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Abstract

In this thesis, we consider the random acceleration model, which represents possibly one
of the simplest non-Markovian stochastic systems and which has been widely studied in
connection with applications in Physics and Mathematics. The residence time TA(t|x0, v0)
of the random acceleration model, spent within a region A by the particle when observed
up to a time t, and their related properties, which are non-trivial and not yet completely
understood, has been well characterized. So to speak, we started by the definition of the
moment generating function. From the Taylor expression of the generating function, we
establish the backward Fokker-Planck equation for the moment and, by using particu-
larly the free propagator or the Green function in absence of the boundaries, we obtain
analytically the first two moments of the residence time T+, and also study the statistics
of T+ with Monte Carlo simulations. Our goal is to ascertain whether the residence time
T+ and the time Tm, at which the maximum of the process is attained, are statistically
equivalent. For regular Brownian motion, the distributions of T+ and Tm coincide and
are given by Lévy’s arcsine law. We show that, for randomly accelerated motion, the
distributions of T+ and Tm are quite similar but not identical.

Keywords: Random Walk, Normal diffusion, Anomalous diffusion, Continuous Time
Random Walk, Diffusion Equation, Fokker-Planck Equation, Time Maximum, Residence
Time, Non-Markov Process.
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Résumé

Dans cette thèse, nous considérons le modèle d’accélération aléatoire, qui représente prob-
ablement un des systèmes stochastiques non-Markoviens les plus simples et qui a été large-
ment étudié en liaison avec des applications en Physique et en Mathématique. Le temps
de séjour TA(t|x0, v0) du modèle d’accélération aléatoire, passé dans une région A par la
particule lorsqu’elle est observée jusqu’à un instant t, et leurs propriétés relatives, qui sont
non triviaux et pas encore comprises, a été bien caractérisé. Tel que parlé, nous débutons
par la définition du moment de la fonction genératrice. De l’expression de Taylor, nous
établissons l’équation de Fokker-Planck pour les moments et, en utilisant particulièrement
le propagateur libre ou la fonction de Green en l’absence des limites, nous obtenons ana-
lytiquement les deux premiers moments du temps de séjour T+, puis par une simulation
numérique à partir d’une approche de la méthode Monte Carlo étudions aussi la statis-
tique de T+. Notre objectif est de s’assurer si le temps de séjour T+ et le temps Tm ,temps
auquel le maximum du processus est atteint, sont statistiquement équivalent. Pour un
mouvement Brownien regulier, les distributions de T+ et Tm coincident et sont données
par la loi arcsinus de Lévy. Nous montrons que, pour le mouvement aléatoirement ac-
celéré, les distributions de T+ et Tm sont qualitativement équivalent mais avec une légère
différence sur le plan quantitatif.

Mots clés: Marche aléatoire, Diffusion normale, Diffusion anormale, Temps continue
d’une marche alétoire, Equation de dffusion, Equation de Fokker-Planck, Temps maximal,
Temps de séjour, Processus non-Markovien
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General Introduction

Statistical physics is a branch of physics that uses methods of probability theory and
statistics, and particularly the mathematical tools for dealing with large populations and
approximations, in solving physical problems. It can describe a wide variety of fields
with an inherently stochastic nature [1]. It is a relatively old discipline. Founded in the
second half of the nineteenth century(Clausius, Maxwell, Boltzmann and Gibbs), then
fertilized by the development of quantum mechanics in the first half of the twentieth
century, it is one of the most important physical theoretical frameworks. The objective
of statistical physics is to establish the relationships between macroscopic variables, from
the equations that govern the behavior of matter at the microscopic scale. It focuses on
the study of systems with very large number of degrees of freedom [2]. It is intended to
describe the best system properties that the physicist does not control absolutely. This
discipline links microscopic physics, which provides access to the detailed description of
the physical system and macroscopic physics, where no one of them characterizes the state
of the system considered by average properties [3]. The paradigm of the approach from
statistical physics is at the foundations of physical chemistry (applied to a macroscopic
system), especially of thermodynamics in terms of elementary mechanics. It must also be
known that statistical physics aims at describing evolving systems: motion of a particle
in a fluid, progress of a chemical reaction, etc [1, 3].

Its development has been accompanied by major advances in mathematics (probabil-
ities, random processes, dynamical systems, ergodic theory), general physics (validation
of the atomic hypothesis) and instrumentation. .

One distinguishes equilibrium statistical physics (thermodynamics sense) from nonequi-
librium statistical physics. The development of statistical physics describing situations at
equilibrium is based on principles of universal significance such as the fundamental pos-
tulate of statistical physics, etc. These allow one to develop a clear framework (Ensemble
of statistical physics: microcanonical, canonical, etc.), the concrete study of a problem
requiring, in principle, only to trigger a proven mechanics, i.e. calculate the appropriate
generating function such as entropy, free energy (partition function), etc. The study of the
nonequilibrium situation is clearly less well marked, which reflects the greater richness of
the dynamic aspects and a relative lack of universality. A wide variety of approaches are
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generally proposed (Langevin approach, master equation, Fokker-Planck equation, etc.),
whose relations among them are not obvious a priori. These approaches provide tools for
analyzing the statistical properties of physical quantities seen as random processes, i.e.
their temporal structure.

The physical mechanisms associated with nonequilibrium situations are known as
transport phenomena. As in the case of equilibrium systems physics, the laws regulating
transport phenomena were first established [3] (often empirically) within a macroscopic
framework: an example is the Fick’s law which gives the flow of matter, Γ, due to the
existence of a concentration gradient, n as illustrated below:

Γ = −D∂n
∂x
, (1)

where D is the transport coefficient.This law can be applied to the diffusion of a gas.
Statistical equilibrium physics gives the probability of observing a given macroscopic

state for a system. Here, a question is how a system, initially in a particular state, evolves
towards equilibrium. An alternative question is that of equilibrium correlations: which
correlation then exists, between the state of the system, at a given time and its state at
a later moment [3, 4]?

Answering these questions requires the introduction of a dynamic for the system, i.e a
law of evolution. This law must naturally be compatible with the probability distribution
at equilibrium. In particular, it can not be deterministic, in which case the probability
distribution would always be concentrated on a single state. This dynamics must contain a
random or stochastic part. To describe the temporal evolution of a nonequilibrium system
obeying a Markovian dynamics, we need to determine the probability laws. Combining
temporal evolution and probabilities yield stochastic processes.

Indeed, stochastic processes or random processes are any phenomenon evolving in time
whose analysis can be subjected to the calculation of probabilities. From the point of view
of observation, a stochastic process is constituted by all its realizations. A realization is
obtained by an experiment which consists in recording a sequence of events over time.
The randomness of the evolution showing itself by the fact that the repetition of the
experiment leads to another temporal sequence.

Stochastic processes are found in daily life and for this reason their quantitative study
has constantly attracted interest of scientists from various disciplines. Nowadays, the the-
oretical study of stochastic processes forms an integral part of the mathematical statistics
which can be seen as the frontier of several disciplines. There are many applications
of the stochastic processes, particularly in biology (evolution genetics and population
genetics) [5–7], in medicine (growth of the tumours, epidemic) [7, 8], in engineering (ad-
ministration of the networks, Internet, telecommunications) [9,11–13], in economy (stock
exchange) [14], finance [15, 16], and statistical physics (the ferromagnetism, transitions
from phase, etc).

The purpose of the theoretical study of stochastic processes is the modeling of the
phenomenon starting from experimental observations or numerical results. The first the-
oretical studies of the evolution laws of distributions had been undertaken starting from
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Introduction

the Fokker-Planck equation [17–22]. In other words, the process can be seen as normal
diffusion in presence possibly of external forces 1 [23–26]; but some time, the experimental
study of certain stochastic phenomena revealed an anomaly in their density probabilities,
which appear especially in the quadratic behavior and which is no longer a linear function
of time [27–30]. This anomaly characterizes the anomalous diffusion. Let us note that the
anomalous diffusion is a random walk characterized by an average quadratic displacement
which grows with time with a larger exponent (superdiffusion) or smaller (subdiffusion)
than 1. There are essentially three possible reasons at the origin of this behavior:

(i) The jumps of the walker are strongly correlated 2.

(ii) The walker can make great jumps 3.

(iii) The medium is heterogeneous 4.

In spite of the large number of situations, where anomalous diffusion is observed, there
is not a unified description of non-Brownian physics. Often, in front of a concrete question,
even if one identifies the relevant stochastic process (fractional Brownian movement for
(i), Lévy’s flight for (ii), and continuous time random walk(CTRW) for (iii)) [31–33], it is
very difficult to make the necessary calculations to answer this question.

A significant example of anomalous diffusion (quadratic displacement grows like x2(t) ∼
t3) is the random acceleration process, which is a non-Markovian stochastic process 5 [34].
This process evolves via the stochastic differential equation

ẍ(t) = η(t), (2)

where we suppose that the terms of dissipation can be considered as stochastic forces;
η(t) being a Gaussian white noise, with < η(t) >= 0, and < η(t)η(t′) >= 2Dδ(t− t′).

Stochastic differential equation is a generalization of the concept of differential equa-
tion taking into account terms of white noise; this evolutionary equation can be obtained
in the deterministic case from the dynamic laws (classical or quantum) governing the
displacement of a Brownian particle under the effect of its collisions with the particles of
the fluid.

Indeed, let a Brownian particle subjected to a succession of molecular impacts from
which the force resulting at the time t is noted F(t). This force does not depend explicitly
on time, if the external medium is at equilibrium but implicitly by the co-ordinate and
the speed of the large particle and those of small particles of the bath.

1the Langevin model
2for example the movement of a fluorescent monomer is subdiffusive because of the interaction with

the other monomers
3for example financial markets
4for example propagation of the contaminants in porous environments
5the term ’non-Markovian process’ covers all random process with the exception of the very small

minority that happens to have the Markov property
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By simplifying to one dimension, one locates the position of the particle by a x −
coordinate x. In addition to the resultant force or call it the fluctuating force due to the
action of the medium and characterizing the effect of the fluid acting on the particle of
mass m, there may exist a well-defined external force noted Fext, which is for example an
electric field. In these conditions, the fundamental equation of the dynamics for a particle
is written as:

m = d2x

dt2
= Fext + F(t). (3)

The force F(t) cannot be physically reduced to a single erratic component: the effect
of the bath is not only to create disordered movements for the Brownian particle but also
to slow it down. The action of the entire bath contained in F (t) must also result in a
frictional force.

This analysis suggests thus the replacement of the equation (3) by the following equa-
tion:

m = d2x

dt2
= Fext + F(t)−mαv, (4)

where α is the friction’s coefficient and v = dx/dt is the velocity of the particle.
If there is no position-dependent applied external force, the Brownian particle is said

to be "free" and the equation of motion for the free Brownian particle is given by the
Newton’s law:

m = d2x

dt2
= −mαv + F(t), (5)

or, equivalently
m = dv

dt
= −mαv + F(t), v = dx

dt
(6)

The equation under the forms (5), (6) is historically the first example of a stochas-
tic differential equation (called Langevin equation) i.e. which depends on the random
variables.

Let us note at the viscous limit ("overdamped") or at the limit of great friction (alter-
natively at the limit of long times) (Fext = 0), m → 0, α → ∞, the degrees of freedom
of velocity have been relaxed, and the term of inertia becomes negligible. Then, the
Langevin equation of the movement becomes:

mα = dx

dt
= F(t). (7)

In the Langevin equation for Brownian motion (sometimes called the Ornstein-Uhlenbeck
process), there is a damping force in addition to a random force. It is a different, more
complicated process, than the random acceleration process.

In the random acceleration process, by definition, there is no damping term. The
position x(t) in the random acceleration process corresponds to the integral of v(t), which
evolves according to a random walk. Let us consider a point particle; in the random
acceleration process, this point particle is subjected to none impacts molecular nor with
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any phenomenon of diffusion i.e. which moves freely according to the x axis and is
subjected to the random force F (t) ≡ η(t), in the form of Gaussian white noise. The
Newtonian equation of motion of this point particle is:

d2x

dt2
= η(t), or (8)

dv

dt
= η(t). (9)

which is a differential stochastic equation. According to equation (9), the velocity v =
dx/dt performs a random walk.

Thus
dx

dt
= v, (10)

dv

dt
= η(t). (11)

is the coupled evolution equations of the randomly accelerated particle.
A variety of systems in physics, in the life and social sciences, and in engineering can

be modeled in terms of particles traveling in a host medium, which randomly changes
their state (position, direction, energy, etc) in collisions with other particles or with the
medium itself. The nature of the randomness may vary widely from one system to another.
It may result either from the intrinsic stochastic nature of the underlying process or
from uncertainty [35]. Some transport phenomena, while originating in deterministic and
reversible events, can in practice only be described by resorting to the laws of probability.

A prominent example of such a stochastic system is the random acceleration model,
which has been studied in connection with applications in physics and mathematics. In
physics, for example, it appears in the continuum description of the equilibrium Boltz-
mann weight of a semiflexible polymer chain, with non zero bending energy [36]. It can
also describe the steady state profile of a (1+1)-dimensional Gaussian interface [37], with
dynamical exponent z = 4, and the continuum version of the Golubovic-Bruinsma-Das
Sarma-Tamborenea model [38]. In addition, the random acceleration process arises in
the description of the statistical properties of the Burgers equation with Brownian initial
velocity [39]. The random acceleration process is related to the statistics of semiflexible
polymers [36] and also plays a role in other physical applications [40,41]. The random ac-
celeration model is a non-trivial, non-Markov model, which is both relevant to real-world
applications and simple enough so that it can be studied analytically. The first-passage
properties and related properties have been investigated extensively over the last few
decades [36, 37, 42]. Recently, the extreme-value statistics of the process was analyzed,
with special emphasis on the global maximum in a given time interval [37, 43, 44] and
the time at which the global maximum is reached [45]. The residence time in stochastic
systems was first considered by mathematicians [46–48] and has more recently been in-
vestigated in physical systems with continuous degrees of freedom and in connection with
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persistence (see [49, 50]). The residence time, also usually called occupation times,has
been extensively studied since the seminal work of Lévy and his arcsine law giving the
residence time of a Brownian particle on an infinite line [51]. In the literature, the resi-
dence time statistics of the random acceleration model has attracted considerable interest
as a tool describing nonequilibrium phenomena [52]. Recently, the study of time at which
the maximun of the random acceleration process is reached, has naturally led to a curi-
ous observation, where from a numerical evidence made by Rosso et al [45], has shown
that unlike in the Brownian case, the two distributions P (tm|T ) and P (toccup|T ) (toccup
represents the occupation time) are different in the random acceleration process. This
curious observation naturally led to calculations of residence time statistic, of the random
acceleration model that we will carry out throughout this thesis. By definition, the resi-
dence time T+ denotes time at which the process spends on the positive half axis within
the interval [0, T ]. T+ can also denote the length of time for which the process is greater
than a fixed value α and/or less than a fixed value β. Let us consider a general stochastic
process x(t) or X(t); starting from x(0) = 0, over a fixed time interval [0, T ]. Clearly, T+
is a random variable that fluctuates from one realization of the process to another. The
question of determining the residence time arises in many fields:

- In the context of finance, x(t) may be the price of a stock which obeys the
stochastic differential equation, and one may be interested in T+ for which the stock price
is a given interval [α, β].

- In the context of queueing theory, the stochastic process x(t) may represent
the length of a queue at time t, and one would like to know T+, i.e the time spent by an
individual in a queue.

- In the context of biology, x(t) may represent a bacterial population at time t, and
one would like to know the time T+, i.e the time spent by a bacteria in a given bacterial
culture medium to multiply or to die.

However, it should also be noted that the residence time and related properties are
non trivial and not yet completely understood. In this thesis, we consider a randomly
accelerated particle moving in one dimension on the infinite x axis and study the residence
time T+ on the positive x axis. We calculate the first two moments of T+ analytically
and also study the statistics of T+ with Monte Carlo simulations. One of our aims is to
study whether the residence time T+ of the randomly accelerated particle and the time
Tm, at which it attains its maximum displacement, are statistically equivalent. Both our
analytical and Monte Carlo results indicate that this is not the case. This is in contrast
with regular Brownian motion, where the distributions of T+ and Tm coincide and are
given by Lévy’s celebrated arcsine law [46, 53]. Also, we aim by this contribution an
essential objective. This objective is to increase the existing literature with this original
problem, on the basis of the Fokker-Planck equation and on the average residence time.
We find the Green function or the free propagator in the most general case; which is the
essential tool to carry out our analytical calculations on the residence time. Taking into
account the fact that this Green function was calculated analytically by Burkhardt [36]
in the simplest case, we use the Monte Carlo method to check numerically the agreement
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with the analytical result.
This thesis is structured as follows:
In Chapter 1 we carry out a literature review on Statistical Physics of the irreversible

Processes. The generalities on the irreversible process will be presented in the literature
review where we will focus on the concepts of the stochastic processes, Markov processes,
Brownian motion and random walks. An interest will be devoted to the anomalous diffu-
sion [54–57], to the polymer translocation and fractional Brownian motion [58,59]; we will
be also interested in the random acceleration model more particularly on works by Rosso
et al [45], where they calculated time at which the maximum of a random acceleration
process is reached. And on the basis of their numerical evidence, they concluded that the
distribution of the occupation time does not agree with their result for the distribution
of the time maximum from which is born the problem which is the subject of our thesis:
the residence time of a random acceleration process.

In Chapter 2, devoted to methodology, we report various methods (analytical and
numerical) used to solve our problem, knowing the residence time . As analytical method,
we present the fundamental equations allowing us to describe the evolution of the laws
of probabilities relating to a Markovian random process starting from the Fokker-Planck
equation. As numerical method, we present the Monte Carlo method.

Chapter 3 concentrates on results and discussions, we derive partial differential equa-
tions which determine the moment generating function and the moments of the residence
time. We calculate explicitly the first two moments of the residence time T+ and compare
with the corresponding moments of the time Tm at which the randomly accelerated parti-
cle makes its maximum excursion. Still in this chapter, we study the moments of T+ and
its distribution with Monte Carlo simulations and compare the results with our analytic
predictions for the first two moments of T+ and with exact results for the distribution of
Tm. Some technical details about the computation of the ïňĄrst two moments of T+ are
given in the appendix.

9



Chapter 1

LITERATURE REVIEW ON
STATISTICAL PHYSICS OF THE
IRREVERSIBLE PROCESSES

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Absolute and conditional probabilities . . . . . . . . . . . . . . 12
1.2.2 Definition and Terminology of the stochastic process . . . . . . 15
1.2.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Correlations, cumulants and generating functions . . . . . . . . 17

1.3 Markovian Process . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 Brownian motion and Random walks . . . . . . . . . . . . . . 21

1.4.1 Models for Normal diffusion: Langevin’s equation . . . . . . . . 23
1.4.2 Einstein relation for the constant of diffusion . . . . . . . . . . 24

1.5 Anomalous diffusion . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.6 Polymer translocation and fractional Brownian motion . . . 28

1.6.1 Fractional Brownian motion . . . . . . . . . . . . . . . . . . . . 29
1.6.2 First-passage properties: the hitting probability . . . . . . . . . 31
1.6.3 Effects of the boundaries: the exponent φ . . . . . . . . . . . . 33
1.6.4 Perturbation methods . . . . . . . . . . . . . . . . . . . . . . . 34
1.6.5 Tagged monomer . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.7 Continuous Time Random Walks and Lévy Flights . . . . . . 37
1.8 Random acceleration model . . . . . . . . . . . . . . . . . . . . 40

1.8.1 Extreme statistics . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.8.2 Convex hull of a random acceleration process . . . . . . . . . . 43

1.9 Digression on the hitting probability . . . . . . . . . . . . . . . 44

10



1.1 Introduction

1.10 Problems: Residence Time for the random acceleration pro-
cesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.1 Introduction
In this chapter, our aim is to introduce the main concepts and fundamental notions on the
stochastic processes, normal and anomalous diffusions. One qualifies stochastic process
any phenomenon of temporal evolution, whose analysis can be subjected to the theory of
probabilities. From the view point of the observation, a stochastic process is considered
by the set of its realizations. A realization is obtained by the experiment which consists
in recording a continuation of event in the course of time.

The erratic nature and non reproducible of the realizations of the process is owing
the fact that their evolution is in general the result of unverifiable agents, or of which the
effect is even unknown. The Brownian particle moves under the effect of its collisions with
the particle of the fluid: the dynamics laws controlling the latter (classic or quantum)
are known. In this case, one could in principle establish the bond between the Brownian
motion and subjacent microscopic dynamics but the complexity of the description of these
microscopic movements defies the analysis. In the case of the stock exchange fluctuations
we realize that it is illusory to make go up the theory with the description of the physico-
chemical state of the brains of the operators.

The remarkable fact is that in spite of these multiple random agents, the statistics of
the process(mean value, standard deviation,. . .) obey simple and reproducible laws in the
course of time, provided that one analyzes it on scales of suitable times. The theory of
the stochastic processes thus endeavours to formulate models of evolution, where the lack
of information east compensates by adequate probabilistic assumptions. The situation al-
though much richer in its fields of application, is similar to that of the statistical mechanics
of the equilibrium: the assumption of the statistical sets(microcanonical, canonical,. . .)
makes it possible to describe the macroscopic observations of thermodynamics which are,
perfectly regular and reproducible [60].

Many good physical phenomena are described by the evolution of one or several sizes in
the course of time. At a given moment, these sizes often present a character unforeseeable,
random, and it is then natural to represent them by a random variable. The evolution
of the phenomenon is then described by the whole. It is described then by the set of the
random variables modelling the phenomenon at every moment. This whole of random
variables forms a stochastic or random process.

Thus, a stochastic process is a collection of random variables indexed by a parameter.

11
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This can represent time, discrete or continuous or a variable of space. The knowledge of
the relations between these random variables, when the parameter varies, makes it possible
to obtain interesting properties, which characterize the evolution of the phenomenon.

The applications of the stochastic processes are very numerous. Those are in par-
ticular used by the engineers for the construction of the mathematical models of many
phenomena. We can quote, for example:

• The economic theory and the econometric whose objectives are to account for the
mechanisms which govern the economic facts (often random). The theory of the
forecast, which gathers the whole of the methods making it possible to give an
estimate (probabilistic) of the evolution of an economic variable, starting from data
on its values passed, uses the stochastic processes. One speaks in this case about
statistics or stochastic processes.

• Transport and the traffic, which are about transport of people, goods or traffic in
the networks (telephone, mobile, Internet).

• The reliability of the systems or a material i.e. evolution in the time of its failures.

• Financial engineering, where the financial models utilize complex concepts of process
and stochastic calculations.

• The filtering and information theory.

• Sciences of the environment.

Therefore this chapter is organised as follows. Firstly, the section 1.2 is devoted to the
stochastic process. Next section 1.4 is devoted the normal diffusion. Then, the section 1.5
is introduce the anomalous diffusion; after that the section 1.7, is devoted to Continuous
Time Random Walk, and finally, section 1.8 presents the random acceleration model.

1.2 Stochastic processes

1.2.1 Absolute and conditional probabilities
The probability of an event is a numerical value which represents the proportion of time,
where the event will be carried out, when one repeats the experiment under identical
conditions. We can deduce from this definition which a probability must be between
0 and 1 and which probability of one event 1 is the sum of the probabilities of each
elementary events which constitutes it. Lastly, the sum of the probabilities of all the
elements of Ω is 1.

Definition 1.1 (Probability) A probability (or a measurement of probability) is a
function P of the set of the events F towards [0, 1] such as:

1Let us recall that an event is nothing other than part of Ω.
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- P(Ω) = 1 and P(∅) = 0.

- If (Ai, i ∈ I) is a finished or countable collection of events Ai ∈ F for all i ∈ I
disjoined two to two; then:

P
( ⋃
i∈I
Ai

)
=
∑
i∈I

P(Ai). (1.1)

This property is called σ − additivity (we can talk about additivity if the whole of
indices I is finished).

The triplet (Ω,F ,P) is called probabilized space or space probabilities. It is said that
the event A is almost sure (noted a.s) if P(A) = 1. We can also say that the event A is
negligible if P = 0.

Let us consider n intervals Ij = [xj, xj + dxj], j = 1, . . . , n, n = 1, 2, . . . . We define
the probability distributions joined of the process by:

W (x1, t1; ...;xn, tn)dx1...dxn = probability of finding x(t1) ∈ I1, . . . , x(tn) ∈ In

= numbers of realizations which pass in I1, . . . , In
total numbers of realizations

(1.2)

with ti 6= tj ∀i 6= j and i, j ≤ n, n = 1, 2, . . .
Definition 1.2 (Absolute probabilities) The functions W (x1, t1; ...;xn, tn), t1 6=

t2 6= . . . , 6= tn are called absolute probabilities of the process, 2 and must satisfy the
following natural conditions:

(i) W (x1, t1; ...;xn, tn) ≥ 0

(ii)
∫
Rk dx1...dxnW (x1, t1; ...;xn, tn) = 1, ∀{x1, t1; . . . ;xn, tn}

(iii) W (x1, t1; ...;xn, tn) is a symmetric function

(iv)
∫
R dxnW (x1, t1; ...;xn, tn) = W (x1, t1; ...;xn − 1, tn − 1)

The condition (iii) is owing to the commutative logic of formulation of the joined
probability of several events.

The condition (iv) is obvious because the sum on all the possible events at time tn
reduces the distribution to that of the events at times t1, . . . , tn − 1. It is a relation of
compatibility between the distributions with n and n− 1 arguments.

If tn → tn − 1, one poses:

lim
tn→tn−1

W (x1, t1; ...;xn−1, tn−1;xn, tn) = W (x1, t1; ...;xn−1, tn−1)δ(xn−xn−1) (1.3)

2if that does not lend to confusion, we can qualify W of probability whereas it is about a density of
probability if x is a continuous variable.
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since then, variables xn and xn − 1 must be identified.
Definition 1.3 (Conditional probabilities) Let us consider t1 ≤ t2 ≤≤ . . . ≤ tk.

