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Abstract

New classes of stable dissipative optical spatial solitons of the laser (2+1)-dimensional

cubic-quintic complex Ginzburg-Landau equation, which describe the dynamics of class B lasers

are investigated.

In order to reproduce the spatiotemporal dynamics of the large-aperture lasers, this laser

nonlinear evolution equation has been derived by singular perturbation method, using the

Maxwell-Bloch equations describing the propagation of slowly varying field envelope through a

collection of two-levels atoms, and when the interaction of an electromagnetic field with matter

in a laser cavity is considered without the assumption of a fixed direction of the transverse

electric field. So, the propagation of such intense ultra-short pulses is affected by additional

physical mechanisms that appear in the nonlinear models. These are coupling effects, cubic

and quintic nonlinearities, and possible diffusion effects. Good agreement between analytical

and numerical results has been observed when investigating the propagation and stabilization

characteristics of those pulses that are modeled by such a reduced equations.

The study of the stability for spatially symmetric lattices and for nonsymmetric structures

was carried out by drawing the curves giving the domains of the laser parameters: for which the

stability of the laser system is realized. The curves of the effective potential of the laser system

in each case have been presented. They reveal the generation of stable dissipative solitons. An

agreement between theoretical derivations and the numerical study was also observed. In fact,

the visualization of the domains of stability resulting from the analysis of the effective potential,

and the Routh-Hurwitz method fits well with the numerical results.

Keywords: Laser, Complex Ginzburg-Landau equation, variational method, Split-Step

Fourier Method, Dissipatifs Solitons.
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Résumé

Nous étudions de nouvelles classes de solitons laser spatiaux optiques dissipatifs stables

dans l’équation de Ginzburg-Landau complexe cubique-quintique à (2+1)-dimension, qui décrit

la dynamique des lasers de classe B.

Afin de reproduire la dynamique spatio-temporelle des lasers à grande ouverture, cette équa-

tion d’évolution nonlinéaire des lasers a été dérivée par la méthode de perturbation singulière,

en utilisant les équations de Maxwell-Bloch décrivant la propagation de l’enveloppe du champ

lentement variable à travers une collection d’atomes à deux niveaux d’énergie. Nous supposons

que l’interaction d’un champ électromagnétique avec la matière dans une cavité laser est consid-

érée sans l’hypothèse d’une direction fixe du champ électrique transverse. Ainsi, la propagation

de telles impulsions ultra-courtes intenses est affectée par des mécanismes physiques supplé-

mentaires qui apparaissent dans les modèles non linéaires. Il s’agit des effets de couplage, des

nonlinéarités cubiques et quintiques et des effets de diffusion. Un bon accord entre les résultats

analytiques et numériques a été observé lors de l’étude des caractéristiques de propagation et

de stabilisation de ces impulsions qui sont modélisées par des équations réduites.

L’étude de la stabilité pour les structures spatialement symétriques et pour les structures

non symétriques a été réalisée en traçant les courbes donnant les domaines des paramètres

laser, pour lesquels la stabilité du système laser est réalisée. Les courbes du potentiel effectif

du système laser dans chaque cas ont été présentées. Elles révèlent la génération de solitons

dissipatifs stables. Un lien entre les dérivations théoriques et l’étude numérique a également été

observé. En fait, la visualisation des domaines de stabilité résultant de l’analyse du potentiel

effectif, ou du critère de stabilité de Routh-Hurwitz cadre bien avec les résultats numériques.

Mots clés: Solitons dissipatifs, Laser, équation de Ginzburg-Landau complexe, Méthode

variationnelle, Méthode de Fourier à pas divisé.
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General Introduction

Since the operation of the first laser in 1960, literally hundreds of different laser varieties

have been developed and the light that they produce is used in thousands of applications

ranging from precision measurement, materials processing to medicine. Underlying all this

variety, however, is a small set of basic physical principles upon which laser operation, laser

beam propagation and the interaction of laser beams with matter depend. In order to cope

with this preoccupying situation, since the discovery of the concept of laser in 1940 [1], new

theoretical approaches, experimental analyses, and systematic use of computer science have

been developed. During the past 20 years, a lot of research works have been done in several types

of lasers, which are very complex devices, having a rich temporal, spatial, and spatiotemporal

dynamics [2-6]. These different types of lasers can be classified into [7, 8] Class A (for

example, dye lasers) [9-14], Class B (semiconductor lasers, CO2 lasers, and solid-sate lasers)

[15-22], and Class C (the only example is the far-infrared lasers) [23], depending on the decay

rate of the photons, the carriers, and the material polarization. However, this classification is

not applicable to inhomogeneously broadened lasers that included He-Ne, argon-ion, and Xe

lasers, for example. Comparing these lasers, different dynamical features have been described,

including instabilities, cascades of bifurcations, multistability, and sudden chaotic transitions

[2-6]. Many other fascinating features and properties concerned with chaotic dynamics have

been extensively addressed in relevant semiconductor laser systems, because of their potential

applications in chaotic optical communications [24-28]. Further studies have suggested that

optical cavities, also called cavity solitons, are present in a large variety of externally driven

optical systems. However, their existence in laser systems is limited to the well-known laser

with saturable absorbers, two-photon lasers, lasers with dense amplifying medium, or lasers

pumped by squeezed vacuum [29-41].
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General Introduction 2

Dissipative structures are peculiar to nonequilibrium open systems. They are maintained

by the balance of the influx of energy and matter with dissipation, and in many cases, they

appear on a macroscopic scale. For this reason, the most natural theoretical description of these

phenomena should begin with a consideration at a macro-level, nonlinear evolution equations

such as the Navier-Stokes equation. Of course, one can argue that there exists the problem of

determining the microscopic physical source of macroscopic dissipative structure. However, this

problem is equivalent to that of determining the statistical mechanical basis of the behavior

of the macroscopic evolution equations themselves. Following this line, questions regarding

the microscopic physical source of dissipative phenomena can be separated from the study of

dissipative phenomena. Such microscopic considerations are beyond the scope of this thesis.

Dissipative structures and other nonequilibrium patterns have become the subject of serious

studies in physics only recently. Earnest research in this field did not begin until the 1970’s. The

approach used in the study of nonequilibrium patterns employs a phenomenological/qualitative

manner of thinking which represents a bold departure from the physics that existed prior to

this study, and as such, this approach represents an important success.

In the optical system, several models have been proposed to describe how the spatiotemporal

dynamics emerges in large-aperture lasers. For example, the two-photon lasers have been the

subject of continued theoretical attention since the early days of the laser era. The theoretical

interest of the two-photon laser lies in the intrinsic nonlinear nature of the two-photon interac-

tion. The most successful theoretical approach is given by the Maxwell-Bloch (MB) equations

[7, 8]. In fact, the laser is a system where the number of photons is much larger than one,

thus, allowing a semi-classical treatment of the electromagnetic field inside the cavity through

the Maxwell equations, which has been developed by Lamb [42, 43] and independently by

Haken [44, 45, 46]. The semi-classical laser theory ignores the quantum-mechanical nature of

the electromagnetic field, and the amplifying medium is modeled quantum mechanically, as a
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General Introduction 3

collection of two-level atoms through the Bloch equations [42, 44, 46].

The linear analysis and numerical integration of the full MB equations [47] have been used

to interpret the features of the experiment that cannot be fully understood with a perturbative

model, such as the observed evolution from order to fully developed turbulence as the Fresnel

number increases up to a critical control-parameter threshold [48]. In addition, it has been

shown that the MB equations with homogeneous line broadening are appropriate for the de-

scription of the amplification of short pulses in the multilevel atomic iodine amplifier [49]. Some

prototype of nonlinear evolution equations has been constructed by singular perturbation meth-

ods, using the MB equations as the starting point, in order to reproduce the spatiotemporal

dynamics of the large-aperture lasers.

The first class of prototype equations which describe, for example, the class-A laser pattern

dynamics, such as the multi-transverse-mode lasers, is the cubic complex Ginzburg-Landau

(CGL) equation. In fact, the existence of a vortex solution of the laser equations, the stability

of symmetric vortex lattices in the laser beams, the transition to nonsymmetric patterns domi-

nated by titled waves, and to disordered spatial distribution have been well-reproduced by the

cubic CGL equation [50-53]. To prevent the blowup of the solutions of the cubic CGL equation

for negative detuning, the laser cubic CGL equation, which possesses fourth- and higher-order

diffusion terms and which describes correctly the excitation of transverse modes and structure

formation in a laser, has been derived [54]. It should also be mentioned that the adiabatic

elimination of irrelevant variables has been shown to be very sensitive to the method used for

the perturbation expansions in the case of partial differential equations which describe laser

dynamics. That is why the center manifold theorem for the elimination of irrelevant variables

has been used, leading to the cubic CGL equation in the small-field limit. The particular fea-

ture of the center manifold theory is that, it is a solid mathematical framework within which

the fast variables as well as the characteristic scaling of the long-term dynamics are properly
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General Introduction 4

determined [52]. It has also been shown that the cubic-quintic CGL equation is a continuous

approximation to the dynamics of the field in a passively mode-locked laser [55-59].

The second class of prototype equations which provides the generic description of transverse

pattern formation in wide aperture, single longitudinal mode, two-level lasers, when the laser is

operating near peak gain, is the complex Swift-Hohenberg equation for class A and C lasers [60].

Indeed, the complex Swift-Hohenberg equation comes naturally as a solvability condition for the

existence of solutions to the MB laser equations in the form of asymptotic series in powers of the

small detuning parameter [60]. In addition, when the laser pattern dynamics is sensitive to the

degree of stiffness of the original physical problem, such as in the class-B lasers, the amplitude

equations are the complex Swift-Hohenberg equation coupled to a mean flow [60, 61], which is

consistent with the observation that the population inversion variable in the MB laser equations

acts as a weakly damped mode. Otherwise, the Swift-Hohenberg equation has been considered

for a passive optical cavity driven by an external coherent field, valid close to the onset of

optical bistability [62]. Moreover, theoretical studies of spatiotemporal structures of lasers

with a large Fresnel number of the laser cavity have been successfully described in the cases in

which two coupled fields are involved in the dynamics for class-B lasers. For example, it has

been shown that the homogeneous steady-state solution may be destabilized by two generic

instabilities. The first is a long wavelength instability which is related to the phase invariance

of the electromagnetic field and is described by a scalar field obeying the Kuramoto-Shivasinsky

equation. The second is a short wavelength instability which corresponds to a Hopf bifurcation

and is described by a complex field which obeys a Swift-Hohenberg equation [18, 19].

The third class of prototype equations which contains a phenomenological aspect and which

is used in the theoretical description of the pulse dynamics in a mode-locked laser was pioneered

by Haus and Mecozzi [63]. Assuming that only one polarization state plays a role and that the

change of the pulse per round trip is small, so that one can replace the discrete laser components
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with continuous approximations, Haus and Mecozzi [63] obtained a master equation which is

nothing but the stationary version of the cubic CGL equation. The coefficients that appear in

the model were related to the physical parameters in a rather phenomenological way [63, 64].

All these three classes of prototype equations are scalar since it is usually considered that the

polarization degree of freedom of the electromagnetic field is fixed either by material anisotropies

or by experimental arrangement. Thus, the description of the dynamics is done in terms of

a scalar field. It has been shown that the cavity-synchronous phase or amplitude modula-

tion technique transforms passively mode-locked optical oscillators into actively mode-locked

lasers [65, 66]. Mixing passive and active mode-locking in the same device results in a new

class of optical oscillators capably of generating short pulses. To model this laser system, as

an example, the scalar cubic-quintic CGL (CQ-CGL) equation has been used with terms cor-

responding to active mode-locking, in addition to the usual passive mode-locking terms [67].

However, the inclusion of a quintic saturating term in the scalar CQ-CGL equation was shown

to be essential for the stability of pulsed solutions [68-70]. Since the scalar CQ-CGL equa-

tion is non-integrable, which means that general analytical solutions are not available, selected

analytical solutions can only be found for specific relations between the equation parameters.

Soliton pairs were studied extensively both theoretically [71-74] and experimentally [75, 76].

More complicated solutions for the CQ-CGL equations, such as pulsating, creeping, or explod-

ing solutions have been reported numerically [77]. It is also well known that laser systems are

made of several components, an accurate model then should involve consecutive sets of prop-

agation equations. Models can be vectorial, when the polarization nature of light is involved,

and can also include the delayed response of the saturable absorber and gain medium. The

possibility of vectorial topological defects which are not predictable by the scalar theory were

first analyzed by Gil [78, 79]. Using standard perturbative nonlinear analysis performed near

the laser threshold, Gil [78] has derived a (3+1)-dimensional ((3+1)D) vectorial cubic CGL
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equation by considering the interaction of an electromagnetic field with matter in a laser cavity

without the assumption of a fixed direction of the transverse electric field. Different kinds of

pattern formation are present in the dynamic states of the one-spatial dimension (localized

structures) [80-82] and of the two-spatial dimensions (topological defects) [83-89] for the vec-

torial cubic CGL equation. Examples are the synchronization properties of spatiotemporally

chaotic states [86], the identification of a transition from a glass to a gas phase [87], and the

formation and annihilation processes leading to the different types of defects [88]. In addition,

creation and annihilation processes of different kinds of vector defects, as well as a transition

between different regimes of spatiotemporal dynamics have been described [89]. Semiconductor

lasers are still developing, and stabilization both by the device structure and through external

controls is currently an important research area.

It is well-known that in an optical communication system, the information is transported by

solitons. The use of solitons in communications enhances the use of optical fibers since they carry

a great deal of information generated by laser system over very long distances. Because of their

robustness, dissipative solitons are appropriate objects to overcome the bandwidth challenge

currently faced by medicine, industrial, particularly the telecommunications industry.

It is well-known that, in order to have a multi-level atomic system, we need the exter-

nal perturbation system (a pumping process). Through external perturbations, semiconductor

lasers are either stabilized or destabilized. The effects of such perturbations on laser dynamics

include optical feedback, optical injection, and optoelectronic feedback. To stabilize laser oscilla-

tions, the disturbances may be weak or strong. The lasers can then be strongly stabilized under

appropriate conditions of external parameters and operating conditions of the lasers [90].

Stabilization of semiconductor lasers is very important with regard to their application. For

example, frequency stabilization, linewidth narrowing, power stabilization, polarization fixing,

and beam shaping are very important in optical communications, optical data storage systems,
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and optical measurements. In particular, ultrastabilized semiconductor lasers are expected in

broad-band optical communications, high precision optical measurements, and standard light

sources. Although laser technology has seen many advances, the laser remains a highly sought

after area of research. The demand for some of these applications requires specific characteristics

not available until now, such as power, and size.

The main objective:

The objective of this thesis is to make a contribution to the efforts undertaken by physicists

specialized in nonlinear optics, to identify, clarify and classify the conditions for the genera-

tion, propagation, and stabilization of the impulses which are in the transverse dimensions of

the space, as well as in the time domain. Although many works have been done in order to

understand the physical process to be involved in the formation of stable solitons of dissipative

systems, to the best of our knowledge, no work has been reported in the dynamics of optical

solitons in the frame of multidimensional CGL equation with cubic-quintic nonlinearities, tak-

ing into account the contribution of the third-harmonic generation, the nonlinear polarization

of one-photon-resonant and the two-photon-resonant processes.

Specifics objectives:

Our first specific objective is the derivation of a nonlinear dissipative model describing the

dynamics of solitons cavity. In our second objective, we draw, and clarify the conditions of

generation of the localized solutions in the laser cavity, describing a stable dynamic.

We first focus on the derivation of an equation, modeling the propagation of ultrashort vector

optical dissipative solitons of laser systems with a linear gain/loss, cubic-quintic nonlinearities,

diffraction in the presence of cubic and quintic cross-phase modulation, named the coupled

(2+1)dimensional cubic-quintic complex Ginzburg-Landau ((2+1)D CQ-CGL) equation. The

approach taken here is similar to that of Gil [78] for the vectorial cubic CGL equation. We

start with the Maxwell-Bloch equations describing the propagation of a slowly varying field
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envelope through a collection of two-level atoms when the interaction of an electromagnetic

field with matter in a laser cavity is considered without the assumption of a fixed direction of

the transverse electric field. Then, we report on the derivation of the laser (3+1)D vectorial

CQ-CGL equation.

Furthermore, the theoretical treatment will allow us to establish a set of coupled first-order

differential equations with the help of variational method (using the elliptic Gaussian pulse

shape and the moving-Gaussian pulse as ansatz), whereas direct numerical simulations are

carried out by means of fourth order Runge-Kutta method (RK4) and the split-step Fourier

method (SSFM) to support our analytical results.

By means of the analysis of the effective potential that we have derived, the stability of the

new types of dissipative solitons obtained have been investigated. A full direct numerical sim-

ulation of the coupled (2+1)D CQ-CGL equation confirms that the coupled multidimensional

dissipative solitons can be self-trapped over a longer propagation time, even in the presence of

random perturbations. Considering a well-known (2+1)D CQ-CGL equation [91, 92] describ-

ing the propagation of the information inside the nonlinear optical system, using the variational

approach, it follows the stable propagation, in accordance with our stability analysis prediction.

The rest of the work is organized as follows.

Chapter 1 is devoted to the literature review on the generalities related to the laser theory.

The following concepts will therefore be addressed: soliton, laser, class of laser, laser in optical

communication systems, dispersive nonlinear effects in optical laser.

The chapter 2 is devoted to the models describing the dynamics in the laser cavity. Here,

we also present some analytical and numerical methods used for our different studies.

Chapter 3 presents the main results of this thesis. These results concern the self-organization

of dissipative soliton in the optical systems, model by the (2+1)D and the coupled (2+1)D

cubic-quintic complex Ginzburg-Landau equation.
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The present thesis ends with a general conclusion. We summarize our results and give some

future directions that could be investigated.
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Chapter I

Literature review on solitons, laser phenomena and wave

propagation

1.1 Introduction

Dissipative structures and other non-equilibrium patterns are the subject of important

study in physics. The name "dissipative system" was coined by Prigogine for systems consid-

ered in non-equilibrium thermodynamics. These systems are not isolated but are kept in contact

with an external source that provides energy for the smaller sub-system. Thus, dissipation is

essential for the transfer of pumped energy to a "cooler" part. Hence, the notion "dissipative

system" is more complicated. It assumes that there is also an energy supply part, rather than

just losses. A localized structure in such a system, i.e., a "dissipative soliton" truly deserves

to be an established scientific keyword. Through this approach, a new theoretical framework

has been developed, while new terms have arisen for the purpose of describing complex natural

phenomena. Optical laser is one of the most interesting and important topics in the field of

global and local nonequilibrium communication systems. The use of soliton in optical communi-

cation systems enhances the use of laser action, since they carry a great quantity of information.

