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Professor NANA NBENDJO Blaise Roméo at the UYI, Cameroon, for giving

me the opportunity to work with him. His serious attitude towards research re-

ally fascinated me and he helped me to believe on me. His advices and guidance

have tremendous influence on my professional and personal growth. He provided

a very helpful research environment that allowed me to work on several research

projects and collaborate with other professors. He also gave me the freedom to

pursue projects of my own choosing, which contributed greatly to my academic

independence. My dream is to follow my advisor career for the rest of my life.

• Special thanks to my second supervisor, Professor FILATRELLA Giovanni at

the University of Sannio, Italy, for his insightful guidance, a good and inspirational

cooperation during my study. I will never forget his entire disponibility and impli-

cation for this work. I have learnt a lot from him about the analysis of stochastic

systems.

• Besides my supervisors, I would like to pay particularly my gratefulness to Professor

WOAFO Paul, who cordially admitted me in his laboratory, for always providing

me with new prospectives in the field of my research and for contributing to my

work with beneficial discussion and fruitful collaboration.

• Special thanks also go out to Professor KOFANE Timoléon Crépin, pioneer of
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This dissertation studies the vibratory, including chaotic dynamics analysis of bridges

including girder, railway, slab and cable-stayed bridges under the action of moving vehi-

cles, trains and stochastic wind loads. Each moving vehicle is idealised as a point force of

constant or random amplitude moving along the bridge deck with stochastic velocity. A

train is modelled as a series of point forces of constant amplitudes and intervals moving

along the bridge deck in the same direction with constant velocity. After the description of

various excited bridge models, Rayleigh theory of beams and thin rectangular plate used

to establish their governing equations. Thereafter, appropriated computational tools are

used to characterize the dynamical states. The following main results have been obtained:

The dissertation extends the existing deterministic vehicle-bridge system to the case

of multiple vehicles moving with stochastic velocities and analyses the vibration of girder,

slab and cable-stayed bridges. We demonstrate that the effect of the load random veloc-

ities is highly nonlinear, leading to a nonmonotonic behavior of the mean amplitude of

the bridge deck versus the intensity of the stochastic term and of the load weight. The

intensity of the random component of the loads velocity also constitutes to the enlarge-

ment of the possible chaotic domain of the system, and or increase the chances to have

a regular behavior of the system. A study on the role of the presence of stay cables in

a model of cable-stayed bridge system is investigated. It is shown that these stay cables

can increase the degree of safety, but can also paradoxically contribute to destabilization.

In the same perspective, a modelling of the plate-vehicles system is presented to simulate

the interaction between a rectangular slab bridge and the moving vehicles. The effects of

the arrival rate and of the standard deviation of the stochastic velocity on the expected

value and variance of the bridge deck deflection response have been investigated.

A study of the role of the track structure and of the bearings on the dynamics of

railway and girder bridges, respectively, are included in the thesis. It is assumed that

the track structure and bearings can be constituted by viscoelastic materials (such as

elastomer) characterized by the so-called memory effect modelled by fractional deriva-

tives. We demonstrate that the installation of these type of devices (viscoelastic track

structure and bearings) on the bridge deck can effectively contribute to the reduction of

the vibration. Also, a proper selection of the material used to build the track structure

can contribute to the suppression of chaos in a bridge deck system. Surprisingly, the wind

turbulence can initially contribute to decrease the chance for the bridge deck to reach the

resonance of the amplitude oscillations.

Keywords: Bridges, vehicles, stochastic wind load, beams, plates, moving loads,

stochastic velocities, fractional order derivative, random chaos, amplitude of vibration.
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Cette thèse décrit l’analyse vibratoire, incluant la dynamique chaotique des ponts

poutres, les ponts ferroviaires, des ponts dalles et des ponts à câbles sous l’action des

véhicules en mouvement, des trains et/ou des vents turbulents. Chaque véhicule en

mouvement est modélisé comme une force ponctuelle d’amplitude constante ou non se

déplaçant le long du tablier avec une vitesse aléatoire. Le train est modélisé comme une

série de forces ponctuelles d’amplitudes et d’intervalles constants se déplaçant à vitesse

constante le long de la piste de chemin de fer. Après la description des différents types

de ponts sous excitations mobiles étudiés, le théorie des poutres de Rayleigh et celle des

plaques sont appliquées pour établir les équations décrivant leurs modèles mathématiques.

Par la suite, des outils numériques appropriés sont utilisés pour caractériser la dynamique

de ce dernier. Les principaux résultats suivants ont été obtenus:

La thèse étend le système deterministe de pont-véhicule existant au cas de plusieurs

véhicules en mouvement avec des vitesses stochastiques et analyse les vibrations des ponts

poutres, des ponts dalles et des ponts à câbles. Nous démontrons que le caractère aléatoire

des vitesses de véhicules a un effet spectaculaire sur la réponse dynamique du tablier,

conduisant à un comportement non monotone de l’amplitude moyenne du tablier par

rapport à l’intensité de la partie fluctuante de ladite vitesse et du poids du véhicule. Une

étude portant sur le rôle des câbles dans un modèle de pont à câbles est faite. Il est

montré que la présence de ces câbles dans ce type de système peut augmenter le degré

de sécurité de ce dernier et paradoxalement peut aussi contribuer à sa déstabilisation.

Dans la même perspective, une modélisation rigoureuse d’un système véhicules-plaque

est présentée pour simuler l’interaction entre un tablier à plusieurs voies et les véhicules

en mouvement. Les effets de certains paramètres du trafic sur la valeur moyenne et la

variance de la déflection de la plate sont étudiés.

Une étude portant sur les effets des pistes de chemin de fer et les appuis (partie du

pont comprise entre le tablier et les piliers) sur la dynamique des ponts ferroviaires et des

ponts poutres respectivement est incluse dans cette thèse. On suppose que ces types de

structures peuvent être constitués de matériaux viscoélastiques (tels que les élastomères)

caractérisés par l’effet de mémoire et modélisé par le biais des dérivées fractionnaires.

Nous démontrons que l’installation de ces types de dispositifs (pistes de chemin de fer et les

appuis) peut contribuer à réduire les vibrations du tablier. Par ailleurs, un choix approprié

du matériau utilisé pour la construction des pistes de chemin de fer peut contribuer à la

suppression des comportements non désirés (tels que le chaos) dans la superstructure.

Aussi surprenante que cela puisse être, le caractère turbulent du vent peut contribuer à

réduire les chances pour le tablier d’atteindre plus rapidement la résonance des oscillations.

Mots-clés: Ponts, véhicules, vent, poutres, plaques, charges en mouvement, vitesses

stochastiques, dérivation d’ordre fractionnaire, chaos aléatoire, amplitude des vibrations.
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General Introduction



People have always been interested in transporting themselves and their goods from

one place to another. So obstacles such as the rivers, mountains and valleys are considered

as a fundamental difficulty that people have faced in their transportation and movement

from one place to another. The solution is to pass the obstruction, for instance using a

rope, or swimming. A more sophisticated solution is to use a bridge, presumably made

of simple materials like rock, stone, timber and other materials. Thus, the history of

development of bridge construction is closely linked with the history of human civilization.

The first bridges were simple beam span of stone slabs or tree trunks, and for longer spans,

single strands of bamboo or vine were stretched across the chasm or oops or baskets

containing the traveller were pulled across the stretched rope.

In general, a bridge is a structure providing passage over an obstacle without closing

the way beneath. The required passage may be for a road, a railway, a pedestrian passage,

a canal or a pipeline. The obstacle to be crossed may be a river, a road, railway or a valley.

This type of transportation infrastructure is an important factor for the development of

a national economy. With the rapid advances in the field of high performance materials

and construction techniques, the bridges are evolving towards long and flexible structures

as those of the high-rise buildings. The inclusion of modern materials also results in a

new generation of lightweight structures which are utterly susceptible to the action of

wind. During the last two centuries, major structural failures due to the wind action

has occurred and has provoked much interest in wind loadings by engineers. Long-span

bridges have often produced the most dramatic failures, such as the Brighton Chain Pier

Bridge in England in 1836, the Tay Bridge in Scotland in 1879, and the Tacoma Narrows

Bridge in Washington State in 1940. In particular, the failure of the Tacoma Bridge has

pushed engineers to conduct various scientific investigations on bridge aerodynamics [1,2].

The main categories of wind effects on bridges with boundary layer flow theory are flutter

and buffeting. While flutter may result in dynamic instability and the collapse of the

whole structures, large buffeting amplitude may cause serious fatigue damage to structural

members or noticeable serviceability problems.

When excessive external loads occur, the bridges may suffer large deflections and

even cause damages that will endanger human life and property. This situation is generally

possible in highway and railway bridges. From the point of view of structural dynamics, a

railway bridge is different from a highway bridge in that the sources of excitation caused

by the moving vehicles are different. For example, the loading of highway bridges is

characterized by the occurrence of millions of repetitive random load events per year.

This type of load causes material fatigue and ultimately damage of the structure. A

random sequence of moving forces would seem to be the most relevant model for the

problem of reliability of highway bridges [3–7]. The vehicles constituting the highway

traffic may vary in terms of the axle weight, axle interval, moving speed, and even the

headway. However, a train moving over a railway bridge can generally be regarded as a

sequence of identical vehicles in connection, plus one or two locomotives. Conventionally, a
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train was simplified as a sequence of moving masses, or in the extreme case as a sequence

of concentrated loads, at regular intervals [8]. The vibrations caused by the passage

of vehicles have become an important consideration in the design of these bridges. In

particular, the interaction problem between the moving vehicles and the bridge structure

has attracted much attention during the last three decades. This is in part due to the

rapid increase in the proportion of heavy vehicles and high-speed vehicles in the highway

and railway traffic. From the civil engineer’s point of view, the structural vibration caused

by the passage of the vehicles or a train is one of the main concern of its structure design.

The combination scenarios of these two previous major service loads (moving ve-

hicles and wind actions) may cause global failure of the bridge structure. To maintain

resilient and sustainable bridges against these expected scenarios is also the key to any

successful bridge design. Traditionally, bridges were analyzed under a single type of dy-

namic loads at a time without considering any other ones, such as buffeting analysis

under turbulent wind loads, time-history seismic analysis, or bridge dynamic analysis

with moving vehicle. Recent bridge, vehicle, or wind interaction studies have highlighted

the importance of predicting the bridge dynamic behaviour by considering the bridge, the

actual traffic load, and wind as a single system of interacting parts [9–13].

In order to prevent the damage of bridges, the bearings (part of bridge ranging be-

tween the bridge deck and the piers) are often used as base isolators for severe earthquakes

load and/or for load transference to the foundation in bridge engineering. Conventionally,

the bearings are built or installed at the supports of simply supported bridge and, when

they are constituted by elastic material, provide some insulation for the earthquake forces

transmitted from the ground to the superstructure. However, such devices may adversely

result in amplification of the response of the bridge during the passage of a train [82].

This is certainly one disadvantage of the use of elastic bearings; hence our interest. The

bearings can also be constituted by viscoelastic materials (such as elastomer). Therefore,

the long memory effects of these viscoelastic materials can be modelled by means of frac-

tional derivatives. We demonstrate that this viscoelastic physical property of the bearings

can be beneficial for the bridge safety.

Predicting the dynamic performance of bridges under moving loads is a well-known

challenging subject in structural dynamics and it is considered in this thesis. Notably,

the dynamic of various types of bridges including girder bridges, railway

bridges, slab bridges and cable-stayed bridges under the action of moving

vehicles and wind actions is analyzed by using two dynamics approaches:

vibratory and chaotic approaches . More precisely, the aim of the research presented

in this thesis is to:

- Give an analytical approach to characterize the probabilistic features of the nonlin-

ear beam response, namely the mean square amplitude and the probability density

function due to loads moving with stochastic velocities.
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- Explore the effects of stochastic fluctuations of the load velocity and the number

of cables on the possible appearance of horseshoes chaos in the cable-stayed bridge

system.

- Propose a probabilistic evaluation approach to obtain the expected value and the

standard deviation of a two lane slab-type-bridge deflection response due to two

opposite series of stochastic moving loads.

- Explore the effects of loads number and their spacing, the load velocity, the order

of the fractional viscoelastic shear layer material of the Pasternak foundation (as a

track structure) and its strength on the amplitude of vibration of the beam, and

especially the order of the fractional viscoelastic property of the shear layer on the

appearance or disappearance of horseshoes chaos.

- Analyse the effect of the number of bearings and their fractional-order viscoelas-

tic physical properties on the resonance vibrations of the beam, and to give some

estimate of the additive and parametric wind turbulence effects on the stationary

probability density function of the oscillations amplitude of the beam.

Following this introduction, the dissertation is organized as follows:

• Chapter one offers an overview of some key factors involved in the dynamic in-

teraction between the bridge and service loads including roads traffic, train traffic

and wind actions. We also briefly presents a state-of-art review of research based

on this topic and the problems that we will have to solve in the thesis

• Chapter two is entirely devoted to our methodology of investigation, including the

presentation of a general background on an approximate response methods for the

reduced linear or nonlinear mathematical models of interest for this thesis.

• Chapter three presents and discusses our main results. We begin by first modelling

the different types of bridges studied in this thesis. Secondly, we approach the

resulting models by using the vibratory and chaotic dynamic procedures. Thereafter,

the main results are presented and discussed.

• General Conclusion: This part provides the overall conclusions of the main results

of the thesis and suggestions for future work.
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Chapter I

Literature review on some key factors in-
volved in the dynamic interaction between
the bridge and service loads



I-1- Introduction

There are a large amount of vehicles passing through in-service bridges every day while

considerable wind blows on the bridge decks at the same time. Vibration caused by these

service loads is of great theoretical and practical significance in civil engineering. Excessive

dynamic responses of the bridge under service loads may not only cause global failure of

the bridge structure, but also traffic safety concern on moving vehicles. In this chapter,

the key factors involved in the dynamic interaction between the bridge and service loads

will be discussed.

The chapter is organized as follows: Section I-2- presents some models of two major

service loads, namely wind and traffic actions. Section I-3- is devoted to the presentation

of some bridge models. In Section I-4-, we briefly describe the different types of bridge

supports models. Section I-5- deals with a state-of-art review of research based on the

vibration of various types of bridges. Section I-6- will give more details on the problems

solved in this thesis after the presentation of some dynamical features of bridges under

the action of wind, roads or train traffic. Finally a brief conclusion (Section I-7-) will give

at the end of the chapter.

I-2- Service loads models

Bridges support busy traffic and experience considerable wind loads on the bridge decks

nearly every day. In addition to these two major service loads, some extreme loads such

as hurricane, earthquake, blast, fire, and vehicle-ship collision may also occur on the

bridges simultaneously [13]. Some models of these service dynamic loads for the bridge

are introduced in the following.

I-2-1- Roads traffic actions

Road traffic flow modelling is an important initial step in the development of the ana-

lytical framework of the bridge-vehicles interaction system. Generally, the roads traffic are

considered as a sequence of vehicles having random weights, travelling at the deterministic

or random speed and arriving at the span at random times [14].

However the modelling of this kind of loading is very complex. Therefore, in the

vibration’s analysis some simplifications in the load model are necessary. For example,

investigating the vibrations of bridge caused by a single vehicle is quite simple and it is

possible to take into account the coupling between the vibrations of the structure and

the vehicle [15]. In that case, vehicle modelling include the following three essential

computational models: a moving force model, a moving mass model and a sprung mass

model with two degree of freedom as illustrated in Fig. 1. The moving force model
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Figure 1: Three essential vehicle models [16].

(constant force magnitude) is the simplest model whereby researchers can capture the

essential dynamic characteristics of a bridge under the action of a moving vehicle, although

the interaction between the vehicle and bridge is ignored. It is sufficient if the inertia forces

of the vehicle are much smaller than the dead weight of the vehicle. For a vehicle moving

along a straight path at a constant speed, these inertia effects are mainly caused by

bridge deformations (bridge-vehicle interaction) and bridge surface irregularities. Hence

the factors that are believed to contribute in creating vehicle inertia effects include: high

vehicle speed, flexible bridge structure, large vehicle mass, small bridge mass, stiff vehicle

suspension system and large surface irregularities [16]. The sprung mass model is a one-

axle vehicle model of a real multi-axle vehicle. This model is acceptable when the bridge

span is considerably larger than the vehicle axle base [17].

Very detailed vehicle models are unnecessary and will not bring any great advantage,

when the main purpose of this thesis is to study the dynamic response of bridges. In

this thesis, the roads traffic model used assume that the sequence of vehicles

moving with random or deterministic weights and stochastic velocities.

Figure 2: Simplification of train loads on a single-span bridge: (a) composition of a train;
(b) simplified regular uniform moving equidistant loads [18].
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I-2-2- Train or rail traffic actions

A train moving over a railway bridge can generally be regarded as a sequence of identi-

cal vehicles in connection, plus one or two locomotives. Conventionally, a train has been

simplified as a sequence of moving masses, or in the extreme case as a sequence of concen-

trated loads, of regular uniform intervals (see Fig. 2) or of regular non-uniform intervals

(see Fig. 3) to simulate the effect of a connected line of train loads [8].

Figure 3: Regular non-uniform train loads model [8].

I-2-3- Wind actions

Wind is about air movement relative to the earth, driven by different forces caused

by pressure differences of the atmosphere, by different solar heating on the earth’s sur-

face, and by the rotation of the earth. Wind loading offers a complicated set of loading

conditions which must be idealized in order to provide a workable design. In general,

the wind force shall be considered as a moving load acting in any horizontal direction.

The interaction between the bridge vibration and this wind results in two kinds of forces:

motion dependent and motion-independent. The former vanishes if the structures are

rigidly fixed. The latter, being purely dependent on the wind characteristics and section

geometry, exists whether or not the bridge is moving. In addition, bridge may responds

dynamically to the effects of the wind flow over the deck section. This wind-induced

dynamic response is generally classified into three major categories, depending on the

mechanisms involved:

- Random response due to buffeting induced by wind turbulence

- Vortex-induced response

- Aerodynamic instability

In this thesis, the response of the bridge due to buffeting induced by turbu-

lent wind and to aerodynamic instability will be analysed in details. Indeed,
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Buffeting is the random response of the bridge due to wind forces associated with the pres-

sure fluctuations on the bridge deck caused by gustiness of the wind flow over the section.

It normally increases monotonically with the mean velocity and is thus more important

at maximum wind. It is also a function of the turbulence intensity of the oncoming flow

and of the structural damping of the bridge. Generally, aerodynamic instability occurs in

the structure when the attack angle (that give the orientation of the force exerted by the

wind flow on the structure) changes or varies. Therefore, the bridge oscillates due to the

lift force (mean force in the direction normal to wind velocity), drag force (mean force in

the direction of the wind velocity) and pitch moment.

I-3- Bridge models

Bridge design is a combination of art and science. Conceptual design is usually the

first step. The conceptual design process includes selection of bridge systems, materials,

proportions, dimensions, foundations, aesthetics, and consideration of the surrounding

landscape and the environment. There are two kinds of models of bridges in the moving

force identification systems: the Beam-Element Model and the Continuous Beam Model.

I-3-1- Beam-Element Model

In that case, a bridge can be modelled as an assembly of lumped masses interconnected

by massless elastic beam elements [19]. The total modal responses, [R]total, on the bridge

equal to the equivalent static responses, [R]static, caused by the external loads less the

responses caused by the inertia forces, [R]inertia, and the damping forces, [R]damping, or

equivalently as: [R]total = [R]static - [R]inertia - [R]damping. This model is usually used by

the structural engineers.

I-3-2- Continuous Beam Model

This model assuming an Euler-Bernoulli or Timoshenko beam [20] of constant cross-

section with constant mass per unit length, having linear, viscous proportional damping

and with small deflections. From there follow four special cases:

- If the effect of rotatory inertia is neglected and only the effect of shear on the

dynamic deflection of the beam is considered, it is called a shear beam.

- If the effect of shear is neglected and only the effect of rotatory inertia is considered,

the so-called Rayleigh beam model results.

- If both the effect of shear and the effect of rotatory inertia are neglected, the classical

Euler-Bernoulli beam model is obtained.
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- Finally, if both the effect of shear and the effect of rotary inertia are considered, the

so-called Timoshenko beam results.

In most problems encountered in practice the effects of rotatory inertia and shear can

safely be neglected with little error (Euler-Bernoulli beam); however, for short, deep beams

with height-span ratios larger than about 1/10 or beams made of materials sensitive to

shear stresses, it is desirable to give consideration to the effect of shear and rotatory

inertia. In this thesis the Rayleigh beam model will be used to refine the

theory of Euler-Bernoulli beam which has some serious shortcomings for

high frequency motion and for the analytical conveniences.

I-4- Bridge supports models

Many structures, such as bridges, runways, rails, roadways, pipelines, etc., can be

modelled as a beam structure on a elastic foundation. The modelling of this elastic

foundation is based on an assumption for the behaviour of the subgrade reaction under

loading. This elastic subgrade reaction is represented principally by [21]:

- One-parameter model

- Two-parameter models

I-4-1- One-parameter model

The one-parameter model developed by Winkler in [22] assumes that the vertical dis-

placement of a point of the elastic foundation is proportional to the pressure at that point

and does not depend on the pressure at the adjacent points. The Winkler model can be

interpreted as a system of mutually independent vertical springs with stiffness k. The

strain energy of the elastic foundation is

Uf =
1

2
kb

L∫
0

w2dx (1)

where b and L are the width and the length of the deformed zone and w is the vertical

displacement of the beam. The Winkler soil model assumes that the displacement appears

only in the loaded zone. Outside this zone the deflections are zero. This assumption leads

to a discontinuous displacement field and this is the main disadvantage of the Winkler

model.
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I-4-2- Two-parameter models

Two-parameter soil models restore the continuity of the elastic foundation by intro-

ducing a second parameter. The two-parameter models of Filonenko-Borodich [23], Het-

enyi [24] and Pasternak [25] provide the continuity of the soil medium by adding a second

spring which interacts with the first one. In [26] Kerr generalizes the Pasternak model

by including a third spring in vertical direction. The models of Reissner [27] and Vlasov-

Leontiev [28] make simplifying assumptions by introducing functions for distribution of

the displacements or the stresses in the soil medium. The general expression for the strain

energy in two parameter models is

Uf =
1

2
kb

L∫
0

w2dx+
1

2
Gb

L∫
0

(
dw

dx

)2

dx (2)

The second integral in Eq. (2) includes the second parameter G which represents the

stiffness of a generalized rotation spring. Different interpretations exist of the physical

meaning of G and the relation with the first parameter k:

- Filonenko-Borodich model: the G parameter is presented as an internal tension

force in a virtual elastic string placed on the transversal springs which constrains

the vertical displacements of the springs;

- Hetenyi model constrains the vertical displacements by adding an imaginary beam

in bending. The second parameter represents the beam’s stiffness;

- Pasternak model: the G parameter represents a shear modulus of a virtual layer

that integrates the vertical spring elements;

- Vlasov-Leontiev model: the k and G parameters are obtained on the basis of the

elastic continuum approach by making assumptions for the displacement field.

In this thesis the modified models of Pasternak and Winkler foundation

will be investigated. These models include the damping effect, and the frac-

tional order derivative rheological models are used to model this damping.

I-5- Brief review of the studies related to moving

loads induced vibration of bridges

The first recorded research into bridge vibration appears to be a report published in

1849 by Willis [29], which discussed the reasons for the collapse of the Chester Railway

Bridge. The research work on this subject has a long history of more than 150 years.
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An overview of research related in this field in Europe, the United States, and Asia is

given by Frýba [17]. Early research has led to closed-form or analytical expressions for

simplified cases, e.g., considering a simply supported Euler-Bernoulli beam model for the

bridge and a moving load model for the vehicle [30, 31] or for the wind force [18].

I-5-1- Bridges and vehicles

In bridges dynamic problem, there are two categories of vehicle: highway vehicles and

railway vehicles. Highway vehicles are idealized by trains of concentrated forces (vehicle

weights) of random (or not) values travelling at the different stochastic speed. The inter-

arrival times of the moving forces are regarded as random or deterministic variables.

While, railway vehicles are regarded as a sequence of moving masses, or in the extreme

case as a sequence of concentrated loads, of regular uniform intervals or of regular non-

uniform intervals. The dynamic response of bridge structures subjected to vehicles is very

complicated. This is because the dynamic effects induced by moving on the bridge are

greatly influenced by the interaction between vehicles and the bridge structure. Generally,

this problem depends on the following factors:

• the speed, weight, and type of the vehicle

• road surface roughness

• dynamic characteristics of the vehicle, such as the number of axles, axle spacing,

axle load, natural frequencies, suspension stiffness and damping

• the number of vehicles and their travel paths

• characteristics of the bridge structure, such as the bridge geometry, support condi-

tion, bridge mass and stiffness, damping and natural frequencies

• braking and acceleration of the vehicle.

Among the aforementioned factors, the first four have the greater influence on the

dynamic response of a bridge. A number of research studies were carried out on the

vibration of various types of bridges such as girder bridges, slab bridges, cable-stayed

bridges, suspension bridges due to vehicles.

� Vibration of girder bridges

A girder bridge is the most common and most basic bridge. The vibration of girder

bridges under moving vehicles has been widely studied by analytical and numeri-

cal methods during the last three decades. In many papers, the problem has been

studied in the deterministic manner (by considering that the moving vehicle is a de-

terministic load) and summarized in review articles by Frýba [31]. However, due to
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many reasons the moving forces acting on highway bridges (vehicle axle pressures)

are of random magnitude. Moreover, they arrive at the span at random times.

Consequently, the traffic load on a bridge is a random process. Only a few authors

approached the moving load problem from this point of view. Frýba considered

vibration of a beam due to the passage of a single, time-dependent concentrated

force, the variation of which is given by a stochastic process [32]. Knowles [33] dealt

with the problem of an infinitely long beam subjected to a moving concentrated

force, whose position is described by strictly stationary first order, stationary Gaus-

sian, or Wiener stochastic process. The vibration of a beam under random moving

continuous load was studied by Robson [34] and Bolotin [35]. Besides, the stochas-

tic vibrations of the beam excited by a random set of moving forces was presented

among others by Iwankiewicz and Śniady [36], and Sieniawska and Śniady [6, 7].

These authors approached the most realistic highway vehicles problem by employ-

ing a simple beam model of a bridge.

In the same impetus, Śniady and Śniady et al. [15,37] investigated on the problem

of a dynamic response of a beam-like modelled girder bridge to the passage of a

train of random forces. In this study they assumed that the random train of forces

idealizes the flow of vehicles having random weights and travelling at the stochastic

velocity. They shows the effect of theses stochastic quantities on the mean deflection

of the beam. Zibdeh [38] investigated the vibrations of a simply supported elastic

beam under the action of a point load moving with random non constant velocity,

while the beam is also subject to axial deterministic forces. Closed form solutions

for the mean and variance of the response were also obtained. The above mentioned

works deal with bridge beams vibrations caused by a random stream of moving

forces, assuming that the bridge is idealized by a single Euler-Bernoulli beam model.

To take into account the rotary and high frequency motion of beam elements,

Chang [39] proposed to treat the deterministic and random vibration analysis of a

Rayleigh-Timoshenko beam like girder bridge model on an elastic foundation. He

used a modal analysis to compute the dynamic responses of the structure (such

as the displacement and bending moment) and some statistical responses (such

as the mean square values of the dynamic displacement and the mean bending

moment). With the same method, Argento et al. [40] studied the response of a

rotating Rayleigh beam with different boundary conditions subject to an axially

accelerating distributed surface line load. Zibdeh and Juma [41] used an analytical

and numerical methods to investigate the stochastic dynamic response of a rotating

simply supported beam subjected to a random force with constant mean value

moving with a constant speed along the beam. The beam is modelled by Euler-

Bernoulli, Rayleigh, and Timoshenko beam models. They showed the effect of

load speed, beam rotating speed, and geometrical size of the beam on the random

response of the beam.
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As far as bridge response to highway vehicles is concerned, the contributions given

by Tung [3–5] seem to be most relevant to the problem. Based on the assumption

that vehicles travel at the same constant speed, are of equal weight, and that the

bridge response is a filtered Poisson or filtered renewal process. Tung obtained, by

means of a numerical procedure, the probability density function of the response

process and its expected rate of threshold crossings. He also estimated the fatigue

life of bridges.

� Vibration of cable-stayed bridges

Cable-stayed bridges have become very popular over the last three decades because

of their aesthetic appeal, structural efficiency, enhanced stiffness compared with sus-

pension bridges, ease of construction and comparatively small size of structures. In

another development, enhanced by the use of lightweight and high-strength materi-

als, more slender cross sections were adopted for the various components of cable-

stayed bridges. As a consequence, response prediction of this type of bridge sub-

jected to randomly moving excitations is important for engineering practice [42,43].

The dynamic behaviour of cable-stayed bridges is a source of interesting research.

