where s1 is the amplitude of the perturbation, s0 is the pulse width and ti is the time corresponding 

to the center of the perturbation. In this work, we use the values s1=0.8, s0=1.2 and ti=280.  The 

natural frequency of the oscillator is fixed to ω0=1. Figure 3.15 shows the shape of the 

perturbation as the time evolves. This pulse shape is special as it indicates that the perturbation 

has a well-known and regular shape. However, it is representative of some types of perturbations 

that can appear in electrical circuits. 



 

 

 Figure 3.15 Time trace of the perturbation. 

  

   When such perturbation hits the actual system described by the variable x, its output is 

modified in terms of amplitude and phase as it appears in Figure 3.16.    From this figure, one 

notices the difference of phase introduced by the perturbation.  This deviation is harmful for an 

application where precision is highly required.  The values µ=0.3 for sinusoidal output and µ=5 

for relaxation output will be used in the rest of the section.  

 

 

(a)                                                      (b) 

Figure 3.16:  Effects of the perturbation on the actual system for a sinusoidal output(a) with 

µ=0.3 and for a relaxation output (b) with µ=5. 

 

      The goal of the coupling scheme is to reduce quickly the deviation in phase and amplitude in 

order that the actual system returns to its normal operation. The synchronization or the control is 

thus obtained if the error function e goes to 0 when the time increases.  Varying the coupling 

coefficient kp, the output of the actual system can either synchronize with the reference system, or 

not synchronize but remains with its amplitude, or finally, completely change its trajectory. These 

situations appear in Figure 3.17.  



 

 

(a)                                               (b) 

 

(c)                                              (d) 

       

                                            (e)                                              (f) 

Figure 3.17 Time traces of the system under control showing different outputs for the actual 

system. (a) and (b): the actual system does not finally follow the reference signal. (c) and (d): the 

actual system completely changes its trajectory. (e) and (f): the actual system synchronizes with 

the reference system. 

 

To determine the appropriate control parameters for good control, we have plotted in 

figure 3.12 the time Ts after which the synchronization is assumed to be achieved. The condition 

for synchronization is  

,e 
                                                                                                                             

(3.18)                                           



 

where ε is the tolerance given by ε=10-8.  Ts are plotted versus the coupling coefficient for the 

case of sinusoidal output (figure 3.18a) and for the case of relaxation output (figure 3.18b).  

 

 

(a)                                             (b) 

Figure 3.18 Synchronization time versus the coupling coefficient kp. (a) for µ=0.3 and (b) for 

µ=5. 

From Figure 3.18, the synchronization domain is given by  0.22,  0.98pk   for µ=0.3 and  

 0.25,  0.95pk   for µ=5.  

 

o Proportional control of order n 

 

     Considering now the case of proportional control of order n, the controller u1 is replaced by 

2 * *( ) ,n

su k e k x x                                                                                                      (3.19) 

where n is the order of proportional control and k is the coupling coefficient.  With this 

controller, the synchronization time is plotted in Figure 3.19 for three orders of the proportional 

control for µ=0.3 and µ=5.   

 

 

 



 

 
 

(a)                                      (b)                                                     (c) 

 

 

                          (d)                               (e)                                                    (f)  

Figure 3.19 Synchronization time of the system under perturbation and control for different 

orders of the coupling :( a), (b) and (c) for µ=0.3 while (d), (e) and (f) for µ=5. 

 

N µ Synchronization domain 

1 0.3  0.22,  0.98k   

 2 0.3  0.38,  0.48k   

3 0.3  0.14,  0.26k   

(a)                                                                                           (b)  

Table 3.7 Intervals of the coupling coefficient leading to synchronization for different orders of 

the proportional control. Fig (a) µ=0.3 and fig. (b) µ=5. 

 

Table 3.7 is obtained from figure 3.13. One notices that when n increases, the synchronization 

domain decreases. Therefore, one can conclude that the linear coupling scheme offers a wider 

interval for the choice of the coupling coefficient leading to synchronization.     