To understand why optical solitons are needed in optical communication systems, we should

consider the problems that limit the distance and/or capacity of laser cavities. Optical systems

inevitably have chromatic dispersion, losses (attenuation of the signal), and nonlinearity. Dis-

persion and nonlinearity can lead to the distortion of the signal. When soliton pulses are used

as an information carrier, the effects of dispersion and nonlinearity balance (or compensate)
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Chapter I: Literature review on soliton, laser phenomena of wave propagation 11

each other and thus, don’t degrade the signal quality with the propagation distance. In such a

regime, the pulses propagate through the optical system without changing their spectral and

spatial shapes.

For a better understanding of the rest of our work, this chapter will bring out general

information on solitons, laser system, dissipative solitons in communication systems (i.e. laser

and optical fiber), and various effects that take place in optical communication system, due to

the propagation of optical signal.

1.2 A brief history of soliton concept

It is well-known that many phenomena in the nature are nonlinear. In order to have a

good understanding of those phenomena, many works have been done. The obtained results

show some fascinating and important nonlinear phenomena: coherent nonlinear structures, and

chaos phenomena. In particular, a category of coherent nonlinear structures called solitons, has

been widely adopted as a fundamental datum for capturing and understanding the dynamic

behavior of complex nonlinear systems. Solitons are localized large amplitude waves, which

propagate with permanent shape and exhibit particle-like properties, emerging as a result of

delicate balance between nonlinearity and dispersion or diffraction. The concept of solitons was

enlightened first in the context of hydrodynamics, but was later extended to various scientific

disciplines, with its most significant development reaped in optics and most recently, Bose-

Einstein condensates (BECs). The birth to the modern study of soliton is since experiments

conducted by John Scott Russell (1808-1882) [93], to determine the most efficient design for

canal boats, where he has discovered a phenomenon that he described as the wave translation.

The discovery is described here in his own words [93]:

"I was observing the motion of a boat which was rapidly drawn along a narrow channel by

a pair of horses, when the boat suddenly stopped - not so the mass of water in the channel
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Figure 1.1: Recreation of a solitary wave on the Scott Russell Aqueduct on the Union Canal.

Photograph courtesy of Heriot-Watt University [93].

which it had put in motion; it accumulated round the prow of the vessel in a state of violent

agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the form

of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued

its course along the channel apparently without change of form or diminution of speed. I followed

it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour,

preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its

height gradually diminished, and after a chase of one or two miles I lost it in the windings of the

channel. Such, in the month of August 1834, was my first chance interview with that singular

and beautiful phenomenon which I have called "the Wave of Translation".

This experiment took place on the Union Canal at Hermiston, very close to the Riccar-

ton campus of Heriot-Watt University, Edinburgh. In fluid dynamics, the wave is now called

Russell’s solitary wave. Example of the solitary wave is shown in Fig. 1.1.

In 1872, the French scientist Joseph Valentine de Boussinesq (1842-1929) [94], and in 1895

the Dutch mathematicians Diederik Johannes Korteweg (1848-1941) and Gustav de Vries (1866-

1934) [95], proved theoretically the existence of solitary waves. Korteweg and de Vries derived
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(known as the KdV equation) a model equation describing a far-field property of the surface

wave in the lowest-order of dispersion and nonlinearity. This KdV equation is one of the proto-

type equations of solitons theory because it has remarkable mathematical properties. His study

allows to understand the fundamental ideas of the concept of soliton. It is valid only if the fluid

depth and the wave height are small compare with its width along the direction of propagation.

Later, in 1965, Martin Kruskal and Norman Zabusky [96] studied the KdV equation numer-

ically and revealed the nature of these solitary waves that they could reemerge without change

in shape and velocity even after the collision among themselves. They named these waves as

solitons to sound like protons, electrons, photons in order to impress on their particle-like na-

ture. The term "soliton" was justified when the KdV equation was solved analytically by means

of Inverse Scattering Transform (IST) and the solution was described by a set of solitons [97].

Solitons are regarded as a fundamental unit of mode in nonlinear dispersive medium and play a

role similar to the Fourier mode in a linear medium. In particular, a soliton being identified as

an eigenvalue in IST supports its particle (Fermion) concept. Meanwhile, self-focusing in a Kerr

medium was demonstrated and a spatially localized solution analogous to a soliton was found

to emerge by the balance of the cubic nonlinearity and refraction [98]. The model equation,

called the nonlinear Schrödinger equation (NLS), was later found to be integrable by Zakharov

and Shabat [99], also by means of the IST, and the solution is given by a set of solitons and

dispersive waves.

1.3 Temporal soliton, spatial soliton and dissipative soli-

tons

From a mathematical point of view, the ideal soliton is a solitary wave, exact solution of

a nonlinear equation which propagates without deformation and without change of speed. In

the ideal case (Hamiltonian), due to the strict mathematical integrability of the equation which
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models the system, it retains its shape and its speed after collision.

However, because of the disturbances (defects, impurities, ...) which slightly modify the

ideal properties of the soliton, physicists rather use the term "quasi soliton" which indicates

a solitary wave or packet of energy propagating without deformation or modification too high

of its speed. In view of all the soliton varieties and the rapid evolution of the field in optics,

we will try to account for the variants linked to optical solitons. In the context of nonlinear

optics, solitons are classified as being either temporal or spatial, depending on whether the

confinement of light occurs in time or space during wave propagation [100].

1.3.1 Temporal optical solitons

Temporal solitons represent optical pulses that maintain their shape during propagation.

Their existence was predicted in 1973 in the context of optical fibers [101]. Since then, fiber

solitons have been studied extensively and have even found applications in the field of fiber-optic

communications [102-111].

Temporal solitons inside optical fibers resulted from a balance between the group-velocity

dispersion (GVD) and self-phase modulation (SPM) induced by the Kerr nonlinearity. The

GVD broadens optical pulses during their propagation inside an optical fiber, except when the

pulse is initially chirped in the right way. More specifically, a chirped pulse can be compressed

during the early stage of propagation whenever the GVD parameter β2 and the chirp parameter

C happen to have opposite signs such that β2C is negative [112]. The nonlinear phenomenon

of SPM imposes a chirp on the optical pulse such that C > 0. Since β2 < 0 in the 1.55µm

wavelength region of silica fibers, the condition β2C < 0 is readily satisfied. Moreover, because

the SPM-induced chirp is power dependent, it is not difficult to imagine that, under certain

conditions, the SPM and GVD may cooperate in such a way that the SPM-induced chirp is

just right to cancel the GVD-induced broadening of the pulse. SPM is one of the very iterating
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manifestations of the optical Kerr effect and results in the accumulation of a nonlinear phase

generated during propagation and which generates, unlike dispersion, a spectral widening of

the pulse. The optical pulse would then propagate undistorted in the form of a soliton.

Let us consider the propagation of a light wave of field ψ(z, t) in a nonlinear dispersive

medium [112]:

i
∂ψ

∂z
− 1

2
β2
∂2ψ

∂t2
+ γ|ψ|2ψ = 0, (1.1)

where γ(W−1m−1) is the nonlinear coefficient and β2 is the dispersion coefficient of the group

velocity dispersion (GVD). This equation is the basis of many researches in the field of telecoms

and was demonstrated in optical fibers in 1973 by Hasegawa and tappert [101]. The main

features associated with temporal solitons can be summarized as follows. When an input pulse

having an initial amplitude

ψ(0, t) = Nsech(t), (1.2)

is launched into the fiber, its shape remains unchanged during propagation when N = 1, but

follows a periodic pattern for integer values of N > 1 such that the input shape is recovered

at z = mπ/2, where m is an integer. The parameter N represents a dimensionless combination

of two pulse parameters (peak power P0 and width T0); and is introduced as N2 = γP0LD =

γP0T
2
0 / |β2|, where LD is the dispersion length. This parameter governs the relative importance

of the SPM and GVD effects on pulse evolution along the fiber. In fact, whenN << 1, dispersion

dominate, while SPM dominates for N >> 1. For N ∼ 1, both SPM and GVD play an equally

important role during pulse evolution.

Figure. 1.2 shows the pulse evolution for the first order (N = 1), second (N = 2) and

third-order (N = 3) solitons for several values of z by plotting the pulse intensity |ψ(z, t)|2.

Only the fundamental temporal soliton ( whose parameters satisfy the condition N = 1) prop-

agates without deformation, all the other higher order solitons (N > 1) undergo a recurrent

deformation movement during their propagation.
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Figure 1.2: Behavior of the N = 2 and N = 3 solitons, compared with that of the fundamental

(N = 1) soliton. Note that the vertical scale for the fundamental soliton has been magnified

with respect to that of the other two, with z0 = π/2. [106, 107].

1.3.2 Spatial optical soliton

Spatial solitons represent self-guided beams that remain confined in the transverse di-

rections orthogonal to the direction of propagation. In similar to the temporal soliton, they

evolve from a nonlinear change in the refractive index of an optical material induced by the

light intensity phenomenon known as the optical Kerr effect in the field of nonlinear optics

[108-110]. The intensity dependence of the refractive index leads to spatial self-focusing (or

self-defocusing) which is a major nonlinear effects that is responsible for the formation of opti-

cal solitons. A spatial soliton is formed when the self-focusing of an optical beam balances its

natural diffraction-induced spreading (see Fig. 1.3).

Self-focusing and self-defocusing of continuous-wave (CW) optical beams in a bulk nonlinear

medium has been studied extensively [112]. Self-trapping was not linked to the concept of

spatial solitons immediately because of its unstable nature. During the 1980s, stable spatial

solitons were observed using nonlinear media in which diffraction were limited to only one

transverse dimension [113]. The formation of spatial solitons is based on the geometry of the
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Figure 1.3: Schematic illustration of the lens analogy for spatial solitons. Diffraction acts as a

concave lens while the nonlinear medium acts as a convex lens. A soliton forms when the two

lenses balance each other such that the phase front remains plane. [106].

waveguide and on the photo-induced phase shift [106]: Concerning the geometry of the induced

waveguide, we know that a beam of limiting width obeys the laws of diffraction characterized

by the Rayleigh length:

LD =
r

θD
=
πn0r

2

λ
, (1.3)

where r is the mode radius ("waist"), n0 the linear refractive index and λ the optical wavelength.

The length of Rayleigh LD is the propagation distance after which the size of the beam has

increased by a factor
√
2 (its area doubled). In the presence of a positive nonlinearity medium

(γ > 0), the beam induces an increase in index ∆n, proportional to the intensity. The critical

angle of total reflection between the two media, defined by θc =
√
2∆n/n0, allows to determine

the characteristic length of nonlinearity (auto-focusing) in the approximation of small angles

[106],

LNL =
r

θc
=

r√
2∆n/n0

. (1.4)

The spatial soliton corresponds to a balance between diffraction and self-focusing. In this case,

the two widths are equalized, so that LNL = LD leads to θc = θD.
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Figure 1.4: Evolution of (a): pulse shapes and (b): optical spectra over a distance of 5LD for an

initially unchirped the Gaussian pulse propagates in the anomalous-dispersion regime (β2 < 0

of the fiber. [106].

As indicated by Zakharov and Shabat [114], a continuous wave with (1+1)D with a sech

profile and a prescribed relation between its width and its power can propagate as fundamental

spatial soliton in a homogeneous Kerr medium, with exact balance between the Kerr effect and

the diffraction. However, in the case with two transverse dimensions (2+1)D, the situation is

quite different, marked by collapse; there is therefore no spatial Kerr soliton at (2+1)D. For an

understanding of the evolution of the optical field in the optical system and consequently the

resulting phenomena, it is necessary to consider the theory of electromagnetic wave propagation

in dispersive nonlinear media. Like all electromagnetic phenomena, the propagation of optical

fields in optical fibers is governed by Maxwell’s equations. From the Maxwell’s equations, the

evolution of optical field inside the optical system, where the input electric field is assumed to

propagate in the +z -direction and is polarized in the X -direction is described by the nonlinear

Schrödinger (NLS) equation written as

i
∂ψ

∂z
+ η∆ψ + κ|ψ|2ψ = 0, (1.5)

where η is the dispersion coefficient, κ in the nonlinear coefficient, ψ(z,X) is the wave envelope,
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X = x1, ..., xd, ∆ =
d∑
l=1

∂2

∂x2l
, and d = 1 or 2.

There is self-confinement of impulsions when κ > 0, and the opposite phenomenon when

κ < 0. When κ > 0, Eq. (1.5) admits solutions which become singular after a finite time when

d = 2 (critical case), or d > 2 (super-critical case). For d = 1, Eq. (1.5) is integrable and gives

soliton solutions which result from the exact balance between diffraction and nonlinearity. For

d = 2, in order to avoid the singularity in the wave function and thus, limit the risk of collapse

of the pulses, it has been shown that the presence of a damping due to inhomogeneities in

the structure of the fields and in the particle distribution function [115], either by saturation

of nonlinearity [116], partial coherence [117], or non-paraxiality of small beams [116] can be

considered.

Therefore, in (2+1)D systems, the diffraction is not strong enough to overcome self-phase

modulation. It then becomes difficult to find spatial solitons with (2+1)D stable over long

distances [118, 119]. The disturbance effects which can modify or stop the "collapse" are dis-

sipation, normal dispersion and the saturation of nonlinearity [120]. The most used alternative

to obtain the formation of space solitons with more than one dimension, is to use dissipative

media where the presence of gains and nonlinear losses allows to have more stable solitons and

thus avoid the wave collapse.

1.3.3 Dissipative optical soliton

Observing nature, we can realize that "particles" are always submerged into dissipative

media, which feed their continuous motion. The so-called conservative or Hamiltonian systems

provide convenient models for basic mathematical analysis of simple motion, but they fail to

describe real dynamics in longer time scales. In fact, for conservative Kerr media, the central

issue is the problem of collapse. A cubic-quintic medium that features strong saturation of the

Kerr effect could avoid collapse and provide confinement in several dimensions [121, 122].
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Figure 1.5: Three sources and three component parts of the concept of dissipative solitons.

Dissipative nonlinear systems suggest an interesting alternative. The additional balance be-

tween gain and loss in dissipative systems provides the necessary for the generation of stable

dissipative soliton. Rosanov has showed that dissipative optical systems can admit solitons in

one, two, and three dimensions [123]. These formations are stable during propagation, provided

the system parameters are chosen in specific regions. Hence, the term "dissipative soliton" is

used as the one that covers the majority of relevant phenomena in optics, biology and medicine.

As a fuller explanation, it means "soliton in a dissipative system", where "dissipative system" is

to be understood in Prigogine’s sense as a sub-system with an external pump of energy, rather

than a system with losses only. An optical laser is one of the examples of such subsystem in

optics [124]. There is a significant difference between solitons in Hamiltonian systems and in dis-

sipative ones. In Hamiltonian systems, soliton solutions appear as a result of a balance between

diffraction (or dispersion) and nonlinearity. Diffraction spreads the beam, while nonlinearity

focuses it and makes it narrower. In additional to the balance between diffraction/diffusion and

nonlinearity, in systems with gain and loss, in order to have stationary solutions, gain and loss

must be balanced in the first place. The two balances result in solutions which are fixed. The

shape, amplitude and the width are all fixed and depend on the parameters of the equation.
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The complex Ginzburg-Landau (CGL) equation was originally developed in the context

of particle physics as a model of super-conductivity, and has since been widely used as a

prototypical model for nonlinear wave propagation and pattern formation [125, 126]. The

CGL equation may be viewed as an extension of the NLS equation. Accordingly, it can describe

a broad range of behaviors suggested by the NLS dynamics, ranging from chaos and pattern

formation [127, 128] to dissipative solitons [129]. In the paraxial wave approximation, the

normalized propagation equation used to describe passively mode-locked lasers reads [130]

i
∂ψ

∂t
+
D

2

∂2ψ

∂x2
+ |ψ|2ψ + ν|ψ|4ψ = i(δψ + ε|ψ|2ψ + β

∂2ψ

∂x2
+ µ|ψ|4ψ), (1.6)

in which t is the distance traveled inside the cavity, x is the retarded time, ψ is the normalized

envelope of the field, D is the group velocity dispersion coefficient, with D = ±, depending

on whether the group velocity dispersion (GVD) is anomalous or normal, respectively, δ is the

linear gain-loss coefficient, iβ ∂
2ψ
∂x2

accounts for spectral filtering or linear parabolic gain (β > 0),

ε|ψ|2ψ represents the nonlinear gain (which arises, for example, from saturable absorption), the

term with µ represents, if negative, the saturation of the nonlinear gain, while the one with

ν corresponds, also if negative, to the saturation of the nonlinear refractive index. Since this

cannot be solved exactly, depending on the field of application, a number of treatments have

been adopted, namely the method of moments [131], method of collective coordinates [132-

134], time-dependent variational method [135], effective-particle method [136], averaged

Lagrangian description [137], just to name a few.

In practice, one uses a trial function with a few parameters which depend on t. A suitable

choice of trial function can be deduced from the general symmetries of the problem, and from

results of experiments and numerical simulations. For example, consider a second trial function

which is a combination of Gaussian and super-Gaussian types of functions [130]:

ψ(x, t) = A exp(− x2

W 2
− x4

4mW 4
+ iCx2), (1.7)

where A(t), W (t) and C(t) are the amplitude, width and the chirp parameter. The constant m
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Figure 1.6: Regions of existence of the two types of solitons (gray) in (a) (ε, µ) and (b) (ε, ν)

plane. In each case, the two separate regions are quite distinct. Parameters are shown in the

plot. The hatched region corresponds to exploding solitons [130].

can be chosen arbitrarily, but it is independent of t. The results of numerical simulations of the

CGLE Eq. (1.6) is shown in Fig. 1.6. The gray regions correspond to stable stationary solitons

while the hatched region corresponds to exploding solitons. Thus, explosive solitons in a simple

model will be in the area of stable fixed points. The results for the exact field amplitude and

phase profiles of the solutions for each region of existence of stable solitons are presented in Fig.

1.7. The solid lines represent the field amplitude of the solitons, while the dashed lines are their

phase profiles. The upper curves (a) in Fig. 1.7 correspond to the upper-right thick black point

in Fig. 1.6 (a) and vice versa: the lower curves (b) in Fig. 1.7 correspond to the lower-left

thick black point. There are some obvious differences in the energies, widths and amplitudes

of the two solitons. However, the most visible qualitative difference is in the soliton chirp. The

phase profiles clearly show that the chirps in the two cases are of opposite signs. Due to this

difference, the energy flows from the inside to the outside of the soliton in the first case while

it flows inwards in the second case.
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Figure 1.7: Exact soliton profiles (solid lines) of two examples in the (a) upper and (b) lower

regions in Fig. 1.6 (b). They are marked by thick black dots in Fig. 1.6 (b). Dashed lines show

their corresponding phase profiles [130].