This includes free vibration and forced vibration due to wind and earthquake, see

for example [44–46]. However, literature dealing with the dynamics of these bridges

due to highway vehicles are relatively few.

Meisenholder and Weidlinger [47] simulated the cable-stayed bridge as a beam

resting on an elastic foundation and proposed an approach for modeling the dynamic

effects of cable-stayed guideways subjected to track-levitated vehicles moving at high

speeds. By using an approximate bridge model, taking into account the nonlinear

effect of cables, the dynamic response of cable-stayed bridges under moving loads

was analyzed by Yang and Fonder [48]. Au et al. [49] investigated the impact

effects of cable-stayed bridges under railway traffic using various vehicle models,

and concluded that the moving force and moving mass models can significantly

underestimate the impact effects. Based on a nonlinear dynamic finite-element

analysis for the Vehicle-Bridge Interaction (VBI) system, Yau and Yang [50] pointed

out that the larger of the number of stay cables of a cable-stayed bridge, the smaller

of the impact response of the bridge; the same is also true for the riding comfort

of the moving vehicles. Yau et et al. [51] studied the vibration reduction of cable-

stayed bridges subjected to the passage of high-speed trains. The train is modeled

as a series of sprung masses, the bridge deck and towers by nonlinear beam-column

elements, and the stay cables by truss elements with Ernst’s equivalent modulus.

To suppress the multiple resonant peaks of train-induced vibrations on cable-stayed

bridges, a hybrid Tuned Mass Damper (TMD) system that consists of several TMD

subsystems, each of which is tuned for one dominant frequency of the main system,

is proposed. The numerical results indicate that the proposed hybrid TMD system
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can effectively suppress the main resonant peaks of the cable-stayed bridge subjected

to the moving train loads at high speeds.

Yet, Zaman et al. [52] analysed the dynamic response of cable-stayed bridges

subjected to moving loads by using the structural impedance method. In their

study, the bridge deck was modelled as an elastic plate, the cables were idealised

as springs for simplicity, and the vehicles were modelled as a series of masses with

suspension systems moving at different speeds and accelerations. By using the same

method, Rasoul [53] studied the dynamic response of bridges due to general traffic

conditions. The bridge flexibility functions were evaluated by using a static analysis

of the bridge subjected to unit loads. A simply supported beam, a continuous beam

and very simple cable-stayed bridges were studied. For the cable-stayed bridges,

two different analysis methods were used, namely an approximate method using the

concept of continuous beam with intermediate elastic supports, fixed pylon heads

and with the cables approximated by springs. The traffic load was modelled as

a series of vehicles traversing along the bridge. Each vehicle was modelled with

a sprung mass and an unsprung mass giving a vehicle model with two Degrees

Of Freedom (2 DOF). Different traffic conditions were studied, and the effect of

vehicle speed and bridge damping on the Dynamic Amplification Factor (DAF) was

presented.

� Vibration of suspension bridges

Compared with other types of bridges, publications on the vibration of suspension

bridges caused by moving vehicles are relatively few. Hirai and Ito [54] studied

theoretically and experimentally the dynamic response of two hinged suspension

bridges due to a railway vehicle modelled either as a single constant force with a

constant velocity, a pulsating force with a constant velocity, or a distributed load

with a uniform intensity and a constant velocity. The modal superposition method

was employed for the analysis and only the few lower natural modes were taken

into consideration. Karoumi [16] derived approaches for solving the moving load

problem of cable-stayed and suspension bridges. An efficient finite element program

was developed to carry out dynamic analysis of bridges. The implemented program

is verified by comparing the analysis results with literature and a commercial fi-

nite element code. Parametric studies were performed, investigating the effect of

damping, bridge-vehicle interaction, cables vibration, road surface roughness, vehi-

cle speed and tuned mass dampers. It concluded that road surface roughness has

great influence on the dynamic response and should always be considered if possible.

Subsequently, Yasoshima et al. [55] carried out a comprehensive study using the

modal superposition method on the running stability of railway vehicles on sus-

pension bridges. The vertical response of the bridge was obtained by modelling

the moving railway vehicle as either a moving constant force or a moving con-

stant load with a uniform intensity. The lateral vibration of the bridge induced by
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the side thrusts of the wheels of the running railway vehicles was also obtained.

Chatterjee et al. [56] presented a continuum analysis for determining the coupled

vertical-torsional vibration of multi-span suspension bridges under vehicular move-

ment. They employed the modal superposition method and obtained the dynamic

response in time domain using an iterative scheme. Three different types of vehicle

models, namely one-, two- and three-dimensional mass-spring-damper systems were

used in the analysis.

The above-mentioned research work was carried out taking the problem as a de-

terministic one. Some researchers investigated the random vibration of suspension

bridges due to highway traffic. By treating the moving vehicle loads as random con-

centrated weights and their arrivals as a Poisson process. Bryja and Śniady [14] per-

formed the random non-linear dynamic analysis of a single-span suspension bridge

under the passage of moving vehicles. Subsequently, they extended their studies

to a general case of spatially coupled flexural-torsional vibration of a single-span

suspension bridge under the passage of trains of concentrated forces with random

magnitudes [57]. In this study, the bridge is modelled by a single-span prismatic

thin-walled stiffening girder underslung to two whipped cables. They used both

iterative and linearization methods to determine the solution for the expected value

and variance of the bridge deflections.

� Vibration of slab bridges

The beam model was often adopted to study the vibration of girder bridges under

moving vehicles and trains. However, it is inadequate to model the response of wide

bridge decks such as slab bridges, particularly under moving vehicles whose paths

are not along the centre-line of the bridge. The vibration of slab bridges modelled as

isotropic or orthotropic plates under the action of vehicles was investigated by many

authors but in most of their works the moving vehicle was regarded as deterministic.

A concise review of several related research studies is carried out in the following

paragraph.

Nikkhoo and Rofooei [58] scrutinized the inertial effects and the trajectory of the

moving load on the dynamic response of a simply-supported edge thin rectangu-

lar plate. Wu [59] examined an inclined flat plate vibration due to traveling loads.

Vaseghi Amiri et al. [60] provided a semi-analytical simulation of a shear deformable

plate vibration due to traveling inertial loads considering a general load distribution

pattern and plate boundary condition. Zhu and Law [61] analysed the dynamic

behavior of an orthotropic plate simply supported on a pair of parallel edges and

under a system of moving loads based on Lagrange equation and modal superpo-

sition. Preliminary results of the paper indicate that the multi-lane loading case

is less critical than a single-lane loading case. Nikkhoo et al. [62] considered two

series of moving inertial loads traversing the plate surface along parallel rectilinear

trajectories with opposite directions and studied the resonance caused by this loads.
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This investigation done by Nikkhoo et al. is of significance in engineering mechanics

dealing with the vibration of two-lane slab-type bridges under the moving vehicles.

They showed that, the plate displays resonance behavior for specific values of spac-

ing of the loads. In addition, they also demonstrated that for a specific velocity, the

loads inertia can alter the aforementioned distance.

In real situation the load process has stochastic nature. So, the problem of vi-

brations of a plate-like modelled slab bridges subjected to this kind of load was

considered in some papers in stochastic approaches. Rystwej and Śniady [63] inves-

tigated the problem of a dynamic response of an infinite beam and a plate resting on

a two-parametric foundation (Pasternak foundation) to the passage of a sequence

of random forces. This sequence of forces idealizes the flow of vehicles having ran-

dom weights and travelling at the same speed. They assumed that this occurrence

process of moving loads is either a Poisson process or a renewal (Erlang) process.

An analytical technique was developed to determine the two first probabilistic char-

acteristics of the beam and plate responses. Li et al. [64] investigated the dynamic

response of a rectangular plate on a viscoelastic foundation under moving loads with

varying velocity. The deflection distribution of the plate and the effects of the type

of motion, initial speed of the load and foundation damping on the plate response

are illustrated and analysed.

By using the method of modal analysis, Wang and Lin [65] analysed the vibration

of multi-span Mindlin plates under a moving load. The effects of span number, ro-

tary inertia and transverse shear deformation on the critical velocity, the maximum

displacement and the maximum moment of plates were discussed. They further

studied the random vibration of multi-span Mindlin plates due to random moving

loads [66]. Here, the moving load is considered to be a stationary process with a

constant mean value and a variance. Four types of variances were considered in this

study: white noise, exponential, exponential cosine, and cosine. The effect of both

velocity and statistical characteristics of the load and the effect of the span number

of the multi-span plate on the mean value, variance of deflection and moment of the

structure were investigated.

Nurkan yagiz and sakman [67] analyzed the vibrations of a bridge modeled as an

isotropic plate with all sides simply supported under the effect of a moving load

due to a full vehicle having seven DOF. A mathematical model of the bridge is

obtained by applying Lagrange’s formulation to orthogonal mode shapes and the

non-conservative moving forces. The time responses at the mid-span and quarter-

span of the bridge were obtained. The transverse vibration of the bridge and the

body bounce, pitch, and roll of the vehicle were presented for different vehicle speeds.

They also presented the bending moment at the mid-span for different vehicle speeds

to aid in the structural design of the bridge. In the same way, Paul and Talukdar [68]

analyzed an orthotropic bridge deck to find out non-stationary response statistics
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when subject to moving vehicle at variable velocity. In that work statistics of the

responses were presented and DAF for constant velocity and variable velocity was

discussed.

� Vibration of railway bridges

The dynamic response of railway bridges under moving train loads is one of the

fundamental problems to be solved in bridge design. On the one hand, the train

running with high speed induces dynamic impact on the bridge structure, influencing

their working state and service life. On the other hand, the vibration of the bridge in

turn affects the running stability and safety of the train vehicles, and thus becomes

an important factor for evaluating the dynamic parameters of the bridge in design.

Therefore, great efforts were constantly attached to the subject.

The book of Frýba [17] and the one of Garg and Dukkipati [69] described well

the dynamics of railway bridge and railway vehicle modelling. Frýba [17] gave a

comprehensive treatise on this field of research. Yang et al. [8] presented a literature

review of research work on the dynamic interaction between moving vehicles and

bridges, with particular emphasis on the analysis of high-speed railway bridges.

Indeed, based on an analytical approach, Yang et al. [70] obtained the closed form

solution for the response of simple beams subjected to the passage of a high-speed

train modeled as a sequence of moving loads with regular non-uniform intervals,

in which the conditions for the phenomena of resonance and cancellation to occur

were identified. Based on these conditions, optimal design criteria that are effective

for suppressing the resonant response of the VBI systems was proposed. In the

study done by Wu et al. [71], a bridge containing two railway tracks was considered,

with which two trains are allowed to move over the bridge in opposite directions.

Such a vehicle-rails-bridge interaction model was adopted by Wu [72] and Yang and

Wu [73] in evaluating the risk of derailment for trains traveling over a bridge and

simultaneously subjected to an earthquake excitation.

Out of Frýba an Yang, the dynamic response of railway bridges subjected to ve-

hicles has received much attention from those researchers. For example, Museros et

al. [74] investigated the influence of sleepers and ballast layers, as well as train-bridge

interactions, on the response of short high-speed railway bridges. They concluded

that inclusion of these factors can result in smaller maximum displacements and

accelerations on the bridge, compared with those obtained using barely the moving

loads model. Bolotin [75] studied a beam subjected to an infinite sequence of equal

loads with uniform interval and constant speed. In his study, the period of the

moving loads was identified as a key parameter.

The dynamic response of track structures resting on bridges under the action

of moving trains is also of great theoretical and practical significance in railway

engineering. It was often studied by modelling the railway track system as either
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a beam on Winkler elastic foundation or a beam supported on a series of discrete

spring-damper units. Steele [76] obtained an analytical solution for a finite simply

supported Euler-Bernoulli beam, with and without an elastic foundation, subjected

to a moving force. He further solved the problem of a semi-infinite Timoshenko

beam on elastic foundation with a step load moving from the supported end at a

constant velocity [77]. Subsequently, Suzuki [78] obtained the dynamic response of

a finite beam on elastic foundation subjected to travelling loads with acceleration.

Kargarnovin and Younesian [79, 80] used the first order perturbation method to

analyse the response of an infinite Timoshenko beam on the viscoelastic foundation

under a moving load. To simulate the behaviour of the foundation, Pasternak

viscoelastic model was used. This model includes a Kelvin foundation in conjunction

with a shear viscous layer [79] or with a shear elastic layer [80]. These studies clearly

show that the shear layer material of the foundation can have viscoelastic physical

properties.

I-5-2- Wind-vehicles-bridge system, bearings devices

� Wind-vehicles-bridge interaction

Slender long-span bridges exhibit unique features which are not present in short

and medium-span bridges such as higher traffic volume, simultaneous presence of

multiple vehicles, and sensitivity to wind load. In recent years, some efforts were

put forth on studying more realistic load combination scenarios including wind and

vehicles, for long-span bridges. A few number of researches showed the significance of

coupling effects existing among vehicles, wind, and long-span bridges. For instance,

Xu et al. [9] investigated the dynamic response of suspension bridges to high wind

and a moving train, while no wind loading was considered on the train moving inside

the suspension bridge deck. In this analysis it was found that the suspension bridge

response was dominated by wind force in high wind speed. The coupled dynamic

analysis of vehicle and cable-stayed bridge system under turbulent wind was also

recently conducted by Xu and Guo [10] under low wind speed and neglecting the

vehicle number and speed. Chen and Wu [11] proposed a simulation approach for

the bridge performance under the combined effect of wind and stochastic traffic

flow that provides a realistic estimate of the bridge response. In the same view,

Zhou and Chen [13] established a general simulation platform to investigate the

dynamic performance of the bridge-traffic system under multiple service and extreme

loads. The approach allows to explore the vertical and lateral responses for the

bridge and a representative vehicle in different loading scenarios. Zhang et al. [12]

investigated a comprehensive framework for fatigue reliability analysis of long-span

bridges under the combined dynamic loads of vehicles and wind. Li et al. [81]

presented an analytical model to simulate dynamic interactions among wind, rail
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vehicle and bridge. The analysis on an engineering example indicates the important

role of wind excitation in vibration of the coupled wind-vehicles-bridge system,

which prominently enlarges the dynamic responses of both bridge and vehicles.

� Bearings devices

To prevent the damage of bridges, the bearings (part of bridge ranging between the

bridge deck and the piers) were often used as base isolators for severe earthquakes

load and/or for load transference to the foundation in bridge engineering. The

problem of elastically supported beams subjected to moving loads received little

attention in the literature. Yang et al. [83] explained by using an analytical approach

the mechanism involved in the phenomena of resonance and cancellation in the train

induced vibrations of railway bridges with elastic bearings. They concluded that

there is doubt that the installation of elastic bearings can prevent the transmission

or dissipation of vehicle-induced forces from the superstructure to the ground. Thus,

the huge amount of vibration energy brought by a train may be accumulated and

amplified on the bridge during its passage. A method based on modal superposition

and regularisation technique is used by Zhu and Law [84] to identify the moving

loads on the elastically supported bridge deck. Their main conclusion was that the

stiffness of the bearings should be large relative to the stiffness of the bridge deck.

Naguleswaran [85] analysed the transverse vibration of a uniform Euler-Bernoulli

beam on five resilient supports (including ends).

I-6- Problem statement of the present study

This thesis covers the dynamic analysis of girder bridges, railway bridges, slab bridges

as well as cable-stayed bridges under the action of moving vehicles and wind actions. In

order to distinguish the present work from the above pertinent literature, we extend the

work done by others researchers by identifying and proposing the solutions to some of

the limits encountered in this field of research. The following improvements have been

achieved in the study.

• Effects of load random velocities on the probabilistic features of the non-

linear Rayleigh beam subjected to a train of forces moving with stochastic

velocity

In previous studies on the vibration analysis of girder bridges under moving vehi-

cles, most of them deal with bridge beams vibrations caused by a random stream

of moving forces, assuming that the loads move with an exactly determined ve-

locity [3–5, 38, 41]. A step further is to consider the velocities as stochastic vari-

ables [15,37,87]. If the beam is loaded by stochastically moving loads, the problem

is more complicated and, generally, only numerical methods allow to retrieve the

resulting vibrations [88]. In this thesis, we give an analytical approach to

19



characterize the mean-square amplitude of the beam response and the

probability density function due to loads moving with stochastic veloci-

ties. The effects of the mean and disturbances velocity on the dynamics

of the beam are also analysed.

• Cable-stayed bridge loaded by a sequence of moving forces with stochas-

tic velocity: A chaotic dynamics approach

In all of the above mentioned research concerning the dynamic of the cable-stayed

bridge under the action of moving vehicles, only the effect of vehicle parameters on

the DAF of the system response was presented. Also, due to the complexity of the

cable-stayed bridge structure, only the finite-element analysis for the VBI system

was generally pointed out to find for example the effect of the number of stay ca-

bles on the system response. To the best of our knowledge, the effects of

stochastic fluctuations of the load velocity and the number of stay ca-

bles on the possible appearance of some nonlinear phenomenon such as

horseshoes chaos in the cable-stayed bridge system remain unaddressed.

In this thesis, based on one of a chaotic dynamics approach: Melnikov

technique which is widely used by most researchers [89,91–94], all the-

ses effects are investigated.

• Dynamic response of a two lane slab-type-bridge due to traffic flow: Prob-

abilistic or statistic approach

From the above pertinent literature concerning the dynamic of slab bridges loaded

by vehicles, the contributions given by Nikkhoo et al. [62] seem to be most rele-

vant to the problem. They considered two series of moving inertial loads traversing

the plate surface along parallel rectilinear trajectories with opposite directions and

studied the resonance caused by this loads. This investigation done by Nikkhoo et

al. is of significance in engineering mechanics dealing with the vibration of two lane

slab-type bridges under the moving vehicles.

Nevertheless, the assumed model of the loads is a serious shortcoming of their work

if they are supposed to idealize the loads due to moving vehicles. In this model all

the forces (vehicles) arriving at the plate at different, deterministic time instants and

with constant velocity. An adequate modelling of highway traffic loads was proposed

by Tung [3–5]. We propose here to extend the work done by Nikkhoo et al. [62]

by taking into account this more realistic model of moving loads (when it idealizes

the vehicles in highway traffic). In this model all the forces (vehicles) arrive at the

plate at the random time instant, with stochastic velocities. To summarize, in

this thesis, an analytical approach for obtaining the probabilistic char-

acteristics of a two lane slab-type-bridge response due to two opposite

series of stochastic moving loads is investigated.
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• Rayleigh beams on viscoelastic Pasternak foundation supporting a se-

quence of equidistant moving loads: Vibratory and chaotic dynamics

approaches

Amongst those previous investigations concerning the vibration analysis in railway

bridges, the ones of Kargarnovin and Younesian [79, 80] were attracted our atten-

tion. The authors used the first order perturbation method to analyse the response

of an infinite Timoshenko beam on the viscoelastic foundation under a moving

load. To simulate the behaviour of the foundation, Pasternak viscoelastic model

was used. This model includes a Kelvin foundation in conjunction with a shear

viscous layer [79] or with a shear elastic layer [79]. These studies clearly show that

the shear layer material of the foundation can have viscoelastic physical properties.

It is well known that, the shear layer of material that constitutes the railway track

can be constituted by some viscoelastic materials such as elastomer. Therefore,

the long memory effects of this viscoelastic materials may be considered through

a fractional-order derivative concept. So, we focus in our work on the an-

alytical and numerical analysis of Rayleigh beams subject to uniform

moving loads resting on Pasternak foundations considering their shear

layer as fractional-order viscoelastic material.

• Vibration analysis of Rayleigh beams laying on fractional order viscoelas-

tic bearings subject to moving loads and stochastic wind

Elastic bearings often exist at the supports of bridge girders for load transference to

the foundation or for earthquakes load isolator. However, such devices may result in

amplification of the response of the bridge during the passage of a train [82]. This is

certainly one disadvantage with the use of elastic bearings. Hence our interest. It is

well known that, the bearings can also be constituted by some viscoelastic materials

(such as elastomer) [86]. Therefore, the long memory effects of these viscoelastic

materials may be modelled by means of fractional derivatives. Or, in the above men-

tioned studies of bridge/vehicle/wind interaction analysis [9,11–13,81], the effects of

bearings having fractional-order viscoelastic material on the vibration performance

of bridge deck have not yet been explored. Also, most of these studies focus on

the dynamic displacements and accelerations using a simple finite element model of

the bridge. In this thesis, we firstly, analyse the effect of the number of

bearings and their fractional-order viscoelastic physical properties on

the resonance vibrations of the bridge deck. Secondly, we give some

estimate of the additive and parametric wind turbulence effects on the

stationary probability density function of the oscillations amplitude of

the bridge deck.
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I-7- Conclusion

In this chapter, we have provided the reader with some key factors involved in the

dynamic interaction between the bridge and service loads including roads traffic, train

traffic and wind actions. A briefly state-of-art review of research based on this topic

has been presented. The main challenge of the thesis concerning notably, the problem of

transverse vibrations of bridges subject to the passage of randomly moving loads has been

presented and will be solved in chapter III of the dissertation by using some approximate

response methods. Therefore, in the following chapter a general background of these

methods will be presented.
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Chapter II

Research methodology: approximate response
methods for the reduced linear or nonlin-
ear mathematical bridge models



II-1- Introduction

Generally, the whole excited bridge system is modelled with a Partial Differential Equa-

tion (PDE) that is reduced to a linear or nonlinear one-dimensional system by applying the

Galerkin’s method. This chapter presents a general background on approximate response

methods for these reduced mathematical models. These approximate response methods

are subdivided in two major categories: analytical and numerical techniques. There-

fore, five analytical techniques including the classical stochastic averaging technique to

approach the nonlinear Stochastic Differential Equations (SDEs), Melnikov’s method to

predict Smale horseshoe type chaos, Fourier transform and theory of residues to charac-

terize the probabilistic features of the nonlinear Ordinary Differential Equations (ODEs),

Routh-Hurwitz criterion to give the decision on the stability of the non-trivial steady-

states solutions of the nonlinear ODEs, and the Itô differential rule associated with the

averaging method to approximate solutions for statistical moments of the reduced mathe-

matical models are presented in Section II-2-. In Section II-3-, four numerical methods are

presented: the Stochastic Fourth-order Runge-Kutta (SRK4) algorithm to integrate the

nonlinear SDEs, the deterministic one (RK4) for the nonlinear ODEs, the Newton-Leipnik

and the Adams-Bashforth-Moulton (A-B-M) predictor-corrector schemes to integrate the

nonlinear Fractional Differential Equations (FDEs), the dichotomy method to solve com-

plex or non-trivial polynomial equations. The conclusion of the chapter appears in Section

II-5-.

II-2- Approximate response methods for the reduced

mathematical bridge models - Analytical tech-

niques

To predict the response and to give the decision on its stability, various analytical tech-

niques [96–103] are used to approach the reduced mathematical bridge models (nonlinear

ODEs, SDEs and FDEs or linear equations) and will present in the following subsection.

II-2-1- Stochastic averaging method for the nonlinear stochastic

differential equations

In the quest for approximate solution for random vibration problems, the method of

stochastic averaging has proved to be a powerful analytic tool. This method was orig-

inally introduced by Stratonovich [96] in 1963, based on a combination of physical and

mathematical arguments, in connection with non-linear self-excited oscillations in elec-

trical systems, due to the presence of noise. It may be viewed as an extension of the
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deterministic averaging procedure of Bogoliubov and Mitropolsky [104]. The success of

the stochastic averaging method is mainly due to its two advantages: the equations of

motion of a system are much simplified and the dimensions of the equation is often re-

duced while the essential behaviour of the system is retained; the averaged response is a

diffusive Markov process and the method of Fokker-Planck-Kolmogorov (F-P-K) equation

can be applied.

The solvability of a nonlinear stochastic system is enhanced if the dimensionality of

the system can be reduced. This is accomplished with two averaging techniques, applicable

under certain conditions. The first, known as stochastic averaging, is applied to systems

with linear or weakly nonlinear stiffness. The second averaging technique, known as

quasi conservative averaging, is applicable even when the stiffness term in the governing

physical equation is strongly nonlinear. In this thesis, we have used the first one which is

now illustrated with the following single-degree-of-freedom-system of linear stiffness:

Ÿ + ω2
0Y = εf

(
Y, Ẏ

)
+ εh

(
Y, Ẏ

)
Dα [Y (t)] + ε

1/2
∑
k

gk

(
Y, Ẏ

)
ξk (t) (3)

where ε is a small parameter, indicating that the damping term is of order ε, and the

random excitations ξk (t) are of order ε
1/2. f

(
Y, Ẏ

)
, h
(
Y, Ẏ

)
and gk

(
Y, Ẏ

)
are linear or

nonlinear functions with respect to Y and Ẏ . We assume that ξk (t) are weakly stationary

process, namely:

E [ξr (t) ξs (t+ τ)] = Rrs (τ) (4)

Dα [Y (t)] is Caputo-type fractional derivative and defined by

Dα [Y (t)] =
1

Γ (n− α)

t∫
0

Y (n) (t− τ)

τα
dτ (5)

where n − 1 < α ≤ n and Γ (z) is Gamma function that satisfies Γ (z + 1) = zΓ (z). At

first, the original system (3) is transformed into a diffusion differential equation by using

the following generalized Van der Pol transformation:

Y = A (t) cos θ, Ẏ = −A (t)ω0 sin θ, θ = ω0t+ φ (t) (6)

Therefore, the joint response process
(
Y, Ẏ

)
is needed to be transformed to a pair of slowly

varying processes (A, φ). After some elementary calculations, Eq. (3) may be replaced by

the following two first-order equations:

Ȧ = − sin θ
ω0

[εf (A cos θ,−Aω0 sin θ) + εh (A cos θ,−Aω0 sin θ)Dα [A cos θ]

+ε
1/2
∑
k

gk (A cos θ,−Aω0 sin θ) ξk (t)

]
(7)
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φ̇ = − cos θ
Aω0

[εf (A cos θ,−Aω0 sin θ) + εh (A cos θ,−Aω0 sin θ)Dα [A cos θ]

+ε
1/2
∑
k

gk (A cos θ,−Aω0 sin θ) ξk (t)

]
(8)

The right hand side of Eqs. (7) and (8) are associated only with ε and ε
1/2 terms. Physi-

cally, A (t) represents the random amplitude, and φ (t) represents the random phase, and

their values are nearly unchanged within a time-span 1/ε.

Define a correlation time between random excitations ξr (t) and ξs (t):

τrs =
1

[Rrr (0)Rss (0)]
1/2

0∫
−∞

|Rrs (τ)| dτ (9)

which is a measure of memory of the present ξr (t) with respect to the past ξs (t). If the

system variables {A, φ} are observed at time instants at ∆t apart, and if ∆t� τrs for all

r and s, then the observed variation of the system variables is Markov-like. However, ∆t

should be much smaller than ε−1 in order that sufficient details of the system behaviour

can be observed. In other words, the observed {A, φ} is approximately a Markov vector

if ε−1 � τrs for all r and s. If this condition is satisfied, then the amplitude process may

be approximated as a one-dimensional Markov process, governed by an Itô equation:

dA = m (A) dt+ σ (A) dB (t) (10)

where the drift and diffusion coefficients m (A) and σ (A) can be obtained as follows:

m (A) = ε
〈
− 1
ω0

sin θtf (A cos θt,−Aω0 sin θt) + h (A cos θ,−Aω0 sin θ)Dα [A cos θ]

+ 1
ω2

0

0∫
−∞

∑
k

∑
j

{
∂
∂A

[sin θtgk (A cos θt,−Aω0 sin θt)] sin θt+τ + 1
A

∂
∂θt

[sin θtgk (A cos θt,−Aω0 sin θt)] cos θt+τ

}
gj (A cos θt+τ ,−Aω0 sin θt+τ )Rkj (τ) dτ

〉
t

(11)

σ2 (A) = ε
〈

1
ω2

0

∑
k

∑
j

+∞∫
−∞
{sin θt sin θt+τgk (A cos θt,−Aω0 sin θt)

gj (A cos θt+τ ,−Aω0 sin θt+τ )Rkj (τ)} dτ〉t
(12)

in which θt and θt+τ are abbreviations for ω0t + φ (t) and ω0 (t+ τ) + φ (t), respectively,

and 〈.〉t denotes a deterministic time-averaging operation of the enclosing quantity. That

is,

〈[.]〉t = lim
T→∞

1

T

t0+T∫
t0

[.] dt (13)
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If the quantities in Eqs. (11) and (12) are periodic, with period T0 for example, then

Eq. (13) becomes

〈[.]〉t =
1

T0

t0+T0∫
t0

[.] dt (14)

It is seen that the fractional derivative with Caputo definition is essentially a generalized

integral with derivative of time-delay in it, usually, it is very difficult to deal with a

higher fractional order in mathematics. Herein only the case 0 < α ≤ 1 in this thesis is

considered, other values for α will be discussed further in our future work. So, according

to formula (5) and Eq. (6), the Caputo-type fractional derivative can be rewritten as

1

Γ (1− α)

t∫
0

Ẏ (t− τ)

τα
dτ =

Aω0

Γ (1− α)

cos θ

t∫
0

sinω0τ

τα
dτ − sin θ

t∫
0

cosω0τ

τα
dτ

 (15)

It turns out that how to calculate or approximate the integrals appeared in (15) is an

important task to replace the complicated Caputo-type fractional derivative in terms of

envelope and frequency. Fortunately, the following two generalized integrals can play a

role to solve this problem, they are respectively

t∫
0

sinω0τ

τα
dτ =ωα−1

0

[
Γ (1− α) cos

πα

2
− cosω0t

(ω0t)
α + o(ω0t)

−α
]
, (16a)

t∫
0

cosω0τ

τα
dτ =ωα−1

0

[
Γ (1− α) sin

πα

2
+

sinω0t

(ω0t)
α + o(ω0t)

−α
]
. (16b)

After that, the drift function and diffusion function in differential equation (10) can be

computed out completely by means of stochastic averaging method mentioned ahead.