We define then the conditional probability P (x1, t1; . . . ;xk, tk | xk+1, tk+1; . . . ;xn, tn)dxk+
1; . . . ; dxn by

P (x1, t1; . . . ;xk, tk | xk + 1, tk + 1; . . . ;xn, tn)dxk + 1; . . . ; dxn

=

probability of finding{x(tk + 1) ∈ Ik + 1, . . . , x(tn) ∈ In}
knowing that{x(t1) ∈ I1, . . . , x(tk) ∈ Ik}

(1.4)

and
P (x1, t1; . . . ;xk, tk | xk + 1, tk + 1; . . . ;xn, tn) = W (x1, t1; . . . ;xn, tn)

W (x1, t1; . . . ;xk, tk)
. (1.5)

These distributions enjoy the properties

(a) P (x1; t1; . . . ;xk; tk | xk + 1; tk + 1; . . . ;xn; tn) ≥ 0.

(b)
∫
Rn−k dxk+1 . . . dxnP (x1; t1; . . . ;xk; tk | xk + 1; tk + 1; . . . ;xn; tn) = 1.

(c) P (x1; t1; . . . ;xk; tk | xk + 1; tk + 1; . . . ;xn; tn) is symmetrical under the permutations
of the arguments x1; t1; . . . ;xk; tk and xk + 1; tk + 1; . . . ;xn; tn.

(d)
∫
R dxnP (x1; t1; . . . ;xk; tk | xk+1; tk+1; . . . ;xn; tn) = P (x1; t1; . . . ;xk; tk | xk+1; tk+

1; . . . ;xn − 1; tn − 1.

which follows immediately from the definition (1.2). It results from this, in particular
from Eq.( 1.3) that

lim
t2→t1

P (x1; t1 | x2; t2) = δ(x1 − x2). (1.6)

The data of P (1, . . . , k | k + 1) with W (1) is equivalent to that of W . Indeed, by the
definition (1.3) which says that P (1, . . . , k | k + 1), . . . , n = W (1,...,n)

W (1,...,k) , we have

W (1, 2)=W (1)P (1 | 2). (1.7)

W (1, 2, 3)=W (1, 2)P (1, 2 | 3)=W (1)P (1 | 2)P (1, 2 | 3). (1.8)

W (1, 2, 3)=W (1, 2, 3)P (1, 2, 3 | 4)=W (1)P (1 | 2)P (1, 2 | 3)P (1, 2, 3 | 4). (1.9)
...

W (1, 2, 3, . . . , k) = W (1)P (1 | 2)P (1, 2 | 3) . . . P (1, 2, 3, . . . , k − 1 | k), (1.10)
that gives the expression of the absolute probabilitiesW knowing the conditional probabil-
ities P . A stochastic process, can be well defined by the data of its absolute probabilities
as those of its conditional probabilities.

14



1.2 Stochastic processes

1.2.2 Definition and Terminology of the stochastic process
In intuitive terms, a stochastic process is a probabilistic model for evolution in time of
some systems that is regarded as being subject to randomly varying influences [61]; or
any process whose temporal evolution can be analyzed in terms of probability is known
as stochastic process. We can think that a stochastic process is an overall of waveforms
(sample functions or sample paths), a waveform chosen at random. A stochastic process is
mathematically speaking, a family of (infinitely many) random random variables defined
on the same probability space.

Accordingly, the concept of stochastic process is very general. The process can be
vectorial, with discrete or continuous values. It manifests itself by the observation of a
variable x(t) size in the course of time t . For example, x(t) can be the co-ordinate of
a Brownian particle, the position of a piston subjected to the shock of the molecules of
a gas, the concentration of a chemical substance, the number of photons absorptive or
emitted by an atom, the stock exchange values. It is often about observable macroscopic
subjected to effects of a great number of microscopic variables.

1.2.3 Example
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Figure 1.1: (Color online) 25 realizations of the discrete Brownian motion.

Let us lay emphasis on in phenomena where the probability of obtaining a certain
result depends on what we have already obtained. Let us take the fundamental example
of the Brownian motion at one dimension. Let us suppose that our world is divided into
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boxes, which we number using an index n [62]. At each time step, our particle makes a
jump to the box immediately to its left or to its right. We now ask ourselves: what is the
probability P (n, t) of finding the particle in the number n box at time t?

As such, this question does not have a sense. We must specify where the particle was
at the initial moment; the precise question is therefore what is the probability of finding
the particle in n at time t knowing what was in the box n0 at time t0. We note this
probability by P (n, t;n0, t0). Figure 1.1 represents 25 realizations of such a process: at
the initial moment t = 0, we pose the particle in box n0 and we make it evolve from box
to box during 100 turns by our probabilistic game: we draw with pile or face; if it is face,
we move the particle of a box to the left; if it is pile, we move it of a box to the right.
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Figure 1.2: (Color online) 40 realizations of the discrete Brownian motion during 400
turns.The proportion of trajectories which lead to n = 4 at time 400 is the probability
P (4, 400; 0, 0).

We repeat this experiment 25 times, each trajectory represents an experiment. Obvi-
ously to speak about probability, we need much more than 25 trajectories. We can give
a time t = 400 and ask us the question: how many trajectories arrive in box n = 4 at
that time? This relative number is of course the probability P (4, 400; 0, 0). We can move
our measuring device from the relative number of trajectory from box to box and that
constitute the distribution law at time t = 400, P (n, 400; 0, 0) (Figure 1.2).

Definition 1.4 (Stochastic process) A stochastic process is defined by the set of
data of the absolute probabilities {W (x1, t1; ...;xn, tn)}n≥1 satisfying the conditions (i)-
(iv).
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A stochastic process is a family of random variables X(t),

X = {X(t)|t ∈ T},

where T is the index set of the process. All random variables X(t) are defined on the
same probability space (Ω,F , P ). Let us set T is R or a subset of R, e.g., T = [0,∞)
or T = (−∞,∞) or T = [a, b], a < b, and is not countable. We shall thus talk about
stochastic processes in continuous time. 3 There are three ways to view a stochastic
process;

(i) For each fixed t ∈ T , X(t) is a random variable Ω 7→ R.

(ii) X is a measurable function from T × Ω with value X(t, ω) at (t, ω).

(iii) For each fixed ω ∈ Ω, T 3 t 7→ X(t, ω) is a function of t called the sample path
(corresponding to ω).

The mathematical theory deals with these questions as follows. Let now t1, . . . , tn
be n points in T and X(t1), . . . , X(tn) be the n corresponding random variables in X.
Then, for an arbitrary set of real numbers x1, x2, . . . , xn, we have the joint distribution
Ft1,t2,...,tn(x1, x2, . . . , xn) = P(X(t1) ≤ x1, X(t2) ≤ x2, . . . , X(tn) ≤ xn).

We denote a joint distribution function by

Ft1,...,tn .

Definition 1.5 (Stationary process) A stochastic process is known as stationary
if W (x1, t1; ...;xn, tn) = W (x1, t1+τ ; ...;xn, tn+τ ) ∀τ ∈ R, ∀n ≥ 1. In particular

(i) W (x1, t1;x2, t2) = W (x1, 0;x2, t2 − t1).

(ii) W (x1, t1) = W (x1) is a independent of time.

1.2.4 Correlations, cumulants and generating functions
Definition 1.6 (Correlation function) The correlation function of order n of the
process noted C(t1, . . . , tn) is defined for t1 6= . . . 6= tn by

C(t1, . . . , tn) + 〈x(t1) . . . x(t2)〉 =
∫
Rn
dx1 . . . dxnx1 . . . xnW (x1, t1; . . . ;xn, tn). (1.11)

If two times coincide, one uses ( 1.3), for example
3A discrete time stochastic process with T ⊆ {0,±1,±2 . . .} is often called a time series.
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lim
t2→t1

C(t1, t2) =
∫
R
dx1

∫
R
dx2x1x2 lim

t2→t1
W (x1, t1;x2, t2)︸ ︷︷ ︸

=W (x1,t1)δ(x1−x2)

=
∫
R
dx1x

2
1W (x1, t1)

= 〈x2(t1)〉, (1.12)

and so on. The functions of correlations generalize, for the stochastic process, the concept
of moment of a probability distribution.

A significant question is to know on which scale of time variables x(t1) and x(t2)
have nontrivial correlations. This information is given by the behavior of the function of
autocorrelation.

Definition 1.7 (Autocorrelation function) The function of autocorrelation of the
process K(t1, t2) is defined by 4

K(t1, t2) = 〈(x(t1)− 〈x(t2)〉)(x(t2)− 〈x(t2)〉)〉 = C(t1, t2)− C(t1)C(t2). (1.13)

For a stationary process K(t1, t2) = K(| t1 − t2 |). If K(| t1 − t2 |) ' 0, when
| t1− t2 |> tc, then tc is called correlation time. Thus, when | t1− t2 |> tc, we can consider
that the random variables x(t1) and x(t2) are practically independent.

A significant concept is that of generating function, which makes it possible to obtain
the moments of the distribution by derivation for a ordinary random variable.

Definition 1.8 (Generating function of moments) That is to say a variable x
of P (x) distribution whose moments are 〈xn〉 =

∫
R dx xnP (x), then we can define the

generating function of moments G(z) by:

G(z) =
∞∑
n=0

in

n!〈x
n〉zn =

〈 ∞∑
n=0

(izx)n
n!

〉
= 〈eizx〉 =

∫
R
dxeizxP (x) (1.14)

such as the moments are obtained by derivation.

dnG(z)
dzn

|z=0= in〈xn〉, (1.15)

G(z) is so the Fourier transform of P (x). This last definition shows that the information
contained in the set of the moments is equivalent to that of the probability distribution
P (x). Indeed, knowing all the moments, it is possible to calculate P (x). This definition
is generalized as follows for a stochastic process.

4In the literature, we often find the term function of truncated correlation to indicate the function of
autocorrelation, while the function of correlation is the moment of order 2. Nevertheless, these denom-
inations are prone to confusion, and certain authors employ the term of function of correlation for to
describe the function of truncated correlation.
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Definition 1.9 (Generating function of the correlations) Either f(t) a function
test, we define the generating function of the G(f) correlations by:

G(f) =
∞∑
n=0

in

n!

∫
Rn
dt1 . . . dtnf(t1) . . . f(tn) 〈x(t1) . . . x(tn)︸ ︷︷ ︸

=C(t1,...,tn)

=
∞∑
n=0

in

n!

〈
(
∫
R
dtx(t)f(t))n

〉

= 〈ei
∫
R x(t)f(t)〉, (1.16)

such as the correlations, functions are obtained by functional derivation.

δnG(f)
δf(t1) . . . δf(tn) |f=0= in〈x(t1) . . . x(tn)〉, (1.17)

The relation ( 1.17) fact of appearing the operator of functional derivation, whose
symbol is δ

δf(t) . Its essential formal property is

δf(t)
δf(t′) = δ(t− t′), (1.18)

from where we establishe easily ( 1.17) from ( 1.16).
Definition 1.10 (Cumulants) The cumulants K(t1, . . . , tn) are defined by

K(f) = ln(G(f)) =
∞∑
n=1

in

n!

∫
Rn
dt1 . . . dtnf(t1) . . . f(tn)K(t1, . . . , tn). (1.19)

We can express the correlations in terms of cumulants and screw-poured. For example,
one has:

C(t1) = K(t1), (1.20)

C(t1, t2) = K(t1)K(t2) + K(t1, t2), (1.21)

C(t1, t2, t3) = K(t1)K(t2, t3) + K(t2)K(t1, t3) + K(t3)K(t1, t2)
+ K(t1)K(t2)K(t3) + K(t1, t2, t3) . . . (1.22)

To show Eq.( 1.20) to Eq.( 1.22), let us pose

Kn = in
∫
Rn
dt1 . . . dtnf(t1) . . . f(tn), (1.23)
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so that

K(f) = ln(G(f)) =
∞∑
n=1

Kn

n! . (1.24)

To find the correlations, we must establish an expression for G(f) according to Kn
knowing that of ln(G(f)), then to identify this series with that Eq.( 1.16) defining the
correlations. Thus, while developing until the third order:

G(f) = eln(G(f))

1.23= eK1+ 1
2! K2+ 1

3! K3+...,

= K1 + 1
2!K2 + 1

3!K3 + 1
2!(K1 + 1

2!K2)2 + 1
3!(K1)3 . . . ,

= K1 + 1
2!K1 + (K2)2 + 1

3!(K3 + 3K1K2 + (K1)3 + . . . ,

1.22= i
∫
R
dt1f(t1)K1 + i2

2!

∫
R2
dt1dt2f(t1)f(t2)(K(t1, t2)) + K(t1)K(t2)

+ i3

3!

∫
R3
dt1dt2dt3f(t1)f(t2)f(t3)K(t1, t2, t3) + 3K(t1)K(t2, t3)

+ K(t1)K(t2)K(t3) + . . . (1.25)
The result follows identification term in the long term of this series ( 1.25) with that

( 1.16) which defines G(f). One also holds account owing to the fact that the functions
C(t1, . . . , tn) and K(t1, . . . , tn) are symmetrical under the exchange of their arguments.
We can reverse the relations between correlations and cumulants. For example, it is seen
Eq.( 1.20) and Eq.( 1.21) that K(t1, t2) is nothing other than the function of autocorre-
lation of the process. Cumulants generalize thus this concept with the correlations of a
higher nature. Cumulants are sometimes called functions of correlations truncated.

1.3 Markovian Process

Definition
The class of the stochastic processes defined by the only conditions (i)-(iv) of the definition
(1.2) of the absolute probabilities is very vast. So that the concept of process stochastic
is useful, it is necessary to specify additional conditions.

Definition 1.11 Process of Markov The process is known as of Markov 5 (or
Markovian) if the conditional probabilities have ∀t1 < t2 < . . . < tn the property:

P (x1, t1;x2, t2; . . . ;xn − 1, tn − 1 | xn, tn) = P (xn − 1, tn − 1 | xn, tn). (1.26)
5Name of the Russian mathematician Andreï Andreïevitch Markov (1856-1922). It in particular showed

the inequalities of Tchebychev, and refined the proof of the theorem limits central. To study the law of
large numbers, it introduces chains or Markov processes
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Such a definition is equivalent saying that the event {xn, tn} only depends on preceding
{xn − 1, tn − 1}. We say in a full of imagery way that the future is independent of the
history of the system, or that the process is without memory. In fact, the character
Markovian (or roughly Markovian) of a physical process is a delicate question, as we will
see it in the example of the Brownian motion.

Lemma The only data of W (x, t) and the probability of Markov P (x1, t1 | x2, t2)
determines entirely the stochastic process of Markov.

Proof Definition (1.3): we knows that the stochastic process is defined by the data
of the functions W . Moreover, we showed at the end of the section ( 1.2.1) that W were
entirely determined by the data of W (x1, t1) and the conditional probabilities P . By
applying the definition of the process of Markov to the equation ( 1.10), one has:

W (x1, t1; . . . ;xn, tn) = W (x1, t1)P (x1, t1 | x2, t2)P (x2, t2 | x3, t3) . . . P (xn−1, tn−1 | xn, tn),
(1.27)

what completes the proof because it is noted that both functions W (x, t) and P (x1, t1 |
x2, t2) determine all W . Reciprocally, if W are form ( 1.27) we see of the definition (1.3)
that the property of Markov is checked.

1.4 Brownian motion and Random walks
The observation of the Brownian motion is quite former to Brown himself. Among the
precursors, we can quote Dutch Ingenhousz (1785) who observed the erratic movement of
coal dust in alcohol. Similar observations made by Buffon and other naturalists show that
particles of all organic and inorganic nature, in suspension in a fluid show this movement
surprising and disordered which one is unaware of the origin. We talk about particles
«irritable» and we advance vitalistic theories which allocate a specific autonomy to these
small particles.

The Brownian motion was discovered by the botanist Scott Brown in 1827; it indicates
the disordered movement and erratic of a large particle immersed in a fluid (see Fig. 1.3).

Brown devotes himself to systematic observations of this movement and its conclusions,
confirmed by other careful experiments at the end of the nineteenth century are as follows:

1. The movement is very irregular and unforeseeable, it is not possible to assign tan-
gents with the trajectory.

2. The movement is independent of the nature of the particle.

3. The movement is all the more erratic as the particle is small, the temperature is
high, low viscosity.

4. The movement never ceases.
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Figure 1.3: (Color online): A path of a Brownian Movement Particle.

It is allowed that the movement is not «vitalistic» origin, but quite mechanical.
During the same time, the question of the validation of the atomic assumption and its

experimental confirmation arises; it is this question which justifies the work of Einstein.
To do it, Einstein adopts a view point purely probabilistic for the description of the

Brownian trajectories, giving up at any concept utilizing velocity and mechanics. It is
there the key of its success. Initially, introducing the density of probability P (x, t) of
finding the Brownian particle in x at time t, it shows that this probability obeys the
diffusion equation:

∂

∂t
P (x, t) = D

∂2

∂x2P (x, t), (1.28)

then, it connects the constant of diffusion D to the physical sizes for the famous formula

D = kBT

mγ
, (1.29)

where kB = R/N (R being the constant of perfect gas and N the number of Avogadro),
the desired bond is established. A measurement of D allows a determination of N and a
confrontation of this value that obtained by chemical stoichiometry. The measurement,
taken by Perrin in 1910 gives an agreement of twenty percent, however sufficient at the
period to confirm the atomic assumption. As D is connected to the average standard
deviation of Brownian displacement, Einstein inaugurates and shows the importance of a
new science, the theory of the fluctuations.
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1.4 Brownian motion and Random walks

1.4.1 Models for Normal diffusion: Langevin’s equation
Let us consider a particle with mass m performing a random walk inside a fluid due to the
bombardment by the fluid molecules, which obey an equilibrium distribution [33]. Pierre
Langevin described this motion with a simple but very interesting stochastic differential
equation

mẍ = −αẋ+ F (t), (1.30)

where the term αẋ represents the friction force, ẋ is the particle velocity, α is the damping
rate and depends on the radius of the particle and the viscosity of the fluid, and F (t)
is a random fluctuating force due to the random bombardment of the particle by the
fluid molecules. If the random fluctuating force were absent, the particle starting with an
initial velocity v0 would gradually slow down due to the friction term. Multiplying ( 1.30)
with x, then we have

mxẋ = m[d(xẋ)
dt
− ẋ2] = −αxẋ+ xF (t), (1.31)

and after taking averages over a large number of particles we find,

m
d〈xẋ〉
dt

= m〈ẋ2〉 − α〈xẋ〉, (1.32)

since 〈xF (t)〉 = 0 due to the irregular nature of the force F (t).
Since the background gas is in equilibrium, the kinetic energy of the particle is pro-

portional to the gas temperature, m〈ẋ2〉/2 = kT/2, where k is the Boltzmann constant
and T the temperature of the gas. Equation ( 1.32) takes the form

( d
dt

+ γ)〈xẋ〉 = kT

m
, (1.33)

where γ = α/m, which has the solution

〈xẋ〉 = 1
2
d〈x2〉
dt

= Ce−γt + kT

α
. (1.34)

At t = 0, the mean square displacement is zero, so that C + kT/α = 0 and Eq.( 1.34)
becomes

1
2
d〈x2〉
dt

= kT

α
(1− e−γt). (1.35)

On integrating the above equation we find the solution

〈x2〉 = 2kT
α

[
t− 1

γ
(1− e−γt)

]
. (1.36)
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In the limit t << 1
γ
(time much shorter than the collision time), the solution of

Eq.( 1.36) is of the form 〈x2〉 ∼ t2, which is called "ballistic" diffusion and mean that
at small times particles are not hindered by collisions yet and diffuse very fast. In the
other limit, t >> 1/γ, the solution has the form

〈x2〉 ∼ 2kT
α

t. (1.37)

or, for the 3-dimensional case, if again the gas is in equilibrium and isotropic so that
〈r2〉/3 = 〈x2〉,

〈r2〉 = 6kT
α
t = Dt. (1.38)

where D = 6kT/α is an expression for the diffusion constant in terms of particles and
fluid characteristics.

1.4.2 Einstein relation for the constant of diffusion
Let us suppose that we have N independent Brownian particles (or in interaction suffi-
ciently weak to be able to be neglected) of which density n(x, t) is given by n(x, t) =
N , with normalization

∫
R dxn(x, t) = N . As P (x, t) satisfies the diffusion equation

∂
∂t
P (x, t) = D ∂2

∂x2P (x, t), then it is the same for n(x, t). The current of particles due
to the diffusive effects is defined by the Fick law’s

jD(x, t) = −D
∂

∂x
n(x, t), (1.39)

in such way that the continuity equation is checked

∂

∂
n(x, t) + ∂

∂
jD(x, t) = 0. (1.40)

Now, let us suppose that the particles are in a constant field, for example a gravific
field and that these particles are in a viscous fluid thus undergo a friction proportional at
their velocity v. Let γ the damping constant of the velocity, mγ the coefficient of friction,
then the Newton’s equation gives:

m
d

dt
v(t) = −mg −mγv(t). (1.41)

The field of force produces a current of particles jg(x, t) defined by:

jg(x, t) = n(x, t)v(t). (1.42)

Let us notice that the recourse to the Newton’s equation consists of a macroscopic
description, deterministic and nonrandom of the phenomenon. On the other hand, the
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Fick’s law translates a diffusive phenomenon, therefore in nondeterministic and random
character.

Let us consider now the stationary regime, characterized by the thermal equilibrium
, in which d

dt
v = 0. Consequently, the Newton’s ( 1.41) equation allows to obtain the

expression v = − g
γ
for the velocity in the stationary state. In substituting this last

expression in the definition ( 1.42) of jg(x, t), we obtain

jg = −gn(x)
γ

. (1.43)

In addition, to thermal equilibrium in the external field, the statistical physics of Gibbs
applies. Consequently, n(x) is given by the barometric formula

n(x) = n(x0)e−
v(x−x0)
kBT = n(x0)e−

mg(x−x0
kBT , (1.44)

with kB the Boltzmann’s constant and v(x) = mgx the gravific potential. While inserting
( 1.44) in the definition ( 1.39) of the diffusion current jD(x, t), we obtain

jD(x) = D
mgn(x)
kBT

. (1.45)

The total current

j(x, t) = jg(x, t) + jD(x, t) (1.46)

has two components, one due with the field of force g and the other due to the gradient of
density. However, the equilibrium corresponds to a total current nil. Thus, while inserting
( 1.43) and ( 1.45) in ( 1.46), we obtain

j(x) = −gn(x)
γ

+ D
mgn(x)
kBT

, (1.47)

what leads finally to the relation of Einstein for the diffusion constant D

D = kBT

mγ
. (1.48)

Remarks
(i) The constant of diffusion is independent of the field of gravitation g and more

generally, as one will check it on several occasions, of the nature of the field of force acting
on the Brownian particle. Equation ( 1.48) is an example of a fundamental relation which
exists between the fluctuations (represented by coefficient D) and dissipation (represented
by coefficient γ. It is the germ of what is called a relation of fluctuation - dissipation.

(ii) As kB = R
N , with N the number of Avogadro and R the constant of perfect gases,

then N can be measured starting from the Brownian motion.
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1.5 Anomalous diffusion

Many physical and biological systems can be described in terms of a particle undergoing
random displacements. When the spread of these particles at long times asymptotically
scales as x2(t) ∼ t2H , with H 6= 1/2, the walker diffusion is said to be anomalous, as
opposed to regular diffusion, which corresponds to plain Brownian motion. Examples of
anomalous diffusion emerge for instance when considering the motion of polymers through
nanopores, or the percolation of tracer particles in heterogeneous soils. Here, we will
review some relevant examples of anomalous diffusion and show by which mathematical
and numerical tools the corresponding first-passage properties can be assessed.

Beyond Brownian motion: anomalous diffusion

Brownian motion plays a key role in modern theoretical physics and it has proved very
successful in explaining several key features of physical and biological systems. Actually,
it is currently used in various fields of science so as to interpret, for instance, the dynamics
of complex molecules within the cell, animal food-searching strategies, or tracer dispersion
in soils, only to name a few [54, 55]. In all such cases, the system can be conveniently
represented as a fluctuating particle, whose position has a stochastic evolution in time.
The signature of Brownian motion is that the mean square displacement of the particle
grows linearly as a function of time. However, fluctuations of real-world systems are often
observed to grow in a nonlinear fashion, which demands to go beyond the Brownian motion
paradigm. This situation is referred to as anomalous diffusion, where by opposition
normal diffusion corresponds to regular Brownian motion; more precisely, subdiffusion if
the mean square displacement grows slower than linearly in time, and superdiffusion if it
grows faster

Consider for example the random walker depicted in Fig. 1.4. The walker starts at the
origin at time t = 0 and holds its position until a random time τ1, whereupon it makes a
random jump to the position x1 = ξ1. The walker then waits at x1 up to a random time
τ1 + τ2, whereupon it jumps to the new random position x2 = ξ1 + ξ2, and the process
is renewed. The times τ1, τ2, . . . τn are named waiting times and the jumps ξ1, ξ2, . . . , ξn
are named increments. Both waiting times and increments are random variables. For
the sake of simplicity, we assume that the waiting times are independent and identically
distributed, and that the increments are symmetric (i.e., the set ξ1, ξ2, . . . , ξn is generated
with the same probability as −ξ1,−ξ2, . . . ,−ξn).

Let x(t) be the position held by the walker at time t. At large times, the fluctuations of
x(t) typically become independent of (most of) the microscopic details of the waiting times
and increment distributions [54,55]. In particular, if the increments are independent and
identically distributed, and if both 〈τi〉 = τ and 〈ξ2

i 〉 = σ2 are finite 6, the process exhibits a

6Here 〈. . .〉 stays for the average over all realizations and 〈ξi〉 = 0 because by assumption the process
is symmetric.
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Figure 1.4: (Color online) Sketch of a generic random walk in one dimension. The posi-
tions of the walker after the jumps are marked with a red dot.

diffusive behavior, i.e., x(t) asymptotically obeys a Gaussian 7 probability density function
as t → ∞, and the memory of the waiting times and increment distributions are kept
only in σ2 and τ :

〈x2(t)〉 = 2σ
2

2τ t = 2D t, (1.49)

where D is the diffusion coefficient [54, 55]. Brownian motion corresponds to the con-
tinuum limit 8 of this family of random walks and it is self affine with a characteristic
exponent H = 1/2. Self-affinity with a characteristic (Hurst) exponent H > 0 means that
x(bt) and bHx(t) have the same probability density for b > 0.