 

n µ Synchronization domain 

1 5  0.25,  0.95k   

2 5  0.84,  0.92k   

3 5  0.95,  0.99k   



 

o Adaptive control 

 

The principle of adaptive control is that the control gain is a dynamical parameter whose 

value varies with the time, taking into consideration the deviation between the slave (actual) 

system and the master (reference) xs. This is more suitable in situations where some parameters 

of the system are inaccessible to measurements or can vary with the time. One of the forms of the 

adaptive controller that will be used here is the following. 

3 ,  u he 
                                                                                                                       

(3.20) 

where h is an estimated feedback gain updated according to the following adaptation algorithm  

•
2 = eh  with h (0) = 0.                                                                                                     (3.21) 

 

Following the work done in Refs. [91-94], one looks for the suitable values of the 

coefficient which leads the system into synchronization or leads the actual system to converge 

to the prescribed trajectory x after the perturbation.  As in the above sub-sections, this is done by 

plotting the synchronization time against γ. Figure 3.20 is obtained and shows that 

synchronization is obtained for γ greater than 0.  

            

(a)                                                     (b) 

Figure 3.20 Synchronization time versus the adaptive control parameter γ: (a) for µ=0.3 and (b) 

for µ=5. 

Specifically, for µ=0.3, the synchronization interval is  0.5,     while for µ=5, it is

 0.1,     . The synchronization time decreases when γ increases. Thus, there is an advantage 

of using the adaptive controller since the synchronization intervals have infinite length in the  

 



 

positive axis of the control parameter contrary to the proportional coupling schemes for which the 

synchronization intervals are finite. 

To end this subsection, we mention that some of the above numerical results can be 

obtained from analytical investigation, at least in the case of a sinusoidal trajectory. Some 

information on this issue can be found in Refs [9] and [95-98]. 

 
III-3-2- Implementation in the simple low cost microcontroller 

 
o Program 

 

As mentioned in section II, in order to put the equations in a form manageable by the 

microcontroller, we use the discrete formulation of the equations based on Euler method and  

write the equations with perturbation as:  
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                                     (3.22) 

 

where p1=10-3 is the time step and Bj is the perturbation. Due to the implementation constraint in 

the microcontroller, the form of Bj has been developed till order 4. The program is presented in 

figure 3.21. 
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Figure 3.21 Program used to program the mickroC PRO for PIC. 

From line 1 to 13 is the declaration of the register. From line 14 to 20 is the declaration of the 

constants. Line 21 presented the starter of the main corps of the executable program. From line 

23 to 28, initial conditions declaration. From line 29 to 28, the variables are declared. From line  

1- #include <p18f4550.h> 

2- #pragma config PLLDIV = 5 

3- #pragma config FOSC = HSPLL_HS ,FCMEN = OFF,IESO = OFF, CPUDIV = OSC1_PLL2 

4- #pragma config PWRT = ON,BOR = OFF,BORV = 0 

5- #pragma config WDT = OFF,WDTPS = 32768 

6- #pragma config MCLRE = ON,LPT1OSC = OFF,PBADEN = OFF,CCP2MX = OFF 

7- #pragma config STVREN = OFF,LVP = OFF,XINST = OFF,DEBUG = OFF 

8- #pragma config CP0 = ON,CP1 = ON,CP2 = ON 

9- #pragma config CPB = ON,CPD = ON 

10- #pragma config WRT0 = ON,WRT1 = ON,WRT2 = ON 

11- #pragma config WRTB = ON,WRTC = ON,WRTD = ON 

12- #pragma config EBTR0 = ON,EBTR1= ON,EBTR2 = ON 

13- #pragma config EBTRB = ON 

14- //constants 

15- float d = 0.3; 

16- float s1= 0.8; 

17- float s0 = 1.2; 

18- float ω0=1.0; 

19- float p1 = 0.001; //Step 

20- float tI = 280.; 

21- void main(void) 

22- { 

23- //initial conditions 

24- float x0 = 0.02; 

25- float y0 = 0.03; 

26- float x0s = 0.01; 

27- float y0s = 0.04; 

28- float t0 = 0.0; 

29- float  xs, ys,  x, y, t, A, B; 

30- double pow (double a, double b); 

31- TRISB = 0x00; 