1.4 Overview on lasers

Lasers are devices that generate or amplify coherent radiation at frequencies in the infrared,

visible, or ultraviolet regions of the electromagnetic spectrum [138]. The laser has become

an important instrument, not only in physical research but for almost all fields of everyday

life. The word laser has become a well-recognized word in everyday language, and is derived

from its predecessor, the Maser, the acronym "maser" meaning "microwave amplification by

stimulated emission of radiation". The laser is based on identical physical principles and is an

optical maser, the abbreviation "laser" meaning "light amplification by stimulated emission of

radiation". We basically regard a laser as a source of an intensive coherent light field.

From an electronics-engineering viewpoint, the developments that followed the operation of

the first ruby laser in 1960 suddenly pushed the upper limit of coherent electronics from the

millimeter-wave range, using microwave tubes and transistors, out to include the submillimeter,

infrared, visible, and ultraviolet spectral regions (and soft X-ray lasers are now on the horizon).

All the familiar functions of coherent signal generation, amplification, modulation, information

transmission, and detection are now possible at frequencies up to a million times higher, or

wavelengths down to a million times shorter, than previously. But it has also become possible
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for engineers and scientists, in the fields of technology ranging from microbiology to auto manu-

facture, to perform an almost unlimited variety of new and unexpected functions made possible

by the short wavelengths, high powers, ultrashort pulse widths, and other unique characteristics

of these laser devices [138].

The laser has historical roots in high-frequency and gas discharge physics. It was known

from the maser that it was possible to construct an amplifier and oscillator for electromagnetic

radiation with an inverted molecular or atomic system. In a famous publication A. Schawlow

(1921-1999, nobel prize 1981) and C. Townes [139] (1915-, nobel prize 1964) had theoretically

predicted the properties of an "optical maser", later called a laser.

1.4.1 What is a laser

Lasers, broadly speaking, are devices that generate or amplify light, just as transistors and

vacuum tubes generate and amplify electronic signals at audio, radio, or microwave frequencies.

Lasers come in a great variety of forms, using many different laser materials, many different

atomic systems, and many different kinds of pumping or excitation techniques.

Most laser are constructed of three important elements:

(i) a laser medium (active medium) consisting of an appropriate collection of atoms, molecules,

ions, or in some instances a semiconducting crystal. Also call gain material, it is the location

of the energy states which participate in stimulated emission. The material can be:

Solid (Nd: YAG, ruby, GGG, GSGG, alexandrite, emerald, Cr: saphire, Ti: sapphir, Al-

GaAs/GaAs, etc.): crystals and glasses doped by special ions (solid-state lasers); the active

medium of a solid-state laser is normally a rod with a circular cross-section, doped with special

ions that play the role of active centres. A classical example of a solid lasing medium is a ruby

rod 3 to 20 mm in diameter and 5 to 30 cm long. Ruby is crystalline alumina (Al2O3 ) doped

with chromium ions (from 0.05 to 0.50 /0). Note that it is this impurity (dopant) that gives
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ruby its typical colour (from pink to deep red) [140]. Those lasers are used, for example, as

pump lasers for the excitation of tunable laser systems or for materials processing that demands

intensive laser radiation with good spatial coherence properties.

Liquid (dye, chelate, etc.): Especially for wavelengths of 550-630 nm, the dyes laser is

still a tunable light source without competition. In this range of spectrum, our color sensual

perception changes quickly from green to yellow to red. For this reason, the light of dye lasers

is superior to all solid-state lasers so far developed with regard to aesthetic and emotional

quality. They are organic molecules with a carbon-carbon double bound. The dye molecules are

dissolved (in alcohol or, if they ejected from nozzle space, in liquids with higher viscosity such

as glycol). The electronic states have a vibration-rotation fine structure that is broadened to

continuous bands because of the interaction with the solvent, similar to the vibronic ions. After

absorption, the molecules relax rapidly to the upper band edge where the laser emission takes

place. In complete analogy to two-electron atoms like helium, there are a singlet and a triplet

system in dye molecules [141], only the transitions between them (intercombination lines) are

not as strongly suppressed. The lifetime of the triplet states is very long, however, so that the

molecules accumulate there after several absorption-emission cycles and no longer take part in

the laser process.

Gas (Krypton, argon, nitrogen, helium-neon, CO2, KrF , XeCl, etc.) or plasma (X − ray,

free-electron, etc.): gases and mixtures of gases (gas lasers); the active medium of a gas laser

is a mixture of several gases, atoms or molecules of one of them are active centres while other

gaseous components serve to produce population inversion on the lasing levels of the active

centres. One possible mixture, for instance, is helium and neon (neon atoms are active centres).

This mixture is placed in a gas discharge tube at low pressure: neon at a pressure of about 10

Pa and helium at about 100 Pa. Excitation in gas lasers is realized in the simplest manner by

means of electric discharge in the active medium (typically glow discharge). In this case, the

Alain DJAZET Ph.D-Thesis



Chapter I: Literature review on soliton, laser phenomena of wave propagation 26

Figure 1.8: (a)-(d) are important configurations of CO2 lasers, and (e) is the transitions relevant

for the CO2 laser [141, 142].

energy of excitation is transferred to active centres as a result of collisions with particles in the

gas discharge plasma [140].

The carbon monoxide and dioxide CO2 laser is the most important examples of the molecular

gas lasers, and one of the most powerful lasers in general and thus plays an important role for

material processing with lasers [141, 142]. The CO2 lasers are excited by a discharge. They

are most powerful and robust of all laser types. It makes available a high and focusable energy

density that is highly favorable for contactless material processing and laser machining. Figures

1.8(a)-(d) show the important configurations of CO2 lasers, and the relevant transitions. The

conventional laser (see Fig. 1.8(a)) is operated with a sealed tube and longitudinal discharge.

To increase the output power, a longitudinal gas flow (see Fig. 1.8(b)) or a radio-frequency

waveguide laser (see Fig. 1.8(c)) can be used. The highest power can be achieved if the gas

flow as well as the discharge are operated transversely to the laser beam (transversely excited,

TE-laser) (see Fig. 1.8(d)). Figure 1.8(e) presents the molecular states involved in the laser

process of the CO2 laser. Asymmetric (V1) and antisymmetric (V3) stretching vibration as well

as a bending vibration (V2). Vibrational quantum states of the CO2 molecule are identified by

quantum numbers (V1, V2, V3).

(ii) A pumping process to excite these atoms (molecules, etc.) into higher quantum-mechanical
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Figure 1.9: Energy levels of He and Ne atoms with the most prominent optical transition at

632.2nm. For nomenclature, the spectroscopic terms are used. For the energy levels, the lifetimes

are given as well [141].

energy levels (this system provides excitation of active centres, and inverted population of lasing

levels builds up). The pumping source provides the energy to set up the energy states so that

stimulated emission can occur (see Fig. 1.9). In Fig. 1.9, the helium-neon laser obtains its gain

from an inversion in the metastable atomic excitations of the Ne atom (the luminescence of Ne

atoms is also known due to the proverbial neon tubes). The Ne atoms are excited not directly

by the discharge but by energy transfer from He atoms, which are excited to the metastable

1S0 and 3S1 levels by electron impact. The Ne atom has nearly energy levels so that an efficient

energy transfer is enabled by resonant impact. Here, the excitation and the laser transition are

split up into two different atomic systems, which is helpful for the realization of the desirable

four-level system, though there is a problem at the lower laser level of the Ne atoms, which

is metastable as well and cannot be emptied by radiative decay. In a narrow discharge tube,

collisions with the wall lead to efficient depopulation of the lower laser level. There is, however,

another possibility to excite neon atoms to level 3S: resonance transfer of energy from excited

helium atoms to Ne atoms in the ground state, whereby the helium atom is de-excited while

the neon atom undergoes a transition from the ground state to one of the excited levels. Taking

into account collisions both with electrons and with excited helium atoms, level 3S must be
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populated with higher probability than level 2P; hence, levels 2P and 3S in Ne atoms must be

inversely populated.

The list of successful laser-pumping methods that have been demonstrated to date includes

the following [138, 142]:

• Gas discharges, both dc, and pulsed, including glow discharges, hollow cathodes, arc

discharges, and many kinds of pulsed axial and transverse discharges, and involving both direct

electron excitation and two-stage collision pumping.

• Optical pumping, using flashlamps, arc lamps (pulsed or dc), tungsten lamps, semicon-

ductor LEDs, explosions and exploding wires, other lasers, and even gas flames and direct

sunlight.

• Chemical reactions, including chemical mixing, flash photolysis, and direct laser action in

flames. It is instructive to realize that the combustion of one kg of fuel can produce enough

excited molecules to yield several hundred kilojoules of laser output. A chemical laser burning

one kg per second, especially if combined with a supersonic expansion nozzle, can thus provide

several hundred kW of cw laser output from what becomes essentially a small "jet-engine laser."

• Direct electrical pumping, including high-voltage electron beams directed into high-pressure

gas cells, and direct current injection into semi- conductor injection lasers.

• Nuclear pumping of gases by nuclear-fission fragments, when a gas laser tube is placed in

close proximity to a nuclear reactor.

• Supersonic expansion of gases, usually preheated by chemical reaction or electrical dis-

charge, through supersonic expansion nozzles, to create the so-called gasdynamic lasers.

• Plasma pumping in hot dense plasmas, created by plasma pinches, focused high-power

laser pulses, or electrical pulses. There are also widely believed rumors that X-ray laser action

has in fact been demonstrated in a rod of some laser material pumped by the ultimate high-

energy pump source, the explosion of a nuclear bomb.
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Figure 1.10: examples of optical resonators [138].

(iii) An optical resonator is realized as a system of mirrors. In a more general sense, it

includes not only a system of mirrors but also everything inside this system, including the

active medium. Figure 1.10 schematically shows examples of optical resonators: (a)-a simple

linear resonator; (b)-a coupled linear resonator; (c)-a ring resonator (00 - the optical axis of the

laser, fixed in space by the system of resonator mirrors). In Fig. 1.10 suitable optical feedback

elements "the optical resonator (together with some additional elements)" that allow a beam of

radiation to either pass once through the laser medium (as in a laser amplifier) or bounce back

and forth repeatedly through the laser medium (as in a laser oscillator). The resonant cavity

provides a generative path for photons. In essence, the functions of the resonant cavity are to:

1) physically shorten the laser, and 2) tailor the profile of the electromagnetic mode [142].

Mirrors may be coated with dielectric or metal layers. At least one of the mirrors must be

partially transparent with respect to the emitted radiation; in the case of metal coating, the

problem is solved by making a hole at the center of the mirror. So, by singles out a direction in
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space for which the losses are minimized and the condition of generation is satisfied, the role

of the optical resonator is to create a selectivity for photon states.

1.4.2 Laser model and Maxwell-Bloch equations in a ring resonator

The objective of this subsection is to describe the complete cavity-atom equations of motion for

the laser, supposing that only a single cavity mode is significantly excited, as can often happen

in real laser systems [138, 140-142].

In a laser amplifier, the input signal will thus be amplified by the stimulated transitions. At

the same time as can be see in Fig. 1.8(e) and Fig. 1.9, a small amount of the spontaneous

emission (in essence, that portion traveling exactly parallel to the applied signal) will be added

to the output signal by the spontaneous emission process. The spontaneous emission in this

situation thus acts essentially like a small additive amplifier noise source insofar as the stim-

ulated amplification process is concerned. Unless the applied signal is very small, approaching

the noise limit of the laser amplifier, the added spontaneous-emission noise can normally be

ignored in discussions of the basic stimulated amplification process [141]. There are actually

two quite separate kinds of downward relaxation that occur in most atomic systems.

One mechanism is radiative relaxation, which is to say spontaneous emission or fluorescent

radiation. It has been shown that atoms (or ion, or molecules) have quantum-mechanical energy

levels; that atoms can be pumped or excited up into higher energy levels by various methods,

emitting radiation at characteristic transition frequencies in the process. After being excited

into upper energy levels, the atoms soon give up their excess energy by dropping down to lower

energy levels, emitting spontaneous electromagnetic radiation in the process.

The other mechanism is what is commonly called the stimulated (upward and downward)

transitions, that are the essential processes in all kinds of laser and maser action. During the

process in which atoms spontaneously drop from an upper to a lower level while emitting elec-
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tromagnetic and/or acoustic radiation at the transition frequency, such spontaneously emitted

radiation has all the statistical properties of narrowly bandlimited gaussian noise, usually refer

to an incoherent emission [1, 15, 16, 138].

A real atomic system will, of course, have a very large number of energy levels Ei, with dif-

ferent time-varying populations Ni(t). Although rate equations look complex, they are actually

simple to set up. Writing them requires no more than careful accounting of the various state

population [1, 15-22, 138-143].

The laser equations of motion used in the scientific and engineering literature come in several

slightly different forms and degrees of approximation. The most successful theoretical approach

based on the "neoclassical formulation of laser theory", Classical Electron scillator model (CEO)

to describe how the spatiotemporal dynamics emerges in large-aperture lasers is given by the

Maxwell-Bloch (MB) equation [138-143]. Laser is a system where the number of photons is

much larger than one. Thus a semi-classical treatment of the electromagnetic field inside the

cavity, through the Maxwell equations, has been developed by Lamb [43] and independently

by Haken [46]. The semi-classical laser theory ignores the quantum-mechanical nature of the

electromagnetic field, and the amplifying medium is modeled quantum mechanically, as a col-

lection of two-level atoms through the Bloch equations. The called "neoclassical formulation

of laser theory" is based on a series of theoretical papers by Jaynes, since they represent the

simplest form of semi-classical quantum theory (i.e., the atoms are quantized, but the electro-

magnetic field is not) as applied to a single cavity mode and a two-level atomic system. The

MB equation connect the cavity mode amplitude E, the atomic polarization amplitude P, and

the population difference ∆N(t) relevant to that particular cavity mode [1, 15-22, 138-143].

These equations consist of the cavity equation, the atomic polarization equation, and the

population difference equation [138, 144]

∂2E
∂t2

= −µ0c
2∂

2P
∂t2

+ c2∇2E − κ
∂E
∂t
, (1.8a)
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∂2P
∂t2

= −γ⊥
∂P
∂t

− w2
aP − gDE, (1.8b)

∂D

∂t
= −γ∥ (D −D0) +

2

~w

(
E.
∂P
∂t

)
. (1.8c)

The used symbols have the following meaning:

-∇ = ∂
∂x

i + ∂
∂y

j + ∂
∂z

k and ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
, with i , j and k the spatial directions;

- E is the envelope of the electric field;

- P is the envelope variable of the atomic polarization;

- D ≡ ∆N is the population inversion;

- µ0 is the magnetic susceptibility;

- c is the velocity of light;

- γ⊥ and γ∥ are the relaxation rates for the polarization and the population inversion,

respectively;

- κ is the cavity damping coefficient;

- ~ is Planck’s constant;

- w is the electric field frequency;

- wa the atomic frequency;

- g is the coupling constant between the electric field and the population inversion;

- D0 is the pumping term;

- Assuming that the electric field frequency w is very close to the atomic frequency wa, it

follows that ~w is the energy gap between the two atomic levels.

These three equations are used as the starting point for a great many laser analyses in the

literature. This particularly simple form for the ideal two-level case with fixed total population

turns out to be very useful and important for describing a great variety of laser and maser

phenomena.
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1.5 Dissipative solitons in physical systems

Dissipative soliton (DS) is a localized structure which exists for an extended period of

time, even though parts of the structure experience gain and loss of energy and/or mass. This

"structure" could be a profile of light intensity, temperature, magnetic field, etc. These solitons

exist in "open" systems which are far from equilibrium. Thus, energy and matter can flow

into the system through its boundaries. The structure exists indefinitely in time, as long as

the parameters in the system stay constant. It may evolve (i.e. change its shape periodically

or otherwise) but it disappears when the source of energy or matter is switched off, or if the

parameters of the system move outside the possible range of existence of the soliton [145-147].

In contrast to solitons in conservative systems, solitons in systems far from equilibrium

are dynamical objects that have non-trivial internal energy flows. Since they are produced

by dissipative systems, they depend strongly on an energy supply from an external source.

Even if it is a stationary object, a DS continuously redistributes energy between its parts. A

pump of energy is essential, and this means that the structures are defined by the rules of the

system (gain, loss, dispersion, nonlinearity, etc.), rather than by the initial conditions [145-

147]. Stationary solitons (pulses, fronts, etc.) can form where the overall gain and loss are

balanced. These structures will typically appear in biochemical, optical and thermal systems,

as they are "generic" and do not require particular formations to create them.

Throughout the definition of DS, we are dealing with an infinite-dimensional dynamical

system governed by the cubic-quintic complex Ginzburg-Landau (CQ-CGL) equation which in

optics has been widely used to describe the pulsed operation of passively mode-locked lasers

and all-optical long-haul soliton transmission lines. Generally, the CQ-CGL equation has a wide

range of applications in various branches of physics, chemistry and biology. An extensive list of

applications can be found in the review paper by Aranson and Kramer [148]. This enormous

sphere of knowledge has been dubbed "The world of the Ginzburg-Landau equation" [148].

Alain DJAZET Ph.D-Thesis



Chapter I: Literature review on soliton, laser phenomena of wave propagation 34

The CQ-CGL equation has so many different types of solutions, this area of expertise is a whole

world by itself.

1.5.1 Scalar CGL model

Dissipative solitons (DSs) have been found in a variety of systems, including chemical

reactions[149, 150], gas discharges [151], and fluids [68]. They are also found in optical cavities

due to the interplay of different effects, such as diffraction, nonlinearity, driving, and dissipation

[152-156]. Instead, a cavity soliton is unique once the parameters of the system have been

fixed. This fact makes these structures potentially useful in optical (i.e., fast and spatially

dense) storage and processing of information [154,156-159]. An optical cavity filled with a

nonlinear Kerr medium can be described by the model introduced by Lugiato and Lefever [160].

This prototype model, obtained by averaging the dependence of the field along the propagation

direction, was first introduced to study pattern formation in this system. Later studies showed

that this model also exhibits DSs in some parameter regions [161, 162]. In the paraxial limit,

after suitably rescaling the variables, the dynamics of the intra-cavity slowly varying amplitude

of the electromagnetic field E(x, t), where x = (x, y) is the plane transverse to the propagation

direction, is given by

∂E

∂t
= − (1 + iθ)E + i∇2E + EI + i|E|2E. (1.9)

The first term on the right-hand side describes cavity losses (which make the system dissipative),

EI is the input field, θ is the cavity detuning with respect to EI , and ∇2 = ∂2

∂x2
+ ∂2

∂y2
is the

transverse Laplacian which models diffraction. The sign of the cubic term indicates the so-called

self-focusing case.