Anomalous diffusion occurs whenever the process x(t) is self-affine (at least at large
times) with H 6= 1/2, so that the mean square displacement grows with time as t2H [56].
This is achieved whenever the random walk x(t) falls out of the basin of attraction of the
Central Limit Theorem for one of the following reasons:

1. The increments are not independent and the process is non-Markovian: for instance,
the motion of a fluorescent monomer in a polymer is subdiffusive because of the
interactions with the other monomers;

2. The increments can be very large and 〈ξ2
i 〉 =∞ (e.g., wild fluctuations in the stock

market prices), and/or the waiting times can be very long 〈τi〉 = ∞ (e.g., high
retention rates of colloids in porous media);

3. The increments are not identically distributed: for instance, a small particle in a
non-viscous fluid is subjected to a random force which induces increments growing
with

√
t.

7Because of the Central Limit Theorem.
8The continuum limit is obtained by taking both τ and σ2 vanishing small, and keeping x(t) and t

fixed. This implies for standard diffusion that the ratio D = σ2/2τ remains finite.
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Anomalous diffusion has been reported to occur in a huge number of physical and biologi-
cal systems [56,57]. Knowledge of the walker spread 〈x2〉 in unbounded domains typically
allows inferring the exponent H. However, real-world systems often involve confined ge-
ometries, where the microscopic behavior of the walker (hence the spread) is not directly
observable. When the process itself is not accessible, one can try to measure the time
taken for the walker to reach some detector, e.g., the outer surface of the domain where
particles evolve. Given the stochastic nature of the underlying process, such first-passage
times are also random variables, whose exact distribution would provide invaluable infor-
mation on the precise nature of the anomalous dynamics [63]. Unfortunately, determining
the distribution of first-passage times for an anomalous diffusion process is generally a
prohibitively difficult task, and a unified description of non-Brownian behavior is still
missing. Possibly, one of the reasons is that very different systems can exhibit anomalous
diffusion with the same exponentH, which makes the interpretation of the physical origins
of such behavior tougher than in the case of (somehow universal) Brownian motion.

In the following, we review the first-passage properties of some physically relevant ex-
amples of anomalous walkers, namely, fractional Brownian motion (having non-independent
increments, as in case (1)), Lévy flights and Continuous Time RandomWalks (having very
large increments and waiting times, respectively, as in case (2)), and random accelera-
tion processes (having non identically distributed increments, as in case (3)). Our aim is
twofold: on one hand, to illustrate the rather intriguing features of anomalous walkers,
and on the other hand to show by which mathematical and numerical tools the properties
of the resulting first-passage distributions can be singled out.

1.6 Polymer translocation and fractional Brownian
motion

A prominent goal of biophysics is to set up efficient DNA sequencers. A fundamental
prerequisite is the comprehension of the transfer mechanism of a molecular fragment
through a nanopore, the so-called translocation. The translocation of a single polymer
through a pore in a hard wall is the most schematic modelization of this sequencer; yet,
the mechanics of this process is still poorly understood [64]. Direct simulations of the
dynamics of the entire polymer are cumbersome, because of the large number of degrees
of freedom involved [65]. The translocation coordinate s(t), namely the label of the
monomer crossing the pore at time t, has been shown to be key in understanding the
translocation process [58, 59], which begins when s = 1 and ends when s = N , i.e., when
the first and the last monomer of the chain, respectively, enter the pore (see Fig. 1.5 left).

Various dynamical regimes of s(t) have been identified: in the absence of driving
forces and hydrodynamic effects (free polymer), fluctuations dominate, and s(t) can be
regarded as a stochastic process, whose features vary with the polymer length N [58,
59]. Understanding the full dynamics of s(t) represents a challenging problem. A free
polymer is characterized by two natural time scales (see Fig. 1.5 right). First, the intrinsic
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Figure 1.5: (Color online) Left: Translocation of a polymer chain through a pore. Middle:
The translocation coordinate s(t) denotes the number of the monomer that is crossing
the pore at time t. Right: Sketch of a free self-avoiding polymer.

equilibration time teq required by the center of mass of the polymer Rcm to travel a distance
of the order of the typical size of the chain. This size is given by the radius of gyration
Rg, which scales as Rg ∼ N ν in the large N limit. In a good solvent, ν = 3/4 in 2d and
ν ' 0.59 in 3d when excluded-volume effects for the monomers are considered; moreover,
ν = 1/2 for an ideal (‘phantom’) polymer. The center of mass diffuses with a diffusion
coefficient ∼ 1/N . Then, Rcm ∼

√
t/N . Hence,

√
teq/N ∼ Rg and teq ∼ N2ν+1 for

large N . On the other hand, the translocation time T (much longer than teq) is the time
required by the polymer to go through the pore, so that s(T ) = N (Fig. 1.5 middle).
Under the hypothesis that the translocation is a self-affine process, i.e., s(t) ∼ tH , with
Hurst exponent H, it follows that T ∼ N1/H .

For short polymers, excluded-volume effects are negligible, s(t) undergoes diffusion,
and T ∼ N2. However, as N increases, the excluded-volume interactions become relevant
and s(t) undergoes subdiffusion, 0 < H < 1/2 [58]. Numerical simulations (mostly 2d)
support the following conclusions:
i) T and teq have the same scaling, up to a large prefactor, i.e., T ∼ teq. Hence,
H = 1/(1 + 2ν) [58]; (Note that for ‘phantom’ polymers s(t) always diffuses, even
for large N .)

ii) The probability P (s, t) of finding the monomer s in the pore at time t for an infinite
chain (i.e., in the absence of boundaries) is Gaussian [65].

Upon gathering these hints from simulations, a natural candidate for s(t) appears to be
the fractional Brownian motion [66], whose properties are briefly recalled in the following.

1.6.1 Fractional Brownian motion
Fractional Brownian motion (fBm) is a self-affine Gaussian process with 0 < H < 1 [67,
68]. A Gaussian process is completely defined by its autocorrelation function, which for
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fBm writes
〈x(t1)x(t2)〉 = D

(
t2H1 + t2H2 − |t1 − t2|2H

)
. (1.50)

As a particular case, for H = 1/2 the fBm corresponds precisely to regular Brownian
motion, namely,

〈x(t1)x(t2)〉 = 2Dmin(t1, t2) . (1.51)

Note that the process x(t) is Markovian only for H = 1/2, whereas for H 6= 1/2 the
process is non-Markovian. The peculiarity of the fBm is that the process is homogeneous,
i.e., its increments are identically distributed. To check this property, it is useful to
sample a fBm process x(t) at discrete times t1 = 1, t2 = 2, . . ., as proposed in Fig. 1.4
(with τ1 = τ2 = . . . = 1).

Using Eq.( 1.50), we can compute the autocorrelation function of the Gaussian incre-
ments ξt = x(t)− x(t− 1),

〈ξt0ξt0+t〉 = C(t) = D
[
|t− 1|2H + (t+ 1)2H − 2 t2H

]
. (1.52)

We note that this function is independent on the initial time t0 and thus the increments
are identical Gaussian numbers with variance 2D, displaying power-law correlations. By
taking the limit t → ∞, the power-law decay of these correlations can be easily singled
out. For superdiffusive fBm (i.e., H > 1/2), C(t) is positively correlated with a decay
t−2(1−H). Positive correlations mean that there is a high probability to observe a long
sequence of increments with the same sign. For subdiffusive fBm (i.e., H < 1/2), C(t) is
negatively correlated and decays as −t−2(1−H). Negative correlations mean that there is
a high probability to observe a long sequence of increments of alternating signs.

Discrete fBm can be easily implemented numerically by observing that the autocor-
relation matrix C is symmetric and has positive eigenvalues; it is thus possible to find a
positive and symmetric matrix A such that C = A2. The matrix A is called the square
root of C. The paths of fBm are simulated by using the standard procedure for Gaussian
correlated processes:

(i) determine A, the square root of C;

(ii) a set of increments ~ξ = {ξ1, ξ2 . . .} is given by the matrix multiplication ~ξ = A~η,
where the vector ~η = {η1, η2, . . .} is a set of independent Gaussian numbers with
variance equal to 2D and zero mean.

It is easy to verify that these paths are characterized by the exact autocorrelation function
as in Eq.( 1.50) 9. The outcome is shown in Fig. 1.6, where we compare an example of

9Unfortunately, this procedure is exact but time-consuming, since for step (i) it demands the full
diagonalization of C. Better results are obtained by observing that fBm is homogeneous, so that C is a
Toeplitz matrix. Efficient numerical methods for Toeplitz matrices allow avoiding the full diagonalization
of C. For instance, one can resort to the Levinson algorithm (for a practical implementation see [69]
and [70]).
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Figure 1.6: (Color online) Fractional Brownian motion (blue) generated with the corre-
lated increments ξ1, ξ2, . . . versus Brownian motion (red) generated with the uncorrelated
increments η1, η2, . . .. Left: H = 1/4, subdiffusive case. Right: H = 3/4, superdiffusive
case.

fBm generated with the correlated increments ξ1, ξ2, . . . with the Brownian motion gen-
erated with the uncorrelated increments η1, η2, . . .. In the subdiffusive case, the negative
correlations prevent the occurrence of a long sequence of consecutive positive (or nega-
tive) increments, whereas in the superdiffusive case, the positive correlations enhance the
occurrence of such events.

1.6.2 First-passage properties: the hitting probability
On the basis of the considerations exposed above, fBm satisfies conditions i) and ii) upon
taking H = 1/(1 + 2ν), which relates the Hurst exponent to the scaling parameter ν.
Identification of the underlying stochastic process governing the motion of s(t) allows
extracting information about translocation without having to deal with the cumbersome
study of the full polymer dynamics. In particular, it is possible to answer some relevant
questions connected to the first-passage properties of the anomalous diffusing polymer.
A natural question is whether a finite polymer chain will ultimately succeed in translo-
cating through a pore, which corresponds to characterizing the hitting probability of the
process [71].

Moreover, numerical simulations for a finite chain yet to have completed translocation
show that the distribution of s(t) converges to a non-Gaussian form at long times [65]. In
particular, this distribution vanishes nonlinearly as sφ and (N−s)φ at the two boundaries
s = 0 and s = N respectively, with φ ' 1.44 in 2d [65]. In the next section, we will show
that it is actually possible to precisely compute the exponent φ [71, 72]. Here, we begin
our analysis by first addressing the hitting probability.
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Figure 1.7: (Color online) Left. The evolution of a stochastic process initiated atX(0) = x
and terminated upon exiting from the box of size L. Right: The hitting probabilityQ(z) of
a self-affine walker. The solid black line corresponds to the solution for standard diffusion.
When z → 0, the hitting probability in presence of anomalous diffusion can be enhanced
(red curve) or depressed (blue curve).

The translocation coordinate s(t) can be seen as a random walker evolving in a finite
box of size L (L being the polymer length), starting from some initial value X(0) = x,
0 < x < L, and terminated upon touching either boundary for the first time (Fig. 1.7 left).
We define the hitting probability Q(x, L) as the probability of exiting the domain through
the boundary at L, which corresponds to the polymer completing the translocation. If the
stochastic process associated with s(t) is self-affine, the only length scale in the problem
is L; thus, Q(x, L) is a function only of the scaled variable x/L: Q(x, L) = Q(x/L = z).
For a Brownian motion, Q(z) = z, a simple linear function [63]. For a generic stochastic
process, Q(z) is non trivial (see for example Fig. 1.7 right) [71].

Observe that the hitting probability is precisely equal to the probability that the
global maximum of the process S(t) stays below L until the first time at which it crosses
the origin (see Fig. 1.8). This time is actually the so-called first passage time, during
which the process does not change sign, and is therefore related to the persistence of
the process. The cumulative distribution of the first-passage time for this problem is the
survival probability S(x, t) on the half-axis, i.e., the probability that the walker has not
left the positive half-axis up to time t. For self affine processes, S(t) is known to have a
power law decay at long times, namely,

S(x, t→∞)→ 1
tθ
, (1.53)

where θ > 0 is the so called persistence exponent [73]. This non trivial exponent can be
computed for a few processes: for instance, the Sparre-Andersen theorem shows that for
Brownian motion θ = 1/2 [74]. The value of θ for homogeneous and continuous processes,
like fBm, is known explicitly, and reads θ = 1−H [68]. The relation between persistence
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Figure 1.8: Hitting probability. Left: A stochastic process starting at x leaves the positive
half-axis for the first time at tf ; m denotes its maximum till tf (see Sec. 1.6.2). Right:
A self-affine disordered potential with maximum at xm: when L is large, the diffusing
particle, starting at 0 < x < L, exits the box through 0 for x < xm and through L for
x > xm (see Sec. 1.9).

properties and hitting probability can be then used to infer the properties of the hitting
probability close to the origin: it has been shown in [71] that for a self-affine symmetric
process, the hitting probability vanishes as

Q(z → 0) ∼ zθ/H . (1.54)

In particular, for fBm one gets Q(z → 0) ∼ z(1−H)/H , a result which is also supported by
direct numerical simulations of fBm paths [71].

For long polymers, the excluded volume effects make the translocation process subdif-
fusive (H < 1/2), which implies that Q(z) vanishes faster than linearly with an exponent
(1−H)/H smaller than 1. This means that the translocation of a real self-avoiding poly-
mer is not only longer (because of subdiffusion), but also less likely with respect to the
phantom-polymer ideal case.

1.6.3 Effects of the boundaries: the exponent φ
We now address a somewhat complementary first-passage problem: we are interested in
computing the probability P (s, t) to find a portion s of the polymer translocated at time
t, for a finite chain yet to have completed translocation. Up to a normalization constant,
P (s, t) coincides with the propagator 10 of the process s(t) in the presence of two absorbing
boundaries at s = 0 and s = N . When the method of images holds, the propagator in the

10The only difference between the distribution P (s, t) and the propagator is that the latter is not
normalized to 1. For a fixed time t, the integral over s of the propagator gives the probability that the
process has not been absorbed, i.e., the survival probability in presence of absorbing boundaries.
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presence of a boundary can be expressed as a linear combination of free propagators, i.e.,
propagators of the same process in the absence of boundaries. For a standard Brownian
motion, for instance, the free propagator is the Gaussian distribution, and in the presence
of two absorbing boundaries the method of the images gives P (s, t → ∞) ∝ sin(πs/N).
By construction, this method predicts that P (s, t) vanishes linearly close to an absorbing
boundary.

Numerical simulations of the polymer translocation show in contrast that the distri-
bution of s(t) has a non-Gaussian shape [65]. In particular, P (s, t) vanishes nonlinearly
as sφ and (N − s)φ at the two boundaries s = 0 and s = N , respectively, with φ ' 1.44
in 2d [65]. This is a rather general feature: actually, it turns out that the method of im-
ages systematically fails when the stochastic process displays anomalous diffusion 11. The
simplest geometry for studying the behavior of anomalous walkers close to an absorbing
boundary is that of a particle moving on the positive half-axis and killed upon crossing
the origin. In this case, the probability density P+(s, t) of the particle position on the
positive half-axis has the scaling form

P+(s, t) ∼ t−HR+(s/tH), (1.55)

where the function R+(y) vanishes as ∼ yφ. Based on scaling arguments, it has been
shown that for homogeneous processes, the exponent φ is related to θ by

φ = θ

H
, (1.56)

close to the absorbing boundary y = 0 [66]. In particular, for fBm one has φ = (1−H)/H.
For 2d polymers with excluded-volume effects, using ν = 3/4 one gets H = 2/5 and
φ = 3/2, which is coherent with the value observed in numerical simulations, namely,
φ ' 1.44 [65]. In 3d, using ν ' 0.59, one predicts H ' 0.46 and φ ' 1.18. More generally,
for all homogeneous processes with Hurst exponent H the exponent φ is related to the
persistence exponent θ of the process via φ = θ/H. These results are well supported by
direct numerical simulations of fBm paths [66].

1.6.4 Perturbation methods
The exact form of R+(y) is known for Brownian motion, and reads R+(y) = y exp(−y2/2)
(setting the diffusion constantD = 1). To gain some analytical intuition of non-Markovian
processes and to go beyond the scaling arguments or the numerical simulations, one can
develop perturbation schemes around the known Brownian solution [72].

Our starting point will be the propagator P (x, x0, t) of a standard Brownian motion,
defined as the probability to find the particle in the interval [x, x+dx] at time t, knowing
that the particle was in x0 at time 0 and is confined by a region of the space. Using the

11With the remarkable exception of subdiffusive CTRW, which we will discuss later.
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Gaussianity of Brownian motion, we can write the propagator by resorting to the path
integral formalism [75], namely,

P (x, x0, t) =
∫ x(t)=x

x(0)=x0
D[x] e−S[x] Θ[x] . (1.57)

Note that we use the field-theoretic notation: f(x) is a function of the variable x, and
S[x] is a functional (the action), depending on the function x(t′), with 0 < t′ < t. Here,
Θ[x] is an indicator function that is 1 if the path x(t′) stays inside the allowed region over
the interval [0, t], and 0 otherwise. For regular Brownian motion, the action writes as

S[x] = 1
4D

∫ t

0
dt′ (∂t′x)2 , (1.58)

and the path integral can be computed.
The first step consists in writing the action for a fractional Brownian motion. To this

aim, recall that for any Gaussian process, the statistical weight of a path x(t′) without
any boundary is proportional to exp(−S[x]), where the action S[x], quadratic in x, is
given by

S[x] =
∫ t

0
dt1

∫ t

0
dt2

1
2x(t1)G(t1, t2)x(t2). (1.59)

The kernel G(t1, t2) of the action is related to the auto-correlation function of the process
via G−1(t1, t2) = 〈x(t1)x(t2)〉. Then, for a generic fBm we need to invert Eq. 1.50. While
it is possible to find the exact action for a generic H, it will be very hard to compute
the path integral in Eq. 1.58 in a confined geometry. For this reason, it is preferable to
expand the action around the well-known Brownian solution. For H = 1/2 + ε, one can
write

S[x] = S(0)[x] + εS(1)[x] + . . . , (1.60)

where S(0)[x] is the action in Eq.( 1.58) and S(1)[x] reads

S(1)[x] = −1
2

∫ t

0
dt1

∫ t

t1
dt2

∂t1x(t1)∂t2x(t2)
|t1 − t2|

− 2S(0)[x](1 + log τ) . (1.61)

Note that a regularization for coinciding times t1 = t2 → log |t1 − t2| = log τ has been
introduced, where τ > 0 is the so-called Ultra Violet cutoff. By using the expansion
e−S[x] ∼ e−S

(0)[x]
(
1 + εS(1)[x]

)
in Eq.( 1.57), one realizes that the expression of the first

correction P (1)(x, x0, t) is

P (1)(x, x0, t) =
∫ x(t)=x

x(0)=x0
D[x]S(1)[x] e−S(0)[x] Θ[x] . (1.62)

Here, the path integral is performed over the standard Brownian motion, which is the
cornerstone of the proposed perturbation approach.
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Setting H = 1/2 + ε, P (1) and the scaling function R+(y) can be computed explicitly
to the first order in ε [72]. The asymptotic expansions of R+(y) read

R+(y) y→0−−→ y [1− 4ε log y − 2ε(γE + log 2) + . . . ] ,
R+(y) y→∞−−−→ ye−y

2/2 [1− 2ε log y + ε(1− log 2− γE)] , (1.63)

and can be recast to

R+(y) ∼ yφ, y → 0

R+(y) ∼ yγe−
y2
2 , y →∞ , (1.64)

where the two exponents φ and γ are given by

φ = 1− 4ε+O(ε2) , γ = 1− 2ε+O(ε2) . (1.65)

at the first order in ε. Using H = 1/2 + ε, from Eq.( 1.56) one expects φ = (1−H)/H =
1− 4ε+O(ε2) for fBm. This is in agreement with the results in Eq.( 1.65), which sets the
scaling arguments on a firmer footing.

Remark that the scaling function R+(y) given in Eq.( 1.63) displays the same leading
large-y behavior ∼ e−y

2/2 as in absence of boundary, at least to O(ε). This behavior can be
understood by a simple heuristic argument: the process is not yet aware of the boundary,
when being located far from it. This calculation reveals that the process nevertheless
knows about the boundary, and R+(y) correspondingly shows a subleading power-law
prefactor yγ, where γ is a new (independent) exponent, whose expression to the order ε
is given in Eq.( 1.65).

1.6.5 Tagged monomer
So far, we have considered the first-passage properties of fBm in connection with the
problem of polymer translocation. Fractional Brownian motion is actually the key to
the description of several physical and biological systems [76–79]. Among non-Markovian
processes, fBm is rather unique, due to its continuous and homogeneous nature: this
entails, in particular, the persistence exponent θ = 1−H. In order to better understand
the relevance of these properties, we conclude by discussing in detail an example where
fBm plays an important role: the dynamics of a tagged monomer in a standard Rouse
chain. This model describes the conformational dynamics of an ideal polymer. Excluded
volume interactions are neglected, and each monomer is subjected to a random thermal
force and an elastic force induced by the interactions with the neighbours. The Langevin
equation for the polymer reads

∂tU(x, t) = ∂2
xU(x, t) + η(x, t), (1.66)

where U is the position of monomer x at time t, and η is a Gaussian white noise, namely,
〈η(x, t)η(x′, t′)〉 = 2Tδ(x−x′)δ(t−t′); here, we will take the temperature T = 1. Eq.( 1.66)

36



1.7 Continuous Time Random Walks and Lévy Flights

is linear with respect to U : this means that the process X(t) = U(x = 0, t)−U(x = 0, 0)
associated to the tagged monomer is Gaussian and entirely characterized by its auto-
correlation function 〈X(t1)X(t2)〉. It is possible to integrate Eq.( 1.66) by resorting to
the Fourier transform Up(t) =

∫
dx exp(−ipx)U(x, t). Then, Eq.( 1.66) becomes

∂tUp(t) = −p2Up(t) + ηp(t), (1.67)

where 〈ηp(t)ηp′(t′)〉 = 4π δ(p+ p′)δ(t− t′), and we get

Up(t) = Up(0)e−p2t + Ũp(t) with Ũp(t) =
∫ t

0
dse−p

2(t−s)ηp(s). (1.68)

The autocorrelation function in Fourier space can be computed, and yields

〈Ũp(t1)Ũp′(t2)〉 = 2π δ(p+ p′)e
−p2|t1−t2| − e−p2(t1+t2)

p2 . (1.69)

Let us recall that X(t) =
∫
dp
[
Ũp(t) + (e−p2t − 1)Up(0)

]
/(2π). Now, two relevant cases

can be considered: i) an equilibrated initial condition, corresponding to 〈Up′(0)Up(0)〉 =
2π δ(p+ p′)/p2, and ii) a flat initial condition, corresponding to Up(0) = 0. In the former
case,

〈X(t1)X(t2)〉 = 1√
π

[
(t1)1/2 + (t2)1/2 − |t1 − t2|1/2

]
, (1.70)

and the tagged monomer is precisely a fBm with H = 1/4, whereas in the second case

〈X(t1)X(t2)〉 = 1√
π

[
(t1 + t2)1/2 − |t1 − t2|1/2

]
, (1.71)

a Gaussian process withH = 1/4 that is not a fBm. In case i), the dynamics is equilibrated
and the tagged monomer displacements are identically distributed. In case ii), the system
evolves from a far-from-equilibrium condition (the flat initial condition) and the jumps
are not identically distributed. This provides an example of ageing system: with time,
the polymer equilibrates on larger and larger scales. Even in the Gaussian case, very little
is known about the first-passage properties of such a process.

1.7 Continuous Time RandomWalks and Lévy Flights
The continuous time random walk (CTRW) was initially introduced in [80], and is defined
as the process sketched in Fig. 1.4. In its simplest version, one can assume that increments
are independent and identically distributed. While in principle CTRW allows for spatially
and/or temporally correlated displacements, a fully decoupled version of the model is
often considered, which considerably lightens the treatment. Under such assumption,
assuming waiting times to have a finite mean and increments to have a finite variance
would asymptotically lead to regular Brownian motion, as recalled above. To mimic
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the trapping effects often encountered by walkers when traversing complex and/or sticky
media, it is common to assume that waiting times have a power-law decay of the kind
τ−1−α with 0 < α < 1, so that the first moment 〈τ〉 is divergent (this implies that
very long trapping times become rather frequent). Power-law waiting times coupled with
finite-variance spatial increments lead to a subdiffusive behavior, with H = α/2. In the
limit of a large number of increments, the probability of finding the particle in x at time
t converges to

P(x, t) = 1
tα/2

R
(
x

tα/2

)
, (1.72)

where R(y) is the Mittag-Leffler function (thus the process is non-Gaussian). CTRW is a
well-known model for anomalous diffusion, for which a large number of exact results are
available; for instance, the persistence exponent reads θ = 2/α [56, 57].

Conversely, one can conceive a walker with finite-mean waiting times and (independent
and identically distributed) increments having a broad distribution ϕ(ξ), with a diverging
second moment, i.e.,

ϕ(ξ) ∼ c

|ξ|1+α , |ξ| � 1 , (1.73)

with 0 < α < 2. For the sake of simplicity, we will assume that the process is discrete
in time (τ1 = τ2 = . . . = 1). In this case, the random walk is Markovian, homogeneous
and exhibits a superdiffusive behavior, namely, x2(t) ∼ t2/α, i.e., H = 1/α. Power-
law distributions such as in Eq.( 1.73) have been initially studied in the early sixties
in economics [81] and in financial theory [82]. Later on, these processes have become
very common in Physics, where they have found many applications, encompassing laser-
cooling of cold atoms [83], random matrices [84], disordered systems [30], photons in hot
atomic vapours [85], and many others. One striking feature of such processes is that their
statistical behavior is dominated by a few rare and very large events, whose occurrence
is thus governed by the tail of the distribution. Moreover, this simple hopping model
immediately shows that jumps between far apart sites occur with a finite probability [86].