32- TRISD = 0x00; 

33- While(1) 

34-   { 

35-    t=t0+ p1; 

36-   x = x0 + p1*y0; 

37-   y  = y0  + p1*(d*(1.-x0*x0)*y0- ω0* ω0*x0); 

38-    xs = x0s + p1*y0s; 

39-    A= d*(1.-x0s*x0s)*y0s- ω0* ω0*x0s ; 

40-    B=s1/(1.+ pow ((s0* ω0* (t-tI)), 2) / 2. +pow ((s0* ω0* (t-tI)), 4) / 24. ); // Disturbance 

41-    ys = y0s+ p1*(A+B); 

42-    PORTB = (xs+3)*47.4; 

43-    PORTD = (x+3)*47.4; 

44-   x0 = x ; 

45-   y0 = y; 

46-   x0s = xs; 

47-   y0s = ys; 

48-   t0=t; 

49-    } 

50-   } 



 

31 to 32, it is the initialization of the entire pin D and B as the output variables. The while (1) 

loop of the line 33 gives the started calculation without stopped. From line 35 to 42, expressions 

of the functions are given. Line 42 and 43 present the ports that the digital calculation results will 

be loaded. Lines 44 to 48 are the presentation of the closed loop for the repetition functions. 

From line 49 to 50, the closed loops which are open at starter and while (1).  
 

o Experimental results 

 

Simulating the whole program of Figure 3.15 with the software mikroC PRO for PIC and the 

Proteus software, the outputs of the reference signal (x(t) in PORT D) and the actual signal 

(xs(t)in PORT B) when there is no perturbation are presented in Figure 3.22. 

 

   

(a) 

    

(b) 

Figure 3.22 Time traces from the microcontroller of the actual signal xs (in yellow) and reference 

signal x (in green) with s1=0.0:  (a) forµ=0.3 and (b) for µ=5. The right column corresponds to 

the superposition of both signals. 

Considering now the state where the perturbation is present. The output signals appear in figure 

3.23. As it can be observed, the action of the perturbation in the microcontroller version of the 



 

oscillators is similar to what was observed from the experimental simulation: distortion in 

amplitude and generation of phase difference.   

  

                          (a)                                                                                          (b) 

Figure 3.23 Time trace of the response generated by the microcontroller when the perturbation 

affects the actual system: xs(yellow) and x(green) with s1=0.8 and s0=1.2:  (a) forµ=0.3 and (b) 

for µ=5. 

In the case of linear feedback or proportional control case, the discrete form of the controller is  

 1 ,p sj ju k x x                                                                                                              (3.23) 

This term is added in the last equation of the set of equations (6) after multiplying by the 

discrete time step. Taking kp=0.66, Figure 3.23 shows the effectiveness of the control of the 

actual system to the reference one (both the results generated by the microcontroller and those 

obtained from the direct numerical simulation are presented). As concerns the intervals of kp 

leading to control, we have obtained that the interval obtained in the numerical simulation also 

holds for the microcontroller simulation for µ=0.3. But for µ=5, a difference is observed since 

with the microcontroller simulation, the interval for control is  0.31,  0.98pk   for µ=5.  This can 

obviously be explained by the numerical scheme implemented in the microcontroller, but also by 

the approximation made when implementing the perturbation function in the microcontroller.   

     In the case of non linear feedback or proportional control case, the discrete form of the 

controller is  

 2 ,
n

sj ju k x x                                                                                                             (3.24) 



 

The following intervals of the coupling coefficient k leading to control or synchronization are 

obtained from the microcontroller simulation for n=3:  0.14,  0.26k  for µ=0.3 and  

 0.4,  0.91k  for µ=5.  The experimental results are almost the same as those presented in 

figure 3.24. Therefore, they have not been presented.  

 

(a)                                                                         (b) 

 

(b)                                                                     (c) 

Figure 3.24 Time trace of the signals when the control is effective for kp =0.66: (a) and (b) for 

µ=0.3 and (c) and (d) for µ=5. 

