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to Prof. Christine-Fernandez MALOIGNE who generously took some of their time and
energy at reviewing this work. I am particularly impressed and grateful as well to all
your critics and remarks that contributed to improve the quality of this manuscript
and thus enlighten the work achieved in this research.

I would like to express my greatest appreciation to my thesis supervisor Prof. Alain
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Abstract

Computer-aided diagnosis (CAD) systems are currently at the heart of many clinical
protocols since they significantly improve diagnosis and therefore medical care. How-
ever, designing a CAD tool for early breast cancer detection remains a difficult and
challenging task. In fact, it is hard to conceptualize an expert radiologist’s judgment.
This research work therefore puts forward a hierarchical architecture for the design of a
robust and efficient CAD tool for breast cancer detection. More precisely, it focuses on
the reduction of false alarms rate through the identification of image regions of foremost
interest (dense breast tissues). Adapted strategies for breast cancer pattern identifi-
cation can then be applied in priority. The approach hereby introduced relies on two
macro-steps. Firstly, raw mammographic images are gotten rid of poorly informative
image regions (background and muscle tissues) impairing automatic breast tissue anal-
ysis and cancer signs identification. Then, a more advanced analysis is performed on
the remaining image to characterize dense breast tissues with respect to their density
in order to identify potential cancerous areas.

This PhD manuscript starts with useful insights into mammograms followed by a num-
ber of image processing developments to carry out the two macro-steps mentioned
above.
In the first macro-step, the dynamic range of gray level intensities in dark regions
is stretched to enhance the contrast between tissues and background. This enhance-
ment process favors accurate breast region extraction and suppression of all unwanted
patterns in the background image region. A second segmentation follows background
suppression. Indeed, some muscle tissues regularly tampering breast tissue analysis
remains inlaid in the foreground region i.e pectoral muscle tissues. Extracting pectoral
muscle tissues is both hard and challenging due to mammogram peculiarities such as
the overlap between dense breast and pectoral muscle tissues. In such conditions, even
exploiting spatial information during the clustering process of the fuzzy C-means al-
gorithm does not always produce a relevant segmentation of this image region. To
overcome this difficulty, a new validation process followed by a refinement strategy
are proposed to detect and correct the segmentation imperfections and thus enabling
accurate pectoral muscle region extraction.

The second macro-step is devoted to breast tissue density analysis. To address the
variability issues observed in gray levels distributions with respect to mammographic
density classes, we introduce an optimized gray level transport map for mammographic
image contrast standardization. Despite the lack of a target histogram distribution,
useful parameters can be derived allowing an easier discrimination of mammogram
density classes. Thanks to this technique, dense tissues regions are segmented using
simple thresholding. We prove that the dense region areas computed from segmented
images are highly correlated to density classes from an annotated dataset.
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Résumé

Les outils d’aide au diagnostic sont de nos jours au coeur de plusieurs protocoles clin-
iques car ils améliorent la qualité du diagnostic posé et des soins médicaux. Cependant,
la conception d’outils de détection assisté par ordinateur (OAD) pour la recherche des
signes précurseurs du cancer du sein deumeure une tâche difficile et laborieuse. En effet,
il est difficile de conceptualiser le raisonnement d’un expert radiologue. Ce travail de
recherche met en exergue une architecture hiérarchique pour la conception d’un outil
d’aide à la détection (OAD) du cancer du sein robuste et performant. Il s’intéresse
plus précisément à la réduction des fausses alarmes en identifiant les régions probables
de l’image où les techniques plus adaptées doivent être appliquées pour la recherche
des indices de cancer du sein de manière prioritaire. L’approche ainsi introduite repose
sur deux macro-étapes. L’image mammographique brute est d’abord débarrassée des
régions peu informatives et néfastes à l’analyse automatique des tissus mammaires et
l’identification des indices de cancer. Ensuite, une analyse plus approfondie est réalisée
sur la région de l’image restante pour caractériser les tissus mammaires en fonction de
leur densité en vue de déterminer les zones potentiellement cancérogènes.

Ce manuscrit de thèse commence par fournir des éléments nécessaires à l’analyse des
mammogrames. Ensuite, de nombreux développements autour du traitement d’images
mammographiques sont présentés afin de mener à bien les deux macro-étapes évoquées
ci-dessus.
Concernant la première macro-étape, la gamme dynamique des niveaux de gris des
zones sombres est étirée pour améliorer le contraste entre la région rassemblant les tis-
sus organiques et l’arrière plan. Cette amélioration de contraste permet une meilleure
estimation de la region du sein et la suppression de toute entité superflue présent dans
l’image de fond. Toutefois, un tissu musculaire capable d’interférer avec l’analyse des
tissus mammaires deumeure incrusté dans la region du sein: le muscle pectoral. Son
extraction est à la fois difficile et complexe à mettre en oeuvre à cause de diverses par-
ticularités liés aux vues de mammogrames et son chevauchement avec les tissus denses
du sein. Dans de telles conditions, même en exploitant l’information spatiale pendant
le processus de clusterisation par un algorithme tel que fuzzy C-means ne permet pas
toujours de produire des résultats de segmentation pertinents. Pour s’affranchir de
cette difficulté, une nouvelle étape de validation suivi d’un ajustement de contour est
mis sur pied pour détecter et corriger les imperfections de segmentation afin de produire
une meilleure extraction de la région du muscle pectoral.

La seconde macro-étape est consacrée à la caractérisation de la densité des tissus mam-
maires. Pour faire face au problème de variabilité des distributions de niveaux de gris
constatée en fonction des classes de densités mammographiques, nous introduisons
une modification de contraste basée sur un transport optimisé des niveaux de gris est
appliqué aux images. Cette manoeuvre a pour but d’uniformiser le contraste d’un
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mammogramme à l’autre. Malgré que la distribution cible des niveaux de gris soit mal
connue, des paramètres pertinents peuvent être estimés afin que le transport garantisse
un pouvoir discriminant accru vis à vis des classes de densité. Cette technique per-
met ainsi de segmenter les zones de tissus denses par des méthodes de segmentation
classiques comme un simple seuillage. Nous montrons que la surface relative des tissus
denses estimée à partir des images segmentées est très fortement corrélée à la classe de
densité pour des mammogrammes issus d’un jeu de données étiquetées.
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Chapter 1

General introduction

Breast cancer and need for computer-aided detection

Cancer is a major public health problem worldwide. The number of people suffering
from cancer related pathologies has increased dramatically during these last decades.
According to the World Health Organization (WHO), about 13.7% of the global mor-
tality in 2012 was due to cancer. Furthermore, this rate has an upward tendency and
is expected to exceed 22 millions of deaths by 2030. Among top lethal cancers, breast
cancer appears only at the fifth position of this ranking but it is the second-most
common type of cancer among women.

Cancer mainly arises from damages or mutations occurring on genes which contain the
core information of cell functioning. In fact, cells multiply through cellular division,
grow and die or are destroyed when they can no longer fulfill optimally their role in
an organ. This process is controlled by the genes which ensure a certain equilibrium
between generation and destruction of cells in activity in an organ. However, due
to some unknown factors, a normal cell can slowly and gradually mutate into a pre-
cancerous cell and later becomes a potential malignant cancerous cell. In such case, the
growth process which is controlled by the genes is no longer respected and therefore
results into an anarchic development of aggregated cells called tumor. A tumor is benign
if the cancerous cells stand over and do not tend to invade and destroy surrounding
tissues or organs. In the opposite case, the tumor is said to be malignant.

Current ongoing research efforts attempt to address the problem of cancer symptoms
identification at their very early stage because it has been proved that cancerous le-
sions detected in the early stage can be treated efficiently. The detection process relies
on methods that enable to unveil cancerous tumor activity in an organ. As regards
breast cancer, such signs of cancer activity are masses, microcalcifications and distor-
tions in parenchymal tissues. Various methods have been developed so far to detect
breast cancer including in one hand visual inspection and palpation which are referred
to as traditional methods and on the other hand reactive tests and medical imaging
techniques also known as modern methods.

Traditional methods rely on basic techniques of detecting breast cancer. However,
they constitute the primary examinations often carried out by the patient himself or
the physician before going on for further advanced examinations. The main weakness of
these approaches is their relative low detection rates. Furthermore, when the detection

1



is successful, the disease is most often in a serious and advanced state.

Modern methods take advantage of progress achieved in sensors technology to develop
imaging techniques that can produce image of inner structure of the body. The most
common imaging methods used for breast cancer detection are X-rays imaging, ultra-
sound imaging and magnetic resonance imaging (MRI). Each of these imaging tech-
niques put forward specific aspects of tissues belonging to organs according to their
operating principle. However, among all these imaging methods used for breast can-
cer detection, X-ray imaging i.e mammography, remains the standard method used in
detecting early signs of breast cancer on a screening basis. It is the cheapest one and
easily accessible with moderately complex examinations protocol and is therefore the
most suitable imaging method for screening campaigns.

Mammography is typically used for two purposes: screening and diagnosis. A screening
mammogram is prescribed for women who have an empty breast disease history. A di-
agnosis mammogram is for abnormalities evaluation in women experiencing symptoms.
In this case, a particular view or region of the breast may be preferred.

Regarding screening mammogram, it consists of two views of each breast i.e one cranio-
caudal (CC) view and one medio-lateral oblique (MLO) view. The objective of such
a strategy is to minimize as much as possible the chances of cancer signs occultation
that can occur with tissues overlapping. However, MLO view is most preferred view
by radiologists since it allows a better projection of breast tissues with less overlapping
than the CC view.

Once the mammograms have been produced, they are to be analyzed by expert radi-
ologists. The detection method is mainly based on human eye inspection. It consists
of careful scrutiny of mammograms in order to identify suggestive patterns featuring
breast cancer. Such an approach produces good results provided that the radiologist
is given good quality images and enough time to visually analyze these latter. In prac-
tice, such conditions are rarely met especially during screening campaigns where a huge
amount of mammograms are generated and are to be analyzed by few radiologists in
a given timescale. In such conditions, sometimes, radiologists may experience fatigue,
stress, dazzle and oversight or may have to deal with poor quality image and make
radiologists dubious with their own diagnoses. The consequences of an incorrect diag-
nosis are of important consequences for the by patients. In general, it induces either
carelessness or anxiousness to the patients or additional expensive examinations.

To reduce the chances of incorrect diagnosis, double reading has been recommended.
The drawback of this approach is the increase of radiologists’ workload while it is
already difficult to have at disposal two expert radiologists at the same place. Computer
aided diagnosis (CAD) has been recently introduced to reduce radiologists’ workload
while improving significantly the accuracy of their diagnoses. CAD is a system based
on artificial intelligence whose output coming from a computerized analysis of medical
images is used by radiologists as preliminary opinion in detecting lesions or symptoms
patterns and diagnosis making.
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Chapter 1. General introduction

Problem studied in this research work

CAD systems have drawn much attention to both researchers and radiologists during
past years because of the joint research challenges and potential clinical applications.
It is under this scope that the work carried out throughout this PhD thesis has been
done. A deep analysis of the literature reveals that the performances of CAD systems
introduced to date suffer from many limitations. Several issues are still to address in
CAD systems in order to come up with an effective one with comparable performances
to human expertise.

In fact, most CAD systems are designed to process either a whole mammogram or
a ROI. However, as mammogram is concerned, it is made of a mixture of tissues
regions and some of these regions do not contain any valuable information for cancer
sign search. More precisely, some examination notes and artifacts may be found on
a mammographic image. These patterns and poorly informative image regions can
be seen as parasite information harmful for an automatic breast tissue analysis and
cancer pattern recognition since they can only induce waste of computation resources
and increase of false negative rates.

Another aspect influencing CAD system performances is inherent to the nature of
mammograms. Indeed, mammogram is a 2D projected image of a 3D compressed
and deformed object. In addition to tissue overlapping producing patterns resembling
or altering the appearance of real lesions, tissues shifts induce deformation in shape of
masses or distribution of microcalcifications which are important parameters for cancer
malignancy assessment.

Nowadays, many imaging methods are available and easily accessible. Each of them
put forward some specific aspects of tissues of an organ and provide complementary
information in comparison to others. A proper integration of complementary informa-
tion derived from many imaging sources will enable to improve the accuracy of CAD
tools. However, the prime impediment to overcome is to represent the various image
modalities in a common reference space. This difficulty, related to the image modality
acquisition principle, constrains most CAD systems to mono-modal usage. In fact, the
severe compression applied to breast during mammogram acquisition makes it hard to
jointly use this imaging modality with other imaging methods such as ultrasound or
MRI where almost no compression is applied.

Finally, early signs of breast cancer i.e microcalcifications or masses are hardly visible
on mammographic images by untrained eyes. Worse than this, these cancer signs have
similar texture appearance as dense breast tissues and are located within these tissues
most of the time. Looking for cancer signs in such conditions is tedious and complex to
carry out even for expert radiologists. On the other hand, medical research studies have
shown that women with dense breast tissues have four to sixfold higher breast cancer
risks. Besides being an index for cancer risk, mammographic density also implies a
higher lesion misdetection risk due to masking by dense tissue and it justify additional
computation efforts for advanced analysis.

From the above analysis, it can be noticed that there are still several difficulties and
obstacles to address in order to build up a robust and highly accurate CAD tool for
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breast cancer detection. In this work, we intend to assess mammographic density
in order to facilitate and improve the cancer sign identification task. We therefore
adopt a multi-stage strategy to efficiently handle the different peculiarities found in
a mammogram that are harmful for the automatic analysis of breast tissue density.
In this manuscript, we present a coarse to fine strategy for mammographic density
analysis and cancer risk scoring. From raw mammograms, we start by suppressing
poorly informative image regions in a fully automatic manner to subsequently address
the issues of breast dense tissues segmentation and density assessment.

Contributions of this thesis

The goal of the research work developed in this manuscript is twofold. First of all,
we provide methods allowing the identification of mammographic image regions with
a very small probability to contain potential cancerous patterns. Second, we introduce
a procedure allowing an estimation of breast density to identify high risky population
for prioritized medical care. To successfully address the problem of mammographic
density assessment, other issues need to be solved. Our contributions lie in several
improvements at various steps of this work and can be summarized as follows:

� The first contribution of this thesis is the implementation of a simple, fast and
unsupervised approach for accurate suppression of background in mammogram.
We first applied an enhancement technique to mammogram to improve boundary
identification. Then, follows image segmentation with a boundary refinement
strategy to correctly delineate breast image region.

� The second major contribution deals with an ad-hoc strategy to automatically
identify and segment out the pectoral muscle which appears in MLO view mam-
mograms. It relies on two main steps:

– a coarse prediction of pectoral muscle boundary,

– a validation of the estimated boundary followed by an iterative contour
refining to improve extraction performances.

� Another contribution of this work is the introduction of a mammogram contrast
standardization procedure to address the issue of contrast variability which makes
ineffective the use of classical segmentation methods to estimate dense breast tis-
sue proportion in mammographic density assessment. Besides providing a cancer
risk index, such an approach helps identifying highly probable cancerous regions
i.e dense tissue regions where further investigations for cancer signs should take
place.

Organization of dissertation

The manuscript is organized in four chapters whose highlights are summarized in the
following paragraphs.

Chapter 2 provides an overview on breast cancer as well as the background on mam-
mography and discusses CAD performances and presents possible directions for CAD
performance improvement. It also presents the difficulties and challenges to overcome

4



Chapter 1. General introduction

for an automatic breast cancer sign detection and then introduces a broad algorithmic
architecture for mammogram analysis in a step-by-step approach.

Although the core problem in this work is image partitioning (more specifically dense
breast tissue segmentation), an effort was made to develop tools for mammogram visual
understanding allowing characterization of image regions in raw mammogram in order
to first of all suppress parasite regions prior to a discriminating analysis of breast tissues
with respect to tissue density.

Chapter 3 and 4 present the algorithms introduced for parasite image regions (back-
ground and pectoral muscle) suppression. The strategies developed to tackle each of
these image region extraction globally follows the same methodology. A rough estima-
tion of the region of interest is firstly done using clustering techniques, then follows
a refinement strategy based on search path technique to produce accurate extraction
results of the given image region. However, in the case of pectoral muscle extraction, to
accurately address some difficulties such as non uniform gray level distribution in this
image region, the classical fuzzy c-means algorithm was modified so that it initializes
at robust region modes and includes spatial information in the clustering process in
order to produce better segmentation results.

The second part of this work is mainly devoted to mammographic density analysis.
Chapter 5 first presents the general facts on breast density and establishes the rela-
tionship that exists between breast density and cancer risk. Then follows a review of
image features used in breast tissue type description and various methods introduced
so far in the literature for assessing mammographic density. Finally, to address the
contrast variability issues observed in mammographic images, we present the contrast
standardization procedure allowing an effective estimation of dense breast tissue pro-
portions through a segmentation by a simple thresholding method.
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Chapter 2

Breast cancer and screening
process: Overview
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2.1 Introduction

Breast cancer is considered as a major worldwide public health problem. The number
of cases diagnosed in western countries as well as in developing ones has risen up
dramatically during these last decades. In response to this issue, some efforts have been
made to understand the risk factors of this disease though its origins are still unclear.
The only way to increase and guarantee better healing chances is to detect this disease
at its early stage. The development of medical imaging has significantly improved
detection rates of pathologies and therefore enhanced medical care. Among all imaging
techniques used for breast cancer detection, X-ray imaging remains the most commonly
used one. Breast X-ray imaging is frequently called mammography. This imaging
method is widely used in screening campaigns organized in many countries to facilitate
the early detection of breast cancer. Consequently, the amount of images generated by
usual diagnosis processes and screening campaigns are increasing continuously while the
number of radiologists able to analyze such images does not increase at the same rate.
Computer Aided Diagnosis (CAD) has therefore been introduced to provide radiologists
with artificial intelligence tools allowing to reduce their workload significantly.
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2.2. Overview on cancer

Figure 2.1: Anatomy of a breast gland having a cancer (Tumor)

2.2 Overview on cancer

According to World Health Organization (WHO) statistics, cancer is a major cause of
death worldwide. It was the cause of 8.2 million fatalities in 2012, which represented
about 13.7% of the global mortality worldwide [1]. The number of deaths caused by
cancer will continue to increase in the future and is expected to exceed 22 millions in
2030 [2, 1].

The main lethal cancer types are:

� Lung cancer (1.59 million of deaths),

� Liver cancer (745 000 of deaths),

� Stomach cancer (723 000 of deaths),

� Colorectal cancer (694 000 of deaths),

� Breast cancer (521 000 of deaths).

Breast cancer affects almost exclusively women whereas the others occur in both gen-
ders. It is the second-most common type of cancer among women [3].

Cancer generally arises from a single cell. The transformation from a normal cell into a
cancerous one is a slow and long process that takes place in multiple stages across time.
Usually, a cell undergoing pre-cancerous lesions turns into a potential malignant cancer
cell. Cancers arise when the mechanisms of the cellular division which is controlled by
the genes are no longer respected. The growth process is completely out of control and
results into an anarchic development of aggregated cells called tumors. Figure 2.1
shows an illustration of breast gland anatomy with a tumor located in the upper region
of the gland between subcutaneous fat and gland lobules. Malignant cancerous tumors
grow up, invade and destroy all surrounding normal tissues. A tumor is non-cancerous
(benign) if the tumor stands over and does not tend to invade surrounding tissues.
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The causes of pre-cancerous lesions are related to genetic, physical, chemical and bi-
ological factors. In most cases, cancerous cells appear because of unexpected gene
mutations. These mutations are due to external factors such as: smoking, overweight
or obesity, low fruit and vegetable diet, physical inactivity, alcohol, sexually transmit-
ted diseases (like human papillomavirus HPV infection), urban air pollution or smoke
inside houses produced by faulty heating systems.

Today, a large amount of on-going research efforts address the problem of cancer symp-
tom identification at very early stages. Studies have shown that only cancerous lesions
detected in their early stage can be treated efficiently. Therefore, cancer mortality can
be significantly reduced if detected or diagnosed early enough. The detection consists
in looking for abnormalities featuring a particular cancer inside a population at risk
before the disease becomes too grave for quick medical care and treatment.

Depending on the location of the cancerous cells, the detection methods may vary
from one cancer type to another. In general, the detection process relies on methods
which help to shed light on the activity of cancerous tumors inside an organ. In the
case of breast cancer, such signs of activity usually appear as masses1 or irregularities
observed in the tissues. More precisely, some thin spots in mammograms corresponding
to microcalcifications2 can be found.

Various detection methods have been developed. The detection can be done by visual
inspection, palpation, reactive tests or modern medical imaging methods. All these
detection methods generally require a good interpretation of the physician which is
often subjective. For these last two decades, cancer detection is a prominent topic
in the field of medical imaging. A physician’s diagnosis can be incorrect due to the
differences in appearance of images from one patient to another or to the variability
of parameters of imaging acquisition systems. Consequently, it becomes difficult to
guarantee a relevant diagnosis for all patients. For these reasons and according to the
difficulties to face, an appropriate image processing algorithms are needed.

2.3 Screening process

Some types of diseases can be detected before theirs symptoms come to light. Checking
for a disease within a group of asymptomatic (apparently healthy) people in an attempt
to detect a disease as early as possible is called screening. In the case of breast cancer
screening, the precursory signs to track are microcalcifications which are tiny deposits
of calcium resulting of pre-cancerous cells activity. Their identification therefore con-
stitutes the early diagnosis. The goal of this process is to detect as soon as possible
the beginning of the disease and apply specific treatments which have been proved to
be more efficient at this stage of the disease.

1Cysts formed by fluid or solid entities in breast tissues
2small calcium mineral deposit in the breast tissue. Microcalcifications are of size less than 1/50

of an inch, if they are greater than this, they are called macrocalcifications
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2.3. Screening process

2.3.1 Definition

The screening process aims at the identification of a disease or an unknown illness by
applying tests, examinations or other detection procedures that are efficient, simple and
easy to carry out. Screening is therefore a search operation within a target population
that does not present prior symptoms of a disease before the symptoms of this latter
become obvious.

To build up a screening tool, it is necessary to have a good knowledge of the detection
procedure. Also, screening campaigns are very expensive and can be afforded only if
the target disease has a major impact on the public health in the society.

2.3.2 Efficiency of screening

A screening process is efficient if it allows to completely detect the precursory signs of
a disease when it can still be treated. To be efficient, detection methods should:

� identify every early signs of the disease,

� produce similar diagnosis to that of physician or at least allow him to quickly
perform his diagnosis.

As regards cancer, the goal of the screening process is therefore to unveil the activity
of cancerous cells in their early stage.

In the case of breast cancer, precursory signs such as microcalcifications are often very
subtle and hardly discernible to untrained eyes. There are different types of screening
tests. The most common ones are:

� Physical examination which consists in a general examination of the body looking
for signs of illness like nodules or anything that sounds abnormal. The medical
history must also be taken into account.

� Biological or histological tests which aim at analyzing tissue samples, blood, urine
or other substances of the body.

� Imaging methods which consist in acquiring and analyzing internal images of
body parts.

� Genetic analysis that aims at looking for genetic mutation responsible for partic-
ular types of cancer.

It should be noted that a detection procedure is not always risk free. For instance,
long and repetitive exposure to X-rays can cause cancer. Some tests likes biopsies can
induce pain, bleeding and create some complications. It is therefore noteworthy to
know the risks and the danger of a screening test to which a patient is exposed before
applying it.

Besides, a radiologist’s diagnosis can be incorrect due to external factors (fatigue,
overseeing, stress, etc.) or poor image quality. Erroneous diagnoses are divided in two
sub-categories:
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(a) (b) (c)

Figure 2.2: Common signs of breast cancer: (a) masse, (b) microcalcifications, (c) distortion
in parenchymal tissue.

� False Negative (FN) diagnoses, when patients having the disease are declared
unaffected by the disease after the detection procedure. The consequences of
such diagnoses are that further medical visits are often postponed even though
the symptoms of the disease are coming out.

� False Positive (FP) diagnoses, when patients have been diagnosed as having the
disease but are healthy. Such diagnoses usually induce additional and expensive
examinations tests which make patients becoming very anxious.

2.4 Breast cancer screening methods

The screening methods developed so far to address breast cancer detection are in general
goal oriented. Related information as risk factors, heredity, weight, menopause, number
of child deliveries, contraceptive usage, alcohol, cigarette and so on are in general not
of prime interest but attention is paid on breast gland examination through visual,
manual or image analysis. The main purpose of this process is to state whether a
patient is potentially having the disease or not before carrying out further examination
that may enable to produce a more complete diagnosis. Typical signs commonly put
forward in the detection of breast cancer are skin change, presence of nodule inside
the breast, microcalcifications, masses and distortion in parenchymal tissue. The three
latter which are the most important indices tracked in the field of image processing for
breast cancer detection are depicted on figure 2.2.

The detection methods of breast cancer can be sorted into two main groups:

� traditional methods which consists of visual inspection and manual palpation,

� modern methods that, in particular, encompass medical imaging techniques.

2.4.1 Traditional methods

These methods correspond to examinations usually carried out during clinical analysis
either by the patient himself or by a physician. Visual inspection is the preliminary
approach used in traditional methods. It enables to appraise any change on the skin,
nipple, shape of breast gland or discharge.
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2.4. Breast cancer screening methods

Palpation consists in a haptic examination of the breast in a preferential position. De-
spite that this approach seems basic, it is an important step for breast cancer detection.
Some studies have revealed that 10% of the tumors detectable in this way do not show
up on mammograms.

In the mean time, the main weakness of traditional methods is their low detection
rates. Furthermore, when the detection is successful the cancer is rather in a serious
and advanced state.

2.4.2 Modern methods

Modern methods mainly refer to medical imaging techniques. Recent progress in sensor
technologies have enabled to develop imaging methods that can produce images of the
inner structure of a body. Medical imaging therefore allows to show the composition
and structure of the soft tissues of an organ. The most common imaging techniques
used for breast cancer detection are X-ray imaging, magnetic resonance imaging (MRI)
and ultrasound imaging also known as echography.

X-ray imaging uses a low-dose of X-ray radiations to produce a picture depicting the
inner constitution of a body or material. The image is produced from various levels
of attenuation undergone by X-rays which are related to the physical properties and
density of objects they passed through.

Ultrasound imaging uses ultrasonic sound waves to create a picture of a body they
reflect on. The particularity of this imaging method is to give information on some
physical properties of the body. For instance, it allows to distinguish whether a lump
is solid or filled with fluid. A cyst is a fluid-filled benign vesicle whereas solid masses
may be cancer.

Magnetic resonance imaging uses a powerful magnet linked to a computer to produce
a detailed picture of a body section. This examination enables to reveal the internal
functional structure of many organs.

Each of these methods put forward specific aspects of tissues belonging to organs
according to their operating principles. However, each of these imaging methods have
some limitations. The choice of a given method is therefore based on criteria such as:

� cost of the imaging device and examinations,

� availability of radio-technicians and expert physicians able to analyze such im-
ages,

� efficiency of the imaging method to detect the disease,

� examinations prerequisites.

Among all these medical imaging methods used for breast cancer detection, X-ray
imaging remains the standard method used in detecting small tumors on a screening
basis. It is the cheapest one with moderate complexity owing to examination protocols.
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It should also be noticed that the two other imaging methods may be used along with
mammography.

In this work, the algorithms for breast cancer detection will be developed and tested
only on mammographic image databases. The next section introduces X-ray imaging
for breast cancer detection and reviews the principle of mammogram acquisition and
analysis.

2.5 Mammography

Mammography is a medical imaging method that is based on X-rays emission to pro-
duce an image of the inner structure of the breast. Mammograms i.e X-ray images
therefore provide a possibility of discovering abnormalities inside breast glands. Mam-
mography is thus a relevant modality for early breast cancer detection as part of screen-
ing campaigns because it is cheap and easily accessible. In addition, its examination
process is simple and fast as compared to other imaging types and requires almost no
special conditioning for patients.

Mammography is typically used for two purposes: screening and diagnosis. A screening
mammogram is ordered for women who have an empty breast disease history. It consists
of two views of each breast. A diagnostic mammogram is for evaluation of abnormalities
in women experiencing symptoms. In this case, a particular view or region of the breast
may be preferred.

2.5.1 Mammography principle

Mammography is a specific type of imaging that uses a low-dose X-ray system to exam-
ine the breast gland. X-rays is a form of electromagnetic radiation with wavelength in
the range of 0.001 to 10 nanometer (nm) and energy in the range of 100eV to 100keV .
This radiation can go through a solid object and enables to reveal the inner structure
of this object thanks to the various levels of attenuation undergone by X-rays. During
mammogram acquisition, the breast is firmly compressed between the film holder and
a rectangular plastic paddle. The compression can be uncomfortable but it is essential.
First of all, it minimizes the movement of breast tissue during acquisition in order to
lower blur effect on the mammogram. Secondly, it reduces the thickness of the breast
to create uniform density and minimizes tissue overlapping to produce good quality
images. Finally, it allows a lower exposure time and radiation dose to undergo for the
patient while producing a detailed image.