Analogously as for Brownian motion, after a large number of steps, we expect the
statistical properties of x(t) to become independent of the details of ϕ(ξ), except for the
index α and the constant c. In this limit, the process is named Lévy flight. In particular,
the probability density of finding the particle in x, at a time t, converges to

P(x, t) = 1
t1/α

R
(
x

t1/α

)
, (1.74)

where the function R(y) is a Lévy stable distribution (thus the process is non-Gaussian).
Although the Fourier transform of R(y) (the characteristic function) has a very simple ex-
pression. In general there is no closed-form expression for R(y). An asymptotic expansion
shows that

R(y) ∼ c

y1+α +O(y−1−2α) . (1.75)

The amplitude c plays the same role as σ2 for the Brownian motion.
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First-passage properties of Lévy Flights
By taking the continuous time limit of the hopping process described above, one can
derive the so-called Fractional Fokker-Planck equation for a Lévy flight propagator [56],
namely,

∂

∂t
P (x, t) = π c

sin
(
απ
2

)
Γ(α + 1)

∂α

∂|x|α
P (x, t) , P (x, t = 0) = δ(x) , (1.76)

where ∂α

∂|x|α is the Riesz-Feller derivative of fractional order α > 0 [86]. In the Fourier
space, ∂α

∂|x|α has the simple form −|k|α, whereas in the real space it takes an integral
representation involving a singular kernel of power-law form, which intuitively stems from
the long-range increments distribution.

The first-passage properties of Lévy flights, which typically involve eigenvalue prob-
lems for the operator H = π c

sin(απ2 )Γ(α+1)
∂α

∂|x|α , are particularly difficult to solve, precisely
due to the non-local nature of the spatial increments (infinite variance implies that walk-
ers can jump across a boundary without touching it, which is not the case of regular
Brownian motion; as a consequence, the method of images does not apply). The solution
is known in the absence of boundaries, where the Fourier representation is diagonal and
the eigenfunctions are simple plane waves. On the contrary, only a very limited number
of results are known for Lévy flights on bounded and semi-bounded domains, even for the
very simplest geometries; for a survey, see, e.g., [86–89]. The Sparre-Andersen theorem
shows that symmetric Lévy flights share the same persistence exponent as the Brownian
motion, namely, θ = 1/2 [74]. As a particular case, for α = 2, one recovers the standard
Laplacian, for which exact results are often known even in confined geometries.

A possible strategy to gain some insight on the behavior of a Lévy flight in the presence
of boundaries is to use a perturbation scheme around the α = 2 case [90], not dissimilarly
as done for fBm. Our starting point will be again the regular Brownian motion. Using
the Markovian property of Brownian motion, we can write the Fokker-Planck equation
for the propagator P in the familiar Schrödinger form

∂tP (x, x0, t) = HP (x, x0, t) , (1.77)
P (x, x0, t = 0) = δ(x− x0) , (1.78)

where the operator H is the standard Laplacian. In Quantum Mechanics, Eq.( 1.77)
corresponds to the Schrödinger equation of the element (x, x0) of the density matrix P at
the temperature 1/t, whose general solution reads

P (x, x0, t) =
∫
dq ψ∗q (x0)ψq(x)eE(q)t , (1.79)

where E(q) are the eigenvalues and ψq(x) the associated eigenfunctions of the operator
H. These are the solutions of the eigenvalue problem Hψq(x) = E(q)ψq(x), with the
appropriate boundary conditions, and satisfy the ortho-normality

∫
ψq(x)ψ∗q′(x)dx = δ(q−
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q′) and closure
∫
ψq(x)ψ∗q (x′)dq = δ(x−x′) relations. Here, the domain of integration over

x depends on the boundary conditions and the integration over q is meant over the entire
spectrum. If the spectrum is discrete, the integral is replaced by a discrete sum.

Then, we write the Fokker-Planck equation associated to the Lévy flight propagator.
For α = 2−ε, the operator H and the propagator can be expanded in powers of ε, namely,

P (x, x0, t) = P (0)(x, x0, t)− εP (1)(x, x0, t) +O(ε2),
H = H0 − εH1 +O(ε2) , (1.80)

where P (0)(x, x0, t) is the propagator associated toH0 = ∂2
x, with the prescribed boundary

conditions. The expression of the first correction P (1)(x, x0, t) in Eq.( 1.80) is known from
Quantum Mechanics, and reads

P (1)(x, x0, t) =
∫
q

∫
q′
ψq(x)ψ∗q′(x0)e

E(q)t − eE(q′)t

E(q′)− E(q) 〈q|H1|q′〉, (1.81)

where we use the notation
∫
q ≡

∫
dq and it is understood that ψq(x) are the eigenvectors

and E(q), the corresponding eigenvalues of H0. For the matrix elements 〈q|H1|q′〉, we
use the bra-ket notation, borrowed from Quantum Mechanics, with 〈x|q〉 = ψq(x). The
formula in Eq.( 1.81) is the cornerstone of the subsequent perturbation approach.

Setting α = 2 − ε, one can compute P (1) and R+(y) at the first order in ε. Close to
the origin, one gets [90]

R+(y) ∼ y − ε

2y log(y) ∼ yα/2 , (1.82)

in agreement with the results φ = θ/H = α/2. The (non-normalized) propagator in
presence of a single boundary has been studied for generic α [87]: it has been shown that
R+(y) vanishes as ∼ yα/2 when y → 0. This perturbative approach allows conjecturing
the exact behavior of the tail of R+(y), which governs the statistics of rare events:

R+(y) = c+

y1+α +


d+
y2+α + o(y−2−α) , 2 > α > 1 ,

d+
y1+2α + o(y−1−2α) , 1 > α > 0 ,

(1.83)

where d+ is a constant. The leading term R+(y) ∝ y−1−α is coherent with previous inves-
tigations [87]. The perturbative approach allows also the amplitude c+ to be explicitly
computed [90], namely, c+ = 2c, where c is the amplitude of the tail of the jump distri-
bution in Eq.( 1.73). Observe that the first sub-leading corrections in Eq.( 1.83) are also
affected by the absorbing wall, as seen by comparison with the free case of Eq.( 1.75).
These results are supported by numerical simulations.

1.8 Random acceleration model
The random acceleration model is a stochastic process defined by

ẍ(t) = η(t), (1.84)
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Figure 1.9: (Color online) Left: A realization of a random acceleration process reaching
its maximum xm at tm. Right: Convex hull of 30 points generated using the discrete
random acceleration process. The convex hull is constructed using the Graham span
algorithm [91].

where η(t) is a Gaussian white noise with 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = 2Dδ(t− t′)l [36,92].
The process starts at x(0) = 0, with the initial velocity v(0) = 0, and it is superdiffusive,
with x2(t) ∼ t3, i.e., H = 3/2. The random acceleration process in the single variable
x(t) is non-Markovian, whereas the position-velocity process is Markovian and does not
depend on the past history. The increments ξt = x(t) − x(t − 1) = ∑t

0 η(t) are Gaus-
sian numbers growing as

√
t, so that ξt are random numbers not identically distributed.

The random acceleration process appears for instance in the continuum description of
the equilibrium Boltzmann weight of a semiflexible polymer chain with non-zero bending
energy [36]. It can also describe the steady state profile of a (1 + 1)-dimensional Gaus-
sian interface [125] with dynamical exponent z = 4, and the continuum version of the
Golubovic-Bruinsma-Das Sarma-Tamborenea model [38]. As we will see in the following,
in addition to being relevant in many applications, the random acceleration model rep-
resents a simple, yet nontrivial, non-Markov process, where some observables of physical
interest can be explicitly computed.

1.8.1 Extreme statistics
Recently, the exact distribution of the time tm, at which a random acceleration process
attains its maximum, has been computed [45] (see Fig. 2.3 left). This result represents
for the random acceleration process the equivalent of the arcsine law emerging when
considering the first-passage properties of Brownian motion and Lévy flights. Further on,
we will show that the fluctuations of tm appear when computing the hitting probability
of a particle moving in a random self-affine potential [71], and also in connection with the
properties of the convex hull of a two dimensional random walk [93] (see Fig. 2.3 right).

Consider a process x(t), starting from x(0) = 0 and observed over a fixed time interval
[0, T ]. Let tm denote the time at which the process achieves its maximum value xm during
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Figure 1.10: (Color online) Simulation results for the cumulative distribution P (z) com-
pared to the analytical results. Left: Integral of a Brownian bridge, the solid line corre-
sponds to Eq.( 1.87). Right: Integral of a free Brownian motion, the solid line corresponds
to Eq.( 1.89).

the interval [0, T ] (see Fig. 2.3 left). Since the only time scale in the problem is T , the
probability density p(tm|T ) must have the scaling form

p(tm|T ) = 1
T
p
(
tm
T

)
, (1.85)

where the scaling function p(z), is defined over 0 ≤ z ≤ 1. For a random acceleration
process, it is possible to compute p(z) with two different boundary conditions [45]: the
integral of a Brownian bridge and the integral of a free Brownian motion.

Integral of a Brownian bridge

When the final velocity of the random acceleration process vanishes, vf = 0, the process
formally corresponds to the integral of a Brownian bridge. In this case, it has been shown
that

p(z) = Γ(1/2)
Γ2(1/4)

1
[z(1− z)]3/4

, (1.86)

which is evidently symmetric around the mid-point z = 1/2 and diverges at the two
end-points as z−3/4 and (1 − z)−3/4, respectively [45]. It is also useful to consider the
cumulative distribution P (z) =

∫ z
0 p(z′) dz′, which reads

P (z) = Γ(1/2)
Γ2(1/4) Bz

(1
4 ,

1
4

)
. (1.87)

Here Bz(p, q) =
∫ z

0 x
p−1 (1− x)q−1 dx is the incomplete Beta function.
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Integral of a free Brownian motion

When vf is arbitrary, the random acceleration process formally coincides with the integral
of a free Brownian motion. In this case, it is possible to show that

p(z) = C δ(z − 1) + (1− C)
π
√

2
z−3/4 (1− z)−1/4, (1.88)

where C = 1−
√

3
8 [45]. The density is thus asymmetric around the mid-point tm = T/2

(i.e., z = 1/2), and the maximum may either occur at some time strictly shorter than T ,
namely tm < T (i.e., z < 1), or with a finite non-vanishing probability C = 0.387628..
at the end point of the interval tm = T (or equivalently z = 1). In other words, roughly
38.67% of all trajectories, starting at x(0) = 0 and v(0) = 0, achieve their maximum
only at the end of the interval [0, T ]. The corresponding cumulative distribution P (z) =∫ z

0 p(z′) dz′ is given by

P (z) = C Θ(z − 1) + (1− C)
π
√

2
Bz

(1
4 ,

3
4

)
, (1.89)

where Θ(z − 1) vanishes for z < 1 and is equal to 1 for z = 1, i.e, P (z) exhibits a
discontinuous jump at z = 1 from 1− C =

√
3/8 to 1.

A plot of P (z) for both boundary conditions is provided in Fig. 1.10, where it is also
compared to direct simulation results: an excellent agreement between analytical and
numerical results is found.

1.8.2 Convex hull of a random acceleration process
It has been recently shown that the problem of computing the mean perimeter and area of
the convex hull of any two dimensional stochastic process can be mapped, using Cauchy’s
formulae [94], to the problem of computing the moments of the maximum and the time
at which the maximum occurs for the associated one dimensional component stochastic
process [95, 96]. Following this general mapping, the average perimeter and area of the
convex hull are given by

〈L(t)〉 = 2π〈xm(t)〉 (1.90)
〈A(t)〉 = π

[
〈x2

m(t)〉 − 〈y2(tm)〉
]
, (1.91)

where y(tm) is the ordinate of the process at tm, i.e., when the displacement along the
x direction is maximal. Using the results obtained for the extreme statistics of the one
dimensional random acceleration process it is possible to show that the mean perimeter
and area of the convex hull associated to a two-dimensional random acceleration process
of duration T , starting from the initial zero velocity conditions vx(0) = vy(0) = 0, are
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given by the following exact expressions

〈L(T )〉 =
√

3π
2 T 3/2 = (2.1708 . . .)T 3/2 (1.92)

〈A(T )〉 = 5π
192

√
3
2 T

3 = (0.100199 . . .)T 3. (1.93)

1.9 Digression on the hitting probability
We have previously discussed the fundamental role played by the hitting probability in
the context of polymer translocation. More generally, the hitting probability Q(x, L) of a
particle undergoing anomalous diffusion is key to understanding phenomena as diverse as
the classical gambler’s ruin problem in finance and risk management [63] or the transport
of charge carriers in conductors with disordered impurities [30]. In this latter case, it is
important to discuss the behavior of a particle in a correlated disordered potential V (x).
To provide an example, we consider the case of a strongly correlated self-affine disordered
potential V (x) ∼ xHV with HV > 0. For HV = 1/2, the potential V (x) is a trajectory of
a Brownian motion in space and one recovers the Sinai model. In this class of models,
the maximal barrier that the particle has to overcome grows with the size of the system
as LHV . By the Arrhenius law for the activated dynamics, the time required for a particle
diffusing in V (x) to overcome an energy barrier scales as t ∼ eV (x). We deduce that

x(t) ∼ [log(t)]1/HV , (1.94)

where for HV = 1/2, one recovers the well known x(t) ∼ log2(t). Thus, the particle
motion is a self-affine process as a function of the variable log(t), with a Hurst exponent
H = 1/HV . It is actually possible to show that for this problem the hitting probability
is related to the statistics of the maximum location xm of the process V (x) (see Fig. 5
right). The location of the extreme value of a process plays an important role in many
situations. In the context of finance, for example, a trader is interested in knowing the
time at which the stock price is at its highest. For symmetric Lévy flights and Brownian
motion, the distribution of such maxima is the celebrated Lévy arcsine law [97], namely,

p(xm) = 1
π

1√
xm(L− xm)

. (1.95)

Computing this quantity for a generic process is a formidable task (we have actually
shown that p(xm) can be computed for the random acceleration process). Using the
relation between the hitting probability and the maximum location it is possible to prove
that the survival probability of a particle in a correlated disorder potential V (x) behaves
as

S(x, t→∞)→ 1
[log(t)]θV /HV

, (1.96)
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q

V

Figure 1.11: A random walk with branching and death, starting from a source q and
traversing a volume V .

where θV is the persistence exponent of the process V (x). For instance, in the Sinai
model, using θV = 1/2, HV = 1/2, we get S(t) ∼ 1/ log(t), in agreement with the exact
result [98,99]. A random acceleration process potential would be self-affine withHV = 3/2
and persistence exponent θV = 1/4 [36]. Thus, for this potential the survival probability
up to time t would decay as ∼ (log t)−1/6, with θ = 1/6.

1.10 Problems: Residence Time for the random ac-
celeration processes

After having to study the random acceleration model which is a non- Markov stochastic
processes Rosso et al [45] have analyzed the distribution p(tm|T ) of the time tm at which
the particle reaches its maximum displacement if it begins at the origin with velocity zero
and is randomly accelerated for a time T. They obtain simple analytic expressions both for
integrals of Brownian bridges (trajectories constrained to return to v = 0 in a time T) and
integrals of free Brownian motion (no restrictions on the trajectory at T). For ordinary
unrestricted Brownian motion beginning at the origin, both distributions p(tm|T ) and
p(toccup|T ), where toccup is the time the process spends on the positive half axis within
the interval [0,T], are given by [46, 53] Lévy’s arcsine law p(t|T ) = π−1[t(T − t)]−1/2. For
random acceleration, on the basis of their numerical evidence, Rosso et al [45] conclude
that p(toccup|T ) does not coincide with either of their results for p(tm|T ). Therefore,
computing the occupation time distribution p(toccup|T ) for random acceleration model
remains a challenging, currently unsolved problem.
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1.11 Conclusion
In this chapter, we have presented some basic concepts necessary to understand irre-
versible processes. We have analyzed some of the first-passage properties of a few rel-
evant anomalous diffusion processes, namely, fractional Brownian motion, Lévy flights
and Continuous Time Random Walks, and the random acceleration model. To this aim,
different and often complementary approaches have been adopted: scaling arguments,
numerical simulations, perturbation schemes and mapping to extreme value statistics.
Several extensions of the results recalled here are possible: for instance, the analytical
and numerical tools described above are invaluable also in the analysis of the first-passage
properties of branching random walks with death, which emerge in relation with, e.g.,
the spread of epidemics, the migration of reproducing bacteria and the multiplication of
neutrons in nuclear reactors [100, 101]. In this context, some results have been recently
obtained concerning the statistical fluctuations of the convex hull of a branching Brown-
ian motion (via the mapping based on Cauchy’s formulae) [102], and the residence time
spent by branching processes within a given volume (by resorting to a path-integral for-
mulation) [103,104]. The tools to model these phenomena, continuous time random walk,
stochastic processes, and fractional diffusion equations, are still active research topics.
The residence time mentioned in this chapter will be on interest in the next chapter,
where we will study with numerical and analytical tools, the statistics of the residence
time, for the non markovian process.
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2.1 Introduction

Over the past decades, it has turned out that the Fokker-Planck equation provides a
powerfull tool with which the eïňĂects of fluctuations close to transition points can be
adequately treated and that the approached based on the Fokker-Planck equation are
superior to other approaches, e.g, based on the Langevin equations. Quite generally,
the Fokker-Planck equation plays an important role in problems which involve noise.
Fluctuations are a very common feature in a large number of fields. Nearly, every system
is subjected to complicated external or internal influences that are not fully known and
that are often termed noise or fluctuations. The Fokker-Planck equation was first applied
to the Brownian motion problem. Here the system is a small, but macroscopic particle [17],
immersed in fluid. The molecules of the fluid kick around the particle in an unpredictable
way so the position of the particle fluctuates. Because of these fluctuations, we do not
know its position exactly, but instead we have a certain probability to find the particle
in a given region. With the Fokker-Planck equation, such a probability density can be
determined. This equation is now used in a number of different fields in natural science,
for instance in statistical physics, chemical physics, and theoretical biology.

In this chapter, we will present numerical and analytical tools used like framework of
our thesis to study the statistics of the residence time for the non-Markovian process. To
undertake the analytical studies, we will call upon the Fokker-Planck equation, and as for
the numerical aspect, we will employ Monte Carlo methods.

2.2 Random variable and probability density

We assume that there is a certain prescription how to obtain a number ξ. This prescription
may consist for instance [17] in the following experiments:

(i) tossing a coin and writing 0 for head and 1 for tail;

(ii) casting a die and counting the number of spots;

(iii) measuring the length of a rod.

We call ξ a random variable if the number ξ can not be predicted. By repeating the
experiment N times(N realizations), we obtain N numbers

ξ1, ξ2, . . . , ξN . (2.1)

These numbers ξN may take only integer (case (i),(ii)) or continuous (case(iii)) values.
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2.2 Random variable and probability density

2.2.1 Average
Whereas the numbers ξ1,ξ2 . . . can not be predicted, some averages for N → ∞ may be
predicted and should give the same value for identical systems. The simplest average
value is the mean value:

〈ξ〉 = lim
N→∞

1
N

(ξ1 + ξ2 + . . . ξN). (2.2)

A general average value is

〈f(ξ)〉 = lim
N→∞

1
N

[f(ξ1) + . . . f(ξN)], (2.3)

where f(ξ) is some arbitrary function.
The set of states and the probability distribution together fully define the stochastic

variable, but a number of additional concepts are often used. The average or expectation
value of any function f(ξ) defined on the same state space is

〈f(ξ)〉 =
∫
f(x)p(x)dx. (2.4)

In particular 〈f(ξ)〉 = µm is called the m − thmoments of ξ and µ1 the average of
mean. Also

σ2 =
〈

(ξ − (〈ξ〉)2)
〉

= µ2 − µ2
1, (2.5)

is called the variance or dispersion, which is square of the standard deviation σ.

2.2.2 Characteristic Function and Cumulants
The characteristic function Cξ(u) of the stochastic variable u, whose range I is the set of
real numbers or a subset, thereof is the average

Cξ(u) = 〈eiuξ〉 =
∫
I
eiuxWξ(x) dx. (2.6)

It exists for real ξ and has the properties

Cξ(0) = 1, | Cξ(u) |≤ 1. (2.7)

From this characteristic function we obtain the nth moment Mn

Mn = 〈ξn〉 = 1
in
dnCξ(u)
dun

|u=0 . (2.8)
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The characteristic function Eq.( 2.6) is also the moment generating function in the
sense that the coefficients of its Taylor expansion in u are the moments:

Cξ(u) =
∞∑
m=0

(iu)m
m! Mm. (2.9)

This implies that the derivatives of Cξ(u) at u = 0 exist up to the same m as the moments.
If we know all the moments, we thus have the characteristic function. The same function
also serves to generates the cumulants Km which are defined by:

ln Cξ(u) = ln
∞∑
m=0

(iu)m
m! Mm =

∞∑
m=1

(iu)m
m! Km. (2.10)

It follows from these relations that the first n cumulants can be expressed by the first n
moments, e.g, 1

K1 = M1,

K2 = M2 −M2
1 ,

K3 = M3 − 3M1M2 + 2M3
1 ,

K4 = M4 − 3M2
2 − 4M1M3 + 12M2

1M2 − 6M4
1 . (2.11)

2.2.3 Gaussian Distribution
Let us consider only those probability densities where all cumulants [17],

Km1,...,mr =
(

∂

∂iu1

)n1

. . .
(

∂

∂iur

)nr
ln Cr(u1, . . . , ur) |u1=...=ur=0,

except those with n1 + n2 + . . .+ nr ≤ 2 vanish. We then must have:

Cr(u1, . . . , ur) = exp
( r∑
j=1

ajiuj + 1
2

r∑
j,k=1

σjkiujiuk

)
. (2.12)

It follows that the first two moments are given by:

〈ξj〉 = aj,

〈ξjξk〉 = σjk + ajak. (2.13)

Equations (2.13) imply that the variance (j = k) and the covariance (j 6= k) read

〈(ξj − 〈ξj〉)(ξk − 〈ξk〉)〉 = σjk. (2.14)
1The general formula is given by H. Risken p. 18. also Yu. V. Prohorov and Yu. A. Rozanov,

Probability Theory(Springer, Berlin 1969)p. 165.
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2.3 Fokker-Planck equation

The probability density is the inverse Fourier transform of the characteristic function
(2.12), i.e

Wr(x1, . . . , xr) = (2π)−r
∫
. . .
∫
exp

[ r∑
j=1

(aj − xj)iuj −
1
2

r∑
j,k=1

σjkujuk

]
du1 . . . dur.(2.15)

The matrix σjk = σkj is assumed to be positive definite. The inverse matrix (σ−1)jk =
(σ−1)kj and its square root (σ1/2)jk = (σ1/2)kj, as well as its inverse square root (σ−1/2)jk =
(σ−1/2)kj, exist. 2

To calculate the integral, we introduce as integration variables

βj =
∑
k

[(σ1/2)jkuk + i(σ−1/2)jk(xk − ak)], (2.16)

then, we may write the exponential in equation (2.14) as

[ ] = −1
2
∑
j

βjβj −
1
2
∑
j,k

(σ−1)jk(xj − aj)(xk − ak). (2.17)

Because of the jacobian

du1 . . . dur
dβ1 . . . dβr

= (dβ1 . . . dβr
du1 . . . dur

)−1 = [Det(σ1/2)jk]−1,

= (Detσjk)−1/2,

and because of

∫
. . .
∫
exp

(
− 1

2

r∑
j=1

βjβj

)
dβ1 . . . dβr =

( ∫ ∞
−∞

e−β
2/2dβ

)r
,

= (2π)r/2.

The final result for the probability density is the general Gaussian distribution

Wr(x1, . . . , xr) = (2π)−r/2(Detσjk)−1/2 × exp
[
− 1

2
∑
j,k

(σ−1)jk(xj − aj)(xk − ak)
]
. (2.18)

2.3 Fokker-Planck equation
Fokker-Planck equation is an partial derivative linear equation which should satisfy the
transition probability density from a Markov process. At the origin, a simplified form

2The square root of σ may be uniquely defined in such a way that it has positive eigenvalues.
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of this equation made it possible to study the Brownian motion. As the majority of
the partial derivative equations, it gives explicit solutions only in quite particular cases
relating to the same time to the form of the equation, on the form of the field where
it is studied. This section is devoted to the presentation of the fundamental equation
making it possible to describe the evolution of the laws of probabilities relating to a
random Markovian process. We will present specializations of the Chapman-Kolmogorov
equation for homogeneous Markovian processes which are very useful to describe various
physical situations. In what follows, we consider the Markov continuous processes. They
are saying diffusive in the sense where the developed theory makes it possible to generalize
the concept of Brownian diffusion to a large class of systems. It ends in applications to
the Brownian motion, concerning the distribution of velocity in the general case, and that
of the position in the limit of friction.

The characteristic evolution equation of a Markov process, in continuous form, is
written

p(x, t+ ∆t) =
∫
x∈X

dx′w(x, t+ ∆t | x′, t)p(x′, t). (2.19)

The quantity w is the transition probability, probability of passing from value x′ at the
moment t at the value x at the neighbour later moment t+ ∆t.

Let us pose ∆x = x− x′. Equation (2.19) takes now the form 3

p(x, t+ ∆t) =
∫
d∆xW (x, t+ ∆t | x−∆x, t)p(x−∆x, t). (2.20)

Let us center the Taylor’s development of the integrand on the point x+ ∆x. Thus:

W (x, t+ ∆t | x−∆x, t)p(x−∆x, t) = W (x+ ∆x, t+ ∆t | x, t)p(x, t) +
+∞∑
m=1

1
m! (−∆x)m ∂m

∂xm
W (x+ ∆x, t+ ∆t | x, t)p(x, t). (2.21)

Let us defer equation (2.21) in equation (2.20). The first term of the second member,
once integrated on ∆x, gives simply p(x, t); making pass p(x, t) to the first member, then
dividing per ∆t and making tend ∆t towards zero, one finds:

∂

∂t
p(x, t) =

+∞∑
m=1

(−1)m ∂m

∂xm

{[
lim

∆t→0

1
m!

1
∆t

∫
d∆x(∆x)mW (x+ ∆x, t+ ∆t | x, t)

]
p(x, t)

}
.

(2.22)
While posing:

Mm(x) = Dm(x) = lim
∆t→0

1
m!