In the case of the adaptive controller, a new equation is added corresponding to the 

discrete version of the adaptive controller. This new discrete equation is 

 

 
2

1 1 .j j sj jh h p x x
   
  

                                                                                               (3.25)

 

From this equation the discrete component is given as  



 

 3 .j sj ju h x x                                                                                                                      (3.26)

 

This is multiplied by the time step p1and added to the last equation of the set of equations (6). 

The simulation from the microcontroller shows that the synchronization is achieved for γ greater 

than 0.5 for µ=0.3 and for γ greater than 0.06 for µ=5.  These limits are almost equal to those 

obtained from the numerical simulation. Figure 3.25shows the comparison between experiment 

and numerical simulation in the case of the adaptive control. It appears that for low value of 

γ=10, there exists a qualitative agreement between the numerical and experimental results (see 

Figure 3.25). 

    

(a)                                                                  (b) 

 

                     (c)                                                                         (d) 

Figure 3.25 Time trace of the signals when the control is effective for γ=10: (a)-(b) for µ=0.3 

and (c)-(d) for µ=5.

  

 

 

 



 

III-4– Fabrication of self-sustained and chaotic signals generator 

 
Most of the time, we usually use the generator bought in the market which produces only 

basic signals as sinusoidal, triangle, ramp and square. We propose to build a special two voices 

generator which can be able to produce at the same time, periodic and chaotic signals in different 

forms. This generator is based on microcontroller. 

 

III- 4-1- Basic information to produce analogical signals using microcontroller 

 

Programming microcontroller and producing the analogical signal, is presented in this 

subsection. First we need to have one computer inside which we install the mikro C pro for PIC 

to programme or Arduino interface. We need also to have the picIt 3 to charge the programmed 

signal inside the microcontroller passing through the USB cable. Two coaxial cables must be 

used to observe the electronic signal inside the oscilloscope. Different figures below present these 

statements by using Arduino uno board. Figure 3.26 presents the screen capture of the 

programmable interface inside the computer. 

 

 

Figure 3.26 Capture of the programmable interface inside the computer.  



 

After programming the function, we load it inside the microcontroller by using the USB cable 

connected as in Figure 3.27.  

 

Figure 3.27 Presentation of connecting USB cable. 

 

After connecting this USB (universal serial bus) cable, the signal can be loaded inside the 

microcontroller. Signal loaded in the microcontroller is the digital one. To convert to the 

analogical one, one will use the analogical converter. We use the passive converter which 

contains only the resistors and is very efficient. Figure 3.28 presents that converter called the  

R-2R converter. It is a network of resistors.  

 

 

Figure 3.28 The R-2R converter in laboratory connected to the Arduino uno. 

 

The current starts passing through the R and is divided by the 2R. At the end, one obtains 

the simple analogical signal. According to this information, one can built a lot of signals using 

the differentials equations.  One programs the different signals as given down below. The left 

figure present the simple test of the system programmed by using the function  A t  given below 

   1.25*sin 0.25*A t t .                                                                                                        (3.27) 

The right one presents the excited Van der Pol oscillator as following:  



 

2
2

01 1 02 22
( 1) cos( ) cos( ).

d x dx
x x f t f t

dt dt
      

                                                             
(3.28) 

with the following values of the constants:  

01f =1.1, 02f =0.4 1 =0.01, 2 =0.02 and µ=4.                                                                     (3.29) 

Figure 3.29 presents the output of the equations (3.27) and (3.28).   

 

                    

(a)                                                          (b) 

Figure 3.29 Time trace of the functions (a)  A t  and (b) forced Van der Pol oscillator.  

With all these competences, we build a generator which can be used to generate electrical signals 

in different forms. 

 

III-4-2-Structure of the generator 

 
To better present the structure of the generator, one will start by presenting the inside of the 

generator. Here the different components and their functions will be presented. Then in the 

outside, on the face, one will present also the different parts and their corresponding functions.   

 

o Internal structure of the generator. 

 

This new generator is built by using the new type of microcontroller called the ATMEGA 32. 