The intensity of X-rays that cross a human body and reach the film depends on the
physical property and density of materials the body is made of. The intensity of a ray
that reaches the film is given by the following equation:

I(x) = I0 exp
(
−
∫ x

0
η(t)dt

)
(2.1)

where I0 is the initial intensity of the emitted X-rays, η(t) is the function representing
the X-ray attenuation when crossing a material of depth t. The intensity variations
on the film produce an image revealing the inner constitution of the body. Image gray
level values are obtained by integrating I(x) over a span of time called exposure time.
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Figure 2.3: Mammography acquisition principle

(a) (b) (c)

Figure 2.4: Type of mammographic image formats. (a) two mammographic films hanged on
a ligth-box for reading purpose, (b) digitized version of a screen-film mammogram, (c) digital
mammogram

During the mammography examination, breast is squeezed between the paddle and a
plate placed under the breast which is made of a cassette containing the film where the
resulting picture is formed. The X-rays crossing a human body can either be impressed
on a film to produce a mammogram or be sensed by a CCD (couple charged device)
and stored on a computer as a digital mammogram. Figure 2.3 shows a mammography
machine and illustrates its operating mode.

2.5.2 Mammographic image formats

As previously mentioned, mammograms are nowadays available into two main formats:
screen-film mammograms (SFM) and digital mammograms (DM). Figure 2.4 shows
typical mammographic image formats. It should be recalled that the same acquisition
technique is applied to obtain both image formats and only differs in their recording
medium. However, image format may increase or reduce complexity in the automatic
analysis of mammograms. The subsequent paragraphs first introduce each of mam-
mographic image format and then discuss their relative advantages and disadvantages.
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Screen-film mammogram

Screen-film mammographic images are obtained with radiographic techniques using
single-emulsion film to produce high resolution images which are read on intensifying
screen (light-box). This technique enables to produce fine image quality at low radiation
exposure level. Figure 2.4(a) shows two SFM views (CC and MLO) hanged on a light-
box for reading purpose. The light-box is used to enlighten the mammogram in order
to magnify the contrast for better visualization of breast structures. This image format
has always been considered as the gold standard for breast cancer detection.

It should be noticed that mammographic images in this format need to be digitized
prior to their processing with CAD tools. An example of digitized mammogram is
shown in figure 2.4(b). The digitization process is a simple mean to produce suitable
image format for CAD. However, it should be noticed that the image quality of this
image format type is subject to degradation across time. Several defects can alter the
image quality such as super-impression from exposure to radiations due to poor storage
conditioning, scratches from damage occurred on the film or failure during digitization
process. All these defects, produce undesirable patterns on the digitized version of the
mammographic image which, in return, increase processing burdens with noticeable
effects on CAD system performances. These issues are discussed in the last paragraph
of this subsection.

Digital mammogram

A digital mammography is a unit that takes advantage of sensors to directly produce
mammogram in digital format from X-rays that have crossed the breast gland. Fig-
ure 2.4(c) shows an example of DM mammogram. According to the sensor technology
used, digital mammography can be subdivided into two main groups: computer radio-
graphy (CR) and direct radiography (DR).

Computer radiography can be considered as an adaptive technique designed to produce
a digital mammogram from SFM mammography unit. In fact, in this technique, the
emulsion-film contained in the cassette of the SFM device is replaced with a photo-
luminescent plate. During the acquisition process, the latent image produced on the
photo-luminescent plate is then digitized with a special equipment which uses a laser
ray to read the latent image in order to produce a digital version of this latter. The
advantage of such a technology is that both mammographic image formats are basically
produced from the same mammography unit though an additional device is needed to
produced the final digital mammogram.

Direct radiolography is also known as full field digital mammography (FFDM). In this
type of mammography unit, the cassette is simply replaced with a CCD sensor device
that directly records the mammographic image in digital format. It should be noticed
that there is no significant difference in mammographic images produced with CR and
DR technique. The level of performances achieved by each of these image techniques
are almost the same in terms of image quality and cancer detection rates. Nevertheless,
acquisition complexity and maintenance issues due to use of additional equipment in
CR are real disadvantages in comparison to DM.
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Screen-film versus digital mammography

Screen-film and digital mammography each have certain strengths and weaknesses.
A clinical study on this topic was carried out by Faridah [4] in order to assess and
compare their performances in breast cancer detection. A good review on this concern
was introduced in [5]. It is clear that differences in imaging acquisition systems and
usage constraints enlarge the panels of comparison criteria. In this work, instead of
carrying out a comprehensive comparison between SFM and DM, we rather summarize
the important findings reported in the aforementioned publications which are relevant
to the present discussion. These findings can be gathered into the following scopes:

� clinical point of view,

� image quality and contrast,

� image manipulation and storage,

� impact on CAD system.

Clinical point of view: From 10 studies reviewed in [5], only two reported a lower
cancer detection rates for DM whereas the all subsequent studies have shown higher
detection rates for DM. However, this higher detection rate is achieved at the cost
of higher recall rates. As a result, there is no significant difference in the positive
predictive value between DM and SFM. On the other hand, it was found that the
overall diagnostic accuracy of both technologies in detecting breast cancer was similar
[6, 7]. Nevertheless, the DM was found to be more accurate in women under 50, women
with dense breast and, in premenauposal and perimenauposal women [6]. This is likely
due to the wide dynamic range of DM that offers an advantage over SFM. Finally,
the most noticeable findings from these clinical studies were a non significant lower
cancer detection rate and a significantly lower recall at DM. It was also reported that
there is no significant difference in diagnostic performance between SFM and DM. In
conclusion, these clinical trials have shown that the overall diagnostic accuracy levels
on current digital and screen film mammograms are similar when used in breast cancer
screening [6].

Image quality and contrast: The breast is a difficult organ to image as it consists
of tissues of various densities and whose amount vary in different women with age. SFM
has a high spatial resolution of approximately 16 lines per mm which enables detection
of fine structures such as microcalcifications. The spatial resolution of DM is limited
by the size of the CCD array. However, this is compensated in DM by the increased
contrast dynamics which enhances its ability to visualize small high contrasted structure
such as microcalcifications [8]. As compared to SFM, digital systems exhibits a greater
dynamic range enabling a better visualization of dense breast tissue, chest wall and the
peripheral area of the breast in comparison to screen-film systems.

Unlike SFM in which higher radiation dose produce darker images that are clinically
less desirable, DM actually improves the ability to visualize low contrasted structures
in the breast. Moreover, because of the difference in thickness and breast consistency,
the technologist may fail to determine the optimal settings which could as result yield a
poor image quality. In addition, advancement of digital imaging now allows new tech-
niques of breast cancer detection such as use of contrast agent (iodine-based) which
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(a) (b) (c)

Figure 2.5: Projection angle of mammogram views. (a) Cranio-caudal projection, (b) Medi-
olateral oblique projection and (c) Lateral median projection

significantly magnifies the post-contrasted images and other geometric image opera-
tions.

Image manipulation and storage: DM provides opportunities for image post-
processing whereas with SFM, an image that has been under/over exposed will lose
its diagnostic quality and/or would need to be repeated. DM enables to easily delin-
eate soft tissues especially subcutaneous fat which is not well seen in SFM. However,
radiologists need workstation monitors to fully utilize the ability to manipulate DM
images. On the other hand, they need training in order to familiarize themselves from
hard copy to soft copy reporting.

In terms of image archival, storage and retrieval, it clearly appears that DM bet-
ter conserves image quality as it is not subject to any damage due to poor storage
conditions as it is often the case with SFM. In addition, DM offers several potential
benefits as compared to SFM such as elimination of technical failure, recalls, simplified
archival, transmission of images, higher patient work-flow, improved diagnostic accu-
racy especially in dense breast parenchymal tissues due to higher contrast resolution,
implementation of straightforward coupling with CAD and tomosynthesis and potential
for tele-mammography and tele-consultation [5].

Impact on CAD systems: DM are directly obtained in digital format and need
almost no pre-processing prior to their use in CAD tools. Although DM offers more
flexibility in terms of image storage archival and retrieval, this image format is still not
widely available. On the other hand, screen film mammograms must be digitized prior
to their use in a CAD tool. Moreover, some additional pre-processing may be required
to handle undesirable patterns due to digitization failure or damages occurring on films.
For these reasons, in presence of these two image formats, digital mammograms will be
preferred over screen film mammograms for computer aided detection of breast cancer
[2]. Nevertheless, the CAD tool wrought out in this research work was developed and
tested on a publicly accessible database of digitized mammograms.

2.5.3 Mammographic views

During mammography examination many views of mammograms can be realized for
each breast. Depending on the projection angle between the X-ray source unit and the
vertical direction (head to toe), three main views are distinguished. Those views are
illustrated on figure 2.5 and are referred to as follows:
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(a) (b)

Figure 2.6: Mammographic images obtained under different projection angles of the X-rays
system. (a) Cranio-caudal view, (b) Mediolateral oblique view.

� Cranio-caudal (CC) view: This view is obtained with the cone beam oriented
downward in the vertical direction in such a way that the angle between the
vertical direction and the X-rays system tends to 0◦ (see figure 2.5(a)).

� Medio-lateral oblique (MLO) view: this view is obtained with the cone
beam of X-rays oriented in the direction parallel to the pectoral muscle so that
the angle between the direction of projection and the vertical axis is from 30◦ to
60◦ (see figure 2.5(b)).

� Lateral Median (LM) view: this view is obtained with the cone beam of the
X-ray unit oriented in the perpendicular direction to the vertical direction from
head to toe (see figure 2.5(c)).

The CC view is quite simple in realization in practice but the MLO view is more toil-
some for lab technologist and patient due to orientation angle of X-rays system and
patient’s breast positioning between compression plates. Typical images obtained dur-
ing mammography are represented on figure 2.6. Figure 2.6(a) depicts a CC view while
figure 2.6(b) shows a MLO view. LM view is usually used in diagnostic mammograms.
Regarding screening mammograms, these latter are usually prescribed to women who
are most likely to develop breast cancer. It consists of two views of X-rays images of
each breast (one CC view and one MLO view). The objective of such an approach
is to minimize as much as possible the chances of obstruction of breast cancer signs
that can occur with overlapping tissues. However, the MLO view is mostly preferred
by radiologists since it produces a better projection of inner breast tissues with less
overlapping than the CC view. In the sequel of this work, the approaches discussed
or introduced assume that mammograms are exclusively MLO views unless explicitly
stated otherwise.
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(a) (b)

Figure 2.7: Example of breast cancer signs identified in mammograms. (a) manually cir-
cumscribed mass with a bold black ellipse, (b) microcalcifications appearing as bright spots
in the focused ROI.

2.5.4 Mammogram limitations

Screening mammograms are performed to detect breast cancer in its early stage and to
guarantee medical care efficiency. Once mammograms are performed, they are to be
analyzed by an expert radiologist. This latter looks for suggestive patterns of breast
cancer. Figure 2.7 shows MLO views of mammograms where areas containing suspi-
cious signs of cancer have been manually delineated. Such patterns in mammographic
images that must draw a radiologist’s attention are masses (figure 2.7(a)), microcal-
cifications (figure 2.7(b)) but also distortion or asymmetry in parenchymal tissues.
However, early signs of breast cancer are hardly visible on mammographic images by
untrained eyes. The difficulty in identifying cancer signs is due, in general, to their
similarity in textural appearance to that of dense tissues.

Besides, mammography has intrinsic limitations impairing analyses aiming at detecting
cancer signs. First of all, a mammogram is a 2D image of a 3D compressed and
deformed object. Breast tissues overlapping are likely to produce suspicious patterns
or alter the appearance of real mammographic lesions [9]. Breast tissues shift during
compression resulting in deformations in shape of masses or microcalcifications foci
which are important parameters in the assessment of breast cancer malignancy. More
specifically, the occlusion of cancer signs are due to the fact that in most cases they
are located within dense tissues.

Moreover, a major inconvenience of mammograms is their low contrast [10]. Conse-
quently, edges and boundaries of regions are less discernible. As a result, when two
regions that are close in texture appearance overlap, as it is often the case of dense
tissues with masses or microcalcifications, these latter become hard to identify. Radi-
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ologists may fail to produce accurate diagnoses in such situations.

Also, the deformation undergone by breast during mammogram acquisition makes it
difficult to spatially localize entities in the breast. This results in unnecessary biopsies
when analyzing suspected areas identified in mammogram.

Another difficulty pertaining to mammography is the impossibility for medical staff to
produce images with identical quality from one patient to another because of differences
in their breast consistency. Consequently, cancer signs are slightly different from one
image to the other and thus require more attention of radiologists or robustness of
CAD tools to handle all these disparities successfully.

Finally, some studies [11, 12] have shown that mammography analysis is subject to
false positives as well as false negatives, causing a high proportion of women without
cancer to undergo further clinical evaluation or breast biopsy, and some other women
to miss the best time interval for cancer treatment.

2.6 Visual breast cancer detection

It should be noted that masses and microcalcifications are detectable with the help
of mammography long before they become clinically palpable [13]. For this reason,
mammography is considered as a valuable screening procedure that can detect breast
cancer early. The detection of breast cancer is mainly based on an interpretation
and analysis of medical data (imaging, personal information, medical history, etc. . . ).
Although the risk group of a patient can be easily derived from personal data, the most
difficult task in breast cancer detection is to analyze a mammogram and state whether
this latter contains suspicious patterns of breast cancer or not. Two approaches of
image analysis are to be considered in this particular case: human eye inspection and
CAD analysis.

2.6.1 Human eye analysis

As previously mentioned, visual analysis consists of scrutinizing a mammogram in
order to identify patterns featuring breast cancer. This approach yields good results
provided that the expert radiologist is given good images and enough time to visually
analyze mammograms. In practice, these conditions are not always met, especially
during screening campaigns where a huge amount of mammograms are to be analyzed
by few radiologists in a given timescale. In general, analyzing mammograms in such
conditions induces fatigue, stress, oversight which in turn alter radiologists’ diagnoses.
A complication comes from the uncertainty of radiologists in their own judgements.

As mentioned before, incorrect diagnoses may have serious consequences. For healthy
ones, it creates anxiousness and they start a long and expensive examination process
to finally find out that they have no cancer. Conversely, it creates in non-healthy pa-
tients carelessness which leads them to postpone all examinations (even those normally
scheduled) to later discover they have cancer in an advanced stage.

To reduce the chances of incorrect diagnosis and thus the proportion of missed cancers,
double reading of mammograms has been advocated [14, 15]. However, retrospective
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studies of mammograms have shown in one hand a high disparity in results with pre-
vious reading and, on the other hand, an increasing number of missed tumors [9]. In
addition, double reading increases radiologist’s workload.

2.6.2 CAD image analysis

The goal of CAD approaches is to reduce radiologist workload and improve the accuracy
of their diagnoses especially during screening campaigns. They consist in developing
algorithms that can perform a defined task; that is, analyzing a mammogram with
or without a human interaction. All approaches developed in this domain rely on
digital image processing. The image analysis algorithms developed in CAD systems
aim at extracting relevant patterns in mammograms or analyzing patterns identified
by an experienced radiologist. Relevant reviews and recent advances on breast cancer
detection and diagnosis using mammography can be found in the following works [2,
9, 16].

Computer aided diagnosis can be defined as a diagnosis that is made by a radiologist
who uses the output from computerized analysis of medical images as a preliminary
opinion in detecting lesions or symptom patterns [17]. It is an artificial intelligence tool
that has recently been introduced to reduce radiologists’ workload while improving their
diagnoses [18]. CAD is a class of approaches that integrates imaging with, computer
sciences, image processing, pattern recognition, and artificial intelligence technologies
[16]. In the past years, CAD systems have drawn much attention of both researchers
and radiologists because of joint research challenges and potential clinical applications
[2]. The number of papers published on CAD issues illustrates the level of interest
carried on this area of research.

The main issues addressed in related works reported in the literature deal with microcal-
cifications detection [19, 20, 21, 22], masses detection [23, 24, 25, 26, 27], parenchymal
distortion [28, 29, 30], microcalcifications foci reconstruction [31] and more recently,
breast tissue characterization [32, 33, 34, 35]. Another issue in the literature that
authors attempted to tackle deals with the classification of suspicious areas in breast
into benign and malignant groups [19, 36, 37, 38, 39]. All the methods introduced
in these publications have been developed in order to improve CAD tools for breast
cancer detection. Although, they have met various degrees of success, none of them
can claim to have entirely solved all mammogram visual understanding problems. This
topic remains thus a vivid research topic.

The performances obtained by CAD systems are promising since they drastically reduce
radiologists’ workload and are reasonable alternative to double reading. Although
modeling expert radiologist reasoning seems hard and complex to conceptualize, CAD
systems use artificial intelligence approaches in an attempt to produce similar level
of image understanding to that of radiologist or better. To achieve this task, a CAD
system usually resorts to data annotated by radiologists. Based on a radiologist analysis
procedure of a mammogram, one can derive two main steps in designing a CAD system:

� localization and delineation of suspicious area or region of interest (ROI) which
usually involves image segmentation,

� analysis and identification of potential patterns of breast cancer in the region of
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Figure 2.8: Typical algorithm flowchart of a CAD system for breast cancer signs detection

interest. In general, this step involves a classification task whose output can be
regarded as a preliminary diagnosis.

A typical flowchart for a CAD system is depicted on figure 2.8. The main steps of the
algorithm for mammographic image analysis can be identified as image pre-processing,
segmentation, features extraction, features selection and classification.

2.6.3 Image manipulation effects on CAD performances

The development of computer aided diagnosis techniques has motivated increased ef-
forts in the acquisition and derivation of high quality mammographic images. Though
the performances of CAD systems are mainly dependent on the efficiency of the ap-
proach elaborated and the optimality of their implementation, they are also sensitive
to indirect effects related to image manipulation.

CAD systems usually focus on region of interest analysis for the purpose of masses or
microcalcifications detection and classification. However, the texture pattern derived
from the spatial variations of gray levels in the ROI neighborhood is often weaker in
comparison to those of cancer area and may consequently tamper somehow ROI feature
analysis. This therefore raises the issue of optimal neighborhood size estimation for
texture analysis. In addition, mammogram size is usually of thousands of pixels which
increase computational burden. On the other hand, some preprocessing operations
are often applied to mammograms to increase indicative breast structures visibility.
All these image manipulations have significant influence on CAD’s performances. The
subsequent paragraphs therefore investigate on the most important of these effects
which are due to:

� pixel resolution and integration scale,

� preprocessing.
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Effect of pixel resolution and integration scale: Digital or digitized mammo-
grams are usually acquired at about 50µm per pixel using 12 bits depth. However,
such a resolution would be excessively large for practical computation. Concerning bit
quantization, some gray levels will occur with low or negligible rate of incidence that
may not permit to derive reliable statistics for cancer identification [40]. Adequate pixel
bit depth and resolution thus play a significant role in feature quality and consequently
in classification accuracy.

Several authors [40, 41] have studied the influence of these effects on feature discrim-
inating breast tumors as benign and malignant masses. The motive underlying these
studies was to derive a good trade-off between performance accuracy and pixel resolu-
tion. Shape feature was used in these studies as it is a powerful feature in discrimination
of malignant and benign masses. The boundaries of malignant masses usually have ir-
regular shape while that of benign masses have regular ones. Pixel resolution and
integration are in this case a critical factor because downsampling may remove some
fine details from the image.

In both studies, the feature performance accuracy in classification was assessed at var-
ious resolutions and scales. It was noticed that pixel resolution significantly influences
the performances. It was also observed that a resolution as from 200µm per pixel
is a good trade-off for better performances. Obviously, when resolution is very low,
the classification performance degrades as the shape of the boundary of benign and
malignant masses will be very similar.

Preprocessing: The development of CAD tools has raised a growing interest among
researchers during this last decade especially in the area of biomedical applications.
Yet, one of the major difficulties in the design of robust CADs is the lack of image
quality standards (i.e image quality which satisfies both clinical and CAD purposes).
As a result, some images acquired under particular settings will not be appropriate for
CAD use. Some preprocessings are therefore needed to be done on this later in order
to fulfill the necessary criteria for CAD systems.

The goal of preprocessing approaches is to make small scale structures in an image
more visible in order to increase the discriminative power of an image analysis method.
The effect of preprocessing on classification performances was studied in [41]. In this
study, three processing methods including contrast limited adaptive histogram equal-
ization, median filter and image sharpening were used to assess their impact on the
performances of some texture analysis methods and classification. The authors found
out a coherent relation between the efficiency of some texture analysis methods and
the preprocessing used. Nonetheless, the real difficulties in such conditions is always
to find the preprocessing approach that will in average improve the performances of a
given classification method.

2.6.4 CAD limitations

Following recent progress in machine learning, CAD systems can reach remarkable
performances. However, failures may occur and one should always keep in mind the
limitations of such systems. The following paragraphs discuss some of the limitations
in common CAD systems.
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Most CAD systems process either the whole mammogram or a ROI. In both cases, the
processed image contains a mix of undesirable tissues or entities that may tamper the
automated analysis. Tissues that do not belong to breast can be regarded as parasite
information impairing cancer pattern recognition and wasting computation resources
leading to high false negative rates. Indeed, some muscle tissues have unfortunately
similar gray level as some dense breast tissues. Although some morphological and
shape information can help to discriminate these tissues, this similarity in gray level is
a source of confusion for algorithms.

Another aspect influencing CAD system performances is the number of image modal-
ities that they are able to process. Nowadays, many imaging methods are available
and each of them put forward some peculiarities of tissues contained in a body. An
appropriate integration of various information derived from many imaging sources will
enable to produce a more robust CAD tool. Information fusion techniques can provide
useful algorithms to adequately combine information coming from many sensors. A
valid multi-modal CAD should contain a data fusion step allowing better performances
than each mono-modal CAD individually. Designing such a data fusion is a challenging
task beyond the scope of this manuscript.

Finally, another limitation of CAD systems has its roots in the breast compression
operated during mammogram acquisition. Since breast is a soft organ, compression
induces displacement and deformation of the breast structure. Some superposition oc-
curring between breast tissues often yields patterns that appear like suspicious signs of
cancer or alter the appearance of real mammographic lesions [9]. In addition, breast de-
formation is likely to make it harder for data fusion with ultrasound or MRI modalities
for which almost no compression is applied.

Spatial layout of lesions which is also a useful index in assessing cancer malignancy is
also hard to represent from a mammogram. A possible solution consists in 3D recon-
struction from multiple views of mammogram based on a physical model of compression
and tissue deformation. This is also a mean to allow an accurate localization of lesions
inside a breast.

2.7 Difficulties and challenges in automatic analysis

of mammograms

Many obstacles are to overcome in the automatic analysis of mammograms. These
impediments have their roots in low contrast quality, mammograms layout and digiti-
zation. In addition, mammographic images usually contain parasite image regions for
CAD systems such as examination protocol related textual data and background. Like-
wise, some muscle tissues regularly appear in MLO view. These tissues belong to the
pectoral muscle and do not bring any valuable information for breast tissues analysis.
Worse than this, these muscle tissues have similar density as glandular ones, thereby
impairing dense breast tissue processing. Such specific characteristics of mammogram
thus require adequate pre-processing to meet CAD requirements in terms of image
quality and to save some computation efforts for more interesting tasks. Intuitively, a
multi-stage approach appears to be necessary for designing robust CADs.
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Figure 2.9: Mammographic images contents with some undesirable patterns for the auto-
matic analysis. On the left, a raw mammographic image and on the right a mammographic
image where the pectoral muscle region (black) and the breast region (white) were manually
delineated from background (dark region). The different breast tissue types are indicated
with arrows as well as view labels and digitization failures most often encountered.

This section reviews common difficulties and challenges arising at different levels of
an automatic analysis of mammograms. First, we describe mammogram contents and
then discuss the influences of some regions on mammographic image analysis. Finally,
this section gives an insight of important steps to implement in order to design an
efficient CAD tool.

2.7.1 Difficulties in mammographic images

Mammographic image contents

Figure 2.9 shows two MLO view mammograms. On the right image, the main tissue
types have been delineated manually. The scratch at the bottom of the image is the
result of a digitization failure. A damaged film was used to record the left image,
thus creating a parasite grayish stripe near the upper image border. Both images also
contain textual data indicating the types of the mammogram views and other exami-
nation details. These examples belong to a first class of difficulties called acquisition
shortcomings.

A mammogram is basically made of two main regions: foreground and background
(see figure 2.9). X-rays with obstacle-free trajectories yield pixels belonging to the
background region while X-rays with tissue-crossing trajectories yield the foreground
region. Unlike most images, pixels receiving the largest amount of photons are the
darkest ones and those receiving the fewest are the brighter ones. Roughly speaking,
the background region contains pixels with no valuable information for breast tissue
feature extraction, therefore textual annotations are also belonging to this region. As
opposed to background, the foreground region contains all pixels corresponding to
mammary tissues or to the pectoral muscle. Mammary tissues are in turn divided into
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three sub-regions:

� fatty tissue region,

� glandular tissue region,

� dense tissue region.

The frontier between regions are less discernible in X-ray images to due to their low
contrast and the slight variation in intensity across boundaries. Good contrast in
mammograms (producing a better visualization of breast tissues) depends on a judi-
cious selection of the range of X-rays intensity and exposure time. However, breast
consistency is uncertain and a radio-technician can only presume that a given setting
will produce a contrasted image. This accounts for the variability in mammographic
image quality.

One can also notice that dense tissues and pectoral muscle appear as brighter areas
and can be easily differentiated from fatty and glandular tissues which are radiolucent.
Conversely, it is difficult to clearly delineate the frontier between fatty and glandular
tissues as well as the boundary between pectoral muscle and dense tissues. In addition,
the amount, the size and layout of these tissue types vary from one mammogram to
another.

Mammogram digitization issues

In the past, mammograms were essentially produced in screen film format. The con-
servation of such films is delicate as they should be kept away from any radiation that
can super-impress parasite patterns or, in general, any damage making mammograms
useless for CAD purposes. With the development of CAD systems for breast cancer
detection, the need of digital mammograms has emerged. Screen film mammogram
digitization is a simple mean to obtain digital mammograms in radiology department
that cannot afford digital mammographic sensors yet. However, digitization is not
harmless to informative content. First, an appropriate sampling frequency or image
resolution must be chosen. Second, a quantization factor must be selected in order
to grasp a sufficient range of image intensity variations without generating too mas-
sive data for computer memory. The number of bits to encode pixel values is often
called pixel depth. In addition, any defect on the screen film mammogram (artifact,
scratches and so on) will be reproduced on the digitized one. These digitization issues
are well-illustrated on mammograms shown on figure 2.9.

These inconveniences often impose additional pre-processing to reduce or annihilate
their effects on CAD system performances. Fortunately, digital mammography is be-
coming increasingly affordable and is progressively replacing screen film ones. Although
clinical trials showed that the overall diagnostic accuracy is similar for these two types
of mammograms when used for breast cancer detection [6], digital mammography fea-
tures some potential advantages for CAD purposes.

2.7.2 Challenges in automatic tissue density analysis

Many patterns such as breast contour, nipple, pectoral muscle or tissue density are use-
ful primitives in breast cancer sign detection but cannot be extracted simultaneously in
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mammograms. For instance, breast contour is a primary pattern used in nipple local-
ization and pectoral muscle identification tasks. These patterns are likely to influence
CAD performances if they are not handled separately or in a meaningful order. Given
that dense tissues are a common area for cancer to develop, detection of cancer signs
should follow a coarse to fine approach by rejecting all poorly informative regions (non
breast tissue regions) while focusing only those of high probability to contain cancer
(dense tissues).

Poorly informative regions removal

Regarding cancer sign detection, two disjoint regions of mammograms are poorly in-
formative: background and pectoral muscle. A prior extraction of these regions has
proved to provide improved CAD system performances [42, 43, 44, 45, 46].

Concerning background extraction, a dual problem consists in breast contour detection.
Indeed, this contour is always the boundary of the background region. Addressing
breast contour detection is more interesting in the sense that such approaches are far
less sensitive to occasional textual annotations that may, or may not, be present in the
background region. Despite being easier, breast contour detection is still a rather hard
task. Occasional artifacts mainly impair contour detection algorithm initialization.
Poor (and often irregular) contrast impairs contour detection algorithms on the whole.
It is also noteworthy that the transition from breast region to background is very
smooth since the tissue quantity is decreasing progressively.

The second image region that must be discarded from further processing is the pectoral
muscle region. Not only does this region have no relevant information regarding breast
cancer but it has similar texture features as dense breast tissues. This similarity hinders
cancer detection. Running mammogram analysis algorithms without removing the
pectoral muscle region before is known to lead to both false negatives and positives
[45, 47, 34]. In addition, cancerous lesions are more frequent along the pectoral muscle
surface. Consequently, removing the pectoral muscle helps highlighting such lesions.

Efficient design of CAD system

As discussed in the previous section, poorly informative regions removal are prereq-
uisite steps for an efficient cancer detection approach. Such pre-processing steps are
illustrated on figure 2.10. This process enables to obtain an image representing only
breast tissues. Furthermore, breast tissues can be subdivided into non dense and dense
tissues. It should be noticed that non dense tissues are fatty and glandular tissues and
are less likely to contain cancer. Conversely, dense breast tissues are areas with a high
probability to contain cancer. The rightmost picture of figure 2.10 depicts the targeted
image sub-region corresponding to dense tissues only.