1
∆t

∫
d∆x(∆x)mW (x+∆x, t+∆t | x, t) ≡ lim

∆t→0

1
m!

1
∆t〈(∆x)m〉,

(2.23)
3From now on, the boundary on the variable ∆x are not mentioned any more, but it is clear that the

integrals are defined.
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where the average 〈. . .〉 is taken with the distributionW (x, t | x′, t′), the evolution equation
(2.20) gives 4:

∂

∂t
p(x, t) =

N∑
m=1

(−1)m ∂m

∂xm

[
(D)(m)(x)p(x, t)

]
, (2.24)

where N → +∞. Equation (2.24) is what is called the Kramers-Moyal expansion and
(D)m(x) = Mm(x) are the Kramers-Moyal coefficients or the moments of the distribution
of (x−x′) relatively at the transition probabilityW (x,∆t | x′, 0). For an ordinary diffusion,
with drift, the average deviation 〈∆x〉 grows with time, as well as the standard deviation
∆x2, so that these two quantities are both proportional to the increase ∆t: it results
from it that at least the first two moments M1 and M2 are surely different from zero.
However, there is a theorem due to Pawula [105], which states that for a positive transition
probability p(x, t), the expansion (2.24) may stop either after the first term or after the
second term. If on the other hand, it does not stop after the second term it must contain
an infinite numbers of terms. In these conditions, the Kramers-Moyal expansion stops
with order 2 included and produced the so called Fokker-Planck equation 5:

∂

∂t
p(x, t) = − ∂

∂x

[
D(1)(x)p(x, t)

]
+ ∂

∂x2

[
D(2)(x)p(x, t)

]
≡ −L̂FPp(x, t). (2.25)

Then, the Fokker-Planck equation can be written as:

∂p(x, t)
∂t

= −L̂FPp(x, t), (2.26)

where L̂FPp(x, t) is the differential operator.

L̂FPp(x, t) = ∂

∂x
D(1)(x, t)− ∂2

∂x2D
(2)(x, t). (2.27)

The Fokker-Planck equation (2.25) is well also an assessment equation. By introducing
the current J :

J(x, t) =
[
D(1)(x)p(x, t)

]
+ ∂

∂x

[
D(2)(x)p(x, t)

]
, (2.28)

then, equation (2.25) takes the form:

∂

∂t
p(x, t) + divJ(x, t) = 0. (2.29)

The first term with the second member of (2.28) gives the drift 6(and contain the
mobolity); the second term is the diffusion current, always present even in the absence of
an external force; if D(2) is constant, we find the ordinary Fick’s law.

4the Mm or Dm do not depend on time by assumption of stationarity
5in its simplest form, it is the Einstein equation for the Brownian motion
6this term is also called the convection current
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Equation (2.29) is in the form of a continuity equation for the probability density
p(x, t) where J(x, t) is the probability current. Indeed if we integrate equation (2.29) for
x ∈ [a, b] we get:

∂

∂t

∫ b

a
p(x, t)dx = −

∫ b

a

∂

∂x
J(x, t)dx = J(a, t)− J(b, t), (2.30)

i.e a change in probability density in the interval [a, b], is compensated by a change of
flux in that region.

As for the 1-dimensional case, the local form of the continuity equation has an integral
counterpart that can be obtained in the following way. Let Ω be the domain of integration
(where the stochastic process lives), whose boundary is given by ∂Ω. The n dimensional
version of equation (2.29) is then

∂

∂t

∫
Ω
p(~z, t)d~z) = −

∫
∂Ω
n̂. ~J(~z, t)dS. (2.31)

where n̂ is the unit normal to the boundary ∂Ω (pointing out). If the probability current
vanishes on the ∂Ω, the continuity equation implies that the total probability remains
constant (in time) inside the boundary. If p(~z, t) is then normalized at time t = t0, it will
remain so far any later times, i.e,∫

Ω
p(~z, t)d~z = 1 ∀t > t0. (2.32)

In order to illustrate what precedes, let us take the case where x is a co-ordinate
of space, unlimited, noted y,(y ∈ R) and suppose that the moments D(1) and D(2) are
constant. p indicates then a density of probability of presence at the point ofX-coordinate
y on the real line: remultiplied by the numbers of particles, this probability gives the
density of particles to the point y. The Fokker-Planck equation (2.25) takes the simple
form:

∂

∂t
p(x, t) = −D(1) ∂

∂x
p(x, t) +D(2) ∂

∂x2p(x, t). (2.33)

Equation ( 2.33) is nothing other than a skewed ordinary equation. The solution is
easily on the basis of the initial condition 7

p(x, t = 0) = δ(x), (2.34)

we obtain:

p(x, t) = 1√
4πD(2)t

e−(x−D(1)t)2/(4D(2)t). (2.35)

7Any other initial condition is treated by superposition of the solution ( 2.35), under the terms of the
linearity of the Fokker-Planck equation ( 2.33).
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who is a Gaussian package whose center 〈x〉(t) varies like D(1)t and whose standard
deviation 〈(x− 〈x〉)2〉 ≡ ∆x2 varies like 2D(2)t. It is thus natural to pose:

D(1) ≡ v, D(2) ≡ D. (2.36)
and then:

〈x〉(t) = vt, ∆x2(t) ≡ 〈x2〉(t)− 〈x〉2(t) = 2Dt. (2.37)
Remarks

1. The Fokker-Planck equation is defined by the drift term D(1)(x) that characterizes a
ballistic motion, and by the diffusion term D(2)(x) characterizing a diffusive motion.

2. The Fokker-Planck equation is said to be linear if the drift and diffusion term do
not depend explicitly on time and if

D(1)(x) = D(1)(x, t) = D(1) +D(1), D(2)(x) = D(2)(x, t) = D(2) (2.38)

If on the other hand D(2)(x) = D2, but D(1)(x) is non linear, one has a almost-linear
Fokker-Planck equation.

3. Equation ( 2.35) obtained above starting from the initial condition δ(x) is actually
the transition probability (or conditional probability), noted W before. This asser-
tion is justifiable by the following argument. First of all, let us notice that, by a
change of origin of space and time, the solution of the equation of diffusion resulting
from δ(x− x0) to t = t0 is given by:

p(x, t = t0) = δ(x− x0) =⇒ p(x, t) = 1√
4πD(t− t0)

e−[x−x0−v(t−t0)]2/[4D(t−t0)].

(2.39)
It is thus legitimate to identify this new solution with W (x, t | x0, t0) and to thus
write, for the Fokker-Planck equation with its first two constant moments:

W (x, t | x0, t0) = 1√
4πD(t− t0)

e−[x−x0−v(t−t0)]2/[4D(t−t0)]. (2.40)

This observation makes it possible to find the law of distribution p(x, t) for an
unspecified initial condition.

p(x, t) ≡ p1(x, t) =
∫
R
dx0 p2(c, t, x0, t0), p2(x, t, x0, t0) = W (x, t | x0, t0)p1(x0, t0),

(2.41)
by definition of the laws of distribution to one and two values. We deduce from it
that the solution at the moment t exits of the unspecified distribution at the initial
moment is the convolution of space:

p(x, t) =
∫
R
dx′

1√
4πD(t− t0)

e−[x−x0−v(t−t0)]2/[4D(t−t0)]p0(x′), (2.42)
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where p0(x′) is not other than p(x′, t0). On such an expression, we check the following
points easily:

• if t→ t0, the coreW tends towards δ(x−x0), so that p(x, t) tends well towards
p0(x)
• if p0(x) is related again a Dirac function, δ(x− x0), the solution 8 ( 2.39) well

is found.
• if p0(x) is Gaussian, ( 2.42) revealed the convolution of two Gaussian, whose

result is still Gaussian.

2.3.1 Boundary conditions for the Fokker-Planck equation
The continuity equation in its integral form (Eq.( 2.30) and Eq.( 2.31)) suggests that, in
order to have a well defined problem, boundary conditions (BC) for the Fokker-Planck
equation have to be specified. Let’s consider first the 1-dimensional case. Different BC
can be taken into account

a. Natural boundary conditions In this case, the process is defined on R and
the condition is the one in which the probability current vanishes at the boundaries
s = xmin = −∞ and xmax = +∞. This would imply the conservation of the normalization
for p(x, t) since ∫ +∞

−∞
p(x, t)dx = const. (2.43)

Clearly the decay must be sufficiently rapid to ensure the normalization of the integral
above.

b. Reflecting boundary conditions For a reflecting boundary condition at x = a
the flux at a must be zero

J(a, t) = 0 ∀t. (2.44)

This gives:

D(1)(a, t)p(a, t)− ∂

∂x
D(2)(x, t)p(x, t)|x=a = 0 ∀t. (2.45)

Let us note that the natural boundary conditions can be seen as a particular case of
reflecting BC. A physical example is the case of a Brownian particle near an impenetrable
wall at x = a.

c. Absorbing boundary conditions An absorbing wall at x = a means that
particles are removed from the interval (−∞, a] as soon as they first hit x = a. This can
occur for example when a chemical reaction at the wall causes molecule to be absorbed
or changed to a different chemical species. Another more mathematical reason of using

8this is why it is also said that ( 2.40) is the Green’s function of Fokker-Planck equation ( 2.33)
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absorbing boundary conditions is when one is interested in looking at the first passage time
of a process as we will see later. The appropriate boundary conditions for an absorbing
wall at x = a is

p(a, t) = 0 ∀t, (2.46)
i.e there is a zero probability of finding particles at the wall, since they are immediately
absorbed.

The above classification can be easily generalized to the multidimensional case of Eq.
( 2.31). For example, for natural boundary conditions, ~J vanishing at infinity giving∫

Rn
p(~z, t)d~z = 1 ∀t > t0. (2.47)

2.3.2 Multidimensional case
Definition Chapman-Kolmogorov equation Given a stochastic process of Markov,
then the probability of transition p(x1; t1 | x2; t2) and the distribution W (x; t) satisfy:

P (x1; t1 | x3; t3) =
∫
dx2p(x1; t1 | x2; t2)p(x2; t2 | x3; t3), (2.48)

W (x2; t2) =
∫
dx1W (x1; t1)p(x1; t1 | x2; t2). (2.49)

Equation ( 2.48) is called Chapman-Kolmogorov equation.
In the case of multidimensional Markov processes, in which the random variable ξ is

a vector, ~ξ, the variable x becomes a vector that we denote as

~r(t) = {r1(t), . . . , rM(t)}, (2.50)
and the Chapman-Kolmogorov equations becomes:

∂

∂t
p(~r, t | ~r0, t) =

−
∑
i

∂

∂ri

[
D

(1)
i (~r, t)p(~r, t | ~r0, t)

]
+
∑
i,j

∂2

∂ri∂rj

[
D

(2)
i (~r, t)p(~r, t | ~r0, t)

]

+
∫
PV

d~r
[
w(~r, t | ~r′, t)p(~r, t | ~r0, t0)− w(~r′, t | ~r, t)p(~r′, t | ~r0, t0)

]
. (2.51)

For continuous paths ~r(t), w(~r, t | ~r′, t) = w(~r′, t | ~r, t) = 0, and we end up with the
multidimensional Fokker-Planck equation:

∂

∂t
p(~r, t | ~r0, t) = −

∑
i

∂

∂ri

[
D

(1)
i (~r, t)p(~r, t | ~r0, t)

]
+
∑
i,j

∂2

∂ri∂rj

[
D

(2)
i (~r, t)p(~r, t | ~r0, t)

]
.

where the drift term D(1)(~r, t) is now a vector and the diffusive term D(2)(~r, t) is a semidef-
inite positive and symmetric matrix.
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2.3.3 Fokker-Planck for the 2D(x,v) process
If the stochastic Markov diffusive process considered is a n-component vector ~r(t) =
(r1(t), r2(t), . . . , rn(t)) process, we have seen that the one dimensional Fokker-Planck equa-
tion generalizes to:

∂

∂t
p(~r, t | ~r0, t0) = −

∑
i

∂

∂ri

[
D(1)(~r, t)p(~r, t | ~r0, t0)

]
+
∑
i,j

∂2

∂ri∂rj

[
D(2)(~r, t)p(~r, t | ~r0, t0)

]
,

(2.52)
where D(1)(~r, t) is a vector and D(2)(~r, t) a semidefinite positive and symmetric matrix.
Perhaps the simplest vectorial stochastic process is related to the one dimensional motion
of a mesoscopic particle in a fluid. The motion is described by the position x and by
the velocity v of mesoscopic particle. Since x and v are obviously coupled and they
are both stochastic, we can see the whole process as a bidimensional stochastic process
~r = (x(t), v(t)), whose Langevin equation is given by:

∆x(t) = v(t)∆t,
∆v(t) = [−γv(t) + F (x(t))/m]∆t+ σ

m
∆t1/2∆Ŵ (t). (2.53)

In order to establish the corresponding Fokker-Planck equation we have to determine the
vector:

D(1)(~r, t) =
(
D(1)
x (x, v, t)

D(1)
v (x, v, t),

)
(2.54)

and the matrix:

D(2)(~r, t) =
(
D(2)
xx (x, v, t) D(2)

xv (x, v, t)
D(2)
vx (x, v, t) D(2)

vv (x, v, t),

)
(2.55)

with D(2)
vx (x, v, t) = D(2)

xv (x, v, t). By following the method presented above, we can say
that, as t→ t0

E{∆x(t) | x(t) = x′, v(t) = v′} = v′∆t, (2.56)

E{∆v(t) | x(t) = x′, v(t) = v′} =
(
− γv′ + F (x′)

m

)
∆t+O((∆t)2), (2.57)

E{(∆x(t))2 | x(t) = x′, v(t) = v′} = (v′∆t)2 = O((∆t)2), (2.58)

E{∆x(t)∆v(t) | x(t) = x′, v(t) = v′} = v′
(
− γv′ + F (x′)

m

)
(∆t)2, (2.59)

E{(∆v(t))2 | x(t) = x′, v(t) = v′} = σ2

m2 ∆t+O((∆t)2). (2.60)
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Dividing by ∆t and letting ∆t→ 0, we get:

D(1)
x (x, v, t) = v,

D(1)
v (x, v, t) = −γv + F (x)

m
,

D(2)
xx (x, v, t) = 0,

D(2)
vv (x, v, t) = σ2

2m2 ,

D(2)
xv (x, v, t) = 0. (2.61)

The 2D Fokker-Planck equation is then

∂

∂t
[p(x, v, t | x0, v0, t0)] =

− ∂

∂x
[vp(x, v, t | x0, v0, t0)]− ∂

∂v

[
F − γv
m

p(x, v, t | x0, v0, t0)
]

+ σ2

2m2
∂2

∂v2 [p(x, v, t | x0, v0, t0)]. (2.62)

In general F (x) = −∂u
∂x
.

Remark. If we rewrite the above equation as:

∂

∂t
[p(x, v, t | x0, v0, t0)] + v

∂

∂x
[p(x, v, t | x0, v0, t0)] + F (x)

m

∂

∂v
[p(x, v, t | x0, v0, t0)]

= γ
(
∂

∂x
[vp(x, v, t | x0, v0, t0)] + σ2

2γm2
∂2

∂v2 [p(x, v, t | x0, v0, t0)]
)
, (2.63)

we can notice that it has a structure typical of a kinetic equation, i.e. of the form

∂

∂t
[p(x, v, t | x0, v0, t0)]+v ∂

∂x
[p(x, v, t | x0, v0, t0)]+F (x)

m

∂

∂v
[p(x, v, t | x0, v0, t0)] = Ip(x, v, t),

(2.64)
where the linear operator Ip(x, v, t) is a collision operator that represents the effects of
the collisions of the mesoscopic particle with its environment.

2.3.4 Fokker-Planck equation for the co-ordinate
Given a particle subjected to a force of recall and which, drawn aside from its position
of balance, returns there ”slowly” (with the direction where all the potential energy is
consumed almost exclusively by friction, kinetic energy remainder negligible). Under
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these conditions, where inertia is negligible, the equation of Langevin in the presence of
an external force F0(x)(not-random) is simplified in:

α
dx

dt
= F0(x) + F (t) (α = mγ). (2.65)

It is possible to write a Fokker-Planck equation, but, now, it will be associated to the only
process x(t) and will describe the law of distribution of the position and either velocity.

It is necessary to calculate the moments D(m) corresponding to the increases ∆x =
x(t + ∆t) − x(t), x(t) playing the role of some initial condition. The integration of the
equation in times of ( 2.65) provides:

∆x ≡ x(t+ ∆t)− x(t) = 1
mγ

∫ t+∆t

t
dt′[F0(x(t′)) + F (t′)]. (2.66)

By taking the average and while dividing by ∆t:

D(1)(x) ≡ 1
∆t〈∆x〉 = 1

mγ
lim

∆t→0

1
∆t

∫ t+∆t

t
dt′[F0(x(t′)) + 〈F (t′)〉] = 1

mγ
F0(x). (2.67)

In the same way:

D(2)(x) ≡ 1
2

1
∆t〈(∆x)2〉 = 1

(mγ)2

∫ t+∆t

t
dt′
∫ t+∆t

t
dt′′〈[F0(x(t′)) + F (t′)][F0(x(t′′)) + F (t′′)]〉

= 1
(mγ)2

[
[F0(x(t))∆t]2 + g∆t

]
. (2.68)

Within the limit ∆t = 0, only the second term contributes to D(2) which is worth:

D(2) = g

(mγ)2 . (2.69)

Thus, the Fokker-Planck equation for the Langevin equation within the viscous limit
is written taking into account the fact that the first two moments are the only ones to be
not-null:

∂

∂t
p(x, t) = − 1

(mγ) [F0(x)p(x, t)] + g

2(mγ)2
∂2

∂x2p(x, t). (2.70)

The first term is the drift current induced by the external force, the second is the diffusion
current

Subsequently, we suppose to simplify that the force F0 is constant in space. The ratio
F0/(mγ), homogeneous at a velocity 9, is constant and is obviously the drift velocity, v, of

9According to ( 2.65) there are now 〈v〉 = F0/(mγ):1/(mγ) is not other than the mobility µ, connected
to the constant of diffusion D by the relation of Einstein D/µ = kBT .
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the particle under the effect of external force F0. As for the factor g/[2(mγ)2], we know
that it is precisely the coefficient of diffusion of the position D. We have then:

∂

∂t
p(x, t) = −v ∂

∂x
p(x, t) +D

∂2

∂x2p(x, t). (2.71)

For the initial condition p(x, t = 0) = δ(x), the solution of (2.50) is:

p(x, t) = 1√
4πDt

exp
[
− (x− vt)2

4Dt

]
. (2.72)

which gives:

〈x〉(t) = vt, 〈(x− 〈x〉)2〉 = 2Dt. (2.73)
Let us make tend towards zero the constant of diffusion D. Equation ( 2.71) becomes:

∂

∂t
p(x, t) = −v ∂

∂x
p(x, t), (2.74)

equation sometimes called [106] equation of Liouville, where space and times appear
symmetrically by first order derivative. Its solution which we can find besides while
looking at ( 2.74) is for the same initial condition p(x, t = 0) = δ(x) as previously, the
limit 10 of ( 2.72).

2.4 Ornstein-Uhlenbeck process

2.4.1 On Langevin Equations
In 1908, the French physicist Paul Langevin (1872-1946) published [107], a description of
the Brownian movement different from Einstein′s. Langevin′s approach is based on the
Newtonian equations of motion. In fact, we talk in physics more generally about Langevin
dynamics as a technique for mathematical modelling of the dynamics of molecular systems.
The Langevin approach applies for simplified models accounting for omitted degrees of
freedom by the use of stochastic differential equations.

Both Einstein and Langevin obtained by their respective mathematical methods the
same physical statement, namely:

σX =
√
E[X(t)2] =

√
2Dt. (2.76)

Then, the root-mean-squared displacement of a Brownian particle increases with the
square root of time for large times. We derive( 2.76) by the Langevin theory. Langevin

10For an unspecified initial condition,p(x, t = 0) = δ(x), the solution within the limit D = 0 is:

p(x, t) = p(x− vt, 0) (2.75)
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introduced a stochastic force that pushes the Brownian particle in the velocity space, while
Einstein worked in the configuration space. Langevin described the Brownian particle′ s
velocity as an Ornstein-Uhlenbeck process (to be defined below) and its position as the
time integral of its velocity, whereas Einstein described it as a Wiener process. Thus,
X(t) is the position of the large suspended particle at time t > 0 and is given by:

X(t) = X(0) +
∫ t

0
U(s)ds, (2.77)

where U(s) is the velocity of the particle. The Newtonian second law of motion gives

d

dt
U(t) = −aU(t) + σF (t) (2.78)

where a > 0 is a coefficient that reflects the drag force that opposes the particle′ s motion
through the solution and F (t) is a random force representing the random collisions of the
particle and the surrounding molecules.

We can also write these equations, in very formal fashion, as

d2

dt2
X(t) = −a d

dt
X(t) + σF (t). (2.79)

The expression ( 2.78) is called the Langevin equation (for the velocity of the Brownian
motion). In physical terms the parameters are a = γ

m
, σ =

√
g

m
, where γ is the friction coef-

ficient, and is by Stokes law given as γ = 6πηr, r = radius of the diffusing particle,
η = viscosity of the fluid, m is the mass of the particle, g is measure of the strength
of the force F(t).

2.4.2 Wiener process
The process considered is a particular case of the Fokker-Planck equation for a vanishing
drift coefficient D(1) = 0 and constant diffusion coefficient D(2)(x) = D = (βmγ). D(1)

and D(2)(x) in (2.25) gives the diffusion equation:

∂

∂t
p(x1, t1 | x2, t2) = ∂2

∂x2p(x1, t1 | x2, t2).

The Markovien process 11 corresponding is defined as follows:

p(x1; t1 | x2; t2) = 1√
4πD(t2 − t1)

e
− (x2−x1)2

4D(t2−t1) t2 > t1. (2.80)

The general solution for the probability density with the initial distribution W (x2, t2) is:

W (x, t) = 1√
4πDt

e−
x2

4Dt t > 0. (2.81)

11this process is known as Wiener process . It is homogeneous (but non-stationary), Gaussian and of
null average.

62



2.4 Ornstein-Uhlenbeck process

We need an auxiliary notation:

p(t, y, x) = 1√
2πt

e−
(y−x)2

2t , t > 0,−∞ < x <∞,−∞ < y <∞. (2.82)

Clearly p(t, x, y) is the p.d.f.(probability density function) of a random variable with the
distribution N(x, t). This p(t, x, y) is in fact the transition p.d.f. of a Wiener process , as
will be made clear below.

Remark. If we with σ > 0 set

p(t, y, x;σ2) = 1√
2πσ2t

e−
(y−x)2

2σ2t , t > 0,−∞ < x <∞,−∞ < y <∞. (2.83)

We shall get a process that is also called the Wiener process. In fact, scaling of time, i.e.,
the definition in (2.70), which has σ = 1, is known as the standard Wiener process, but
we shall not add the qualifier to our statements.

Definition The Wiener process or Brownian motion is a stochastic process W =
W (t)|t ≥ 0 such that:

(i) W (0) = 0 almost surely.

(ii) For any n and any finite suite of times 0 < t1 < t2 < . . . < tn and any x1, x2, . . . , xn
the joint p.d.f. of W (t1),W (t2), . . . ,W (tn) is

fW (t1),W (t2), . . . ,W (tn)(x1, x2, . . . , xn) = p(t1, x1, 0)p(t2−t1, x2, x1) . . . p(tn−tn−1, xn, xn−1).
(2.84)

A sample path of the one-dimensional Wiener process is given in Fig. 2.1.

2.4.3 Fokker-Planck equation for the distribution of the velocity
This process is defined by D(1)(v) = −γv and D(2)(v) = 2γD = 2γ

(βmγ) and described the
thermalization of a particle in a fluid at the thermal equilibrium. Then, the Fokker-Planck
equation for the distribution of the velocity, p(v, t) is:

∂

∂t
p(v, t) = − ∂

∂v
[(−γv)p(v, t)] + ∂2

∂v2 [D(2)p(v, t)], (2.85)

∂

∂t
p(v, t) = +γ

[
p+ v

∂

∂v

]
+ γ2D

∂2

∂v2 . (2.86)

For the initial condition p(v, t | v0, t0) at t = 0, it is known that p(v, t) is nothing other
that W (v, t | v0, 0).
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Figure 2.1: (Color online): A sample path of a Wiener Process.

The solution of ( 2.86) can be found by various methods; simplest being to undoubtedly
pass in Fourier transform, which produces the characteristic function ofW (v, t | v0, 0) and
makes it possible to obtain all moments 12. While thus posing:

w1(s, t) =
∫ +∞

−∞
dv eivsW (v, t | v0, 0). (2.87)

We find easily starting from (2.71) that

w1(s, t) = exp
[
− D(2)s2

2γ (1− e−2γt) + isv0e
−γt
]

(2.88)

By inverse Fourier transformation, we obtain:

W (v, t | v0, 0) = 1√
2πDv(t)t

exp
[
− (v − 〈v(t)〉)2

2Dv(t)

]
(2.89)

with:
〈v(t)〉 = v0e

−γt, Dv(t) = D

γ
(1− e−2γt). (2.90)

12One can also use the method known as of the characteristics ( [106], P. 75), which is classical for the
partial derivative equations of this type
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2.4 Ornstein-Uhlenbeck process

Finally, we get:

p(v, t) =
√

γ

2πD(1− e−2γt)exp
[
− γ(v − 〈v(t)〉)2

2D(1− e−2γt)

]
. (2.91)

The distribution p(v, t), resulting from the Dirac distribution δ(v − v0) is thus Gaussian.
〈v〉(t) is the average speed at the moment, t when this one is worth surely v0 at the initial
moment; one can thus return the certain factor v0 in the average and thus deduce the
autocorrelation function velocity noted Cvv(v0 ≡ v(t = 0)):

〈v(0)v(t)〉 = v2
0e
−γt, (2.92)

γ−1 is the relaxation time associated with an initial fluctuation velocity.