When neither loss nor input field is present, the intra-cavity field can be rescaled to E →

Eeiθt to remove the detuning term and Eq. (1.9) becomes the nonlinear Schrödinger equation

(NLSE). For the NLS equation in two spatial dimensions, an initial condition with sufficient
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energy collapses, so energy accumulates at a point in space, leading to the divergence of the

solution at a finite time [163]. Dissipation, such as that originating from the cavity losses, can

prevent this collapse [164]. In any case, in the parameter region in which DSs are stable, their

dynamics is closely related to the collapse regime. In this system, the above mechanism, which

combines collapse and cavity losses, is also responsible for various instabilities arising in regular

patterns which lead to complex spatiotemporal dynamical behavior, including the existence

of optical turbulence [165]. The stability of this has been obtained using the modulational

instability (MI), and showed the existence of stable DSs that appear when suitable (localized)

transient perturbations are applied.

In a mode-locked laser, the existence of stable soliton pairs was first predicted in 1997 [166],

by using a CQ-CGL equation model, which is a generic equation that has been used in many

areas of nonlinear physics. In this context, the CQ-CGL equation takes the form of a normalized

propagation equation, as follows:

∂E

∂z
+
D

2

∂2E

∂t2
+ |E|2E + ν|E|4E = i(δE + β

∂2E

∂t2
+ ε|E|2E + µ|E|4E), (1.10)

where z is the normalized distance of propagation, t is the time in the moving pulse frame, and

E is the normalized envelope of the electric field. The left-hand side of Eq. (1.10) contains

the conservative terms, including chromatic dispersion (with coefficient D), the nonlinear Kerr

effect, and its possible saturation, if ν is taken as negative. In the normalized form, the dispersion

coefficient is taken to be D = +1 for propagation in anomalous dispersive medium, and D = −1

in the case of normal dispersion. The right-hand side of Eq.(1.10) contains respectively the

linear loss term, with a negative coefficient δ, the nonlinear gain, with a positive coefficient ε,

which is required to favor pulses over continuous waves, a Gaussian spectral filter with positive

coefficient β, and a saturation of the nonlinear gain term which is required for the stabilization

of the amplitude of pulses and is associated with a negative coefficient µ.
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1.5.2 The vector CGL model for laser emission from wide-aperture

resonators

The previous described model is scalar. The scalar CGL equation is considered as a paradigm

model for the qualitative description of general nonlinear oscillatory media [161, 162, 166].

The vector CGL equation [78, 79] plays the same role when the order parameter is of vector

character, as is the case for the electromagnetic field when the polarization is not fixed. For

example, the vector CGL equation is an appropriate model for laser emission from wide-aperture

resonators close to the lasing threshold [167] in the absence of polarization-selecting cavity

features. For systems where the relevant unstable mode is of vectorial character, a CGL equation

is generalized to the vector CGL equation [78]

∂E
∂z

= E + (1 + iα)∇2E − (1 + iβ)

[
(E.E∗)E +

1

2
(γ − 1) (E.E)E∗

]
. (1.11)

In the simplest case, the amplitude E has two complex components. This is precisely the case

of optical systems, for which, E = (Ex, Ey) describe the complex slowly varying amplitude of

the electric field, where Ex and Ey are the cartesian components. The right and left circularly

polarized components E = (E+, E−) are related to them via the relations Ex = (E+ +E−)/
√
2

and Ey = (E+ − E−)/i
√
2. In terms of the circular components, Eq. (1.11) reads [168]

∂E±

∂z
= E± + (1 + iα)∇2E± − (1 + iβ)

(
|E±|2 + γ|E∓|2

)
E±. (1.12)

The coefficient γ, which in general can be complex, gives the coupling between the compo-

nents. α is related to the strength of diffraction, and β to the nonlinear frequency detuning.

Different kinds of localized structures [78, 79, 169] are present in the dynamic states of the

two-dimensional vector CGL equation. These objects carry topological properties which en-

dorse them with a characteristic stability and robustness. The qualitative behavior for the

vector complex Ginzburg-Landau equation Eq. (1.12) for |γ| < 1 is rather different from the
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one for |γ| > 1. In the second case the nonlinear competition between E+ and E− tends to

favor one of them against the other, so that in regions where E+ is developed, E− generally

vanishes, and vice versa [169].

The principles that made possible the observation of stable temporal soliton "molecules" in

mode-locked lasers could be extended to the spatiotemporal case, at least in principle. Theoret-

ically, the CGL equation model can be easily extended to multi-dimensions with the inclusion

of the transverse Laplacian operator to take into account spatial diffraction in the paraxial

approximation.

1.5.3 Dissipative solitons of (D+1)-dimensional CQ-CGL equation

In the present context of this work about dissipative solitons, gain and loss are important,

and this statement requires a further comment. Dissipative solitons derive their stability from

a balanced flow of energy into and out of the soliton [170-172]. Their description requires

generalized versions of the NLS equation, e.g., the complex Ginzburg-Landau (CGL) equation.

Dissipative systems described by the CGL equation driven far from thermal equilibrium support

solitonlike localized states, referred to as "dissipative solitons" [173]. Exact solutions for the

cubic CGL equaion are available [174-176] but they are unstable. The problem of instabilities,

leading to the collapse, and which depend on the number of space dimensions and strength

of nonlinearity has attracted the attention, and the most straightforward modification of the

model, which opens the way to the stable solitary pulse, is the introduction of the cubic-quintic

(CQ) nonlinearity, with linear gain and cubic loss in the cubic CGL equation [129]. Dynamics of

dissipative solitons can be described by a (D+1)-dimensional CQ-CGL equation [91, 92, 166]

i
∂E

∂z
+∆E + |E|2E − ν|E|4E = Q, (1.13)

with

Q = i
[
δE + µ|E|4E + ε|E|2E + β∆E

]
. (1.14)
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The left-hand-side of Eq. (1.13) contains the conservative terms. E is the normalized complex

envelope of the optical field, and ∆ = r1−D ∂
∂r

(
r1−D ∂E

∂r

)
is the D-dimensional Laplacian describ-

ing beam diffraction and/or anomalous group velocity dispersion. Therefore, cubic and quintic

nonlinearities have to be in opposite signs; i.e., parameter ν is negative. Dissipative terms are

denoted by Q given in Eq. (1.14). Depending on the sign of the parameter δ, the first term is

either linear gain or loss. β > 0 accounts for diffusive coefficient. The cubic and quintic gain-loss

parameters are respectively ε and µ.

In optical transmission systems, the CGL equation has been the subject of considerable

studies, and it has been found that, the diffusivity in the transverse plane is a necessary ingre-

dient to get stable dissipative structures even in the lack of bandwidth limited gain.

1.6 Conclusion

In this chapter, we have pointed out some generalities about soliton, laser, dissipative

solitons in laser systems and in optical fibers. It follows that the CGL model is promising

equation to study the solitons of all optical device.

The introduction of a new concept dissipative soliton, has been a promising solution for

optimizing performance and eliminating propagation losses. Although we have found that non-

linearity in optical systems is used to cope with dispersion in conservative system, the problem

of collapse can also be solved using, the balance between gain and loss in dissipative optical

system.

Rapid progress in ultrashort time laser technology has made it possible that, optical pulses

with durations comparable to the carrier oscillation cycle can be generated. The propagation

of such dissipative soliton is then affected by additional physical mechanisms like diffusion,

cubic and quintic nonlinearities, where especially mixture effects, and nonlinear effects become

important. These aspects of the problem will be investigated throughout this work. In the next
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chapter, we will present the methodology of investigations used to obtain our results.
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Chapter II

Model and methodology of investigations

2.1 Introduction

Nowadays, research in physics devotes much attention to nonlinear phenomena, in dissi-

pative systems. What is the reason for this? In fact, most physical phenomena are intrinsically

nonlinear, also, much systems in our environment is dissipative.

However, the mathematical techniques used in the study of these problems in lasers-cavities

systems remained generally scalar.Considering a vectorial nature of the electric field, and after

some assumptions, Gil [78] first developed a 3D vectorial Ginzburg-Landau (CGL) equation

describing the behavior of the electric field in a dielectric. This model has been the subject of

many works, but it is important to mention that at least all the obtained results showing the

generation of pattern formation include the solution of defect type [78, 79, 169].

For the laser system, the vector (3+1)D CQ-CGL equation, take into account the self-phase

modulation (SPM), and the cross-phase modulation (XPM) that has not yet been investigated

in relation with the dissipative solitons. This model equation has been derived for the first time

in this thesis. Dissipative soliton stability depends crucially on the energy balance and exists

as long as there is a continuous energy supply to the system.

Our main objective is to investigate new types of dissipative and nonlinear dynamics and

thus, contribute to the understanding of 3D dissipative optical solitons. In order to accomplish

our aims, we employ some analytical and numerical methods, which lead to many behaviors of

the solutions. The numerical methods are used to consolidate the analytical results. In the first

Alain DJAZET Ph.D-Thesis



Chapter II: Model and methodology of investigations 41

part of this chapter, we derive the vector (3+1)D CQ-CGL equation in the physical context of

laser cavity. In the second part, we give general information about our analytical methods and

the third part is devoted to the presentation of numerical methods.

2.2 Derivation of the vector (3+1)-dimensional cubic-quintic

complex Ginzburg-Landau equation

As presented in chapter I, a lasing medium consists of atoms or molecules, in which tran-

sition between two different energy levels occur. These transitions can be caused by light (ab-

sorption or stimulated emission), by collisions or by spontaneous emission. We use the model

of two-level atoms, which is treated in a semiclassical way, i.e. the atoms are treated quantum-

mechanically and the light field classically (quantum fluctuations are neglected). The geometry

is that of the ring laser. Let us recall the MB equations (see Eqs.(1.8a)-(1.8c)) (for derivation,

see [138]) described the ring lasers, and write as follows:

∂2E
∂t2

= −µ0c
2∂

2P
∂t2

+ c2
[
∇2E −∇(∇.E)

]
− κ

∂E
∂t
, (2.1a)

∂2P
∂t2

= −γ⊥
∂P
∂t

− w2
aP − gDE, (2.1b)

∂D

∂t
= −γ∥ (D −D0) +

2

~w

(
E.
∂P
∂t

)
, (2.1c)

To better understand the derivation of the vector (3+1)D CQ-CGL equation, a laborious non-

linear analysis has been fulfill by the use of the well known perturbative nonlinear analysis near

the laser threshold; and the expansion multimodal method. In fact, it is not trivial to take into

account the nonlinear effects inside the MB system Eqs. (2.1). The development multimodal

method is one approach adopted for such analysis, which consider the contribution of all higher

harmonics of the electric field and the polarization, proportional to a small parameter ϵ.

It would be advisable to start with the derivation of the vector (3+1)D CGL equation

equation which accounts for the cubic nonlinearity and the coupled term.
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2.2.1 Modeling of the laser vector (3+1)D cubic complex Ginzburg-

Landau equation

i) Multimodal development method

The field of nonlinear optics is complex and encompasses myriads of interesting effects and

practical applications. In spite of its richness, most of the effects can be described accurately

with just a few equations. This introduction to nonlinear optics is therefore limited to a simple

analysis of Maxwell’s Bloch (MB) equations (Eq. (2.1)) which govern the interaction between

the electric field and the material inside the laser cavity.

On a fundamental level, the origin of nonlinear response is related to anharmonic motion

of bound electrons under the influence of an applied field. As a result, the total polarization P

induced by electric dipoles is not linear in the electric field E, but satisfies the more general

relation [112]

P = ε0(χ
1.E + χ2 : EE + χ3 : EEE + ...), (2.2)

where ε0 is the vacuum permittivity and χ(l)(l = 1, 2, 3, ...) is lth order susceptibility. In general,

χ(l) is a tensor of rank l+1. The linear susceptibility χ(1) is the contribution to P, representing

the dominant contribution to χ(l)(l > 1) that are responsible for such nonlinear effects as

higher-harmonic generation and sum-frequency generation [112].

However, as it is not trivial to take into account nonlinear effects in the MB system, the

multimodal development method [177] is one of the approaches adapted to take into account

nonlinear effects in the MB system Eqs. (2.1). To remind, it considers the contributions of all

the higher harmonics of the fields and polarizations, proportional to a small parameter ϵ. This

parameter can be linked to the intensity of the fundamental frequency mode ω. To apply this
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theory, we must therefore seek solutions of the system (2.1) of the form

E =
∞∑
j=1

∈j
+j∑

n=−j

En
j (r) exp(inwt),, (2.3a)

P =
∞∑
j=1

∈j
+j∑

n=−j

Pn
j (r) exp(inwt), (2.3b)

D =
∞∑
j=1

∈j
+j∑

n=−j

Dn
j (r) exp(inwt), (2.3c)

under the conditions E−n
j = (En

j )
∗, P−n

j = (Pn
j )

∗, and D−n
j = (Dn

j )
∗. We assume a permanent

electric field, that leads to ∀j > 0, E0
j = 0.

We focus our study to the case of E = E1
1, D0

1 = D0. In the presence of the intense field in

the system, we have D0 <<
2

~wa

(
E · ∂P

∂t

)
. Inserting the relation of P and D given from Eqs.

(2.3a)-(2.3c) into Eqs. (2.1a)-(2.1c), it comes, for any einwat, the following relations:

From Eq. (2.2), the linear polarization takes the form

P1 = P1
1 =

1

µ0c2

(
−1 +

ik

wa

)
E1

1, (2.4)

and from Eqs. (2.1b) and (2.1c), it comes, for any einwat, the following relations:

ωa
[(
1− n2

)
ωa + iγ⊥

] (
ϵ1Pn

1 + ϵ2Pn
2 + ...

)
= −g

∑
p+q=n

(
ϵ1Dq

1 + ϵ2Dq
2 + ...

) (
ϵ1Ep

1 + ϵ2Ep
2 + ..

)
(2.5a)

(
γ∥ + inωa

) (
ϵ1Dn

1 + ϵ2Dn
2 + ...

)
=

2i

~
∑
p+q=n

q
(
ϵ1Ep

1 + ϵ2Ep
2 + ...

)
(ϵ1Pq

1 + ϵ2Pq
2 + ...), (2.5b)

where p and q can take the negative values, and p + q = n. For any power of ϵ, solving these

equation, we have obtained the following at different orders:

ϵ1, n = 0 : P0
1 = 0, D0

1 = D0, (2.6a)

ϵ1, n = 1 : P1
1 =

1

µ0c2

(
−1 +

ik

wa

)
E1

1, D1
1 = 0, (2.6b)

ϵ2, n = 0 : P0
2 = 0, D0

2 =
2i

~γ∥
(
P1

1E
−1
1 − P−1

1 E1
1

)
, (2.6c)
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ϵ2, n = 1 : P1
2 =

ig

γ⊥wa

(
D0

1E
1
1

)
, D1

2 = 0, (2.6d)

ϵ2, n = 2 : P2
2 = 0, D2

2 =
2i

~
(
γ∥ + 2iwa

) (P1
1E

1
1

)
, (2.6e)

ϵ3, n = 0 : P0
3 = 0, D0

3 =
2i

~γ∥
(
P1

2E
−1
1 − P−1

2 E1
1

)
, (2.6f)

ϵ3, n = 1 : P1
3 =

ig

γ⊥wa

(
D0

2E
1
1 +D2

2E
−1
1

)
, D1

3 = 0, (2.6g)

ϵ3, n = 2 : P2
3 = 0, D2

3 =
2i

~
(
γ∥ + 2iwa

) (P1
2E

1
1

)
, (2.6h)

ϵ3, n = 3 : P3
3 =

ig

(8wa − 3iγ⊥)

(
D2

2E
1
1

)
, D3

3 = 0. (2.6i)

The atomic polarization properties of the two-level atoms can be expanded as

P = ϵP1 + ϵ2P2 + ϵ3P3, (2.7)

Hence, From the MB equation, we see more inside the electric field and the laser cavity. P1 = P1
1

and P2 = P1
2 which describe the linear polarization. The interaction of a beam of light with

a nonlinear optical medium is describe in terms of the nonlinear polarization P3 = P1
3 + P3

3.

These result can also be rewrite as: P3 = a(E · E∗)E + b(E · E)E∗ + d(E · E)E, with a, b

and d are the complex parameters depending on the laser system parameters. We see that the

nonlinear polarization consists of three contributions. These contributions have very different

physical characters, since the first contribution has the vector nature of E, whereas the sec-

ond contribution has the vector nature of E. The first contribution thus produces a nonlinear

polarization with the same handedness as E, whereas the second contribution produces a non-

linear polarization with the opposite handedness, and the third contribution describe the case

of third-harmonic generation [178]. The origin of the different physical characters of the tree

contributions to P3 can be understood in terms of the energy level diagrams shown in Figs.

2.1(a)- (c).

This result can help to describe the nonlinear refractive index of an isotropic material. The

relative magnitude of the coefficients a, b and d depends upon the nature of the physical process

that produces the optical nonlinearity [178].
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Figure 2.1: Diagrams (a) and (b) represent the resonant contributions to the nonlinear coef-

ficients a and b, respectively. Diagram (c) represent the resonant nonlinear optical response

describing third-harmonic generation [178].

ii) Perturbative nonlinear analysis

Focussing ourself on the MB equations (Eqs. (2.1a)-(2.1c)) which is the starting point of this

analysis, we assume that the traveling waves are lasing with frequency wa and critical vector

kc=±wa/c. In addition, the longitudinal direction z is selected by the geometry of the laser

medium or the mirrors. The direction of propagation is given by Kc = kcz, though a priori both

directions of propagation are equiprobable. Once the atomic polarizability is known, the well-

established perturbative nonlinear analysis is performed near the laser threshold by introducing

a small parameter (ϵ << 1) defined by [78]

D0 = DOC + ϵ2D̃0, (2.8)

where DOC is a critical value given by [78]

DOC =
κγ⊥
µ0c2g

.

Now, the laser variable will also depend on two slow spatial and temporal scales, respectively,

X = ϵx, Y = ϵy, (2.9a)
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and

Z = ϵ2z, T = ϵ2t. (2.9b)

Then, close enough to the laser threshold, we look for solutions (E, P, D) of Eqs. (2.6) in the

form of a power series expansion in the small parameter ϵ as follows

E

∂tE

P

∂tP

D


=



0

0

0

0

D0


+ ϵ



E1

∂tE1

P1

∂tP1

D1


+ ϵ2



E2

∂tE2

P2

∂tP2

D2


+ ... (2.10)

with 

E1

∂tE1

P1

∂tP1

D1


=



A

iwaA
1

µ0c2
(−1 + ik

wa
)A

iwa

µ0c2
(−1 + ik

wa
)A

0


ei(wat−kcz) + c.c., (2.11)

with A ⊥ Z, where A is slowly varying field amplitude in space and time. With the transfor-

mation of Eqs. (2.9a) and (2.9b), the operators reduce to

∂

∂t
→ ∂

∂t
+ ϵ2

∂

∂T
;

∂

∂z
→ ∂

∂z
+ ϵ2

∂

∂Z
, (2.12a)

∇1x → ∇1x + ϵ∇1X , ∇1x = (
∂

∂x
,

∂

∂y
), ∇1X = (

∂

∂X
,

∂

∂Y
), (2.12b)

After inserting Eqs. (2.6) into the MB equations Eqs. (2.1), taking into account Eqs. (2.4) and

(2.12), the Eq. (2.1) now reads(
ℓ0 + ϵℓ1 + ϵ2ℓ2

) (
ϵE1 + ϵ2E2 + ϵ3E3 + ...