The most challenging steps in the process of cancer detection are breast tissue analysis
and suspicious cancer pattern extraction and classification into, for instance, malignant
and benign classes. Breast tissue density analysis implies looking for a relevant feature
space to describe breast tissue texture. The primary difficulty at this level is to build
adequate models with low level features that globally describe the most relevant and
common patterns of each breast tissue type. However, because of the variability ob-
served in mammographic image contrast quality, most of usual image analysis features
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Figure 2.10: Sketch of an efficient strategy for mammogaphic tissue density assessment and
cancer sign search. The leftmost image depicts an initial mammogram model with harmful
artifacts for a CAD tool present in the background. Then follows a model where background
region has been identified and removed with breast contour delineated (in white). The
third image represents a model with the pectoral muscle segmented out. At this level the
image is constituted of breast tissues only which is basically the region of interest for breast
tissue density assessment. The rightmost image shows a model where mammographic density
analysis has been performed so that only dense tissue area is represented on the image whereas
the glandular tissue is discarded. Dense tissue regions represent areas where cancer signs are
most likely to develop. Consequently, they feature an increased concern and require a careful
analysis for cancer signs search.

will fail to yield conditional class distributions given the input image with compact
supports. As a result, these distributions overlap in the feature space therefore leading
to moderate CAD performances.

Although breast tissue density analysis itself can provide a cancer risk index associated
to a given mammographic image, cancer detection is preferably performed by looking
for specific patterns like masses or microcalcifications which correspond to a higher
abstraction as compared to tissue types. Such pattern recognition requires its own
appropriate feature selection as well, suggesting again a hierarchical (coarse to fine)
approach for this machine vision task.

There are several difficulties in retrieving higher level features for cancer patterns.
First, they are scattered over the dense breast tissue sub-region and are consequently
poorly contrasted. A ghost texture of dense tissues is super-impressed on them because
of X-ray imaging acquisition principle. In addition, the shape of cancer signs is quite
random, especially microcalcifications whose surfaces are counted in a few pixel units.

As conclusions, to successfully overcome difficulties arising in automatic analysis of
mammograms, a coarse to fine design of CADs should be preferred. In view of all
the above, one can reasonably design a CAD system with respect to the architecture
represented on figure 2.11. In this work, we first of all address mammogram visual
understanding tasks to remove uninformative regions of the image (chapters 3 and 4)
and subsequently, we carry out an histologic analysis of this latter to assess cancer risk
(chapter 5).
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2.8 Conclusion

In short, breast cancer is a worldwide health problem that affects almost exclusively
women. There is still no way to prevent this disease and the only mean to fight
against it relies on early detection. To encourage this early detection, many countries
regularly organize screening campaigns which always generate an increasing amount
of mammograms to be analyzed in most of the cases by few radiologists in a defined
timescale.

To reduce incorrect diagnosis rates of radiologists, double reading of mammogram has
been prescribed which in turn increases radiologists’ workload. To cope with these
difficulties, CAD systems have been introduced to provide radiologists with an artifi-
cial intelligence tool allowing them to improve their diagnosis accuracy while reducing
drastically their workload. However, like for any intelligent system, there is still room
for improvements in detection rates and computation time so that CAD systems may
one day outperform experts in cancer pattern recognition.

Several perspectives for significant improvements to CAD systems have been pointed
out in the previous section. Among the issues reviewed, two of them are noteworthy for
extended investigations: multi-modal data combination and breast tissue analysis. The
first improvement consists of developing CAD tools that combine information derived
from various imaging modalities which are nowadays more easily accessible. The second
improvement is oriented towards the use of breast histological information3 in the CAD
process.

Beside the fact that histological information can help to reduce false alarm rates, it
also appears to be a relevant source of information for cancer risk assessment and
cancer sign detection. In turn, deriving such histological information relies on efficient
breast tissue characterization. This point constitutes the main interest of our research
activities and is thoroughly investigated and addressed in this work.

More precisely, some prior information on mammographic image layout must be ex-
ploited. Roughly speaking, a mammogram is divided into three regions: mammary
gland, pectoral muscle and background. The background and pectoral muscle contain
no relevant information regarding breast cancer and must be removed using appropriate
segmentation algorithms.

Finally, a hierarchical image analysis task must be performed on the remaining image
region, i.e. breast region. This region must be first represented in a relevant feature
space for tissue type analysis and subsequently for cancer pattern detection.

In summary, CAD systems for digital mammograms rely on two macro-steps : poorly
informative region removal and breast region analysis. Each of these steps are them-
selves divided in sub-steps as can be seen on figure 2.11. Each of the sub-steps of
informative region retrieval is itself a challenging image processing task and are devel-
oped throughout chapters 3 and 4. Chapter 5 deals with the next step, i.e. breast

3Histology is the study of organic tissues. Breast histological information is therefore information
derived from the study and analysis of breast tissues. In the framework of this thesis, it mainly refers
to tissues density information.
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Figure 2.11: Flowchart of a recommended architecture for breast cancer detection approaches
in mammograms. Solid arrows stand for steps of mammographic image processing and dash-
dot arrows indicate integration of cancer risk information in the process of cancer signs
classification and diagnosis making.

tissue density computerized analysis
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3.1 Introduction

Mammographic density is clearly established to provide useful index for breast cancer
risk assessment. A neat integration of breast histological information in the CAD
process will certainly improve cancer signs detection. To achieve this goal, the first
steps to carry out deal with identification and characterization of dense tissues in
mammographic images since these latter are known to be common areas for cancer
to develop. A prior removal of all non breast patterns is thus required in order to
derive useful histological information. This means identifying the breast region in
mammograms. However, low contrast quality and slight variation of pixel intensity at
breast edge impair for accurate breast region extraction. The situation grows worse for
cases of mammograms with noisy background.

As a result, in many cases, accurate breast region cannot be extracted just on a seg-
mentation basis. To cope with all these difficulties, a contrast enhancement is first of
all applied prior to the segmentation for a good estimation of the breast region. Then,
the true breast boundary points are searched on paths computed on the estimated
breast contour. Finally, smoothing the true edge points allows to delineate the breast
region accurately.
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3.2 Overview of background suppression

A mammogram is an X-ray projection of breast components. Unlike other imaging
methods such as Computed Tomography (CT) and MRI, mammograms have an inher-
ent fuzzy or diffuse appearance. This is due to the differential attenuation characteristic
associated to various breast tissue densities. In addition, mammographic images of-
ten contain non-breast patterns in the background such as examination data or noise
resulting from the digitization process. Such patterns regularly tamper cancer signs
search and consequently have a significant influence on the CAD system performances.
It is therefore necessary to handle background objects separately during CAD analysis.

3.2.1 Breast region importance in CAD

The use of CAD system for mammograms analysis is becoming an effective strategy
to reduce radiologists’ workload and assist them in efficient detection of breast cancer
[1]. Identifying breast region or suppressing background in mammograms is of great
importance in CADs since the search for cancer signs needs to be carried out only in
relevant portions of the image. This implies segmenting and identifying meaningful
image regions from irrelevant ones. Such an operation improves CAD systems by
reducing false alarm rates, area to analyze for calcification and lesion detection [2] and
thus computation time [3].

The precise delineation of the breast region in mammograms is an important step in the
process of automatic detection of breast cancer signs. Several important tasks in the
computerized analysis of mammograms are strongly dependent on proper and reliable
segmentation of the breast region. The most common ones encompass

� label and artifact suppression accounting for false positive diagnoses,

� breast nipple identification which is used as reliable reference point on a mam-
mogram [4],

� pectoral muscle suppression which is depicted with similar texture appearance as
dense breast tissue and cancer signs as well [5, 6],

� breast tissue density assessment known to be an index for cancer risk estimation
[7, 8],

� registration purpose for multi-view analysis, lesion characterization, and align-
ment procedure for bilateral comparison of mammograms [9].

Extracting breast region in mammography can be reduced to a simple two-class image
region partitioning i.e foreground and background. However, most popular segmenta-
tion methods and classical edge detection algorithms such as those of Prewitt, Sobel
and Roberts which are based on gradient fail to produce a proper extraction of breast
region in every situation due to the following grounds [1, 10, 11, 6]:

� decrease of contrast near breast edge caused by lack of compression during ac-
quisition process,

� presence of irrelevant objects in the background such as examination notes, labels
or frames which interfere with the segmentation of the breast region,
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� noise and non uniform distribution of pixel intensity in the background especially
in digitized mammograms.

An accurate breast region segmentation is vital in the framework of mammographic
density characterization in the sense that it reduces the bias introduced by breast region
under or over estimation.

3.2.2 Related works on breast region extraction

Several approaches for breast region extraction in mammogram have been developed
in the literature with various level of success. A good review of approaches introduced
in the literature so far to address this issue is presented in [12]. Generally speaking,
approaches introduced in the literature to address the problem of breast region identi-
fication rely on the following image processing tasks: thresholding [13, 14, 15, 16, 17],
morphology operations [18], region growing [11], active contour [19], Gabor filters and
edge linking [1] and pixel features [6, 10].

Thresholding based segmentation

Breast region identification has been addressed by some authors as a two-class image
partitioning using image thresholding. One of the earliest attempts to suppress back-
ground in mammograms was based on a simple setting of threshold [20]. In some similar
approaches, a single threshold is automatically computed to partition breast region and
background [14, 15]. Others authors, Czaplicka and Wlodarczyk [17] developed a com-
bined strategy using both a global thesholding based on minimization of measures of
fuzzyness of a mammogram and Sobel edge detector to estimate breast skin-line. A
similar approach was also implemented by Kus and Karagoz [16] in which breast re-
gion is first of all roughly estimated through global thresholding. Then, the image was
enhanced prior to border pixel extraction with a gradient based algorithm. Observing
that the decrease in contrast near breast edge is the main failure cause of thresholding
segmentation, Maitra et al. [13] first applied an adaptive histogram equalization to
enhance image contrast prior to an iterative thresholding based on pixel feature ho-
mogeneity. The breast boundary was then delineated with a gradient edge detector
algorithm.

Using a single threshold to partition a mammographic image usually results in misclas-
sification of some background pixels as breast region and vice-versa. In opposite, the
use of local thresholding [21] has been shown to produce better results since each pixel
is thresholded using local information of its neighborhood. However such an approach
is time consuming.

Pixel features based segmentation

One inherent limitation with thresholding techniques is their sensitivity to noise and
contrast variation. On the other hand, gradient edge detector are subject to inaccurate
results in unsharp intensity transition and noisy edge as it is usually the case at the
vicinity of the breast boundary.

To cope with these limitations, some approaches make use of local information in
conjunction with gray level features. In this way, Boss et al. [18] developed a two-step
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strategy by first applying gray level normalization and noise reduction with a median
filter to subsequently segment breast region by using connected component labeling.
Chen et al. [6] used local features such as local binary pattern (LBP), histogram of
gradient (HoG) and intensity histogram and a support vector machine (SVM) classifier
to build feature vector models. These were later fed in a neural machine of two-layer
committee to vote for which class label of mammogram regions is associated to each
pixel in the image. Touil et al. [10] developed an iterative fuzzy segmentation combined
with some local pixel feature information to gradually integrate the area in the vicinity
of breast edge that is under-segmented with a classical fuzzy C-means segmentation
technique. However, selecting and modeling ideal features for classification is difficult
especially when a huge amount of data is available. A set of features who produces
accurate result with a given image may fail on another image due to variation in texture,
contrast or brightness.

texture-based segmentation

Some texture-based approaches have also been used to tackle the difficulties faced
in breast region extraction in mammograms. For instance, Casti et al. [1] used a
multidirectional Gabor filtering to extract edge feature in image and then apply an
edge linking algorithm to extract breast skin-line. However, to be successful, they first
applied a logarithmic transformation to the image to improve the contrast in breast
boundary area.

Ojala and Liang [22] described a semi automated method where a boundary traced
interactively was used to initialize a snake algorithm. Later, they introduced an active
contour method for extracting and smoothing breast contour in mammograms [23].
Wirth and Stapinski [24] and McLoughlin and Bones [25] implemented the active con-
tours to identify breast region in mammograms. They first of all performed a global
threshold and then modeled the background noise using Poisson approximation. The
binary mask obtained from global thresholding was used as a seed for the snake algo-
rithm. Ferrari et al. [19] also used an enhancement technique prior to use of an active
contour model for identifying breast boundary. An approximate mask of breast region
is first of all obtained using Lloyd-Max quantizer. The contour extracted on this mask
is used as seed in an adapted active contour model to produce the final breast bound-
ary. Likewise, Chen and Zwiggelaar [11] roughly estimated breast region using global
thresholding, then, with orthogonal lines on the extracted contour, they estimated the
true edge points used as seed in an active contour model to refine breast boundary.
The major inconvenience with active contour is that they are initialization dependent
and, in some cases, proper convergence may be computationally demanding.

No algorithm can be considered 100% robust, especially due to the heterogeneous na-
ture of mammograms. Problems with mammogram acquisition such as digitization,
induced artifacts, excessive background noise, scratches and dust artifacts could all
influence the reliability of any algorithm [24]. Background suppression in mammo-
grams thus remains an open problem in CAD design. In short, accurate extraction of
breast region in mammographic images cannot be obtained using a straightforward seg-
mentation. Generally, contrast enhancement is applied for accurate breast boundary
extraction or a multi-stage segmentation performed with some fine tuned parameters
to address these difficulties at various levels. Surprisingly, it appears that to address
this problem, an appropriate enhancement combined with a classical segmentation
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Figure 3.1: Flowchart of the strategy to perform for background suppression in mammograms

methods can produce not only proper results for CAD systems but will also reduce its
computational burden.

3.2.3 Proposed approach for background suppression

From related works, one can notice that various methods have been implemented to
suppress background in mammograms with different levels of success. For most of those
approaches, the tricky issue is the trade off between accuracy and computation cost.
Elaborating a method to successfully process all peculiarities found in background of
mammograms is hard to achieve without increasing computational burdens for a CAD
system. In this work, an effort was done to develop an approach less coercive for CAD
systems in terms of accuracy and computation time. To achieve such a result, rather
than working out a new image processing method, we make use of simple mathematical
tools to accurately address this problem.

The following considerations highlight the main actions carried out in this work to
suppress the background in mammographic images.

1. The primary difficulty to overcome in suppressing background in mammograms
is related to their low contrast quality especially at the breast edge which does
not facilitate boundary detection. To cope with this inconvenience, a contrast
enhancement is applied to stretch the dynamic range in dark region and facilitate
boundary identification.

2. Basically, mammograms are assumed to be made of two classes of objects: patient
tissue region (foreground) and background. Hopefully, class conditional empiri-
cal distributions of grey level values are well separated, meaning that gray level
values are informative enough to discriminate the two image regions. A global
thresholding and a fuzzy C-means clustering segmentation method were imple-
mented and relevant results are obtained when these latter are fitted together
with an adequate contrast enhancement.

3. In general, the segmentation produces good results. However, because of noise
in the background coupled to the smooth variation of gray level intensities along
breast edge, some of these pixels are incorrectly labeled as background pixels. To
cope with this inconvenience, a refinement step is performed to estimate the true
boundary point.

The block diagram of figure 3.1 summarizes the main steps here above introduced
to suppress background in mammographic images.
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3.3 Mammographic contrast enhancement

In the remainder of this chapter, some image processing developments are presented.
We therefore introduce some notations that will be used throughout the next sections.
A (mammographic) image is a mapping u : G −→ {0, .., L− 1} with G a domain often
called image grid and L an integer which stands for the number of possible gray levels.
An element p ∈ G is called a pixel. A pixel p is a pair of coordinates (px, py) on the
image grid. Gray level pixel intensities are thus given by u (p) = u(px, py). Black pixels
are such that u (p) = 0 while white pixels are such that u (p) = L− 1.

Background suppression (as far as mammograms are concerned) is an operation con-
sisting in the removal of non breast entities contained in the background of a mammo-
graphic image. Ideally, this task is easy to achieve if class conditional empirical pixel
value distributions are non-overlapping. However, this is not always the case with
mammographic images where contrast is poor especially across the breast edge.

The compression applied during mammogram acquisition aims at reducing X-ray at-
tenuation across similar tissues, thus producing a uniform contrast for a given tissue
density. However, non uniform compression at breast edge produces a decrease of
contrast on the mammogram. This fading effect diminishes the visibility along the
peripheral region of the breast making it difficult to perceive the breast boundary and
identify the nipple position. To ensure a good visualization of boundaries and improve
segmentation results, image contrast enhancement is required.

Image enhancement techniques are used to improve contrast objectively if it produces
an increase of the signal-to-noise ratio or subjectively if it makes certain features easier
to perceive by modifying gray level intensities. There is a wide range of contrast
enhancement techniques [26] the majority of which are obtained by composition with a
relevant function f : {0, .., L− 1} −→ {0, .., L− 1}. If v denotes the enhanced image,
we have v = f ◦ u. The most widely used functions f for such a purpose are:

� Linear functions that enhance the dynamic range by stretching the original gray
level range. These functions are defined as:

f (x) = ax+ b, where a and b are real constants. Note that a rounding function
must also be applied because f may not map x directly to {0, .., L− 1}. This
is also true for other types of functions and we do not explicitly mention it for
brevity.

� Piece-wise linear functions that apply various stretching in K desired intervals of
gray level ranges. These functions are defined by:

f (x) = akx+bk, for lk ≤ x ≤ lk+1, with lk ∈ {0, .., L− 1} and k = 0, 1, . . . , L−1.
Note that coefficients ak and bk are generally chosen so that f is monotonic.

� Parametric families of non-linear functions subject to:
min

0≤l≤L−1
f(l) = 0 and max

0≤l≤L−1
f(l) = L− 1.

Example of popular non-linear function families are:

– Logarithmic functions which stretches dark regions and suppress bright ones.
They are defined as:

f (x) = b log(ax+ 1), where a and b are real constants.
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(a) (b) (c) (d)

Figure 3.2: Two examples of mammograms with shaperned breast contours. (a) and (c) Initial
mammograms, (b) and (d) mammograms after applying a logarithmic contrast correction.

– Exponential functions which expands bright regions and are defined as:

f (x) = b(eax − 1), where a and b are real constants.

– Gamma correction functions which are power transforms defined as:

f (x) = a(xγ + b), where a, b and γ are real constants.

� Histogram equalization functions that map an image with an arbitrary histogram
to one with a flat histogram. In this case f is dependent on u. A solution to this
problem is to choose f = Fu where Fu is the cumulative empirical distribution of
gray levels in u. Note that this operation can be performed locally on smaller im-
age regions. Indeed image region histograms are very often significantly different
from the global image histogram.

In the following, we are interested in methods that help to sharpen gray level transitions
in mammographic images especially at breast edge pixels. The logarithmic transfor-
mation appears to be the best suited one for this task as it stretches dark regions.

The image contrast is therefore significantly enhanced by applying the logarithmic
operation as defined in [26, 27]. The contrast-correction is performed on an initial
image u to produce its logarithmic version defined by the equation:

vlog = L− 1
max
p∈G

log (u (p) + 1) × log(u+ 1) (3.1)

Note that the intensity levels of the enhanced image vlog are normalized so that
their values belong to the interval [0, L − 1]. Figure 3.2 shows the effect of the loga-
rithmic enhancement technique on some mammographic images. This dynamic range
expansion is applied to the whole image and significantly improves contrast especially
near the breast edge and therefore facilitates breast boundary identification (see figure
3.2(b) and (d)). This technique also unfortunately amplifies background noise which
was not visible on the initial image. The main idea underlying this enhancement step
is to enable breast region extraction to be as close as possible to the true breast bound-
ary. The next sections introduce the methods developed to segment breast regions in
mammograms.
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Figure 3.3: A mammographic image along with its corresponding histogram expressed as
probability distribution. The two modes identifiable in the histogram represent the breast
region and the background in the image.

3.4 Mammogram background segmentation

3.4.1 Global threshold method

The most famous global thresholding technique is that of Otsu [28] which sets a single
threshold value to partition an image into two classes. Each pixel of the image is
assigned to a class with respect its gray level intensity value and the threshold value.

Definition

A histogram determines the occurrences of a gray level value lk in an image. If a
histogram is normalized so that it sums to one, it is also the empirical probability
distribution pu of gray level values in the image u.

Figure 3.3 shows a mammographic image along with its corresponding histogram. The
modes observed on the histogram are commonly belonging to the same image region
which correspond to a given object present in the image. Global thresholding techniques
attempt to make use of information from histograms to compute the optimal threshold
that would provide a good partition of the image. Otsu’s method [28] performs a
minimization of the within group variance to compute the optimal threshold defining
the frontier between the two modes of the histogram.

Otsu’s threshold calculation

Assume that the image contains only two objects corresponding to two pixel classes:
foreground and background. Let us also suppose that class conditional distributions
pu|f and pu|b are non overlapping, i.e. there exists a threshold value τ ∈ {1, .., L− 2}
such that pu|b (l > τ) = pu|f (l ≤ τ) = 0. Under these assumptions, we have

pu|b (l) = pu (l)
Fu (τ) , (3.2)

pu|f (l) = pu (l)
1− Fu (τ) . (3.3)
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consequently, the mean intensities in the foreground and in the background are respec-
tively defined as follows:

Mb,τ =
τ∑
l=0
l pu|b(l), (3.4)

Mf,τ =
L−1∑
l=τ+1

l pu|f (l). (3.5)

The standard deviations of each class are denoted by σb,τ and σf,τ respectively are
given by the following equation:

σ2
b,τ =

τ∑
l=0

(l −Mb,τ )2pu|b(l), (3.6)

σ2
f,τ =

L−1∑
l=τ+1

(l −Mf,τ )2pu|f (l). (3.7)

Finally, the within-group variance is expressed as follows:

σ2
w,τ = Fu (τ)σ2

b,τ + (1− Fu (τ))σ2
f,τ . (3.8)

Global segmentation

A global thresholding technique computes a single threshold τ to which all pixels con-
tained in the image are compared. Using Otsu’s method [28], the best threshold τ is
obtained by minimizing the within group variance σ2

w,τ . In our setting, once the value
of τ is found, the segmented image vseg is evaluated at a given pixel (px, py) by the
following equation:

vseg(p) =
{

0 if vlog(p) ≤ τ
1 otherwise

. (3.9)

Image vseg is often referred to as the breast region binary mask. Some breast region
segmentation results using Otsu’s global thresholding method are presented on fig-
ure 3.4. It can be noticed that the segmentation performed on the initial mammogram
results in incorrect assignments for pixels located in the vicinity of the breast edge.
The low contrast on this area makes it difficult to accurately partition pixels. On the
other hand, the segmentation performed on the logarithmic version of the mammogram
produces better results thanks to the adjustment of contrast around the breast edge.

Figure 3.5 shows another segmentation of a poorly contrasted mammogram. In this
mammographic image, the breast is made of dense tissues and some noise in the back-
ground can be observed after logarithmic contrast correction. Segmenting the initial
image with Otsu’s technique produces this time an inconsistent breast region. Again,
applying the same technique after contrast correction produces a better segmentation
result thereby proving that the logarithmic contrast correction increases the robust-
ness of the segmentation. However, even the result displayed in figure 3.5 (d) is not
completely satisfying.

Indeed, a major inconveniency of screen film mammograms is that there is a stronger
noise in the background which usually comes from the digitization process. Such a noise
is illustrated in figures 3.4 (b) and 3.5 (b) by the shaded areas in the background. This
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(a) (b) (c) (d)

Figure 3.4: Segmentation of breast region in mammogram using a global thresholding. (a)
Initial image, (b) logarithmic enhanced image, (c) initial image segmentation, (d) Enhanced
image segmentation

(a) (b) (c) (d)

Figure 3.5: Breast region segmentation in a noisy mammogram. (a) Initial image, (b) loga-
rithmic enhanced image, (c) initial image segmentation, (d) enhanced image segmentation

noise is too strong in figure 3.5 (b) and accounts for to the inaccurate segmentation
displayed in 3.5 (d), where the detected breast has irrelevant fluctuations.

From the histogram presented on figure 3.3 (b), it can be noticed that there is no
clear cut separation between the two modes of the histogram. In such conditions,
Otsu’s technique (and more generally global thresholding methods) cannot perform
an accurate segmentation of objects. On the other hand, the Fuzzy C-Means (FCM)
algorithm has been proven to be robust in clustering overlapping data. The next
section therefore investigates an alternative segmentation method based on the FCM
algorithm.

3.4.2 Fuzzy C-Means (FCM) method

The FCM algorithm is an unsupervised data clustering technique commonly used in
image processing for segmentation tasks. This is an appropriate method for clustering
overlapping data.
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Definition

For each pixel class (background and foreground), one membership function is defined
over G. The value of the membership function noted µi (p) depicts the possibility for
a pixel p to belong to the ith region. Membership functions are given by:

µi (p) =
 c∑
k=1

(
d(u (p) , νi)
d(u (p) , νk)

) 2
m−1

−1

(3.10)

with m > 1 a fuzzification parameter, d the Euclidean distance, c = 2 the number of
classes, and νi is the centroid of the ith class which is given by:

νi =

∑
p∈G

µi (p)m u (p)∑
p∈G

µi (p)m . (3.11)

The FCM algorithm main principle consists in minimizing the inter-class distance
through an objective function Jm defined by:

Jm(ν1, ν2) =
∑
p∈G

µ1 (p)m d2(u (p) , v1) + µ2 (p)m d2(u (p) , v2). (3.12)

Moreover, the membership functions are subject to the following constraint :
∀p,∑c

i=1 µi (p) = 1.
Algorithm 1 summarizes the FCM procedure which converges iteratively to centroid
values minimizing Jm. The membership function µ

(k)
i and the centroid ν

(k)
i are those

obtained at the kth iteration.

Algorithm 1 FCM Algorithm

Require: c = 2, m = 2, ε = 0.01
k ← 1
ν(0) =

{
ν

(0)
1 , ..., ν(0)

c

}
← Randomly select region modes

for i from 1 to c do
µ

(0)
i (p)← Evaluate membership function with equation (3.10)

end for
while ‖ν(k+1)−ν(k)‖ > ε do

for i from 1 to c do
ν

(k+1)
i ← Update regions mode with equation (3.11)

for i from 1 to c do
µ

(k+1)
i (p)← Update membership function with equation (3.10)

end for
end for
k ← k + 1

end while

FCM segmentation

Once the FCM algorithm has converged, the image partitioning is performed by as-
signing each pixel to the class of highest membership function value. Figure 3.6 shows
some segmentation results of foreground/background regions in mammograms using
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(a) (b) (c) (d)

Figure 3.6: Segmentation of breast region in mammogram using the FCM algorithm. (a)
Initial image, (b) logarithmic enhanced image, (c) initial image segmentation, (d) Enhanced
image segmentation

(a) (b) (c)

Figure 3.7: Comparison of breast region segmentation using the FCM algorithm and global
thresholding method (a) Initial image, (b) logarithmic enhanced image, (c) enhanced image
super-impressed with the breast contour extracted using FCM (white) and global threshold
(black) segmentation respectively.

the FCM algorithm. Similarly as for Otsu’s segmentation, one can notice that the
contrast corrected image produces better segmentation results than the original image.

Figure 3.7 shows a comparison of segmentation results between FCM and global thresh-
olding method. One can see that FCM performs better than the thresholding method
in segmenting the background region of this noisy mammogram. More precisely, the
extracted contour and in particular, the skin-air interface curve obtained from FCM
method is smoother than that of the thresholding method. This shows that FCM is
robust to overlapping data which in this case corresponds to breast edge pixels with
similar gray level intensities as those of noisy background pixels.

In most cases, background region segmentation results are accurate when FCM is used.
However, for mammograms made of dense tissues and with strong noise in the back-
ground, the results are not always as accurate. Unlike Otsu’s thresholding based seg-
mentation, the contour is smooth but its localization is shifted. Figure 3.8 shows an
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(a) (b) (c)

Figure 3.8: Inaccurate foreground region segmentation using FCM method (a) Image seg-
mentation result: breast and muscle tissue region and examination notes are assigned to the
foreground class, (b) foreground region obtained after suppression of non breast entities in
the image, (c) Enhanced image super-impressed with the skin-air interface obtained from
segmentation.

example of a mammogram where such a problem is encountered. This drawback is due
to presence of dense tissues who tend to shift the cluster center of the foreground region
towards an excessively high value. As a result, pixels with low gray level intensities
around breast edge are treated as background pixels during the segmentation process.

The results yielded by the FCM based segmentation are good enough if the goal is just
to reduce the area of search for breast cancer signs. Obviously, early signs of breast
cancer are hardly found at the breast edge and this latter is exclusively made of fatty
tissues. On the other hand, if the motive is to derive histological information, then an
inaccurate breast region estimation may significantly bias histological data. The next
section therefore introduces a post-processing strategy for an increased background
region segmentation accuracy.

3.5 Accurate breast edge estimation

3.5.1 Artifacts removal from the foreground region mask

Figure 3.8(a) shows the segmentation result of a typical mammogram having some
examination notes in the background. One can see that these artifacts have been
classified into the foreground class. In addition, some isolated pixels at the vicinity of
the breast contour are sporadically also classified as foreground class members. To clean
up segmentation results, a simple morphological processing is performed. An opening
followed by a closing operation are applied to the mask to remove thin objects while
preventing large objects from area modifications. To select definitively the foreground
region, all objects whose surface is less than that of the larger object are considered
as background patterns and suppressed. Figure 3.8(b) shows an image of the binary
mask of foreground region with the background suppressed.
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(a) (b)

Figure 3.9: Accurate breast contour extraction using search path technique. (a) Enhanced
image super-impressed with the contour extracted from segmentation and search path seg-
ment represented only at every 5 points of the contour. (b) Enhanced image super-impressed
with estimated contour (in black) and final contour (in white)

As mentioned previously, noisy mammograms often result in inaccurate breast region
extraction. Next subsections introduce the strategy developed to address this other
issue.