2.4.4 Fokker-Planck equation to several variables
For the Ornstein-Uhlenbeck process, the drift coefficient is linear and the diffusion coeffi-
cient constant, i.e.,

D1 = Di = −γijxj; γij, Dij = Dji. (2.93)

The Fokker-Planck equation can also be solved exactly for an Ornstein-Uhlenbeck process.
Given

∂

∂t
W = − ∂

∂xi
Di({x}) + ∂2

∂xi∂xj
Dij({x}). (2.94)

We now want to solve this equation. For the transition probability, p({x}, t | {x′}, t′)
equation ( 2.94) reads:

∂

∂t
p = γij

∂

∂xi
(xjp) +Dij

∂2

∂xi∂xj
. (2.95)

Where p must satisfy the initial condition

p({x}, t | {x′}, t′) = δ({x} − {x′}) (2.96)

If we express p by Fourier transform with respect to the variable {x}, i.e; by

p({x}, t | {x′}, t′) = (2π)−N
∫
ei(k1x1+...+kNxN )p̃({k}, t | {x′}, t′)dNk, (2.97)

while replacing ∂/∂xj by ikj and xj by i∂/∂kj, we obtain, for the Fourier transform, the
first-order differential equation:

∂p̃

∂t
= −γijki

∂p̃

∂kj
−Dijkikj p̃. (2.98)
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Initial condition ( 2.96) is transformed to:

p̃({k}, t | {x′}, t′) = exp(−ikjx′j). (2.99)

Because we already know that p and therefore p̃ must be Gaussian functions, we make
the ’ansatz’ (σij = σji)

p̃({k}, t | {x′}, t′) = exp[−ikiMi(t− t′)−
1
2kikjσij(t− t

′)]. (2.100)

Inserting this ’ansatz’ into ( 2.98) leads to

˙̃p+ γijki
∂p̃

∂kj
+Dijkikj p̃,

= (−ikiṀi −
1
2kikjσ̇ij − γijkiiMj − γijkiγilkl +Dijkikj)p̃,

= 0. (2.101)

This equation requires that Mi and σij must obey the differential equations

Ṁi = −γijMj, (2.102)
σ̇il = −γljσlj − γjlσli + 2Dij. (2.103)

The initial conditions ( 2.96) requires the following initial conditions for Mi and σij:

Mi(0) = x′i; σij(0) = 0 (2.104)

The solution of ( 2.102) with ( 2.104) can be written as:

Mi(t− t′) = Gij(t− t′)x′j, (2.105)

where Gij(t) is the Green’s function of the homogeneous Langevin equation.

Transition Probability Density
Let us insert ( 2.100) into ( 2.97), we arrive at:

p({x}, t | {x′}, t′) = (2π)−N/2[Detσ(t− t′)]−1/2

× exp{−1
2[σ−1(t− t′)]ij[xi −Gik(t− t′)x′k]

× [xj −Gjl(t− t′)x′l]}. (2.106)
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2.5 Feynman-Kac formula

2.5 Feynman-Kac formula
Solutions of many partial differential equations can be represented as expectation func-
tionals of stochastic processes known as Feynman-Kac formulas; see [108], [109] and [110]
for pioneering work of these representations.

Feynman-Kac formulas are useful to investigate properties of partial differential equa-
tions in terms of appropriate stochastic models, as well as to study probabilistic properties
of Markov processes by means of related partial differential equations. Feynman-Kac for-
mulas naturally arise in the potential theory for Schrödinger equations [111], in systems
of relativistic interacting particles with an electromagnetic field [112], and in mathemat-
ical finance [113], where they provide a bridge between the probabilistic and the partial
differential equation representations of pricing formulae.

Richard Feynman discovered that the Schrödinger equation (the differential equation
governing the time evolution of quantum states in quantum mechanics) could be solved
by (a kind of) averaging over paths, an observation which led him to a far-reaching
reformulation of the quantum theory in terms of ”path integrals”. 13 Upon learning
of Feynman’s ideas, Mark Kac realized that a similar representation could be given for
solutions of the heat equation (and other related diffusion equations) with external cooling
terms. This representation is now known as the Feynman-Kac formula. Later it became
evident that the expectation occurring in this representation is of the same type that
occurs in derivative security pricing.

The simplest heat equation with a cooling term is:

∂u

∂t
= 1

2
∂2u

∂x2 −K(x)u, (2.107)

where K(x) is a function of the space variable x representing the amount of external
cooling at location x.

Theorem: (Feynman-Kac Formula) Let K(x) be a nonnegative, continuous function,
and let f(x) be bounded and continuous. Suppose that u(t;x) is a bounded function that
satisfies the partial differential equation ( 2.107) and the initial condition

u(0;x) = lim
(t;y)→(0;x)

u(t; y) = f(x) (2.108)

Then,

u(t;x) = Exexp
{
−
∫ t

0
K(Ws)ds

}
f(Wt); (2.109)

where, under the probability measure P x, the process {F (Wt)}t≥0 is Brownian motion
started at x.

13The theory is spelled out in considerable detail in the book Quantum Mechanics and Path Integrals
by Feynman and Hibbs. For a nontechnical explanation, read Feynman’s later book QED, surely one of
the finest popular expositions of a scientific theory ever written.
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The hypotheses given are not the most general under which the theorem remains valid,
but suffice for many important applications. Occasionally we encounter functions K(x)
and f(x) that are not continuous everywhere, but have only isolated discontinuities; the
Feynman-Kac formula remains valid for such functions, but the initial condition ( 2.109)
holds only at points x where f is continuous.

An obvious consequence of the formula is uniqueness of solutions to the Cauchy prob-
lem (the partial differential equation ( 2.107) together with the initial condition ( 2.109).

corollary. Under the hypotheses of Theorem, there is at most one solution of the
heat equation ( 2.107) with initial condition ( 2.109), specifically, the function u defined
by the expectation.

Generalizations of the Feynman-Kac Formula
Two types of generalizations are of particular usefulness in financial applications: (1)
those in which the Brownian motion Wt is replaced by another diffusion process, and (2)
those where the Brownian motion (or more generally diffusion process) is restricted to
stay within a certain region of space.

2.5.1 Feynman-Kac for other diffusion process.
Let P x be a family of probability measures on some probability space, one for each possible
initial point x, under which the stochastic process Xt is a diffusion process started at x
with local drift µ(x) and local volatility σ(x).

Theorem in one Dimension
Suppose that under each P x the process Xt obeys the stochastic differential equation

dXt = µ(Xt, t)dt+ σ(Xt, t)dWQ
t , (2.110)

where WQ
t is Brownian motion under the measure Q. Let V (xt, t) be a differentiable

function of xt and t; and suppose that V (xt, t) follows the partial differential equation
(PDE) given by:

∂V

∂t
+ µ(xt, t)

∂V

∂x
+ 1

2σ(xt, t)
∂2V

∂x2 − r(xt, t)V (xt, t) = 0, (2.111)

and with boundary condition V (XT ;T ). The theorem asserts that V (xt; t) has the solution

V (xt, t) = EQ
[
exp

{
−
∫ T

t
r(xu, u)du

}
V (XT , T )|Ft

]
. (2.112)

Note that the expectation is taken under the measure Q that makes the stochastic
term in Equation ( 2.110) Brownian motion. The generator of the process in ( 2.110) is
defined as the operator:

A = 1
2σ(xt, t)2 ∂

2

∂x2 + µ(xt, t)
∂

∂x
. (2.113)
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So the PDE in V (xt, t) is sometimes written:

∂V

∂t
+AV (xt, t)− r(xt, t)V (xt, t) = 0. (2.114)

The Feynman-Kac theorem can be used in both directions. That is,

1. If we know that xt follows the process in Equation( 2.110) and we are given a
function V (xt; t) with boundary condition V (XT ;T ), then we can always obtain the
solution for V (xt; t) as Equation( 2.112).

2. If we know that the solution to V (xt; t) is given by Equation ( 2.112) and that xt
follows the process in ( 2.110), then we are assured that V (xt; t) satisfies the PDE
in Equation( 2.114).

2.6 Numerical simulations: a Monte-Carlo approach
Monte carlo methods(by reference to the games of chance of the casinos) are methods
of numerical integrations which use random hard copies to realize the calculation of a
deterministic quantity. They allows to solve many differently insoluble problem such as
for example the evaluation of integrals on complex and/or large-sized fields; the calculation
of functional stochastic process or exploration of complex probability distributions. The
use of these methods of numerical approximations requires to know to obtain realizations
of random variables; to know to control the error of approximation and to study the
asymptotic behavior of the methods of simulations; to check in particular which one has
a law of the large numbers or a central limit theorem.

Such methods are in particular used in finances by the valorization of options for
which there does not exist the closed formula but only numerical approximations. These
methods converge slowly and they have like interest to be insensitive at the dimension to
studied problems and with the regularity of the function g which we seek to calculate the
integral ∫

[0,1]d
g(x1, ..., xddx1...dxd = E[g(u1, ..., ud)], (2.115)

when the random variables (ui, 1 ≤ i ≤ d) are independent and identically distributed
from uniform law u([0, 1]).

The theoretical justification of the method is the strong law of the large numbers
which makes it possible to call only upon one realization of a sample; that is at the series
X(w) for w. In this section, we present an approach of this method in two non-Markov
stochastic processes: (i) the integral of a Brownian bridge up to time T and (ii)the integral
of a free Brownian motion up to time T to determine the occupation time distribution
P (toccup|T ) of the stochastic time toccup; time at which the process spends on the positive
half axis within the interval [0, T ] of the random acceleration motion.

Our numerical experiments use a Monte Carlo approach, random variables indepen-
dent identically distributed are simulated with a random number generator and expected
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values are approximated by computed averages. For both processes we simulated 105

realizations with T = 1 and an integration step 1..
→ Description of the Monte-Carlo method
To use this method, of Monte-Carlo, one must initially put in the form of an average

quantity which we seek to calculate. It is often simple (calculation of integral for example)
but can be more complicated (partial derivative equations for example).

At the end of this step, it remains to calculate a quantity of the form E(X), i.e. the
average of the random variable X. To calculate E, it is necessary to know how to sample
uncorrelated numbers Xi according to the probability distribution of X. We then have a
serie (Xi)1≤i≤N of N realizations of the random variable X. We approximate then E by:

E(X) ' 1
N

(X1 + . . . XN). (2.116)

2.6.1 Integral of a free Brownian motion
A free Brownian motion is a real random process x(t) coming from zero (x(0) = 0) which
after T steps is at a random or arbitrary position x(T ); and satisfying Langevin’s equation

dx

dt
= η(t) (2.117)

where η(t) is a Gaussian white noise.
Still called Wiener process, over [0, T ] it’s a random variables X(t) that depends

continuously on t ∈ [0, T ] and satisfies the following three conditions [124]:

1. X(0) = 0.

2. For 0 < t′ < t ≤ T , the random variables given by the increments X(t) − X(t′) is
normally distributed with mean zero and variance δ(t− t′).

3. For 0 ≤ t′ < t < t′′ < t′′′ ≤ T , the increments X(t)−X(t′) and X(t′′′)−X(t′′) are
independent.

But, in this subsection, we are still talking about Brownian motion. For that, We
first perform a simulation of 100.000 discretized a random acceleration processes evolving
up to time T = 500 with a discrete time step δt. Each path is constructed using T/δt
gaussian random numbers of zero mean and variance 2δt. The python function cumsum()
computes first a free Brownian path. A second iteration of cumsum() generates a sample
of random acceleration process. Finally, we count the total fraction, of time that each
process remains positive and obtain the blue curve of the figure 2.2 which is that of the
cumulative distribution of the occupation time.

In this case, by observing the corresponding Figure(see Figure 2.2), we note that for
z = [0, 0.3[, the numerical curve of the occupation time distribution P (toccup|T ) is below
the numerical curve of the probability density P (tm|T ) of the time maximum tm and for z
= [0.3, 0.4[, both curves become confused; and ïňĄnally, the curve of the occupation time
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Figure 2.2: Simulation results for the cumulative distribution p(toccup|T )(poccup: solid line
in blue) as compared to the simulation results for the cumulative distribution (pmax or
p(tm|T )) p(z) =

∫ z
0 p(z′)dz′ (indents line in black) with 0 ≤ z ≤ 1, and analytical formula

in equation (9) (solid line in red) [45], for the integral of a free Brownian motion. Here
parcsin is the arcsine law.

distribution P (toccup|T ) increases until z = 1, whereas the probability density P (tm|T ) of
the time maximum tm exhibits a discontinuous jump at z = 1.

2.6.2 Integral of a Brownian bridge
A Brownian bridge is a conditioned Brownian motion to return to its starting point at the
end of the fixed time interval T . If one designate by xl a free Brownian motion coming
from 0 on [0, T ], we can obtain from xl a Brownian bridge xp on [0, T ] of the following
manner:

xp(t) = xl(t)−
t

T
xl(T ). (2.118)

We first perform a simulation of 100.000 discretized a random acceleration processes
evolving up to time T = 500 with a discrete time step δt. Each path is constructed using
T/δt gaussian random numbers of zero mean and variance 2δt. The python function
cumsum() computes first a free Brownian path. A second iteration of cumsum() generates
a sample of random acceleration process. Finally, we count the total fraction of time that
each process remains positive and obtain the blue curve of the figure 2.3 which is that
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of the cumulative distribution of the occupation time. In the case of the integral of a
Brownian bridge, we compare our numerical curve of the occupation time distribution
toccup, which is a new result with the numerical curve and analytical curve of probability
density of time maximum tm obtained in Ref. [45].
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Figure 2.3: Simulation results for the cumulative distribution p(toccup|T )(poccup: solid line
in blue) as compared to the simulation results for the cumulative distribution (pmax or
p(tm|T )) p(z) =

∫ z
0 p(z′)dz′ with 0 ≤ z ≤ 1, (indents line in black) and analytical formula

in equation (6) (solid line in red) [45], for the integral of a Brownian bridge.

In this case, by observing the corresponding Figure(see Figure 2.3), we notice that for
z = [0, 0.4[, the curve of probability density P (tm|T ) of the time maximum is above the
numerical curve of the occupation time distribution P (toccup|T ) . For z = [0.4, 0.6], both
curves become confused and for z =]0.6, 1], the numerical curve of the occupation time
toccup is above the numerical and analytical curves of the probability density P (tm|T ) of
the time maximum.

2.7 Conclusion
In this chapter, we presented the tools as well as the mathematical techniques, and the
numerical methods such as Fokker-Planck equations used for the determination of the
Green’s function or the transition probability density which is the tool necessary to study
analytically the statistics of the residence time; and the Monte-Carlo method to find this
residence time. The next chapter deals with the results and discussions.
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3.1 Introduction
Recently, the extreme-value statistics of the process was analyzed, with special emphasis
on the global maximum in a given time interval [36,43,44] and the time at which the global
maximum is reached [45]. However, the residence time statistics of random acceleration is
still not understood in detail. In this chapter we consider a randomly accelerated particle
moving in one dimension on the infinite x axis and study the residence time T+ on the
positive x axis. We calculate the first two moments of T+ analytically and also study
the statistics of T+ with Monte Carlo simulations. Our aims was to learn whether the
residence time T+ of the randomly accelerated particle and the time Tm at which it attains
its maximum displacement are statistically equivalent. Both our analytical and Monte
Carlo results indicate that this is not the case. This is in contrast to regular Brownian
motion, where the distributions of T+ and Tm coincide and are given by Lévy’s celebrated
arcsine law [46,53].

This chapter present the results of our work carried out on the process of acceleration
random: the residence time of the random acceleration following by some discussions. In
the first section we present the analytical results emerging to the derivation of partial
differential equations which determine the moment generating function and the moments
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of residence time where the first two moments of the residence time T+ are calculated
and compared with the corresponding moments of the time Tm at which the randomly
accelerated particle makes its maximum excursion; in the second section we present the
study of the moments T+ and its distribution with Monte Carlo simulations and compare
the results with our analytic predictions for the first two moments of T+ and with exact
results [45] for the distribution of Tm; the third section present the applications and we
will finish by a conclusion.

3.2 Analytical Results of the residence time
Consider a randomly accelerated particle moving in one dimension, with coupled evolution
equations

dx
dt

= v, (3.1)
dv
dt

= η(t). (3.2)

Where x(t) is the particle position, v(t) is the particle velocity, and η is an uncorrelated
random white noise 1, with 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = 2γδ(t − t′), γ > 0. The process
is completed by the initial conditions x(0) = x0 and v(0) = v0 at the time t = 0. For
the sake of simplicity, we will consider here a one-dimensional setup. The direction of the
velocity will be represented by its sign, namely v0 > 0 means that the particle is pointing
towards positive x, and vice-versa.

We want to characterize the residence time TV (t|x0, v0) spent within a region A by a
particle subject to a random acceleration process starting from x0 with velocity v0 when
observed up to a time t. The residence time is defined by the path integral

TA(t|x0, v0) =
∫ t

0
V (x(t′))dt′, (3.3)

where the function V (x(t)) is equal to one if x(t) ∈ A and zero otherwise. In other terms,
V (x(t)) is the marker function of the region A. By construction, TA(t = 0|x0, v0) =
0. Since the underlying process is stochastic, the functional TA(t|x0, v0) defined on the
random trajectories of the process is also intrinsically stochastic, and we are interested in
determining its distribution.

To this aim, let us define the moment generating function

Qt(s|x0, v0) = 〈e−sTA(t|x0,v0)〉, (3.4)

where s is the variable conjugate to the variable TA and carries the dimensions of the
inverse of a time. Then, it can be verified that the moments of the residence time can

1A white noise is a complete process associated a random force η(t) definite like Gaussian with singular
covariance 〈η(t)η(t′)〉 = 2γδ(t− t′), γ > 0; 〈η(t)〉 = 0. This terminological origin comes owing to the fact
that the Fourier transform of 〈η(t)η(t′)〉 is constant, i.e. independent of the frequencies, therefore gives
even weight to all the frequencies of the spectrum from where the terminological association of this noise
with the white color.
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be obtained by derivation of the generating function with respect to the variable s. In
particular, for the average residence time we have

〈TA〉t(x0, v0) = − ∂

∂s
Qt(s|x0, v0)|s=0. (3.5)

For the second moment we have

〈T 2
A〉t(x0, v0) = ∂2

∂s2Qt(s|x0, v0)|s=0. (3.6)

By recurrence, we get the m-th moment

〈TmA 〉t(x0, v0) = (−1)m ∂m

∂sm
Qt(s|x0, v0)|s=0, (3.7)

for m ≥ 1. Observe moreover that we have

〈T 0
A〉t(x0, v0) = Qt(s|x0, v0)|s=0 = 1. (3.8)

It is possible to write down an equation for the evolution of the generating function
Qt(s|x0, v0). Let us start with a single particle in x0 with velocity v0 at time t = 0. Let
us consider a total observation time t + dt, with dt arbitrary small. Since the process
is Markovian with respect the extended phase space (x, v), we can decompose the total
observation time [0, t+ dt]in a first interval between t = 0 and t = dt, and then a second
interval between dt and the final time t+ dt.

Qt+dt(s|x0, v0) = 〈e−sTA(t+dt|x0,v0)〉 = 〈e−s
∫ dt

0 V (x(t′))dt′e−s
∫ t+dt
dt

V (x(t′))dt′〉. (3.9)

By supposing that dt is small, the first term between the expectation time can be evaluated
to be

e−s
∫ dt

0 V (x(t′))dt′ ' e−sV (x(dt))dt = e−sV (x0)dt, (3.10)
where we have used the initial condition V (x(0)) = V (x0). We realize that this term is
actually completely deterministic and can be then singled out from the brackets signs:

Qt+dt(s|x0, v0) = e−sV (x0)dt〈e−s
∫ t+dt
dt

V (x(t′))dt′〉. (3.11)

We can then rearrange the integral by translating back by dt the time interval:

Qt+dt(s|x0, v0) = e−sV (x0)dt〈e−s
∫ t

0 V (x(t′))dt′〉. (3.12)

Concerning the exponential term in the brackets, we observe that is contains two
sources of randomness: the fact that the underlying trajectories are stochastic, and the
fact that the starting conditions of each realization have now evolved during a time dt.
Indeed, since the initial condition of the process is now evaluated at time dt after the
initial condition, the behaviour of x(dt) and v(dt) is not known in advance and must be
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determined. Observe that the term in the brackets by definition is precisely the generating
function of the residence time with an observation time t and random initial conditions:

Qt+dt(s|x0, v0) = e−sV (x0)dt〈e−s
∫ t

0 V (x(t′))dt′〉 = e−sV (x0)dt〈Qt(s|x0 + ∆x, v0 + ∆v)〉, (3.13)

where ∆x is the amount of displacement of the coordinate x from the initial condition
x0 during the time interval dt, and similarly ∆v is the amount of displacement of the
coordinate v from the initial condition v0 during the same time interval dt.

We can now use the Taylor expansion of the function Qt(s|x0 + ∆x, v0 + ∆v) for small
∆x and ∆v: we have

Qt(s|x0 + ∆x, v0 + ∆v) = Qt(s|x0, v0) + ∆x ∂

∂x0
Qt(s|x0, v0) + ∆v ∂

∂v0
Qt(s|x0, v0)+

1
2(∆x)2 ∂

2

∂x2
0
Qt(s|x0, v0) + 1

2(∆v)2 ∂
2

∂v2
0
Qt(s|x0, v0) + 1

2(∆x)(∆v) ∂2

∂x0∂v0
Qt(s|x0, v0) + · · ·

(3.14)
These terms should be now put under the brackets that denote ensemble average with

respect to the random realizations. Now, by construction of the process, we have the
following

〈∆x〉 = v0dt, (3.15)

〈∆v〉 = 0, (3.16)

〈(∆x)2〉 = 0, (3.17)

〈(∆v)2〉 = γdt. (3.18)
Then, the terms in the previous equation can be reorganized as follows

Qt+dt(s|x0, v0) = e−sV (x0)dt
[
Qt(s|x0, v0) + v0dt

∂

∂x0
Qt(s|x0, v0) + γdt

∂2

∂v2
0
Qt(s|x0, v0)

]
,

(3.19)
Finally, for small dt we can expand the exponential term as

e−sV (x0)dt = 1− sV (x0)dt, (3.20)

We can then take the limit for dt→ 0 and retain the terms of the order of dt at most:

Qt+dt(s|x0, v0) = Qt(s|x0, v0)+v0dt
∂

∂x0
Qt(s|x0, v0)+γdt ∂

2

∂v2
0
Qt(s|x0, v0)−sV (x0)dtQt(s|x0, v0).

(3.21)
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By diving by dt we finally get

∂

∂t
Qt(s|x0, v0) = v0

∂

∂x0
Qt(s|x0, v0) + γ

∂2

∂v2
0
Qt(s|x0, v0)− sV (x0)Qt(s|x0, v0). (3.22)

This is precisely the evolution equation for the generating function. We recognize that
this equation is formally a backward equation, because derivatives are acting on the initial
coordinates x0 and v0 of the process.

If we want to derive the equations for the moments, we have to take the derivatives
with respect to the variable s. For the average residence time by taking the derivative
once we get the equation

∂

∂t
〈TA〉t(x0, v0) = v0

∂

∂x0
〈TA〉t(x0, v0) + γ

∂2

∂v2
0
〈TA〉t(x0, v0) + V (x0). (3.23)

For the second moment, by taking the derivative twice we get

∂

∂t
〈T 2

A〉t(x0, v0) = v0
∂

∂x0
〈T 2

A〉t(x0, v0) + γ
∂2

∂v2
0
〈T 2

A〉t(x0, v0) + V (x0)〈T 1
A〉t(x0, v0). (3.24)

Let us calculate these moments. Using the evolution equations (1) and (2), the position
x(t) and the velocity v(t) is obtain from initial values x0 and v0 at t = 0 following
equations:

dv

dt
= η(t) =⇒ v(t) =

∫
η(t′)dt′ + c

=⇒ v(t) = v0 +
∫ t

0
η(t′)dt′

and

dx

dt
= v(t) =⇒ x(t) =

∫
v(t)dt+ c

=⇒ x(t) = x0 +
∫ t

0
v(t′)dt′

=⇒ x(t) = x0 + v0t+
∫ t

0
dt′(

∫ t′

0
η(t1)dt1)

=⇒ x(t) = x0 + v0t+
∫ t

0
(t− t′)η(t′)dt′

Thus, v(t) corresponds to a Brownian curve or random walk, and x(t) to the integral of
a Brownian curve.

We will be particularly interested in the Green function or the propagator or proba-
bility density Gt({x}|{x}) for propagation from the initial position and velocity x0, v0 to
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the values x, v in a time t to calculate the residence time; thus the equation (3.23) can
reads as follow:

Gt({x}|{x′}) =
N∑
i=1

γij
∂

∂xi

(
xjGt

)
+ 1

2

n∑
i,j=1

∂2

∂xi∂xj
(bij)Gt

=
N∑
i=1

γij
∂

∂xi

(
xjGt

)
+Dij

∂2

∂xi∂xj
Gt (3.25)

with γij and Dij the drift and diffusion matrix.
Gt should satisfy the initial condition

G({x}|{x′}, t′) = δ({x} − {x′}). (3.26)

Let us express Gt by its Fourier transform with respect to the variables x

Gt({x}, t|{x′}, t′) = (2π)−N
∫
e−i(k1x1+.....+kNxN )G̃t({k}, t|{x′}, t′)dNk (3.27)

and by replacing ∂
∂xj

by ikj and xj by i ∂
∂kj

, we obtain for the Fourier transform the
differential equation following:

∂

∂t
G̃t = −γijki

∂

∂kj
G̃t −DijG̃t. (3.28)

and the initial condition yields:

G̃t({k}, t|{x}, t′) = exp(−ikjx′j). (3.29)

since we know that Gt and G̃t must be Gaussian functions, let’s apply the ansatz following:

G̃t({k}, t|{x′}, t′) = exp
[ N∑
j=1

ikjMj(t− t′) + 1
2

N∑
j,k=1

ikjikkσjk(t− t′)
]
. (3.30)

Inserting (3.30) into (3.27) Gt({x}, t|{x′}, t′) becomes:

Gt(x, t|x′, t′) = (2π)−N
∫
e−i(k1x1+...+kNxN )

(
exp

[ N∑
j=1

ikjMj(t− t′) + 1
2

N∑
j,k=1

ikjikkσjk(t− t′)
])
dNk

= (2π)−N
( ∫

e−i(k1x1+...+kNxN )
∫
exp

[ N∑
j=1

ikjMj(t− t′)−
1
2

N∑
j,k=1

kjkkσjk(t− t′)
])
dk1 . . . dkN(3.31)
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Let us introduce like variables of integration:

αj =
∑
k

[
(σ1/2)jkkki(σ−1/2)jk(xk −Mk)

]
=⇒

∑
k

(σ1/2)jkkk = αj −
∑
k

i(σ−1/2)jk(xk −Mk)

=⇒ kk = αj∑
k(σ)jk

+
∑
k(σ−1/2)jki(Mk − xk)∑

k(σ1/2)jk

=⇒ dkk = dαj∑
k(σ1/2)jk

.