With the knowledge of the Itô Eq. (10), or equivalently, the corresponding F-P-K

equation, one obtains the Probability Density Function (PDF) of the averaged amplitude

as follows:

P (a) =
C

σ2 (a)
exp

(∫
2m (a)

σ2 (a)
da

)
(17)

where a is the state variable for A, and C is a normalization constant.

In the case of combined harmonic and random excitations, the stochastic averaging

method was usually used for obtaining the analytic solution of a nonlinear stochastic

systems. This case is also investigated in this thesis and the procedure to obtain the

exact PDF of the averaged amplitude and phase is more complex. The principle is as

follows: first, the amplitude and phase process are approximated as a two-dimensional

Markov process, governed by the averaged Itô equations. Then the equivalent stochastic

systems of the averaged equations are obtained by using differential forms and exterior

differentiation [105, 106]. After that, the exact stationary solutions to the equivalent
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systems are obtained. Pertinent and more informations about this procedure can be get

in the article of Huang and Zhu [107].

II-2-2- Melnikov’s method to predict Smale horseshoe chaos

Melnikov’s method [108] is one of relatively few analytical methods used to predict the

onset of chaotic motion in dynamical systems with deterministic or random perturbation.

It gives a bound on the parameters of a system such that chaos is predicted not to occur.

It is applicable to conservative one DOF systems which include a separatrix loop, and

which are perturbed by small forcing and damping.

The idea is to show by perturbation expansions that there exists an intersection of

the stable and unstable manifolds of an equilibrium point in a two-dimensional Poincare

map M. This implies that there is a horseshoe in the map M, which in turn implies that

there exist periodic motions of all periods, as well as motions which are not periodic.

The horseshoe map also exhibits sensitive dependence on initial conditions. The method

was first applied by Holmes [109] to study a periodically forced Duffing oscillator with

negative linear stiffness.

To perform the general Melnikov technique for horseshoe chaos analysis, let’s Con-

sider a single-degree-of-freedom Hamiltonian system subject to light damping and external

or parametric excitation. This system has the following form:
ẋ = ∂H

∂y

ẏ = −∂H
∂x
− ελ (x, y) ∂H

∂y
+ εf (x, y) η (t)

(18)

where x and y are generalized displacement and velocity respectively; H = H (x, y) is

Hamiltonian with continuous first-order derivatives; ε is a small positive parameter; η (t)

is the external perturbation which can be purely periodic excitation or random noise

excitation. λ (x, y) represents the coefficient of damping; f (x, y) represents the amplitude

of excitation.

We assume that (x0 (t) , y0 (t)) is a solution on the separatrix loop in the ε = 0

system. The separatrix loop in the ε = 0 system will generally be “broken” when the

perturbation is applied. The question of whether or not chaos can occur in a particular

system depends upon what happens to the broken pieces of the separatrix loop (the stable

and unstable manifolds of the saddle), that is, whether they intersect or not. In the case

of Eq. (18) and based on a formula given by Wiggins [91], Melnikov’s method involves

the following integral:

M (t0) =

+∞∫
−∞

∂H

∂y

[
−λ (x, y)

∂H

∂y
+ f (x, y) η (t+ t0)

]
dt (19)
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where before integrate the previous Eq. (19), the couple (x, y) is substituted by the orbit

(x0 (t) , y0 (t)).

II-2-2-1- Melnikov method for chaos analysis: Deterministic state of the sys-

tem

When a system (18) is under purely periodic excitation (case where η (t) is periodic

function of time), the system is said to respond in a deterministic state. In this case,

the deterministic Melnikov method need to be adopt in other to define the condition

for the appearance of the so-called transverse intersection points between the perturbed

and the unperturbed separatrix, thus identifying possible chaotic response by the Smale-

Birkhoff theorem, in a two dimensional vector field [91,110]. This transverse intersection

manifests itself by the fractality on the basin of attraction of the system.

According to the assumption made in this section, M (t0) in Eq. (19) is a deter-

ministic function which characterizes the size of the gap between the stable and unstable

manifolds of the saddle. If M (t0) vanishes for some t0 , then the stable and unstable

manifolds intersect and system (18) is predicted to contain a horseshoe. If M (t0) does

not vanish for any t0, then Melnikov’s method predicts that there is no intersection of

the stable and unstable manifolds, and hence no associated horseshoe or chaos in system

(13). All these results assume that ε is a small quantity.

II-2-2-2- Melnikov method for chaos analysis: Stochastic state of the system

When a system (18) is under random noise excitation (case where η (t) is a random

function of time), the system is said to respond in a stochastic state. Due to the

presence of random noise, the deterministic boundary of the safe region indicated by the

invariant manifolds no longer applies. Stochastic analyses of the system response and

interpretation from a probabilistic aspect are needed. A generalized stochastic Melnikov

method or random Melnikov process can be developed to provide a criterion for the

existence of ”noisy” chaotic system response. Since η (t) is assumed to be random in this

case (generally, considered as bounded noise with zero mean), the function M (t0) in Eq.

(18) is now a random process rather than a deterministic function and it can be treated

only in some statistical sense. This function measures the random distance between the

stable and the unstable manifolds.

First, consider the mean of random Melnikov process (19)

E [M (t0)] = −
+∞∫
−∞

λ (x, y)

(
∂H

∂y

)2

dt (20)
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where E [.] is an expectation operator. Eq. (20) gives a negative constant for positive

damping. It implies that in mean sense chaos never occurs in system (18). Next, consider

if random Melnikov process (19) has simple zeros in mean-square sense. Let

σ2
d = E




+∞∫
−∞

λ (x, y)

(
∂H

∂y

)2

dt


2
 , (21a)

σ2
Z = E


+∞∫
−∞

f (x, y)

(
∂H

∂y

)
η (t+ t0) dt


2 . (21b)

The integral in Eq. (21a) yields a positive constant since x = x0(t), y = y0(t). The

integral in Eq. (21b) is a convolution one and it can be rewritten as

Z (t0) =

+∞∫
−∞

f (x, y)

(
∂H

∂y

)
η (t+ t0) dt = h (t) ∗ η (t) (22)

where h (t) = f (x, y)
(
∂H
∂y

)∣∣∣
x=x0(t), y=y0(t)

can be regarded as the impulse response func-

tion of a time-invariant linear system, while η (t) is an input of the system. Thus, as the

output of the system can be obtained in frequency domain as follows:

σ2
Z =

+∞∫
−∞

|H (ω)|2Sη (ω) dω (23)

where H (ω) is the frequency response function of the system, i.e., the Fourier transforma-

tion of h(t) , and Sη (ω) is the spectral density of η (t). The threshold value for the rising

of the chaotic response will depend on the property of the random excitation process, and

may deviate from the mean value. Then, the random Melnikov process has simple zeros

in a mean-square sense if

σ2
Z = σ2

d (24)

Eq. (24) is the criterion of judging the threshold condition for onset of horseshoes chaos

of nonlinear random system.

It is important to remember that the existence of a horseshoe does not imply the

existence of a chaotic attractor. Although the horseshoe itself is chaotic, its presence may

show up as transient chaos if it coexists with a periodic attractor.
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II-2-3- Approximate Solutions for Statistical Moments

To obtain various statistical moments of the response, it is more convenient to work

with the Itô-type stochastic differential equations of the form:

dXi (t) = mi (X) +
∑
j

σij (X) dBj (X) (25)

where Bj (X) are known as the Wiener (or Brownian motion) processes, and mi and σij

are known as drift and diffusion coefficients, respectively, which can be determined in the

same manner as the first and second derivate moments. A vector Xi(t) is supposed to be

a diffusional Markov process. The greatest advantage in using stochastic differential Eq.

(25) of the Itô-type is the ease with which another Itô equation for an arbitrary scalar

function F (X, t) can be obtained:

dF (X, t) =

(
∂F

∂t
+
∑
j

mj
∂F

∂Xj

+
1

2

∑
j

∑
k

∑
l

σklσkl
∂2F

∂Xj∂Xk

)
dt+

∑
j

∑
k

σjk
∂F

∂Xj

dBk (t)

(26)

Eq. (26) is known as the Itô differential rule. The applicability of this rule requires that F

is differentiable with respect to t, and twice differentiable with respect to the components

of X. For the purpose of obtaining statistical moments, we let F (X, t) = Xnr
r X

ns
s ...,

where nr, ns..., are nonnegative integers, and then take ensemble average of the resulting

Itô equations.

As an example, consider a two-dimensional Markov vector X = {X1, X2}. Let

F (X, t) = Xn1
1 Xn2

2 . Application of Itô differential rule yields:

d (Xn1
1 Xn2

2 )

=

{
n1m1X

n1−1
1 Xn2

2 + n2m2X
n1
1 Xn2−1

2 + 1
2

[
n1 (n1 − 1)

∑
l

σ1lσ1lX
n1−2
1 Xn2

2

]
+1

2

[
n2 (n2 − 1)

∑
l

σ2lσ2lX
n1
1 Xn2−2

2 + 2n1n2

∑
l

∑
l

σ1lσ2lX
n1−1
1 Xn2−1

2

]}
dt

+
∑
k

(
n1X

n1−1
1 Xn2

2 σ1k + n2X
n1
1 Xn2−1

2 σ2k

)
dBk (t)

(27)

Taking ensemble average of Eq. (27), and recognizing that the ensemble average of the

last term is zero, we obtain:

d
dt

E [Xn1
1 Xn2

2 ]

= n1E
[
m1X

n1−1
1 Xn2

2

]
+ n2E

[
m2X

n1
1 Xn2−1

2

]
+ 1

2
n1 (n1 − 1) E

[∑
l

σ1lσ1lX
n1−2
1 Xn2

2

]
+1

2
n2 (n2 − 1) E

[∑
l

σ2lσ2lX
n1
1 Xn2−2

2

]
+ n1n2E

[∑
l

∑
l

σ1lσ2lX
n1−1
1 Xn2−1

2

]
(28)
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A sequence of equations for the statistical moments can be obtained by substituting

nonnegative integers for n1 and n2. Of course, any Xj with a negative power on the

right hand side of Eq. (28) should be replaced by zero. It is clear that this sequence

of equations for the statistical moments constitute an infinite hierarchy; therefore, they

cannot be solved exactly. Several schemes have been proposed for obtaining approximate

solutions, one of which is known as Gaussian closure. In this scheme, higher statistical

moments are expressed in terms of the first- and second-order moments, using the same

relationships as if they were moments of Gaussian random variables, or equivalently,

neglecting those cumulants of X1 and X2 of an order higher than the second.

II-2-4- Practical use of the Fourier transform technique associ-

ated with residue theory

The Fourier transform is beneficial in differential equations because it can transform

them into equations which are easier to solve. The derivative property of Fourier trans-

forms is especially appealing, since it turns a differential operator into a multiplication

operator. In many cases this allows us to eliminate the derivatives of one of the indepen-

dent variables. The resulting problem is usually simpler to solve. Of course, to recover

the solution in the original variables, an inverse transform is needed. This is typically

the most labor intensive step. Generally, the original solution contains a complex Fourier

integral which can compute by using residue theorem and proposition. In complex anal-

ysis, the residue theorem sometimes called Cauchy’s residue theorem is a powerful tool

to evaluate line integrals of analytic functions over closed curves; it can often be used to

compute real integrals as well. This theorem is expressed as follows:

Theorem [111]

Let C be a simple closed positively oriented path. Suppose that f is analytic inside and

on C, except at finitely many isolated singularities z1, z2, ..., zn inside C. Then∫
C

f (z) dz = 2πi
n∑
j=1

Res (f, zj) (29)

After this transformation, a search of the poles of f is needed. Hence the following

Proposition

Proposition [111]

(i) Suppose that z0 is an isolated singularity of f . Then f has a simple pole at z0 if and

only if

Res (f, z0) = lim
z→z0
{(z − z0) f (z)} 6= 0 (30)
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(ii) If f (z) = p(z)
q(z)

, where p and q are analytic at z0, p (z0) 6= 0, and q(z) has a simple

zero at z0, then

Res

(
p (z)

q (z)
, z0

)
=
p (z0)

q′ (z0)
(31)

Let us look at an example to see how this method is used for differential equa-

tions involving a function of only one variable. The well known ODE that governing the

harmonic oscillator with single degree of freedom and pulsation ω0 excited by the Dirac

impulse function δ(t) is considered as example.

q̈ (t) + ω2
0q (t) = δ (t) (32)

Many Fourier transformations can be made simply by applying predefined formulas to

the Eq. (32). The most used for the ODEs are:

TF (f (t)) =
+∞∫
−∞

f (t) e−iωtdt = F (ω)

TF−1 (F (ω)) = 1
2π

+∞∫
−∞

F (ω) eiωtdω = f (t)

TF
(
f (n) (t)

)
=

+∞∫
−∞

f (n) (t) e−iωtdt = (iω)nF (ω) , i2 = −1

TF (δ (t)) = 1

(33)

where TF(.) is the Fourier transform operator. Therefore, the transform of both sides of

Eq. (32) can be accomplished using Eq. (33), giving

(
−ω2 + ω2

0

)
Q (ω) = 1 (34)

This is just an algebraic equation whose solution is

Q (ω) = − 1

ω2 − ω2
0

= − 1

(ω − ω0) (ω + ω0)
(35)

We can then recover the original solution q(t) by an inverse transform

q (t) = − 1

2π

+∞∫
−∞

eiωt

(ω − ω0) (ω + ω0)
dω (36)

Since that the integrand has two poles located respectively at ω = +ω0 and ω = −ω0, the

residue theorem can be applied and the solution is given as

q (t) = − 1

2π
× 2πi× [Res (+ω0) + Res (−ω0)] = −i×

[
eiω0t

2ω0

+
e−iω0t

−2ω0

]
(37)
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Finally,

q (t) =
sinω0t

ω0

(38)

II-2-5- Stability of the non-trivial steady states solutions of the

nonlinear system response

It is well known that the steady states solutions of any nonlinear system only exist if they

are stable. Hence the interest to perform a stability analysis of these solutions. To do

so, we shall define first what we mean by a steady state solution and how can appreciate

their stability. So, formally, we can say that

Definition [112]

The constant vector Y0 ∈ Cn is a steady state solution of the system of differential

equations
dY (t)

dt
= F (Y (t)) (39)

if it satisfies the equation F (Y (t)) = 0, where 0 is the null vector and F (Y (t)) is a

differentiable vector function. When Y0 6= 0, the steady state solution is non-trivial.

As we have seen, if such a system is required to satisfy the initial condition given

by Y (0) = Y0, then its solution will be Y (t) = Y0 for all times t. (So, Y0 will be a

constant solution of the system). What about the stability of this solution? We can get

some information about the stability of the solution of the nonlinear systems models by

using Taylor’s Theorem to “relate” it to a linear system. In fact, the version of Taylor’s

Theorem which we shall use is the following

Theorem [Taylor’s Theorem] [112]

If F : Cn → Cn is a continuously differentiable function and Y0 is some constant vector

in Cn, then for a vector δY (t) ∈ Cn,

F (Y0 + δY (t)) = F (Y0) +DF (Y0) +R (δY (t)) (40)

Note that if the function F (Y ) = (f1(Y ), f2(Y ), ..., fn(Y )), then DF is the Jacobian

DF =


∂f1

∂Y1
. . . ∂f1

∂Yn
...

. . .
...

∂fn
∂Y1

· · · ∂fn
∂Yn

 (41)

and the matrix DF (Y0) is the Jacobian evaluated at Y0. Further, R (δY ) has the property

that: R(δY )
‖δY ‖ → 0, as δY → 0

Loosely speaking, this means that if each entry of δY is small, then

F (Y0 + h) ' F (Y0) +DF (Y0) (42)
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where ' can be interpreted as “is approximately”.

Now, suppose that Y0 is a steady state solution of the previous system (39), i.e.

F (Y0) = 0, and take Y (t) to be a solution of the system such that Y (0)− Y0 is small. If

we now take Y (t) = Y0 + δY (t), system (39) becomes

d

dt
{Y0 + δY (t)} = F (Y0 + δY ) (43)

Consequently, using Taylor’s theorem, we have

dδY (t)

dt
=

d

dt
{Y0 + δY (t)} = DF (Y0) δY (t) +R (δY (t)) , (44)

and if δY (t) is small, we can ignore the term R (δY (t)). This means that if the quantity

δY (0) = Y (0) − Y0 is small, then the behaviour of the vector δY (t) = Y (t) − Y0 is

qualitatively the same as the solution to the linear system

dδY (t)

dt
= DF (Y0) δY (t) (45)

This analysis results in the following theorem:

Theorem [112]

Let the constant vector Y0 be a steady state solution of the system (39) and let the matrix

DF (Y0) denote the Jacobian evaluated at Y0.

- If the n eigenvalues of the Jacobian matrix DF (Y0) have real parts less than zero,

then the steady state solution Y0 is stable.

- If at least one of the n eigenvalues of the Jacobian matrix DF (Y0) has real part

greater than zero, then the steady state solution Y0 is unstable.

Generally, the determination of the sign of the real parts of the eigenvalues is carried

out by using the Routh-Hurwitz criterion [103].

This mathematical formalism will be used in the following chapter to analyze the

stability of the steady state solutions of the beam responses.

II-3- Approximate response methods for the reduced

mathematical bridge models - Numerical tech-

niques

When analytic solutions are not apparent, numerical integration is the only way to obtain

information about the trajectory. Many different methods were proposed and used in an

attempt to solve accurately various types of the ODEs, SDEs and FDEs. Unfortunately

it is seldom that these equations have solutions that can be expressed in closed form, so it
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is common to seek approximate solutions by means of numerical methods; nowadays this

can usually be achieved very inexpensively to high accuracy and with a reliable bound on

the error between the analytical solution and its numerical approximation. In this thesis,

four numerical methods including a SRK4 method to integrate the SDEs, a classical

RK4 to integrate the ODEs, Newton-Leipnik and A-B-M predictor-corrector schemes to

integrate the FDEs and the bisection method to solve a complex or non-trivial polynomial

equations are presented.

II-3-1- Stochastic Fourth-order Runge-Kutta method for the

stochastic differential equations

SDEs are the differential equations which contain a stochastic process. These type of

equations play an important role in physics but existing numerical methods for solving

it are of low accuracy and poor stability. The efficient SRK4 scheme [118] developed by

Jeremy N. Kasdin is used in this thesis to numerically treat the random process of the

systems models.

Consider for simulation the following Itô stochastic differential equation:{
dX(t)

dt
= F (t,X (t)) +G (t,X (t)) ξ (t)

X (t0) = X0

(46)

where X(t) = (x1(t), x2(t), ..., xn(t)) is a vectorial variable with n−dimensional, F =

(f1, f2, ..., fn) and G = (g1, g2, ..., gn) the vectorial flows. ξ (t) is a random (stochastic)

processes. This excitation is parametric (multiplicative) if its accompanying coefficient

G (t,X (t)) is a function of X. Otherwise, it is external (additive). ξ (t) can be:

- a white noise defines as [119]:

≺ ξ (t) �= 0, and ≺ ξ (t) ξ (t′) �= 2δ (t− t′) ; (47)

- a colored (Ornstein-Uhlenbeck) noise defines as [119]:

≺ ξ (t) �= 0, and ≺ ξ (t) ξ (t′) �=
1

2 τ
e−
|t− t′|
τ ; (48)

- a bounded noise which is a harmonic function with constant amplitude and random

phase defines as [119]:

≺ ξ (t) �= 0, ≺ ξ (t) ξ (t′) �= σ2

2
exp

(
−γ2|t−t′|

2

)
cos Ω (t− t′) ,

ξ (t) = σ cos (Ωt+ γB (t) + Γ)
(49)

where σ and γ are positive constants, B(t) is a standard Wiener process, Γ is a random

variable uniformly distribution in [0, 2π]. The brackets ≺ ... � denote the time average.
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Let us consider the SDE gives by Eq. (46) and assuming that ξ(t) is a bounded noise

(since that it is the type of noise used in our work) defined as shown in (49). Introducing

a new variable Z(t), the system (46) can be rewritten as
dX(t)

dt
= F (t,X (t)) + σG (t,X (t)) cos (Z (t))

dZ(t)
dt

= Ω + γζ (t)

X (t0) = X0

Z (t0) = Z0

(50)

The SRK solution for k , Xk and Zk is given by the following set of equations:

x0,j = X0

z0,j = Z0

xk+1,j = xk,j + α1K1,j + α2K2,j + α3K3,j + α4K4,j

zk+1,j = zk,j + α1M1,j + α2M2,j + α3M3,j + α4M4,j

K1,j = [fj (tk, xk,j) + σ cos (zk,j) gj (tk, xk,j)] ∆t

M1,j = Ω∆t+ ζ1

Ki,j = [fj (tk + ci∆t, xk,j + Ai,j) + σ cos (zk,j +Bi,j) gj (tk + ci∆t, xk,j + Ai,j)] ∆t

Mi,j = Ω ∆t+ ζi

(51)

where

Ai,j =
i−1∑
n=1

ainKn,j, Bi,j =
i−1∑
n=1

ainMn,j, ζ1 = r1

√
2q1γ∆t, ζi = ri

√
2qiγ∆t,

c2 = a21, c3 = a31 + a32, c4 = a41 + a42 + a43; i = 2, 3, 4

(52)

Here, rm (m = 1,...,4) are the Gaussian white noise from random numbers yp (p = 1,...,8)

generated by using the Box-Mueller algorithm as [120].

rm =
√
−2 log (yp) cos (2πyp) (53)

The coefficients (see Table I) αi, qi and ain are chosen in the deterministic case to ensure

that xk,j and zk,j simulate the solution X(t) and Z(t) with error of order ∆t5. That is,

xj(tk) = xk,j +O
(
∆t5
)
, zj(tk) = zk,j +O

(
∆t5
)

(54)

These coefficients are given in Table I.

This method will be used in the next chapter to approach numerically the reduced

nonlinear SDEs of our mathematical models in order to check the validity of the results

obtained by the mathematical formalism.
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Table I: Coefficients of the SRK4 method [118]

Coefficient Value Coefficient Value

α1

α2

α3

α4

a21

a31

a32

0.25001352164789
0.67428574806272
−0.00831795169360
0.08401868181222
0.66667754298442
0.63493935027993
0.00342761715422

a41

a42

a43

q1

q2

q3

q4

−2.32428921184321
2.69723745129487
0.29093673271592
3.99956364361748
1.64524970733585
1.59330355118722
0.26330006501868

II-3-2- Fourth-order Runge-Kutta method for ordinary differ-

ential equations

Runge-Kutta methods are among the most popular ODEs solver. It was first studied

by Carle Runge and Martin W. Kutta around 1900. Their modern developments are

mostly due to John Butcher in the 1960s. Generally, we distinguish 04 important families

of Runge-Kutta methods: Second-order, Fourth-order, Five-order and Six-order Runge-

Kutta Methods. But the most used method is the Fourth-order one since that it is easy

to use and no equations need to be solved at each stage, highly accurate for moderate

values of the normalization integration time step and easy to code.

Let us consider the same problem given in Eq. (46) but by taking ξ (t) = 0{
dX(t)

dt
= F (t,X (t))

X (t0) = X0

(55)

Define h to be the time step size and ti = t0 + ih. Then the classical RK4 flow for this

problem is given by [113]:

x0,j = X0

L1,J = hfj (ti, xi,j)

L2,J = hfj

(
ti + h

2
, xi,j +

L1,j

2

)
L3,J = hfj

(
ti + h

2
, xi,j +

L2,j

2

)
L4,J = hfj (ti + h, xi,j + L3,j)

xi+1,j = xi,j + 1
6

(L1,j + 2L2,j + 2L3,j + L4,j)

(56)

where i runs for time incrementation and j labels the variables related to xj. L1,j, L2,j,

L3,j, L4,j are intermediate coefficients.

This method will be used in the following chapter in order to solve a first moment and

second moment equations that will permit to get the probabilistic features such as the

expected and variance values of one of our system model response.
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II-3-3- Numerical methods for fractional differential equations

To solve a fractional differential equation, one has to approximate the correspond-

ing derivative operator, which means including information about previous states of the

system (the so-called memory effect). For numerical solutions of the FDEs, the Newton-

Leipnik and A-B-M predictor-corrector schemes [114–117] are the most used. Accordingly,

particular attention will be put on these two numerical methods in this section.

Firstly, a method on the basis of the A-B-M type predictor-corrector scheme is suit-

able for Caputo’s fractional order derivative because it just requires the initial conditions

and for unknown function it has clear physical meaning. The method is based on the fact

that fractional differential equation{
Dq
tY (t) = dqY (t)

dtq
= F (t, Y (t))

Y (k) (0) = Y
(k)

0 , k = 0, 1, ...,m− 1
(57)

is equivalent to the Volterra integral equation

Y (t) =

[q]−1∑
k=0

Y
(k)

0

tk

k!
+

1

Γ (q)

t∫
0

(t− τ)q−1F (τ, Y (τ)) dτ (58)

Discretizing the Volterra equation Eq. (58) for uniform grid tn = nh (n = 0, 1, ..., N),

h = Tsim/N and using the short memory principle (fixed or logarithmic) [114, 121], we

obtain a close numerical approximation of the true solution Y (tn) of fractional differen-

tial equation while preserving the order of accuracy. Assume that we have calculated

approximations Yh(tj), j = 1, 2, ..., n and we want to obtain Yh(tn+1) by means of the

equation

Yh (tn+1) =
m−1∑
k=0

Y
(k)

0
tkn+1

k!
+ hq

Γ(q+2)
F [tn+1, Y

p
h (tn+1)] +

hq

Γ(q+2)

n∑
j=0

aj,n+1F [tj, Yn (tj)]
(59)

where

aj,n+1 =


nq+1 − (n− q) (n+ 1)q, if j = 0,

(n− j + 2)q+1 + (n− j)q+1 + 2(n− j + 1)q+1, if 1 ≤ j ≤ n,

1, if j = n+ 1.

(60)

The preliminary approximation Y p
h (tn+1) is called predictor and it is given by

Y p
h (tn+1) =

m−1∑
k=0

Y
(k)

0

tkn+1

k!
+

1

Γ (q)

n∑
j=0

bj,n+1F [tj, Yn (tj)] (61)

where

bj,n+1 =
hp

q
[(n+ 1− j)q − (n− j)q] (62)
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Secondly, a method on the basis of the Newton-Leipnik algorithm is suitable for Grünwald-

Letnikov fractional order derivative. This approach is based on the fact that for a wide

class of functions, three definitions - Grünwald-Letnikov, Riemman-Liouville and Caputo’s

are equivalent. In this case, the relation to the explicit numerical approximation of qth

derivative at the points kh, (k = 1, 2, ...) has the following form [121]:

k−Lm/hD
q
tk
f (t) ≈ h−q

k∑
j=0

(−1)j
(
q

j

)
f (tk−j) (63)

where Lm is the “memory length”, tk = kh, h is the time step of calculation and

(−1)j
(
q

j

)
are binomial coefficients c

(q)
j (j = 0, 1, ...). For their calculation we can use

the following expression

c
(q)
0 = 1, c

(q)
j =

(
1− 1 + q

j

)
c

(q)
j−1 (64)

According to the short memory principle [114,121], the length of system memory can be

substantially reduced in the numerical algorithm to get reliable results. Therefore, general

numerical solution of the following fractional differential equation

aD
q
tY (t) = F (t,X (t)) , (65)

can be expressed as

Y (tk) = F (tk, Y (tk))h
q −

k∑
j=1

c
(q)
j Y (tk−j) (66)

In Eq. (66), the memory term is expressed by the sum. As shown in paper [122], both

mentioned time-domain numerical methods (Newton-Lepnik and A-B-M) have approxi-

mately the same order of accuracy and good match of numerical solutions. Since that the

last one method is easy to code, we will used it in the following chapter to approximate

the numerical solutions of the FDEs decribing our reduced systems models.