3.5.2 Estimating true breast edge point

According to the contour obtained from foreground segmentation displayed in fig-
ure 3.8(b), the foreground region is underestimated. The approach developed in this
work is meant to recover the true breast boundary from the shifted one that we ob-
tained earlier. Following the idea introduced in [29, 30], this approach relies on the
definition of a search path for each point of the estimated contour. A search path is
defined as the orthogonal line segment centered on its corresponding contour point.
In most of the cases, the contour obtained from the segmentation step is close to the
breast edge. A search path of 15 pixels length is sufficient to cover the true boundary.

Assuming that the correct breast contour point belongs to the search path, our problem
consist now in finding out which one it is for each path. Figure 3.9(a) shows search
paths represented only at every 5 points of the contour for visualization purpose. Due
to noise in the background, searching the true breast edge points inside a path using
only gray level information as done in [29, 30] is computationally exhausting as pixels
intensity varies slowly in noisy area. We propose to use pixel gradients in the path
direction to search the true edge pixel because the gradient is likely to be maximal at
this pixel. More comments on this are given in the sequel.

3.5.3 Contour refinement

The edge point of the breast contour is the one whose gradient value is maximal among
pixels in the search path. The gradient G (p) is computed as the norm of the first
derivatives of the image u in the xy-direction as:
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G (p) = ‖u′ (p) ‖ with u′ (p) =
(
∂u(p)
∂px

, ∂u(p)
∂py

)
where:

� the derivative in the x-direction ∂u(p)
∂px

= u (px+1, py)− u (px, py),

� the derivative in the y-direction ∂u(p)
∂py

= u (px, py+1)− u (px, py),

It was observed that iteratively shortening the search path during boundary refine-
ment as described in [31, 30] is time consuming and not necessary in the case of breast
contour refinement.

Our assumption is that small search paths contain the true edge points because the
segmentation result is already quite good. Yet, this assumption may occasionally be
untrue, especially in noisy mammograms or when the breast contour curvature is too
high. To cope with this difficulty, the contour refinement step is iterated to make sure
that each edge point derived from a search path stabilizes at a given pixel location.
From our observations, only two iterations are necessary to converge to true breast
edge points.

After refining the contour, a set of points detected as true breast edge pixels are found.
The contour points are smoothed within a sliding window to remove outliers. The
smoothing method applied is based on locally weighted least square fitting method.
Figure 3.9(b) show the final breast contour obtained after refinement and smoothing.

3.6 Performances metrics and evaluation

3.6.1 Dataset

The methods implemented to identify background region in mammograms were tested
on images selected from the mini-MIAS database [32] which is made of 322 images.
This open database was chosen because it is the most widely used in the literature
dealing with background region extraction. It therefore allows an easy comparison of
our results with those of other methods. All images in this database are MLO view
mammograms digitized at 200 µm and 8-depth resolution. The size of these images is
1024×1024 pixels. Images were further sub-sampled to a 512×512 resolution.

Among the images of the database, 14 are poorly contrasted with a strong noise in the
background. Those images were discarded in the segmentation evaluation process be-
cause such mammograms do not meet our 2 gray level class assumption. These images
have generally three classes. They can be handled efficiently with minor adaptations
of our approach as discussed in subsection 3.6.6.

On other hand, 12 images have artifacts (band tape) but were used without any pre-
processing since those artifacts are not harmful for background region extraction. How-
ever, these latter might be the source of difficulties to handle in other steps of the CAD
process. All in all, only 14 images of the database were discarded in the following
evaluation study.
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3.6.2 Radiologist’s study

To evaluate the performances of the background region extraction, a manually delin-
eated background region by an expert radiologist was used as reference standard. The
radiologist manually drew the breast contour of all mammograms in the database.
It should be noticed that the logarithm enhancement was applied to the images to
facilitate the radiologist’s identification of the breast boundary in the images. The co-
ordinates of the radiologist’s hand-drawn boundaries of background regions were used
to compute several performance metrics in order to enable a fair comparison of our
results with those of related works. The performance metrics are defined on several
criteria as introduced in the next section.

3.6.3 Performance metrics

The accuracy of the background region extraction is assessed through the following
performance ratings:

� False Positive (FP) and False Negative (FN) rates, which evaluate pixel assign-
ment errors. A FP pixel is one assigned by the algorithm as belonging to the
foreground region but assigned by the radiologist outside of the foreground re-
gion. A FN pixel is one assigned outside of the foreground region by the algorithm
but assigned inside by the radiologist. The FP and FN rates for an image are
computed as follows:

FP = | AC ∪ AR | − | AR |
| AR |

FN = | AC ∪ AR | − | AC |
| AR |

where AC and AR are the areas of the foreground regions obtained by the algo-
rithm and the radiologist respectively.

� Percent Overlap Area (POA), which expresses the accuracy of the region delin-
eated by the algorithm to the reference one drawn by the radiologist. It is defined
as:

POA = |AC ∩ AR|
|AC ∪ AR|

� The Hausdorff distance dH , which is a metric assessing the dissimilarity of the
detected boundary by the algorithm Calgo with the one drawn by the radiologist
Cr. It is defined as:

dH (Calgo, Cr) = max{ max
ci∈Calgo

{min
rj∈Cr
{d(ci, rj)}}; max

rj∈Cr
{ min
ci∈Calgo

{d(rj, ci)}}} (3.13)

where ci and rj are contour points obtained by the algorithm and the radiologist
respectively, d(ci, rj) is the Euclidean distance between points ci and rj.
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These metrics are widely used and thereby allow a fair comparison with other works
found in the literature. These metrics are also complementary and can thus catch every
aspect of image segmentation performances.

The next sections present the results and performances of breast region extraction
implemented in this work. It also carries out a comparison and discussion of these
results with related works.

3.6.4 Breast region extraction results

Figure 3.10 shows some background region extractions obtained with the implemented
methods in this work. In comparison with radiologist’s manually drawn breast region
boundaries, the following performances were obtained:

� The POA mean and the standard deviation are 96.72±2.28% and 96.72±2.37%
using FCM method and global thresholding method respectively.

� The FN mean and the standard deviation are 2.63 ± 2.27% and 2.71 ± 2.39%,
while the FP mean and the standard deviation are 0.68±1.09% and 0.59±0.89%
for FCM method and global thresholding method respectively.

� The Hausdorff distance mean and the standard deviation are 19.12±18.77 pixels
and 19.32±22.22 pixels for FCM method and global thresholding method respec-
tively.

From these results, it can be noticed that both methods perform almost identically
in extracting background regions in mammograms. Highly accurate results are achieved
thanks to the boundary refinement step. It is difficult to decide on which method
outperforms the other, but FCM seems to produce slightly more accurate results.

To assess the impact of the refinement on the breast region detected, a quantitative
analysis was conducted. Figure 3.11 shows the evolution of the performances thanks
to boundary refinement with respect to each method. The histogram giving the per-
formances before and after refinement process clearly shows that the accuracy of the
methods implemented has been significantly improved. For instance, the number of
images of high accuracy (POA>95%) has raised from 188 images for both methods to
248 images and 247 images for global threshold and FCM respectively.

However, it can be noticed that the number images of highest accuracy (POA>99%)
has decreased for each methods. This is a drawback of the refinement step which tends
to reject noisy pixels around nipple when this latter is in the breast profile. The reason
is that nipple is represented by pixels of low intensity, thus low gradient values and
situated in the neighborhood of some dense tissues such as ductal tissues of high gray
level intensities and gradient values. As higher gradient pixels are those lying at the
frontier between nipple and ductal tissues, they are selected as true breast edge points
and thus rejecting the nipple (see figure 3.9(b)). The non detection of the nipple region
was the most common cause of FN pixels. In addition, it was also observed that the
smoothing was one of the main cause of high FP rates. Similar observations have also
been reported by Ferrari et al. [19].

The main asset accounting for the methods implemented to extract background region
in mammograms lies in their ability to deal efficiently with low noise corrupted images.
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(a) (b) (c)

(d) (e) (f)

Figure 3.10: Some examples of background region boundaries or skin-air interface contour
extracted by the implemented approach and superimposed on the enhanced mammograms.
(a) mdb083, (b) mdb123, (c) mdb127, (d) mdb236, (e) mdb286, (f) mdb320

This performance is also noticeable in figure 3.11 as a POA lower than 90% is reported
for less than 5 images. In addition, it is should be noted that the lowest POA value
recorded in both approaches was greater than 87%. These results globally show that the
breast region is accurately identified in the mammograms by the proposed approach.

3.6.5 Discussion

Although, background region extraction in mammograms is a ground work for CAD
system, in a number of cases, the background region is only roughly estimated. This
shows that accurate background region extraction is difficult to achieve. However, to
derive useful histological insights and improve CADs, an accurate background region
extraction is required. No algorithm can be considered 100% robust, especially due
to the heterogeneous nature of mammograms. Problems with image acquisition such
as scanner-induced artifacts, excessive background noise, scratches and dust artifacts
influence the reliability of this type of algorithms [24].
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Figure 3.11: Histogram showing the number of images for corresponding percent overlap
area between the computed and the reference standard background region before and after
boundary refinement for the FCM method and the global thresholding method respectively.

To be coherent in performance comparison, only related works tested on images of the
same database are taken into account for this study. Nevertheless, it is still difficult
to perform a straight comparison because many authors expressed their results using
different performance metrics with or without regard to a reference standard. For
instance, although Nagi et al. [33] used a reference standard in their work but they
did not provide quantitative measure of the performances of their approach. Other
authors [34, 21] provided their results based on only visual assessment in comparison
to other methods. In addition, all these approaches were tested on small data sets
usually containing less than 100 images.

Other authors [35, 3, 24] tested their method on a set of images and reported their
results using metrics such as accuracy, correctness and quality computed from FN,
FP and True positive (TP). Only the metric ”quality” meets the definition of POA.
Despite other metrics are computed using FP and FN values, they do not provide
useful insights when the values of FP and FN rates are unknown therefore making any
comparison difficult. The first group of authors reported an accuracy of 96.0% on a set
of 120 images. The second group used those metrics to demonstrate the robustness of
their approach but they did not report performances on the entire data set. The last
group reported 0.98 of correctness and 0.99 of accuracy on a data set of 120 images.
Considering these performances, ones can notice that the performances of the proposed
method are in the same range or better. In addition, it was almost tested on the entire
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(a) (b)

Figure 3.12: Histograms of a noisy mammogram showing the different modes of pixel classes
present in the image. (a) Histogram of the initial mammogram (b) Histogram of the mam-
mogram after logarithmic enhancement.

MIAS database.

To the best of our knowledge, the only related work evaluating their background seg-
mentation approach with respect to widely accepted quantitative performance criteria
is presented in [19]. They tested their method on a set of 84 images and reported the
following performances: 0.41± 0.25 and 0.58± 0.67 for FP and FN rates respectively.
In comparison with ours, FP rates are almost identical. The gap observed on FN rates
is certainly due to noisy mammograms. Their influence increases with respect to the
number of test images. Their approach which was based on deformable contours re-
quires a prior estimation of breast region and was shown to be time consuming whereas
the proposed approach is very simple in implementation and less time consuming as
compared to those of related works.

3.6.6 Difficult cases and limitations

The main difficulty in extracting background regions in mammograms is noise or non
uniformity of gray level intensity in the background created by digitization and zero-
padding. It should be noted that the zero-padding was performed to standardize the
size of images in the database. Zero-padding consists in assigning a zero intensity value
to pixels in the blank areas of a mammogram. However, these padded pixels may create
a third mode the gray level intensity empirical distribution as they do not blend with
pre-existing background pixels whose mode is not necessarily centered on zero.

Figure 3.12 shows the histogram of a noisy mammogram. One can notice that this
histogram violates our two class assumption and has three distinct modes representing
foreground region, pre-existing background of the mammogram and zero-padded pixel
region. It is clear that trying to partition such an image into two classes will pro-
duce inconsistent segmentation results. Consequently, good partition of such cases of
mammogram can only be done into three classes of object instead of two. Figure 3.13
shows the segmentation of noisy mammograms using FCM with two and three classes
respectively. One can see that using three classes of object, the segmentation produces
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Figure 3.13: Segmentation of noisy mammograms into two and three classes of object re-
spectively Left column shows the enhanced version of the mammograms. The shaded area
represent the blank region of the mammogram that contains strong noise. Dark region is
the zero-padded area. Middle column presents the results of segmentation in an attempt of
partitioning the image into two classes. The right column shows segmentation results when
partitioning the image into three classes.

consistent results as opposed to those obtained when only two classes are considered.

From these observations, it can be deduced that inaccurate or poor segmentation of
mammogram commonly happens when there is a mismatch between the number of
modes present in the histogram and the a priori number of classes. A way to address
this issue is to derive the true number of modes for segmentation from the histogram
of the image. An automatic estimation of number of modes in the histogram of an
image is not an easy task. Peaks overlapping in histogram profile is one of the main
problem to handle and may required to design complex strategy to tackle it. Another
possibility would be to analyze the distribution of zero value pixels are on G. Zero-
padding correspond to situations where the distribution is deterministic (big stripes on
each vertical image border).

Yet, one could easily think of addressing this issue under a supervised classification
framework. Recent developments in supervised approaches have shown to be powerful
in many segmentation tasks of significant complexity. In this situation, the problem
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consists of learning discriminative features describing foreground and background re-
gions from an annotated data-set. Unfortunately, contrast variability and unsharp edge
transitions at breast boundary vicinity are strong impediments for such supervised al-
gorithms to produce accurate results in all cases because there is not enough training
examples to capture all these variables aspects. Besides, rather than using a great deal
of effort to implement a supervised solution with reasonable complexity to address a
simplistic problem such as background suppression in mammograms, for sake of com-
putation effectiveness, it is justified to use a classical segmentation approach that can
produce similar results.

On the other hand, keeping in mind that this difficulty is linked to the digitization of
screen film mammograms, use of digital mammograms is a straightforward solution to
circumvent these impediments as they simply will not occur.

3.7 Conclusion

Background suppression in mammographic images is the primary task to achieve in
a CAD system. However, poor contrast and smooth variation of gray level intensi-
ties across breast edge do not facilitate accurate boundary identification. In addition,
artifacts, excessive noise, scratches and band tape are impediments that influence al-
gorithm reliability in suppressing mammogram backgrounds. Complex strategies that
usually require heavy computations can be designed and tuned up to successfully deal
with these peculiarities. However, keeping in mind that this is a pre-processing step,
such efforts should be saved for the more challenging CAD tasks.

To overcome the difficulties encountered in mammogram background suppression, a
logarithmic contrast correction operation is first of all applied to stretch the dynamic
range in dark regions. This operation enhances mammogram contrasts especially at
breast edge and thus facilitates boundary identification. A global threshold technique
and a fuzzy C-means clustering algorithm were used on gray level intensities to par-
tition pixels into two subsets: bright and dark. Assuming dark pixels belong to the
background region while bright ones belong to the foreground region, the targeted seg-
mentation is achieved. Nevertheless, noise in the background often induces incorrect
classification of pixels near the breast edge. Consequently, a search path technique
was developed to recover true breast boundary points. Finally, accurate results were
obtained after applying this refinement step.

One difficulty that severely affects the methods introduced in this chapter is mismatch
that sometimes occurs between the a priori number of classes and the actual number
of modes in the image histogram. The source of this drawback lies in some excessive
noise in the background of mammograms. This latter is created by the digitization
process. A solution to this problem is to automatically estimate the true number of
classes into which a given image should be partitioned using mixture models statistical
analysis. It should be noted that addressing this issue left for future work.

Anyway, the foreground region extracted at this level still contains a non breast tissues
such as pectoral muscle tissues which regularly tamper breast tissue characterization.
The next chapter therefore introduces a strategy to segment out the pectoral muscle
region in mammograms.
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4.1 Introduction

Even though one has succeeded in getting rid of the background region, advanced
analysis tasks (e.g. dense breast tissue characterization) are impaired by the presence
of remaining non-breast tissues, i.e. the pectoral muscle. Therefore, it is necessary
to first identify the pectoral muscle region separately before any further analysis of
breast tissues. One of the major difficulties to overcome when segmenting out the
pectoral muscle is its strong overlapping with dense glandular tissues which tampers
its extraction. Like for the previous segmentation problem exposed in chapter 3, it is
preferable to solve the dual boundary detection problem instead of the region segmen-
tation one. Unfortunately, the slight variation of gray level intensities across pectoral
muscle boundary make this problem much more demanding. In addition, mammo-
graphic MLO views layout is a real problem to handle for the automatic extraction of
the pectoral muscle. In such conditions, applying straightforwardly classical segmen-
tation or contour detection methods leads to poor performances. In this chapter, we
introduce an ad hoc approach [1] relying on two main steps:

1. a coarse contour pre-detection,

2. followed by an iterative contour fitting.

The performances of this approach are demonstrated on a mammographic dataset using
a comparison to reference standard provided by radiologists.
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Figure 4.1: Pectoral muscle location in the left and right views of mammograms. According
to the mammogram view, the pectoral muscle may appear at the upper left or right corner
of the image respectively.

4.2 Pectoral muscle segmentation: problem state-

ment and state-of-the-art

In this section, we begin with a detailed presentation of difficulties in pectoral muscle
segmentation. Afterwards, an overview of the literature on this issue is given. Finally
a general architecture of the proposed strategy to tackle this problem is introduced and
justified.

4.2.1 Automatic pectoral muscle extraction challenges

As already justified in section 2.7, a prior extraction of patterns like breast contour
[2, 3, 4], nipple [3] and pectoral muscle [5, 6, 4] have to be carried out to allow accurate
analysis of breast tissues. This chapter focuses on the pectoral muscle which appears
almost only in MLO views. Roughly speaking, it is assumed to be a triangular region
with high gray level intensities located at the upper left corner of the breast region,
provided that the breast is right oriented in the image.

Another interest of extracting pectoral muscle is that its contour is used as landmark
for registration [7] in mammogram comparison or for breast reconstruction from multi-
views of mammograms [8, 6]. Consequently, the justifications for performing pectoral
muscle segmentation are not restricted to the scope of the approach described in Sec-
tion 2.7.

According to the mammogram layouts shown in figure 4.1, several major difficulties to
overcome for automatic extraction of pectoral muscle in mammograms can be noticed:

� pectoral muscle appears in different locations with respect to breast orientation
in mammograms,

� there can be a strong overlap with fibro-glandular tissues that makes it difficult
to reliably characterize the pectoral muscle image region,

� some skin folding tampering with the pectoral muscle contour can be found,
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� X-ray images tend to produce blur edges for pectoral muscles especially in its
lower part,

� there is a high variability of region surface; in some extreme cases, the pectoral
muscle covers a very small area or is completely missing.

These various and complex factors illustrate how difficult it is to automatically extract
pectoral muscle in mammograms [8].

4.2.2 Related works on pectoral muscle extraction

Many approaches dealing with pectoral muscle extraction have been introduced in the
literature. Certain methods used for breast contour detection presented in section
3.2.2 were applied also to pectoral muscle contour detection. Therefore there are some
redundancies between the current section and section 3.2.2. These works can be sorted
into three main groups as presented in the following paragraphs:

Pixel intensity based segmentation

Pixel intensity based segmentation approaches use only gray level information to par-
tition an image. In this way, Suckling et al. [9] used a multiple linked self-organizing
neural network to extract pectoral muscle by segmenting a mammogram into four main
types of components: background, pectoral muscle, fibro-glandular region and adipose
region. On the other hand, Saha et al. [10] introduced a semi-automatic method rely-
ing on an input from an operator to locate the pectoral muscle prior to its automatic
delineation. Raba et al. [11] used region growing method to extract pectoral mus-
cle. However, their results were assessed only visually and rated on a two scale grade
(adequate and quite adequate).

Texture based segmentation

Texture based segmentation approaches use information derived from image texture
analysis to segment an image into regions. Using such a strategy, many algorithms de-
veloped to extract pectoral muscle were based on texture-field orientation [8], wavelets
decomposition [12], Gabor wavelets [5] and non linear filtering [13]. In these approaches,
it is assumed that homogeneous regions have their texture orientation feature in the
same direction. Location where texture orientation feature are of opposite direction are
identified as probable traces or line segment of boundary. Finally, the pectoral muscle
contour is obtained by thresholding the line segments or candidate regions using shape
and size criteria. To take advantage of both intensity and texture information, Li et
al. [14] introduced an approach based on homogeneous texture and intensity deviation
to identify an initial pectoral muscle edge. They subsequently employed a Kalman filter
to refine the ragged initial edge. On the other hand, Chakraborty et al. [15] introduced
a method based on the average of gradient to the extract pectoral muscle. They used
a weighted average gradient and adaptive band selection to approximate the pectoral
muscle boundary as a straight line and local gradients to fit to the true edge of the
pectoral muscle.

Texture features have been also intensively used to analyze mammograms. In this way,
Chen et al. [16] implemented a two-layer neural classifier to segment a mammogram into
three main regions corresponding to breast tissues, pectoral muscle and background.
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Features include local binary patterns, histogram of oriented gradients and intensity
histogram. In the first layer, individual experts each formed by a feature vector and
an SVM classifier vote the local class of the mammogram. The second layer which is
a committee vote machine combines the previous labels in association with prior maps
to produce final segmentation. Although promising results are obtained, this approach
is less effective at producing an accurate pectoral muscle contour extraction and at
dealing with dense breast tissues overlapping with pectoral muscle.

A more detailed presentation of texture features for mammographic images is given in
the next chapter (see subsection 5.4.1).

Contour based segmentation

Another commonly used approach consists of estimating the boundary between pectoral
muscle and mammary tissues as a straight line by the use of Hough transform [5, 17].
The main drawback of this method is that the pectoral muscle edge is not always
straight and may sometimes have concavities. To cope with this difficulty Kwok et
al. [18] firstly estimated the straight line delineating the pectoral muscle using iterative
thresholds and then refined this line by cliff detection to be aligned on the pectoral
muscle boundary curvature.

Recently, a new image segmentation approach based on graph theory has been intro-
duced. This approach relies on the assumption that the pectoral muscle region bound-
ary has its two extremities in the first row of the image and the first non blank column
respectively. These extremities are called end-points and the shortest path between two
end-points is searched by minimization of a cost-function. Domingues et al. [19] esti-
mated the pectoral muscle contour as the shortest path throughout the two end-points
in the image gradient. The image is represented as a weighted graph where nodes are
pixels and edges are connecting neighbor pixels. Finally, the shortest path is found by
mean of a SVM classifier previously trained to minimize the cost function of the path
between two end-points. Ma et al. [7] introduced another graphical approach based
on adaptive pyramids (APs) and minimum spanning trees (MST) to extract pectoral
muscle. Camilus et al. [20] implemented a graph-cut based segmentation technique
followed by a refining step using Bezier curves for identifying the pectoral muscle edge
in mammograms.

It is noteworthy that most of these works were tested on small data-sets and that the
accuracy of their algorithms was based on visual inspection. Moreover, only few perfor-
mance metrics are provided. Good reviews on pectoral muscle segmentation approaches
as well as discussions on the overall performances achieved by various strategies intro-
duced in the literature to address this issue are presented in [21, 22]. The analysis
of this literature review shows how complex it is to extract the pectoral muscle and
that its boundary cannot be retrieved through a straightforward method. In this PhD,
we follow one of the most popular strategy [15, 18, 7] which relies on two main steps.
The pectoral region frontier is roughly estimated based on gray level homogeneity or
a priori information on the pectoral muscle location. The boundary is then refined by
selection of potential contour line segments, search of the shortest path [7, 8], or cliff
detection using gray level variation [18].
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Figure 4.2: Flowchart of the strategy to perform for pectoral muscle removal in mammograms

4.2.3 Strategy for pectoral muscle segmentation

Regarding pectoral muscle layouts in mammograms in figure 4.1, a number of reason-
able assumptions can be made to design an efficient approach to extract the pectoral
muscle in mammograms.

Assumption 1 : The pectoral muscle appears at only two different locations in mammo-
grams depending on which breast (left or right) is screened. Therefore, a pre-processing
is needed so that the pectoral muscle lies at the same location (upper left corner) in
all images from the dataset. By convention, only images with left oriented breast have
to be flipped sideways.

Assumption 2 : Assuming that the pectoral muscle now appears only in the upper left
corner in a mammogram, a region of interest (ROI) is selected so that it roughly covers
almost all the pectoral muscle area in a mammogram. The ROI parameters (width
and height) are given by a heuristic based on a priori knowledge on women anatomy
and mammography protocol. Defining a ROI allows to reduce the contour search area
and the computation time while ensuring better segmentation results.

Assumption 3 : Once the ROI is obtained, it can be segmented into sub-regions: pec-
toral muscle, glandular tissues and background. Using the approach presented in the
previous chapter, all pixels belonging to background are known and forced to zero. It
would also be possible to consider the intersection of the foreground region with the
ROI but this is a little bit more memory demanding.

Given these assumptions, two initial steps arise: conditional image flipping and ROI
selection. Afterwards, a coarse segmentation can be performed followed by a final
refinement as in most state-of-the-art approaches. Figure 4.2 summarizes this global
strategy using a flowchart.

4.3 Pectoral muscle segmentation: a new compre-

hensive approach

This section presents one of the main contribution introduced as part of this PhD
manuscript, i.e. an efficient pectoral muscle contour estimation. In the sequel, each
step from the flowchart of figure 4.2 is presented in details.

4.3.1 Breast orientation detection

Using breast contour extracted in the previous chapter, the chest wall in the image
is assumed to be, in first approximation, a straight line. In figure 4.3, the chest wall
corresponds to segment OB. Its position is thus determined by applying a Radon
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Figure 4.3: Schematic view of a mammogram with a right orientation and a pectoral muscle
at the upper left corner of the image. The coordinate axis are directed as shown with the
origin at top left. N1 and N2 are respectively the number of rows and columns in the image.
ROI is selected as a rectangular window of size OAxOC, where OA is half height of the image
and C is the upper endpoint of the breast contour.

transform to the breast contour image. The Radon transform is closely related to
Hough transform which is a common function used in computer vision to detect straight
lines in images. The Radon transform computes the integral of multiple, parallel beam
projections of the image at different angles by rotating the source around the center of
the image.

Using notations in compliance with the previous chapter, let u denote an input image
which is a function over a discrete grid G. Suppose G is obtained by evenly sampling
the unit square of R2. Let x and y denote the axes of R2. A pixel is a pair (px, py) ∈ G
and u (px, py) is its gray level intensity in the image. The Radon transform is computed
at each line of u parallel to a y′−axis as:

Rθ(x′) =
∫ ∞
−∞

u(x′ cos θ − y′ sin θ, x′ sin θ + y′cosθ) dy′, (4.1)

where [
x′

y′

]
=
[

cos θ sin θ
− sin θ cos θ

] [
x
y

]
,

and x′ and y′ are two axes obtained by applying a rotation of angle θ to x and y. Note
that equation (4.1) does not take discretization and rounding effects into account.

Figure 4.4 shows an illustration of straight line position detection in an image of breast
contour. The coordinates of the brightest spot found in the Radon transform plot
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(a) (b)

(c) (d)

Figure 4.4: Breast orientation detection. The chest wall position in a mammogram is an
indication of its breast orientation. Radon transform is applied to an image of breast contour
to derive its position in a mammogram. (a) Initial image enhanced, (b) contour extracted
after a rough segmentation, (c) plot of Radon transform projections of the image of breast
contour, (d) zoomed-in area containing the brightest spot of image (c). Spots in the plot
of Radon transform define probable lines in the image. Spot intensity varies with respect
to the length and width of lines in the image. The coordinates x′ and θ give the position
and the orientation of the lines in the original image with respect to Radon reference whose
origin is taken at the center of the image. The brightest spot angle value 0◦ means that the
corresponding straight line is vertical and the value of x′ indicates that the line is in the right
half of the image.

enable to derive the position of the chest wall position and therefore breast orientation
in the screened mammogram. Left-oriented breast mammograms are then vertically
mirrored thereby allowing to process images with identical region layouts.

4.3.2 ROI selection

Once a mammogram has been processed in such a way that the pectoral muscle appears
in the upper left corner, the point O in figure 4.3 is necessarily the upper left corner of
the target ROI. A relevant choice for the ROI height is the length of the line segment
OA where A is the half height of the image. This allows to reduce the amount of dense
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(a) (b)

Figure 4.5: ROI extracted from a mammogram (mdb018). (a) ROI with pectoral muscle,
breast tissues and background. Pectoral muscle boundary was traced out manually. The
lower portion of the ROI contains an overlap between pectoral muscle and breast tissues. (b)
Intensity histogram of the ROI. For better visualization, the histogram was plotted using the
raw mammogram. VB, VG and VP are modes of the following regions: background, breast
glandular tissues and pectoral muscle respectively.

glandular tissue in the ROI in order to guarantee good segmentation results. On the
other hand, the ROI width should be large enough to fully contain the pectoral muscle.
A simple way to ensure this is to set the ROI width equal to OC where C is the top
end-point of the breast border (see again figure 4.3).