We arrive at:

Gt({x}, t|x′, t′) = (2π)−N
∫
. . .
∫
exp

[ N∑
j=1

(Mj − xj)ikj −
1
2

N∑
j,k=1

kjkkσjk(t− t′)
]
dk1 . . . dkN

= (2π)−N
∫
. . .
∫
exp

[
N∑
j=1

(Mj − xj)i
(

αj∑
k(σ)jk

+
∑
k(σ−1/2)jki(Mj − xj)∑

k(σ1/2)jk

)

− 1
2

N∑
j,k=1

(σ)jk
(

αj∑
k(σ)jk

+
∑
k(σ−1/2)jki(Mj − xj)∑

k(σ1/2)jk

)
(

αk∑
k(σ)jk

+
∑
k(σ−1/2)jki(Mk − xk)∑

k(σ1/2)jk

)]
1∑

N(σ1/2)jk
(dα1 . . . dαN)

= (2π)−N
∫
. . .
∫
exp

[
− 1

2α
2 −

∑
j

(σ−1)(Mj − xj)(Mk − xk)

+
∑
jk(σ−1)jk(Mj − xj)(Mk − xk)

2

]
(dα1 . . . dαN)

= (2π)−N
∫
. . .
∫
exp

[
− α2

2 −
∑
jk(σ−1)jk(Mj − xj)(Mk − xk)

2

]
(dα1 . . . dαN)(3.32)

Because the jacobian

dk1 . . . dkN
dα1 . . . dαN

= dα1 . . . dαN
dk1 . . . dkN

= (Detσjk)−1/2

Gt({x}, t|{x′}, t′) = (2π)−N 1
(Detσjk)1/2

(∫
. . .
∫
exp(−α

2

2 )dα1 . . . dαN

)

× exp
[
− 1

2
∑
jk

(σ−1)jk(Mj − xj)(Mk − xk)
]

= (2π)−N 1
(Detσjk)1/2

(∫
exp(−α

2

2 )dα
)N

exp

[
− 1

2
∑
jk

(σ−1)jk(Mj − xj)(Mk − xk)
]

= (2π)−N/2(Detσjk)−1/2exp

[
− 1

2
∑
jk

(σ−1)jk(xj −Mj)(xk −Mk)
]

(3.33)
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but Mj(t− t′) = Tjk(t− t′)x′k where Tjk(t) = δij.
Hence the general solution is:

Gt({x}, t|{x′}, t′) = (2π)−N/2(Detσjk)−1/2exp

[
− 1

2
∑
jk

(σ−1)jk(xj − Tjk(t− t′)x′k)(xk − Tkl(t− t′)x′l)
]
(3.34)

Since {x} and {x′} are vectors of co-ordinates
(
x
v

)
and

(
x0
v0

)
and N = 2 then the

general solution is written:

Gt({x}, t|{x}, t′) = (2π)−1(Detσjk)−1/2exp

[
− 1

2(σ−1)xx(x− x(t))(x− x(t))− 1
2(σ−1)xv(x− x(t))

(v − v(t))− 1
2(σ−1)vx(v − v(t))(x− x(t))− 1

2(σ−1)vv(v − v(t))(v − v(t))
]
(3.35)

where σxx, σvv ,σxv and σvx are the moments of order 2.
The Green function or propagator or probability density for propagation from the

initial values x0, v0 to x, v in a time t will play a central role in our calculations of the
residence time. Calculations of averages < ∆x >, < ∆v >, < (∆x)2 >, < (∆v)2 >.

〈∆x〉 = 〈x(t)− x0〉

= v0t+
∫ t

0
(t− t′)〈η(t′)〉dt′

= v0t (3.36)

〈∆v〉 = 〈v(t)− v0〉

=
∫ t

0
(t− t′)〈η(t′)dt′〉

= 0 (3.37)

〈(∆x)2〉 = 〈(x(t)− x0)2〉

= 〈(v0t+
∫ t

0
(t− t′)η(t′)dt′)(v0t+

∫ t

0
(t− t1)η(t1)dt1)〉

= (v0t)2 +
∫ t

0
dt′
∫ t

0
(t− t′)(t− t1)〈η(t′)η(t1)dt1〉

= (v0t)2 + 2γ
∫ t

0
dt′(t− t′)2

= (v0t)2 + 2γt3
3 (3.38)
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〈(∆v)2〉 = 〈(v(t)− v0)2〉

= 〈(
∫ t

0
η(t′)dt′)(

∫ t

0
η(t1)dt1)〉

=
∫ t

0
dt′
∫ t

0
〈η(t′)η(t1)dt1〉

= 2γt (3.39)

σij = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉
= 〈xixj〉 − 〈xi〉〈xj〉

Thus,

σxx = 〈(∆x)2〉 − (〈∆x〉)2

= 2γt3
3 (3.40)

σvv = 〈(∆v)2〉 − (〈∆v〉)2

= 2γt (3.41)

σxv = 〈(∆x∆v)〉 − 〈∆x〉〈∆v〉

= 〈(v0t+
∫ t

0
(t− t′)η(t′)dt′)(

∫ t

0
η(t1)dt′)〉

= v0t
∫ t

0
〈η(t1)〉dt′ +

∫ t

0
dt′
∫ t

0
(t− t′)〈η(t′)η(t1)〉dt′

= 2γt2 (3.42)

then σxv = σvx = 2γt2
Thus

σ =
(
σxx σxv
σvx σvv

)

σ =
(

2γt3
3 γt2

γt2 2γt

)
(3.43)

Detσ = σxxσvv − σxvσvx

= γ2t4

3
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The inverses of σ gives:

σ−1 = 1
Detσ

(
σvv −σxv
−σvx σxx

)

σ−1 =
( 6

γt3
− 3
γt2

− 3
γt2

2γt

)
(3.44)

Thus according to the equation (3.35) elements of the diffusion coefficient D are:

D = 1
2

(
(σ−1)xx (σ−1)xv
(σ−1)vx (σ−1)vv

)

and taking into account the fact that {x} and {x′} are vectors of co-ordinates
(
x
v

)
and(

x0
v0

)
and N = 2 and also that x(t) =< x >= x0 + v0t and v(t) =< v >= v0 the general

solution of the Fokker-Planck equation (3.35) at several variables is written:

Gt({x}|{x′}) = (2π)−1(3)1/2γ−1t−2exp

[
− 3
γt3

(x− x0 − v0t)2 − 3
γt2

(x− x0 − v0t)(v − v0)− 1
γt

(v − v0)2
]

= (2π)−1(3)1/2γ−1t−2exp

{
− 3t−3

γ

[
(x− x0 − v0t)(x− x0 − vt) + t2

3 (v − v0)2
]}

(3.45)

which is the free propagator or the Green function for our process and γ is the damping
coefficient.

For γ = 1 then the Green function takes the form:

Gt({x}|{x′}) = (2π)−1(3)1/2t−2exp

[
− 3
t3

(x− x0 − v0t)2 − 3
t2

(x− x0 − v0t)(v − v0)− 1
t
(v − v0)2

]

= (2π)−1(3)1/2t−2exp

{
− 3t−3

[
(x− x0 − v0t)(x− x0 − vt) + t2

3 (v − v0)2
]}

(3.46)

3.2.1 Solution of the moment equations
Observe that Eq. (3.24) have the same structure, namely,

∂

∂t
〈TmA 〉t(x0, v0) = v0

∂

∂x0
〈TmA 〉t(x0, v0) + γ

∂2

∂v2
0
〈TmA 〉t(x0, v0) + a(x0, v0, t) (3.47)

where a(x0; v0; t) = mV (x0)〈Tm−1
A 〉t is a source term depending at most on moments of

order m− 1 is a source term depending at most on moments of order m− 1. The initial
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condition is 〈TmA 〉0(x0, v0) = 0, stemming from TA(t = 0|x0; v0) = 0. Equations of this
form have an explicit solution

〈TmA 〉(x0, v0) =
∫ t

0
dt′
∫
dx′

∫
dv′a(x′, v′, t)Gt−t′(x′, v′;x0, v0). (3.48)

where Gt(x; v;x0; v0) is the Green’s function satisfying
∂

∂t
Gt(x, v;x0, v0) = v0

∂

∂x0
Gt(x, v;x0, v0) + γ

∂2

∂v2
0
Gt(x, v;x0, v0), (3.49)

with initial condition Gt(x, v;x0, v0) = δ(x− x0)δ(v− v0) and boundary conditions on x0
and v0 depending on the problem at hand.

0 t

0

x

x
t

T+
T�
�
+

Figure 3.1: Possible trajectory of a randomly accelerated particle moving on the x axis
with position x0 and velocity v0 at t0 = 0. The residence time T+(t|x0, v0) of the trajectory
is the time spent by the particle on the positive half axis in a total time of observation t.
Note that T− = t− T+.

3.2.2 Moments of the residence time on the half-line
To fix the ideas, we would like to compute the moments of the residence time in the
positive half-axis for a random acceleration process starting from arbitrary x0 and v0. A
sketch of this process is given in Fig. 3.1. By identifying each term in the equations above,
for the average residence time 〈T+〉t(x0; v0) we have

〈T+〉t(x0; v0) =
∫ t

0
dt′
∫
dx′

∫
dv′Gt−t′(x′, v′;x0, v0) (3.50)

The integrals over x′ and v′ can be carried out, which yields

〈T+〉t(x0, v0) = t

2 + 1
2

∫ t

0
dt′erf

[√
3 (v0(t− t′) + x0)
2√γ(t− t′)3/2

]
. (3.51)
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For the special case where x0 = 0 and v0 = 0, we obtain

〈T+〉t(x0 = 0, v0 = 0) = t

2 , (3.52)

as expected on physical grounds because of the apparent symmetry of the process around
the starting point.

As for the second moment, the calculations are more involved. The expression reads

〈T 2
+〉t(x0; v0) = t

2

∫ t

0
dt′
∫
dx′

∫
dv′

∫ t′

0
dt′′

∫
dx′′

∫
dv′′Gt′−t′′(x′′, v′′;x′, v′)Gt−t′(x′, v′;x0, v0),

(3.53)
For the special case where x0 = 0 and v0 = 0, the calculation can be carried out explicitly.
One has to first integrate over dv′′ and dv′ (which is made possible by resorting to the
fact that the Green’s function has a Gaussian shape and that integral of the product of
Gaussian functions is still a Gaussian function), and then over dx′′ and dx′. This yields

〈T 2
+〉t(x0 = 0; v0 = 0) = t2

4 + 1
π

∫ t

0
dt′
∫ t′

0
dt′′tan−1


√

t−t′
3t−t′−4t′′ (2t− t′ − 3t′′)

t− t′

 (3.54)

The integral over t′′ and t′ can be also performed explicitly, and the final result reads

〈T 2
+〉t(x0 = 0; v0 = 0) = 3

√
3

4π t2 ' 0.413497t2. (3.55)

It is interesting to compare the exact results (3.52) and (3.55) for the first and second
moments of the residence time T+ with the corresponding moments of the time Tm at
which the randomly accelerated particle makes its maximum excursion. As mentioned
above, for regular Brownian motion the cumulative distributions of T+ and Tm coincide
and are given by Lévy’s arcsine law [46].

In [45], the cumulative distribution of Tm was derived analytically for the class of
trajectories of a randomly accelerated particle which begin and end with velocity vi =
vf = 0. For this class of trajectories the random acceleration process corresponds to the
integral of a Brownian bridge, and the cumulative distribution of the rescaled variable
z = Tm/t is given by

I 1
4 ,

1
4
(z) =

Γ(1
2)

Γ(1
4)Bz

(
1
4 ,

1
4

)
(3.56)

in terms of the incomplete beta function Bz(p, q) =
∫ z

0 x
p−1(1−x)q−1dx. The nth moment

of Tm for this cumulative distribution is

〈T nm〉 = tn
∫ 1

0
dzzn

d

dz
I 1

4 ,
1
4
(z) =

Γ(1
2)

Γ(1
2 + n)

Γ(1
4 + n)
Γ(1

4) tn, (3.57)
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which implies

〈Tm〉 = t

2 , 〈T 2
m〉 = 5

12t
2 ' 0.416667t2 (3.58)

for the first and second moments. Comparing equations (3.52), (3.55) and (3.58), we see
that the first moments of T+ and Tm coincide and that the second moments differ, but
by a small amount, less than 1◦/◦. Clearly, the cumulative distribution of T+/t is not
given exactly by the expression in equation (3.56), even though it appears to provide a
very good approximation. The comparison between the distribution of the occupation
time T+ and the beta distribution has been considered by other researchers in the past
( [120,121]).
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Figure 3.2: First two moments of the residence time T+ for a randomly accelerated particle
with initial conditions x0 = 0 and v0 = 0 as a function of the total time of observation
t. The square and round points show our Monte Carlo results for the first and second
moments, respectively, for t = 20, . . . , 27. Each point represents an average over 106

realizations, and the error bars are smaller than the sizes of the points. The solid lines
indicate the analytical predictions given by Eq.(3.52) and Eq.(3.55) for the first two
moments.

3.3 Numerical results of the residence time
To illustrate the results derived in the subsection 3.2.2, we have also studied the residence
time T+ of a randomly accelerated particle with Monte Carlo simulations. In the simula-
tions the particle moves according to a discrete version of equations (3.1) and (3.2) given
by
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xt′+∆t = xt′ + vt′∆t (3.59)
vt′+∆t = vt′ + ηt′∆t. (3.60)

where ηt′ are independant and identically distributed(i.i.d). Gaussian numbers with zero
mean and variance 2γ∆t = 10−4. Let us set γ = 1 in the simulations. Initial conditions
are chosen in agreement with the definitions above, namely, xt=0 = vt=0 = 0. Our Monte
Carlo results for the first two moments of the residence time, based on 106 realizations
are compared with the exact analytical results in equations (3.52) and (3.55) in Fig. 3.2.
The agreement is excellent.

t
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Figure 3.3: Results for the prefactor of the second moment T 2
+. We computed the ratio

T 2
+/t

2 for larger value of t from Monte Carlo simulations, as described in Sec. 3.3. The
points indicate the averages of 106 realizations, and the solid line shows the prefactor
3
√

3/(4π) in Eq. (3.55).

The non-trivial prefactor (3.55) for the second moment has been carefully checked
by resorting to Monte Carlo simulation. Setting ∆t = 1 in equations (3.59) and (3.60)
and performing 106 realizations, we have numerically computed the ratio T 2

+/t
2 for the

discretized version of the random acceleration model with the same initial conditions as
above and 106 realizations. By setting dt = 1 and letting t grow, the ratio asymptotically
saturates for large t at the predicted value indistinguishable from 3

√
3/(4π) given by

(3.55), as shown in Fig. 3.3.
As a final numerical test concerning the residence time distribution, we have computed

by Monte Carlo simulation the complete cumulative distribution P (z) of the rescaled
residence time z = T+/t numerically. In a previous work [45], Alberto Rosso et al.
had explicitly computed the cumulative distribution for the time at which the maximum
excursion occurs in a random acceleration process with a condition on the final velocity vf
of the process, namely vf = 0. In this case, the random acceleration process corresponds
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Figure 3.4: Difference of the cumulative distribution P (z) of the rescaled residence time
z = T+/t, obtained by Monte Carlo simulations, and the distribution I1/4,1/4(z) given in
Eq. (3.61). By refining the mesh size for the Monte Carlo simulations (blue: 104 steps;
red: 4× 104 steps), the difference converges to an asymptotic shape and does not shrink
to zero.

to the integral of a Brownian bridge, and the cumulative distribution reads I1/4,1/4(z) for
the rescaled variable z = Tm/t, I1/4,1/4(z) being the normalized incomplete Beta function

I1/4,1/4(z) = Γ(1/2)
Γ2(1/4)Bz(1/4, 1/4), (3.61)

with Bz(p, q) =
∫ z

0 x
p−1(1−x)q−1dx the incomplete Beta function. The difference between

the Monte Carlo result for P (z) and the cumulative distribution I1/4,1/4(z) in equation
(3.61) is plotted in figure 3.4. From the figure it is clear that the two distributions are
different but that the difference is small.

3.4 Conclusion
In summary, in this chapter, we presented the results and discussions made on the study
of the residence time of the random acceleration process. We have considered the resi-
dence time statistics of a randomly accelerated particle moving in one dimension. After
deriving evolution equations for the generating function and moments of the residence
time; we calculated the first two moments of the time T+ on the positive half line exactly.
Comparing these exact results with those for the first and second moments of the time Tm
at which the particle makes its maximum excursion, we conclude that the distributions of
T+ and Tm are very similar but not identical, in contrast to the case of ordinary Brownian
motion. Our Monte Carlo simulations of randomly accelerated motion are in excellent
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agreement with our analytical results for the first two moments of T+ and confirm the
conclusion that T+ and Tm have very similar but not identical distributions.
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General Conclusion

Main results

In this thesis, the focus has been on the statistics of the residence time of the random
acceleration model. To undertake our study of residence time statistics, we have used as
an analytical tool, the Fokker-Planck equation associated with the natural and absorbing
boundary conditions, in order to have a well defined problem. From these boundary condi-
tions, we have found the solution of the probability density or Greenś function(propagator)
for the Fokker-Planck equation in the phase space (x, v) for propagation from (x0, v0) to
(x, v) in a time t.

As another analytical tool, we have used Feynman-Kac formulas which are useful to
investigate properties of partial differential equations in terms of appropriate stochastic
models, as well as to study probabilistic properties of Markov processes, by means of
related partial differential equations. In this part of our thesis, we have presented, as
numerical tools, the Monte Carlo methods, which are methods allowing us to solve many
insoluble problems such as, for example the evaluation of integrals on complex and/or
large-sized fields; the calculation of functional stochastic process, or exploration of com-
plex probability distributions.

In this thesis, we have considered the residence time statistics of a randomly ac-
celerated particle moving in one dimension. After deriving evolution equations for the
generating function and moments of the occupation time, we have calculated the first
two moments of the residence time T+ on the positive half line exactly. Comparing these
exact results with those for the first and second moments of the time Tm, at which the
particle makes its maximum excursion, we conclude that the distributions of T+ and Tm
are very similar but unidentical, in contrast to the case of ordinary Brownian motion. Our
Monte Carlo simulations of randomly accelerated motion are in excellent agreement with
our analytical results for the first two moments of T+, and has confirmed the conclusion
that T+ and Tm have very similar but not identical distributions. This conclusion follows
from the exact results for the moments of the distributions and is also consistent with our
Monte Carlo simulations.
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Future works
At the end of the work done in this thesis, there emerges and suggests several interesting
perspectives for further investigation. It is natural to wonder what happens to residence
time statistics of the random acceleration model at the higher order. From this point of
view, it would be interesting to continue our study by calculating the higher moments of
the residence time T+ and its exact distribution.

Thanks to the knowledge of Fokker-Planckś equations, it would also be interesting
in the future to study this new track, namely the dynamics of DNA bubbles formed in
double stranded DNA, of which we began the developments without completing it(see
Appendix A.2), as well as its distribution.
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A.1 Appendix to Chapter 3

A.1.1 Feynman-Kac equation for the generating function
Let us start with a single particle in x0 with velocity v0 at time t = 0. Consider a total
observation time t + dt, with dt arbitrary small. Since the process is Markovian with
respect the extended phase space (x, v), we can decompose the total observation time
[0, t+ dt] in a first interval between t = 0 and t = dt, and then a second interval between
dt and the final time t+ dt, which yields

Qt+dt(s|x0, v0) = 〈e−sTA(t+dt|x0,v0)〉

= 〈e−s
∫ dt

0 V (x(t′))dt′e−s
∫ t+dt
dt

V (x(t′))dt′〉. (A.1)

By supposing that dt is small, the first term can be evaluated to be

e−s
∫ dt

0 V (x(t′))dt′ ' e−sV (x(dt))dt = e−sV (x0)dt. (A.2)

We realize that this term is actually completely deterministic and can be then singled out
from the bracket signs:

Qt+dt(s|x0, v0) = e−sV (x0)dt〈e−s
∫ t+dt
dt

V (x(t′))dt′〉. (A.3)
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We can then rearrange the integral by translating back by dt the time interval:

Qt+dt(s|x0, v0) = e−sV (x0)dt〈e−s
∫ t

0 V (x(t′))dt′〉
= e−sV (x0)dt〈Qt(s|x0 + ∆x, v0 + ∆v)〉, (A.4)

where ∆x is the displacement of the coordinate x from the initial condition x0, and
similarly ∆v is the velocity increment from the initial condition v0 during the time interval
dt. We can now use the Taylor expansion of the function Qt(s|x0 + ∆x, v0 + ∆v) for small
∆x and ∆v: we have

Qt(s|x0 + ∆x, v0 + ∆v) = Qt(s|x0, v0) + ∆x ∂

∂x0
Qt(s|x0, v0)

+∆v ∂

∂v0
Qt(s|x0, v0) + 1

2(∆v)2 ∂
2

∂v2
0
Qt(s|x0, v0) + · · ·

Observe that 〈∆x〉 = v0dt, 〈∆v〉 = 0 and 〈(∆v)2〉 = γdt. Then, by taking the limit for
dt→ 0 and retaining the terms of the order of dt at most, Eq. A.4 finally yields

∂

∂t
Qt = v0

∂

∂x0
Qt + γ

∂2

∂v2
0
Qt − sV (x0)Qt, (A.5)

which is a backward equation, the derivatives acting on the initial coordinates x0 and v0.

A.2 Appendix to section future works

A.2.1 Dynamics of a bubble formed in double stranded DNA.
We study the dynamics of a tagged base-pair in double stranded DNA; we calculate the
drift force which acts on the tagged base-pair using a potential model that describes
interactions at base pairs level and use it to construct a Fokker-Planck equation. We use
the simple potential model of Joyeux-Buyukdagli(JB) [122] to represent the interaction
in dsDNA at base pairs level. The potential of the model is written as

U(yN) = D
∑
n

(1− e−αyn)2 + ∆H
2

∑
n

{1− e−b(yn−yn−1)2}+Kb(yn − yn−1)2. (A.6)

where N is the number of base pairs, summation on the r.h.s is over all base pairs of
the molecule and yN = {yn}, the set of relative base pairs separation. The first term
of Eq.(A.7) is the Morse potential 1 that represents the stacking interaction between the
bases of the opposite strands and the second term is the JB potential 2.

1D denotes the dissociation energy; the parameter α homogeneous to the inverse of a length; and yn

is the displacement that stretches the hydrogen bonds.
2this potential represents the stacking interaction between adjacent base pairs. ∆H

2 is a Gaussian hole
of depth; Kb is a constant.
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The potential felt by the tagged base pair at a separation y from the ground state
y = 0 is found from the relation

V (y) = −kBT [lnZn(y0)− lnZn(0)]. (A.7)

where

Zn(y) =
∫ ∏N

i=1 dyiδ(yn − y)exp[−βU(yN)]
Zn(0) =

∫ ∏N
i=1 dyiδ(yn − 0)exp[−βU(yN)]

δ(yn − y) = ∑
i Φ∗i (yN)Φi(y0).

are the constrained partition function integrals; δ is the Dirac function and β = (kBT )−1.
For the JB model, the calculation of a partition function integral reduces to multipli-

cation of N matrices.
The dynamic of the base pair may described by the Langevin equation. Indeed,invoking

Newtonś law of motion and neglecting the inertial effects, we obtain

∑
~fext = m~a ⇐⇒ ~0 = ~Fd + ~Fdrift + ~Ff

⇐⇒ γ
dy

dt
= Fdrift + Ff

⇐⇒ dy

dt
= −1

γ

dV (y)
dy

+ ξ

⇐⇒ dy

dt
= −βD + ξ(t); < ξ(t)ξ(t′) >= 2Dδ(t− t′) (A.8)

here 1
γ
is a transport coefficient of dimension time/mass; β is a thermodynamic con-

stant 3an D is the diffusion coefficient. Eq.(A.8) describes a one-dimensional random
walk in a potential V(y).

As we have seen before, the current corresponding to the above Langevin equation is

J = Jdiff + Jdrift

= Fc
γ
ρ(y, t)−D∂ρ(y, t)

∂y
(A.9)

Using the continuity equation ∂ρ(y,t)
∂t

+ ∂J
∂y

= 0 this then leads to the following equation
for ρ(y, t)

3β = 1
kBT where kB is the Boltzmann constant; and T the temperature.
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∂ρ(y, t)
∂t

= − ∂

∂y

[
Fc
γ
ρ(y, t)−D∂ρ(y, t)

∂y

]
⇒ ∂ρ(y, t)

∂t
= − ∂

∂y

{
βD

[
∂V (y)
∂y

ρ(y, t)
]
−D∂ρ(y, t)

∂y

}

⇒ ∂ρ(y, t)
∂t

= D
{
∂

∂y

[
− ∂βV (y)

∂y
ρ(y, t)

]
+ ∂2ρ(y, t)

∂y2

}
(A.10)

then the Fokker-Planck equation corresponding to A.10 is found to be

∂ρ(y, t)
∂t

= D
{
∂

∂y

[
− ∂βV (y)

∂y
ρ(y, t)

]
+ ∂2ρ(y, t)

∂y2

}
(A.11)

where ρ(y, y0; t) is the probability density of the random walkers.
We assume that if separation y reduces to zero at time t’, it will not contribute to

autocorrelation function defined as C(t) =< y(t)y(0) > − < y >2 for t>t’ and similarly
any new fluctuational opening which appear after t = 0 will not contribute to c(t).