)
= −µ0c

2

(
∂2

∂t2
+ 2ϵ2

∂

∂t

∂

∂T

)(
ϵP1 + ϵ2P2 + ϵ3P3 + ...

)
,

(2.13a)(
∂2

∂t2
+ 2ϵ2 ∂

∂t
∂
∂T

)
(ϵP1 + ϵ2P2 + ϵ3P3 + ...) = −

(
γ⊥

(
∂2

∂t2
+ 2ϵ2 ∂

∂t
∂
∂T

)
+ wa

)
(ϵP1 + ϵ2P2 + ϵ3P3 + ...)

−g
(
D0c + ϵ2

(
D̃0 +D2

)
+ ϵ3D3 + ...

)
(ϵE1 + ϵ2E2 + ϵ3E3 + ...)

,

(2.13b)
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∂
∂t
+ ϵ2 ∂

∂T

)
(ϵ2D2 + ϵ3D3 + ...) = −γ∥ (ϵ2D2 + ϵ3D3 + ...) + 2

~wa
(ϵE1 + ϵ2E2

+ϵ3E3 + ...)
(
∂
∂t
+ ϵ2 ∂

∂T

)
(ϵP1 + ϵ2P2 + ϵ3P3 + ...) ,

(2.13c)

where the nonlinear terms involve fast and slow scales, and the zero indices correspond to the

fast scale. The following operators are defined:

ℓ0 =
∂2

∂t2
+ κ

∂

∂t
− c2

(
∇2

⊥0 +
∂2

∂z2

)
, (2.14a)

ℓ1 = ∇⊥0∇⊥ , (2.14b)

ℓ2 = 2 ∂
∂t

∂
∂T

+ κ ∂
∂T

− c2
(
∇2

⊥ + 2 ∂
∂z

∂
∂Z

)
. (2.14c)

One identify at each other the terms of equations. It follows for the ϵ order that, marginal

solutions are E1, and P1, and related by:

ℓ0E1 = −µ0c
2∂

2P1

∂t2
, (2.15a)

∂2P1

∂t2
= −γ⊥ ∂P1

∂t
− ω2

aP1 − gD0cE1. (2.15b)

for ϵ2 order, the marginal solutions are E2, and P2, is given by:

ℓ0E2 = −µ0c
2∂

2P2

∂t2
, (2.16a)

∂2P2

∂t2
= −γ⊥ ∂P2

∂t
− ω2

aP2 − gD0cE2 , (2.16b)

∂D2

∂t
= −γ∥D2 +

2
~ωa

(
E1.

∂P1

∂t

)
. (2.16c)

and D2 is obtained by solving Eq. (2.16c).

For ϵ3 order, the solvability condition of the marginal solutions E3, P3, is given by:

κ
∂E1

∂T
= −2iwa

∂E1

∂T
− 2iwac

(
∂

∂Z
+

i

2kc
∇2

⊥

)
E1 − µ0c

2

(
2
∂

∂T

∂P1

∂t

)
, (2.17a)

2 ∂
∂T

∂P1

∂t
= −γ⊥ ∂P1

∂t
− g

(
D̃0 +D2

)
E1 , (2.17b)
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∂D3

∂t
= −γ∥D3 +

2
~ωa

(
E2.

∂P1

∂t
+ E1.

∂P2

∂t

)
. (2.17c)

From Eqs. (2.17a) and (2.17b), and by combining Eqs. (2.5a) and (2.5b), we obtain

∂E1

∂T
=

2c(γ⊥ − iwa)

k − γ⊥ + 2iwa

(
∂

∂Z
+

i

2kc
∇2

⊥

)
E1 +

µ0c
2g

k − γ⊥ + 2iwa

(
D̃0 +D2

)
E1. (2.18)

The nonlinearities come from the interaction between the population inversion and the

electric field. In order to analyze the higher order diffusive term in this system, the higher-

order correction γ2
⊥
∂2P1

∂T 2 is needed to the polarization equation Eq.(2.16b).

Substituting the modifying Eq.(2.17b) into Eq.(2.17a); we obtain the following amplitude

equation (vector (3+1)D cubic CGL equation) derived by Gil [78]:

∂

∂T
A = C1A+ C2

(
∂

∂Z
+

i

2kc
∇2

⊥

)
A + C3

(
∂

∂Z
+

i

2kc
∇2

⊥

)2

A + C4 (A · A∗)A + C5 (A · A)A∗,

(2.19)

with

C1 =
µ0c

2gD̃0 (κ− γ⊥ + 2iwa)(
(κ− γ⊥)

2 + 4w2
a

) , (2.20a)

C2 = −2c(γ⊥(γ⊥−κ)+2w2
a+iwa(κ−3γ⊥))

((κ−γ⊥)2+4w2
a)

, (2.20b)

C3 = −4c2γ⊥(γ2⊥(2κ−γ⊥)+κ(κγ⊥−4w2
a)−iγ⊥(3γ2⊥+4w2

a−κ(2γ2⊥−κ)))
((κ−γ⊥)2+4w2

a)
2 , (2.20c)

C4 =
4kg(−(κ−γ⊥)+2iwa)

~waγ∥((κ−γ⊥)2+4w2
a)
, (2.20d)

C5 =
2g(γ∥(2w2

a+κ(κ−γ2∥))−2w2
a(κ+γ⊥)−iwa(γ∥(κ+γ⊥)+2κ(κ−γ⊥)+4w2

a))
~wa

(
γ2∥+4w2

a

)
((κ−γ⊥)2+4w2

a)
, (2.20e)

Since the derivation of this model, it has been the subject of many works, leading to the

generation of different forms of patterns.

2.2.2 Modeling of the laser vector (3+1)D cubic-quintic complex Ginzburg-

Landau equation

In order to analyze higher order nonlinearities in the system, the nonlinear polarization term

P3 is needed. Therefore, the second correction is needed, taking into account the nonlinear

polarization into the population inversion equation (Eq.(2.16c)).
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For ϵ3 order, the solvability condition of the marginal solutions E3, P3,is given by:

κ
∂E1

∂T
= −2iwa

∂E1

∂T
− 2iwac

(
∂

∂Z
+

i

2kc
∇2

⊥

)
E1 − µ0c

2

(
2
∂

∂T

∂P1

∂t

)
, (2.21a)

2 ∂
∂T

∂P1

∂t
= −γ⊥ ∂P1

∂t
+ γ2⊥

∂2P1

∂T 2 − g
(
D̃0 +D2

)
E1 , (2.21b)

∂D2

∂t
= −γ∥D2 +

2
~wa

(
E1.

∂(P1+P3)
∂t

)
. (2.21c)

Let recall that P3 = P1
3 + P3

3. D2 is again obtained by solving Eq. (2.21c):

D2 = D20 +D22e
2i(wat−kcz) +D∗

22e
−2i(wat−kcz) +D24e

4i(wat−kcz) +D∗
24e

−4i(wat−kcz), (2.22)

with

D20 =
4

~µ0c2waγ∥
(−kAA∗ +

kgA2A∗2

~waγ⊥
(
4

γ∥
+

1(
γ∥ − 2iwa

) + 1(
γ∥ + 2iwa

))
+
igA2A∗2

~waγ⊥
(

1(
γ∥ + 2iwa

) − 1(
γ∥ − 2iwa

))), (2.23a)

D22 =
2

~µ0c2wa
(
γ∥ + 2iwa

)(−A2(k + iwa) +
2gA3A∗

~
(

k

γ⊥wa
(

1(
γ∥ + 2iwa

) + 2

γ∥
)

+
3(

γ∥ + 2iwa
)
(8wa − 3iγ⊥)

+
i(

γ∥ + 2iwa
)( 1

γ⊥
− 3k

wa (8wa − 3iγ⊥)
))),

(2.23b)

D24 =
12gA4

~2µ0c2wa
(
γ∥ + 4iwa

)
(8wa − 3iγ⊥)

(
1− ik

wa

)
. (2.23c)

Substituting Eq.(2.22) into Eq.(2.21b), and after some algebra, we obtain the following (3+1)D

vectorial CQ-CGL equation

∂A
∂T

= z1A − z2

(
∂

∂Z
+

i

2kc
∇2

⊥

)
A + z3

(
∂

∂Z
+

i

2kc
∇2

⊥

)2

A − z4 (A · A∗)A

− z5 (A · A)A∗ + z6
(
A2 · A∗2)A + z7

(
A3 · A∗)A∗,

(2.24)

with

z1 =
µ0c

2gD̃0 (k − γ⊥ + 2iwa)

(k − γ⊥)
2 + 4w2

a

, (2.25a)

z2 =
2c (2w2

a + γ⊥ (γ⊥ − k) + iwa (k − 3γ⊥))

(k − γ⊥)
2 + 4w2

a

, (2.25b)
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z3 =

4c2γ⊥

 γ2⊥(2κ− γ⊥) + κ (κγ⊥ − 4w2
a)

−iγ⊥ (3γ2⊥ + 4w2
a − κ(2γ⊥ − κ))


(κ− γ⊥)

2 + w2
a

,

(2.25c)

z4 =
4kg ((k − γ⊥)− 2iwa)

~waγ∥
(
(k − γ⊥)

2 + 4w2
a

) , (2.25d)

z5 =

2g

 γ∥(κ(κ− γ2⊥) + 2w2
a)− 2w2

a(κ+ γ⊥)

−iwa
(
γ∥(κ+ γ⊥) + κ(κ− γ⊥) + 42w2

a

)


~wa
(
(κ− γ⊥)

2 + w2
a

) (
γ2∥ + 4w2

a

) ,
(2.25e)

z6 =
8kg2

(
γ∥
(
k + 2γ∥

)
+ 10w2

a

)
(k − γ⊥ − 2iwa)

~2w2
aγ⊥γ

2
∥
(
(k − γ⊥)

2 + 4w2
a

) (
γ2∥ + 4w2

a

) (2.25f)

z7r =

4g2



(γ∥(k(3γ
2
∥ + 4w2

a) + 4w2
aγ∥)(9γ

2
⊥ + 64w2

a) + 3γ⊥γ∥((8w
2
a

+ 3kγ⊥)(γ
2
∥
− 4w2

a) + 4γ∥w
2
a(−8k + 3γ⊥)))(k − γ⊥)

+ 2w2
a(((γ

2
∥ − 4w2

a − 4kγ∥)γ∥ − 4k(γ2∥ + 4w2
a))(9γ

2
⊥ + 64w2

a)

+ 3γ∥γ⊥((−8k + 3γ⊥)(γ
2
∥ − 4w2

a)− 4(8w2
a + 3kγ⊥)γ∥))


~2w2

aγ⊥γ∥(γ
2
∥ + 4w2

a)
2
(9γ2⊥ + 64w2

a)((k − γ⊥)
2 + 4w2

a)

(2.25g)

z7i =

4g2



(wa(((γ
2
∥
− 4(w2

a + kγ∥))− 4k(γ2∥ + 4w2
a))(9γ

2
⊥ + 64w2

a)

+ 3γ∥γ⊥((−8k + 3γ⊥)(γ
2
∥
− 4w2

a)− 4γ∥(8w
2
a + 3kγ⊥)))(k−γ⊥

)− 2(γ∥(k(3γ
2
∥ + 4w2

a) + 4w2
aγ∥)(9γ

2
⊥ + 64w2

a) + 3waγ∥γ⊥((8w
2
a

+ 3kγ⊥)(γ
2
∥ − 4w2

a) + 4w2
aγ∥(3γ⊥ − 8k)))


~2w2

aγ⊥γ∥(γ
2
∥ + 4w2

a)
2
(9γ2⊥ + 64w2

a)((k − γ⊥)
2 + 4w2

a)
,

(2.25h)

where ∇2
⊥ = ∂2

∂X2 + ∂2

∂Y 2 represents a two-dimensional Laplacian operator and the asterisk (∗)

stands for the complex conjugate. Eq. (2.24) describes the behavior of the electric field in the

dielectric medium. When coefficients z6 = z7 = 0, in Eq. (2.24), we recover the laser (3 + 1)D

vectorial cubic CGL equation that was introduced early by Gil [78] as a vector order parameter

for an unpolarized laser and its vectorial topological defects.

Due to the highly nonlinear nature of Eq. (2.24), we introduce a number of useful simplifications:

(i) we use the traditional uniform field limit which requires that both the mirror transmissivity

Alain DJAZET Ph.D-Thesis



Chapter II: Model and methodology of investigations 51

and the gain per pass of the active medium be small, while their ratio may be arbitrary but

finite; (ii) a large free spectral range; (iii) the number of modes that are significantly excited is

manageably small [179]; (iv) the fourth-order derivative has been neglected [78]. In this way,

the new field amplitude obeys the equation of motion

A = B (X,Y, T ) exp (−i∆Z) , (2.26)

where the amplitude B(X, Y, T ) is governed by the equation

∂B
∂T

= c1B+ c2∇2B− c3 (B · B∗)B− c4 (B · B)B∗ + c5
(
B2 · B∗2)B+ c6

(
B3 · B∗)B∗, (2.27)

where c1 = z1 + ∆(−∆z3 + iz2), c2 = (2∆z3−iz2)
2kc

, c3 = z4; c4 = z5, c5 = z6, c6 = z7,

and B ⊥ Z. Considering the case where B has two complex components such as B = (Bx, By)

(cartesian components), describing the complex slowly varying amplitudes of the electric field

[169], the right and left circularly polarized components (B+, B−) are related to the cartesian

components by the relations Bx = (B+ + B−)/
√
2 and By = (B+ − B−)/i

√
2. We then obtain

the coupled equations describing the dynamics of the circular components after usual scaling

transformations [168]

i
∂ψ+

∂t
+ ψ+ +∆ψ+ + |ψ+|2ψ+ + γr|ψ−|2ψ+ + ν|ψ+|4ψ+ + δr

(
|ψ−|2 + 2|ψ+|2

)
|ψ−|2ψ+

= i
[
δψ+ + β∆ψ+ + ε|ψ+|2ψ+ + µ|ψ+|4ψ+ + δi

(
|ψ−|2 + 2|ψ+|2

)
|ψ−|2ψ+

]
,

(2.28a)

i
∂ψ−

∂t
+ ψ− +∆ψ− + |ψ−|2ψ− + γr|ψ+|2ψ− + ν|ψ−|4ψ− + δr

(
|ψ+|2 + 2|ψ−|2

)
|ψ+|2ψ−

= i
[
δψ− + β∆ψ− + ε|ψ−|2ψ− + µ|ψ−|4ψ− + δi

(
|ψ+|2 + 2|ψ−|2

)
|ψ+|2ψ−

]
,

(2.28b)

where

δ = −c1i/c1r, β = c2i/c2r, ε = c3i/c3r, µ = c5i/c5r, γr = (c3r + 2c4r)/c3r,

γi = (c3i + 2c4i)/c3r, δr = −(c5r + 3c6r)/2c5r, δi = −(c5i + 3c6i)/2c5r,

(2.29)

with ν=sign(c5r/c23r), t→ T , (x, y) → √
c2r(X,Y ), ψ± → B±/

√
c3r. In Eqs. (2.28), ∇2ψ+ and

∇2ψ− represent two-dimensional Laplacian operators describing diffraction in the transverse

(x, y)-plane, |ψ+|2ψ+ and |ψ−|2ψ− denote the cubic self-phase modulation (SPM), |ψ−|2ψ+
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and |ψ+|2ψ− correspond to the cubic cross-phase modulation (XPM), |ψ+|4ψ+ and |ψ−|4ψ−

denote the quintic SPM, |ψ−|2|ψ+|2ψ+ and |ψ+|2|ψ−|2ψ− represent the mixed quintic XPM,

and |ψ−|4ψ+ and |ψ+|4ψ− denote the quintic XPM. In the following ε, µ, γr, γi, δr, and δi are

real parameters of SPM and XPM terms of Eqs. (2.28). δ is related to the linear loss (δ < 0) or

gain (δ > 0). β denotes the strength of diffraction, and ε to the nonlinear frequency detuning. µ

stands for the saturation of the nonlinear frequency detuning, γr and γi are the nonlinear cross

coefficients related to the cubic XPM, δr and δi are the nonlinear cross coefficients describing

the quintic XPM, ν represents the nonlinear coefficient for the quintic SPM.

2.3 Analytical methods

It is well known that the CGL equation is a nonlinear partial differential equations that

could not be solved, at least not exactly. However, in order to study the dynamics of such system,

many technics (include analytical, and numerical) have been developed. Now several significant

(1+1)D, (2+1)D and (3+1)D models, such as (2+1)D CQ-CGL equation [92], (3+1)D CQS-

CGL equation [171], the method of collective coordinates [170], the variational method [92,

171] have been investigated and some special types of localized solutions for these have also

been obtained by means of different approaches.

In this thesis, a set of evolution equations and expression for potential function have been

derived using a variational method. The variational method allows us to obtain physical insight

in terms of a few relevant parameters. After the derivation of the fixed point from the obtained

variational system, we use the Routh-Hurwitz stability criterium, to study the stability of

our solutions. We recall that this variational method has been successfully used to address a

variety of nonlinear problems. The motivations of our choice are based on the advantages of

this method. Among them, we have: (1) The variational analysis leads to the fact that the pulse

propagation can be completely characterized although approximately without having to know
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the exact pulse field, that is without having to solve the multidimensional CQ-CGL equation;

(2) The variational analysis gives a detailed qualitative picture of the role and mode of action

of each perturbation (such as XPM, SPM, loss/gain, or diffusion) on the pulse.

In order to investigate new types of multidimensional dissipative optical light bullets, our

first consideration based on the variational approximation, takes into account the most popular

Gaussian pulse shape as the starting point of view and then, we also investigated through

variational method, the propagation characteristics and stabilization of moving-Gaussian pulse.

We examine their stability by means of both the rigorous analysis of linearized equations for

small perturbations, and in direct numerical simulations to support our analytical results.

In what follows, we will present some of the above cited methods, and those that will be

applied directly in Chapter 3.

2.3.1 Variational method

Variational methods are commonly used to describe the dynamics of nonlinear waves in

nonlinear optics, and atomic physics. Originally, the variational approach is widely used for

the analysis of conservative systems and the method has been extended to dissipative systems

[179-182].