4.3.3 ROI segmentation

Ideally, the ROI should entirely cover the pectoral muscle while rejecting as much as
possible other regions in order to ensure good extraction results. However, in practice
such a hypothesis is not always met since there is a high variability in shape and size
from one patient pectoral muscle to another. The concavity of the breast border in the
vicinity of point C (see figure 4.5) implies that the ROI comprises a small part of the
background. Therefore, the selected ROI is partitioned into three regions:

� pectoral muscle,

� breast glandular tissue,

� background (whose pixel values are zeros).

The choice of the segmentation method applied in this stage is justified from an analysis
of gray levels of regions contained in the ROI. Figure 4.5(a) shows the ROI extracted
in a mammogram where the pectoral muscle has been delineated from breast tissues
manually. Along with this ROI, the corresponding gray level histogram is given by
figure 4.5(b). It should be noticed that for better visualization purpose of region modes,
the intensity histogram of the ROI was plotted using raw mammogram image. In many
MLO mammograms, the lower portion of the pectoral muscle is spatially superimposed
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on some glandular tissues. The impact of the overlap between glandular tissues and
pectoral muscle can easily be observed on the ROI histogram (see figure 4.5(b)). There
is no clear cut separation between the modes of the histogram. Thus, it is not always
possible to find thresholds that can completely separate the pectoral muscle from other
tissues [6].

The only pieces of information available for segmentation are textures and gray level
intensities [8]. However, texture and gray level features are not very discriminating. In
addition, the feature distributions of the regions are overlapping. In such conditions,
one can think of two solutions: either changing the feature space hoping for a less
inter-class overlapping or resorting to robust algorithms. Given that the ROI content
is not a complex scene, the latter solution was retained.

The FCM algorithm, which is an unsupervised classification method, can be used to
optimally cluster overlapping data. Similarly as in the background region segmentation
presented in the previous chapter, it was decided to use the FCM algorithm for a coarse
segmentation of the pectoral muscle region. This segmentation is then refined using an
iterative contour fitting. The next subsections present this approach.

4.3.4 Limitations of the FCM segmentation

The FCM algorithm was already presented in the previous chapter, see subsection 3.4.2,
algorithm 1. As can be observed from equations 3.10 and 3.11, one needs the region
modes to compute membership functions and conversely. Therefore, the FCM algo-
rithm has to successively update the cluster centers and membership functions in order
to minimize the objective function Jm. It should be noticed that the FCM algorithm
starts by randomly initializing the cluster centers and evaluating the membership func-
tions. At each iteration, the membership function and the cluster centers are updated.
An optimal partition of clusters is obtained when from one iteration to another the
Euclidean distance between the previous and the current cluster centers is less than
a convergence parameter denoted by ε. Segmentation of the image is then performed
by assigning each pixel to the class corresponding to the highest membership function
value.

A major weakness of the classical FCM algorithm is the random initialization of cluster
centers which penalizes fast convergence of the algorithm. Furthermore, as the FCM
algorithm relies on a gradient descend, such a random initialization of cluster centers
may lead the algorithm to converge to a local minimum thus resulting in less accurate
segmentation results.

To better serve our purpose, two modifications will be added in order to speed up com-
putation and ensure better segmentation performances. These modifications address
the following limitations of FCM:

1. random initialization of region modes which penalizes fast convergence of the
algorithm,

2. non-use of spatial information leading to pixel clusters made of unconnected pixel
aggregates scattered on the image grid.
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4.3.5 Robust cluster centers initialization

It has been shown that neatly estimating region modes significantly reduces the number
of iterations while enhancing accuracy in the results. One appealing method for the
estimation of region modes is the block density approach [23]. In the latter, the image
(normalized) histogram h = [hj]0≤j≤L−1 is subdivided into c blocks Bi of equal size,
one block for each region involved in the segmentation. The jth component of h is hj
and represents the empirical probability to observe the gray level j in u. If the image
has L = 256 gray levels, then Bi =

{
(i− 1)× 256

c
, ..., i× 256

c
− 1

}
. A random variable

X is defined to represent the probability for a pixel to have a given gray level value.
The distribution of variable X corresponds to gray level frequencies of occurrence in
the image, i.e. the histogram: P (X = j) = hj. The initial mode of the first region

denoted by ν
(0)
1 and is the most probable gray level in the first block B1. Its probability

is denoted by hν1 . The subsequent region modes ν
(0)
2 , ..., ν(0)

c are then computed by
finding the gray level of the block that maximizes the following expression:

ν
(0)
i = arg max

j∈Bi
hj × d(j, ν(0)

i−1), (4.2)

with d(j, ν(0)
i−1) a distance given by:

d(j, ν(0)
i−1) =

(
(j − ν(0)

i−1)2 + (hj − hνi−1)2
)1/2

. (4.3)

Robust cluster center initialization algorithm

Using equation (4.2), the FCM was modified in such a way that the cluster centers are
initialized at robust region modes and subsequently updated in the same way as in the
classical FCM setting. The pseudo-code presented in algorithm 2 shows an outline of
the mode initialization process.

Algorithm 2 Robust cluster modes initialization

Require: c = 3, L, h
for i from 1 to c do
Bi ← Split gray level range into c blocks of equal size

end for
for i from 1 to c do

for all j ∈ Bi do
d(j, ν(0)

i−1) ← Estimate distance between current block samples and previous
mode with equation (4.3)

end for
ν

(0)
i ← Find the sample maximizing expression (4.2)

end for
ν(0) =

{
ν

(0)
1 , ..., ν(0)

c

}
: Vector of cluster centers

4.3.6 Exploiting spatial information in FCM clustering

As explained previously, the FCM algorithm often misclassifies some pixels because it
processes each pixel as a point living in the gray level feature space thereby completely
dropping topological information related to its position in the image grid. This section
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Figure 4.6: Segmentation of the ROI into 3 regions: pectoral muscle, breast tissue and
background. On the left column lies the initial image, the two next columns are results of
segmentation using FCM algorithm without and with local information respectively.

introduces a new modified FCM algorithm that allows better pixel classification results.
The idea of using spatial information inside the FCM procedure when processing images
has already been proposed by other authors [24, 25]. It has been shown that integrating
local information when updating pixel membership functions significantly improves the
segmentation performances in MRI brain images [26]. The neighborhood information is
integrated in the clustering process by computing a weighted version of the membership
function defined as followed:

µ̃i (p) = µmi (p)Sni (p)
c∑

k=1
µmk (p)Snk (p)

(4.4)

Si (p) =
c∑

p′∈N(p)
µi (p′) (4.5)

N(p) is the neighborhood of pixel p in the image grid, i.e. a square window of size nw.
m, n are weighting parameters and c is the number of image regions or equivalently
the number of modes in the empirical gray level distribution.

The modified version of the membership function µ̃i can be regarded as class-wise
product of the initial function µi with a local average of µi. The functions Si act on
the membership functions of a given pixel by leading its values towards classes with
many representatives in the local window. Consequently, the membership functions are
now not only depending on pixel gray level intensities but also on neighboring pixels.
Figure 4.6 shows the effects of integrating local information on segmentation.

One can see that some misclassified pixels in the ROI are now well classified thanks
to neighborhood information. This modified FCM algorithm can still be criticized
to increase computation load since the membership function has to be computed for
every pixel locally and within a window. However, this increased computation load is
partially compensated by the robust modes initialization introduced in subsection 4.3.5.

modified FCM algorithm

Using equation 4.2, the membership functions are initialized at robust regions modes
and then updated using local information. The modified version of the FCM algorithm
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will be referred to as the mFCM algorithm in the remainder of this manuscript. The
outline of the mFCM (with default parameter values) is given in algorithm 3.

Algorithm 3 modified FCM (mFCM)

Require: c = 3, m = 2, n = 3, ε = 0.01, nw=5x5
k ← 1
ν(0) =

{
ν

(0)
1 , ..., ν(0)

c

}
← Estimate region modes using sample block density with

equation (4.2)
for i from 1 to c do
µ

(0)
i ← Evaluate membership function with equation (3.10)

end for
while ‖ν(k+1)−v(k)‖ > ε do

for i from 1 to c do
µ̃

(k+1)
i ← Update weighted membership function with equation (4.4)

end for
for i from 1 to c do
ν

(k+1)
i ← Update regions mode with equation (3.11)

end for
k ← k + 1

end while

Once the mFCM algorithm has converged, the segmentation is performed by assigning
each pixel to the region with the highest membership value:

vseg = arg max
1≤i≤c

µ̃i. (4.6)

The pectoral region is then identified as the area with highest gray levels and containing
the upper left corner of the image.

4.3.7 Pectoral muscle region validation and refinement

The mFCM segmentation results match our purpose and allow the estimation of a
relevant approximation of the pectoral muscle boundary. However, in a few cases, an
undesirable drift is observed when breast tissues have a density close to the pectoral
muscle one. Figure 4.7 shows an example of this phenomenon. In this example, a
strong tissue overlapping results in an over-segmented pectoral muscle region. In the
upper half of the ROI, the boundary estimation is satisfying but in the lower half, the
estimated boundary drifts apart from the actual one, thereby creating an irrelevant
concavity in the pectoral muscle region.

A quick validation post-processing is necessary to solve that specific problem. We
propose to exploit the curvature angles of contour points to that end. The curvature
angle θj of the jth contour point is defined as the angle between the tangent line of
preceding contour points and the tangent line of following contour points at each point
of the contour (see figure 4.8(a)). The angle between these two tangent lines is given
by the formula:

θj = tan−1
(
a1 − a2

1 + a1a2

)
. (4.7)
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(a) (b)

Figure 4.7: Incorrect pectoral muscle region: (a) Initial image, (b) Incorrect pectoral muscle
region obtained from segmentation.

where a1 and a2 are the respective slopes of the tangent lines.

It can be seen from figure 4.8 that the estimated pectoral muscle contour is very noisy
(quick variation of contour pixel positions). Consequently it is necessary to compute
the tangent lines on a rather wide range of contour points to smooth the absolute values
of curvature angles. We obtained reliable curvature angle estimates by using a span of
25 pixels for tangent lines and least square regression for smoothing the angle curve.

Abnormal deviations in the contour yield large peaks in the graph of the function
mapping contour pixels to their curvature angles. Conversely, if there is no abnormal
deviation in the contour, the angle of curvature will remain quite flat. Figure 4.8(b)
shows the graph of the angle curvature function after smoothing in the case where the
pectoral region was overestimated due to glandular tissue overlapping. The function
computation is robust enough to allow the use of naive techniques for finishing the job.
On the datasets investigated in this PhD, it was observed that a thresholding at 30◦
suffices to detect all abnormal deviation occurrences.

When the angle of curvature is greater than the threshold, the rest of the contour is
extrapolated from the tangent line of points preceding the deviation. This is illustrated
by figure 4.8(a). This approximation allows to cope with the cases of pectoral region
overestimation especially where there is an overlap between pectoral muscle and glan-
dular tissues. In cases where the pectoral muscle is not entirely contained in the ROI,
the rest of its contour in the image is estimated by a straight line on the basis that
pectoral muscle is in first approximation triangular.

Now, the contour obtained from the estimated pectoral region roughly corresponds to
the true pectoral boundary but does not perfectly fit it. To improve the accuracy of the
algorithm, a refinement of the extracted contour is carried out. The next paragraphs
explain the strategy carried out to refine the contour in order to improve the accuracy
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(a) (b)

Figure 4.8: Incorrect pectoral muscle contour detection and correction (a) Extracted contour
with tangent lines (bold black segments) at the deviation point of the contour and the final
estimated contour (magenta) with the lower part fitted to straight line after the point of
deviation. (b) Angle curvature of the extracted contour. The peaks indicate the concavities
due to contour deviation.

of the pectoral muscle extraction.

Search path technique

Similarly as for the breast contour refinement (see subsection 3.5), the pectoral muscle
contour fitting approach developed in this work is based on the idea introduced in [6].
This approach relies on the definition of a search path for each point of the estimated
pectoral contour. A search path is defined as the orthogonal line segment centered on
its corresponding contour point. The search path slope is obtained straightforwardly
from the previously computed curvature angle by adding 90◦. The length of the search
path is an odd integer denoted by M . In our experiments, it was set to 15 pixels. For
contour points near ROI borders, search paths exceed the ROI limits. In these cases,
they are rotated accordingly so that they lie within the breast area (see figure 4.9(b)).
Having obtained these paths, we make the following reasonable assumption: the correct
pectoral muscle contour point belongs to the search path, one just has to find out which
one it is. In [6], the intensity profile along the search path is modeled as a sigmoid
function. The pectoral muscle edge point is supposed to lie at the inflection point of
the sigmoid. However, it is hard to model the intensity profile using a sigmoid in the
area where the pectoral muscle overlaps glandular tissues because there is no sharp
gray level intensity variation within these areas. Consequently, the refined contour
may deviate from the true edge.

Average gradient

Instead, we propose to use a refinement method based on local maximum average
gradient search that was introduced in [15]. This method is based on the fact that
the gradient is known to be higher at the edge of two regions. Let the path around
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contour pixel p be denoted by Pp. Suppose we have Pp = {p1, ..,pM} and for any
j ∈ {1, ..,M − 1}, pj and pj+1 are in 8-connectivity. In particular, this implies that
pM−1

2
= p. The average gradient AG is computed for each element of Pp along the

search path as follows:

AG(pj) = 2
M − 1

∑
1≤k≤M−1

2

u (pj−k)− u (pj+k)
2k (4.8)

Figure 4.9 displays a mammogram in which two profiles (in red) were used to compute
the standard gradient (c and d) and average gradient (e and f) respectively.

Thanks to an underlying smoothing effect, the average gradient is robust to spike
structures observed in the gradient of a profile. It clearly features the location of edges
with a prominent peak even in boundary areas with low pixels intensity variations and
thus make it easier to retrieve actual contour points.

Pectoral muscle contour refinement

The selected contour point of the pectoral muscle is the one whose average gradient
value is maximal among pixels in the search path. The refinement process is iterative.
Actual contour points are replaced by those obtained with search paths. It was observed
in some cases that shortening the search path during boundary refinement as described
in [15, 6] does not produce accurate contour and more iterations were needed to obtain a
good one. Therefore, instead of shortening the search path we used a fixed length search
path and performed iterations until a convergence of contour points. The convergence
is obtained when, from one iteration to another, the Hausdorff distance between the
previous contour and the current one is less than a threshold (2 pixels).

At the convergence of the refining process, the set of points detected as true pectoral
edge pixels is obtained. Figure 4.10 depicts the steps of the refinement process starting
with the search path technique (a), followed by estimated edge pixels (b) and the final
pectoral muscle contour (c). The contour points are smoothed within a sliding window
to filter outlier points. The smoothing is performed by a local weights least square
fitting. This least square fitting is implemented as follows:

� only data points within the the sliding window are used to calculate the coefficient
of the fitting curve,

� a linear least square regression is performed using a first degree polynomial model.

After the smoothing process, it may happen that a row in the area of pectoral muscle
has more than one edge point or no edge point at all. If two contour points are detected
in a ROI row, then the pixel with the maximum gradient is chosen as pectoral edge
pixel.

For no edge pixel in a row, the pectoral pixel is estimated to lie at the same column as
the one in the previous row. The pectoral region is finally completely segmented after
an extrapolated (tangent) straight line is added at the lower extremity of the pectoral
muscle contour in case it does not reach the chest wall.

75



4.3. Pectoral muscle segmentation: a new comprehensive approach

(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Search path technique and gradient plots for accurate boundary detection. (a)
Initial image, red lines indicate profile selected to compute standard gradient and average
gradient. (b) Validated contour with search paths drawn every three contour points, (c-
d) Standard gradient and (e-f) average gradient plots computed along the selected profiles.
Vertical red lines indicate the coordinate of the true boundary position on each profile.
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(a) (b) (c)

Figure 4.10: Pectoral muscle contour refinement. (a) Validated contour with search paths
drawn every three contour points, (b) True pectoral edge points detected after boundary
refinement, (c) Final pectoral muscle contour obtained after smoothing the true pectoral
edge points.

Figure 4.11 presents a detailed flowchart of the approach introduced in this PhD
manuscript to tackle the problem of automatic pectoral muscle segmentation. This
flowchart shows the different steps carried out to address this issue and which can be
sorted into the following main tasks: Pre-processings, segmentation and refinement.
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Figure 4.11: Detailed flowchart presenting the various steps of the strategy perfomed to
successfully segment out the pectoral muscle in mammograms

4.4 Results and performances evaluation

Now that we have presented our comprehensive approach for pectoral muscle segmenta-
tion, it is necessary to validate its performances through several experiments on digital
mammograms. This section starts with some general comments on the dataset and
experimental protocol. A number of quantitative and qualitative performances then
follows.

4.4.1 Dataset

The algorithm developed to segment out the pectoral muscle on mammograms was
tested on images selected from the same dataset as the one used in the previous chapter:
the mini-MIAS dataset [27].

This dataset is made of 322 images. This open database was chosen because it is the
most widely used in the literature dealing with pectoral muscle extraction. It therefore
allows an easy comparison of our results with those of other methods. All images
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Figure 4.12: Some examples of mammographic images of poor quality. On the left, case
mbd148 depicts a pectoral muscle with gray level intensity similar to those of breast tissue
In the middle case mdb061 is an illustration of poor mammogram contrast quality with high
variability in texture of the pectoral muscle. On the right, case mdb288 shows strong overlap
of pectoral muscle tissues with breast dense tissues.

in this database are MLO view mammograms digitized at 200 µm with an 8-depth
resolution. The images are 1024×1024 and were further sub-sampled to 512×512.
Among the images of the database, the radiologist identified three of them (mdb098,
mdb137, mdb236) as not containing pectoral muscle tissues. On other hand, two others
(mdb313 and mdb314) are such that pectoral muscle region covers a little area made of
only few pixels. The pectoral muscle in these cases do not induce a significant influence
on the CAD and accordingly these cases were discarded.

Images having a super-impressed area or band tape (12 cases) were pre-processed to
remove such areas which are harmful to the automatic extraction of the pectoral muscle.
The super-impressed area was clipped out and the bottom of the image was zero-padded
so that the final image size remains identical to the initial size. However, some images
of the dataset are of very poor contrast quality and do not fulfill the assumptions
made to track down pectoral muscle such as high gray level intensity or showing strong
overlap with dense breast tissues. Figure 4.12 shows some examples of poor images
quality. Following this pre-selection policy, only 22 images out of 322 were discarded.

4.4.2 Radiologist’s expertise as reference standard

To evaluate the performances of the pectoral muscle extraction, a manually delineation
of the pectoral muscle by an expert radiologist was used as reference standard. The ra-
diologist manually drew the pectoral muscle contour of all mammograms in the dataset.
It should be noticed that although the pectoral muscle was present in some images, the
radiologist did not feel confident with his manually delineated pectoral boundary due
to poor contrast quality or strong overlapping of the pectoral muscle with breast glan-
dular dense tissues. This consequently induces a variability of the reference standard
with respect to the observer. To take into account the influence of such a variability of
the reference standard on the performances of the algorithm, an inter-observer analysis
was carried out.
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The coordinates of the radiologist’s hand-drawn boundaries of pectoral muscle of images
used in [5] as well as coordinates of pectoral muscle obtained by their algorithms were
kindly provided by the authors. These data enable us to carry out a comparison of
their results to our own on the same reference standard. Subsection 4.4.5 highlights
the strong correlation between the two hand-drawn contours. The performances of the
proposed method is assessed on several criteria as defined in the next section.

4.4.3 Performance criteria

The same criteria as in subsection 3.6.3 of chapter 3 are used. If the reader has kept
these definitions in mind, this subsection can be skipped.
The accuracy of the pectoral muscle region extraction is assessed through the following
performance ratings:

� False Positive (FP) and False Negative (FN) rates, which evaluate pixel assign-
ment errors. A FP pixel is one assigned by the algorithm as belonging to the
pectoral muscle region but assigned by the radiologist outside of the pectoral
muscle region. A FN pixel is one assigned outside of the pectoral muscle region
by the algorithm but assigned inside by the radiologist. The FP and FN rates
for an image are computed as follows:

FP = | AC ∪ AR | − | AR |
| AR |

FN = | AC ∪ AR | − | AC |
| AR |

where AC and AR are the areas of the pectoral muscle regions obtained by the
algorithm and the radiologist respectively.

� Percent Overlap Area (POA), which expresses the accuracy of the region delin-
eated by the algorithm to the reference one drawn by the radiologist. It is defined
as:

POA = |AC ∩ AR|
|AC ∪ AR|

� The Hausdorff distance dH , which is a metric assessing the dissimilarity of the
detected boundary by the algorithm Calgo with the one drawn by the radiologist
Cr. It is defined as:

dH (Calgo, Cr) = max{ max
ci∈Calgo

{min
rj∈Cr
{d(ci, rj)}}; max

rj∈Cr
{ min
ci∈Calgo

{d(rj, ci)}}} (4.9)

where ci and rj are contour points obtained by the algorithm and the radiologist
respectively, d(ci, rj) is the Euclidean distance between points ci and rj.
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These metrics are widely used and thereby allow a fair comparison with other works
found in the literature. These metrics are also complementary and can thus catch every
aspect of image segmentation performances.

In [5, 7], the segmentation was evaluated using performance metrics computed using
area normalized errors. Normalized errors can be considered as partially biased to some
extent. Normalized errors based criteria will thus be computed only for comparing our
approach with theirs. In the sequel of this manuscript, unnormalized errors will be
used.

The next sections present the results yielded by the proposed method tested on images
from the MIAS dataset, the discussion and comparison of results with those of related
works and the limitations of the proposed method in face of difficult cases.

4.4.4 Pectoral muscle segmentation: detailed results

Figure 4.13 shows some pectoral muscle extractions obtained with the proposed method.
In comparison with radiologist’s manually drawn pectoral muscle boundary, the follow-
ing results can be highlighted:

� The POA mean and standard deviation are 86.30±13.19.

� The FN mean and standard deviation are 11.07± 12.49, while the FP mean and
standard deviation are 3.58± 9.20.

� The Hausdorff distance mean and standard deviation are 15.00±16.00 mm.

� 55.93% (165/295), 80.34% (237/295) and 89.15% (263/295) of the computed
pectoral muscle edges had a POA greater than 90%, 80% and 70% respectively.

� 27.46% (81/295) and 52.20% (154/295) of the computed boundaries had Haus-
dorff distances within 5 mm and 10 mm from the reference boundaries respec-
tively.

Identifying the pectoral muscle becomes difficult if dense tissues appear near the pec-
toral muscle. Consequently, as explained in subsection 4.3.7, a strategy to cope with
contour deviation and refine the estimated contour is proposed to track down the true
pectoral muscle boundary. The evolution of POA performances thanks to boundary
refinement is presented on figure 4.14.

One can notice that the accuracy of the proposed algorithm has been significantly
improved through boundary refinement. For instance, the rate of images with inac-
curate (POA < 80%) estimation of pectoral muscle drops from 41.02%(121/295) to
19.66%(58/295) while the one with high accurate estimation (POA > 95%) raises
from 0.31%(1/295) to 18.98%(56/295). In addition, the Hausdorff distance drops from
23.32± 18.30 mm before refinement process to 15.00±16.00 mm after refinement.

The inaccurate images obtained before boundary refinement were mainly those having
strong overlapping between pectoral muscle and glandular tissues or those with some
artifacts or having non uniform gray level intensities in the pectoral muscle area. The
above results prove that the pectoral muscle contour fitting step improves the accuracy
of the pectoral muscle extraction in those cases.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.13: Some examples of pectoral muscle boundaries detected by the proposed method
and superimposed on mammograms. (a) mdb029, (b) mdb111, (c) mdb113, (d) mdb185, (e)
mdb217, (f) mdb221, (g) mdb272, (h) mdb320 and (i) mdb191.

4.4.5 Observer variability influence

Regarding the subset of 84 images used in [5], two hand-drawn pectoral boundaries
were available. In the first case, the pectoral boundaries coordinates from a radiologist
R2 were those used in [5] and provided by Rangayyang while in the second case,
the pectoral boundaries correspond to that drawn by our radiologist R1. These two
reference standards were used to study the effect of the reference standard variability on
the performance evaluation. The same experiment was carried out on both our results
and those of [5] as the outputs of their algorithm were provided. Note that in one very
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Figure 4.14: Histogram showing the proportion of images with percent overlap area (POA)
between the computed and the reference standard pectoral muscle region before and after
boundary refinement.

particular image, the radiologist R2 identified a very small region as pectoral muscle
while the radiologist R1 did not identify any. This is explained by the fact that the
pectoral muscle region is composed of a very few pixels and consequently radiologist
R1 considered it unworthy to delineate. This image was therefore discarded from the
following study.

Table 4.1: Effect of the variation of reference standard on the performances of our algorithm
(mFCM) and the approach of [5] (Gabor)

R1vsR2 R1vsmFCM R1vsGabor R2vsmFCM R2vsGabor
POA Mean 95.58 89.12 81.98 87.95 84.27
(%) Std 2.12 14.09 15.13 14.66 16.02

dH Mean 3.89 9.30 10.51 8.50 12.47
(mm) Std 7.37 8.60 19.46 14.06 21.97

Table 4.1 gives pairwise performances computed from hand drawn pectoral muscle
boundaries of radiologist R1 and R2, the computed boundaries of our method and the
ones obtained in [5]. From this table, it can be noticed that the proposed approach
yields better results for both POA and Hausdorff distance criteria in comparison to
that introduced in [5]. This preliminary observation tends to show that the method
introduced in this PhD manuscript is the less susceptible to observer influence. The Mc
Nemar’s test was further used to assess the statistical significance of the performances

83



4.4. Results and performances evaluation

of these two approaches. The images fulfilling the accuracy criterion (POA>90%) for
both reference standards in one method but not fulfilling it with the other are 45
(54.22%) for mFCM and only 4 (4.82%) for the method introduced in [5]. The Mc
Nemar’s value is 34.31 which compared to χ2 indicates that the mFCM improvement
is statistically significant with a p-value less than 0.01.

The Wilcoxon’s test was used to evaluate observer variability of each method given that
in this case data are paired. Using POA criteria, the test values are 2.697 for mFCM
and 6.320 for the method introduced in [5] which are compared to the threshold test
value 2.58 having p-value 0.01. These results indicate that both methods have some
significant variation of their mean to each reference standard though mFCM seems to
be less sensitive than Ferrari et al. method [5].

In figure 4.15, our approach and [5] approach are further compared. For each method
and each radiologist, we give the cumulative percentages of images with performance
measures greater than a given value x. These percentages are represented as functions
of x. For the POA criterion, the proposed method performs better than Ferrari et al.
[5] method for both reference standards. However, for dH criterion, the performances
of the two methods are quite close with minor advantage to the method introduced
in [5].

4.4.6 Comparison to related works

We will now compare our approach to a wider spectrum of related works. The ap-
proaches selected for this comparative study are based on:

� Hough Transformed and Gabor filter introduced in [5],

� adaptive pyramids (AP) and minimum spanning trees (MST) presented in [7].

In their papers, the authors reported only FN and FP related performance rates. Also,
these values were computed on the same data-subset as initially selected in [5]. This
subset is made of 84 images from the MIAS dataset.

To allow a fair comparison, we computed the same performance measures on the same
data-subset. Only one image was removed from this data-subset in our case. This
image is the one without any pectoral muscle tissue reported by radiologist R2. All
results are given in table 4.2.

From Table 4.2, one can notice that the approach using Gabor wavelets exhibits the
lowest rates of FP and FN. The proposed method exhibits competitive performances
as compared to methods based on APs and Hough transform. Absolute performances
values are not the only quality criterion that matters. Indeed, the robustness of a
pectoral muscle segmentation algorithm is also very important. The robustness of an
algorithm is its ability to avoid producing very bad results. Robustness can be assessed
by the counts of images for which both FP and FN are below a given threshold value.
The rate of images for which both FP and FN are large (rows 5 and 6 of Table 4.2)
is smallest for the proposed method. In conclusion, our approach is the most robust
method among the four compared ones.
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Figure 4.15: Cumulative percentages of images with performance metrics greater than a
given value. Percent overlap area (a), (c) and Hausdorff distance (b), (d) performances of
pectoral extraction using Gabor wavelets [5] and the mFCM compared to two expert reference
standards R1 and R2 respectively.

The above conclusions drawn from this comparative study are unfortunately limited
to a selected set of images. There is some uncertainty regarding the ability of these
results to generalize to other mammographic images. Due to lack of time, it was
preferred to focus on the development of advanced analysis tools presented in the next
chapter rather than re-programming each of these methods in order to run them on
other datasets.

4.4.7 Difficult cases and limitations

Like any image analysis approach, our algorithm is subject to some limitations and
it is important to report them. Unsurprisingly, the worst performances are observed
for images that do not match some of the assumptions made to justify our approach.
These assumptions on the pectoral muscle region are concerned with:

� its size which is supposed to cover a significant proportion of the ROI,

� its average gray level intensity which is supposed to be higher than that of breast
tissues,

� its texture which is supposed to be uniform.
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Table 4.2: Comparison of reported studies using several performance metrics: mean and
standard deviation and the percentage of images with the conditions set in the reported
studies, where FP and FN rates are considered to be accurate (< 5%), acceptable (5% to
10%) and unacceptable (> 10%).