II-3-4- Bisection method for a complex polynomial equations

Bisection method is the simplest among all the numerical schemes to solve the complex

polynomial equations. The method is also called the interval halving method, the binary

search method, or the dichotomy method. The bisection method is based on the following

result from calculus:

The Intermediate Value Theorem:
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Assume f : R → R is a continuous function and there are two real numbers a and b

such that f(a)f(b) < 0. Then f(x) has at least one zero between a and b.

In other words, if a continuous function has different signs at two points, it has to go

through zero somewhere in between!

The bisection method consists of finding two such numbers a and b, then halving the

interval [a, b] and keeping the half on which f(x) changes sign and repeating the procedure

until this interval shrinks to give the required accuracy for the root. An algorithm of this

method could be defined as follows. Suppose we need a root for f(x) = 0 and we have an

error tolerance of ε (the absolute error in calculating the root must be less that ε).

Bisection Algorithm:

Step 1: Find two numbers a and b at which f has different signs.

Step 2: Define c = a+b
2

.

Step 3: If b− c ≤ ε then accept c as the root and stop.

Step 4: If f(a)f(c) ≤ 0 then set c as the new b. Otherwise, set c as the new a. Return

to Step 1

Let α be the value of the root, a ≤ α ≤ b. Let an, bn and cn be the values of a, b and

c on the nth iteration of the algorithm. Then the error bound for cn is given by

|α− cn| ≤
1

2n
(b− a) (67)

This inequality can give us the number of iterations needed for a required accuracy ε

n ≥
log
(
b−a
ε

)
log (2)

(68)

Advantages and disadvantages of the bisection method

- The method is guaranteed to converge

- The error bound decreases by half with each iteration

- The bisection method converges very slowly

- The bisection method cannot detect multiple roots

This method will be used in the next chapter in order to get the non-trivial steady

states solutions of some nonlinear Amplitude-Frequency equations governing one of our

systems models response.
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II-4- Hardware and software

During the course of this work, we used a Laptop computer having the following perfor-

mances (Operating system: Windows 8.1 single language 64-bit(6.3, Build 9600), Proces-

sor: Intel(R)Core(TM)i3-3110M CPU @2.40GHz(4CPUs), ˜2.4GHz, Memory: 4096MB

RAM) and four major software’s: Fortran for differential equations, Matlab for data

analysis, Maple and Mathematica for integral calculus.

II-5- Conclusion

In this chapter, we have presented some analytical and numerical methods used to

solve the differential equations describing the reduced mathematical models of our excited

bridge systems as well as the hardware and software used. These methods will be used

in the next chapter to: obtain the analytical solutions of the ODEs, SDEs and FDEs

describing the mathematical models of our systems; analyse the stability of these solutions;

find the behavior of small amplitudes vibrations; obtain time histories, phase diagram,

amplitudes diagrams, Probability distribution diagram and basin of attraction diagram.
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Chapter III

Dynamical behaviors of various models of
bridge subjected to loads dynamics: main
results and their discussion



III-1- Introduction

Vibration of the bridges subjected to loads dynamics is of great theoretical and practical

significance in structural engineering. Vibrations connected with this issue occur for

example in the roadways or railways loaded by traffic. Frýba [31] and Ouyang [123] are

addressed a variety of engineering problems concerning this subject.

Our aim in this chapter is to extend the work done by others researchers by proposing

the solutions to some of the limits encountered in this field of research which are identified

and listed in chapter I (for example, when the beam is loaded by stochastically moving

loads, the problem is more complicated and, generally, only numerical methods allow to

retrieve the resulting vibrations [88]. In almost all the research concerning the dynamic

of the cable-stayed bridge under the action of moving vehicles, only the effect of vehicle

parameters on the DAF of the system response was presented. Also, due to the complexity

of the cable-stayed bridge structure, only the finite-element analysis for the VBI system

was generally pointed out to find the effect of the number of stay cables on the system

response. The bearings often exist at the supports of bridge girders for load transference

to the foundation or for earthquakes load isolator and always use as elastic structure may

result in amplification of the response of the bridge during the passage of a train [82].).

We address these issues with a joint analytical and numerical analysis that permit to

give an estimate of the system behavior. The chapter is organized as follows. In Section

III-2-, we present and discuss our main results concerning the dynamic response analysis

of various models of bridge as structure subjected to vehicles modelled as random moving

loads [125–127]. In Section III-3-, we first present a fractional order derivative rheological

models of the damping of the track structure and of the bearings devices; thereafter we

present and discuss our main results concerning the dynamic analysis of railway track and

bridge-bearings systems supporting a sequence of equidistant moving loads and stochastic

wind load [128, 129]. The last section III-4- summarizes our results and concludes the

chapter.

III-2- Mathematical modeling and dynamic analysis

of various models of bridge subjected to ran-

domly moving loads

This Section is devoted to the presentation and discussion of the main results come from

the study of three type of bridges submitted to vehicles. Here a bridge deck is modelled

by using the Rayleigh beam theory [124] or the thin rectangular plate theory [145] and

the vehicles by the series of random forces moving over the bridge deck with stochastic

velocities. The first model (subsection III-2-1-) presented in this section describes well the
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dynamic of the girder bridges under moving vehicles; the second model (subsectionIII-2-

2-), the dynamic of a model of cable-stayed bridge under the action of moving vehicles

and the last one, the analysis of the two lane slab-type bridges under the moving vehicles

(subsectionIII-2-3-).

III-2-1- Amplitude stochastic response of Rayleigh beams to

randomly moving loads

III-2-1-1- Description of the physical system and mathematical formalism

Let us consider a beam of finite length L, that is a nonlinear elastic structure. In par-

ticular, our attention is paid to the geometric nonlinearities described due to the Euler-

Bernoulli law, that states that the bending moment of the beam is proportional to the

change in the curvature produced by the load [130–132]. To take into account the high

frequency motion of the beam, a Rayleigh beam correction (up to the second order of the

bending angle) [124] is used to refine the theory of Euler-Bernoulli beam for high frequency

motion. When the governing equation for the vertical displacement of the beam incor-

porates the Rayleigh term into the analysis, the correction affects the summing moments

produced in the simple Euler-Bernoulli theory.

Vibrations of the beam are caused by a set of point forces of constant amplitudes P,

the inter-arrival times are different, deterministic variables ti and the forces are moving

along the beam with stochastic velocities vi (see Fig. 4).

Figure 4: Sketch of a beam under stochastic moving loads. The gravitational forces are
represented by arrows P , whose separations are not uniform, for the speeds vi are not
identical.

Considering the classical viscous damping for the viscosity materials and Newton sec-

ond law of motion, for an infinitesimal element of the beam, the equation of motion for

the small deformations: θ (x, t) ≈ ∂w (x, t) /∂x (here w(x, t) is the transverse defection

of the beam at point x and time t) is obtained as [124, 132] (from the derivation of this

equation (see AppendixIII-4-))
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Mb
∂2w(x,t)
∂t2

−Ra
∂4w(x,t)
∂t2∂x2 + C ∂w(x,t)

∂t
+ EI ∂2

∂x2

[
∂2w(x,t)
∂x2

(
1− 3

2

(
∂w(x,t)
∂x

)2
)]

= P
Nv∑
i=1

εiδ [x− xi(t− ti)]

(69)

with the boundary and initial conditions

w (x, t)|x=0,L = 0, ∂2w(x,t)
∂x2

∣∣∣
x=0,L

= 0.

w (x, t)|t=0 = 0 , ∂w(x,t)
∂t

∣∣∣
t=0

= 0.

(70)

Here EI denotes the flexural rigidity of the beam, Mb the beam mass per unit length,

C the damping coefficient, Ra the transverse Rayleigh beam coefficient and δ[...] the

Dirac delta function. The position of the ith force at the time t reads xi (t− ti), where

ti = (i−1)d/v0 is the deterministic arriving time of the ith load at the beam. The average

spacing loads is d, v0 the average speed of the moving loads, and Nv the number of the

applied loads. In Eq. (69), Mb
∂2w(x,t)
∂t2

represents the inertia force of the beam per unit

length, Ra
∂4w(x,t)
∂x2∂t2

is the rotary inertia force of the beam element (per unit length), C ∂w(x,t)
∂t

is the damping force of the beam per unit length, EI ∂2

∂x2

[
∂2w(x,t)
∂x2

(
1− 3

2

(
∂w(x,t)
∂x

)2
)]

is

the nonlinear rigidity of beam essentially due to the Euler law [130–132]. This nonlinear

term is obtained by using the Taylor expansion of the exact formulation of the curvature

up to the second order. To facilitate a compact representation of the equations, a window

function εi is employed [62]: εi = 0 when the load has left the beam and εi = 1 while the

load is crossing the beam.

A more realistic and useful model of highway traffic loads takes into account random

arrival times, in the form, for examples, of Poisson process [3, 4] or renewal counting

process [5], to represent the vehicular traffic fluctuations. Load fluctuations are thus

assumed to be a set of point forces of constant amplitudes whose inter-arrival times are

different, for the forces are moving with stochastic velocities. Thus, let us consider that

the velocities vi(t− ti) are Gaussian distributed around the average speed v0 [15]. These

velocities are a function of the difference between the time t and the instant at which the

vehicles enter the bridge, ti

dxi(t−ti)
dt

= vi(t− ti) = v0 + σvξi(t− ti),

0 ≤ xi(t− ti) ≤ L.

(71)

Here vi(t − ti) is the stochastic velocity of the ith force, σv its standard deviation and

ξi(t− ti) the velocity disturbances which it is assumed to be independent and stationary
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white noise random processes; i.e.

〈vi(t− ti)〉 = v0 , 〈ξi(t− ti)〉 = 0,

〈ξi(t− ti)ξj(t− ti)〉 = 0 for i 6= j,

〈ξi(t− ti)ξi(t− ti + ζ)〉 = γ2
vδ(ζ).

(72)

The brackets 〈...〉 denote the time average and γv = v0σv.

In the presence of the stochastic term there is a finite probability that the fluctuations

produce a negative velocity, that become sizeable when fluctuations σv are comparable

with the average speed v0. We do not exclude such negative velocities, that we interpret

as a vehicle moving in the opposite direction, thus assuming that the beam represents in

fact a two-way bridge.

If one takes into account the boundary conditions given by Eq. (70) , the transversal

deflection w(x, t) for the simply supported beam can be represented in a series form as

w (x, t) =
∞∑
n=1

qn (t) sin
(nπx
L

)
(73)

Here, qn (t) is the amplitude of the nth mode, and sin (nπx/L) is the solution of the eigen

value problem, that depends on the boundary conditions of the free oscillations of the

beam. It is convenient to adopt the following dimensionless variables:

χn =
qn
r

, τ =
ṽt

L
, v =

v0

ṽ
(74)

The equivalent stochastic dimensionless modal equation is obtained substituting Eq. (71)

and Eq. (73) into Eq. (69), taking into account the dimensionless variables given in

Eq. (74) and considering the first mode only. We have limited the analysis to the first

mode, inasmuch the first mode of vibrations is expected to carry most of the energy, and

therefore one hopes that it could suffice to obtain a first estimate of the system behavior.

If we indicate with Wi(τ − τi) a unit Wiener stochastic process:

χ̈(τ) + λχ̇(τ) + χ(τ) + βχ3(τ) = Γ

Nv∑
i=1

εi sin [Ωτ + γWi (τ − τi)] (75)

with
Ω = πv0

ṽ
, Γ = 2PL3

rEIπ4 , β = −3
8

(
πr
L

)2
, λ = CL3

π2
√
EI(L2Mb+Raπ2)

Ra = Mbr
2 , ṽ = π2

√
EI

L2Mb+Raπ2 , r =
√

I
S
, γ = πσv , τi = ṽti

L
.

(76)

The ansatz (73) of the modal analysis is but the simplest method to deal with this

intrinsically nonlinear problem, for the nonlinear terms of Eq. (69) only results in the
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cubic nonlinearity of Eq. (75). However, the method is capable both to retain (to a

limited and approximated extent) the essential nonlinearity of the full partial differential

equation, and at the same time allow for an analytical treatment, as we shall see in the

following. Also, the roughness of the method calls for detailed numerical simulations to

validate the analysis. As we shall see in the following, numerical simulations support the

usefulness of the method.

Eq. (75) amounts to a stochastic Duffing oscillator which describes the unbounded or

catastrophic motion of the beam. The catastrophic behavior of the beam is related to the

configuration of the potential of the system, as described in details in Ref. [133]

III-2-1-2- Analytical investigation of the system response

It has been shown by Iwankiewicz and Śniady [36] that the influence of the free vibration

(εi = 0) on the probabilistic characteristics of the structure response is negligibly small

when the speed of the moving forces is below 130.0 km/h (about 36.0 m/s). Therefore,

for simplicity, it is assumed in the first case (εi = 0) that the dynamic response function

is equal to zero (χ(τ) = 0) and for the second case (εi = 1) the response function is

calculated from the equation (considering the case of a single moving load):

χ̈(τ) + λχ̇(τ) + χ(τ) + βχ3(τ) = Γ sin [Ωτ + γW (τ)] (77)

It is observed that the right hand side of Eq.(77) is a harmonic function with constant

amplitude and random phases (mathematically equivalent to frequency fluctuations of a

nonmonochromatic drive [134]), and therefore it amounts to a bounded or sine-Wiener

noise η(τ) [135] , whose covariance is given by

Cη(τ, τ
′) = 〈η(τ)η(τ ′)〉 =

Γ2

2
exp

(
−γ

2|τ − τ ′|
2

)
cosΩ(τ − τ ′). (78)

The response of the stochastic Eq. (77) is obtained using the Fourier transform associated

with the residues theorem (where the background has been given in detail in chapter

II) [136], as will be shown in the following.

(a) - Root mean square displacement of the beam

The equivalent linearization of Eq.(77) is

χ̈(τ) + λχ̇(τ) + ω2χ(τ) = η(τ) (79)

where

ω2 = 1 +
3

4
βA2, (80a)

η(τ) = Γ sin [Ωτ + γW (τ)] (80b)
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and A is the root mean square displacement. The solution of Eq. (79) in Fourier space

reads

χ(ω′) =
η(ω′)

ω2 − ω′2 + iλω′
(81)

From Eq. (78), one have

〈η(ω′) η(ω′′)〉 = δ (ω′ + ω′′)Sη(ω
′) (82)

where Sη(ω
′) is the spectral density of the noise η(τ) defined by

Sη(ω
′) =

(Γγ)2

2π

[
1

4(ω′ −Ω)2 + γ4
+

1

4(ω′ +Ω)2 + γ4

]
(83)

Hence,

〈χ(ω′)χ(ω′′)〉 =
〈η(ω′)η(ω′′)〉

(ω2−ω′2+iλω′)(ω2−ω′′2+iλω′′)

=
δ (ω′ + ω′′) Sη(ω

′)

(ω2−ω′2+iλω′)(ω2−ω′′2+iλω′′)

(84)

The mean square amplitude can be calculated as

A2 = 〈χ2(τ)〉 (85)

It follows from the above definitions that:

A2 =
∫

dω1

2π
dω2

2π
≺ χ(ω1)χ(ω2) � ei(ω1+ω2)τ

=
∫

dω1

2π
dω2

2π

δ(ω1+ω2)Sη(ω1)ei(ω1+ω2)τ

(ω2−ω2
1+iλω1)(ω2−ω2

2+iλω2)

= (Γγ)2

2π

∫
dω1

2π

2γ4+8(ω2
1+Ω2)

[4(ω1−Ω)2+γ4][4(ω1+Ω)2+γ4]
[
(ω2−ω2

1)
2
+λ2ω2

1

]

= (Γγ)2

4πλ
.

[γ4+4(ω2+(λ−Ω)2)]
ω2[γ8+16(ω2+(λ−Ω)Ω)2+4γ4(λ2+2(ω2+Ω2−λΩ))]

(86)

This is the main result of this part: the dependence of the oscillations amplitude upon

the beam parameters (damping λ, natural frequency ω0 = 1 and nonlinear component

β) and of the loads traffic (loads weights intensity Γ , average velocity Ω, and velocity

fluctuation intensity γ). In fact substituting Eq. (80a) into Eq. (86), the amplitude can

be found from the roots of

Θ4A
8 + Θ3A

6 + Θ2A
4 + Θ1A

2 = Θ0 (87)
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with

Θ0 = Γ 2
[
γ6 + 4γ2

(
1 + (λ−Ω)2)] (88a)

Θ1 = 4πλ

[
γ8 + 4

(
λ2 + 2

(
1 +Ω2 − λΩ

))
γ4 − 3βΓ 2

4πλ
γ2

]
+

64πλΩ
[
2λ+Ω

(
Ω2 + λ2 − 2− 2λΩ

)]
(88b)

Θ2 = 3λπβ
[
γ8 + 4

(
4 + λ2 + 2Ω (Ω − λ)

)
γ4
]

+

48λπβ
[
3 +Ω4 +Ω

(
Ωλ2 − 2λΩ2 + 4 (λ−Ω)

)]
(88c)

Θ3 = 18λπβ2
[
γ4 + 6 + 4Ω (λ−Ω)

]
(88d)

Θ4 = 27λπβ3 (88e)

III-2-1-3- Numerical investigation of the system response

To check the validity of the analytical estimates, we have compared some analytical results

with numerical simulations. But before that, the random process of the nonlinear Eq. (77)

is numerically treated according to the SRK4 algorithm developed by Kasdin [118] and

well described in the previous chapter.

The physical parameters of the beam and moving loads used for this first model are

given in Table II

Table II: Properties of the Beam and Moving loads [16]

Item Notation Value
Beam

Length L 34.0 m
Young’s modulus (steel) E 3.0 ×1010 N/m2

Cross-sectional area S 0.02 m2

Mass per unit length Mb 11400.0 kg/m
Moment of inertia I 3.07 m4

Beam viscosity C 350.5 N.S/m
Moving loads

Load P 350.0 kN
Mean velocity v0 30.0 m/s

The mean response of the amplitude of the oscillators, as estimated with the modal

equations method, Eq. (87), compared with numerical simulations of Eq. (75) obtained

through the stochastic RK algorithm is displayed in Fig. 5(a). The Figure demonstrates

that there is a resonant velocity v ' 0.32 where the amplitude of the oscillations increases,

in both the theoretical prediction and the numerical simulations.

The analysis of a single load cannot be extended to the multiple vehicles case described

by Eq.(75), inasmuch the superposition principle of a linear system is not established for
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the nonlinear dynamics system (75). As the present analysis cannot be rigorously extended

to multiple load cases, the limits of validity of the extension can only be numerically

verified, as shown in Fig. 5(b). In the Figure it is observed that the resonance is made

more pronounced by the increase of the number of loads Nv. Another interesting feature

of Fig. 5(b) is the reentrant behavior. For some values below the resonant velocity

v = 0.32 there are as many as three different amplitudes that correspond to the same

speed. It is interesting to notice that the peculiar behavior is observed in both the

analytical treatment for the noise value γ = 0.1, see Fig. 5(a). At this level fluctuations

are comparable with the resonant speed v0 = 0.32 in Fig. 5(a). Physically, it corresponds

to rare but sizeable negative velocities. Instead, in Fig. 5(b) fluctuations are so small that

it practically represents the case of a one way bridge. We conclude that the analytical

treatment captures the main effect, as the agreement is fairly good and the resonance is

correctly captured by the analysis in a wide range of parameters.

Figure 5: (a) Comparative analysis of mean-square response through the stochastic av-
erage analysis (Eq. (87), light gray line) and numerical simulations of the full model
Eq. (75) (black line with circle) for a single load (Nv = 1) and for noise intensity
γ = 0.1. (b) Numerical simulations of the mean square response of a different num-
ber of loads Nv for γ = 0.001. The other dimensionless parameters read: β = −0.52,
λ = 0.00078, Γ = 0.0022.

The reentrant behavior is further analyzed in Fig. 6, where the mean-square am-

plitude as a function of the noise intensity for different values of the loads speed v is

displayed. In Fig. 6 the peak of the oscillations, marked by an oval, occurs at relatively

high noise values (γ ' 1.4) for low speed (v = 0.1) speeds, decreases at lower noise levels

(γ ' 0.4) for higher speed (v = 0.35), and moves again to higher fluctuations (γ ' 0.6)

with a further increase of the speed (v = 0.4). Thus, not only the amplitude has a maxi-

mum response for a finite value of the noise intensity, but also the peak position exhibits

a nontrivial behavior. In general these features can be ascribed to the peculiar character
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of bounded noise in model Eq. (75) [137]. We note that the amplitude decrease occurs

for fluctuation levels that are comparable or higher than the average speed, and therefore

they basically describe a two way bridge.

It is always found from Fig. 6 that, velocity noise first causes an increase of the

mean-square amplitude of the beam oscillations, and after a maximum a further increase

of the noise causes a decrease of the mean-square displacement, a behavior that closely

follows stochastic resonance phenomena [139, 140]. In fact, high levels of noise appear to

be paradoxically beneficial for the beam safety, inasmuch the amplitude only increases up

to a special noise value where it exhibits a maximum damage to the beam wearing. Such

counterintuitive effect of the random disturbance has been extensively debated in signal

detection [141] and biological systems [142], and are generally connected with suboptimal

detection observable as the observed amplitude of the oscillations [143]. There are the

Figure 6: Influence of the intensity of the stochastic velocity on the mean amplitude of
vibration for different values of the mean velocity v in the simplified system Eq.( 77). The
other parameters are the same as in Fig.5.

values of γ for which the amplitude is almost constant at the maximum; a further increase

of the noise amplitude γ leads to a decrease of the amplitude (see Fig. 6).

Beside the reentrant effect, it is noticed that the noise intensity tends to broad

the resonance, and the number of loads increases both the mean square amplitude and

the width of the peak. These features are naturally expected on physical grounds; more

surprising is the effect of the single load weight on the mean square amplitude, as shown in

Fig. 7. Increasing the load of each moving weight, one observes that the mean amplitude

also shows a reentrant behavior with multiple solutions below the resonance speed (Fig. 7).

It is significant to note that when the speed is below the resonance, one observes critical

values of the weight load where we have a bifurcation of the system. On a general ground

this could be again attributed to the presence of bounded noise, that can produce bimodal
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Figure 7: The mean square amplitude versus the weight load for (a) v = 0.25 and (b)
v = 0.35. It is assumed here that, γ = 0.1. The other parameters are the same as in
Fig.5.

distributions [135]. More specifically, the effect can be related to the special features of the

bounded noise spectral density (83), combined with the nonlinear amplitude-frequency

relation of Eq.(87). These features give rise to the intricate effects above described,

inasmuch the spectral content determined by Eq. (83) is, at variance with the uniform

case of white noise, peaked around some frequencies. Thus, the frequency of the peaks

depends upon the noise intensity: increasing the noise intensity the harmonic content is

altered. This is the physical origin of the reentrant behavior observed in Fig. 6: when the

noise intensity is increased it first moves the harmonic content towards the resonance of

the beam, increasing the amplitude of the oscillations. The effect, however, saturates and

eventually the term at the denominator γ dominates.

In Figs. 5,6,7, the mean amplitude of the oscillations of the beam has been displayed.

A more complete description in terms of the full distribution is presented in the follow-

ing subsection, where the probability distribution of the representative coordinate χ is

analysed.

III-2-1-4- Stationary probability distribution of a catastrophic monostable

system

In this subsection, a Duffing oscillator with bounded Gaussian noise described by

Eq. (77) is considered. In particular, the stationary probability distribution analytically

with the method of stochastic averaging method [96, 98, 99, 138] is sought as describe in

the previous chapter. To do so, it is assumed that the noise intensity is small and the

53



following change in variables is introduced,

χ(τ) = a(τ) cos θ, χ̇(τ) = −Ωa(τ) sin θ, θ = Ωτ + ϕ(τ). (89)

Substituting Eqs. (89) into Eq. (77), we obtain

ȧ = −λasin2θ+
1
Ω
{a (1−Ω2) cos θ + βa3 cos3 θ − Γ sin [Ωτ + γW (τ)]} sin θ

aϕ̇ = −λa sin θ cos θ+
1
Ω
{a (1−Ω2) cos θ + βa3cos3θ − Γ sin [Ωτ + γW (τ)]} cos θ.

(90)

The steady state response for the case of perfect periodicity is considered first, γ = 0, and

Eqs. (90) become

ȧ = −λasin2θ+
1
Ω
{a (1−Ω2) cos θ + βa3 cos3 θ − Γ sin [θ − ϕ]} sin θ

aϕ̇ = −λa sin θ cos θ+
1
Ω
{a (1−Ω2) cos θ + βa3cos3θ − Γ sin (θ − ϕ)]} cos θ.

(91)

By applying the standard averaging method [102,104], Eqs. (91) reduce to
ȧ = −λa

2
− Γ

2Ω
cosϕ

aϕ̇ = 1
Ω

[
a(1−Ω2)

2
+ 3

8
βa3

]
+ Γ

2Ω
sinϕ.

(92)

The steady states solutions of Eqs. (92) can be found by putting a = a0 , ϕ = ϕ0 and

ȧ = 0, ϕ̇ = 0, this leads to the following result:

9

16
β2a6

0 +
3

2
β
(
1−Ω2

)
a4

0 +
[
λ2Ω2 +

(
1−Ω2

)2
]
a2

0 = Γ 2. (93)

This equation has more than one steady-state solution for some parameters. The variation

of steady-state response a0 as a function of the speed v is compared with the numerical

simulation of Eq. (77) and shown in Fig. 8. It can be seen from this figure that the

deterministic response predicted by the standard averaging method is in good agreement

with that obtained by the numerical simulations. In particular the resonance is correctly

captured by the analysis. The time response of the system (75) and phase plot are shown

in Fig. 8 for the noiseless case γ = 0, and for v = 0.32, Nv = 1, λ = 0.0078. Clearly,

the response is periodic and the phase trajectory is a limit cycle. Next, the stationary

response of system (75) in the noisy case is determined, γ 6= 0. To do so, Eqs. (90) are
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Figure 8: Variations of the steady-state response of deterministic system Eq. (75) with
γ = 0 (the other parameters read: Γ = 0.002, Nv = 1, λ = 0.0078): the light gray dots
represent the theoretical prediction and the black circles the numerical solution.

Figure 9: Time evolution and phase portrait of the deterministic system, Eq. (75) with
γ = 0 (the other parameters read: v = 0.32, Γ = 0.002, Nv = 1, λ = 0.0078): (a) time
history of χ(τ) and (b) phase plot.
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rewritten as:
ȧ = −λasin2θ + 1

Ω
[a (1−Ω2) cos θ + βa3cos3θ − η(τ)] sin θ,

ϕ̇ = −λ sin θ cos θ + 1
aΩ

[a (1−Ω2) cos θ + βa3cos3θ − η(τ)] cos θ.

(94)

To apply the method [96,98,138], one average at the frequency Ω and the following pair

of stochastic equations for amplitude a(τ) and the phase ϕ(τ) is obtained:

da =

[
−1

2
λa+ (Γγ)2

8aΩ2

2Ω2+ γ4

4(
γ4

4

)2
+Ω2γ4

]
dτ + Γγ

2Ω

√
2Ω2+ γ4

4(
γ4

4

)2
+Ω2γ4

dW1(τ) (95a)

dϕ =
1

Ω

[
(1−Ω2)

2
+

3

8
βa2

]
dτ +

Γγ

2aΩ

√√√√√ 2Ω2 + γ4

4(
γ4

4

)2

+Ω2γ4

dW2(τ) (95b)

Here W1(τ) and W2(τ) are independent normalized Weiner processes. Clearly, Eq. (95a)

governing the amplitude a(τ) does not depend on ϕ(τ); thus, one can consider the prob-

ability density for a(τ), rather than a joint density for a(τ) and ϕ(τ). The probability

density function P (a(τ), τ |a(τ0), τ0) for the amplitude is governed by the Fokker-Planck-

Kolmogorov equation:

∂P (a,τ)
∂τ

= ∂
∂a

[(
−1

2
λa+ (Γγ)2

8aΩ2

2Ω2+ γ4

4(
γ4

4

)2
+Ω2γ4

)
P (a, τ)

]

+1
2

(
(Γγ)2

4Ω2

2Ω2+ γ4

4(
γ4

4

)2
+Ω2γ4

)
∂2P (a,τ)
∂a2

(96)

In the stationary case, P : ∂P (a,τ)
∂τ

= 0, the solution of Eq. (96) is:

P (a) =
Na

Λ
exp

[
2

∫
∆(a)

Λ
da

]
, (97)

where

∆(a) = −1

2
λa+

(Γγ)2

8aΩ2

2Ω2 + γ4

4(
γ4

4

)2

+Ω2γ4

, (98a)

Λ =
(Γγ)2

4Ω2

2Ω2 + γ4

4(
γ4

4

)2

+Ω2γ4

. (98b)

Combining Eq. (97) and Eqs. (98), we get

P (a) =
λa

Λ
exp

(
− λ

2Λ
a2

)
(99)
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where N has been determined by the normalization condition:∫ ∞
0

P (a)da ≡ 1, (100)

Figure 10: Stationary probability distributions for different values of the standard deviation
of stochastic velocity γ versus the amplitude a. The parameters used are: v = 0.25,
Γ = 0.2, λ = 0.28, Nv = 1. The curves with solid light gray lines denote the algebraic
calculations using Eq. (99) and the curves with solid black lines (with circles) represent
the numerical solutions for the oscillator, Eq. (75).