It has some capacities different to the others. As we have presented in the case of the PIC 

18F4550, this ATMEGA 32 microcontroller has a very high velocity capable to execute the very 

large instructions at the same time. It is easy to program AVR controller [99-100]. With 

appreciable program memory it can satisfy most embedded systems. With various sleep modes it 

can work on mobile embedded systems. Along with 32 programmable Input/output pins, it can 

interface many peripherals easily. With watchdog timer to reset under error it can be used on 



 

systems with no human interference. Figure 3.30 presents the pins image and some basic 

characteristics of this faster microcontroller [99-102].  

 

 

 

Figure 3.30 ATMEGA 32 and some basic characteristics. 

 

The interface electronic circuits of the generator are given in figure 3.31 below with presented the 

electronic circuit blocks used to build the generator.  

 

I/O and Packages 

– 32 Programmable I/O Lines 

– 40-pin  

• Operating Voltages 

– 2.7V - 5.5V for ATmega32L 

– 4.5V - 5.5V for ATmega32 

• Speed Grades 

– 0 - 8MHz for ATmega32L 

– 0 - 16MHz for ATmega32 

• Power Consumption at 1 MHz, 3V, 25⋅C 

– Active: 1.1mA 

– Idle Mode: 0.35mA 

– Power-down Mode: < 1µA 



 

 

Figure 3.31 Electrical circuit schema of the generator.  

 

Figure 3.31 presents the different blocs used to build the generator. In this figure, for the 

left side, the first block is the alimentation, the second are: polarization connexion, pulse with 

modulator, reset bottom and microcontroller. The third one is the circuit of quartz oscillator and 

the Universal Serial Bus keys connexion. The fourth circuit are the blocs of the digital analogical 

converter and the filter oscillator of the converted signal. In the right side, the screen and the two 

identical circuits used to assure the output connexion with the cable to produce the signal to the 

oscilloscope. In Figure 3.32, one presents the real block connexion used to build the generator. 



 

 

Figure 3.32 Electronic circuits inside the generator. 

 

The green block contains the screen and some resistors of protection. The brown one contains all 

the building electrical circuit that we have mentioned before. Around these entire connexions, we 

have the potentiometers and the electrical cables.  

 

o External structure of the generator 

 
We present the image of the external structure and explain the role of each part. Figure 3.33 

presents the special generator.  

          

(a)                                                              (b) 

Figure 3.33 Presentation of the external structure of the signal generator. (a) External power and 

(b) External command. 

 

Particular information related to this generator is that: the two connexions signal can 

function at the same time. In Figure 3.33, we have the direct current power source 5V to power 

the generator. Then on the main box, we have the on-off bottom used to cut and send the 

electrical signal inside the generator. The screen is to visualise the characteristics of the signal 

choice as the Figure 3.34 presented.  



 

 

Figure 3.34 Screen of the generator. 

 

G is the gain of amplitude when the signal is delivered. It can be varied according to the 

intention of the user by using the potentiometer P3.Ts is the frequency of the coming out signal. 

This can also be varied by using potentiometer P2. The type of signal is changed by using 

potentiometer P1. In the signal connexions, there exist two ports. Signals 1 and 2 have three 

output voice which are red, black and green.  The combination of red-black gives the simple 

permanent signal in the one calibrated amplitude. The simple variation in that case is only on the 

frequency. The combination green-black gives the amplitudes and the frequencies variation. 

Some tests and applications of this generator are presented in the following section.  

 

III-4-3-Signals produced by the generator 

 
The aim here is to present the efficiency of the generator. We start first by presenting the 

different tests of the generator in the laboratory. Figure 3.35 presents the tests in the laboratory. 

 

 

 

 

 



 

 
  

                                   (a) 

      
           (b)                                                        (c) 

 

       
                          (d)                                                        (e) 

 

        
(f)                                                            (g) 

 

Figure 3.35: Different time traces of the Van der Pol oscillator and the Lorentz chaotic signal 

(a) generator with the two voices, from (b) to (g) signal coming from Van der Pol 

oscillator(autonomous and excited). 