Performance criterion Hough Gabor AP MST mFCM

FP (Mean ± Std Dev) 1.98± 6.09 0.58 ± 4.11 3.71 2.55 2.58± 6.43
FN (Mean ± Std Dev) 25.19± 19.14 5.77 ± 4.83 5.95 11.68 8.78± 13.95
FP < 5% and FN < 5% 10 45 50 40 38
5% < FP < 10% and 5% <
FN < 10%

8 22 0 0 1

FP > 10% and FN > 10% 66 17 5 3 1

(a) (b) (c)

(d) (e) (f)

Figure 4.16: Some examples of pectoral muscle boundaries detected by the proposed method
(black) and hand-drawn by the radiologist (white) superimposed on the mammograms. Cases
with strong overlap of glandular tissue (a) mdb240, (b) mdb053, (c) mdb054 and cases with
skin bulges or non uniform texture (d) mdb066, (e) mdb065, (f) mdb034.

Figure 4.16 presents the outputs of our approach on very difficult cases. In some
cases with strong overlap with glandular tissues or non uniform contrast, the proposed
method gives moderately good pectoral muscle extraction results (see figure 4.16(a-c)).
This is mainly due to the contour validation step that relies on the upper part of the
muscle contour where there is no overlapping. The refinement of contour in these cases
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is effective only in the area where the overlap is not very strong or where the contrast
is acceptable.

In presence of severe artifacts like prominent skin bulges or poor contrast, the algorithm
fails to produce accurate results (see figure 4.16(d-f)). The main cause of this failure
lies in the segmentation step. In these cases, the contour obtained after segmentation
mainly fits the skin bulge contour instead of the pectoral muscle contour.

Although some significant deviations between the computed boundary and the actual
one can be seen, the proposed solution is never completely absurd. Indeed, even in
these cases, a very large amount of mammary tissues are correctly recognized. Our
primary goal is to detect such tissues as part of the global CAD approach depicted in
section 2.7.

Besides, the limitations discussed in the paragraphs above are mostly observed in par-
ticular cases of images where mammograms were not performed under optimal condi-
tions. Carelessness on patient positioning during mammogram acquisition may result in
blurred images with patterns like pectoral muscle partially occluded (see figure 4.16(d-
e)). In addition, the difficult cases represent less than 5% of processed images on the
whole MIAS dataset. The robustness of our approach is thus satisfying. Better results
on such difficult cases could be achieved by using an additional computation efforts
or by imposing more stringent conditions into mammographic examination protocols.
In general, experts’ knowledge could be incorporated inside the pectoral segmentation
step using (semi)-supervised machine learning techniques. In this PhD, it was decided
to stick to fast learning-free solutions in order to save as much computation resources
as possible for the final stage of our CAD system, i.e. advanced dense breast tissues
analysis.

4.5 Conclusion

Identifying the pectoral muscle region in mammograms is a challenging task due to
various disrupting factors that make its automatic segmentation complicated. The main
difficulties to overcome are the variability in shape, size, contrast and texture of the
pectoral muscle region and the overlapping with dense glandular tissues. An automated
approach of pectoral muscle extraction was designed by using some basic a priori
knowledge and gray level intensity information to accurately delineate the pectoral
muscle boundary. The motivation of this step is to discard pectoral muscle tissues
from further analysis since they hinder CAD tasks like for instance mammographic
density analysis and cancer risk assessment.

To achieve good pectoral muscle segmentation, we introduced a sequential approach
which can be summarized as follows:

1. static ROI selection,

2. ROI segmentation using an improved version of the FCM clustering algorithm,

3. contour curvature correction,

4. contour fitting using average gradient and search paths that are orthogonal to
the contour.
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Our contribution lies in the combination of each of these steps as well as in their fine
tuning.

Several experiments have been carried out on the MIAS dataset. Two radiologist hand-
drawn pectoral muscle contours were used as reference standards to compute a wide
range of performance measures. Regarding these measures, it can be concluded that
our approach outperforms state-of-the-art approaches in terms of robustness.

Now as the pectoral muscle has been successfully removed in the mammographic image,
the remaining image is only constituted of breast tissues ready for advanced tasks like
tissue density characterization. The strategy presented in this chapter can also be
useful as a pre-processing step of applications dealing with mammogram analyses like
registration and breast deformation modeling which are other key steps in working out
accurate CAD systems.
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5.1 Introduction

Although mammography remains the standard modality used for breast cancer de-
tection, carrying an automatic visual characterization of cancerous patterns remains
a challenging task. Indeed, some cancer signs have similar textures as dense breast
tissues and most of the time are located within these tissues. Looking for cancer signs
in such conditions is tedious and complex to carry out even for expert radiologists.
Medical research studies have shown that women with dense breast tissues have four
to sixfold higher breast cancer risks. Since there is a strong correlation between breast
tissue density and cancer risk, this feature is at the heart of many clinical protocols.
In the next sections of the chapter, we start with a definition and a presentation of
breast density classification systems. After this, we move to computerized analysis of
mammograms for breast density assessment and present a state-of-the-art of such CAD
systems as well as a preliminary novel approach to detect dense tissues using image
processing.

5.2 Breast tissue density: General facts

Recent studies have shown that women having breast with a dense tissue ratio greater
than 60% have an increased risk of breast cancer. Their cancer risk ranges from four
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to sixfold higher to those of women with a dense tissue ratio1 lower than 25% [1, 2,
3, 4]. This shows that there is a strong positive correlation between breast density in
mammograms and the risk of developing breast cancer [4, 2, 5]. Other studies have
shown that the number of cancer detected when reviewing the mammograms previously
read by radiologists is always increasing [6]. This rate of missed cancers expresses the
difficulties a radiologist faces to identify cancer signs when these latter are located
within dense breast tissues.

Similarly, it has been shown that the efficiency of a CAD system to detect mammo-
graphic abnormalities is decreasing significantly as the density of the breast increases
[7, 8]. The roots of these drawbacks lie in the design of CAD systems. The approaches
commonly found in CAD systems are implemented to:

� process an entire mammographic image and identify breast cancer signs,

� compare pairs of mammograms and look for asymmetry in parenchymal tissue,

� analyze specific image patches selected by a radiologist and classify these latter
as having cancer signs or not,

� integrate information from multimodal images and improve cancer signs detec-
tion.

Given that cancer signs are commonly depicted with similar texture as normal dense
tissues, designing a CAD to search for cancer signs at broad image scale is bound to
produce moderate results due the disparity in mammograms informative contents.

5.2.1 Definition and scope

Mammographic density analysis consists in characterizing the different types of tissues
found in a mammogram according to their density related features. However, it should
be made clear that segmentation or characterization of dense breast tissues allows
cancer risk assessment but not the detection or the classification of abnormalities such
as masses and microcalcifications. [7, 9, 10].

Noticing that dense tissues contain critical information on breast cancer, advanced
strategies should be developed to address cancer sign detection conditionally to tissue
density (with special care for highly dense breast tissue areas). Although CAD systems
have been introduced to improve cancer detection rates, their performances to identify
or discriminate cancerous tissues from normal tissues are still to be improved. In fact, to
improve breast cancer detection, the design of a CAD system should take into account
histological information during the process of cancer signs tracking.

In this chapter, we focus on breast tissue density characterization only. The outcome of
density characterization approaches is a stepping stone toward the design of coarse to
fine detection of breast cancer signs conditionally to tissue information. This approach
sounds relevant to address afterwards the problem of cancer signs detection since they
are hard to identify in dense regions when the whole mammogram is considered.

1The dense tissue ratio is the volume of dense tissues over breast volume. In general, this ratio is
approximated from 2D mammograms as the surface (in pixel counts) of high intensity image region
over the breast region surface.

92



Chapter 5. Breast density scoring using mammographic image processing

5.2.2 Clinical assessment of the correlation between cancer
risk and mammographic density

It is only during this last decade that computerized analysis of mammographic parenchy-
mal patterns have been developed to automatically assess breast cancer risk whereas
clinical studies have been carried out to examine the correlation between mammo-
graphic density and cancer risk for more than four decades. Clinical researches can be
gathered into qualitative and quantitative studies. It should be noticed that some of
these studies were carried out with respect to qualitative descriptions of mammographic
parenchymal tissues that are subsequently introduced in section 5.3.

Qualitative studies

Boyd et al. [2] carried out a case control study to examine the relationship between
mammographic patterns and breast cancer. They randomly collected mammograms of
non-cancerous breast with mammograms of breast cancer control. This set of mam-
mograms was submitted to radiologists for analysis and classification.

Gram et al. [11] used a meta-analysis framework to study the correlation between tissue
density classification with respect to Wolfe and Tabár schemes and the following cancer
risk factors:

� age,

� age at menarche,

� age at menopause,

� age at first child delivery,

� number of children,

� body mass index.

They obtained a strong correlation coefficient between tissue density and cancer risk.

McCormack and Silva [5] also carried out a meta-analysis on papers published on this
issue and fulfilling some predefined criteria. The goal of this approach was to attempt
to assess the origin of the disparity of the correlation coefficient between quantitative
and qualitative studies of mammographic density with respect to cancer risk. They
showed that the heterogeneity observed in the results is due to the difference in tissue
density estimation. They therefore concluded that breast density is a marker that must
be taken into consideration in etiology and prevention of breast cancer.

Quantitative studies

The earlier attempts to clinically estimate breast density quantitatively were carried
out using planimetry approach [12, 13]. This method consists in delineating dense
tissue regions in mammograms with an instrument called the planimeter and evaluate
the surface of enclosed areas. The ratio of dense tissue is therefore derived with respect
to the total breast region surface. Although this method seems straightforward to
perform, difficulties arise in presence of ”islands” of dense tissue as it is often the case
with mammograms.
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To cope with such difficulties a semi-automated approach was introduced by Byng et
al. [14]. In this method, an observer selects gray level thresholds that produces a good
segmentation into dense tissues areas and other breast tissues respectively. The surface
of each region is computed and the dense tissue ratio is then derived. However, this
approach relies on operator appraisal of dense regions and undoubtedly induce observer
variability.

On other hand, volumetric methods attempt to determine the volume of dense tissue
in the breast using a range of angular projections. Unfortunately, the heterogeneity
observed from one breast to another is a major problem to overcome for a proper
modeling. Consequently, such model is bound to produce results of moderate accuracy
owing to the assumptions made. However, it should be noticed that promising new
measures of mammographic density, including volumetric density, which can be stan-
dardized using full-field digital mammography, will likely result in a stronger risk factor
and improve accuracy of risk prediction models [15]. More insights on quantitative and
qualitative studies are presented in [16, 15].

These clinical studies show that there is a strong correlation between mammographic
density and cancer risk. In addition, they pointed up the difficulties in estimating dense
tissue ratio in mammograms. However, computerized approaches can provide consis-
tent, quantitative, observer independent estimations of mammographic parenchymal
patterns and therefore facilitate cancer risk assessment.

5.2.3 Justification with respect to cancer risk

In order to assess breast cancer risk, it is necessary to characterize and classify breast
tissue with respect to their density. The availability of a breast cancer suspicion index
as function of tissue density will thus allow to evaluate cancer risk level on the basis
of breast tissue analysis. The determination of such a suspicion index relies on the
characterization of dense tissues in mammograms. Although this task can be done
manually, observer variability is a real problem when some radiologist’s subjective
appraisal is used to assess the amount of dense tissues in mammographic image [17].

An objective tool allowing tissue density assessment will be not only valuable for cancer
risk evaluation but will also be helpful for monitoring tissues density evolution across
time. In addition, tissue density is of a great asset in the search of cancer signs.
It indicates cases with a high probability to develop cancer and therefore enables to
implement advanced strategies to accurately detect cancer signs in such mammary
tissues configuration [7].

To reduce observer variability issues, some classification schemes of mammographic
density have been defined and are currently used as standard reference for mammo-
graphic risk scoring [9, 3, 10]. Such approaches are meant to provide radiologists with
accurate and repeatable risk assessment. These clinical rating systems are not auto-
mated. They are presented in greater details in the next section.
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5.3 Dense tissue related classification systems of

mammograms

In this section, we introduce qualitative approaches that are commonly used as reference
scale for classification of dense parenchymal tissues in mammographic images.

In this document, we use frequently use the terms ”breast tissue density”and ”dense tis-
sues”. In some literatures, the same concepts are sometimes referred to as ”parenchymal
patterns”, ”fibro-glandular disk” or ”parenchymal density”.

The classifications of mammographic density in order to assess cancer risk are based
on a number of patterns that may not describe the same mammographic features
[7, 10, 9, 4, 2]. The most common classification schemes found in the literature are
those defined by Wolfe, Tabár and BIRADS systems which are introduced in the next
paragraphs.

5.3.1 Wolfe’s classification system

Wolfe was the first to advocate in 1976 for a strong correlation between parenchymal
patterns seen in the breast and the risk of breast cancer [3, 4]. He therefore defined
four classes of patterns to characterize mammograms of similar breast tissue textures.
These classes are actually known as Wolfe’s grades and are defined as follows:

� the N class pattern which represents fatty radiolucent tissues in the breast,

� the P1 and P2 class patterns which stand for a progressively increase fibrous
tissues surrounding ducts,

� the DY class pattern which stands for a breast containing dense sheets of fibro-
glandular tissues.

It should be noticed that the N grade is related to breast with the lowest breast cancer
risk while P1 and P2 denote progressive higher risk and DY indicates the highest risk.

Some results in [2] show that some radiological appearance in mammograms are strongly
related to breast cancer presence and this discrimination is compliant with Wolfe’s
mammographic pattern description. However, Wolfe’s classification is sometimes criti-
cized for its great disparity in breast cancer risk estimates and for its low reproducibility
[18, 19].

5.3.2 Tabár’s classification system

The Tabár’s classification system is based on anatomic-mammographic correlations,
following three dimensional histopathological comparison rather than a simple pattern
reading like Wolfe’s system. The mammographic patterns are associated with three
selected breast cancer risk factors: parity, number of children and age of first child
delivery. Tabár’s system classifies mammographic features in patterns I to V.

� Pattern I is commonly made of three breast features which are:

– scalloped contours and Copper’s ligaments,
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– evenly scattered terminal ductal lobular units,

– oval shaped translucent area corresponding to fatty replacement.

� Pattern II is usually formed from pattern I evolution and represents complete
fatty replacement.

� Pattern III represents the combination of the retroareolar prominent duct pat-
tern due to periductal elastosis and fatty involution.

� Pattern IV exhibits extensive nodular and linear densities throughout the breast.

� Pattern V consists of homogeneous, ground glass like, structureless fibrosis with
convex contour.

In Tabár’s classification system, patterns I to III indicate a low cancer risk while
pattern IV and V point out to a high cancer risk.

In [11], Gram et al. noticed that the correlation coefficient between tissue density
and cancer risk is different using Wolfe and Tabár classification schemes. Brisson et
al. [20] obtained similar results when analyzing the relationship between Wolfe’s mam-
mographic parenchymal patterns and cancer risk. They showed that using Wolfe’s
grade description, mammograms might provide more information on breast cancer
rather than what is provided by simply measuring the dense tissue ratio.

Another comparative study of Tabár’s and Wolfe’s system was carried out in [21]. Al-
though no significant correlation was noted between the two classification schemes, the
results derived from this comparison study indicate that Tabár’s classification scheme
can be considered as an evolution and improvement of Wolfe’s classification [21]. How-
ever, the superiority of Tabár’s system over Wolfe’s system may be due to the integra-
tion of the three selected breast cancer risk factors into the classification process.

5.3.3 BIRADS classification system

The American College of Radiology (ACR) has defined a system of assessment of
mammographic images density [9]. The Breast Imaging Reporting and Data Sys-
tem (BIRADS) was developed as quality assurance tool, and indicates the significant
relationship between increasing breast density and decreasing efficiency in detecting
cancer [22]. This system classifies mammographic images into four groups according to
their ratios of dense tissues. Figure 5.1 gives an illustration of mammographic images
from MIAS dataset with variable breast densities, each of them belonging to a given
BIRADS category.

� BIRADS I represents almost entirely fatty breasts. In this category, the propor-
tion of glandular tissue is less than 25%.

� BIRADS II contains breasts with scattered fibroglandular tissues. In this case,
the proportion of dense tissues is between 25− 49%.

� BIRADS III is the class of breasts with a ratio of glandular tissue in the range of
50− 74%.
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Figure 5.1: Mammograms with different amount of dense tissues from the 4 BIRADS cat-
egories. From left to right sample of mammograms of BIRADS I to IV and representing
respectively low to highest mammographic risk.

� BIRADS IV is the class of breasts containing extremely dense tissue. In this case,
the proportion of glandular tissue is greater than 75%.

It should be noticed that breasts belonging to BIRADS III group may tamper the sen-
sitivity of mammography in detection of breast cancer signs whereas those of BIRADS
IV configuration could obscure a cancerous lesion.

BIRADS I and II categories stand for a low cancer risk while BIRADS III and IV
categories indicate higher risks of cancer. This qualitative system was not developed to
quantify breast cancer risk, but to allow a radiologist to indicate his self-confidence with
respect to false negatives due to lesions masked by dense tissues [16]. High BIRADS
scores should imply further tests with modalities that are less affected by density [16].

Nowadays, the BIRADS system is becoming the radiological gold standard for breast
density characterization and is intensively used in the evaluation of the automatic
mammographic density and cancer risk assessment. This classification system will be
therefore preferred for some developments presented in the next section.

5.4 Computerized dense tissue characterization: a

state-of-the-art overview

Since it has been established that tissue density plays a major role in cancer risk assess-
ment, designing automatic dense tissue characterization algorithms using image pro-
cessing techniques is a relevant problem to address. This section presents an overview
of dense tissue image analysis related works. Note that a greater research effort has
been dedicated to another task: suspicious pattern detection and classification into
abnormality classes or into benign or malignant types. A brief review on this concern
is presented in [23]. This task is somehow related to the one we investigate in this
section but it is widely agreed that they require very different image analysis solutions.
As a consequence, we do not present mammographic abnormality detection approaches
in greater details.

Mammographic density analysis mainly aims at scoring the amount of dense tissues for
a given input image. Density scoring methods can be sorted into two categories:
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Figure 5.2: Main steps of a typical approach for mammographic density assessment

� segmentation free approaches: when general features are extracted from the image
allowing some density related pattern recognition,

� joint segmentation and scoring approaches: when each pixel in the breast region is
first sorted into dense and non-dense regions before making more general conclu-
sions at the global image scale. These methods deliver more precise information
on patients but are more computationally demanding.

The flowchart represented on figure 5.2 shows the main steps commonly found in re-
lated works dealing with mammographic density issues. Both types of density scoring
approaches start with a feature extraction step followed by an optional feature selec-
tion. Feature vectors are then used for classification into density related classes or
for regression if a numerical density score is sought. We briefly review this literature
in the sequel, starting with an overview of feature extraction methods followed by a
presentation of density scoring approaches for mammograms.

In the sequel of this document, any image is supposed be a function u : G −→ [0; 1]
with G a domain often called image grid. An element p ∈ G is called a pixel. A pixel p
is a pair of coordinates (px, py) on the image grid. Gray level pixel intensities are thus
given by u (p). Black pixels are such that u (p) = 0 while white pixels are such that
u (p) = 1.

5.4.1 Frequently used image features in mammograms

Feature extraction is a fundamental step in image analysis. In general, features are
another representation of the same information as the one contained in the raw image.
This new representation is usually more compact and allows an easier discrimination
of the input data with respect to a given criterion, like class labels for instance. When
a feature extraction is performed on a set of gray level values drawn from the neigh-
borhoods of pixels, such features are called texture features. The simplest definition
of the neighborhood of a pixel p is the set of pixels p′ such that ‖p′ − p‖∞ < r. Such
neighborhoods are square subsets of the input image and are often called patches of
radius r.

Raw patches can be considered themselves as feature vectors, in which case they are
also called textons. Textons are used for mammographic image processing in [24, 25]
for example. Note that in [25], patches are normalized by subtracting their means
and dividing them by their standard deviations. The texture feature literature is very
large and an exhaustive state-of-the-art is beyond the scope of this manuscript. In

98



Chapter 5. Breast density scoring using mammographic image processing

this subsection, we only review those frequently used in mammographic (or sometimes
medical) image analysis.

Raw features

The crudest form of texture feature are image patches as we have just explained. When
patches are processed to yield another texture representation, the obtained features can
be called raw features as opposed to representations where several cascading steps are
performed. We present such raw features in the following paragraphs.

In mammographic image processing, one of the earliest texture features investigated are
fractal features. Cadwell et al. [26] characterized mammographic parenchymal tissue
using fractal analysis. In their approach, a mammogram is regarded as a surface with
valleys in dark pixel regions and peaks in bright pixel regions. It was found empirically
that the area A of this surface is given by the following equation:

A(ε) = αε2−ϕ (5.1)

where ε is the area of a small square, α is a scaling constant and ϕ is the fractal
dimension parameter. The surface area A is a piece-wise affine approximation using
constant squares whose size is ε. Intuitively, the surface approximation is better as ε
decreases since one is able to capture finer variations. The fractal dimension ϕ does
not depend on ε and thus captures some intrinsic properties of the surface ruggedness.

The fractal dimension can be numerically approximated by linear regression on a set
of pairs {(log (εi) , log (A(εi)))}ni=1. Several methods are available to compute values of
A(εi), see [27] for more details on this point. Note that if one is interested in segmenting
mammographic images with respect to tissue types, the fractal dimension has to be
computed locally on each patch. Consequently, one way to characterize texture is to
analyze the local distribution of the fractal dimension using local histograms [28].

From Caldwell et al. [26] analysis, it has been argued that fractal dimension alone is
not enough to accurately describe mammographic textures. A similar conclusion was
draw by Chen et al. [29] to improve medical image texture classification. Among other
possibilities, Lee et al. [30] investigate a multi-resolution approach based on wavelet
decomposition of echographic liver images. The fractal dimension is computed for each
scale considered in the decomposition thereby yielding a feature vector.

In general, multi-dimensional analysis of fractal properties is called multi-fractal analy-
sis. Lopes and Betrouni [27] give a review of multi-fractal techniques for medical image
processing.

Textbook examples of texture features are gray level histograms and co-occurrence
matrices [31]. Both of these objects are obtained by counting occurrences of pixel
intensity related events. The histogram h of a ROI R ⊆ G is a vector of size n whose
ith coordinate hi is given by:

hi =
|
{
p ∈ R| i−1

n
≤ u (p) < i

n

}
|

|R|
. (5.2)

The profile of vector h encodes some textural information.
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A co-occurrence matrix is a distribution that characterizes the frequency of pairs of
gray level values (u1, u2) whose ante-image pixels p1 and p2 are separated by a given
offset ∆p = (∆x,∆y). Let C∆p denote a n × n co-occurrence matrix extracted from
image u. We have:

C
i,j,∆p =

|
{
p ∈ R| i−1

n
≤ u (p) < i

n
and j−1

n
≤ u (p +∆p) < j

n

}
|

| {p ∈ R|p +∆p ∈ R} |
. (5.3)

Note that common choices for ∆p are those compliant with 8-connectivity. Conse-
quently, several co-occurrence matrices need to be computed to characterize textures.
In [7, 32, 33] both histograms and/or co-occurrence matrices are used on mammo-
graphic images. Note that histograms or co-occurrence matrices are rarely considered
as a final data representation (see next subsubsection).

Also, similarly as for fractal features, histograms and co-occurrence matrices can be
computed for multiple image scales. He et al. [34] developed a multi-resolution approach
to capture both small and large local texture structures.

Speaking of multi-resolution, another type of features emerged in the late 90’s for
texture analysis: wavelet coefficients. Using wavelet decomposition of images, multi-
scale properties are naturally captured. Let ψ denote a function in L2 the vector space
of square integrable functions over R2. ψ is a wavelet if the set of functions {ψi,j,k}
obtained by dyadic translations and dilations of ψ is a basis of L2. For any pixel p,
one has:

ψi,j,k (p) = 2 k
2ψ
(
2kp− (i, j)

)
. (5.4)

The wavelet transform of image u is denoted by Wψ{u} and is given by:

Wψ {u} (a,b) = 1√
a

∫
G
ψda,budω, (5.5)

where ψda,b is a discretized version of a child wavelet function defined as ψa,b (x) =
ψ
(

x−b
a

)
for any x ∈ R2 and ω is the discrete measure over G defined as ω = ∑

p∈G
δp. δp

is the Dirac measure on the singleton {p}.

The value of this integral is a texture feature and, by computing it for several values of
a and b, a set of features (known as wavelet coefficients) is obtained. Of course, these
features are depending on the chosen mother wavelet ψ. Common choices are Haar,
Daubechies or Gabor wavelets. A review on wavelet analysis for biomedical signals is
given in [35]. This review contains a few paragraphs on microcalcification detection in
mammograms using wavelet coefficients. An example of dense tissue texture analysis
using wavelets is [36]. A common difficulty with such coefficients is the dimensionality
of the feature space which is potentially very high. Selecting a relevant subset of
wavelet coefficients (or equivalently relevant set of values for a and b) is a feature
selection problem. This more general problem is briefly evoked in subsection 5.4.1.

Similarly as co-occurrence matrices, some other empirical distributions appear to be
relevant local features for images because they jointly process spatial and gray level
information. Histograms of oriented gradients (HoG) [37] are such distributions. This
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feature extraction method starts with the computation of gradients using usual digital
filters like Prewitt [38]. The grid is then partitioned into small patches like 4× 4 ones
for instance. For each patch, a histogram of local gradient orientations is computed.
The orientation levels are limited generally to 8 or 9 possible levels in the interval
[0, 2π].

The HoG features are related to others belonging to the scale invariant feature trans-
form (SIFT) [39]. This operator is meant to detect interest points inside an image.
Typical interest points in an image are corner or edge pixels. In the SIFT setting, each
interest point is associated to a texture feature vector very much alike HoGs. More
precisely, SIFT feature vectors are the concatenation of HoGs extracted from neighbor
patches.

Bosch et al. [24] compare those SIFT features with textons for a classification task into
BIRADS grades. Surprisingly, textons outperforms HoGs for this task. The authors
argue that dense and non-dense tissues cannot be disambiguated by HoG features
because line orientations in such image region are rather anarchic.

Another kind of histograms were introduced by Zwiggelaar [40]: gray appearance
(LGA) histograms. This approach relies on the computation of local signature slga
of patches. This signature is obtained as follows:

slga = 1 +
∑

p∈ patch

(Ng)indp uq(p) (5.6)

where indp is the index of pixel (i, j) in the patch and uq is a quantized version of u
in Ng gray levels. The way pixels of a patch are indexed is arbitrary but the same
indexes must be used for each patch. Finally, the histograms of slga are computed over
a given region of the image. For once, this feature extraction method was specifically
introduced for mammogram analysis.

LGA signature can be viewed as the generalization of a popular texture signature known
as local binary patterns (LBP) introduced by Ojala et al. [41]. The LBP signature is
a LGA signature with only two levels, i.e. Ng = 2, computed on a shifted patch. A
shifted patch is obtained by subtracting the gray level of the center pixel to all the
other ones. This latter modification allows LBP signature to be rather invariant to
illumination changes.

More recently, Crosier and Griffin [42] introduced a new empirical distribution for
texture representation. In order to build this distribution, the authors propose to
first compute the basic image feature (BIF) of each pixel. This feature is obtained by
quantizing the responses of six filters. This set of filters is made of:

� a gaussian discrete filter gσ,

� the two discretized first derivatives of gσ: ∂gσ∂px
and gσ: ∂gσ∂py

,

� the three discretized second derivatives of gσ: ∂
2
gσ

∂p2
x

, gσ: ∂
2
gσ

∂p2
y

and ∂2
gσ

∂px∂py
.

Using this filter bank, each pixel is thus embedded in R6. This space is then divided
into seven subsets for quantization. This quantization is performed using an interesting
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geometric principle. Indeed, it can be shown that each of the six filter has a large
output value when the image is locally invariant under a group of transformations.
The authors investigate isometry with respect to both space and gray level intensities.
Consequently, the filter responses allow to select the closest symmetry type among a
set of seven predefined symmetric patterns. The authors comment on the fact that
a crude histogram with respect to BIF categories is not precise enough for texture
classification. They recommend using a vector of BIF labels for each pixels. Each
component of these vectors is the BIF category for a given scale which is selected using
parameter σ from the Gaussian filter gσ. Histograms computed in this larger space
produce better results.

Both BIF and LGA features are experimented for dense tissue characterization by
Chen et al. [43].

Features are not always arranged in vectors. They can be organized in more complex
structures. Chen et al. [44] developed a quantitative estimation of breast density using
topographic maps. A topographic map T is a collection of level sets: T = {s1, .., sn}.
The ith level set si is the subset of G containing pixel with intensities greater than

i ×
max
p∈G

u(p)

n+1 . We thus have s0 = G and sn+1 = ∅. Some level sets are not connected,
in which case they are separated into connected subsets of maximal cardinalities. The
family of subsets thus obtained is a first degree of feature representation denoted by
{s′i}

m
i=1.