Thus for purposes of computing the autocorrelation function we place an absorbing
wall at y = 0, i.e. ρ(y = 0, t) = 0. In addition to this, we may require ρ(y = L, t) = 0,
where L depends on the size of the double stranded DNA molecule or on any other
condition which limits the size of the bubble.

The problem of calculating the autocorrelation function C(t) therefore reduces to find-
ing how many walkers of an ensemble of random walkers distributed according to thermal
equilibrium at t = 0 are still present at time t and have not been absorbed by the wall at
y = 0.

We express ρ(y, y0; t) in terms of eigenfunctions.
let us set

ρ(y, t) = exp[−βV (y)/2]ψ(y, t) (A.12)
and use it in Eq.( A.11) we have

−∂ψ
∂t

= Lψ, L = − ∂2

∂y2 + v(y) (A.13)

where

v(y) = 1
4

[
∂βV (y)
∂y

]2
− 1

2

[
∂2βV (y)
∂y2

]
(A.14)

Which is the time Schrödinger equation for a particle of mass 1/2 in the potential v(y).
Let φk denote the eigenfunctions of the operator L, Lφk = Ekφk, with φk(y = 0) = 0 and∫
dyφ∗k(y)φk′(y) = δkk′ .
Then

ψ(y, t) = Σkakφke
−Ekt (A.15)
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where

ak =
∫ ∞

0
ψ(y, t = 0)φ∗k(y)dy (A.16)

If we start with a random walker at y = y0 at t = 0, then ρ(y, t = 0) = δ(y − y0,
and, from Eq.( A.12), ψ(y, t = 0) = eV (y)/2δ(y − y0). Equation ( A.16) then gives ak =
exp[V (y0)/2]φ∗k(y0). The Green’s function, i.e., the probability density that this random
walker will be at position y at time t, is found to be

ρ(y, t|y0, t = 0) = e−βV (y)/2ψ(y, t|y0, t = 0)
=
∑
k

e−β[V (y)−V (y0)]/2φ∗k(y0)φk(y)e−Ekt. (A.17)

For an initial distribution, we choose the Boltzmann function

B(y) = Aexp(−βV (y)), (A.18)

where A = 1/
∫ L

0 dyexp(−βV (y)) is a normalization factor. If we start with the equi-
librium function at time t = 0, the distribution function at time t, ρ(y, t) is

ρ(y, t) =
∫ L

0
dyG(y, t|y0, t) (A.19)

where G(y, t|y0, t) is the weighted Green’s function define by

G(y, t|y0, t) ≡ Ae−βV (y)ρ(y, t|y0, t = 0)
= Ae−β[V (y)−V (y0)]/2∑

k

φ∗k(y0)φk(y)e−Ekt. (A.20)

Then the survival probability for this random walker is

P (y, t) =
∫ L

0
dyρ(y, t|y0, t)

= A
∑
k

e−Ekt
∫ L

0
dy0exp

[
− βV (y) + V (y0)

2

]
. (A.21)

The weighted survival probability is

P̄ (y, t) ≡ Ae−βV (y)P (y, t) =
∫ L

0
dyG(y, t|y0, t), (A.22)

where P (y, t) is the unweighted survival probability given in Eq.( A.23). The right-hand
sides of Eqs.( A.19) and ( A.22) are equal to each other, thus P̄ (y, t) = ρ(y = y0, t),
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because of the symmetry in G(y, y0; t), where we found the autocorrelation function as
follows

C(t) =
∫ L

0
dyP̄ (y, t)

=
∫ L

0
dyρ(y, t)

= A
∑
k

e−Ekt
∣∣∣∣ ∫ L

0
e−βV (y)/2φk(y)dy

∣∣∣∣2. (A.23)

The values of φk(y) and Ek of the operator L in equation ( A.13) are determined
numerically using the numerical matrix multiplication (NMM) method developed in [123].

96



References

[1] K. Huang, Introduction to Statistical Physics, Second Edition; CRC Press Book
(2009).

[2] C. Texier, Physique statistique: des processus élémentaires aux phénomènes collec-
tifs, Université Paris-Sud-XI (Mai 2014).

[3] J. L. Raimbault. Introduction à la physique statistique des systèmes hors de l’ équili-
bre. Université Paris-Sud-XI (2008)

[4] V. Demry. Physique Statistique Hors Equilibre. ESPCI, Paris, France. (2015).

[5] J. S. Lind Allen. An Introduction to Stochastic processes with Applications to Biol-
ogy, Second Edition, Chapman and Hall/CRC Press (2010).

[6] S. Ditlevsen. Introduction to Stochastic Models in Biology, Springer (2013).

[7] M. Iosifescu, P. Tautu. Stochastic processes an Applications in Biology and Medicine
II, Springer Verlag (1973).

[8] V. Capasso, D. Bakstein. An Introduction to Continuous-time Stochastic processes,
Springer (2012).

[9] E. Wong, B. Hajik. Stochastic processes in Engineering systems. Springer (1985).

[10] A. Pavliotis, Grigorics. Stochastic processes and Applications, Springer Verlag (2014).

[11] Theory and Applications of Stochastic processes, Springer (2010).

[12] D. N. Shanbhang, C. R. Rao. Stochastic processes: Modelling and Simulation, Elsvier
(2003).

[13] L. Lakatis, L. Szeidl, M. Teleck. Introduction to Queueing systems with telecommu-
nication: Applications, Springer (2013).

97



REFERENCES

[14] J. K. Sengupto. Stochastic processes in Economic Models, Springer (1986).

[15] M. Kijima. Stochastic processes with Applications to Finance, Second Edition, Chap-
man and Hall/CRC Press (2013).

[16] D. Gusak, A. Kukush, A. Kulik, A. Pilipenko. Stochastic processes with Applications
to Financial Mathematics and Risk Theory, Springer (2010).

[17] H. Risken. The Fokker-Planck Equation: Methods of solution and Applications, 2nd
edn; Springer(1989).

[18] C. Aslangul. Physique Statistique des fluides classique, Lecture Notes in physics
(2005-2006)

[19] L. E. Reichl. A Modern Course in Statistical Physics. University of Texas Press,
Austin, (1991).

[20] R. Kubo, M. Toda, N. Hashitsume. Statstical Physics II : Nonequilibrium Statistical
Mechanics. Springer Verlag (1991).
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Abstract. The random acceleration model is one of the simplest non-Markovian 
stochastic systems and has been widely studied in connection with applications in 
physics and mathematics. However, the occupation time and related properties 
are non-trivial and not yet completely understood. In this paper we consider 
the occupation time T+ of the one-dimensional random acceleration model on 
the positive half-axis. We calculate the first two moments of T+ analytically 
and also study the statistics of T+ with Monte Carlo simulations. One goal of 
our work was to ascertain whether the occupation time T+ and the time Tm 
at which the maximum of the process is attained are statistically equivalent. 
For regular Brownian motion the distributions of T+ and Tm coincide and are 
given by Lévy’s arcsine law. We show that for randomly accelerated motion the 
distributions of T+ and Tm are quite similar but not identical. This conclusion 

H J Ouandji Boutcheng et al

Occupation time statistics of the random acceleration model

Printed in the UK

053213

JSMTC6

© 2016 IOP Publishing Ltd and SISSA Medialab srl

2016

2016

J. Stat. Mech.

JSTAT

1742-5468

10.1088/1742-5468/2016/5/053213

PaPer: Classical statistical mechanics, equilibrium and non-equilibrium

5

Journal of Statistical Mechanics: Theory and Experiment

© 2016 IOP Publishing Ltd and SISSA Medialab srl

ournal of Statistical Mechanics:J Theory and Experiment

IOP

1742-5468/16/053213+10$33.00

mailto:andrea.zoia@cea.fr
http://stacks.iop.org/JSTAT/2016/053213
http://dx.doi.org/10.1088/1742-5468/2016/05/053213
http://crossmark.crossref.org/dialog/?doi=10.1088/1742-5468/2016/5/053213&domain=pdf&date_stamp=2016-05-31
publisher-id
doi


Occupation time statistics of the random acceleration model

2doi:10.1088/1742-5468/2016/05/053213

J. S
tat. M

ech. (2016) 053213

1. Introduction

A variety of systems in physics, in the life and social sciences, and in engineering can 
be modeled in terms of particles traveling in a host medium which randomly change 
their state (position, direction, energy, etc) in collisions with other particles or with 
the medium itself. The nature of the randomness may vary widely from one system 
to another. It may result either from the intrinsic stochastic nature of the underlying 
process or from uncertainty [1]. Some transport phenomena, while originating in deter-
ministic and reversible events, can in practice only be described by resorting to the 
laws of probability.

A prominent example of such a stochastic system is the random acceleration model, 
which has been studied both in physics and mathematics. In physics it appears, for 
example, in the continuum description of the equilibrium statistics of a semiflexible 
polymer chain with non-zero bending energy [2]. It also describes the steady state 
profile of a (1  +  1)-dimensional Gaussian interface [3] with dynamical exponent z  =  4 in 
the continuum version of the Golubovic–Bruinsma–Das Sarma–Tamborenea model [4]. 
In addition, the random acceleration process arises in the description of the statistical 
properties of the Burgers equation with Brownian initial velocity [5].

The random acceleration model is a non-trivial, non-Markov model, which is both rel-
evant to real-world applications and simple enough so that it can be studied analytically. 
The first-passage properties and related properties have been investigated extensively 
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follows from the exact results for the moments of the distributions and is also 
consistent with our Monte Carlo simulations.
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over the last few decades [2, 3, 6–14]. Recently, the extreme-value statistics of the  process 
was analyzed, with special emphasis on the global maximum in a given time interval  
[2, 15, 16] and the time at which the global maximum is reached [17]. However, the occu-
pation time statistics of random acceleration is still not understood in detail.

The occupation time in stochastic systems was first considered by mathematicians 
[18–21] and has more recently been investigated in physical systems with continu-
ous degrees of freedom and in connection with persistence (see [22, 23] and references 
therein). In this paper we consider a randomly accelerated particle moving in one 
dimension on the infinite x axis and study the occupation time T+ on the positive x 
axis. We calculate the first two moments of T+ analytically and also study the statistics 
of T+ with Monte Carlo simulations. One of our aims was to learn whether the occupa-
tion time T+ of the randomly accelerated particle and the time Tm at which it attains 
its maximum displacement are statistically equivalent. Both our analytical and Monte 
Carlo results indicate that this is not the case. This is in contrast to regular Brownian 
motion, where the distributions of T+ and Tm coincide and are given by Lévy’s cel-
ebrated arcsine law [18, 24].

The paper is structured as follows: in section 2, we derive partial dierential equa-
tions which determine the moment generating function and the moments of the occupa-
tion time. In section 3 the first two moments of the occupation time T+ are calculated 
explicitly and compared with the corresponding moments of the time Tm at which the 
randomly accelerated particle makes its maximum excursion. In section 4 we study the  
moments of T+ and its distribution with Monte Carlo simulations and compare  
the results with our analytic predictions for the first two moments of T+ and with exact 
results [17] for the distribution of Tm. Section 5 contains concluding remarks. Some 
calculational details pertaining to section 2 are given in the appendix.

2. Dierential equations for analyzing the occupation time

The randomly accelerated particle we consider moves in one dimension according to 
the equations of motion

=
x

t
v

d

d
, (1)

( )η=v

t
t

d

d
. (2)

Here x (t) is the position of the particle, v (t) is its velocity, and ( )η t  is Gaussian white 
noise, with ⟨ ( )⟩η =t 0 and ⟨ ( ) ( )⟩ ( )η η γδ= −′ ′t t t t2 , γ> 0. The initial conditions at time 
t  =  0 are x (0)  =  x0 and v (0)  =  v0.

The occupation time ( )|T t x v,A 0 0 , i.e. the time the particle spends in a region A dur-
ing a total time of observation t, is formally expressed by the random variable

( ) ( ( ))∫| = ′ ′T t x v V x t t, d ,A

t

A0 0
0

 (3)
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where the marker function VA(x(t))  =  1 if ( )∈x t A and vanishes otherwise. In study-
ing the statistics of ( )|T t x v,A 0 0 , it is convenient to introduce the moment generating 
function

( ) ⟨ ⟩( )| = − |Q s x v, e ,t
sT t x v

0 0
,A 0 0 (4)

where s is the variable conjugate to TA and has the dimensions of inverse time. The 
moments of the occupation time can be obtained by dierentiating equation (4) with 
respect to s and then setting s  =  0, according to

⟨ ⟩ ( ) ( ) ( )= −
∂
∂

| | =T x v
s

Q s x v, 1 , .A
n

t
n

n

n t s0 0 0 0 0 (5)

The evolution of ( )|Q s x v,t 0 0  is governed by a backward partial dierential equa-
tion of the Fokker–Planck type, which is derived in the appendix and is given by

( )γ
∂
∂

=
∂
∂

+
∂
∂

−
t
Q v

x
Q

v
Q sV x Q .t t t A t0

0

2

0
2 0 (6)

Taking derivatives of equation (6) with respect to s and making use of equation (5) 
leads to the corresponding dierential equation

⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ( )⟨ ⟩γ
∂
∂

=
∂
∂

+
∂
∂

+ −

t
T v

x
T

v
T nV x TA

n
t A

n
t A

n
t A A

n
t0

0

2

0
2 0

1
 (7)

for the nth moment of the occupation time. Note that the rightmost term or source 
term in equation (7) depends on the moment of order n  −  1.

With the initial condition ⟨ ⟩ ( ) =T x v, 0A
n

0 0 0 , stemming from ( )= | =T t x v0 , 0A 0 0 , 
dierential equation (7) has the explicit solution

( ) ( ) ( ) ( )∫ ∫ ∫〈 〉 = 〈 〉′ ′ ′ ′ ′ ′ ′ ′
−∞

∞

−∞

∞
−

−′ ′T x v n t x v V x T x v G x v x v, d d d , , ; , .A
n

t

t

A A
n

t t t0 0
0

1
0 0

 
(8)

Here ( )G x v x v, ; ,t 0 0  is the Green’s function satisfying

( ) ( ) ( )γ
∂
∂

=
∂
∂

+
∂
∂t

G x v x v v
x

G x v x v
v

G x v x v, ; , , ; , , ; , ,t t t0 0 0
0

0 0

2

0
2 0 0 (9)

with initial condition ( ) ( ) ( )δ δ= − −G x v x v x x v v, ; ,0 0 0 0 0  and with boundary conditions 
that depend on the problem of interest.

The hierarchical relation (8) is the main result of this section that we will need 
below. It generates all the moments ⟨ ⟩ ( )T x v,A

n
t 0 0  for positive integer n recursively from 

the zeroth moment

⟨ ⟩ ( ) ( )= | | ==T x v Q s x v, , 1A t t s
0

0 0 0 0 0 (10)

implied by equations (4) and (5). We note that equation (8) also follows, without 
recourse to the dierential equations (6) and (7), from the definition (3) of TA and the 
interpretation of ( )G x v x v, ; ,t 0 0  as the probability density in the phase space (x, v) for 
propagation from ( )x v,0 0  to (x, v) in a time t.
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3. Occupation time on the half-line

For a particle which is free to move on the entire real axis, the Green’s function in 
equations (8) and (9) is given by [2]

( ) { [ ( )( )/( ) ( ) /( )]}
/

πγ
γ γ= × − − − − − + −G x v x v

t
x x vt x x v t t v v t, ; ,

3

2
exp 3 .t 0 0

1 2

2 0 0 0
3

0
2 

(11)

Let us focus on the occupation time ( )|+T t x v,0 0  that a randomly accelerated particle 
with initial position and velocity x0 and v0 spends on the positive half-axis [ )= +∞A 0,  
in a total time of observation t. The occupation time T+ for a possible trajectory of 
the particle is illustrated in figure 1. Combining equations (8), (10) and (11), we obtain

⟨ ⟩ ( ) ( )∫ ∫ ∫= ′ ′ ′ ′ ′+

∞

−∞

∞

− ′T x v t x v G x v x v, d d d , ; ,t

t

t t0 0
0 0

0 0 (12)

for the average occupation time. The integrals over ′x  and ′v  can be evaluated explic-
itly, yielding

⟨ ⟩ ( ) ( )
( ) /

⎡

⎣
⎢

⎤

⎦
⎥∫ γ

= +
+ −
−

′
′

′
+T x v

t
t

x v t t

t t
,

2

1

2
d erf

3

2
.t

t

0 0
0

0 0

3 2 (13)

In the special case x0  =  0 and v0  =  0, we obtain

⟨ ⟩ ( )= = =+T x v t0, 0
1

2
,t 0 0 (14)

as expected on physical grounds because of the symmetry of the process around the 
starting point.

According to equations (8) and (12), the second moment of T+ is given by

Figure 1. Possible trajectory of a randomly accelerated particle moving on the x 
axis with position x 0 and velocity v 0 at t 0  =  0. The occupation time ( )|+T t x v,0 0  of 
the trajectory is the time spent by the particle on the positive half axis in a total 
time of observation t. Note that = −− +T t T .

0 t

0

x

x
t

T+
T−
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( )

( ) ( )

∫ ∫ ∫ ∫

∫ ∫

″

″ ″ ″ ″

〈 〉 =

×

′ ′ ′

′ ′ ′ ′″

+

∞

−∞

∞

∞

−∞

∞

− −

′

′ ′

T x v t x v t

x v G x v x v G x v x v

, 2 d d d d

d d , ; , , ; , .

t

t t

t t t t

2
0 0

0 0 0

0
0 0

 

(15)

In the special case where x0  =  0 and v0  =  0, the integrals may be evaluated explicitly. 
First evaluating the Gaussian integrals over ″v  and ′v  and then integrating over ″x  and 
′x , we obtain

( ) ∫ ∫ ″
″

″ ″π
〈 〉 = = = +

+ −
−

−
+ −

′
′
′

′
′+

−
′ ⎡

⎣
⎢

⎤

⎦
⎥T x v

t
t t

t t t

t t

t t

t t t
0, 0

4

1
d d tan

2 3

3 4
.t

t t
2

0 0

2

0 0

1
 

(16)
The integrals over ″t  and ′t  can also be evaluated explicitly, and the final result is

⟨ ⟩ ( )
/

π
= = =+ �T x v t t0, 0

3

4
0.413 497 .t

2
0 0

3 2
2 2 (17)

It is interesting to compare the exact results (14) and (17) for the first and second 
moments of the occupation time T+ with the corresponding moments of the time Tm at 
which the randomly accelerated particle makes its maximum excursion. As mentioned 
above, for regular Brownian motion the cumulative distributions of T+ and Tm coincide 
and are given by Lévy’s arcsine law [18].

In [17], the cumulative distribution of Tm was derived analytically for the class 
of trajectories of a randomly accelerated particle which begin and end with velocity 
= =v v 0i f . For this class of trajectories the random acceleration process corresponds 

to the integral of a Brownian bridge, and the cumulative distribution of the rescaled 
variable /=z T tm  is given by

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

I z B
1

4
,
1

4
,z1

4
, 1
4

1

2

1

4

2

( )
( )

( ) =
Γ

Γ (18)

in terms of the incomplete beta function ( ) ( )∫= −− −B p q x x x, 1 dz
z p q

0

1 1 . The nth moment 

of Tm for this cumulative distribution is

⟨ ⟩ ( )
( )

( )

( )

( )∫= =
Γ

Γ +

Γ +

Γ
T t z z

z
I z

n

n
td

d

d
,n n n n

m
0

1

1
4
, 1
4

1

2
1

2

1

4
1

4

 (19)

which implies

⟨ ⟩ ⟨ ⟩= = �T t T t t
1

2
,

5

12
0.416 667m m

2 2 2
 (20)

for the first and second moments. Comparing equations (14), (17) and (20), we see that the 
first moments of T+ and Tm coincide and that the second moments dier, but by a small 
amount, less than 1%. Clearly, the cumulative distribution of T+ /t is not given exactly 
by the expression in equation (18), even though it appears to provide a very good approx-
imation. The comparison between the distribution of the occupation time T+ and the beta 
distribution has been considered by other researchers in the past: see, e.g. [26, 27].
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4. Monte Carlo simulations

We have also studied the statistics of the occupation time T+ of a randomly accelerated 
particle with Monte Carlo simulations. In the simulations the particle moves according 
to a discrete version of equations (1) and (2) given by

= + ∆+∆′ ′ ′x x v t,t t t t (21)

η= + ∆+∆′ ′ ′v v t.t t t t (22)

Here the η ′t  are independent and identically distributed (i.i.d.) Gaussian variables with 

zero mean and variance γ∆ = −t2 10 4. We set γ = 1 in the simulations and chose the 
initial conditions xt=0  =  0 and vt=0  =  0 considered above. Our Monte Carlo results for 
the first two moments of the occupation time, based on 106 realizations are compared 
with the exact analytical results in equations (14) and (17) in figure 2. The agreement 
is excellent.

We have also checked the prediction (17) for the second moment in another way. 
Setting ∆ =t 1 in equations (21) and (22) and performing 106 realizations, we computed 

the ratio T t2 2/+  for larger and larger values of t. As shown in figure 3, the ratio saturates 

for large t at a value indistinguishable from /( )/ π3 43 2 , in agreement with equation (17).
In addition to these studies of the first and second moments, we have determined 

the complete cumulative distribution P (z) of the rescaled occupation time z  =  T+ /t 
numerically, from Monte Carlo simulations. The dierence between the Monte Carlo 

result for P (z) and the cumulative distribution ( )I z,1
4

1
4

 in equation (18) is plotted in 
figure 4. From the figure it is clear that the two distributions are dierent but that the 
dierence is small. This is the same conclusion we reached in section 3 on comparing 
exact results for the first and second moments of T+ and Tm.

Figure 2. First two moments of the occupation time T+ for a randomly accelerated 
particle with initial conditions x0  =  0 and v0  =  0 as a function of the total time 
of observation t. The square and round points show our Monte Carlo results for 

the first and second moments, respectively, for = …t 2 , , 20 7. Each point represents 
an average over 106 realizations, and the error bars are smaller than the sizes of 
the points. The solid lines indicate the analytical predictions (14) and (17) for the 
moments.
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5. Conclusions

In this paper we have considered the occupation time statistics of a randomly accel-
erated particle moving in one dimension. After deriving evolution equations for the 
generating function and moments of the occupation time, we calculated the first two 
moments of the occupation time T+ on the positive half line exactly. Comparing these 
exact results with those for the first and second moments of the time Tm at which the 
particle makes its maximum excursion, we conclude that the distributions of T+ and 
Tm are very similar but not identical, in contrast to the case of ordinary Brownian 
motion. Our Monte Carlo simulations of randomly accelerated motion are in excellent 

Figure 3. Results for the pre-factor of the second moment +T 2 . We computed the 

ratio T t2 2/+  from Monte Carlo simulation, as described in section 4. The points 

indicate the averages of 106 realizations, and the solid line shows the prefactor 

/( )/ π3 43 2  in equation (17).

t

T 2
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Figure 4. Dierence of the cumulative distribution P (z) of the rescaled occupation 
time z  =  T+ /t, determined by Monte Carlo simulations, and the cumulative 

distribution ( )I z,1
4

1
4

 given in equation (18). On increasing the number of steps in 
the Monte Carlo simulations (blue: 104 steps; red: ×4 104 steps), the dierence 
converges to a non-trivial asymptotic shape and does not shrink to zero.
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agreement with our analytical results for the first two moments of T+ and confirm 
the conclusion that T+ and Tm have very similar but not identical distributions. The 
calcul ation of higher moments of T+ and its exact distribution are challenging problems 
for future study.

Appendix. Derivation of dierential equation (6) for the generating function

Considering a particle with position x 0 and velocity v 0 at time t  =  0 and following stan-
dard steps in deriving dierential equations satisfied by path integrals (see, for example, 
[2, 19, 25]), we decompose the total observation time [ ]+t t0, d  in a first interval from 
t  =  0 to td  and a second interval from td  to +t td . Since the random acceleration pro-
cess is Markovian in the two-dimensional phase space (x, v), equations (1) and (2) imply

( ) ( ) ( ( )) ( ( ))∫ ∫| = 〈 〉 = 〈 〉+
− + | − −′ ′ ′ ′+

Q s x v, e e e .t t
sT t t x v s tV x t t s t V x t t

d 0 0
d , d d

A A
t t

A0 0
0

d

d

d 
(A.1)

For infinitesimal td  the quantity

→( ( )) ( )∫− −′ ′
e e

s tV x t t sV x td dA A
0

d

0 (A.2)

in equation (A.1) is completely deterministic and can be placed outside the angular 
brackets, yielding

( ) ⟨ ⟩( ) ( ( ))∫| =+
− − ′ ′

+

Q s x v, e e .t t
sV x t s V x t t

d 0 0
d d

A
t

t t

A0
d

d

 (A.3)

Translating the time in the integral on the right back by td , we obtain

Q s x v Q s x x v v, e e e , ,t t
sV x t s V x t t sV x t

td 0 0
d d d

0 0
A

t

A A0
0

0( ) ( )( ) ( ( )) ( )∫| = 〈 〉 = 〈 | + ∆ +∆ 〉+
− − −′ ′

 
(A.4)

where ∆x and ∆v are the changes in position and velocity in the time interval from 
t  =  0 to td . On expanding the right-hand side for small ∆x, ∆v, and td , equation (A.4) 
takes the form

⎡
⎣⎢

⎤

⎦
⎥Q s x v Q s x v sV x x

x
v

v
v

v
Q s x v, ,

1

2
, .t t t A td 0 0 0 0 0

0 0

2
2

0
2 0 0( ) ( ) ( ) ( ) ( )| − | = − +∆

∂
∂
+∆

∂
∂
+ ∆

∂
∂
+ |+ �

 

(A.5)

Substituting ⟨ ⟩∆ =x v td0 , ⟨ ⟩∆ =v 0 and ⟨( ) ⟩ γ∆ =v td2  into equation (A.5) and dividing 
the equation by td  leads to the partial dierential equation (6) for the evolution of the 
generating function. Since the derivatives on the right-hand side of equation (6) act on 
the initial coordinates x0 and v0, it is an example of a ‘backward’ evolution equation.
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