 



 

Fig. 3.35 (b) presents Van der Pol oscillator mixed. Fig.3.35 (c) presents the chaotic 

dynamics with the parameters taken in Ref [35]. Fig.3.35 (d) presents the small frequency and 

amplitude bursting and Van der Pol (for µ=0.3) oscillations. Fig.3.35 (e) exhibits the high 

frequency and small amplitude of bursting in the states of periodic mixed mode oscillations. 

Fig.3.35 (f) presents the high amplitude of chaotic dynamic and small amplitude and frequency of 

bursting oscillations and Fig.3.35 (g) shows small amplitude of periodic and high one for chaotic 

bursting oscillations.  

 

III-5- Conclusion 

 

In this chapter, we have presented the mathematical results, numerical results, analog 

results through the electronic circuits, microcontroller results of two coupled Van der Pol 

oscillators and built a generator which can be used to power any type of devices. Firstly, we have 

solved analytically delayed coupled Van der Pol oscillators and simulated numerically and 

analogically delayed Van der Pol oscillators. The results obtained were in good agreement. 

Secondly, we have presented the microcontroller simulations of the coupled Van der Pol 

oscillators subjected to disturbances and the results were in agreement with the numerical 

simulations. Thirdly, we have built a generator which produce complex signals and. These 

constitute the main achievements of the thesis.  

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General Conclusion
 



 

The main aims of this thesis were four folds: firstly, to determine experimentally the 

suitable synchronization coupling coefficients of two coupled Van der Pol electrical oscillators 

subjected or not to the periodic excitation. Secondly to use microcontrollers for the digital 

implementation of the control of two coupled Van der Pol electrical oscillators subjected to 

disturbances. Thirdly, to build a generator based on the microcontroller component and some 

different electrical circuits. 

 

Summary of the main results   

 

For the first aim, the question of an experimental determination of synchronization 

intervals in the case of two Van der Pol oscillators coupled unidirectional nonlinear coupling 

function and through a linear coupling with delay has been analyzed. Three states of excitation 

have been considered: autonomous system, excitation with a single periodic signal leading to 

chaos and excitation with two slowly varying sinusoidal components leading to bursting 

oscillations. The synchronization intervals have been determined and it has appeared that they are 

reduced when the degree of the polynomial coupling function increases. Moreover, in general, an 

agreement has been found between the experimental investigation, the numerical simulation and 

the analytical calculation. It has been found that the synchronization time reduces when the 

degree of coupling polynomial increases. In the case of the coupling the delay, the experimental 

results have confirmed the sinusoidal dependence of the critical coupling for synchronization as 

predicted by the theory (analytical and numerical simulations predictions). 

 

For the second aim, the problem of the synchronization of Van der pol oscillators 

submitted to the disturbances using a microcontroller has been considered. Three control schemes 

have been used: linear proportional control, nonlinear proportional control of order n and 

adaptive control function. The synchronization intervals have been found from the numerical 

simulation by plotting the synchronization time. It has been found that the adaptive controller 

shows an infinite range for the control parameters leading to control contrary to the proportional 

controllers which present a very limited range of the control parameters. The implementation 

inside the microcontroller using the software mikroC PRO for PIC has been used. The results 

coming from the microcontroller demonstrate that it is an efficient way to produce and 



 

synchronize self-sustained electrical oscillations. The synchronization intervals have been 

determined from the simulation based on microcontroller and it has been found an interesting 

agreement with the numerical simulation. 

 

Thirdly, from the expertise acquired from the microcontroller simulation of differential 

equation, we have built a generator which produce periodic and chaotic signal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Further Works 

 

In this thesis, some interesting results have been obtained and have opened interesting 

perspectives for the further investigations.  

The further works that could be based on this thesis are: 

 

1. From the experimental studies of the synchronizations of two Van der pol electrical 

oscillators, it should be interesting to study feedback coupled Van de Pol oscillators 

with double delays (master and slave) using analog and microcontroller components. 

 

2. According to the large knowledge acquired in the field of microcontrollers which has 

been permitted to program the DEs, one can program fractional order DEs using 

microcontrollers and use the signal to power a ring of electromechanical systems.   

 

3. Using microcontroller as the experimental component which produce only nonlinear 

effect of the DE and will be associate to the others electrical components of the circuit 

to produce the final signal of the DE.   
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