Since the set-inclusion is a total order relation for such sets, a convenient representation
for feature are directed trees. Let Tr denote the tree whose nodes are connected sets
s′i. Two nodes s′i and s′j are connected if s′i ⊆ s′j and there is no other set s′k such
that s′i ⊆ s′k ⊆ s′j. By detecting sets whose shape are significantly different from tree-
ancestors but similar as tree-descendants, a sub-tree Tr′ can be extracted in order to
keep only the most interesting sets.

Trees Tr′ are global feature for the whole image. Local features can be retrieved from
these trees by computing a map ϑ : G −→ R. This map is called density map and is
such that ϑ (p) = 1

|R|
∑

p′∈R u (p′) with R the smallest set in Tr′ containing p.

The feature extraction methods mentioned in the preceding paragraphs do not take
into account the specificity of the X-ray imaging and mammogram acquisition protocol.
Highnam and Brady [45] followed in a different path and introduced an algorithm that
is meant to retrieve the actual depth (in millimeters) of dense tissues for every pixel
of the mammographic image. Given acquisition related meta-data (X-ray tube voltage
and current, exposure time and breast thickness), one can use physical laws to write
an equation relating the photonic energy flowing to a pixel with dense tissue depth.
Since the energy can be estimated from pixel intensity values [46], the only unknown
variable left is the dense tissue depth. The main problem in this setting is that such
meta-data are not always available. Images in DICOM format enclose such data in the
file header. This feature provides radiologists with a physically sound measure.
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Features of features

Feature extraction can be viewed as the action of a mapping from the space of raw
images to the feature space. Sometimes, it may appear relevant to use function com-
position in order to access gradually higher degrees of abstraction in the data represen-
tation. In this case, several intermediate levels of features need to be computed. Such
features can be called features of features, or compositional features.

An illustration of compositional features are descriptive statistics computed from his-
tograms or co-occurrences matrices of features. [34, 7, 32, 33] Among such statistics,
one can cite for instance:

� for intensity histograms: mean, standard deviation, skewness and kurtosis,

� for co-occurrence matrices: contrast, energy, correlation, sum average, sum en-
tropy, difference average, difference entropy and homogeneity.

The mathematical expression of these features as well as the texture information they
evaluate are given in table 5.1. They are used for dense tissue texture characterization
in [34, 7, 32, 33].

There are of course many other approaches falling in the category of compositional fea-
tures. Saha et al. [1] compute a fuzzy membership function based on several similarity
functions between neighborhoods. Unlike many other approaches, the neighborhoods
have variable shapes depending on which pixel is the neighborhood center. However,
a function for determining neighborhood boundaries needs to be known a priori. Two
different similarities are computed with respect to either neighbor pixel intensities or
to intensities of reference labeled pixels. A third sub-component of the fuzzy member-
ship function is given by pixel connectivity in the grid G. The three sub-components
are then aggregated using a multiplicative rule to yield the membership function. The
membership value of a pixel can be viewed as a compositional feature.

Mapping features into another space can serve some more specific purpose than reaching
more abstract representations. In particular, a first feature extraction step usually
yields texture representation with a high dimensionality. High dimensionality is a
problem as many algorithms (like classifiers) do not scale easily to very large inputs.

The most popular dimensionality reduction technique is the principal component anal-
ysis (PCA). This method consists in computing eigenvectors of the co-variance matrix
of feature vectors. Feature vectors are then projected onto an eigen-subspace whose
base vectors are those with the highest eigenvalues. This ensures that dimensions along
which the data have little variance are eliminated. PCA is very efficient in the sense
that usually many eigenvalues are negligible as compared to the largest one. PCA is
used in a density scoring context in [33, 25, 36].

Intuitively, one needs to select the most discriminative features with respect to tissue
types. Such approaches are called feature selection methods. PCA is not a feature
selection method because dimensions with large variance are not necessarily discrimi-
native ones. In the worst case, PCA may even delete the most valuable features.

One way to guide a selection method towards discriminative sub-spaces is to use la-
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Table 5.1: Statistical features used in texture characterization derived from histograms and
co-occurrence matrices (non-exhaustive list).

Feature name Mathematical expression Feature interpretation
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Mean µ = ∑n
i=1 ihi Mean pixel intensity

Variance σ2 = 1
N

∑n
i=1(i− µ)2hi Heterogeneity of pixel inten-

sities

Skewness µ3 = ∑n
i=1

(
i−µ
σ

)3
hi Asymmetry of pixel values

around the mean

Kurtosis µ4 = ∑L−1
i=0

(
i−µ
σ

)4
hi Indicates if histogram is

peaked or flat
Smoothness R = 1− 1

(1+σ2) Relative smoothness of a re-
gion

Energy E = ∑n
i=1 h

2
i Gray levels uniformity

Entropy H = −∑n
i=1 hi log(hi) Pixel intensity disorder
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C
∆

p Sum of
squares

V AR = ∑
1≤i,j≤n

(i− µx)2C
ij,∆p Texture heterogeneity

Energy E = ∑
1≤i,j≤n

(C
ij,∆p)2 Texture uniformity

Entropy H ′ = − ∑
1≤i,j≤n

C
ij,∆p log(C

ij,∆p) Texture disorder in a image

Contrast CST = ∑
1≤i,j≤n

(i− j)2C
ij,∆p Variation in texture

Correlation C = ∑
1≤i,j≤n

ijC
ij,∆p − µxµy
σxσy

Similarity in texture

Absolute
value

AV = ∑
1≤i,j≤n

|i− j|C
ij,∆p Variation in texture

Inverse differ-
ence moment

IDM = ∑
1≤i,j≤n

1
1+(i−j)2Cij,∆p Texture homogeneity

Max proba-
bility

max
i,j

C
ij,∆p Maximum probability for a

given texture

Sum average MS =
2n−1∑
i=1

Ci,x+y Texture uniformity aggre-
gate

Sum entropy ES =
2n−1∑
i=1

Ci,x+y log(Ci,x+y) Texture disorder aggregate

Sum variance SV =
2n−1∑
i=1

(i− SE)Ci,x+y Aggregate in texture hetero-
geneity

Diff entropy δH = −∑2n−1
i=1 Ci,x−y log(Ci,x−y) Texture disorder variation

n is the size of histogram h or the number of rows/columns of matrix C∆p.
µx, µy, σx and σy are the means and standard deviations of co-occurrence matrix
marginals in the x and y-direction respectively. Cx±y(k) = ∑

1≤i,j≤n s.t. |i±j|=k
C
ij,∆p.
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beled data. Indeed the very notion of discrimination is always defined with respect
to a given underlying pattern. Feature selection can be done using a very wide range
of methodologies although the mainstream approach is probably to optimize a given
criterion. A typical criterion one wants to maximize is the mutual information between
classes and feature values. Conversely, a typical criterion one wants to minimize is the
mutual information between distinct features which stands for information redundancy
among features.

Another possible feature evaluation method is to apply χ2 test between a discretized
version of the feature distribution and the class distribution. Mustra et al. [47] rank
co-occurrence statistical features with respect to that criterion. They also compare
different rank based methods to select a subset of features. Genetic search gives the
highest recognition rate with only 9 features out of 18. Oliver et al. [7] applied a
similar method known as sequential feature selection (SFS) to select statistical co-
occurrence features. The selected features are used to train a classifier so as to predict
BIRADS classes. In SFS, the criterion used to evaluate features is usually the correct
classification rate.

Feature learning

A wide variety of mammographic texture descriptors have been presented in the pre-
ceding paragraphs. A full characterization of breast tissues seems difficult to attain by
picking only some of these features. Using naively all these features together is also not
acceptable as it leads to an extremely vast feature space making further computation
untractable.

Recently, new approaches to automatically learn features from images have been in-
troduced. This framework is very appealing in the sense that there is no arbitrary
choices among feature extraction methods to make anymore. An adequate texture
representation is driven from the data itself.

In a supervised context, a growing interest has been paid to convolutional neural net-
works (CNN) in the past years. CNNs were initially introduced by Lecun [48] to recog-
nize hand-written decimal numbers in small 28×28 images of the MNIST dataset. This
approach is defined within the usual neural networks formalism where a cost function
J (θ) needs to be minimized with respect to the vector of model parameters θ.

CNNs are organized into several pairs of layers. Each pair of layers is made a convolu-
tion layer followed by a pooling layer:

� In a convolutional layer an input vector x of size n is mapped to an output vector
y whose components are obtained by applying the sigmoid function sgm to an

affine combination of the input vector components: yj = sgm
(

n∑
i=1

θijxi + θn+1

)
.

The parameters that we want to learn are θij, i.e. those involved in the affine
combination. Concatenating all such parameters together yields the vector θ.
Since discrete convolution resembles affine combination, this layer is called a
convolutional layer. Parameters of this combination can be regarded as filter
parameters, that is why we are learning feature representation automatically.
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� The pooling layer is meant to reduce the dimensionality of output vectors. Usu-
ally, the one with the highest component value is selecting from a set of neighbor
component values. Indeed, another interesting aspect of CNNs is that spatial
information is propagated through the layers.

A CNN final layer is usually a softmax layer which allows to map the output of the
preceding layer to a cost function which can be interpreted as a negative log-likelihood
of training examples given θ.

On top of that, the sigmoid function allows to grasp non-linear structures. CNNs have
demonstrated a very high potential on many visual classification tasks provided that a
substantial number of layers are used. They are highly compositional models belonging
to the family of deep learning methods.

Petersen et al. [49] implemented a CNN to analyze mammographic tissues. Note that
the feature extraction part of a CNN is optimized with respect to the targeted classi-
fication task. It is consequently hard to say if the features thus obtained are a general
representation of the tissue texture or a specialized one.

Another popular approach in the deep learning community are auto-encoders [50].
Unlike CNNs, auto-encoders are unsupervised algorithms. Roughly speaking an auto-
encoder is made of two convolutional layers whose parameters are trained so that the
output vector is the same as the input one. Let x̂ denote the output vector of an
auto-encoder. x̂ is meant to be an approximation of x and they have identical sizes:
n. Each component of x̂ is given by:

x̂k = sgm

 m∑
j=1

θ
(2)
j,k sgm

(
n∑
i=1

θ
(1)
i,j xi + θn+1,j

)
+ θ

(2)
m+1,k

 , (5.7)

where m is the dimensionality of the vectors in the intermediate representation, θ
(1)
i,j

are the parameters of the first layer (coding) and θ
(2)
j,k are the parameters of the second

layer (decoding). The objective function is then constructed so as to minimize ‖x̂− x‖
for all training examples.

If one succeeds to do so, then the values obtained in the intermediate representation can
be viewed as coefficients of a decomposition of the input with respect to patterns. These
patterns are formed by the trained parameter values of the coding layer. In an image
processing context, input vectors are patches. By preserving pixel topology during the
convolution like operation performed by the auto-encoders, the learnt patterns are also
patches which can be visualized. Figure 5.3 (a) shows such patterns when 28 × 28
patches that were evenly sampled in breast regions of MIAS images are used as input
vectors when m = 100.

One difficulty in training auto-encoders is to avoid convergence to a trivial solution like
simply copy inputs. One solution is to add a sparsity term in the cost function. This
term will force the auto-encoder to learn patterns that are very rarely jointly involved
in the decomposition of an input patch. Another possibility to improve convergence is
to use denoising auto-encoders [51]. This method consists in ”zeroing out” some pixels
of the input patches while still asking for the auto-encoder to fully reconstruct them.
The idea is that auto-encoders should be robust to partial occlusions like our visual
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(a) (b)

Figure 5.3: Patterns learnt from regularly sampled 28× 28 patches from images of the MIAS
dataset: (a) using auto-encoders, and (b) using denoising auto-encoders. 100 units are used
as intermediate representation. In (b) 30% of pixels in input patches are set to 0.

cortex is. Figure 5.3 (b) shows learnt patterns when the same input patches as in
Figure 5.3 (a) are used but 30% of their pixels were set to 0.

An auto-encoder alone is a shallow network. Usually auto-encoders are piled up in
which case they are referred to as stacked auto-encoders [52] and become deep networks.
After convergence, it is also possible to retain only the coding part of auto-encoders
and remove the decoding part. The coding layers can then be plugged with a neural
network or just a softmax function in order to perform supervised learning. In such a
case, the convergence of auto-encoders is called pre-training, while the final convergence
for supervised learning is called fine tuning [53].
Petersen et al. [54] also used such a stacked auto-encoder in another paper.

Surprisingly, the patterns learnt by CNNs or auto-encoders are close to classic fea-
ture extraction techniques. In particular, in figure 5.3, many of the displayed patches
correspond to edge or corner detectors. This achievement tends to show that deep
learning methods learn relevant features. Also, in higher level layers, learnt patterns
are gradually matching more abstract representations like object parts for instance [55].

5.4.2 Segmentation free density scoring

Density scoring can be addressed directly using some reference models without classify-
ing each pixel of the breast region into dense or non-dense regions. A majority of such
approaches resort to supervised machine learning techniques. Indeed, there are some
online public mammogram datasets with labels corresponding to some of the clinical
classification system presented in section 5.3. Most of the time, BIRADS labels are
available. Since those systems use a finite number of classes, predicting the class of an
unseen example is a classification problem.

One of the simplest classification approach is the k nearest neighbor (kNN) algorithm.
Using a distance, each feature vector extracted from an unseen example is compared to

107



5.4. Computerized dense tissue characterization: a state-of-the-art overview

all feature vectors generated from training set examples. Of course, kNN only works if
one can define a metric in the feature space. Using distance values, the estimated label
of the unseen example is obtained by majority voting among the k closest examples
in the training set. Although kNN is usually outperformed by other classifiers, it has
the advantage to have only one hyperparameter2: k. However, when the training set
is large, computing all distance values is time consuming.

This type of classifier was used for density characterization in mammograms in [24, 25,
44]. The content of these papers are further commented in the sequel of this subsection.

The Bayesian framework is another powerful tool to train classifiers. Let c denote a
random variable representing a mammogram density class. Let C denote the finite co-
domain of this random variable. Feature vectors can also be considered as realizations
of a multivariate random variable X. In this setting, the classification problem is solved
by finding the most probable class ĉ of an unseen mammogram given the observed value
x of the feature vector that was extracted from this image:

ĉ = arg max
ci∈C

p (c = ci|X = x) , (5.8)

p (c = ci|X = x) = p (X = x|c = ci) p (c = ci)∑
ci∈C

p (X = x|c = ci) p (c = ci)
, (5.9)

with p a probability measure defined on the domain of the random variables. Training a
Bayesian classifier is tantamount to estimating the probability distribution of c (prior)
and the class-conditional densities3 p (X = x|c = ci) using training examples.

Caldwell et al. [26] used the Parzen technique to estimate these probabilities. Feature
vectors in their approach have two components: average fractal dimension of the entire
breast and the absolute value of the difference between the average fractal dimension
and the fractal dimension of a pre-selected region near the nipple. This second param-
eter evaluates the discrepancy in texture between the periareola tissue texture against
all other breast tissues. Their Bayesian classifier is trained to predict Wolfe’s class of
unseen mammograms.

Support vector machines (SVM) [56] are another widely used family of classifiers for
density characterization in mammograms. Alleging two classes are linearly separable
in the feature space, an SVM attempts to find the separating (affine) hyperplan that
maximizes the margin with the closest points of each class. The margin is the distance
from one such point to the hyperplan. To alleviate the linear separability condition,
the canonical dot product is replaced with non-linear kernel functions.

Subashini et al. [32] used an SVM with statistical co-occurrence and histogram input
feature vectors to classify mammograms from MIAS dataset into three breast density
categories: fatty, glandular and dense. These public mammogram labels are those es-
tablished during the very creation of the MIAS dataset but they do not really match any

2A hyperparameter in machine learning is a parameter that is not estimated during the learning
step but still influences classification/regression results. They are termed this way as opposed to
model parameters, i.e. those that we want to learn. Typical hyperparameters are those governing the
convergence of the training step.

3If the feature space is discrete then class-conditional distributions are used instead of densities.
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clinical rating system definition. The authors achieve 95.44% of correct classification
for this task.

Sometimes, unsupervised and supervised methods are jointly used. Chen et al. [43] use
a dictionary learning approach a on several texture features extracted from patches.
These features are LBP, LGA, BiF and textons. The dictionary is generated using un-
supervised learning. Patches are collected from training images and clustered. Cluster
centers are used as mammographic texture prototypes and added to the dictionary.
Patches from an unseen image are then used to produce histograms containing pro-
totype occurrences in this image. A k-NN algorithm is applied on histograms for the
supervised classification task of BIRADS class prediction.

Diamant et al. [25] used a very similar setting with only textons as feature vectors.
Prior to k-means clustering, a number of pre-processing steps (histogram equalization,
filtering, patch normalization) are applied followed by PCA for dimensionality reduc-
tion. Like Subashini et al. [32], they train a SVM using MIAS labels. They also use a
k-NN which is outperformed by the SVM.

Bosch et al. [24] also used dictionary learning from SIFT attributes and textons. Instead
of k-means, they use probabilistic semantic latent analysis (pSLA). In this framework,
a latent (unobserved) random variable is introduced. The joint probability of feature
vectors and images is decomposed with respect to the latent variable using Chapman-
Kolmogorov equation. The conditional distributions of the latent variable given an
image serve as a compact representation of the mammogram content. These distribu-
tions are used as inputs for a k-NN and an SVM classifier. Reported results indicate
that best performances are obtained when building the dictionary using textons and
learning BIRADS classes with an SVM.

Qualitative scoring such as classification with respect to a given clinical rating system
is a very valuable information for cancer risk assessment. However, one may also desire
quantitative measures allowing more refined cancer risk ranking.

Using the density map feature, Chen et al. [44] further compute two global quantitative
measures (dense area and average density). Dense area alone can be viewed as a density
score. However, the authors use both features and train a kNN classifier to predict
BIRADS categories. Depending on the dataset, reported recognition rates are ranging
from 74.61% to 81.22%.

5.4.3 Joint dense tissue segmentation and density scoring

Supposing one is able to identify the image region corresponding to dense tissues, then
density scoring is immediately obtained using very simple attributes of the region, like
the relative region surface as compared to breast surface for instance. Consequently,
a number of authors have addressed dense tissue segmentation which provides more
information to the user than segmentation free approaches do.

Saha et al. [1] use a threshold to segment feature map obtained using a fuzzy mem-
bership function (see subsection 5.4.1). The optimal threshold is obtained by energy
minimization. The energy function defined in their article characterizes spatial and
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feature value homogeneity of both dense and non-dense regions. Although a linear
correlation is reported between dense regions extracted by their algorithm and those
defined by expert radiologists, the computation of the feature map necessitates a sig-
nificant amount of a priori knowledge.

Geeraert et al. [57] focus on pixel-wise estimation of the volumetric breast density
(VBD). This feature is similar as the dense tissue depth of Highnam and Brady [45]
that was evoked in subsection 5.4.1. Breast thickness is the only additional parameter
to know in order to compute VBD as compared to dense tissue depth. By integrating
VBD on the whole breast ROI, a very precise density score is obtained. The authors
show that the actual dense tissue volume is correctly estimated with a relative error
lower than 5% on breast phantoms4. The dense region is fairly segmented using VBD
alone except for pixels near the breast contour whose density seems to be overestimated.

Zwiggelaar [40] exploited more a priori information to achieve density related seg-
mentation of mammograms. They select four subsets of MIAS images, one for each
BIRADS category. For each of these subsets, they compute a global LGA histogram,
thereby creating four prototypes. Pixel-wise segmentation of an unseen image is then
performed by computing a local LGA histogram in the neighborhood of each pixel
and find the closest prototype. Mammograms are consequently segmented into four
regions. The region associated with the BIRADS I prototype is supposed to be made
of non-dense tissues while the one associated to the BIRADS IV prototype is allegedly
made of maximally dense tissues. Various distance metrics are used to compare LGA
histograms: Euclidean, transportation and hybrid transportation.

The remainder of dense tissue segmentation approaches found in the literature are
relying on machine learning techniques. Supervised segmentation of mammograms is
more rarely used because necessary annotated data are not public and very tedious for
expert radiologists to produce.

Georgsson et al. [28] build local histograms of the fractal dimension conditionally to
several tissue types. Each class appears to have characteristical peaks in their his-
tograms. Using a similarity measure detecting the presence of such peaks, it is possible
to classify unseen image patches into one of the tissue types. This method is supervised
and the reported ROC curves prove its efficiency. However the labeled dataset is made
of image regions extracted from a subset of the MIAS dataset. There is consequently
a possibility that the method does not generalize well to the whole MIAS dataset.

He et al. [34] use a set of 643 patches extracted from MIAS images. Each patch is
labeled according to some tissue type information: nodular, linear, homogeneous and
radiolucent. For each class, the authors use k-means clustering on multi-resolution
gray level histogram features to obtain class dependent prototypes. The tissue type at
a given pixel can then be identified by finding the closest prototype from the feature
vector extracted at this pixel location. By using several histogram sizes, different
predictions are observed. The set of such predictions are used in the training phase to
estimate empirical a priori and conditional distributions. These distributions are those
pertaining to the Bayes classifier setting. During the test phase, the Bayes classifier

4In medical imaging, a phantom is an artificial object mimicking human tissue properties. Images
acquired from phantoms are used to validate medical image processing algorithms.
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(a) (b) (c) (d)

Figure 5.4: Dense tissue segmentation using FCM clustering on raw pixel intensities. (a)
image mdb005 (BIRADS I), (b) mdb007 (BIRADS II), (c) mdb003 (BIRADS III) and (d)
mdb054 (BIRADS IV).

is used on each pixel of an unseen image, thereby yielding a segmented image. The
relative proportion of the dense tissue region in this segmented image is used as density
scoring.

Unsupervised learning can also be used for image segmentation. Oliver et al. [7] use
a fuzzy c-means (FCM) clustering to segment the breast region into two sub-regions.
These two sub-regions contain respectively fatty and dense tissues. Although clustering
techniques for mammogram segmentation produce very good results in a number of
cases, they unfortunately often rely on the assumption that there is exactly two clusters
to find. In practice, some breasts only made of dense tissues (or conversely only made
of fatty tissues) can be observed. In such cases, clustering algorithms will generally
converge to irrelevant clusters. Figure 5.4 gives FCM segmentation into two regions
for four images of the MIAS dataset. Each image has a different BIRADS class and
segmentation results are obviously very poor for all of them.

Tortajada et al. [33] also used FCM to segment mammograms into two regions. By
applying a multiplicative correction term to gray level intensities for pixels near the
breast contour, better segmentation results can be obtained. Indeed, this pre-processing
step will prevent FCM from clustering such pixels together like in figure 5.4 (a) to (c).
Yet this does not solve the problem of the estimation of the actual number of clusters
which can still be equal to 1 (as in figure 5.4 (d)) or to 2 (as in figure 5.4 (a) to (c)).

Another interesting point in [7, 33] is that they use a Bayesian combination rule to
merge classifiers trained to predict BIRADS classes. Indeed, choosing a priori a given
type of a classifier is not easy and an alternative solution consists in training several
types of classifiers and then use data fusion to aggregate their decisions. Best perfor-
mances are obtained when combining a kNN classifier with a decision tree. Each of
these classifiers are trained using relative region area and histogram and co-occurrence
statistical features extracted from both segmented regions.

5.4.4 Concluding remarks on computerized dense tissue char-
acterization

In this section, a great deal of dense tissue texture characterization methods have
been reviewed, and there is no obvious texture feature extraction technique leading
to improved performances in all circumstances. Surprisingly, the dense tissue region
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(a) (b) (c) (d)

Figure 5.5: Dense tissue segmentation examples using ad hoc raw pixel intensities threshold.
(a) image mdb005 (BIRADS I), (b) mdb007 (BIRADS II), (c) mdb003 (BIRADS III) and
(d) mdb054 (BIRADS IV). The thresholds used for segmentation are respectively 0.63, 0.63,
0.60 and 0.50.

can be accurately segmented by simply applying a global gray level intensity threshold.
Figure 5.5 presents some dense tissue regions obtained after directly ad hoc thresholding
on gray level intensities for pixels inside the breast region only.

In this figure, the segmentation results are very good even if a few post processing
steps (like small connected region deletion) might be necessary. In the context of
mammographic image processing, segmenting the dense tissue region by a threshold
operation has many advantages. The main one is obviously complexity reduction. In
general, the region that needs to be found is a subset of a bigger region or of the
entire image. Threshold values live usually a small finite discrete space while the set of
subsets of the breast ROI is also finite but has a huge number of elements. Since many
images have gray level intensities encoded on 8 bits, 254 different threshold values are
by far enough.

In addition, cases where the breast region is entirely made of dense tissues are no
problem for threshold based segmentation. One just has to select a sufficiently small
threshold value to select the entire breast region. Consequently, we will not be facing
the same difficulty as the one reported for clustering algorithms (see figure 5.4).

Another advantage is that, for some mammograms, several threshold values produce
good results, which tends to show that the segmentation quality is not too sensitive
with respect to the threshold value.

Finally, image thresholding is a very fast operation. Some computation time can thus
be saved for advanced segmented region analysis allowing to choose the best threshold
value for instance.

If the threshold based segmentation precision does not match one’s requirements, it
is always possible to use a contour fitting method afterwards. The threshold based
segmentation will provide a very good initialization for such techniques. Similar tech-
niques as those already used in subsection 4.3.7 can be employed. Another interesting
framework for such purpose are active contours. Rahmati and Ayatollahi [58] use an
active contour segmentation technique to characterize abnormalities in mammograms.
The energy function used for optimization relies on the analysis of gray level distribu-
tions inside and outside the active contour. Although their method is not designed for
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dense tissue region segmentation, it could be adapted to that end.

The fact that gray level intensities seem to contain sufficient information to separate
dense and non-dense tissue regions is justified by the very principle of mammogram
acquisition. Indeed, dense tissues will absorb more X-rays yielding brighter pixels than
non-dense tissues. As a consequence, significant gaps between gray level intensities are
expected between dense and non-dense regions.

Nonetheless, this does not mean that gray level intensity is the only feature allowing to
discriminate dense tissues as demonstrated by several authors cited in subsection 5.4.1.
Additional texture features should be used to decide on the best threshold value to
choose.

An arguable point is the following: should the threshold be global or local? Intuitively,
a local threshold seems necessary because there is frequently some drift in pixel intensity
from the breast region centroid to the peripheral area. In practice, the drift is very
slight except for pixels which are really close to the breast contour, where dense tissues
are more rarely found. That is why a global threshold works pretty well.

In the wake of approaches presented in subsection 5.4.3, the next section presents a
first attempt to enhance mammogram contrast prior to segmentation using a global
threshold. By modifying the contrast of mammograms, the same threshold value could
be used for all input images. Finding an appropriate contrast modification or an
appropriate threshold are two problems of relatively similar complexity. However,
contrast enhancement will additionally provide a complementary visualization of breast
patterns.

The relative area of dense tissue is used as a quantitative density scoring. Measured
dense tissues areas are compared to qualitative BIRADS classes in order to evaluate
the relevance of our approach.

5.5 Mammogram contrast standardization for im-

proved dense tissue region segmentation

In this section, we introduce a mammogram contrast standardization algorithm. In-
deed, there is a high variability in contrast among mammographic images, especially
when breasts have different types of tissues. For example, fatty tissues are in average
darker in BIRADS IV images than in BIRADS I ones. This variability can be explained
by the fact that breast volume and exposure time during mammogram acquisition are
not constant.

Contrast standardization aims at providing mammographic images such that their his-
tograms have a desirable shape. More specifically, we would like breast region his-
tograms to have either only one mode or two modes centered at significantly different
gray level intensities. Indeed, breast tissue ROIs in mammograms are approximately
made of bright and dark regions corresponding respectively to dense and non-dense
tissues and, more rarely, of only one of these two categories. Let f denote a mapping
from an original mammogram u to a contrast standardized one v = f ◦ u. If f is well
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chosen, the dense tissue region AD should be segmented using a global thresholding:
AD = {p|f (u (p)) > τ}. If the contrast standardization works perfectly well, τ should
be constant for all u with 1

2 as default value.

Among previous attempts to standardize mammograms, the most cited piece of work is
the Standard Mammogram Form (SMF) introduced by Highnam and Brady [45]. This
approach has been already discussed in subsection 5.4.1 on texture features for mam-
mogram analysis. The authors propose to estimate a physical feature: the actual dense
tissue thickness. This can be regarded as a standardization method compliant with
physics which is a completely different goal from ours. In our problem, standardized
images should be such that (non-)dense regions always have the same texture render-
ing and similar gray level histograms. Using SMF, pixels corresponding to maximally
dense tissues can have different values because the thickness is patient and acquisition
dependent. Besides, SMF requires meta-data to estimate dense tissue thickness while
we prefer not to make the assumption that such information is available.

Finding a good mapping f is, however, a challenging task. Optimal transport is a
framework where the problem underlying such a task is formalized in an elegant and
efficient manner. In the next subsection, we will give a brief introduction to this frame-
work. We will see that some classical contrast or histogram modification techniques
fall within the scope of optimal transport.

A major difficulty with mammograms is that the desired histogram is ill-known in the
sense that the proportion of pixels belonging to the dense tissue region is unknown. In a
first attempt to attack this problem, we will formalize it as a cost function minimization
problem. The set of constraints (to which the cost function is subject to) is designed
to take that lack of information into account. Finally some preliminary experimental
results will be given in order to assess the segmentation and density scoring qualities.