Moreover, one can find the peaks of the distribution Eq. (99) in the points where

∂P (a)/∂a = 0:

am =

√
Λ

λ
(101)
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As the amplitude of the oscillations in the ansatz Eq. (89) is defined positive, it is

concluded that, the distribution should exhibit just a peak. In Fig. 10 the stationary

probability density as a function of the amplitude a for different noisy velocity intensity

γ is displayed, compared with numerical solutions of Eq. (75). The numerical results

confirm that the distribution has only one maximum. It is also evident that the analytic

solution predicts a peak of the probability distribution at higher values than the numerical

solution. The discrepancy, however, decreases as noise increases, and the agreement is

fairly good when fluctuations are very large (compared to the average speed v = 0.25).

We therefore conclude that there is a better agreement for a two way bridge.

The results obtained in this subsection confirm that an increase of the noise intensity

γ leads to a decrease of the amplitude of the oscillations, Eq.(101). This is in qualitative

agreement with the findings of the Fourier analysis, as it confirms the counter-intuitive role

of noise, that tends to decrease the amplitude of the oscillations. However, it is underlined

that the stochastic averaging does not capture the amplitude of the oscillations at low

noise values.

By way of short summary of this part, we have retrieved what is the effect of the

load random velocities on the behavior of the mean amplitude versus the parameters.

Some nonlinear dependences are new but not fully unexpected: the number of vehicles

changes the resonant velocity (Figs. 5,8). More interesting is the unexpected influence

of the load, that is not just nonlinear, but reentrant (Fig. 7). To single out what we

regard as the most relevant finding, we focus on the non-monotonic effect of the noise

intensity, Fig. 6, that discloses an unexpected beneficial role of noise intensity on the

bridge stability.

III-2-2- Cable stayed-bridge subject to random moving loads:

A chaotic dynamics approach

III-2-2-1- Description of a cable stayed-bridge model and mathematical for-

malism

The dynamic model of a cable-stayed bridge system investigated in this thesis and

shown in Fig. 11(a) is the semi-harp type with two symmetrical spans. The cable-stayed

bridge is modelled by using a Rayleigh beam theory [124] (in order to take into account

the high frequency motion of the beam) of finite length L with geometric nonlinearities on

elastic supports with linear stiffness Kc
k. This model is subjected to an axial compressive

loads T ch due to the total contribution of the horizontal component of the tensile cables

and a series of lumped loads P moving along the beam in the same direction with the

same stochastic velocity vi (See Fig. 11(b)). We assume that the mass of the cables is

negligible and they are regularly spaced on the beam. Since all the stay cable anchorage

sections are fixed to move both horizontally and vertically, the whole pylon is assumed to
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be fixed. The deformed beam can be described by the transverse deflection w (x, t) and

Figure 11: Sketch of (a) the cable-stayed bridge system, (b) equivalent model under stochas-
tic moving loads. The gravitational forces are represented by arrows P , whose separations
are not uniform, for the speeds vk are not identical.

the rotation of the cross section of the beam θ (x, t). The equation of motion for the small

deformations
(
θ (x, t) w ∂w(x,t)

∂x

)
for this system is then given by

Mb
∂2w(x,t)
∂t2

−Ra
∂4w(x,t)
∂x2∂t2

+ c ∂w(x,t)
∂t

+
Nc∑
k=0

Kc
kδ
[
x− k L

Nc

]
w (x, t) + T ch

∂2w(x,t)
∂x2

+EI ∂2

∂x2

[
∂2w(x,t)
∂x2

(
1− 3

2

(
∂w(x,t)
∂x

)2
)]

= P
Nv∑
i=1

εiδ [x− xi (t− ti)]
(102)

In which Mb, EI, ρ, Ra, c, w(x, t) are the beam mass per unit length, the flexural rigidity

of the beam, beam material density, the transverse Rayleigh beam coefficient, the damping

coefficient and the transverse defection of the beam at point x and time t respectively. T ch
is the axial compressive loads due to the total contribution of the horizontal component

of the tensile cables. In Eq. (102), T ch
∂2w(x,t)
∂x2 is the axial compressive load (per unit

length) due to the horizontal component of the stay cables,
Nc∑
k=0

Kc
kδ
[
x− k L

Nc

]
w(x, t) is

the tension of cables per unit length. The term on the right-hand side of Eq. (102) is used

to describe the series of random moving loads over the beam. xi (t− ti) is the distance
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covered by the ith force to the time t. ti = (i − 1)d/v0 is a deterministic arriving time

of the ith load at the beam. d is the average spacing loads, δ[...] denotes the Dirac delta

function, Nv is the total number of moving loads. εi is a window function defined as

previously [58]. Nc is the number of cables acting on the bridge and δ[x− k L
Nc

] give the

position of each action. Kc
k is the linear stiffness of the cables. Their expression according

to the particular characteristics of the stay cables is given by [16]

Kc
k =

EkAk
Lk

sin2 (αk) (103)

where αk is the angle between the kth cable and the bridge deck, Ek, Ak, Lk are the Youngs

Modulus, the cross section and the length of the kth cable respectively. The boundary

and initial conditions of the beam are given in Eq. (70).

By taking into account Eq. (73) and considering the following adopted dimensionless

variables:

ϑn =
qn
lr

, τ = ω0t (104)

The equivalent stochastic dimensionless modal equation is obtained, considering only the

first mode of vibration as

ϑ̈(τ) + λϑ̇(τ) +

[
1− T ch

T chcr
+ χ

Nc∑
k=0

EkAk
Lk

sin2 (αk) sin2
(
πk
Nc

)]
ϑ(τ) + βϑ3(τ)

= Γ
Nv∑
i=1

εi sin [Ωτ + γWi (τ − τi)]
(105)

with
Ω = πv0

Lω0
, Γ = 2PL3

lrEIπ4 , λ = cL3

π2
√
EI[L2mb+Raπ2]

, τi = ω0ti

β = −3
8

(
πlr
L

)2
, γ = πσv , χ = 2L3

EIπ4 , T chcr = EIπ2

L2 .

(106)

and

ω0 =
π2

L

√
EI

L2Mb +Raπ2
, Ra = Mbr

2 , r =

√
I

S
, lr =

L

2
. (107)

Here lr is a reference length of the beam and Wi(τ−τi) is a unit Wiener stochastic process.

Eq. (105) amounts to a stochastic Duffing oscillator which describes the unbounded or

catastrophic motion of the beam for:

T ch <

(
1 + χ

Nc∑
k=0

EkAk
Lk

sin2 (αk) sin2

(
πk

Nc

))
T chcr (108)

The catastrophic behavior of the beam is related to the configuration of the potential of

the system, as described in details in Ref. [133].

For the analytical purpose, let us consider the simplest case when the beam is subjected

to the passage of a single moving load (Nv = 1). Also, we assume in the first case (εi = 0)

60



that the dynamic response function is equal to zero (ϑ(τ) = 0) and for the second case

(εi = 1) the response function is calculated from the equation

ϑ̈(τ) + λ ϑ̇(τ) + (1 + α) ϑ(τ) + β ϑ3(τ) = η (τ) (109)

where:

σ = χ
Nc∑
k=0

EkAk
Lk

sin2 (αk) sin2

(
πk

Nc

)
, α = σ − T ch

T chcr
, η (τ) = Γ sin [Ω τ + γW (τ)]

α is the total contribution of the stay cables structures on the dynamics of the cable-

stayed bridges system. In the following, the prediction of chaotic behavior for Eq.(109)

will be investigated.

III-2-2-2- Melnikov analysis and random chaos prediction

The aim of this subsection is to show the effect of stochastic velocity of the moving

loads and the cables contribution on the basin boundaries. This is done by one of a few

methods allowing analytical prediction of chaos occurrence: Melnikov method [89,91–94].

This method was extended to study stochastic dynamical system by Frey and Simiu

[90]. To apply this method, we introduce a small parameter µ in Eq. (109) and rewrite

the governing system as the following set of first order differential equation :
ϑ̇(τ) = y(τ)

ẏ(τ) = − (1 + α)ϑ(τ)− β ϑ3(τ) + µ [−λ y(τ) + η(τ)]

(110)

For µ = 0, and after assuming that ϑ = ϑ(τ); y = y(τ), the system of Eq. (110) is the

Hamiltonian system with Hamiltonian function

H (ϑ, y) =
1

2
y2 +

1

2
(1 + α)ϑ2 +

β

4
ϑ4 (111)

and the potential function

V (ϑ) =
1

2
(1 + α)ϑ2 +

β

4
ϑ4 (112)

Fig. 12(a) shows an increases of an energy barrier of our system when the contribution

of cables α varies. As β < 0, the system has three equilibrium points: a center point

ϑe0 = (0, 0) and two saddles ϑe1 =
(
−
√
−(1 + α)/β , 0

)
and ϑe2 =

(√
−(1 + α)/β , 0

)
,

as shown in Fig. 12(b). The saddle points are connected by heteroclinic orbits that satisfy
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the following equation:

ϑhet (τ) = ±
√
−1+α

β
tanh

[√
1+α

2
.τ
]

yhet (τ) = ± (1 + α) .
√
− 1

2β
sech2

[√
1+α

2
.τ
] (113)

Melnikov theory defines the condition for the appearance of the so-called transverse inter-

Figure 12: Potential for different value of α (a), Separatrix (closed curve) and phase space
portrait (open lines) of the Catastrophic system Eq. (109) for α = 4.2 (b).

section points between the perturbed and the unperturbed separatrix or the appearance

of the fractality or erosion on the basin of attraction. This theory can be applied to

Eq. (109) by using formula given by Wiggins in [91] as follows:

MR(τ0) = −λ
+∞∫
−∞

y2
het(τ) dτ +

+∞∫
−∞

yhet(τ) η(τ + τ0)dτ

= I ± Z(τ0)

(114)

Where:

I =
λ
√

8(1 + α)3

3β
, Z(τ0) = (1 + α) .

√
− 1

2β

+∞∫
−∞

sech2

[√
1 + α

2
.τ

]
η(τ + τ0)dτ

In the following, we consider the simple zeros of the mean-square of the output an-

alyzed through the random Melnikov function. The impulse response function of the

system (109) is [95]

h(τ) = ϑhet(τ).yhet(τ) =

√
(1 + α)3

2β2
tanh

[√
1 + α

2
.τ

]
sech2

[√
1 + α

2
.τ

]
(115)

62



The associated frequency response can be expressed as follows

H(ω) =

+∞∫
−∞

h(τ)e−jωτdτ = −
jπω2 csch

[
πω

2
√

1+α

]
2
√

2β2
(116)

Consequently, the variance of Z(τ0), considered as the output of the system, is

σ2
z =

+∞∫
−∞
|H(ω)|2Sη (ω) dω

= π
2

(
Γγ
4β

)2 +∞∫
−∞

ω4 csch2
[

πω
2
√

1+α

]{
Ω2+ω2+ γ4

4(
ω2−Ω2+ γ4

4

)2
+Ω2γ4

}
dω

(117)

Here Sη(ω) is the spectral density of the noise η(τ) defined in Eq. (83). Therefore, smale

chaos appears (in mean-square response) when condition I2 ≤ σ2
z is satisfied, i.e.(

λ
√

8(1+α)3

3β

)2

≤ π
2

(
Γγ
4β

)2

×
+∞∫
−∞

ω4 csch2
[

πω
2
√

1+α

]{
Ω2+ω2+ γ4

4(
ω2−Ω2+ γ4

4

)2
+Ω2γ4

}
dω

(118)

Or simply,

λ

Γ
≤ 3γ

16

√√√√√√π
+∞∫
−∞

ω4 csch2
[

πω
2
√

1+α

]{
Ω2+ω2+ γ4

4(
ω2−Ω2+ γ4

4

)2
+Ω2γ4

}
dω

(1 + α)3 =

(
λ

Γ

)
cr

(119)

where (λ/Γ )cr is the critical parameter for the chaotic motion of the nonlinear system.

The integral in Eq. (119) can be computed numerically.

In calculation, the structural and material properties of a cable-stayed bridge model

are given in Table III as (See Refs. [51, 144])

The other lengths of the cables are calculated by using the theorem of Thalès, by

assuming of course that the cables on both sides of the towers which support them are

parallel between them. Moreover, the various angles ranging between the cables and the

bridge deck are evaluated by using the relation: αk = cos−1
(

lc
2Lk

)
where lc is the distance

separating the two impacts points on the bridge deck of the two symmetrical cables.

One can thus get the threshold of bounded excitation amplitude versus the standard

deviation of the stochastic velocity for different values of the mean driving frequency Ω,

for α = 0.0 (no cables) (as shown in Fig. 13(a)) and for α = 4.2 (with 18 cables) (as

shown in Fig. 13(b)). From Fig. 13, we can see that the threshold curve is a continuous

line in the space (γ, λ/Γ ) ∈ R2. We observe that the area above the curves indicate the

domain where the system goes from periodic to random as γ increases progressively, while
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Table III: Values of the physical parameters of a cable-stayed bridge model [51, 144]

.

Physical parameters Symbols values

Length of the bridge (m)
Young modulus of the bridge deck (kg/m)
Cross-sectional area of the bridge deck (m2)
Moment of inertia of the bridge deck (m4)
Mass per unit length of the bridge deck (kg/m)
Damping coefficient of the bridge deck (N.s/m)
High length of the stay cables (m)
Young modulus of the cables (MPa)
Cross-sectional area of the cables (m2)
Horizontal tension of the cables (N/m)
Length of the pylon (m)

L
E
S
I
Mb

c
L0

Ek
Ak
T ch
H

628.1
200.0
4.8
12.0
37680.0
68.0
158.13
131.0
5.48× 10−4

5.3× 106

45.7

below them the motion of system goes from chaos to random chaos as γ increases from

zero and becomes more and more random and less chaotic as γ further increases. This

domain is especially sensitive to initial conditions and fractal basin boundaries. Likewise,

for certain values of the intensity of stochastic velocity (γ ∈ [0, γlimit]), the increasing

of mean driving frequency Ω still increases the chaotic field of the system. This effect

doesn’t appear any more for γ > γlimit (see Fig. 13(a)), the case is opposite. Fig. 13(b)

illustrates the same effect while showing the contribution of the stay cables on the results

obtained previously.

Figure 13: Effects of the mean driving frequency Ω on the threshold curve of horseshoes
chaos. (a): for α = 0.0 (no cables) (b): for α = 4.2 (with 18 cables).

On the other hand, the effect of cable connections on the threshold amplitude of sine-

Wiener noise excitation for the onset of chaos in the model is investigated as shown in

Fig. 14. It is clear that the increase of number of stay cables first increases the threshold,
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Figure 14: Effects of stay cables contributions α on the threshold amplitude of sine-Wiener
noise excitation. for Ω = 0.75.

and then decreases it. It is also shown from this figure that the lowest number of cables

is dangerous for the stability of the structure, while the highest number contributed to

increase the degree of safety of the bridge. The intensity of the random component of the

loads velocity γ influences considerably this previous results as shown in Fig. 14.

Fig. 15 shows the correspondence between the parameter σ and the number of con-

nections Nc. This result is obtained after a rigorous dimensioning of the model (Noticed

that the dimensioning of the model only takes into account the case of eighteen cables).

We observe that by increasing the number of cables, their contribution on the dynamic

of the bridge also increase and then starting from the 16th cable, saturates.

To validate the accuracy of the proposed analytical predictions, we solve numerically

Eq. (109) using the SRK4 method [118] to display the shape of the basin of attraction.

Fig. 16 shows the sequence of the safe basin of system (109) plotted in order to verify

the results provided by the Melnikov analysis. We first observe that for Ω = 0.75 and

(λ/Γ ) = 0.9, the shape of the basins boundaries is regular. This reliability can be periodic

for lower values of noise (Fig. 16(a), γ = 0.003) or random for higher values of noise

(Fig. 16(b), γ = 1.0). These observations had already been predicted by the analytical

developments. Second, we take Ω = 0.75 and (λ/Γ ) = 0.15, the fractal boundaries of

the safe basins have turned up, especially when the intensity of stochastic velocity is

low (Fig. 16(c), γ = 0.003). By considering the highest values of this intensity, another

rich motion occurred in our system: “Random chaos motion” (see Fig. 16(d), γ = 1.0),
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Figure 15: Transversal contribution of cable connections σ as function of their number
Nc.

Figure 16: Basins of attraction showing the confirmation of the analytical prediction for
α = 0.0, Ω = 0.75: (λ/Γ ) = 0.9; (a) γ = 0.003, (b) γ = 1.0 and (λ/Γ ) = 0.15; (c)
γ = 0.003, (d) γ = 1.0.
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as predicted by the frontier of Fig. 13(a). Fig. 17 reveals the interesting role of cables

stayed on the bridge safety. In fact, by increasing the number of cables (increasing of

α) on the bridge, that enlarges the basin of attraction area and the fractality disappears

progressively (for the chosen parameters here, the system goes from random chaos motion

to random motion as α increases), increasing consequently the degree of predictibility of

the system. This leads us to the conclusion that, the numerical range is closed to the

analytical one.

Figure 17: Effects of cable contribution α on the basins of attraction: (a) α = 0.1 (b)
α = 4.2. For (λ/Γ ) = 0.15, Ω = 0.75 and γ = 1.0

As short conclusion of this part, notice that the identification of some rich dynamical

behaviors such as periodic, random, chaos and random chaos in a cable-stayed bridge

model has been investigated analytically and validated numerically. We have found that,

the intensity of the random component of the loads velocity and stay cables contribution

influence strongly the structure failure, the struture unpredictibility and the possible

appearance of horseshoes chaos in system.

III-2-3- Probability or statistics response of a two lane slab-

type-bridge due to traffic flow

III-2-3-1- The Bridge model and the mathematical formulation

The beam model was often adopted to study the vibration of girder bridges under

moving vehicles and trains. However, it is inadequate to model the response of wide

bridge decks such as slab bridges, particularly under moving vehicles whose paths are not

along the centre-line of the bridge. For this reason and in order to come more close to the

reality, the vibration of slab bridge modelled as thin rectangular plate under the action

of vehicles is investigated in this subsection.

Let us consider a two lane slab-type-bridge modelled by a Simply Supported (SS) thin

rectangular plate (of length a, width b and thickness h) with two separate rectilinear
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paths and subjected to two opposite series of moving forces with random values Aij

(vehicle weights) appearing at random times tij, as shown in Fig. 18.

Figure 18: The general plan of a two lane slab-type bridge model and its loading (a). The
simplified scheme of the model (b).

Such an excitation process is an appropriate model of vehicular traffic loads acting on

the bridge. The plate is assumed to behave according to the Kirchhoff’s hypothesis [145].

Thus, vibrations of the plate due to these random forces are described by the following

equation:

ρh
∂2W

∂T 2
+ c

∂W

∂T
+D

[
∂4W

∂X4
+

∂4W

∂X2∂Y 2
+
∂4W

∂Y 4

]
= P (X, Y, T ) (120)

where W (X, Y, T ) denotes vertical deflection of the plate at point X, Y , and time T .

D = Eh3/12 (1− υ2) is the bending rigidity of the plate, with h, E, υ are the thickness,

elastic modulus and Poisson’s ratio of the plate, respectively. ρ represents the mass per

unit of volume of the plate, c the damping coefficient of the plate and P (X, Y, T ) denotes

the load process. In the case of a random train of forces (vehicles) moving in opposite

directions in two separate rectilinear paths (nl = 2), the loading process has a form:

P (X, Y, T ) =

nl∑
j=1

Nj(T )∑
i=1

Aijδ [X −Xij (T − Tij)] δ [Y − Y0j] (121)
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where δ[...] stands for the Dirac delta function, Aij are the weights which are assumed

to be random variables, mutually independent and also independent of the instants tij

(arrival times of the moving forces), Y0j is the deterministic y-coordinate that fixes the

position of each traffic lane, nl is the number of traffic lane considered and Nj (T ) is the

number of forces that acted on the plate from the beginning of observation up to the time

T and that describes the Poisson process. Xij (T − Tij) is the distance covered by the ith

force moving one by one to the time T on the jth traffic lane. It is assumed that one of a

random train of forces traverses the plate on the following rectilinear trajectory:

dXij(T−Tij)
dT

= vij (T − Tij) = εjv0j + σvjξij (T − Tij)

Y0j =


0.25b For the trajectory (I), εj = 1

0.75b For the trajectory (II), εj = −1

0 ≤ Xij (T − Tij) ≤ a

(122)

where vij (T − Tij) is the stochastic velocity of the ith force, that moving in the traffic

lane j. v0j presents the mean value of velocity, σvj its standard deviation and ξij (T − Tij)
the velocity disturbance. The function εj is introduced and defined as: εj = 1 when the

loads are crossing the plate in one of their rectilinear path ( trajectory (I) of Fig. 18),

and εj = −1 for the other line of the loads trajectory (trajectory (II) of Fig. 18). It is

assumed that, the force disturbances ξij (T − Tij) are stationary random processes, here

the mutually independent Gaussian white noise processes, i.e.

E [vij (T − Tij)] = v0j, E [ξij (T − Tij)] = 0

E [ξij (T − Tij) ξkl (T − Tij)] = 0 for (k, l) 6= (i, j) ,

E [ξij (T − Tij) ξij (T − Tij + τ)] = ∆2
jδ (τ)

(123)

where E[...] denotes the expected value of the quantity in brackets and ∆j = vojσvj. In

order to improve the accuracy of the numerical calculation, the following dimensionless

variables are defined as follows:

w =
W

h
, x =

X

a
, y =

Y

b
, t = ω0T ; x ∈ [0, 1] , y ∈ [0, 1] (124)

Eq. (120) takes the form:

∂2w

∂t2
+ µ

∂w

∂t
+
∂4w

∂x4
+ 2
(a
b

)2 ∂4w

∂x2∂y2
+
(a
b

)4∂4w

∂y4
= P (x, y, t) (125)
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with

ω0 =
1

a2

√
D

ρh
, µ =

ca2

√
ρhD

, P (x, y, t) =
a4

Dh
P (X, Y, T ) (126)

Eq. (122) takes the dimensionless form:

dxij(t−tij)
dt

= uij (t− tij) = εju0j + σvjζij (t− tij)

y0j =


0.25 For the trajectory (I), εj = 1

0.75 For the trajectory (II), εj = −1

0 ≤ xij (t− tij) ≤ 1

(127)

where:

u0j =
v0j

aω0

, ζij =
ξij
aω0

, xij =
Xij

a
, y0j =

Y0j

b
. (128)

Since the parameters of the plate are deterministic, let the dynamic influence function

Hj (x, y, t− tij) denote the response of the plate at the time t to the moving force when

the amplitude Aij = 1. This function satisfies the following equation:

∂2Hj
∂t2

+ µ
∂Hj
∂t

+
∂4Hj
∂x4 + 2

(
a
b

)2 ∂4Hj
∂x2∂y2 +

(
a
b

)4 ∂4Hj
∂y4

= a3

Dhb
1. δ [x− xij (t− tij)] δ [y − y0j]

(129)

and the following boundary (Simply supported one) and initial conditions are considered

Hj (x, y, t− tij) |x=0 = Hj (x, y, t− tij) |x=1 = 0

Hj (x, y, t− tij) |y=0 = Hj (x, y, t− tij) |y=1 = 0 ,

∂2Hj(x,y,t−tij)
∂x2

∣∣∣∣∣ x=0

=
∂2Hj(x,y,t−tij)

∂x2

∣∣∣∣∣ x=1

= 0 ,

∂2Hj(x,y,t−tij)
∂x2

∣∣∣∣∣ y=0

=
∂2Hj(x,y,t−tij)

∂x2

∣∣∣∣∣ y=1

= 0,

Hj (x, y, t− tij)

∣∣∣∣∣ t=tij = 0 ,
∂Hj(x,y,t−tij)

∂t

∣∣∣∣∣ t=tij = 0.

(130)

To investigate the probabilistic response of the system let us derive the modal equations.

To do so, Galerkin’s method is applied. According to this method and by taking into ac-

count the boundary conditions of the plate, the solution of the partial differential equation
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(129) is assumed to be in the form:

Hj (x, y, t− tij) =
∞∑
n=1

∞∑
m=1

χ(j)
n,m (t− tij) sin (nπx) sin (mπy) (131)

where χ
(j)
n,m (t− tij) is the generalized coordinates, sin (nπx) sin (mπy) is the dimensionless

solution of the eigenvalue problem which depends on the boundary conditions of the free

oscillations of the plate and (n,m) is the natural mode with n and m nodal lines lying

the x− and y−directions, respectively. To apply the method, Eq. (131) is inserted into

Eq. (129) and the resultant equation is multiplied by the corresponding eigenfunction

and then integrated over the surface area of the plate. Thus, the dimensionless modal

equation is obtained as:

χ̈(j)
n,m (t− tij) + µχ̇(j)

n,m (t− tij) + ω2
nmχ

(j)
n,m (t− tij) = Γ (j)

m sin [nπxij (t− tij)] (132)

where:

Γ (j)
m = 1.

4a3 sin (mπy0j)

Dhb
, ω2

nm =

[
(nπ)2 +

(mπa
b

)2
]2

(133)

According to Eq. (131), we can see that:

E [Hj (x, y, t− tij)] =
∞∑
n=1

∞∑
m=1

E
[
χ

(j)
n,m (t− tij)

]
sin (nπx) sin (mπy)

E [Hj (x1, y1, t1 − tij)Hj (x2, y2, t2 − tij)] =
∞∑
k=1

∞∑
l=1

∞∑
n=1

∞∑
m=1

E
[
χ

(j)
k,l (t1 − tij)χ(j)

n,m (t2 − tij)
]
×

sin (kπx1) sin (lπy1) sin (nπx2) sin (mπy2)

(134)

III-2-3-2- Effective solution of the stochastic problem analyzed

In this subsection, an analytical approach for obtaining the probabilistic characteristics

of the bridge plate response is developed and some numerical results obtained are shown.

In order to directly evaluate these probabilistic characteristics of the system response

under random train of moving loads, Eq. (132) needs to be transformed using the Itô

integral and the Itô differentiation rule [15, 146]. Before that, let us introduce first the
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following state variables

z
(j)
1 (n,m, t) = χ

(j)
n,m (t− tij) ,

z
(j)
2 (n,m, t) = χ̇

(j)
n,m (t− tij) ,

z
(j)
3 (n,m, t) = sin [nπxij (t− tij)] ,

z
(j)
4 (n,m, t) = cos [nπxij (t− tij)] .