These methods rely on a well-informed ansatz substituted in the Lagrangian or Hamilto-

nian formulation of a complex, infinite dimensional system. This ansatz reduces an original

partial differential equation (PDE) model to a few degrees of freedom establishing equations

describing the approximate dynamics appropriately projected into the solution space spanned

by the ansatz. Since the laser’s advent, nonlinear optics has become a particularly interesting

field for its theoretical context as well as its practical consequences on technology, in particu-

lar, on nonlinear optical fiber and waveguide systems. Here, the variational method has been

widely applied to obtain approximated solutions for problems concerning pulse and/or beam
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propagation within the framework of the nonlinear Schrödinger equation and nonlinear dissi-

pative pulses, which applies to problems involving one or more transverse dimensions besides

the propagation dimension.

Here, we briefly outline the basic concepts of the variational method. Consider a given

(2+1)-dimensional cubic-quintic complex Ginzburg-Landau equation of the form [91, 92]

i
∂ψ

∂z
+ (

∂2ψ

∂x2
+
∂2ψ

∂y2
)− |ψ|2ψ + ν|ψ|4ψ = Q, (2.30)

where ψ is the normalized complex envelope of the optical field. The Laplacian with respect to

x and y describes the beam diffraction. In order to prevent the wave collapse, the saturating

nonlinearity is required. As a consequence, cubic and quintic nonlinearities need to have opposite

signs, i.e., parameter ν is negative. Dissipative terms are denoted by Q

Q = i{γψ + ε|ψ|2ψ + µ|ψ|4ψ + β0(
∂2ψ

∂x2
+
∂2ψ

∂y2
)}. (2.31)

The first term with parameter γ is linear loss. The cubic and quintic gain-loss terms contain

respectively parameters ε and µ. The last term accounts for the parabolic gain, if β0 > 0.

In order to establish the variational approach for CQ-CGL equation, we construct the total

Lagrangian L = Lc+LQ of the system described by Eq. (2.30) containing both, a conservative

part

lc =
i

2
(ψ∗∂ψ

∂z
− ψ

∂ψ∗

∂z
) +

∣∣∣∣∂ψ∂x
∣∣∣∣2 + ∣∣∣∣∂ψ∂y

∣∣∣∣2 + 1

2
|ψ|4 − ν

3
|ψ|6, (2.32)

and the dissipative one

lQ = i(δ|ψ|2 + β(

∣∣∣∣∂ψ∂x
∣∣∣∣2 + ∣∣∣∣∂ψ∂y

∣∣∣∣2) + ε

2
|ψ|4 + µ

3
|ψ|6). (2.33)

With the asymmetrical trial function given by [92]

ψ(x, y, z) = A exp(− x2

2X2
− y2

2Y 2
+ iCx2 + iSy2 + iϕ), (2.34)
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as a functional of amplitude A, spatial widths X and Y , wave front curvatures C and S, and

phase ϕ, all function of the independent variable z. Optimization of each of these functions

gives one of six Euler-Lagrange equations averaged, together with conservative Lagrangian

ℓc =
∫ ∫

Lcdxdy, over transverse coordinates x and y

d

dz
(
∂ℓc
∂η̇

)− ∂ℓc
∂η

= 2Re

∫ ∫
dxdyQ

∂ψ∗

∂η
, (2.35)

where Re denotes the real part.

The application of the variational approach to the partial differential (2+1)D CQ-CGL

equation leads to a set of six coupled first-order differential equations (FODEs) resulting from

the variation with respect to the amplitude A, widths X, and Y , wave front curvatures C, S

and ϕ. These equations show the pulse parameters changes during the propagation inside a

waveguide and how they are coupled with each other.

2.3.2 Routh-Hurwitz stability analysis method

The Routh stability criterion [184] is an analytical procedure for determining if all the roots

of a polynomial have negative real parts [185, 186].

In order to ascertain the stability of a linear time-invariant system, it is necessary to de-

termine if any of the roots of its characteristics equation have negative real parts. A. Hurwitz

and E. J. Routh independently published the method of investigating the sufficient conditions

of stability of a system [184]. In this work, we consider the characteristic equation of a linear

system is given by

f(z) = anz
n + an−1z

n−1 + ....a1z + a0 = 0, (2.36)

where the coefficients ai(i = 0, 1, 2, ..., n) are real constants. To define the n Hurwitz matrices
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using the coefficients ai of the characteristic polynomial, the table is constructed in the form

zn an an−2 an−4 ... ...

zn−1 an−1 an−3 an−5 ... ...

zn−2 bn−1 bn−3 bn−5 ... ...

zn−3 cn−1 bn−3 bn−5 ... ...

... ... ... ... ... ...

z0 hn−1 ... ... ... ...

, (2.37)

where

bn−1 =
−1
an−1

∣∣∣∣∣∣ an an−2

an−1 an−3

∣∣∣∣∣∣ = an−1an−2−anan−3

an−1

bn−3 =
−1
an−1

∣∣∣∣∣∣ an an−4

an−1 an−5

∣∣∣∣∣∣ cn−1 =
−1
bn−1

∣∣∣∣∣∣ an−1 an−3

bn−1 bn−3

∣∣∣∣∣∣
. (2.38)

To be a stable fixed point within the linearized analysis, all the eigenvalues must have

negative real parts. Using the Routh-Hurwitz criterion, the necessary and sufficient conditions

for Eq. (2.36) to have ℜ(z1,2,3,...,n) < 0 (ℜ represents the real part) are:

� Necessary and sufficient condition that depends only on ai

• Requirement for system stability

All the coefficients are positive or they have the same sign. If one of the coefficients is zero

or negative, and at least one other coefficient is positive, there is at least one imaginary root

with a positive real part.

• Sufficient condition for system stability

All the elements in the first column of Routh are positive or they have the same sign. The

necessary and sufficient condition for the stability of the system is that the coefficients of the

characteristic polynomial and the elements of the first Routh-Hurwitz column must be positive

or must have the same sign [185-188].
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2.4 Numerical methods

Since the CQ-CGL equation is generally not solvable analytically, in order to confirm the

prediction of the approximative analytical approach, numerical simulations methods are needed.

Some numerical method used in this thesis are presented in this section.

2.4.1 Split-step method

In order to face the questions of non-integrability of the propagation equations, numerical

methods have been developed. In this stage of our thesis, we limit ourselves to the propagation

of ultrashort pulses in nonlinear and dispersive optical fibers described by the CGL equation

[188], written in the form:

ψz = (γr + iγi)ψ − (pi − ipr)ψtt − (qi − iqr) |ψ|2ψ, (2.39)

This equation can be written as

∂ψ(z, t)

∂z
= (D̂ + N̂)ψ(z, t), (2.40)

where D̂ represents the linear operator, and the nonlinear operator is N̂ , defined by: relation:

D̂ = (γr + iγi)−
∂2

∂t2
, (2.41a)

N̂(ψ(z, t)) = − (qi − iqr) |ψ|2. (2.41b)

The symmetrical Fourier Split-Step method (MFSS-S) is one of the most widely used pseudo-

spectral methods for studying the propagation of pulses in non-linear and dispersive media

[188-195].

exp(hD̂/2)exp(hN̂)exp(hD̂/2), (2.42a)
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In this method, the propagation length is subdivided into intervals of lengths h. If the value of

h is sufficiently low, we can approximate the solution by assuming that along each interval, the

operators of dispersion D̂ and nonlinear N̂ act independently.

From the strang formula Eq. (2.42a), the dispersion effects act continuously on the two

halves of the length segment h: [z, z + h/2[ and ]z + h/2, z + h]; while the nonlinear effects are

inserted at the point z + h/2 in the middle of the segment. In this way the variations of the

nonlinear operator N̂ in the meantime [z + h] can be overlooked.

The formal solution of the amplitude of the variable field ψ(z+h, t) as a function of ψ(z, t),

is given by the equation:

ψ(z + h, t) = exp(
hD̂

2
) exp(hN̂) exp(

hD̂

2
)ψ(z, t). (2.43)

The dispersion operator, comprising partial time derivatives Eq. (2.41a) will be calculated

in the spectral domain using the Fourier transforms. The differential operator ∂
∂t

is replaced by

iω and we calculate each partial derivative of order n as follows: ∂n

∂tn
F↔ (iω)n, where F denotes

the Fourier transform. The same calculation principle is applied to the last two terms of the

non-linear operator Eq. (2.41b), which represent the Self-Steepening effect and the Raman

effect and which also have time derivatives. However, since N depends on z through ψ(z, t), it is

then replaced, along a segment, by its integral which can be approximated using the trapezoid

method:

z+h∫
z

N̂ (z′)dz′ ≈ h

2

[
N̂ (z) + N̂ (z + h)

]
. (2.44)

Note that ψ(z+h, h) is not known when we want calculate N̂(z), we must therefore proceed by

iterations in order to estimate N̂(z+h) and we have several possibilities for choosing the initial

value, this is what will bring us to the proposition and to the study of two implementations.
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Further, an algorithm based on MFSS-S is developed for solving CQ-CGL equation and the

soliton switching is studied in the fiber and in the laser cavity system.

2.4.2 Fourth-order Runge-Kutta method

Runge-Kutta method is a numerical technique used to solve ordinary differential equation

of the form

dy

dx
= f(x, y),. (2.45)

with y(x0) = y0.

Runge-Kutta 4th was first developed to solve first order ordinary differential equation. Later

it was adapted to solve to solve higher order ordinary differential equations or coupled (simul-

taneous) differential equations. It is based on the following

yi+1 = yi + (a1k1 + a2k2 + a3k3 + a4k4), (2.46)

where knowing the value of y = yi at xi, we can find the value of y = yi+1 at xi+1, and

h = xi+1 − xi.

Equation (2.45) is equivalent to the first five terms of Taylor series

dy
dx

= yi +
dy
dx

∣∣
xi,yi

(xi+1 − xi) +
1
2!
d2y
dx2

∣∣∣
xi,yi

(xi+1 − xi)
2 + 1

3!
d3y
dx3

∣∣∣
xi,yi

(xi+1 − xi)
3

+ 1
4!
d4y
dx4

∣∣∣
xi,yi

(xi+1 − xi)
4

(2.47)

Knowing that dy
dx

= f(x, y) and h = xi+1 − xi

yi+1 = yi + hf(xi, yi) +
h2

2!
f ′(xi, yi) +

h3

3!
f ′′(xi, yi) +

h4

4!
f ′′′(xi, yi).. (2.48)

Based on equating Eq. (2.47) and (2.48), the solutions are obtained such as

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4), (2.49)

where

k1 = f(xi, yi), (2.50a)
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k2 = f(xi +
h

2
, yi +

hk1
2

), (2.50b)

k3 = f(xi +
h

2
, yi +

hk2
2

), (2.50c)

k4 = f(xi + h, yi + hk3). (2.50d)

The RK4 method makes four estimates of f(x, y) per segment, each estimate is refined by

the previous one; the first at the starting point x, the second and the third at the point x+h/2,

from the middle of the segment and the last at the end point x+ h.

2.5 Conclusion

This chapter was devoted to the methods used in this thesis. Helped by the theory of

nonlinear perturbation, and the multimodal method, we have derivative the vector (3 + 1) CQ-

CGL equation, from where the coupled system (2 + 1)D CQ-CGL equation. Other analytical

methods (variational method) and numerical methods (the Split-Step Fourier method and the

Runge-Kutta method of order 4) have been presented, and some of these Methods have been

used to study the dynamics of the signal in the nonlinear optical system. In the next chapter,

we will present our results.
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Results and Discussions

3.1 Introduction

The preceding chapters were devoted to generalities on the theory of solitons, laser, dissipa-

tive soliton in dissipative optical systems (laser cavity and optical fiber) modeled by the complex

Ginzburg-Landau equations. From the Maxwell-Bloch model, we have derived a new equation

which models the propagation of the optical soliton in the laser cavity, called "the coupled

(2+1)-dimensional CQ-CGL equation". This new model which takes into account cubic-quintic

non-linearities, diffraction and two coupled terms, refering to cubic cross-phase modulation and

quintic cross-phase modulation (XPM), is an originality in the study of the propagation of

dissipative solitons based on the model Ginzburg-Landau complex. This model is an advance

in this field of study and represents one of the most important contributions of this thesis.

In order to achieve other objectives, we have highlighted some analytical methods which

have been proposed to describe the main characteristics of the evolution of impulses such as

the variational method, and methods of studying stability like that of Routh-Hurwitz (R-H)

and the analysis of the effective potential. To confirm the different results obtained from the

analytical methods, we also make use of numerical study, by considering the RK4 method and

the Split-Step Fourier method.

The obtained results deal with the stability of solitons of the dissipative system describe

by the (2+1)D CQ-CGL equation Eq. (2.30), and the generation associated to the stability of

dissipative solitons of the coupled laser (2+1)D CQ-CGL equation. These results can find their
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application in the field of telecommunications, medicine and industry.

3.2 Stable soliton of the (2+1)D cubic-quintic complex Ginzburg-

Landau equation

Physical system which exchange energy with the environment (dissipative systems) possess

a dynamics including various phenomena, such as the saturable loss, nonlinear gain, dispersive

loss, dispersion and other effects. A rich variety of structure can be obtained due to the inter-

action between such phenomena [92, 171, 197], and dissipative soliton is a typical example.

It has been shown that their parameters particularly depend on the system parameters.

3.2.1 Variational equations

The main idea of this section is to map the parameters of the (2+1)D CQ-CGL model Eq. (2.30),

for which new types of localized waves appear, belonging to the class of dissipative solitons.

However although this model is not analytically solvable, it is difficult to have exact solutions.

In order to obtain a better understanding of the dynamics which influence the behavior of the

impulse during its propagation, the impulse field ψ was approached by a test function which

can easily be expressed according to the physical parameters of the soliton. Thus, from the

variational approach, the equation of propagation of the field (Eq. (2.30)) is transformed into

a system of ordinary differential equations describing the evolution of the pulse during the

propagation.

For our study, the following ansatz has been used [137,170,197-199].

ψ = A exp
{
− (x−X2)

2

2X2 − (y−X2)
2

2Y 2 + iC(x−X2)
2 + iS(y −X2)

2 + iY2(x−X2) + iY2(y −X2) + iϕ
}
,

(3.1)

where A is the amplitude, X and Y are the spatial widths, C and S are the unequal wavefront

curvature, X2 the central position, ϕ is the phase and Y2 accounts for the velocity of the soliton
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along the direction of x and y, all function of the independent variable z.

The application of the variational approach to the partial differential (2+1)D CQ-CGL

equation leads to a set of eight coupled first-order differential equations (FODEs) resulting

from the variation with respect to the linear frequency, unequal spatial widths, the unequal

wavefront curvature, the amplitude, the central position and the phase respectively:

dY2
dz

= −2βY2
Y 2

+ δY2 −
2βY2
X2

− 2βC2X2Y2 − 2βS2Y 2Y2, (3.2a)

dX

dz
= 4CX − 2βC2X3 − ε

4
A2X +

2β

X
+
δ

2
X − 2µ

9
A4X, (3.2b)

dY

dz
= 4SY − 2βS2Y 3 − ε

4
A2Y +

2β

Y
+
δ

2
Y − 2µ

9
A4Y, (3.2c)

dC

dz
= −1

3

A2

X2
+

4

X4
+

4ν

9

A4

X2
− 4C2 − 8β

C

X2
, (3.2d)

dS

dz
= −1

3

A2

Y 2
+

4

Y 4
+

4ν

9

A4

Y 2
− 4S2 − 8β

S

Y 2
, (3.2e)

dA

dz
= −2A(C + S) +

8µ

9
A5 +

5ε

4
A3 − 4βAY 2

2 − 3β
A

Y 2

+
δ

2
A− 3β

A

X2
− βAC2X2 − βAS2Y 2,

(3.2f)

dX2

dz
= 2Y2 − βCX2Y2 − βSY 2Y2, (3.2g)

dϕ

dz
=

1

2
A2 − 2

X2
− 2

Y 2
− 5ν

9
A4 + 2βC + 2βS + 2Y 2

2 − 2βCX2Y 2
2 − 2βSY 2Y 2

2 . (3.2h)

As can be seen, the additional parameters X2 and Y2 (central position and the speeds) influence

the dynamics of the other parameters of the soliton through Eqs. (3.2a-3.2h)(in comparison to

some previous works [92]). Consequently, it is the dynamics of the entire soliton which can be

greatly affected during propagation in the system. However, explicit information regarding the

different solutions and their stability can not be gained at this stage of the analytical procedure.

Looking for steady state solutions of the system given by Eqs. (3.2a-3.2f), the derivatives

of soliton parameters with respect to z are set equal to zero. Thus, after some algebra we

obtained the steady state amplitude (Eq. (3.6)) with two discrete values A+ and A− steady
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Figure 3.1: Double steady state solution A−(red) and A+ (blue). (a): ν = 0.72, β = 0.5,

δ = −0.1; (b): ν = 0.72, β = 0.05, δ = −1.

state solutions. We note that only the symmetric steady state solutions, with equal widths

(X = Y ) and spatial chirps (C = S) have been considered.

Figure 3.1 presents the region of existence of the stationary solutions in the space of the

dissipative parameters respectively in the case of β = 0.5, δ = −0.1, ν = 0.72 (see Fig. 3.1(a))

and the case of β = 0.05, δ = −1, ν = 0.72 (see Fig. 3.1(b)) in the plane of (µ, ε) parameters.

From the above equations, we obtained the width

X =
2
√

2 + 2β2√
4
9
(βν − µ)A4 + (1

2
+ 1

3
βε)A2 + δ

β

, (3.3)

the linear frequency

Y2 =
1

6

√
9A2ε

β
+

6A4µ

β
, (3.4)

the chirp

C =
4

9
(βν + µ)A4 +

(
1

2
ε− 1

3
β

)
A2. (3.5)

and the amplitude

A± =
(
β(4

3
+ 2βε)±

√
∆1

)1/2 (92β
β
(−βµ+ ν)

)−1/2

+ 0 (θ2) , (3.6)

with ∆1 = β2(4
3
+ 2βε)2 − 256δβ

9
(1 + 2β2)(−βµ+ ν).
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It is important to point out that the balance between the gain/loss and the diffraction with

saturating nonlinearity can lead to a fixed steady state solution only for non zero curvature,

which is not the case with conservative systems [137, 189, 200].