5.5.1 Preprocessing: breast mask erosion

A fast pre-processing is necessary before trying to standardize contrast in mammo-
grams. Indeed, our goal is to fight against inter-mammogram contrast variability but,
unfortunately, there is also an intra-mammogram contrast variability. As already men-
tioned in the previous section, it is easy to notice that gray level intensities are gradually
vanishing as one gets closer to the breast contour. The reason behind this phenomenon
is simply that there are less tissue in this area due to breast compression which creates
a turgidity along the breast contour (see figure 2.3).

Tortajada et al. [33] use a peripheral pixel correction to deal with this problem. The pe-
ripheral pixels are detected using Otsu automatic thresholding. Although this method
works in a large number of cases, Otsu’s threshold may converge to a value separating
other regions than the peripheral one. Figure 5.6 gives an example of such a situation
using a mammogram from the MIAS dataset.

Interestingly, the regions segmented in this example are the dense and non-dense ones.
Anyway, the peripheral region in this case is overestimated which calls for some more
careful processing.
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Figure 5.6: A segmentation example using automatic Otsu thresholding on image mdb001
(BIRADS IV). The threshold to which the method converges is approximately 0.41.

In order to avoid such cases and to focus on inter-mammogram contrast correction, we
chose to apply a crude erosion of the breast region. Image eroding is a binary operation
belonging to the class of mathematical morphology methods. In a few words, two basic
operations are defined in this framework: dilation and erosion. In both operations, an
input binary image is convolved with a pre-defined binary pattern, called structuring
element. Since the output image is not binary anymore, it has to be thresholded:

� in case of dilation, all strictly positive convolutions are set to 1 while null convo-
lutions are left unchanged,

� in case of erosion, all convolutions whose result is smaller than the size5 of the
structuring element are set to 0. All other pixel values are set to 1.

A lot more morphological operations are defined as well as some extensions to grayscale
or color images, see [59] for a review on this topic.

For simplicity, we applied an erosion using a 100×100 rectangular structuring element.
This element is sufficiently large to ensure that almost all pixels of the peripheral area
are removed. This crude erosion will produce an excessively small eroded breast region
but it will not impair the selection of an appropriate mapping f . Mammograms have
a rather large image resolution and there is far enough pixels left for texture feature
extraction in the eroded breast region. Also, once it has been estimated, f can be
applied to the entire breast region afterwards anyway.

The erosion is performed on the breast region image mask but only borders correspond-
ing to the breast contour should be eroded. Those corresponding to imaging sensor
boundaries should not be eroded. Those are easily identified because they are either
horizontal or vertical large segments. Figure 5.7 gives an illustration of this erosion on
four images of the MIAS dataset.

5The size of the structuring element should be understood as the number of positive pixel values
it has.
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(a) (b) (c) (d)

Figure 5.7: Peripheral breast tissue estimation with morphological erosion. Examples of
breast region eroded in (a) image mdb005 (BIRADS I), (b) mdb007 (BIRADS II), (c) mdb003
(BIRADS III) and (d) mdb054 (BIRADS IV). The eroded regions are in white and the
removed peripheral area is in gray.

Adapting the size of the structuring element to the input image or performing intra-
mammogram contrast correction is left for future work.

5.5.2 Mammogram contrast standardization

For the sake of equation concision, we will consider that any input mammogram u
is evenly quantized into n bins in the remainder of this chapter. From now on, the
co-domain of images is denoted by X and we suppose that X =

{
0, 1

n−1 , ..,
n−2
n−1 , 1

}
.

We will now present a first attempt to automatically modify the contrast of mammo-
grams so that non-dense and dense regions always have a similar visual rendering. As
explained in the introduction of this section, this can be done by applying a relevant
mapping f : X −→ X to an input mammogram u. To mitigate contrast discrepancies
between mammograms, a different mapping f needs to computed for each u but we do
not explicitly underline it in our notation for brevity.

In most contrast correction techniques, the target histogram hT is known. In this case,
that problem is called histogram specification. The histogram of the input image is
denoted by hu. Under such circumstances, finding an appropriate mapping f ∗ can be
formalized through an optimization problem:

f ∗ = arg min
f∈L

J (f) , (5.10)

where L is some function space and J is a cost function to minimize. Typically, the
cost function J comprises a model fitting term of the form ‖hT − hf◦u‖.

A famous sub-class of this problem are optimal transport problems. In this setting, hT
and hu are viewed as two probability distributions on X . These probability distribu-
tions will be denoted by hT and hu because they are functions over X instead of just
vectors. Their related measures are denoted by µT and µu respectively. Note that the
elements of X are the bins generated when computing the histogram (see equation 5.2).
Under a measurability condition for f , our optimization problem then translates into
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the following one:

f ∗ = arg min
f s.t. µT=µu◦f−1

n−1∑
i=0

∣∣∣∣f ( i

n− 1

)
− i

n− 1

∣∣∣∣hu ( i

n− 1

)
, (5.11)

= arg min
f s.t. µT=µu◦f−1

∑
x∈X
|f (x)− x|hu (x) . (5.12)

The above problem is known as Monge problem [60] and it does not always have a
solution. This problem was later generalized by Kantorovich [61] by considering all
joint probabilities whose marginals are hT and hu. The class of problems thus defined
by Kantorovich are known as optimal transport problems. They can be stated as
follows:

π∗ = arg min
π s.t. µT and µu are marginals

Eπ [c] , (5.13)

where distribution π∗ is called the optimal transport plan, c : X × X −→ R is a cost
function and Eπ is the expectation with respect to law π. Transport plans are finer
transport strategies than transport maps because they allow to break the initial masses
of hu and tell you how to spread them.

For 1D histograms, like gray level ones, an approximate solution to the Monge problem
is known. This transport map is given by f = H−1

T ◦ Hu, where Hu and HT are the
cumulative distributions of hu and hT and H−1

T is the pseudo-inverse of HT :

H−1
T : [0; 1] −→ X ,

r −→ inf {x ∈ X |HT (x) > r} . (5.14)

This solution is in general a quite good approximation of the optimal transport and,
additionally, it is very easy to implement and to compute. Note that when the target
histogram is uniform, this operation boils down to histogram equalization.

Although the optimal transport framework is appealing, it cannot be applied in a
straightforward fashion to our situation because, in our case, the target distribution
hT is unknown. In order to obtain harmonized mammograms, we would like our post-
transport distribution hf◦u to have two modes centered at significantly different gray
levels.

To simplify the problem, we chose to restrict the set of possible transport maps. We
investigate gamma correction transports only as a first attempt to solve our contrast
standardization problem. A transport map fγ is called a gamma correction trans-
port if we have:

fγ : X −→ X ,
x −→ xγ. (5.15)

This is a crude simplification as finding the best transport map is now tantamount to
finding the best value of parameter γ. Gamma correction transport are good candi-
dates for our task because when γ > 1, such transports will stretch the input image
distribution hu. Typical mammogram histograms have two modes: one for non-dense
tissues related pixels and another one for dense tissue related pixels. The center of
the first one is always smaller than the center of the second one but there is a strong
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overlap between them. The variability in visual rendering is mainly caused by the first
mode. Starting from γ = 1 and by gradually increasing the value of γ, the first mode
will slide downward while the second one will not move too much.

Following this principle, a procedure can be written but we need a stopping criterion.
One possibility is to compare the empirical distribution hfγ◦u with a predefined uni-
modal distribution centered at a sufficiently low gray level. Let g denote one such uni-
modal distribution. Distributions hfγ◦u and g can be compared using the Wasserstein
distance dw, a.k.a EMD distance, which is very relevant for histogram comparison.
This metric is defined as:

dw
(
hfγ◦u, g

)
= inf

π s.t. hfγ◦u and g are marginals
(Eπ [dp])

1
p , (5.16)

with p a positive integer and d a metric on reals, like Euclidean distance. The reader will
immediately notice the analogy with equation 5.13. Indeed, the value of this distance
is the optimal transport cost between hfγ◦u and g.

In practice, we used a discretized gaussian distribution for g centered around 1
4 and

with σ = 0.065 as standard deviation. From our experience, the average value of non-
dense tissue related pixel is never below 1

4 and the value of σ does not have a big impact
on the estimation of parameter γ. However, considering that mammograms have only
two modes is not a realistic hypothesis. In many cases, it can have more than two.
Consequently, we stop increasing γ as soon as a first local minimum of dw

(
hfγ◦u, g

)
is reached. This ensures that least dense tissues related pixels will always appear in a
same way after contrast standardization.

The above precaution does not solve issues related to situations where the input mam-
mogram distribution has only one mode as in figure 5.5 (d). To circumvent this diffi-
culty, we need to add a regularization term to our objective function J (γ). We chose
the Euclidean distance de between HoG features extracted from u and HoG features
extracted from f ◦ u. Since HoG are concatenated small histograms, using Wasser-
stein distance between them could be justified. However, Euclidean distance works
well enough for our purpose. This is probably due to the fact that histograms are
small (9 orientation bins in our experiments). The choice of HoG as texture features
is justified by the fact that they are invariant to illumination changes so the action of
the transport will not modify them too much, unless the transport introduces patterns
significantly different from the initial image. In the case of image (d) of figure 5.5, this
term will rapidly increase with respect to γ.

The approach introduced in the preceding paragraphs is summarized in algorithm 4.
This algorithm is called Contrast Standardization Procedure (CSP). The efficiency of
CSP is demonstrated on several experiments in the next subsection.

5.5.3 Segmentation performance evaluation

In this section, we present several experiments to assess the efficiency of the CSP
algorithm. We only use mammograms of the MIAS datset in these experiments as it
is the only public dataset for which we have ground truth breast and pectoral muscle
ROIs. We also have BIRADS ratings for this datasets. These ratings were kindly
provided by Pr. Arnau Oliver who is with the University of Girona (Spain). These
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Algorithm 4 Contrast Standardization Procedure (CSP)

Require: image u, distribution g, parameters λ and ε
γ ← 1
Compute gray level histogram from u and store it as hu.
Compute HoG features from u and store them as HoGu.
while objective function J (γ) decreases do

Apply transport fγ to input image u and store it as v ← fγ ◦ u
Compute gray level histogram from v and store it as hv.
Update contrast fitting term as E ← dW (hv, g).
Compute HoG features from v and store them as HoGv.
Update regularization term R← de (HoGu, HoGv).
Update objective function J (γ)← E + λR.
Increment parameter γ ← γ + ε

end while
return γ

ratings were generated by majority voting from three different radiologists. Pr. Oliver
notably used these ratings in [7].

Parameter settings and implementation details

Before unveiling experiment results, a few comments on parameter settings and imple-
mentation are necessary.
The most influential parameter in the CSP procedure is λ which controls the trade-off
between the contrast modification term and the regularization term in the expression
of the objective function J . If this parameter needs to be hand-tuned for each input
image, then the interest of CSP is questionable as one should spend time on directly
hand-tuning an appropriate threshold value applicable directly on the input image.
Consequently, we set this parameter to a constant value λ = 230 for all input images
and all experiments presented in this section.

Two other inputs need to be specified in order to run CSP: distribution g and parameter
ε. CSP is far less sensitive to these two than to λ. As already explained in the previous
section, g is a discretized version of a gaussian density function. We used the following

function in all the experiments reported in this section: 1√
2πσe

(x−0.25)
2σ2 with σ = 0.065.

The parameter ε is just the increment used to increase progressively γ. We chose ε = 0.1
and this value was kept for all experiments.

Finally, some feature extraction parameters also need to be chosen for computing the
contrast modification term and the regularization term of J . For the contrast modifica-
tion term, the number of gray level bins for histogram computation need to be specified.
We chose n = 256 bins. Also, from equation 5.16, computing the Wasserstein distance
is obviously time consuming. We used an approximation algorithm to estimate this
distance [62]. A Python toolbox written by Rémi Flamary (associate professor at the
University of Nice) provides a function corresponding to this reference.

For the regularization term, the extraction of HoG features is parameterized as follows:
we used 9 orientations on 28× 28 patches. Each of these patches is divided into 3× 3
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sub-patches and therefore generates 81 orientation histograms which are concatenated
to yield a feature vector. In addition, the regularization term is smoothed using a mean
filter over the 10 preceding values. This filtering removes small irrelevant local minima
from function J .

Detailed results on selected mammograms

We begin CSP performance assessment by commenting the results obtained on four
mammograms of the MIAS dataset. These mammograms are mdb005, mdb007, mdb003
and mdb054 whose BIRADS classes are respectively I, II, III and IV. These mammo-
grams have already been discussed in the previous section and are good candidates to
describe our algorithm because they have different characteristics:

� In image mdb005, non-dense tissues are prominent. There are two classes of
pixels but the numbers of class members is highly unbalanced. Consequently,
only one mode is visible in the gray level histogram of mdb005 breast region6.

� In image mdb007, there are a lot more pixels corresponding to dense tissues
but the transitions between image regions is obviously very smooth. The breast
region histogram of mdb007 has two strongly overlapping modes.

� Image mdb003 is probably the easiest of the four images to process. Dense
and non-dense regions are easily distinguished and its histogram has two weakly
overlapping modes.

� In image mdb054 the breast is entirely made of dense tissues and the histogram
has only one mode.

Figure 5.8 to 5.11 give the evolution of the function J and its two component terms
(contrast modification and regularization) with respect to γ for these four images.
These curves are given for γ ∈ [1; 5]. Observe that the dynamics of these curves are
smooth which implies that CSP converges without difficulty to an estimate of γ. These
estimates are respectively 2.2, 2.7, 2.8 and 1. Indeed, in the last image, J (γ) increases
whenever γ grows and CSP stops at the first iteration.
The same figures also give the histograms of the four mammograms before and after
transport fγ is applied. As expected, the dark pixel mode is slid toward 1

4 .

In figure 5.12, the four initial mammograms are displayed in the first column. The
second column contains contrast standardized images obtained by transport fγ where
γ is estimated using CSP. The last column contains the contours of dense tissue regions
estimated from the standardized images using a thresholding with constant default
value τ = 1

2 . These contours (in blue) are superimposed on the initial images.

Satisfying segmentation results are obtained. The quality of the contour obtained for
image mdb007 is more arguable. The dense tissue region is slightly under-segmented
because the transport fγ has moved both modes of the initial histogram. This is mainly
explained by the fact that there a few microcalcifications in this image. These patterns
contain very bright pixels. Cropping very bright pixels or performing an advanced
analysis of the initial image histogram is one of the main perspectives for future work.

6Unless stated otherwise, all mammogram histograms mentioned or displayed in this section are
computed from the breast region only, not from the whole mammographic image.
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(a) (b)

Figure 5.8: Curves derived from mdb005 image (BIRADS I). (a) Evolution of objective
function and its components with respect to γ, (b) Histograms of the initial and contrast
standardized images.

(a) (b)

Figure 5.9: Curves derived from mdb007 image (BIRADS II). (a) Evolution of objective
function and its components with respect to γ, (b) Histograms of the initial and contrast
standardized images.

Quantitative evaluation of density scoring on MIAS dataset

Although, CSP has met our expectations on four very different mammograms, one
cannot conclude that such performances will generalize to the whole dataset. Recall
that the main objective of this chapter is to compute automatically a density score
from an input mammogram u.

As explained in the previous section, once the dense tissue region is segmented, some
numerical macroscopic density score can be computed easily. We chose to focus on the
relative dense tissue area score β which is given by:

β (u) = |dense region|
|breast region|

. (5.17)

There is no public ground truth available for β values, however, if the estimation of β
values is correct, they should be highly correlated with BIRADS classes. Indeed, the
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(a) (b)

Figure 5.10: Curves derived from mdb003 image (BIRADS III). (a) Evolution of objective
function and its components with respect to γ, (b) Histograms of the initial and contrast
standardized images.

(a) (b)

Figure 5.11: Curves derived from mdb054 image (BIRADS IV). (a) Evolution of objective
function and its components with respect to γ, (b) Histograms of the initial and contrast
standardized images.

proportion of dense tissues is one of the most important features that radiologists use
to classify images according to the BIRADS rating system.

Figure 5.13 gives the Pearson correlation coefficients ρ obtained between β values and
BIRADS classes with respect to the threshold τ . We compare correlations when thresh-
olded images are original MIAS mammograms and when thresholded images are con-
trast standardized mammograms.

A significantly higher correlation is obtained when image contrast is enhanced by trans-
port fγ prior to thresholding. This proves that the estimate of γ provided by CSP makes
sense. Without transport the maximal correlation is 0.65 (for τ = 0.7) while the maxi-
mal correlation is 0.75 (for τ = 0.38) when transport is used. In addition, since 0.75 is
considered to be a very strong correlation score, one can be confident in the relevance
of β as a density score.
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(1)

(2)

(3)

(4)

(a) (b) (c)

Figure 5.12: Examples of contrast standardized mammograms. Original images in column (a),
contrast standardized images in column (b), thresholded area contours (τ = 1

2) superimposed
to original images in column (c). Results for mdb005 image (BIRADS I) on line (1), results
for mdb007 image (BIRADS II) on line (2), results for mdb003 image (BIRADS III) on line
(3), results for mdb054 image (BIRADS IV) on line (4).

Note that the observed correlation score does not prove that dense regions are correctly
segmented. This is a necessary condition but not a sufficient one. Other tests are
necessary to make sure about that. This point is discussed in the next paragraphs.
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Figure 5.13: Pearson correlation coefficient ρ between dense tissue relative area β and BI-
RADS classes with respect to τ . The blue curve is the one obtained when thresholding
original mammograms. The red curve is obtained when thresholding contrast standardized
mammograms.

Qualitative evaluation of segmentation on MIAS dataset

Unfortunately, there is no public ground truth allowing us to evaluate objectively the
quality of the dense tissue segmentation results for MIAS images. Such ground truth
are indeed very tedious for radiologists to produce as they must manually delineate
dense regions which have very complex shapes.

Instead, we have visually inspected all 322 segmented images computed from the entire
MIAS dataset and we have sorted them into 4 segmentation quality categories:

� A : very good segmentation,

� B : fair / good segmentation,

� C : partially incorrect segmentation,

� D : severe mismatch.

Whenever an image is graded C or D, we also reported if the dense region is either
under or over-segmented. Table 5.2 contains the number of images falling into one
these categories when the threshold τ is set to default value (1

2) or to an optimized
value (0.7).

For comparison, the same statistic is given for segmentation obtained by constant
thresholding of original mammograms. An optimized threshold value (0.38) is selected
for that transport free approach. The optimized threshold value is the one maximizing
the correlation coefficient between β values and BIRADS classes (see previous experi-
ment).

From table 5.2, it can be seen that segmentation results can still be improved but,
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Table 5.2: Grading statistics for dense region segmentation results obtained after thresholding
all MIAS images with a constant threshold value.

Method Original image Standardized image Standardized image
thresholding thresholding thresholding

(optimized threshold, (default threshold, (optimized threshold,
τ = 0.38 ) τ = 0.5 ) τ = 0.7 )

Grade A 95 131 124
Grade B 118 103 132

Grade C (under-segmented regions) 46 45 14
Grade C (over-segmented regions) 6 5 28

Grade C (total) 52 50 42
Grade D (under-segmented regions) 50 33 14
Grade D (over-segmented regions) 7 5 10

Grade D (total) 57 38 24

again, using CSP and applying transport fγ enhances segmentation results which con-
firms the conlusions drawn from the previous experiments. In particular, the number
of severe mismatch is significantly reduced.

Note that the optimized threshold values need to be known for better results in average.
This value can be retrieved in the same way as in the previous experiment provided
that one has a set of BIRADS annotated mammograms.

5.6 Conclusion

Dense tissues are some of the most important ones to detect in a mammogram. CAD
system as well as expert radiologists’ ability to detect abnormalities is significantly
impaired as dense breast tissue proportion increases. This problem is mainly explained
by the fact that dense tissues and cancer patterns have similar gray level intensities
and textures. On top of that, it has been shown that dense tissues are more likely
to host cancer lesions than non-dense ones. Computerized dense tissue detection is
consequently a major goal in order to improve breast cancer detection rates. At least,
associating mammograms with relevant density scores would help radiologists to pri-
oritize patients.

Even if the breast region of a mammogram has been precisely segmented (using some
approaches presented in previous chapters), detecting dense tissues in this region is
a challenging task. Indeed, there is a high contrast variability among mammograms
which implies that dense and non-dense tissues cannot be disambiguated easily unless
parameters (like a threshold value) are hand-tuned.

To alleviate this difficulty, we propose an automatic procedure to estimate a parameter
γ. Applying gamma correction with this parameter allows to standardize the visual ren-
dering of mammograms. Consequently, dense tissue segmentation method parameters
are far less dependent on the processed image.

We have proved that the segmentation results we obtain allows to produce a relevant
numerical density score. However, this is a preliminary approach and there is room
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for improved performances. In particular, the peripheral area pre-processing that was
presented in subsection 5.5.1 deserves more attention. Active contours could be used
to detect this area and some other contrast correction techniques could also be applied
to it. Secondly, our analysis of input image breast region histograms is too coarse.
Statistical techniques could be used to detect modes prior to the estimation of γ. If
the mode corresponding to bright pixels was precisely known, histograms would be
stretched by gamma correction in a more useful way.
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Chapter 6

General conclusions

Medical imaging methods are currently at the heart of many clinical practices as they
have been established to provide useful information to physicians and therefore con-
tribute to ameliorate health care conditions. However, for an effective use of these
latter, objective, qualitative and quantitative information have to be extracted from
them. In the mean time, new medical imaging methods are continuously introduced
thanks to progresses achieved in sensor technology which in consequence increase the
quantities of data to be analyzed by experts in reduced timescale. Undoubtedly, reli-
able CAD tools become imperative for pre-analysis of such a volume of data in order
to relieve physician workloads and ameliorate diagnoses of these latter. The interest
of CAD tools for potential clinical applications is continuously growing but they are
expected to demonstrate higher levels of performances in order to be integrated in
clinical protocols.

In this work, we were particularly interested in the development of tools for improving
breast cancer detection. We introduced in this manuscript an approach for mammo-
graphic density analysis based on breast tissue characterization in order to assess cancer
risk related to a mammogram. It addresses the first main steps of the broad algorithmic
architecture presented in Section 2.7 (see figure 2.11). The most significant outcomes
of this research work are poorly informative mammographic image regions removal fol-
lowed by an advanced breast tissues analysis in order to identify mammographic image
areas most likely to contain cancerous lesions, i.e dense breast tissue regions.

The goal of such a strategy relying on breast tissue characterization in mammogram
was to:

� estimate the proportion of dense tissue in breast and derive a cancer risk index
which can help identify high risky patients for quick and preventive medical care,

� reduce false alarms rates through a prior identification of potential cancer areas
where further advanced investigations should be carried out.

Mammographic image analysis is a hard task to achieve both by expert radiologists
and CAD systems. In fact, there are several factors that hinder the automatic anal-
ysis of mammograms thereby leading to inaccurate results. Amongst these factors,
the most harmful ones are: presence of examination notes in the background of the
mammograms, presence of some muscle tissues not belonging to mammary gland, poor
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contrast of X-ray images and texture similarities between some cancer signs and breast
dense tissues.

To successfully handle these peculiarities and come up with an efficient analysis of
breast tissue density, we introduced in this work a strategy based on two macro-steps.
We first get rid of poorly informative image regions and subsequently perform an ad-
vanced analysis of the breast region. Each of these macro-steps were themselves divided
into challenging sub-steps.

In the first macro-step, we addressed the issues of background suppression in mammo-
grams followed by the problems related to pectoral muscle extraction. It is noteworthy
that the algorithms implemented in this first macro-step are learning-free ones and solve
the problems encountered in a fully automatic manner. As second step, we developed
an approach to estimate dense breast tissues proportion in mammographic images. The
MIAS database was used to test the performances the algorithms introduced at each
step of this work.

Although background suppression in mammograms is a preliminary step to achieve in
CAD systems, it is far from being a simple task because of low contrast and smooth
variation of gray level intensities across breast edge which do not facilitate boundary
identification. A logarithmic contrast enhancement technique is therefore applied on
mammograms to stretch the dynamic range in the dark regions. More precisely, the
grey level dynamics are greatly amplified at the vicinity of the breast edge therefore
enabling boundary identification. Mammograms are subsequently segmented using
gray level information and non-breast patterns are identified and suppressed. Reliable
results have been obtained and compared favorably to those of a reference standard.
It should be noted that cases where our algorithm yielded improper results are those
having excessive noise or parasite defects resulting from mammograms digitization
process.

Following background suppression, we also addressed in this work the segmentation of
another poorly informative image region i.e pectoral muscle. Such tissues regularly
appear in the MLO views of mammograms and are known to significantly tamper
breast tissue analysis. However, complex and disrupting factors such as view layout,
tissues overlapping, gray level intensity variation in the region and blur edges make
the design of an automatic process for the pectoral muscle extraction very challenging.
In such conditions, even using some basic a priori knowledge and gray level intensity
information do not enable to reliably estimate pectoral muscle boundary.

To tackle some of these issues, we modified the FCM clustering algorithm to exploit
spatial information during cluster center update. Indeed the pectoral region is made
of connected pixels. Spatial information helps discarding irrelevant unconnected blobs.
Nonetheless, the pectoral muscle region segmentation is still irrelevant in tricky cases
exhibiting strong overlap with dense breast tissues. We introduce a fast validation
process to solve this specific problem and implement a refinement strategy to accurately
estimate the pectoral muscle boundary. We compared our extraction results to reference
standard ones and also studied the effects of observer variability. This latter study
shows the subjectivity of observer perception’s to visually delineate pectoral muscle
boundary which consequently induces a certain dependency of results with respect to
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Chapter 6. General conclusions

the observer. Nevertheless, the pectoral muscle has been successfully removed in the
mammographic image so that the remaining image region is only constituted of breast
tissues ready for tissue density characterization.

Concerning the second macro-step, we focused on breast tissue density assessment since
a strong correlation between cancer and breast density has been clearly demonstrated in
the literature. In this work, we attempted to segment dense tissue image regions which
allow the estimation of the relative proportion of dense breast tissues. A numerical
density score is thus automatically derived from an input mammogram. As previously
stated, the motivations of such a strategy are:

� identifying potential image regions containing cancer lesions where next investi-
gations should be done,

� evaluating the risk of cancer associated to a mammogram which can justify ad-
ditional computation efforts to search for breast cancer signs.

The real difficulty in segmenting dense breast tissues in mammographic images is that,
in some cases, the amount of dense tissue is almost negligible or completely non-existent
in comparison to glandular tissues. In addition, the contrast quality is highly variable
from one image to another therefore making dense tissue regions difficult to prototype
based gray level intensity information only. This shortcoming has its roots in the in-
ability for radiologist technicians to evaluate breast consistency to derive ideal settings
to produce identically contrasted images at each examination.

When gray levels are not informative enough, texture features need to be extracted.
Despite the wide variety of texture based approaches introduced in the literature to
solve the problem of breast tissue density assessment, none can claim to perfectly de-
scribe breast tissue densities. In this work, we propose a new alternative approach
relying on a contrast modification. This modification is operated by gamma correction
transport mapping gray level intensities. This transport allows to obtain desirable his-
togram shapes for each kind of breast density category. Although this is not our primal
goal, such contrast standardized mammograms offer a complementary visualization of
breast tissues for radiologists. More importantly, this contrast modification allows to
compute the proportion of dense breast tissue through a simple image thresholding.
Indeed, since the images are standardized the value of the threshold is kept constant for
all input mammograms. Our experiments show that our density score is highly corre-
lated to density related class labels. These labels were produced by expert radiologists
for all mammograms belonging to the MIAS dataset.

While the outcomes of mammographic density analysis as presented throughout this
manuscript are many, several perspectives and issues are still to be addressed to come up
with a complete and efficient CAD tool for breast cancer detection. Indeed, in this work,
we have laid down the basis for an automated and efficient approach for breast cancer
detection. The next investigations coming right away at the end of this work should
allow the completion the CAD architecture introduced in this PhD. The next stage of
this architecture deals with cancer pattern identification. It mainly consists of deriving
relevant features to highlight cancerous patterns within dense tissues. Such operations
may be computationally demanding if high resolution images such as mammograms
are considered. Fortunately, this step will take advantage on the fact that potential
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cancerous image areas have already been delimited to not only speed up the process
but to also reduce false alarm rates.

On the other hand, our mammographic density score can be considered as an expression
of the level of difficulty one faces to identify cancer signs. It could therefore serve as a
criterion for selection of an efficient analysis method with respect to breast density.

On top of those already evoked in the conclusion of chapter 5, the results achieved
in this work do naturally give rise to several perspectives for further improvements
of CAD systems. For instance, mammograms are 2D images of a compressed and
deformed 3D object. As consequence, one can not reliably use mammographic image
to derive the position of an entity (e.g microcalcification or masse) in the breast.
One may think of performing mammograms decompression in order to model a 3D
reconstruction of breast. However, a proper modeling relies on an appropriate bio-
mechanics tissues description which in turns depends on breast tissue characterization.
Other investigations worthy of interest deal with image registration and fusion. In fact,
the knowledge on breast tissues composition will facilitate an appropriate registration
of mammograms with others modalites and therefore pave the way for an efficient
aggregation of images. Such complementary exploitation of information from many
sources has proved to produce better results.
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