(135)

In view of Eq. (135) and according to the Itô Lemma [146], the corresponding stochastic

problem for the state variables z
(j)
i ; (i = 1, 2, 3, 4) may be written as a following set of Itô

equations:

dz
(j)
1 (n,m, t) = z

(j)
2 (n,m, t) dt

dz
(j)
2 (n,m, t) =

[
−ω2

nmz
(j)
1 (n,m, t)− µz(j)

2 (n,m, t) +Γ
(j)
m z

(j)
3 (n,m, t)

]
dt

dz
(j)
3 (n,m, t) =

[
nπεju0jz

(j)
4 (n,m, t)− 0.5(nπσvj)

2z
(j)
3 (n,m, t)

]
dt

+nπσvjz
(j)
4 (n,m, t) dWij (t)

dz
(j)
4 (n,m, t) =

[
−nπεju0jz

(j)
3 (n,m, t)− 0.5(nπσvj)

2z
(j)
4 (n,m, t)

]
dt

+nπσvjz
(j)
3 (n,m, t) dWij (t)

(136)

where Wij (t) is a unit Wiener stochastic process. By appropriately applying the math-

ematical expectation operator, the deterministic equations for various orders of the re-

sponse moments can be derived. Thus, the dynamic response of the first order probabilistic

moment is described by the following set of differential equations

dm
(j)
1 (n,m,t)

dt
= m

(j)
2 (n,m, t)

dm
(j)
2 (n,m,t)

dt
= −ω2

nmm
(j)
1 (n,m, t)− µm(j)

2 (n,m, t) + Γ
(j)
m m

(j)
3 (n,m, t)

dm
(j)
3 (n,m,t)

dt
= nπεju0jm

(j)
4 (n,m, t)− 0.5(nπσvj)

2m
(j)
3 (n,m, t)

dm
(j)
4 (n,m,t)

dt
= −nπεju0jm

(j)
3 (n,m, t)− 0.5(nπσvj)

2m
(j)
4 (n,m, t)

(137)

where m
(j)
i (n,m, t) = E

[
z

(j)
i (n,m, t)

]
and the initial conditions (according to Eqs. (130),

(131) and (135)) are: m
(j)
1 (n,m, 0) = 0, m

(j)
2 (n,m, 0) = 0,m

(j)
3 (n,m, 0) = 0, m

(j)
4 (n,m, 0) =

1.
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The differential equations to calculate the second order probabilistic moments are

to be obtained, applying the differentiation formula [146] and applying the expectation

operator to both sides. Thus, let us introduce the following notations for the second order

probabilistic moments of variables z
(j)
i (n,m, t)

m
(j)
2000 (k, l, n,m, t) =E

[
z

(j)
1 (k, l, t) z

(j)
1 (n,m, t)

]
m

(j)
1100 (k, l, n,m, t) =E

[
z

(j)
1 (k, l, t) z

(j)
2 (n,m, t)

]
m

(j)
1010 (k, l, n,m, t) =E

[
z

(j)
1 (k, l, t) z

(j)
3 (n,m, t)

]
m

(j)
1001 (k, l, n,m, t) =E

[
z

(j)
1 (k, l, t) z

(j)
4 (n,m, t)

]
m

(j)
0200 (k, l, n,m, t) =E

[
z

(j)
2 (k, l, t) z

(j)
2 (n,m, t)

]
m

(j)
0110 (k, l, n,m, t) =E

[
z

(j)
2 (k, l, t) z

(j)
3 (n,m, t)

]
m

(j)
0101 (k, l, n,m, t) =E

[
z

(j)
2 (k, l, t) z

(j)
4 (n,m, t)

]
m

(j)
0020 (k, l, n,m, t) =E

[
z

(j)
3 (k, l, t) z

(j)
3 (n,m, t)

]
m

(j)
0011 (k, l, n,m, t) =E

[
z

(j)
3 (k, l, t) z

(j)
4 (n,m, t)

]
m

(j)
0002 (k, l, n,m, t) =E

[
z

(j)
4 (k, l, t) z

(j)
4 (n,m, t)

]

(138)
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After some rigorous algebraic calculations, we then obtain

dm
(j)
2000(k,l,n,m,t)

dt
= m

(j)
1100 (k, l, n,m, t) +m

(j)
1100 (n,m, k, l, t)

dm
(j)
1100(k,l,n,m,t)

dt
= m

(j)
0200 (k, l, n,m, t)− ω2

nmm
(j)
2000 (k, l, n,m, t)− µm(j)

1100 (k, l, n,m, t)

+Γ
(j)
m m

(j)
1010 (k, l, n,m, t)

dm
(j)
1010(k,l,n,m,t)

dt
= m

(j)
0110 (k, l, n,m, t) + nπεju0jm

(j)
1001 (k, l, n,m, t) − 0.5(nπσvj)

2m
(j)
1010 (k, l, n,m, t)

dm
(j)
1001(k,l,n,m,t)

dt
= m

(j)
0101 (k, l, n,m, t)− nπεju0jm

(j)
1010 (k, l, n,m, t) − 0.5(nπσvj)

2m
(j)
1001 (k, l, n,m, t)

dm
(j)
0200(k,l,n,m,t)

dt
= −ω2

klm
(j)
1100 (k, l, n,m, t)− ω2

nmm
(j)
1100 (n,m, k, l, t) − 2µm

(j)
0200 (k, l, n,m, t)

+Γ
(j)
m m

(j)
0110 (k, l, n,m, t) + Γ

(j)
l m

(j)
0110 (n,m, k, l, t)

dm
(j)
0110(k,l,n,m,t)

dt
= −ω2

klm
(j)
1010 (k, l, n,m, t)− µm(j)

0110 (k, l, n,m, t) + nπεju0jm
(j)
0101 (k, l, n,m, t)

−0.5(nπσvj)
2m

(j)
0110 (k, l, n,m, t) + Γ

(j)
l m

(j)
0020 (k, l, n,m, t)

dm
(j)
0101(k,l,n,m,t)

dt
= −ω2

klm
(j)
1001 (k, l, n,m, t)− µm(j)

0101 (k, l, n,m, t)− nπεju0jm
(j)
0110 (k, l, n,m, t)

−0.5(nπσvj)
2m

(j)
0101 (k, l, n,m, t) + Γ

(j)
l m

(j)
0011 (k, l, n,m, t)

dm
(j)
0020(k,l,n,m,t)

dt
= πεju0j

[
nm

(j)
0011 (k, l, n,m, t) + km

(j)
0011 (n,m, k, l, t)

]
+ nkπ2σ2

vjm
(j)
0002 (k, l, n,m, t)

−0.5π2σ2
vj [k2 + n2]m

(j)
0020 (k, l, n,m, t)

dm
(j)
0011(k,l,n,m,t)

dt
= kπεju0jm

(j)
0002 (k, l, n,m, t)− nπεju0jm

(j)
0020 (k, l, n,m, t) + nkπ2σ2

vjm
(j)
0011 (k, l, n,m, t)

−0.5π2σ2
vj [k2 + n2]m

(j)
0011 (k, l, n,m, t)

dm
(j)
0002(k,l,n,m,t)

dt
= −πεju0j

[
km

(j)
0011 (k, l, n,m, t) + nm

(j)
0011 (n,m, k, l, t)

]
+ nkπ2σ2

vjm
(j)
0020 (k, l, n,m, t)

−0.5π2σ2
vj [k2 + n2]m

(j)
0002 (k, l, n,m, t)

(139)

For (k, l) 6= (n,m), the above set of differential equations must be completed by adding

a duplicate set of equations in which the parameters (k, l) should be replaced by (n,m)
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and vice versa. According to Eqs. ((130), (131) and (138)), the initial conditions are:

m
(j)
2000 (k, l, n,m, 0) = m

(j)
2000 (n,m, k, l, 0) = 0

m
(j)
0200 (k, l, n,m, 0) = m

(j)
0200 (n,m, k, l, 0) = 0

m
(j)
0020 (k, l, n,m, 0) = m

(j)
0020 (n,m, k, l, 0) = 0

m
(j)
0002 (k, l, n,m, 0) = m

(j)
0002 (n,m, k, l, 0) = 1

m
(j)
1100 (k, l, n,m, 0) = m

(j)
1100 (n,m, k, l, 0) = 0

m
(j)
1010 (k, l, n,m, 0) = m

(j)
1010 (n,m, k, l, 0) = 0

m
(j)
1001 (k, l, n,m, 0) = m

(j)
1001 (n,m, k, l, 0) = 0

m
(j)
0110 (k, l, n,m, 0) = m

(j)
0110 (n,m, k, l, 0) = 0

m
(j)
0101 (k, l, n,m, 0) = m

(j)
0101 (n,m, k, l, 0) = 0

m
(j)
0011 (k, l, n,m, 0) = m

(j)
0011 (n,m, k, l, 0) = 0

(140)

For the loading process, the solution of Eq. (125) is a superposition of individual

response due to each train of forces moving to each lane. So the plate response may be

expressed in the following form:

w (x, y, t) = a3

Dhb

nl∑
j=1

Nj(t)∑
i=1

AijHj (x, y, t− tij)

= a3

Dhb

nl∑
j=1

t∫
0

Aj (τ)Hj (x, y, t− τ) dNj (τ)

(141)

By taking into account the features of the Poisson process, we are looking for the expected

value of the plate response in the form:

E [w (x, y, t)] = a3

Dhb

nl∑
j=1

E [Aj]
t∫

0

E [Hj (x, y, t− τj)]λj (τ)℘ {xj (t− τj) < 1} dτj

= a3

Dhb

nl∑
j=1

E [Aj]
∞∑
n=1

∞∑
m=1

sin (nπx) sin (mπy)×
t∫

0

m
(j)
1 (n,m, t− τj)λj (τ)℘ {xj (t− τj) < 1} dτj

(142)
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and the variance of the plate response in the form:

σ2
w (x, y, t) =

(
a3

Dhb

)2 nl∑
j=1

E
[
A2
j

] t∫
0

E
[
H2
j (x, y, t− τj)

]
λj (τ)℘ {xj (t− τj) < 1} dτj

=
nl∑
j=1

E
[
A2
j

] ∞∑
k=1

∞∑
l=1

∞∑
n=1

∞∑
m=1

sin (kπx) sin (lπy) sin (nπx) sin (mπy)

×
(

a3

Dhb

)2 t∫
0

m
(j)
2000 (k, l, n,m, t− τj)λj (τ)℘ {xj (t− τj) < 1} dτj

(143)

where λj (τ) is the arrival rate for the jth loads trajectory, ℘ {xj (t− τj) < 1} is the un-

known function which describing the fact that the probability that the forces occurring

in time τj at the beginning of each rectilinear path j of the plate is still acting on to the

structure in time t. This function can be evaluated by first looking for the transition prob-

ability density function f (xij, t− tij) for the process xij (t− tij) (describes by Eq. (127)

) which is governed by the following F-P-K equation.

∂f (xij, t− tij)
∂t

+ εju0j
∂f (xij, t− tij)

∂xij
+

1

2
σ2
vj

∂2f (xij, t− tij)
∂x2

ij

= 0 (144)

By using the Fourier transform, the normalization condition and the following formulas,

f (xij, t− tij)

∣∣∣∣∣ t= tij

= δ (xij) , f (xij, t− tij)

∣∣∣∣∣ xij = ∞
= 0 (145)

the solution of Eq. (144) is given as:

f (xij, t− tij) = 1
µij

√
2

π(t−tij) exp
[
− (xij−εju0j(t−tij))2

2σ2
vj(t−tij)

]
For xij ≥ 0 , j = 1, 2.

(146)

Thus, the probability ℘ {xij (t− tij) < 1} that we are looking for takes a form:

℘ {xij (t− tij) < 1} =
1∫
0

f (xij, t− tij) dxij

= 1
µij
√

2

[
σvjErf

(√
1

2σ2
vj(t−tij)

− εj u0j

σvj

√
(t−tij)

2

)
+ µij − σvj

] (147)

In which

µij = σvj

[
1− Erf

(
−εj

u0j

σvj

√
(t− tij)

2

)]
(148)

Erf (...) is an error function.

Now, the explicit formulas for the expected value and variance for the dimensionless

displacement of a thin rectangular plate subjected to two opposite train of random forces
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(vehicles) were derived. In order to have a complete investigation of the dynamic behaviors

of the studied system, the numerical analysis will be carried out in which the effects of

some main parameters of the moving loads on the probabilistic bridge response will be

analysed in the following subsection.

III-2-3-3- Numerical results obtained and their discussion

For the numerical purpose, the case of bridge plate having the following parameters

are considered (see Table IV). It is assumed that the vehicles weight had a lognormal

distribution with the expected value and the standard deviation equal to E[A] = 105 N

and E[A2] = 1.2× 1010 N2 ( [14]), respectively. In this paper the problem will be confined

to the homogeneous case. Therefore, the intensity of the load distribution is assumed to

be constant for the simplicity: λj(τ) = λ = 0.33/ω0 [15]. In traffic engineering [147], this

intensity is related to the average passage speed of the vehicles and inversely. The mean

value of the velocity voj varying from 10 to 50 m/s; the variation coefficient of velocity

σvj varying from 0.01 to 0.3. We assume that u0 = u01 = u02. The presents numerical

Table IV: Properties of the plate studied [58]

Item Notation Value
Length a 24 m
Width b 8 m

Thickness h 1 m
Young’s modulus E 50 GPa

Poisson’s ratio υ 0.3
Mass density ρ 2400 kg/m3

damping coefficient c 0.91 kg/s

analysis is carried out by simulating first the deterministic Eqs. ((137) and (139)) through

the RK4 algorithm. Therefore, the expected E[w(x, y, t)] and the standard deviation

σ2
w(x, y, t) of the dimensionless plate displacement at the midspan (x = 1/2, y = 1/2)

were obtained for different range of the moving loads parameters.

In Fig. 19, the average plate deformation is shown when various numbers of modes

are used to analyze the response of the structure. It is quite evident that moving from a

single mode (mode (1, 1)) analysis to another one, mode (1,2) the accuracy of the solution

drastically increases and an abrupt change in the shape of the plate is observed. This can

be explained by the fact that, moving load is commonly expected to excite more modal

shape, not only the first mode. Likewise, increasing the number of modes in the analysis

to (1,4) apparently decreases the solution.

Fig. 20 illustrates the relations between the normalized average flow intensity λ or the

standard deviation of the stochastic velocity and the expected values and variances of a

stochastic maximal plate displacement w(x, y, t). It is observed first that as the value of

λ increases the expected E[w] and standard deviation σ2
w of a maximal plate deflection
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Figure 19: Average plate deformation when λ1 = λ2 = 0.15, σv1 = σv2 = 0.3, u01 = u02 =
0.5. (a) mode (1,1), (b) mode (1,2), (c) mode (1,3) and (d) mode (1,4). The parameters
used are obtained according to Eqs. ((126),(133)) and Table IV.

merely increase (see Figs. 20(a) and 20(c)). Secondly, the increase of the value of σv

also increases the expected and standard deviation of a maximal plate deflection (see

Figs. 20(b) and 20(d)). The analysis leads us to the conclusion that it is necessary and

more important to take into account the stochastic nature of the load velocity in such

studies. The influence of the mean velocity on the same probabilistic features of the plate

response is also investigated and we show that as the mean velocity increases, the expected

value and the variance of the plate response also increase. It is also observed that for a

normalized average speed u0 = 0.8 (about 50 m/s), an unstable zone is observed when the

standard deviation of the velocity σv ∈ [0.01, 0.11]. This unstable zone decreases as the

mean velocity decreases. Fig. 21 clearly illustrates the influence of randomness velocity

on the probabilistic characteristics of the bridge response such as the expected and the

variance values. It is observed that the mean deflection of the bridge decreases with the

standard deviation of the stochastic velocity σv. More interesting, it is also observed that

the maximum mean deflection at mid-span bridge is obtained for the vehicle position

equal to 0.85 (about 20.4 m) (fig. 21 (a), fig. 21(b)). This last result is different to the

one obtained by Nikkhoo et al. [58] which demonstrated that the deflection at mid-span

of the bridge appears in the middle of the bridge. The difference is probably due to the

randomness of the velocity introduced in this work. In fig. 21 (a), fig. 21(c), the effective

presence of instability in the plate response is confirmed and well illustrated. It is noted

that the expected value and standard deviation of the bridge deflection in the middle of
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Figure 20: The maximum expected values and variances of a plate displacement in relation
to the normalized average flow intensity λ or the standard deviation of the stochastic
velocity σv. (a), (b) expected value, (c), (d) variance. The other parameters used are
obtained according to Eqs. ((126),(133)) and Table IV.
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Figure 21: The expected values and variances of a plate displacement versus the normal-
ized average vehicle position (u0t). (a), (b) expected value, (c), (d) variance. The other
parameters used are obtained according to Eqs. ((126),(133)) and Table IV.
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the bridge increases with the number of vehicles (see fig. 21 (b), fig. 21(d)), since that the

number of vehicles N(t) is related to the arrival rate λ. This result confirms well the one

obtains by Nikkhoo et al. [58].

As short conclusion of this part, notice that the bridge safety strongly depend to the

randomness of the vehicles velocities. Thus, some bridges may last more than expected

or may prematurely destroy because of the effect of the intensity of these velocities.

III-3- On the dynamics of railway track and bridge-

bearings systems supporting a moving train

and wind action: Fractional derivative model

Recently, dynamical systems with fractional damping have brought the attention of

scientists from different research fields with the expectation to describe complex system

behavior and/or complex material dynamical responses [148–152]. This approach differs

from the linear and nonlinear damping given by a function of velocity [153, 154]. Intro-

ducing fractional damping to a dynamical system is made by replacing an integer order

derivative with a fractional operator. In this section, this approach is used to model the

track structures and the bearings of the railway and girder bridges respectively. There-

fore, the railway track and bridge-bearings systems are modeled as the Rayleigh beams

on fractional-order viscoelastic foundation.

III-3-1- Rayleigh beams on viscoelastic Pasternak foundation

supporting a sequence of equidistant moving loads: Vi-

bratory and chaotic dynamics approaches

III-3-1-1- Mathematical modelling of a beam-foundation model

With reference to Fig. 22, consider a simply supported Rayleigh beam of finite length L,

placed on a viscoelastic Pasternak foundation, subjected to a series of lumped loads P with

constant interval d moving at the same direction with constant velocity v0. The loading

actions is idealized a real train moving on the bridge. It is assumed that the Pasternak

viscoelastic foundation includes a Winkler foundation in conjunction with a shear layer

material which is modelled here by using the constitutive equation of Kelvin-Voigt type

containing fractional derivative of real order. Fractional hereditary materials involving

Kelvin-Voigt units with real order fractional derivatives are analysed in Refs. [155, 156].

The soil is considered to be infinitely extending beyond the beam and the displacement

originating from the beam to propagate along it (see refs. [157–159] ). The deformed beam

can be described by the transverse deflection w (x, t) and the rotation of the cross section
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Figure 22: Sketch of a Rayleigh beam on viscoelastic Pasternak foundation under equidis-
tant moving loads. The gravitational forces are represented by arrows P , whose separations
are uniform, for the identical speed v0.

of the beam θ (x, t). Considering the Newton’s second law of motion for an infinitesimal

element of the beam, the equation of motion for the small deformations
(
θ (x, t) w ∂w(x,t)

∂x

)
is obtained as:

ρS ∂2w(x,t)
∂t2

+ EI ∂
4w(x,t)
∂x4 − 3

2
EI ∂2

∂x2

[
∂2w(x,t)
∂x2

(
∂w(x,t)
∂x

)2
]

−ρI ∂
4w(x,t)
∂x2∂t2

+QF (x, t) = P
N−1∑
i=0

εiδ [x− xi (t− ti)]

(149)

In which S, E, I, ρ, w(x, t) are cross-sectional area of the beam, the modulus of elasticity,

cross-sectional moment of inertia, beam material density and the transversal deflection

of the beam element, respectively. xi (t− ti) = v0 (t− id/v0) is the position of the ith

force at the time t, ti = id/v0 = arriving time of the ith load at the beam, and N is the

number of the applied loads. Eq. (1) contains a nonlinear term which may be caused by

large curvatures of the beam due to a high deflection [131, 132]. To facilitate a compact

representation of the governing equation, a window function εi is employed [62]: εi = 0

when the loads have left the beam and εi = 1 while the loads are crossing the beam.

Moreover, QF (x, t) is the foundation-beam interaction force (per unit length of the beam’s

axis) which is obtained (including the new term containing fractional derivative) as [80]:

QF (x, t) = kw (x, t) + c
∂w (x, t)

∂t
− [µe + µvD

α
t ]
∂2w (x, t)

∂x2
(150)
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In which k and c are foundation stiffness and damping coefficients, µe and µv are foun-

dation shear elastic and viscosity coefficients. Dα
t is the fractional derivative with order

α ∈ (0, 1). There are several definitions for fractional-order derivative, and they are equiv-

alent under some conditions for a wide class of functions. The suitable definition is that

of Caputo because it provides initial conditions which physically can be explained [162].

The boundary and initial conditions corresponding to the beam shown in Fig. 22 are

given by Eq. (70). For the analytical purpose, it is convenient to assume an expansion of

the transversal deflection w(x, t) in a series form as given in Eq. (73). So, after substituting

Eq. (150) and Eq. (73) into Eq. (149), multiplying both sides of the resultant equation

by the shape function sin (nπx/L), then integrating with respect to the beam axis x over

the length L, and at last considering the following dimensionless variables

χn =
qn
lr

, τ = ω0t (151)

we obtain for the first mode of vibration [160, 161], the dimensionless modal equation

(with n = 1 and χ1 = χ(τ)) given by:

χ̈ (τ) + 2ξχ̇ (τ) +Ω2
0χ (τ) + βχ3 (τ) + λDα

τ χ (τ) = P0

N−1∑
i=0

εi sinΩ

[
τ − idω0

v0

]
(152)

with
Ω = πv0

Lω0
, P0 = 2PL3

lrEIπ4 , ξ = cL3

2π2
√
EIρ[L2S+Iπ2]

β = −3
8

(
πlr
L

)2
, λ = ηωα0 , η = µvL2

EIπ2 , Ω2
0 = 1 + kL2+µeπ2

kcrL2

(153)

and

ω0 =
π2

L

√
EI

ρ (L2S + Iπ2)
, lr =

L

2
, kcr =

EIπ4

L4
, µecr =

kcrL
2

π2
. (154)

According to the Handbook of Mangulis [163],

m∑
n=1

sin (nσ + γ) =
− sin γ + sin (γ + σ)− sin [γ + (m+ 1)σ] + sin (γ +mσ)

2 (1− cosσ)
(155)

By letting n = i , m = N − 1 , nσ = −iΩdω0

V0
, γ = Ωτ , and considering the configuration

of the system where all the applied loads are crossing the beam (εi = 1), the sum of the

second member of Eq. (152) is obtained after some trigonometric operations as

N−1∑
i=0

εi sinΩ
[
τ − idω0

V0

]
= sin (Ωτ) +

N−1∑
i=1

sinΩ
[
τ − idω0

V0

]

=
2 sin

(
Ωdω0
2V0

)
sin
(

(N−1)
Ωdω0
2V0

)
1−cos

(
Ωdω0
V0

) sin
[
Ωτ −N Ωdω0

2V0

] (156)
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So Eq. (152) can be rewritten in the alternative form as

χ̈ (τ) + 2ξχ̇ (τ) +Ω2
0χ (τ) + βχ3 (τ) + λDα

τ χ (τ) = F0N sin (Ωτ)−G0N cos (Ωτ) (157)

where
F0N = P0

[
1 + 2 sin τ̃0 sin((N−1)τ̃0)

1−cos(2τ̃0)
cos (Nτ̃0)

]
,

G0N = 2P0 sin τ̃0 sin((N−1)τ̃0)
1−cos(2τ̃0)

sin (Nτ̃0) , τ̃0 = dπ
2L
.

(158)

From Eq. (157), the dynamics of the beam is that of a Duffing like oscillator with a

catastrophic monostable potential since β < 0. This configuration of the potential appears

to be more realistic since it may explain best the full dynamics response due to small or

high external excitation from a system in engineering science point of view [133].

Noticed that when all the applied loads have left the beam (εi = 0), the second

member of Eq. (152) is now equal to zero. Therefore, for the simplicity, we assume in

this case that the dynamic response of the system is also equal to zero (χ (τ) = 0). In

the following section, the study of the nonlinear resonance and the stability of the steady

states solutions of the considered system will be carried out.

III-3-1-2- Dynamical analysis

In this subsection, a particular attention is focused on the analytical and numerical

analysis of the spacing and the velocity of the moving loads, the order of the fractional

viscoelastic shear layer material and its strength on the beam response.

We start by using the averaging method [100, 164, 165], which provides an analytical

approximate solution and thus permits to detect the effects of the main parameters on

the system response. For that aim, let us assume that the solution of Eq. (156) can be

written as given in Eq. (89).

Substituting Eq. (89) into Eq. (156), we obtain
ȧ = − 1

Ω
[M1 (a, θ) +M2 (a, θ)] sin θ

aϕ̇ = − 1
Ω

[M1 (a, θ) +M2 (a, θ)] cos θ

(159)

where
M1 (a, θ) = F0N sin (θ − ϕ)−G0N cos (θ − ϕ) + a (Ω2 −Ω2

0) cos θ

+2ξaΩ sin θ − βa3cos3θ

M2 (a, ψ) = −λDα
τ (a cos θ)

Ωτ = θ − ϕ

(160)
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Then, one could apply the standard averaging method [100,164,165] to Eq. (159) in time

interval [0, T ] 
ȧ = ȧ1 + ȧ2 + ȧ3

aϕ̇ = aϕ̇1 + aϕ̇2 + aϕ̇3

(161)

where

ȧ1 = lim
T→∞

1
TΩ

T∫
0

− [F0N sin(θ − ϕ)−G0N cos(θ − ϕ) + a (Ω2 −Ω2
0) cos θ] sin θdθ

ȧ2 = lim
T→∞

1
TΩ

T∫
0

[
−2ξaΩsin2θ + βa3cos3θ sin θ

]
dθ

ȧ3 = lim
T→∞

1
TΩ

T∫
0

[λDα
τ (a cos θ) sin θ] dθ

aϕ̇1 = lim
T→∞

1
TΩ

T∫
0

− [F0N sin(θ − ϕ)−G0N cos(θ − ϕ) + a (Ω2 −Ω2
0) cos θ] cos θdθ

aϕ̇2 = lim
T→∞

1
TΩ

T∫
0

[−ξaΩ sin 2θ + βa3cos4θ] dθ

aϕ̇3 = lim
T→∞

1
TΩ

T∫
0

[λDα
τ (a cos θ) cos θ] dθ

(162)

after some calculation and according to Eqs. (15), (16a) and (16b), we obtain

ȧ1 = 1
2Ω

[G0N sinϕ− F0N cosϕ]

aϕ̇1 = 1
2Ω

[G0N cosϕ+ F0N sinϕ− a (Ω2 − Ω2
0)]

ȧ2 = −ξa
aϕ̇2 = 3β

8Ω
a3

ȧ3 = −λa
2
Ωα−1 sin

(
απ
2

)
aϕ̇3 = λa

2
Ωα−1 cos

(
απ
2

)
(163)

Accordingly, Eq. (161) becomes



ȧ = −ξa− λa
2
Ωα−1 sin

(
απ
2

)
+ 1

2Ω
[G0N sinϕ− F0N cosϕ]

aϕ̇ = 1
Ω

[
−a(Ω2−Ω2

0)
2

+ 3β
8
a3

]
+ λa

2
Ωα−1 cos

(
απ
2

)
+ 1

2Ω
[G0N cosϕ+ F0N sinϕ]

(164)

(a) Steady state solutions and its stability analysis

Now, we study the steady state solution, which is more important and meaningful

in vibration engineering. By putting a = A0 , ϕ = Φ0 and ȧ = 0, ϕ̇ = 0, and After

eliminating Φ0 from Eq. (164), we find that the amplitude A0 of the oscillatory state

satisfies the following nonlinear equation:

9

16
β2A6

0 −
3

2
βΘ1 (α)A4

0 +
[
Θ2

1 (α) +Θ2
2 (α)

]
A2

0 = F 2
0N +G2

0N (165)
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with

Θ1 (α) = (Ω2 −Ω2
0)− λΩα cos

(
απ
2

)
Θ2 (α) = 2Ωξ + λΩα sin

(
απ
2

) (166)

This equation has more than one steady state solution for some parameters. An interesting

observation is the dependence of the oscillations amplitude upon the beam parameters

(natural frequency Ω2
0 and nonlinear component β ), the loads traffic (loads weights

intensity P0, loads number N , spacing loads d and driving frequency Ω ) and of the

foundation parameters (damping ξ, the order of the fractional derivative α and its strength

λ).

Next, we study the stability of the steady state solution by using the method of

Andronov and Witt [166]. Let a = A0 + ∆a, ϕ = Φ0 + ∆ϕ and substituting them into

Eq. (164) yields 
d∆a

dτ
= −Θ2(α)

2Ω
∆a + A0

2Ω

[
Θ1 (α)− 3β

4
A2

0

]
∆ϕ

d∆ϕ

dτ
= 1

2ΩA0

[
9β
4
A2

0 −Θ1 (α)
]

∆a − Θ2(α)
2Ω

∆ϕ

(167)

where Θ1 (α) and Θ2 (α) are given by Eq. (166). The stability of the steady state solution

is determined by the eigenvalues of the corresponding Jacobian matrix of Eq. (167). The

corresponding eigenvalues Λ are the roots of

Λ2 +
Θ2 (α)

Ω
Λ +

(
Θ2 (α)

2Ω

)2

+
1

4Ω

[
3β

4
A2

0 −Θ1 (α)

]
×
[

9β

4
A2

0 −Θ1 (α)

]
= 0 (168)

Since 0 < α ≤ 1, then Θ2 (α) > 0 and the instability condition for the steady-state

solution is found by using the Routh-Hurwitz criterion [103,167] as(
Θ2 (α)

2Ω

)2

+
1

4Ω

[
3β

4
A2

0 −Θ1 (α)

]
×
[

9β

4
A2

0 −Θ1 (α)

]
< 0 (169)

This condition keeps the real parts of the eigenvalues positive. The asymptotically stable

solution may occur in the opposite case.

(b) Numerical analysis

The physical and geometrical properties of the beam are listed in Table V.