Considering the physical situation where the central positions and the soliton speed may be

taken different in the two transverse axis x and y, the following solution is used

ψ = A exp
{
− (x−X2)

2

2X2 − (y−Y22)2
2Y 2 + iC(x−X2)

2 + iS(y − Y22)
2 + iX3(x−X2) + iY2(y − Y22) + iϕ

}
,

(3.7)

where additional parameters Y22 account for the central position coordinate in the y direction,

and X3 the speed in the x direction. Following the same analytical approach, we obtain

dX3

dz
= −8βX3(C

2X2 − 1

X2
), (3.8a)

dY2
dz

= −8βY2(S
2Y 2 − 1

Y 2
), (3.8b)

dX

dz
= 4XC + 4β(

1

X2
− C2X3)− ε

4
XA2 − 2µ

9
XA4, (3.8c)

dY

dz
= 4Y S + 4β(

1

Y 2
− S2Y 3)− ε

4
Y A2 − 2µ

9
Y A4, (3.8d)

dC

dz
= − 4β

X2
(5C + S) +

3

4

A2

X2
− 2ν

9

A4

X2
+

4

X4
− 4C2, (3.8e)

dS

dz
= −4β

Y 2
(C + 5S) +

3

4

A2

Y 2
− 2ν

9

A4

Y 2
+

4

Y 4
− 4S2, (3.8f)

dA

dz
=

3ε

4
A3 +

5µ

9
A5 + δA− 2A(S + C)− 2βA(

1

X2
+

1

Y 2
)− βA(X2

3 + Y 2
2 ), (3.8g)

dX2

dz
= 2X3(1− 2βCX2), (3.8h)

dY22
dz

= 2Y2(1− 2βSY 2), (3.8i)

dφ

dz
= 12β(S + C)− 7

4
A2 +

5ν

9
A4 − 4(

1

X2
+

1

Y 2
) +X2

3 + Y 2
2 − 4β(X2X2

3C + Y 2Y 2
3 S). (3.8j)

We noted that, the soliton speed parameters (X3, Y2) and the central positions (X2, Y22)

respectively influence the dynamics of the other parameters as we observed in Eqs. (3.2a-

3.2h). However, some relevant new characteristics appear concerning the dynamics of the new
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Figure 3.2: Domain of stable solutions with X3 = Y2. (a) ν = 0.72, β = 0.5, δ = −0.1, (b)

ν = 0.2,β = 0.5, δ = −0.01 and (c) ν = 0.72, β = 0.5, δ = −1. We can observe the great

influence of the parameters system on the stability domain.

parameters (X3, Y2) and (X2, Y22). We noted that the parameter δ do not affected the dynamics

of the linear frequencies, and it also appears that the dynamics of the central positions X3 and

Y2 respectively for x and y directions are influenced by the soliton parameters respectively for

the same directions. Another relevant result is related to the interaction between the unequal

wavefront curvature in their dynamics. The steady state solutions arising from equations Eqs.

(3.8a)-(3.2g) are obtained by considering X = Y , C = S, X3 = Y2. Then, after some algebra,

we have:

the steady amplitude

A± =

√
−b±

√
b2 − 4ac

2a
, (3.9)

with

a = −64

81

[
(6β2(18β2 + 1)− 2)µ2 + 20βν(1 + 6β)µ+ β2ν2(1− 12β2) +

ν2

2

]
b =

1

9

[
(32(1− 3β2(1 + 6β2))ε+

80

3
β(1 + 6β2))µ2 − 80βν(1 + 6β2)ε+ 48β2ν(1 + 12β) + 24ν

]
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c = 2(−3β2(1 + 18β2) + 1)ε2 + 30β(1 + 6β2)ε+ 9β2(12β2 − 1)ε− 9

2
.

The width

X =

(
2A23(2βε− 1) + 2(6βµ+ 1)A2

(6β2 + 1)

)−1/2

, (3.10)

the wavefront curvature

C =

(
1
2
(3β + ε) + 4

9
(µ− βν)A4

)
A2

8(6β2 + 1)
, (3.11)

and the linear frequency

X3 =

√
2
3

(
(8β2 + 1)µ+ 1

3
βν
)
A4 +

(
(15
2
β2 + 1)ε− 3

4
β
)
A2 + 2δ (6β2 + 1)

2β(6β2 + 1)
. (3.12)

3.2.2 Stability analysis and numerical results

An important criterium that gives necessary and sufficient conditions for the stability of the

roots of the characteristic polynomial (with real coefficients) to lay in the left half of the

complex plane are known as the Routh-Hurwitz (R-H) criteria [185, 201]. The stable stationary

solutions of Eq. (2.30) are determined by the analysis of the eigenvalues λj (j = 1, . . . , 6) of the

matrix Mij =
∂η̇i
∂ηj

given as follows:

λ6 + a1λ
5 + a2λ

4 + a3λ
3 + a4λ

2 + a5λ+ a6 = 0, (3.13)

where η = A,X, Y, Y2, C or S, η̇ = dη
dz

, with ai (i = 1, . . . , 6) depending on the system

parameters and the fixed points. To be a stable fixed point according to Lyapunov method, all

the eigenvalues must have negative real parts [92, 148]. Using the Routh-Hurwitz criterion,

the necessary and sufficient conditions for Eq. (3.13) to have Re(λi) < 0, i = 1, . . . , 6 are given

as follows:

ai > 0, b1 > 0, c1 > 0, d1 > 0, e1 > 0,
(3.14)

with
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Figure 3.3: Domain of stable solutions with δ = −1 and ν = 0.72, for (a) β = 0.5, X3 = Y2/2,

(b) β = 0.5, X3 = Y2/5; (c) β = 1.5, X3 = Y2/5.

b1 =
−1
a1
(a3 − a2a1), b3 =

−1
a1
(a5 − a1a4)

c1 =
−1
b1
(a1b3 − b1a3), c3 =

−1
b1
(a1a6 − b1a5)

d1 =
−1
c1
(b1c3 − c1b3), e1 =

−1
d1
(c1a6 − c3d1).

It follows that solutions with amplitudes A− satisfied the above stability conditions as we can

see in Fig. 3.2. showing the influence of the dissipative parameters on the stability domain of

the solutions when the speed has the same value in transverse directions x and y.

Considering the ansatz (Eq. (3.7)), the stable stationary solutions of Eq. (2.30) are deter-

mined by the analysis of the eigenvalues λj (j = 1, . . . , 7) of (7X7) matrix given by:

λ7 + α1λ
6 + α2λ

5 + α3λ
4 + α4λ

3 + α5λ
2 + α6λ+ α7 = 0, (3.15)

where αi(i = 1, .., 7) depend on the system parameters and the stationary solutions related to

Eqs. (3.9)-(3.12). The necessary and sufficient conditions for the stability are given by:

αi > 0, β11 > 0, β21 > 0, β31 > 0, β41 > 0 and β51 > 0, (3.16)

where
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β11 = α2 − α3

α1
β13 = α4 − α5

α1
β15 = α6 − α7

α1

β21 = α3 − β13α1

β11
β23 = α5 − β15α1

β11

β31 = β13 − β11β23
β21

β33 = β15 − β11α7

β21

β41 = β23 − β21β33
β31

β51 = β33 − β31α7

β41
.

Numerical results lead to numerous stability domains (see Fig. 3.3) and the solutions

satisfying these conditions behave stable during long distance of propagation (see Fig. 3.5).

For Y2 = X3, the stable domain of dissipative solution (see Fig. 3.2 ) is given for different

set of dissipative parameters. For δ = −0.1, β = 0.5 and ν = 0.72, Fig. 3.2(a) shows a blue

stability domain. When δ = −.01, β = 0.5, ν = 0.2, Fig. 3.2(b) shows a decrease of the stability

domain, and for δ = −1, β = 0.5 and ν = 0.72, Fig. 3.2(c) shows an increase of the stability

domain. As observed in Figs. 3.2(a) to 3.2(c), for different values of the system parameters,

the stability domain do not remaind the same. We can then conclude that the stability of the

solutions is influenced by the parameters of the system. These results correspond to those given

by the previous variational equations (see Eqs. (3.2a)-(3.2h), and Eqs. (3.8a)-(3.8j)).

For the case of solution given by Eq. (3.7), Fig. 3.3 presents the blue stability domains,

for some particular cases of the ratio between the soliton speeds X3 and Y2 (corresponding to

the x and y transverse axis). The Fig. 3.3(a) showing a wide domain of the stability solution

is obtained for β = 0.5, δ = −1, ν = 0.72 and X3 = Y2/2. Using the same previous dissipative

values as in Fig. 3.3(a), with X3 = Y2/5, the stability domain decreases as can be seen in

Fig. 3.3(b). For β = 1.5 δ = −1, ν = 0.72 and X3 = Y2/5, the corresponding stability

domain (Fig. 3.3(c)) is considerably reduced. From Fig. 3.3, we notice that the components

of the soliton speed as well as the amplitude, the widths, the chirps are greatly dependent

on the dissipative parameters of the system, and consequently, the stability of the stationary

solution. The evolution of the steady state amplitudes A+ and A− (Eq. (3.6)) as function

of the cubic nonlinearity has been analyzed through the bifurcation diagram for the case of
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Figure 3.4: Bifurcation diagrams of stable A− and unstable A+ solutions with ν = 0.2 in (a):

β = 0.05, δ = 0.01, µ = −1.324; (b): β = 0.05, δ = 0.001, µ = −0.18; (c): β = 1.5, δ = 0.01,

µ = −1.324; (d): β = 0.05, δ = 0.01, µ = −2.24.

solution given by Eq. (3.9). Then, in Fig. 3.4, typical bifurcation diagrams are shown where

the amplitude of the steady state solution is plotted as a function of the parameter ε. As it

is known, the valid variationally obtained analytical curves corresponding to Fig. 3.4 must

be a good approximation of the numerical obtained results. In Fig. 3.4, we have shown the

comparison between analytical and numerical bifurcation diagrams.

At this stage of our analysis, we have noted several behaviors of the comparison between

analytical and numerical results of the amplitudes A− and A+. It can be seen in Figs. 3.4(a) and

(b) that the solutions amplitude A+ (numerical and analytical) present a good agreement for

smaller values of the nonlinear parameter ε, associated with some discrepancies for increasing

values of the amplitude.

At the same time, the solutions A− present a good agreement for small amplitude (Fig.

3.4(a)) and zero amplitude (Fig. 3.4(b)). When varying the parameters β and µ, the comparison

of bifurcation diagrams are shown in Figs. 3.4(c) and (d), where a good agreement is also noted
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Figure 3.5: Profiles of the steady state solution at different positions along the propagation

distance with parameters ν = 0.72, β = 0.5, δ = −1, ε = 1.349, µ = −0.3. (a) z=0, (b) z=10,

(c) z=100 and (d) z=4000.

between the solution A− of lower amplitudes on the lower branch and the solution A+ of the

upper branch.

It is important to point out that the results in Fig. 3.4(d) are similar as those obtained by

Skarka et al. [92, 137]. Therefore, our work presents a more general behavior of the dynamics

of solutions A+ and A− in the very large space of parameters, where the cross compensation

between the linear/nonlinear and loss/gain parameters is necessary to obtain the stability of

the soliton solutions.

We are now interested on the global evolution of the solution, with the system parameters

taken in the stable domain obtained in Figs. 3.3. Dealing with Eq. (3.7), we have noted

an evolution of the initial solution as depicted in Fig. 3.5(a) with ν = 0.2, β = 0.5, δ =

−1, ε = 1.349, µ = −0.3. During this evolution, we have observe the shifting of the central

position for some values of the parameters system, as has been analytically predicted. Also, the

soliton intensity remains practically constant around an average value for different propagation

distances (see Fig. 3.5(b) to 3.5(d)). From the dynamics depicted in Figs. 3.5, we can clearly

noted the influence of the additional parameters stabilizing the dynamics of propagation, in
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comparison to the work reported by Skarka et al. [92]. From this analysis, the stability of the

solutions A− and A+ is a necessary condition to obtain a soliton after self-organizing evolution

as reported also in Refs. [92, 137, 202, 203].

It appears that the variational analysis associated to the Routh-Hurwitz conditions are

useful treatments for the study of stability criteria for the propagation of dissipative solitons

in nonlinear media. Due to the large parameters space, more detailed numerical simulations of

both the variational equations and the CQ-CGL equation lead to a great variety of behaviors

of the solutions.

3.3 Analysis of the coupled (2+1)D cubic-quintic complex

Ginzburg-Landau equation

Let us recall that nonlinear dissipative systems modeled by the scalar cubic quintic CGL

equation admit optical stable soliton solutions in one [170], or several dimensions [92, 171].

The cubic-quintic complex equation has so many different types of solutions that this area

of expertise is a whole world by itself. Even if we restrict ourselves to localized solutions,

i.e., dissipative solitons of CGL equation, the variety of these objects is still not known in its

full complexity although the regions of soliton existence have been studied quite extensively.

Besides, the coupled CQ-CGL equation that we have derived is new in this area, and offers a

wide range of localized solutions that we could not obtain from the scalar cubic quintic CGL

equation or from the coupled kerr model derived by Gil [78].

In our notation, the coupled (2+1)D CQ-CGL equation is

i
∂ψ+

∂t
+ ψ+ +∆ψ+ + |ψ+|2ψ+ + γr|ψ−|2ψ+ + ν|ψ+|4ψ+ + δr

(
|ψ−|2 + 2|ψ+|2

)
|ψ−|2ψ+

= i
[
δψ+ + β∆ψ+ + ε|ψ+|2ψ+ + µ|ψ+|4ψ+ + δi

(
|ψ−|2 + 2|ψ+|2

)
|ψ−|2ψ+

]
,

(3.17a)

i
∂ψ−

∂t
+ ψ− +∆ψ− + |ψ−|2ψ− + γr|ψ+|2ψ− + ν|ψ−|4ψ− + δr

(
|ψ+|2 + 2|ψ−|2

)
|ψ+|2ψ−

= i
[
δψ− + β∆ψ− + ε|ψ−|2ψ− + µ|ψ−|4ψ− + δi

(
|ψ+|2 + 2|ψ−|2

)
|ψ+|2ψ−

]
,

(3.17b)
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this model is derived in chapter II, where ∆ = ∂2

∂x2
+ ∂2

∂y2
. The optical envelope ψ±(x, y, t) is the

normalized complex function of three real variables x, y and t, where x and y are the normalized

two transverse coordinates and t is the normalized propagation time. All the parameters of

Eq. (3.17), i.e., ν, δ, ε, γr, γi, µ, δr and δi are real constants, and the pump profile parameter

related to ψ± is normalized to unity [204]. The negative coefficient ν is the saturation of the Kerr

nonlinearity, and the quintic coefficient δr < 0 is the saturation of the cubic coupling absorption

γr. The dissipative term δ is the linear loss/gain coefficient, β is the diffusion coefficient, ε is the

cubic gain, µ is the quintic loss, γi and δi respectively denote the cubic and the quintic coupled

coefficients. This model also finds its application in Bose-Einstein condensates, moreover a

similarity result, but to (1+1)D had been derived by Bélobo et al. [205, 206], Describing the

dynamics of soltons in BECs, hence , this turns out to be an extension.

3.3.1 Variational approach for coupled (2+1)D cubic-quintic complex

Ginzburg-Landau model for nonsymmetric structures

Due to its complexity, the coupled (2+1)D cubic-quintic CGL equation does not allow

exact analytical solutions. Therefore, we extend the variational approach to dissipative systems

described by the coupled (2+1)D CQ-CQL equations [91, 92]. The set of Euler-Lagrange

equations characterize the solutions depending on the various dissipative parameters.

In this step of our analysis, Eqs. (3.17a) and (3.17a)are rewrite as the follows:

i
dψ±

dt
+ ψ± +∆ψ± + |ψ±|2ψ± + γr |ψ∓|ψ± + ν|ψ±|4ψ± + δr(|ψ∓|2 + 2|ψ±|2)|ψ∓|2ψ± = Q±,

(3.18)

with

Q± =i(δψ± + β∆ψ± + ε|ψ±|2ψ± + γi |ψ∓|ψ± + µ|ψ±|4ψ± + δi(|ψ∓|2 + 2|ψ±|2)|ψ∓|2ψ±).

(3.19)

The left-hand-side of Eq. (3.18) contains the conservative terms, where ∆ = ∂2

∂x2
+ ∂2

∂y2
. The

optical envelope ψ±(x, y, t) is the normalized complex function of three real variables x, y
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and t, where x and y are the normalized two transverse coordinates and t is the normalized

propagation time. The pump profile parameter related to ψ± is normalized to unity [204]. The

right term Q± of Eq. (3.18), given by Eq. (3.19), stands for the dissipation..

The variational method for dissipative systems is used in the following, with the objective to

obtain more physical insight in terms of a few relevant parameters and then present numerical

simulations that confirm the analytical predictions. Then the left-hand-side of Eq. (3.18) is

derived from the Lagrangian density [92, 206] given by

L =
i

2

(
ψ∗
−
∂ψ−

∂t
− ψ−

∂ψ∗
−

∂t
+ ψ∗

+

∂ψ+

∂t
− ψ+

∂ψ∗
+

∂t

)
+

∣∣∣∣∂ψ∓

∂x

∣∣∣∣2 + ∣∣∣∣∂ψ∓

∂y

∣∣∣∣2 + 1

2
|ψ±|4 +

ν

3
|ψ±|6

+ γr|ψ∓|2|ψ±|2 + δr
(
|ψ±|4|ψ∓|2 + |ψ±|2|ψ∓|4

)
,

(3.20)

where ψ∗
± stands for the complex conjugate of ψ±. Of course, the knowledge of the special

characteristics of the propagation of laser beams through optical systems has to be one of the

keystones of optical engineers and researchers working on optics, and the clear definition of

their characteristic parameters has an important impact in the success of the applications of

laser sources [207]. Gaussian beams play such an important role in optical lasers as well as

in longer wavelength systems that they have been extensively analyzed. Almost every text on

optical systems discusses Gaussian beam propagation in some detail, and several comprehensive

review articles are available [92, 170, 171, 188].

In order to extend our study to the characterization of the dissipative soliton during the

propagation in the medium, we adopt the following Gaussian trial function [92, 171, ?]