In order to verify the precision of the analytical solutions, we first solve numerically

Eq. (156) using the Newton-Leipnik algorithm [114, 162] that considering the Grünwald-

Letnikov definition of the fractional order derivative (Eq. (63)).
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Table V: Properties of the Beam, Foundation and Moving load [51, 144]

Item Notation Value
Beam

Length L 628.1 m
Young’s modulus (steel) E 200 MPa

Cross-sectional area S 4.8 m2

Mass density ρ 7850 kg/m3

Moment of inertia I 12 m4

Foundation
Stiffness k 202.66 N/m2

Viscous damping c 192.0 N.S/m2

Shear viscosity coefficient µv 5× 106N.S
Shear stiffness coefficient µe 5× 105N

Moving load
Load P 350 kN

Mean velocity v0 30 m/s

Figure 23: Amplitude response of the system A0 as function of the driven frequency Ω for
different values of the fractional-order α. N = 16, d = L/(N − 1)

Second, we display in some figures the effects of the main parameters of the proposed

model. For example, Fig. 23 shows the effects of the order of the derivative on the ampli-

tude of vibration of the beam. This graph also shows a comparison between the results

from the mathematical analysis (curve with dotted line) and the results obtained from

numerical simulation of Eq. (156) (curve with circles for α = 0.25) using the definition

of Eq. (63). The match between the results shows a good level of precision of the ap-

proximation made in obtaining Eq. (165). This figure also reveals that as the order of

the derivative increases, the resonant amplitude of the beam vibration decreases. Similar

results were obtained by Shen et al. [165] who analyzed the periodic vibration of a Duffing

oscillator with additional fractional damping and showed that increasing the order of the

derivative (damping term) results in a decrease of the amplitude of vibration. For small
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order derivative, the bending degree of the curves becomes severe, which leads to multiple

amplitude solutions and the appearance of the unstable solution.

Figure 24: The steady-state amplitude of the beam A0 as function of the shear viscosity
coefficient η for several order of the derivative. N = 16, Ω = 1.14, d = L/(N − 1)

In Fig. 24, we have plotted the evolution of the amplitude of vibration of the beam

A0 as a function of the shear viscosity coefficient η for several orders of the derivative. It

clearly shows that the system is more stable for the highest order of the derivative. The

multivalued solution appears for small order and disappears progressively as the order

increases.

Fig. 25 shows how an increase in the number of the moving loads affects the amplitude

of vibration of the beam. It is observed that as the value of N increases, the amplitude

of vibration at the resonant state merely increases. Second, the effect of spacing loads is

investigated. It is found that when the moving loads are uniformly distributed upon all

the length of the structure, it vibrates the least possible.

The so-called force-response curve is depicted in Fig. 26. Here, multiple and up to

three coexisting solutions (the dotted and circles lines correspond to stable and unstable

branches, respectively) are observed. In particular, there are three coexisting solutions

for P01 < P0 < P02, and exactly one solution branch outside this region of bistability. The

stable (dotted line) and unstable (circles line) branches merge at P0 = P01 and P0 = P02.
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Figure 25: Vibration amplitude of the beam A0 for different values of the loads number N
versus the dimensionless spacing loads d/L. α = 0.8, Ω = 1.14.

Figure 26: Force-response curve for α = 0.8, Ω = 0.9, N = 3, d = L/(N − 1).
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For the practical convenience, it is important to note that, the bistability region (hatched

zone of Fig. 26) gives the range of dangerous weight of the moving loads for the beam

safety.

In this subsection, we have studied the effects of some main parameters such as α, η,

N and d on the periodic solution of the system. The following subsection will investigate

the peculiar effects of fractional order of the derivative and the shear viscosity coefficient

on the possible appearance of the horseshoes chaos by using the Melnikov theory.

III-3-1-3- A chaotic dynamic approach for the system response

In the present subsection, we apply the Melnikov method [91,108,110] to detect analyti-

cally the effects of the fractional order of the derivative and the shear viscosity coefficient

on the threshold condition for the inhibition of smale horseshoes chaos in the system and

on the fractal basin boundaries. Many researchers have begun to investigate the chaotic

dynamics of fractional-order systems [164,168]. A peculiar attention is put on the work of

Oumbé et al. [164] who, based to the Melnikov method, demonstrated that the order and

strength of the fractional viscoelastic property of the flexible material can be effectively

used to control chaos in a system. Our main objective in this subsection is to use the same

method to demonstrate that the order of the fractional viscoelastic shear layer material

can be used either to control chaos in the beam system, or to cause chaos.

To perform the Melnikov analysis, we introduce the small parameter ε into the differ-

ential Eq. (156) and rewrite the governing system as

dU

dτ
= F [U] + εG [U, τ ] (170)

where the vector fields U, F and G are given by

U =

 χ

y = χ̇

 , F =

 y

−Ω2
0χ− βχ3



G =

 0

−2ξ∗y − λ∗Dα
τ χ+ F ∗0N sinΩτ −G∗0N cosΩτ


(171)

with ξ = εξ∗, λ = ελ∗, F0N = εF ∗0N , G0N = εG∗0N and ε the perturbation parameter.

But the stars (*) are removed in the following for simplicity.

For ε = 0, the system of Eq. (170) is the Hamiltonian system with Hamiltonian

function

H (χ, y) =
1

2
y2 +

1

2
Ω2

0χ
2 +

β

4
χ4 (172)
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Since β < 0, the system has three equilibrium points that are a center point χes = (0, 0)

and two saddle points χeu± =

(
±
√
−Ω2

0

β
, 0

)
. Since phase trajectories cannot cross the

center, the unperturbed system shows a stable periodic motion. These trajectories are

shown in Fig. 27. The saddle points surrounding the center are connected by heteroclinic

orbits Eq. (113)

Figure 27: Phase space trajectories.

The Melnikov theory defines the condition for the appearance of the so-called trans-

verse intersection points between the perturbed and the unperturbed separatrix or the

appearance of the fractality on the basin of attraction. This theory can be applied in the

case of Eq. (170) by using formula given by Wiggins [91] as follows

MD (τ0) =
+∞∫
−∞

F [Uhet (τ)] ∧G [Uhet (τ) , τ + τ0] dτ

= −2ξ
+∞∫
−∞

y2
het (τ) dτ − λ

+∞∫
−∞

yhet (τ)Dα
τ [χhet (τ)] dτ+

F0N

+∞∫
−∞

yhet (τ) sinΩ (τ + τ0) dτ −G0N

+∞∫
−∞

yhet (τ) cosΩ (τ + τ0) dτ

(173)

When the Melnikov function has simple zero point, the stable manifold and the unstable

manifold intersect transversally, chaos in the sense of Smale horseshoe transform occurs.

So let MD(τ0) = 0, one concludes that horsehoes chaos appears when

P0 ≥ P0cr =

∣∣∣∣∣∣ 2ξΩ0I1 − λ
√

2Iα
√
−2β
Ω0

I2

[
1 + 2 sin τ̃0 sin((N−1)τ̃0)

1−cos(2τ̃0)
. (cos(Nτ̃0) + sin(Nτ̃0))

]
∣∣∣∣∣∣ (174)
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where

I1 = 4
√

2
3Ω0

I2 = 2πΩ

Ω2
0 . sinh

[
Ωπ
Ω0
√

2

]
Iα =

+∞∫
−∞

sech2
[
Ω0√

2
τ
]
Dα
τ

[
tanh

[
Ω0√

2
τ
]]

dτ

(175)

The integral Iα is evaluated by using the numerical formulas for the right and left side

Figure 28: Critical weight P0cr for the appearance or disappearance of horseshoes chaos
as a function of the system parameters. N = 6, d = L/(N − 1).

of the fractional derivative [114, 164]. Here P0cr is the threshold amplitude for the onset

of horseshoes chaos in the system. This threshold condition is plotted in Fig. 28 as a

function of the driving frequency Ω for different values of the fractional order α (Figs.

28(a) and 28(b)), as function of the viscosity coefficient η (Fig. 28(c)) and as function of

the fractional order (Fig. 28(d)). We observe that the area below the curves (dotted line)

indicates the region for regular solutions while above them the corresponding solutions

have sensitivity to initial conditions, chaotic transient and fractal basin boundaries. The

graph also shows that increasing the order of derivative contributes first to lower the

threshold boundary for onset of chaos and then enlarges the possible chaotic domain

(Fig. 28(a)), and second to rise it (reduction of the chaotic domain) (Fig. 28(b)). This
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observation is well illustrated in Fig. 28(d) where we demonstrate that for 0 < α < 0.48,

the threshold decreases and for 0.48 < α < 1 , it increases. The same investigations are

made on the case of Fig. 28(c).

Figure 29: Basins of attraction showing the confirmation of the analytical prediction for
N = 6, Ω = 1.14, P0 = 0.02, d = L/(N − 1).

To validate the accuracy of the proposed analytical predictions, we solve numerically

Eq. (156) using the Newton-Leipnik method [114,162] to display the shape of the basin of

attraction. A particular characteristic of the Melnikov chaos is the fractality of the basin

of attraction and the resulting unpredictability due to the dependence on the initial con-

ditions. Moreover, Awrejcewicz et al. [169] proved a dependence on the fractal structure

of a basin of attraction on the occurrence of heteroclinic or homoclinic bifurcation taking

as an example the Duffing oscillator. To check the effects of the fractional order α on

the performance of our system, Fig. 8 is plotted and the metamorphoses of the basin of

attraction around the central equilibrium point (0, 0) are observed. It is clear that the

fractal structure of the basin appears for the lowest (α = 0.1) and highest (α = 0.86)

values of the fractional order. While the regular shape is observed for the intermedi-

ate values. These observations had already been predicted by the previously analytical

developments.

In this subsection, we have studied the effects of fractional order of the derivative

and the shear viscosity coefficient on the possible appearance or disappearance of the

horseshoes chaos in the beam system. The results obtained here give more precision
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about the effect of the fractional order on the beam stability investigated previously in

subsection. It is shown how the extreme values (lowest and highest values) of the fractional

order have negative effects on the system stability and positive for the intermediate values.

Thus, proper selection of this fractional order can be contributed to control chaos in a

system or to cause chaos. These results also explain well why it was necessary to introduce

the fractional nature of the shear layer material in the model of a viscoelastic Pasternak

foundation.

As short conclusion for this part, we have demonstrated firstly that, as the order of the

derivative increases, the resonant amplitude of the beam vibration decreases and, when

the moving loads are uniform distributed upon all the length of the structure, it vibrates

the least possible. Secondly, proper selection of the shear layer of the foundation that

having fractional order viscoelastic material can be contributed to suppression of chaos

in a system.

III-3-2- Vibration analysis of Rayleigh beams laying on fractional-

order viscoelastic bearings subject to moving loads and

stochastic wind

III-3-2-1- Beam model description and equations of motion

Consider a beam of finite length L, laying on the bearings having fractional-order vis-

coelastic materials, subjected to combined loads of stochastic wind and moving vehicles,

as shown in Fig. 30. The beam is modelled by using a Rayleigh beam theory [124] with ge-

ometric nonlinearities [102,132] (to take into account the high deflection and the assumed

negligible longitudinal displacement). It is assumed that the vehicles can be modelled

by several point forces P of constant intervals d moving along the bridge deck in the

same direction with constant velocity v. It is also assumed that the distance between two

bearings x0 is equal to the one between one bearing and one beam end. No wind loading

on the vehicles is considered since the vehicles are moving inside the bridge beam, but

the effect of the wind load is applied downward to the beam axis with an attack angle

α
(
tan (α) = ẇ

U

)
, where w = w (x, t) is the deflection of the beam and U the wind flow

velocity. When this angle changes or varies, the resulting divergent vibration or galloping

may occur in the beam structure. The beam oscillates due to the lift force (mean force

in the direction normal to U) and drag force (mean force in the direction of U). The
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Figure 30: Scheme of the analysed Rayleigh beam, resting on viscoelastic bearings (char-
acterized by the parameters kj, cj and αj). Loads are represented by equally spaced forces
of identical intensity P moving at speed v. The load effect of the wind blowing at a speed
U is also schematically represented as a force on the side of the beam.

dynamic equation of motion for small deformations is obtained as [132]

ρS ∂2w(x,t)
∂t2

+ EI ∂
4w(x,t)
∂x4 − 3

2
EI ∂2

∂x2

[
∂2w(x,t)
∂x2

(
∂w(x,t)
∂x

)2
]
− ρI ∂

4w(x,t)
∂x2∂t2

+ µ∂w(x,t)
∂t

−ES
2L

∂2w(x,t)
∂x2

L∫
0

(
∂w(x,t)
∂x

)2

dx+
NP∑
j=1

(
kj + cjD

αj
t

)
w (x, t) δ

[
x− jL

NP+1

]
= Fad (x, t)

+P
N−1∑
i=0

εiδ [x− xi (t− ti)]

(176)

Here S, E, I, ρ, µ, w(x, t) are the cross-sectional area of the beam, the modulus of

elasticity, the cross-sectional moment of inertia, the beam material density, the damping

coefficient of the beam and the beam transversal deflection at point x and time t, re-

spectively. The terms kj and cj are the stiffness and damping coefficients of the j − th
bearings, respectively. The coordinate xi (t− ti) = v (t− id/v) represents the position of

the i − th force at the time t, ti = id/v = the arriving time of the i − th load at the

beam, Nv is the number of the applied loads, NP is the number of bearings. Eq. (176)

contains two nonlinear terms which take into account the geometric nonlinearities due

to a high deflection [132] and the inplane tension of the beam [102, 132]. This model is

seem to be more realistic (from a bridge-system point of view) since it may explain best

the transition from elastic to plastic deformation leading to rupture of the bridge under

the action of high loads. εi is a window function [62]. In this model of moving load, the

inertia of the vehicles is altogether neglected. D
αj
t is the fractional derivative with order
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αj ∈ (0, 1). The term Fad (x, t) is the major component of the aerodynamic force (vertical

component) obtained according to Refs. [1, 170,171] and gives by:

Fad (x, t) =
1

2
ρabU

2

[
A0 +

A1

U

∂w (x, t)

∂t
+
A2

U2

(
∂w (x, t)

∂t

)2
]
, (177)

where Aj (j = 0, 1, 2) are the aerodynamic coefficients ( A0 = 0.0297, A1 = 0.9298, A2 =

-0.2400) [170], ρa is the air mass density, b is the beam width. U is the wind velocity which

can be decomposed as U = ū + u (t), where ū is a constant (average) part representing

the steady component and u (t) is a time varying part representing the turbulence. It

is assumed in this study that the turbulence part is small compared to the steady one

(ū� u (t)) and Consequently, a third order Taylor expansion of (ū+ u (t))−k(k = 1, 2) is

taken.

For the beam in Fig. 30, the displacement and flexure moment vanish at the beam

ends, and the associated boundary conditions are given by Eq. (70). To investigate the

dynamics of the system let us derive the modal equations. To this end, we apply the

Galerkin’s method by assuming that the solution of the partial differential Eq. (176) is

given by Eq. (73). According to Refs. [160, 172], the Galerkin’s decomposition method

can be truncated to the fundamental mode of vibration (n = 1). Therefore, the single

one-dimensional modal equation is obtained after substituting Eq. (177) and Eq. (73) into

Eq. (176), and considering the following dimensionless variables,

χn =
qn
lr
, τ = ω0t, ξ =

u

uc
, (178)

as

χ̈ (τ) + (2λ− ϑ1) χ̇ (τ) + χ (τ) + βχ3 (τ) + η
Np∑
j=1

(
kj + cjω

αj
0 D

αj
τ

)
χ (τ) sin2

(
jπ

Np+1

)
= ϑ2χ̇

2 (τ) + ϑ0 + (θ0 + θ1χ̇ (τ)) ξ (τ) + f0

Nv−1∑
i=0

εi sinΩ
[
τ − idω0

v

] (179)

with

Ω = πv
Lω0

, f0 = 2PL3

lrEIπ4 , η = 2L3

EIπ4 , β = l2r
4

[
S
I
− 3

2

(
π
L

)2
]
,

ϑ1 = ρabL3A1ū

2π2
√
EIρ[L2S+Iπ2]

, ϑ0 = 2ρabA0ū2L4

EIlrπ5 , ϑ2 = 4ρabL2A2lr
3ρ[L2S+Iπ2]

,

θ0 = 2ūρabL4ucA0

EIlrπ6 , θ1 = ρabL3A1uc

2π2
√
EIρ[L2S+Iπ2]

, λ = µL3

2π2
√
EIρ[L2S+Iπ2]

.

(180)

and

ω0 =
π2

L

√
EI

ρ (L2S + Iπ2)
, lr =

L

2
. (181)
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Considering the configuration of the system where the load is crossing the beam (εi = 1),

the sum of the second member of Eq. (179) can be simplified according to the Handbook

of Mangulis [163]. Thus, Eq. (179) can be rewritten as

χ̈ (τ) + (2λ− ϑ1) χ̇ (τ) + χ (τ) + βχ3 (τ) + η
Np∑
j=1

(
kj + cjω

αj
0 D

αj
τ

)
χ (τ) sin2

(
jπ

Np+1

)
= ϑ2χ̇

2 (τ) + ϑ0 + (θ0 + θ1χ̇ (τ)) ξ (τ) + F0N sin (Ωτ)−G0N cos (Ωτ)

(182)

where

F0N = f0

[
1 + 2 sin τ̃0 sin((Nv−1)τ̃0)

1−cos(2τ̃0)
cos (Nv τ̃0)

]
, τ̃0 = dπ

2L
,

G0N = 2f0 sin τ̃0 sin((Nv−1)τ̃0)
1−cos(2τ̃0)

sin (Nv τ̃0) .

(183)

III-3-2-2- Beam model analysis and approximated analytical solutions

This subsection deals with the analytical investigation of the system response and on the

derivation of the response of the steady-state vibration of the beam system to moving

loads and wind actions. Here we use the stochastic averaging method [96, 98, 99] for the

analysis of the resulting dynamic systems with fractional derivative, random noise and

harmonic excitation (Eq. (182)). To this end, the solution of the modal Eq. (182) is sought

in the form

χ (τ) = a0 + a (τ) cosψ, χ̇ (τ) = −Ωa (τ) sinψ, ψ = Ωτ + φ (τ) . (184)

where a0 is the constant mean amplitude of the beam, a(τ) and ψ the slow-varying

amplitude and generalized phase respectively. Substituting Eq. (184) into Eq. (182) one

obtains: 
ȧ = − 1

Ω
[M1 (a, ψ) +M2 (a, ψ)] sinψ

aφ̇ = − 1
Ω

[M1 (a, ψ) +M2 (a, ψ)] cosψ

(185)

where

M1 (a, ψ) = F0N sin (ψ − φ)−G0N cos (ψ − φ) + (2λ− ϑ1) aΩ sinψa− 1
4
βa3 cos 3ψ

−

[
1 + η

Np∑
j=1

kjsin
2
(

jπ
Np+1

)
+ 3βa2

0 + 3
4
βa2 −Ω2

]
cosψ + a2

2
[ϑ2Ω

2 − 3βa0] cos 2ψ,

M2 (a, ψ) = −η
Np∑
j=1

cjω
αj
0 sin2

(
jπ

Np+1

)
D
αj
τ (a cosψ) + (θ0 − θ1Ωa sinψ) ξ (τ) .

(186)

and a0 satisfies the following non-linear equation:

βa3
0 +

[
1 +

3

2
βa2 + η

Np∑
j=1

kjsin
2

(
jπ

Np + 1

)]
a0 = ϑ0 −

1

2
ϑ2Ω

2a2 (187)
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To apply the stochastic averaging method [96,98,99], we average over the period T = 2π/Ω

in the case of periodic function (M1 (a, ψ) ), or T = ∞ in the case of aperiodic one

(M2 (a, ψ) ). The method gives the following pair of first order differential equations for

the amplitude a(τ) and the phase φ(τ):

ȧ = − (2λ− ϑ1) a
2
− 1

2
ηa

Np∑
j=1

cjω
αj
0 Ωαj−1sin2

(
jπ

Np+1

)
sin
(αjπ

2

)
+ 1

2Ω
[G0N sinφ− F0N cosφ]

+
πθ2

1a

8
[3Sξ (2Ω) + 2Sξ (0)] +

πθ2
0

2Ω2a
Sξ (Ω) +

√
πθ2

0

Ω2 Sξ (Ω) +
πθ2

1a
2

4
[Sξ (2Ω) + 2Sξ (0)] ξ1 (τ)

(188)

and

aφ̇ = a
2Ω

[
1 + 3βa2

0 −Ω2 + 3
4
βa2 + η

Np∑
j=1

(
kj + cjω

αj
0 Ωαj cos

(αjπ
2

))
sin2

(
jπ

Np+1

)]
+ 1

2Ω
[G0N cosφ+ F0N sinφ]− πθ2

1a

4
Ψξ (2Ω) +

√
πθ2

0

Ω2 Sξ (Ω) +
πθ2

1a
2

4
Sξ (2Ω) ξ2 (τ) .

(189)

Here Sξ (Ω) and Ψξ (Ω) are the cosine and sine power spectral density function, respec-

tively [146]:

Sξ (Ω) =
+∞∫
−∞

R (ζ) cos (Ωτ) dζ = 2
+∞∫
0

R (ζ) cos (Ωτ) dζ = 2
0∫
−∞

R (ζ) cos (Ωτ) dζ,

Ψξ (Ω) = 2
+∞∫
0

R (ζ) sin (Ωτ) dζ = −2
0∫
−∞

R (ζ) sin (Ωτ) dζ,

+∞∫
−∞

R (ζ) sin (Ωτ) dζ = 0 ; R (ζ) = E [ξ (τ) ξ (τ + ζ)] .

(190)

The spectral density function of the bounded noise can be used to approximate the Dryden

and Von Karman spectra of wind turbulence with a suitable choice the parameters of the

model [146, 173]. For this aim, the random processes of bounded variation with multiple

spectrum peaks [174] is used in this work to take into account the turbulent component

of the wind flow ξ (τ). This component can be expressed as [174]

ξ (τ) =
m∑
i=1

σi cos [ωiτ + γiBi (τ) + θi], (191)

where σi and γi are positive constants, Bi (τ) are mutually independent unit Wiener

process, and θi are mutually independent random variables uniformly distributed in [0, 2π].

The sum ξ (τ) is a stationary random process in wide sense, with zero mean and spectral

density:

Φξ (ω) =
m∑
i=1

σ2
i γ

2
i (ω2 + ω2

i + γ4
i /4)

4π
[
(ω2 − ω2

i − γ4
i /4)

2
+ γ2

i ω
2
] . (192)

(a) Analytical estimate of the beam response under moving loads only
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We first consider system (182) with only deterministic moving loads (Fad (x, t) = 0)

neglecting wind effects on the beam. If ϑ1 = θ0 = θ1 = 0, Eqs. (188) and (189) become:

ȧ = −λa− 1
2
ηa

Np∑
j=1

cjω
αj
0 Ωαj−1sin2

(
jπ

Np+1

)
sin
(παj

2

)
+ 1

2Ω
[G0N sinφ− F0N cosφ] (193)

and

aφ̇ =
a

2Ω

[
1−Ω2 + 3βa2

0 +
3

4
βa2 + η

Np∑
j=1

(
kj + cjω

αj
0 Ωαj cos

(παj
2

))
sin2

(
jπ

Np + 1

)]

+
1

2Ω
[G0N cosφ+ F0N sinφ] (194)

By substituting a = A, φ = Φ and ȧ = 0, φ̇ = 0 in Eqs. (193) and (194), algebraic

manipulations give for the steady state vibrations of the system response A the following

nonlinear equation:

9

16
β2A6 − 3

2
βΘ1 (αj)A

4 +
[
Θ2

1 (αj) +Θ2
2 (αj)

]
A2 = F 2

0N +G2
0N , (195)

with

Θ1 (αj) = Ω2 − 1− 3βa2
0 − η

Np∑
j=1

(
kj + cjω

αj
0 Ωαj cos

(παj
2

))
sin2

(
jπ

Np+1

)
,

Θ2 (αj) = 2Ωλ+ η
Np∑
j=1

cjω
αj
0 Ωαj sin

(παj
2

)
sin2

(
jπ

Np+1

)
.

(196)

The stability of the steady-state vibration of the system response is investigated by using

the method of Andronov and Witt [166] associated to the Routh-Hurwitz criterion [167].

Thus, the steady-state response is asymptotically stable if Eq. (197a) is satisfied and

unstable if Eq. (197b) is satisfied:(
Θ2 (αj)

2Ω

)2

+
1

4Ω

[
3β

4
A2 −Θ1 (αj)

]
×
[

9β

4
A2 −Θ1 (αj)

]
> 0 (197a)(

Θ2 (αj)

2Ω

)2

+
1

4Ω

[
3β

4
A2 −Θ1 (αj)

]
×
[

9β

4
A2 −Θ1 (αj)

]
< 0 (197b)

The trivial solution of Eq. (187) is a0 = 0.

(b) Analytical estimate of the beam response under stochastic wind loads

only

Here, we analyze system (182) with only the aerodynamic force (Fad (x, t) 6= 0) that

takes into account the additive and parametric stochastic wind effects. If the effect of the
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moving load on the beam is neglected, F0N = G0N = 0, Eqs. (188) and (189) become:

da =

{
−1

2
ηa

Np∑
j=1

cjω
αj
0 Ωαj−1sin2

(
jπ

Np+1

)
sin
(αjπ

2

)
+

πθ2
1a

8
[3Sξ (2Ω) + 2Sξ (0)]

}
dτ

+
{
− (2λ− ϑ1) a

2
+

πθ2
0

2Ω2a
Sξ (Ω)

}
dτ +

√
πθ2

0

Ω2 Sξ (Ω) +
πθ2

1a
2

4
[Sξ (2Ω) + 2Sξ (0)]dW1 (τ) .

(198)

and

dφ =
1

2Ω

{
1 + 3βa2

0 −Ω2 +
3

4
βa2 + η

Np∑
j=1

(
kj + cjω

αj
0 Ωαj cos

(αjπ
2

))
sin2

(
jπ

Np + 1

)}
dτ

− πθ2
1

4
Ψξ (2Ω) dτ +

√
πθ2

0

Ω2a2
Sξ (Ω) +

πθ2
1a

2

4
Sξ (2Ω) dW2 (τ) . (199)

Here W1(τ) and W2(τ) are independent normalized sources of Gaussian white noise. the

differential equation for a(τ) does not rely on φ(τ); thus, a probability density function

P (a, τ) for a(τ) can be derived. The associated F-P-K equation for P (a, τ) is

∂P (a,τ)
∂τ

= − ∂
∂a

[(
− (2λ− ϑ1) a

2
− 1

2
ηa

Np∑
j=1

cjω
αj
0 Ωαj−1sin2

(
jπ

Np+1

)
sin
(αjπ

2

))
P (a, τ)

]
− ∂
∂a

[
πθ2

0

2Ω2a
Sξ (Ω) +

πθ2
1a

8
[3Sξ (2Ω) + 2Sξ (0)]P (a, τ)

]
+1

2

(
πθ2

0

Ω2 Sξ (Ω) +
πθ2

1a
2

4
[Sξ (2Ω) + 2Sξ (0)]

)
∂2P (a,τ)
∂a2

(200)

In the stationary case, ∂P (a,τ)
∂τ

= 0, the solution of Eq. (200) is:

Ps (a) = Na
(
Γ0 + a2Γ1

)−(Q+1)
(201)

where

Γ0 =
πθ2

0

Ω2 Sξ (Ω) , Γ1 =
πθ2

1

4
[Sξ (2Ω) + 2Sξ (0)] , Q = Γ1−2Γ2

2Γ1
,

Γ2 = −1
2

(2λ− ϑ1)− 1
2
η
Np∑
j=1

cjω
αj
0 Ωαj−1sin2

(
jπ

Np+1

)
sin
(παj

2

)
+

πθ2
1

8
[3Sξ (2Ω) + 2Sξ (0)] .

(202)

Above N is a normalization constant that guarantees
∞∫
0

Ps (a) da = 1.

(c) Analytical estimate of the beam responses under moving vehicles and

stochastic wind loads

We finally consider the dynamic performances of the beam system subject to the

stochastic wind and moving loads. Thus, for the special case of β = θ1 = 0 (consider-

ing only the additive effects of the wind turbulence and linear bridge responses for the
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analytical purposes), the previous Eqs. (188) and (189) is reduced to:

da =

[
− (2λ− ϑ1)

a

2
− 1

2
ηa

Np∑
j=1

cjω
αj
0 Ωαj−1sin2

(
jπ

Np + 1

)
sin
(αjπ

2

)
+
Γ0

a

]
dτ

+
1

2Ω
[G0N sinφ− F0N cosφ] dτ +

√
Γ0dW1 (τ) . (203)

and

dφ =
1

2Ω

[
1−Ω2 + η

Np∑
j=1

(
kj + cjω

αj
0 Ωαj cos

(αjπ
2

))
sin2

(
jπ

Np + 1

)]
dτ

+
1

2Ωa
[G0N cosφ+ F0N sinφ] dτ +

1

a

√
Γ0 dW2 (τ) . (204)

The averaged F-P-K equation associated with the previous Itô Eqs. (203) and (204) is

∂P (a, φ, τ)

∂τ
= − ∂

∂a
(ā1P (a, φ, τ))− ∂

∂φ
(ā2P (a, φ, τ)) +

1

2

∂2

∂a2

(
b̄11P (a, φ, τ)

)
+

1

2

∂2

∂φ2

(
b̄22P (a, φ, τ)

)
(205)

where

ā1 = − (2λ− ϑ1) a
2
− 1

2
ηa

Np∑
j=1

cjω
αj
0 Ωαj−1sin2

(
jπ

Np+1

)
sin
(αjπ

2

)
+ 1

2Ω
[G0N sinφ− F0N cosφ] + Γ0

a

ā2 = 1
2Ω

[
1−Ω2 + η

Np∑
j=1

(
kj + cjω

αj
0 Ωαj cos

(αjπ
2

))
sin2

(
jπ

Np+1

)
+ 1

a
[G0N cosφ+ F0N sinφ]

]
b̄11 = Γ0

b̄22 = Γ0

a2

(206)

Applying the solution procedure proposed by Huang et al. [107], one obtains the

following exact stationary solution

Ps (a, φ) = N
′
a exp

{
Γ
′
2

Γ0

a2 − a

Ω (Γ 2
0 + d2

0)
[(d0G0N + F0NΓ0) cosφ+ (d0F0N −G0NΓ0) sinφ]

}
(207)

where N
′

is a normalization constant and

Γ
′
2 = −1

2
(2λ− ϑ1)− η

2

Np∑
j=1

cjω
αj
0 Ωαj−1sin2

(
jπ

Np+1

)
sin
(αjπ

2

)
, d0 = −Γ0Γ3

Γ
′
2

Γ3 = 1
2Ω

[
1−Ω2 + η

Np∑
j=1

(
kj + cjω

αj
0 Ωαj cos

(αjπ
2

))
sin2

(
jπ

Np+1

)] (208)

Eq. (207) illustrates the main result of this part: the dependence of stationary probability

distributions of the oscillations amplitude of the beam upon the parameters (damping λ

and natural frequency Ω0 = 1); the moving loads(loads weights intensity f0, number Nv,
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spacing load d and driving frequency Ω), of the wind loads (deterministic ϑ1 and turbulent

θ0 part) and the bearings parameters (stiffness kj, damping cj, fractional-order αj and

number of bearings Np).

III-3-2-3- Numerical analysis and discussion of the results

For numerical purposes we consider the case of beam, bearings and aerodynamic force

having the parameters of Table VI and the following one: (L = 100 m, b = 6 m, µ =

192 Ns/m2, P = 1500 kN, v = 60 m/s) assumed here to extend the work done by others

researchers and in order to make the qualitative effects studied visible. It is assumed that

all the bearings have the same viscoelastic property ( cj = c0, kj = k0, αj = α with

j = 1, 2, ..., Np). In this work, the case of a two-peak spectral density (m = 2) is used.

Thus, the parameters of Eq. (192) are chosen to approach the well-know Dryden wind

spectrum [173] given by ω1 = 0.5, ω2 = 1.0, γ1 = γ2 = 0.5, σ1 = σ2 = 0.4.

Table VI: Properties of the Beam, bearings and aerodynamic force [70, 170,175]

Item Notation Value
Beam

Young’s modulus E 29.43 MPa
Cross-sectional area S 0.004 m2

Mass density ρ 7850.0 kg/m3

Moment of inertia I 3.81 m4

viscoelastic bearings
Stiffness k0 138.6 N/m2

Viscous damping c0 1732.50 Ns/m2

Aerodynamic force
Air mass density ρa 1.25 kg/m3

Critical wind velocity uc 30.0 m/s
Mean wind velocity ū 21.0 m/s

The dimensionless parameters of Eq. (182) are thus calculated as per Eq. (180) and

shown in Table VII

Table VII: Numerical values of the dimensionless parameters (defined in Eq. (182) and
elsewhere)

Parameter Value Parameter Value

Ω
f0

η
β
ϑ1

ω0

0.04
0.005
1.0× 10−7

−0.2
0.02
41.4

ϑ0

ϑ2

θ0

θ1

λ
lr

0.1× 10−4

−1.8
0.000005
0.03
0.03
50.0
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Numerical results are also presented to verify the accuracy of the analytical solution,

Eq. (184). The numerical solutions is obtained using the model or the adjusted model of

the Newton-Leipnik algorithm [114,162] to simulate the resulting fractional system or the

stochastic-fractional system, respectively.

Figure 31: The steady-state vibration amplitude of the beam as a function of the parameter
Ω, see Eq. (182). (a) The effect of the number of the bearings for fixed number of moving
loads, Nv = 15; (b) The effect of the number of moving loads Nv for fixed number of
bearings Np = 10. The dotted line represents the analytical results as per Eq. (195),
while the curves with circles are the numerical results obtained simulating Eq. (182). The
simulation parameters are α = 0.5, ϑ0 = ϑ1 = ϑ2 = θ0 = θ1 = 0 (no stochastic terms).
The other parameters are given in Table VII.

Fig. 31 shows both the effects of the number of bearings, Fig. 31 (a), and of the moving

loads, Fig. 31 (b), on the steady-state amplitude A and frequency Ω (that is related to

the vehicles speed, as per Eq. (182) ) of the beam system. The data reported in Fig.

31 (a) demonstrate that, as the number of bearings increases, the resonant amplitude of

the bridge beam decreases and the resonance frequency of the system increases. Thus,

it is evident that the number of bearings plays an important role for the beam stability.

The second graph, Fig. 31 (b), shows how an increase in the number of the moving loads

affects the amplitude and the frequency of the beam. It is observed that as the value of

Nv increases, the amplitude of vibration at the resonant state merely increases. It is well

know that, the frequency response is important in engineering, for through the frequency

response curve one can determine the resonance frequency. For example in Fig. 31 (b)

the resonance frequency occurs near Ω = 1.

In Fig. 32 we report the effect of the fractional-order α, on the steady-state vibration

amplitude of the beam A versus the dimensionless piers stiffness coefficient k
′
0, as per the

analytical prediction of Eq. (195) compared to the numerical simulations of Eq. (182). The

system response is more stable for the higher order of the derivative. The multivalued

solution only appears for the smallest order and suddenly disappears as the derivative
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Figure 32: Amplitude of the oscillation resonance induced by the dimensionless stiffness
parameter k

′
0 (k0/km) for different fractional-order values (the parameter km is a reference

stiffness coefficient). The dotted line represents the analytical results as per Eq. (195),
while the curves with circles are the numerical results obtained simulating Eq. (182). The
simulation parameters are: Nv = 20, Np = 10, Ω = 1.0, ϑ0 = ϑ1 = ϑ2 = θ0 = θ1 = 0 (no
stochastic terms). The other parameters are given in Table VII.
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order increases. The resonance (a peak of the amplitude) appears as the parameter k
′
0

increases, see Fig. 32 (a), Fig. 32 (b), Fig. 32 (c) and Fig. 32 (d). Shortly, the resonance

of the beam system strongly depends upon the stiffness and viscosity (that is, the order

of the derivative) of the bearings. For the investigated parameters, it is found that the

numerical results are in good agreement with the analytical predictions.

Figure 33: Effect of the wind turbulence on the stationary probability distributions of the
oscillations amplitude of the beam. The dotted line represents the analytical results as per
Eq. (201), while the curves with circles are the numerical results obtained simulating Eq.
(182). The simulation parameters are: Ω = 0.75, α = 0.5, Np = 10, θ1 = 0.1, f0 = 0 .
The other parameters are given in Table VII.

The consequences of the stochastic effects, as modelled by the random term ξ in

Eq. (181), have been investigated in Figs. 33,34. The consequences of the additive

wind turbulence θ0 on the probabilistic responses of the beam is plot in Fig. 34, as the

stationary probability density function of the oscillations amplitude of the beam Ps(a)

versus the amplitude a curve, where we also report the numerical solutions of Eq. (182).

The distribution, as per Eq. (207), has only one peak that corresponds to a larger

amplitude. The main feature of this analysis of the role of the wind is that as the additive
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wind turbulence parameter θ0 increases, the value of the peak decreases and progressively

shifts towards larger amplitude values. Surprisingly, it implies that the additive wind

turbulence decreases the chance for the bridge beam to reach the resonant amplitude

(i.e., the most probable position to find the maximum amplitude of the bridge beam

oscillations).

Figure 34: Effect of the wind turbulence on the stationary probability distributions of the
oscillations amplitude of the beam. The dotted line represents the analytical results as per
Eq. (201), while the curves with circles are the numerical results obtained simulating the
full Eq. (182). The simulation parameters are: Ω = 0.75, α = 0.5, Np = 10, θ0 = 0.1,
f0 = 0 . The other parameters are given in Table VII.

Also for the parameter θ1 that governs the wind turbulence effects, see Eq. (184),

the stationary probability density function of the oscillations amplitude of the beam is

investigated, see Fig. 34. In this case the amplitude distribution has only one maximum

situated in the vicinity of am = 0.2. As θ1 increases, the peak value of the probability

density function slightly decreases and stays located practically in the same position. The

agreement between numerical and analytical results is fairly good in both cases of Figs.

33 and 34.
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Figure 35: The analytical result of the stationary probability distribution function versus
the amplitude a and the phase φ for (a) θ0 = 0.09 and (b) θ0 = 0.2. The constant N

′

is found numerically to ensure normalization. The simulation parameters are: α = 0.5,
Nv = 10, Np = 10, Ω = 1, ϑ1 = 0.02, f0 = 0.005.

Figure 36: Time dependent response of the beam considering (a) only moving vehicles, (b)
only stochastic wind effects, (c) both vehicles and stochastic wind loads. The simulation
parameters are: ϑ0 = 0.00011, ϑ1 = 0.02, ϑ2 = −0.092, θ0 = 0.7, θ1 = 0.15, f0 = 0.005,
Nv = 20, Np = 5, Ω = 1, α = 0.5, λ = 0.03, β = 0.
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The analytical prediction of Eq. (207) for the three-dimensional curve of the stationary

probability distribution function versus the amplitude a and the phase φ are plotted in

Fig. 35. The graphs confirm the effect of the additive wind turbulence parameter θ0 on

the probabilistic response of the beam. The remarkable peak of the graphs shows the

most probable position to find the maximum vibration of the beam system. This peak

strongly depends on the wind turbulence parameters.

To visualize the beam oscillations, in Fig. 36, the time dependent beam vertical dis-

placement dynamic response is investigated for three conditions. First, in Fig. 36 (a)

we report the oscillations under the influence of the vehicles. As the vehicles in this

model move deterministically, the resulting oscillations are periodic and the maximum

peak value of the dimensionless vertical displacement of the beam does not exceed 1.0.

However, when the stochastic term associated to wind loads is included, even without the

presence of moving loads, the maximum peak value of the dimensionless vertical displace-

ment of the beam increases, up to about 2.25 as shown in Fig. 36 (b). In this condition,

the fluctuations dominate and the oscillations alternate quite periods of small oscilla-

tions to sizeable oscillations with large fluctuations. Finally, the simultaneous presence

of both moving and stochastic wind loads cause a remarkable additional increase of the

dimensionless vertical displacement response, as shown in Fig. 36 (c).

III-4- Conclusion

In this chapter, we have investigated the dynamical behaviors of some models of bridges

subject to moving loads and stochastic wind. The results obtained have been presented

and discussed.

Firstly, an analytic approach to the dynamics of a Rayleigh beam under the effect

of loads moving with stochastic speed has been considered. By way of short summary,

we have retrieved what is the effect of the load random velocities on the behavior of the

mean amplitude of the beam versus the parameters. Some nonlinear dependences are

new but not fully unexpected: the number of vehicles changes the resonant velocity (Fig.

5). More interesting is the unexpected influence of the load, that is not just nonlinear,

but reentrant (Fig. 7). To single out what we regard as the most relevant finding, we

have focused on the non-monotonic effect of the noise intensity, Fig. 6, that discloses an

unexpected beneficial role of noise intensity on the bridge stability. The analytic approach

has been also checked with numerical simulations and the fairly good agreement between

the two approaches has been found.

Secondly, we have identified the horseshoes chaos in a semi-harp model of cable-stayed

bridge subjected to train of forces moving with stochastic velocity. We have found that

the intensity of the random component of the loads velocity causes an increase of the

threshold for the onset of chaos in the model and then increases the chances to have a
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regular behavior of the bridge; after a maximum a further increase of the noise causes

a decrease of the threshold and then enlarges the possible chaotic domain in parameter

space.

Thirdly, an evaluation approach to obtain the probabilistic characteristics of a two

lane slab-type-bridge response due to traffic flow has been investigated. Mathematical

formulation of the problem has been done and base to stochastic analysis, the effects of

some traffic parameters on the expected value and on the standard deviation of the bridge

deflection response have been investigated.

Fourthly, we have presented an analytical and numerical solution for the dynamic

response of a Rayleigh beam resting on viscoelastic Pasternak foundations considering

the shear layer as viscoelastic material having fractional-order property and subjected to

the passing of series of equidistant moving loads with constant velocity. The analysis leads

us to the conclusion that, as the order of the derivative increases, the resonant amplitude

of the beam vibration decreases and, when the moving loads are uniform distributed upon

all the length of the structure, it vibrates the least possible. Also, a proper selection of

the shear layer of the foundation that having fractional order viscoelastic material can be

contributed to suppression of chaos in a system.

Finally, We have investigated the effects of both moving loads and stochastic wind

on the steady-state vibration of a beam laying on bearings that are characterized by a

fractional-order viscoelastic material. The main conclusion is that the resonance phe-

nomenon and the stability in the beam system strongly depends on the stiffness and

fractional-order of the derivative term of the viscous properties of the bearings. In fact,

the resonance phenomenon appears as the stiffness of the bearings increases. Another

interesting conclusion is that the additive and parametric wind turbulence decreases the

chance for the beam to quickly reach the amplitude resonance.
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General Conclusion



This dissertation has dealt with an analysis of the vibratory and chaotic dynamics

of bridges under the action of moving vehicles, trains, and stochastic wind loads. The

studied structures include girder bridges, railway bridges, slab bridges and cable-stayed

bridges. Each moving vehicle has been modelled as a simple load moving with a stochastic

velocity while a train has been idealised as multiple moving vehicles with regular uniform

intervals. Specific analytical and numerical analysis methods have been formulated to

evaluate the response of various models of excited bridge. The Rayleigh beam theory

and the Kirchhoff thin-plate theory have been used to model bridges. The main results

obtained in this work are summarized as follows:

In the first chapter, an overview on some key factors involved in the dynamic in-

teraction between the bridge and service loads including roads traffic, train traffic and

wind actions has been presented. We have also briefly presented a state-of-art review of

research based on this topic and the problems that we have solved in this dissertation.

Generally, the whole excited bridge system is modelled with a PDE that is reduced

to a one-dimensional system applying the Galerkin’s method. Therefore, in the second

chapter the general background of the approximate response methods for this reduced

mathematical system has been presented. More precisely, five analytical techniques in-

cluding the classical stochastic averaging technique to approach the nonlinear SDEs, Mel-

nikov’s method to predict Smale horseshoe type chaos, Fourier transform and theory of

residues to characterize the probabilistic features of the nonlinear SDEs, Routh-Hurwitz

criterion to give the decision on the stability of the non-trivial steady-states solutions of

the nonlinear ODEs, and the Itô differential rule associated with the averaging method

to approximate solutions for statistical moments have been presented. Four numerical

methods have been presented: the SRK4 algorithm to integrate the nonlinear SDEs,

the RK4 for the ODEs, the Newton-Leipnik and the A-B-M predictor-corrector schemes

to integrate the nonlinear FDEs, the bisection method to solve complex or non-trivial

polynomial equations.

The third chapter has been devoted to the dynamical behavior of some models of

bridges subject to moving loads and stochastic wind. Five models have been studied and

the main results obtained have been presented and discussed. In the first set of results,

the problem of the nonlinear response of a Rayleigh beam to the passage of a sequence of

forces moving with stochastic velocity has been considered. On the basis of the Fourier

transform and of the theory of residues, we have demonstrated that the effect of the load

random velocities is highly nonlinear, leading to a nonmonotonic behavior of the mean

amplitude versus the intensity of the stochastic term and of the load weight. The analytic

approach has been also checked with numerical simulations and we have observed a fairly

good agreement. In the second set of results, a chaotic dynamic approach to analyse

the nonlinear response of a semi-harp model of cable-stayed bridge loaded by a sequence

of moving forces with stochastic velocity has been investigated. On the basis of the

stochastic Melnikov method, we have demonstrated that the intensity of the random
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component of the loads velocity can be contributed to the enlargement of the possible

chaotic domain of the system, and increases the chances of a regular behavior of the

system. Also, the presence of cables in cable-stayed bridges system increases the degree

of safety and can paradoxically contribute to destabilization. In the third set of results,

to increase the realism of the studies, we have includes an evaluation approach to obtain

the probabilistic characteristics of a two lane slab-type-bridge response due to traffic flow

employing a two lane slab-type-bridge modelled by a Simply Supported thin rectangular

plate with two separate rectilinear paths. The traffic flow has been considered as two

opposite series of vehicles of random weights arriving at the bridge at random times that

constitute the Poisson stochastic process, with stochastic velocities. The effects of the

standard deviation of the stochastic velocity and of the arrival rate of the vehicles on the

expected values and the variance of the bridge deflection response have been investigated.

In the fourth set of results, the standard averaging method has been used to provide

an analytical explanation of the effects of spacing loads, load velocity, and order of the

fractional viscoelastic property of shear layer material on the vibration amplitude of the

beam. We have demonstrated that when the moving loads are uniformly distributed upon

all the length of the structure, the vibrations are the least. Moreover, as the order of the

derivative increases, the resonant amplitude of the beam vibration decreases. Also, by

means of the Melnikov technique, we have pointed out the critical weight of moving loads

and of the order of the fractional derivative above which the system becomes unstable.

Finally, both effects of moving loads and stochastic wind on the steady-state vibration of a

Rayleigh beam laying on bearings having fractional order viscoelastic material have been

also investigated in this work. We have found that as the number of bearings increase,

the resonant amplitude of the beam decreases and shifts towards larger frequency values.

The latter result implies that the installation of these kinds of devices at the supports of

the bridges can contribute to reduce the vibration of the bridge. Further, as the additive

wind turbulence parameter increases, the peak value of the probability density function of

the beam response decreases and shifts towards larger amplitude values. The increase of

the parametric wind turbulence slightly lowers the peak value of the probability density

function, that remains approximately located in the same position. Surprisingly, the

shift implies that the additive and parametric wind turbulence contribute to decrease the

chance for the bridge to reach the resonance of the amplitude oscillations.

In this thesis, some of the results have opened interesting perspectives for future

investigations. For example, it would be interesting to complete the present study by

also investigating the case of suspension bridges that are leading to long span technology

today. It might also be interesting to extend this work to include the higher coupled

modes which have been neglected. Since the bridge deck is assumed to be an elastic

structure, it could exhibit hyteristic phenomenon due to their memory effect. So, it could

be interesting to find suitable models for this effect to increase the realism.
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Appendix A: Derivation of the governing
equation of a Rayleigh beam Eq. (69)
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In this appendix, we introduce a governing equation of a Rayleigh beam model

describing the dynamical behavior of a bridge structure. We start the development by

reviewing the basic assumptions from undergraduate strength materials concerning the

bending of the beam.

These assumptions read:

• The beam is prismatic and has a straight cendroidal axis (which we will label the

x-axis),

• the beam’s cross-section has an axis symmetry (which we will label the y-axis),

• all th transverse loadings act in the plane of symmetry (x− y plane),

• plane sections perpendicular to the cendroidal axis remain plane after deformation,

• the material is elastic, isotropic and homogeneous,

• transverse deflections is small.

• the motion is translational in the y-direction and rotational,

• the geometric nonlinearity is taken into account.

The physical situation is drawn schematically in Fig. 37 [124]. We denote the internal

bending moment by M , the internal shear force by Q and the external distributed loading

by f(x, t).

Figure 37: An incremental beam element.

To deal with the modelling, let us consider the dynamic equilibrium of a beam element

of length dx; w = w(x, t) and θ = θ(x, t) be the transversal displacement and the angle

of rotation of the beam element respectively.
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With these assumptions, setting the vertical forces on the element equal to the mass

times acceleration gives:∑
Fy = ρAdx∂

2w
∂t2

= − (Q+ dQ) cos (θ + dθ) +Q cos θ + f (x, t) dx

(209)

where θ can be approximated as ∂w/∂x, and dQ and dθ represent (∂Q/∂x) dx and

(∂θ/∂x) dx respectively. Expanding cos (θ + dθ) about θ using a Taylor series expansion

and using the small angle assumption (θ2 � 1), we obtain

− ∂Q

∂x
= ρA

∂2w

∂t2
− f (x, t) (210)

Similarly, taking the sum of the moments about the center of the beam element, we obtain

∂M

∂x
−Q = ρI

∂3w

∂t2∂x
(211)

Taking the first derivative of Eq. (211) with respect to x, and subtracting Eq. (210) from

it, we obtain
∂2M

∂x2
= ρI

∂4w

∂t2∂x2
− ρA∂

2w

∂t2
+ f (x, t) (212)

From the geometry of the deformation, and using Hooke’s law σx = Eεx, one can show

that (see reference [132]):

M = EI
R

= EI
∂2w
∂x2[

1+( ∂w∂x )
2
] 3

2
≈ EI ∂

2w
∂x2

[
1− 3

2

(
∂w
∂x

)2
]

+O
((

∂w
∂x

)2
)

≈ EI ∂
2w
∂x2 − 3

2
EI
[
∂2w
∂x2

(
∂w
∂x

)2
]

+O
((

∂w
∂x

)2
) (213)

where the Taylor expansion of the inverse of the radius of curvature
(

1
R

)
up to the second

order is carried out. Finally taking into account the dissipation term (C ∂w
∂t

), putting Eq.

(212) and Eq. (213) together gives the desired result (Eq. (69) of the thesis)

ρA
∂2w

∂t2
− ρI ∂4w

∂t2∂x2
+ C

∂w

∂t
+ EI

∂2

∂x2

[
∂2w

∂x2

(
1− 3

2

(
∂w

∂x

)2
)]

= f (x, t) (214)

where

f (x, t) = P

Nv∑
i=1

εiδ [x− xi (t− ti)] (215)
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The standard averaging method is used to provide an analytical explanation on the effects of spacing 

loads, load velocity, order of the fractional viscoelastic property of shear layer material on the amplitude 

of the beam. The geometric nonlinearity is taken into account in the model. The analysis shows that, 

when the moving loads are uniformly distributed upon all the length of the structure, it vibrates the 

least possible. Moreover, as the order of the derivative increases, the resonant amplitude of the beam 

vibration decreases. In other hand, by means of Melnikov technique, a necessary condition for onset of 

horseshoes chaos resulting from heteroclinic bifurcation is derived analytically. We point out the critical 

weight of moving loads and order of the fractional derivative above which the system becomes unstable. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Many structures, such as bridges, runways, rails, roadways, 

pipelines, etc., can be modelled as a beam structure on a vis- 

coelastic foundation. In the analysis of vibration of beams resting 

on viscoelastic foundation under a moving load, the beam can be 

modelled as an Euler–Bernoulli beam [1–4] , or as a Rayleigh beam 

[5] or as a Timoshenko beam [6–8] and the viscoelastic foundation 

as a Winkler model [9–11] or a Pasternak model [12–14] . 

The extensive research in this field is summarized in review ar- 

ticles by Fryba [15] , Wang et al. [16] , and Beskou and Theodor- 

akopoulos [17] . Amongst those investigations, Kargarnovin and 

Younesian [13,14] used the first order perturbation method to anal- 

yse the response of an infinite Timoshenko beam on the viscoelas- 

tic foundation under a moving load. To simulate the behaviour of 

the foundation, Pasternak viscoelastic model was used. This model 

includes a Kelvin foundation in conjunction with a shear viscous 

layer [14] or with a shear elastic layer [13] . These studies clearly 

show that the shear layer material of the foundation can have vis- 

coelastic physical properties. 

In the context of the bridges behaviour, it is well known that, 

this layer of material (part ranging between the bridge deck and 

the foundation) is constituted by some viscoelastic materials such 

as elastomer. Therefore, the long memory effects of this viscoelas- 
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Nbendjo). 

tic materials must be considered through a fractional-order deriva- 

tive concept. For this aim, we focus in this work on the analytical 

and numerical analysis of Rayleigh beams subject to uniform mov- 

ing loads resting on Pasternak foundations considering the shear 

layer as fractional-order viscoelastic material. Atanackovic et al. 

[18,19] considered the vibrations of an elastic rod loaded by ax- 

ial force of constant intensity and positioned on a foundation hav- 

ing fractional order viscoelastic physical properties. The viscoelas- 

tic foundation is modelled by using the constitutive equation of 

Kelvin–Voigt type containing fractional derivatives of real and com- 

plex order [18] , or by using Zener model of fractional derivatives 

[19] . 

The aim of this work is to explore analytically and numerically, 

the effects of loads number and their spacing, the load velocity, 

the order of the fractional viscoelastic shear layer material of the 

Pasternak foundation and its strength on the amplitude of vibra- 

tion of the beam, and especially the order of the fractional vis- 

coelastic property of the shear layer on the appearance or disap- 

pearance of horseshoes chaos through the Melnikov criteria [20–

23] . 

The paper is organized as follows. Section 2 deals with the 

derivation of the physical system and their model-building, some 

mathematical development and the equivalent modal equation of 

this system. In Section 3 , analytical and numerical method (the av- 

eraging method [24–27] and Newton–Leipnik methods [28,29] re- 

spectively ) are used to analyse the effects of the main parame- 

ters of the system on the steady-state amplitude and the stability 

of the beam system. Section 4 deals with the influence of order 

http://dx.doi.org/10.1016/j.chaos.2016.10.001 

0960-0779/© 2016 Elsevier Ltd. All rights reserved. 
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In this paper, the dynamic response of cable-stayed bridge loaded by a train of moving forces with
stochastic velocity is investigated. The cable-stayed bridge is modelled by Rayleigh beam with linear
elastic supports. The stochastic Melnikov method is derived and the mean-square criterion is used to
determine the effects of stochastic velocity and cables number on the threshold condition for the in-
hibition of smale horseshoes chaos in the system. The results indicate that the intensity of the random
component of the loads velocity can be contributed to the enlargement of the possible chaotic domain of
the system, and/or increases the chances to have a regular behavior of the system. On the other hand, the
presence of cables in cable-stayed bridges system increases it degree of safety and paradoxically can be
contributed to its destabilization. Numerical simulations of the governing equations are carried out to
confirm the analytical prediction. The effect of loads number on the system response is also investigated.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Cable-stayed bridges have become very popular over the last
three decades because of their aesthetic appeal, structural effi-
ciency, enhanced stiffness compared with suspension bridges, ease
of construction and comparatively small size of structures. Re-
sponse prediction of this type of bridges subjected to randomly
moving excitations is important for engineering practice [1,2].

The vibrations of a suspension bridge under a random train of
moving loads are discussed in detail by Bryja and Śniady [3–5].
Generally, a very important parameter in the study of the vibration
of bridges caused by moving loads is the velocity. Although there
is scarcity of publications on this subject, one can mention the
work of Zibdeh [6] who included the effect of random velocities on
the dynamic response of a bridge traversed by a concentrated load.
Chang et al. [7] investigated the dynamic response of a fixed–fixed
beam with an internal hinge on an elastic foundation, which is
subjected to a moving mass oscillator with uncertain parameters
such as random mass, stiffness, damping, velocity and accelera-
tion. In the same impetus, Śniady et al. [8,9] and Rystwej et al. [10]

investigated on the problem of a dynamic response of a beam and
a plate to the passage of a train of random forces. In this study they
assumed that the random train of forces idealizes the flow of ve-
hicles having random weights and travelling at the stochastic ve-
locity. They show the effect of these stochastic quantities on the
mean deflection of the beam.

On one hand, in all of the above-mentioned research, only the
effect of stochastic parameters of the moving loads on the prob-
abilistic features of the beam response namely the mean square
amplitude and the probability density function is carried out. To
the best knowledge of the authors, the effects of stochastic fluc-
tuations of the load velocity and the number of cables on the
possible appearance of horseshoes chaos in the cable-stayed
bridge system have not been explored by the researchers yet. Thus
in this paper, based on the Melnikov approach, which is widely
used by most researchers [11–15], all these effects on the ap-
pearance of transverse intersection of perturbed and unperturbed
heteroclinic orbits and the route to chaos are investigated.

Following this introduction, the effective model of cable-stayed
bridge is presented in Section 2. Also, the random Melnikov ana-
lysis for the examination of the effect of a noisy part of velocity of
moving loads and cables effects on the threshold condition for the
inhibition of chaos is extended. Section 3 presents some numerical
simulations to validate the theoretical predictions. Finally, Section
4 is devoted to the conclusion.
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