ψ± =A exp

{
− (x±Xm)

2

2X2
− y2

2Y 2
+ iC(x±Xm)

2 + iSy2 + iϕ

}
, (3.21)

where A is the amplitude, X and Y are the unequal spatial widths, C and S are the unequal

wavefront curvature, Xm is the central position, and ϕ is the phase of the light bullet, all of

which are functions of the independent variable t.
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In order to proceed to the analytical treatment of the model and characterize the solutions

depending on the various dissipative parameters, the equations for the motions of the variational

parameters η are obtained through the Euler-Lagrange equations [92, 206]

d

dt

(
∂L

∂
·
η

)
− ∂L

∂η
= 2Re

∫ ∫
dxdy

(
Q−

∂ψ∗
−

∂η
+Q+

∂ψ∗
+

∂η

)
, (3.22)

where η̇ = dη
dt

. Here, η represents the parameters A, X, Y , C, S, Xm and ϕ in the ansatz, while

L =

∫ ∫
Ldxdy (3.23)

is the average Lagrangian of the conservative system obtained by substituting Eq. (3.21) into

Eq. (3.20) and taking out integration over coordinates x and y. Thus, with the aim of the

Euler-Lagrange equation [171], we obtain the following set of differential equations describing

the dynamics of the seven relevant parameters of the trial solution Eq. (3.21):

dA

dt
=2A (S + C)− δA− 3

4
εA3 − 5

9
µA5 + βA

(
1

X2
+

1

Y 2

)
+ γiA

3e−
2X2

m
X2

(
−1 +

1

4X2
+

1

4Y 2
+
X2
m

2X2

)
+ A5δie

− 8X2
m

3X2

(
−1 +

1

4X2
+

1

4Y 2
+

4X2
m

9X2

)
,

(3.24a)

dX

dt
=4CX

(
βCX2 − 1

)
− β

X2
+XA2

(
ε

4
+

2µA2

9

)
+ γiA

2e−
2X2

m
X2

(
−X

2
m

X
− 1

X
+
X

2

)
+ δiA

4e−
8X2

m
3X2 ,

(3.24b)

dY

dt
= 4SY

(
βSY 2 − 1

)
− β

Y 2
+ Y A2

(
ε

4
+

2µA2

9

)
+ γiA

2e−
2X2

m
X2

(
− 1

Y
+
Y

2

)
+ δiA

4e−
8X2

m
3X2

(
− 1

2Y
+
Y

2

)
,

(3.24c)

dC

dt
= 4C2 +

1

X2

(
4βC − A2

4
− 2νA4

9
−− 1

X2

)
+
γrA

2

4X2
e−

2X2
m

X2

(
4X2

m

X2
− 1

)
+

2δrA
4

3X2
e−

8X2
m

3X2

(
8X2

m

3X2
− 1

)
,

(3.24d)

dS

dt
=4S2 +

1

Y 2

(
4βS − A2

4
− 2νA4

9
− 1

Y 2

)
− γrA

2

4Y 2
e−

2X2
m

X2 − 2δrA
4

3Y 2
e−

8X2
m

3X2 , (3.24e)

dXm

dt
=A2Xm

(
γie

− 2X2
m

X2 +
8δiA

2

9
e−

8X2
m

3X2

)
, (3.24f)
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dϕ

dt
=− 1− 2β (C + S) +

1

X2
+

1

Y 2
+ A2

(
3

4
+

5νA2

9

)
+
γrA

2

2
e−

2X2
m

X2

(
−X

2
m

X2
+

3

2

)
+
δrA

4

3

(
−8X2

m

3X4
+ 5

)
e−

8X2
m

3X2 .

(3.24g)

Eqs. (3.24a)-(3.24g) represent the coupled equations that show how pulse parameters change

during propagation. Looking for steady state solutions of the system of Eqs. (3.24a)-(3.24g)

after vanishing derivatives of amplitude, width, curvature, and central position, we focus our

study to the symmetric steady state solutions, with Xm = 0, equal widths (X = Y ) and spatial

chirps (C = S). The corresponding steady state amplitude has two discrete values A+ and A−

given by

A± =

√
9β(−4β(1+βε+γr)±

√
∆)

2(βµ+4ν+4δr)
, (3.25)

with ∆ = (1+βε+γr)
2

16β2 − 4δ(βµ+4ν+4δr)
9β

. We also obtain the width,

X =

(((
µ

3
+
δi
2

)
A4 +

1

2
(ε+ γi)A

2 + δ

)
/β

)−1/2

+ 0(θ2), (3.26)

and the chirp

C =
C4A

4 + C2A
2 + δ

4β2
, (3.27)

with C4 =
1
3
(2µ+3δi+4β(δr+

ν
3
)), and C2 =

1
4
(2(ε+γi)+β(1+γr)). The variational equations

show clearly how the pulse parameters change during the propagation inside a waveguide and

how they are coupled with each other.

To study the dynamical stability of the vector light bullet solution given above, we first derive

the effective potential. An important criterion for the stability of our stationary solution is to

investigate the possibility of light bullets to be trapped in the well. We examine the dynamical

behaviors of a light bullet using the initial conditions given by Eqs. (3.25)-(3.27), from its

symmetric equilibrium. Integration of variational Eqs. (3.24a)-(3.24g) gives [171, 189, 208]

1

4

(
dX

dt

)2

+
1

4

(
dY

dt

)2

+ U(X, Y ) = U(X0, Y0), (3.28)

where U(X, Y ) is the effective potential given in Appendix A. Eq. (3.28) describes the dynamics

of the widths and shows a competition among diffraction and nonlinearity, and can be adopted
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to study the stability of the optical light bullet through the medium. The existing stationary

solution describes the motion of a particle located at the bottom of the potential well. Given

the effective potential U(X, Y ), we have the equations

d2X

dt2
= −2

∂U(X,Y )

∂X
, (3.29a)

d2Y

dt2
= −2

∂U(X,Y )

∂X
, (3.29b)

which are equivalent to those describing the dynamics of a particle in two-dimensional potential

well.

Figure 3.6: Effective potential U versus (ε, δi) in panel (a), and versus (ε, µ) in panels (b) and

(c) for the parameters δ = −0.01059, β = 0.49, γi = 0.25118, ν = −1, and: (a) γr = 1.1087,

δr = −0.5074, µ = −.9, Xm = 1.3, (b) γr = 0.9, δr = −0.5074, δi = 0.04289, Xm = 1.3, (c)

γr = 0.9, δr = −0.35074, δi = 0.04289, Xm = 0.05.

When the nonlinearity exactly balances the diffraction, the curve of the potential shows an

extremum, which is an equilibrium solution [189]. In such a direction, the obtained effective

potential U , in the plane of nonlinear dissipative parameters, is depicted in Fig. 3.6, where

panel (a) describes the effective potential versus (ε, δi), while panels (b) and (c) show U versus

(ε,µ), confirming that the effective potential has a global minimum. This reveals the existence

of a stable stationary light bullet. This confirms as well the existence of the stationary soliton

solution corresponding to the optical dissipative soliton located at the bottom of the effective

potential well. From Figs. 3.6, we observe that the shape of the effective potential depend to
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the dissipative parameters as well as the soliton parameters. However, from Figs. 3.6(a)-3.6(c),

the blue domains of the potential well corresponding to the bottom of the effective potential

well (minima) are the domains of parameters for which the soliton can be trapped, and then, a

stable propagation can be achieved. These confirm the analytical predictions form Eqs. (3.24a)-

(3.24g). Fig. 3.6 presents two extrema, minima and maxima. Therefore, depending on the

dissipative parameters and the central position, the beam will be either trapped or diffracted.

The beam with initial condition corresponding to the point lying on the potential curve below

the maximum will always be trapped, therefore generating a light bullet [189]. Using the

variational method, it can be predicted that all beams initially around the minimum of the

potential well will form light bullets around its equilibrium condition, with initial condition

focusing until the turning point at the bottom region. The analysis of the potential well reveals

the existence of a stable equilibrium which plays the role of an attractor [171, 206].

Computer simulations are performed using the laser (2+1)D vectorial CQ-CGL equations

Eq. (3.17) by means of the split-step Fourier Method (SSFM).

In order to confirm the analytical predictions, the coupled (2+1)D cubic-quintic CGL Eqs.

(3.17) have been numerically solved by means of split-step Fourier method (SSFM) with a

time-step ∆t = 10−3, on a mesh of size 100× 100, with space-steps ∆x = ∆y = 0.01. The

used initial conditions are Gaussian trial function given by Eq. (3.21), with amplitude A = A−

(see Eq. (3.25)), the unequal spatial widths X given by Eq. (3.26) and Y = X/3, the unequal

wavefront curvature C given by Eq. (3.27) and S = C.

For a good choice of dissipative parameters in the vicinity of the effective potential of

Figs. 3.6, Figs. 3.7(a) and 3.7(d) show the spatial transverse profiles of the initial asymmetric

dissipative light bullets with corresponding values of parameters taken around the bottom of

the effective potential of Fig. 3.6(c), with δr = −0.35074, ϵ = 0.456, and µ = −0.98047. During

the evolution, we note a regular change from asymmetrical to a symmetrical light bullet for each
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Figure 3.7: Spatial profile of ψ+(x, y) (panels (a) to (c)) and ψ−(x, y) (panels (d) to (f)). (a)

and (d) correspond to t = 0, (b) and (e) correspond to t = 100, while (c) and (f) have been

recorded at time t = 50000, with the parameters: δ = −0.01059, β = 0.45, ε = 0.456, γr = 0.9,

γi = 0.25118, δi = 0.04289, δr = −0.35074, ν = −1, µ = −0.98047, and Xm = 10.
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Figure 3.8: The density profiles of the space-time behavior of ψ+ (panels (a) and (c)) and ψ−

(panels (b) and (d)). (a) and (b) correspond to Xm = 0.5 and γr = 0.9, while (c) and (d) give

the results related to Xm = 5 and γr = 1.109. The rest of parameters remains the same as in

Fig. 3.7.

solution ψ+ and ψ− (see Figs. 3.7(c) and 3.7(f)). We also observe a small shift of the central

position, accompanied with a reduction of the intensity of the solution during a short time of

propagation. Thereafter a stable propagation for longer time is observed. Figures 3.7(b) and

3.7(e) have been recorded at t = 100, and Figs. 3.7(c) and 3.7(f) correspond to t = 50000.

Follows these results, we can deduce that the analysis of the possibility of the soliton trapped in

the bottom of the effective potential can be a good criterium of the numerous important method,

that can helps to analyze the stability of the soliton solution of the coupled multi-dimensional

CQ-CGL equation.
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In order to evaluate the influence of dissipative parameters on the stable dynamics of our

predicted soliton solutions, the results of Figs. 3.8(a) and 3.8(b) have been obtained for γr = 0.9,

δr = −0.3074, ε = 0.456, µ = −0.98047, Xm = 1.5 (values of other parameters are the same as

in Fig. 3.7). Similarly to Fig. 3.7, we observe a small shift of the central position, a decreasing of

the widths and also a small reduction of the intensity during a short-time of propagation. Stable

dynamics for longer time of propagation is achieved as can observed in the figures. In order to

better appreciate the influence of the coupled terms on the light bullet stability, Figs. 3.8(c)

and 3.8(d) have been obtained for γr = 1.109, (values of other parameters are the same as in

Figs. 3.8(a) and 3.8(b)). A regime of stable evolution of solutions ψ+ (see Fig. 3.8(c)) and ψ−

(see Fig. 3.8(d)) is obtained in comparison to Figs. 3.8(a) and 3.8(b) for this value of coupled

coefficient.

Secondly, we evaluated the influence of the quintic-coupled term, and the results are sum-

marized in Fig. 3.9. Figures. 3.9(a) and 3.9(b) display the evolution of the cross-section of the

Figure 3.9: Wave space-time dynamics, which corroborates the stability of the dissipative light

bullets (a) ψ+(x, 0, t) and (b) ψ−(x, 0, t) obtained for the γr = 1.109 and δr = −0.15074, with

the other parameters keeping the similar values as in Fig. 3.7.

dissipative light bullets obtained from direct numerical simulations of the full coupled (2+1)D

CQ-CGL equation for δr = −0.15074, ε = 0.49, µ = −0.9, Xm = 10 while the other pa-
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rameters remain the same as in Figs. 3.8(c) and 3.8(d). Figs. 3.9(a) and 3.9(b) show the

generation of the second couple of light bullets with stable evolution. We depict the genera-

tion of the second pulse when the stable regime started. The stable evolution of those coupled

soliton solutions is an illustration of the stable characteristic of our sustem. In order to have a

stable evolution of the coupled dissipative light bullets, we need the balance between gain/loss,

diffraction/nonlinearity and, as shown our analysis, the balance between the coupled effects.

In Fig. 3.10, we have summarized the stable evolution the dissipative light bullets. The

obtained (2+1)D stable coupled spatial dissipative light bullets are among new interesting

dynamical aspects of laser optics. We have realized through numerical simulations that the

intensity of the initially generated asymmetric light bullets (see Figs. 3.10(a) and 3.10(b))

decreases in the beginning (see Figs. 3.10(c) and 3.10(d)), which is followed thereafter by

the reconstitution of the coupled light bullets when the coupling changes (see Figs. 3.10(e)

and 3.10(f)). This gets more pronounced when time increases and remains very sensitive to the

coupling parameters, leading to a stable evolution of the light bullets over longtime propagation

(see Figs. 3.10(g) and 3.10(h)).

We have reported the comprehensive analysis of the formation of vector light bullets in an

optical nonlinear medium described by a set of (2+1)D cubic-quintic CGL equations. Through

the variational method, we have performed the theoretical analysis using a Gaussian trial

function as solution, and we have obtained seven coupled first-order differential equations whose

solutions have been discussed. Such analytical results have been confronted to direct numerical

simulations via the the split-step Fourier method, where we have successfully shown that the

system is able to interchange energy to keep both light bullets bounded, this under the balance

between gain/losses, dispersion/diffraction and nonlinearities. Under such conditions, we have

noticed the emergence of asymmetric dissipative light bullets and their disintegration on one

hand, and stable evolution of the coupled dissipative light bullets on the other hand. Moreover,

Alain DJAZET Ph.D-Thesis



Chapter III: Results and Discussions 83

Figure 3.10: (2+1)D spatial profiles of the light bullet intensities |ψ+(x, y)|2 (left column) and

|ψ−(x, y)|2 (right column) obtained from direct simulation of Eq. (3.18) at times t = 0 [(a)

and (b)], t = 10 [(c) and (d)], t = 25 [(e) and (f)], and t = 50000 [(g) and (h)], with the

set of parameters: δ = −0.01059, β = 0.45, ε = 0.49, γr = 0.9, γi = 0.25118, δi = 0.04289,

δr = −0.25074, ν = −1, µ = −0.9, and Xm = 10.
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the formation of (2+1)D stable coupled spatial dissipative light bullets has been detected. They

have been found to be very sensitive to coupling parameters, whose impact on the long-time

dynamics was pronounced. However, this implies new interesting dynamical aspects of laser

optics, since the involved coupling mechanism can be adopted as a tool to generate appropriate

stabilized vector light bullets which could be otherwise difficult to obtain.

3.3.2 Variational approach for coupled (2+1)D cubic-quintic complex

Ginzburg-Landau model for a moving symmetric lattices

We also investigate the propagation characteristics and stabilization of moving-Gaussian pulse

in laser media in order to understand the dynamical properties of the vector moving dissipative

solitons for several dynamical regimes of the coupled (2+1)D CQ-CQGL equation [199]. The

theoretical method to investigate the two spin components of a coupled (2+1)D CQGL equation

is the variational approach. Therefore, we look for solutions of Eq. (3.18) in the symmetric

gaussian form [170, 199, 206], as

ψ± = A exp

{
−(x±X0)

2 + y2

2X2
+ i[2C((x±X0)

2 + y2)±N(x±X0) + φ]

}
, (3.30)

where A is the amplitude, X is the spatial width, C is the unequal wavefront curvature, X0

is the central position, φ is the phase and N accounts for the motion of the soliton along the

transverse direction.

Hence, the corresponding set of six Euler-Lagrange equations are

dA

dt
= −3

4
A3ε+

2A2β

X2
− 5

9
A5µ+ 4AC + AβN2 − δA+

(
−1 +

1

2X2
+
X2

0

X2

)
A3γie

− 2X2
0

X2

+

(
8X2

0

9X2
− 1 +

1

2X2

)
A5δie

− 8X2
0

3X2 ,

(3.31a)
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dX

dt
= −1

4
A2Xε− β

X
+

2

9
A4Xµ+ 4XC

(
βCX2 − 1

)
+

1

2

(
−X +

1

X
+

2X2
0

X

)
A2γie

− 2X2
0

X2

+

(
16X2

0

9X
− 1 +

1

X

)
A4δie

− 8X2
0

3X2 ,

(3.31b)

dC

dt
= − 1

4X2
A2 − 2

9X2
A4ν +

4βC

X2
+
γrA

2

X2

(
X2

0

X2
− 1

4

)
e−

2X2
0

X2 +
2δrA

4

3X2

(
8X2

0

9X2
− 1

)
e−

8X2
0

3X2 − 1

X4

+ 4C2,

(3.31c)

dN

dt
= 2Nβ

(
1

X2
+ 4X2C2

)
+ (2γiC − γr

X2
)A2X0e

− 2X2
0

X2 +

(
δiC − δr

X2

)
16A4X0

9
e−

8X2
0

3X2 ,

(3.31d)

dX0

dt
= 2Nβ

(
−1 + 2X2C

)
+ γiA

2X0e
− 2X2

0
X2 +

8δiA
4X0

9
e−

8X2
0

3X2 , (3.31e)

dφ

dt
= 1 + 4βC

(
NX2 − 1

)
+

5

9
A4ν +

3

4
A2 +

2

X2
−N2 +

(
γiNX0 +

3γr
4

− γrX
2
0

X2

)
A2e−

X2
0

X2

+
1

3

(
8δiNX0

3
+ 5δr −

16δrX
2
0

3X2

)
A4e−

8X2
0

3X2 .

(3.31f)

Evidently, the variational technique reveals the interaction between the symmetric gaussian

waves and the laser system, including the additional relevant effects, during propagation. The

dynamics of the entire soliton can be greatly affected during the propagation.

However, as well as the theoretical analysis shows the influence of the system on the dissipative

soliton dynamics, explicit information related to the different solutions and their stability cannot

be obtained at this stage of the analytical procedure.

The steady-state solutions of the system of Eqs. (3.31a) to (3.31e) are obtained by setting

the derivatives of soliton parameters with respect to time, to zero. Taking X0 = 0, for more

simplicity, and after some algebra, we obtain the following solutions that give:

i) the amplitude

A =
3

2

√
− 1 + γr
2(ν + 3δr)

, (3.32)
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ii) the width

X =

[
((18βδi + 24δr) + 8(βµ− ν))A4 + 9(β(ε− γi)− 1− γr)A

2

36(2(1 + β2) + βA2

2
(γi + A2δi))

]−1/2

, (3.33)

iii) the soliton velocity

N =

√
δ + 1

2
(γi + ε)A2 + ( δi

2
+ µ

3
)A4

β
, (3.34)

iv) the unequal wavefront curvature

C =
1

2βX2
, (3.35)

necessary to build the steady-state solution.

The stability analysis of the moving dissipative soliton is performed through the effective

potential (see Appendix B).Doing so, we first investigate the possibility of the soliton trapped

at the bottom of the effective potential well.

Figure 3.11: Potential U(ε, µ) for the following set of parameters: ν = −1, X0 = 12.5; (a)

δ = −0.159, γr = 1.1087, γi = 0.2118, β = 0.0159, δi = 0.1289, δr = −0.5074, (b) δ = −0.13761,

γr = 1.0535, γi = 0.1001, β = 0.1761, δi = 0.43, δr = −0.5016.

The analysis of the possibility of the soliton to be trapped in the well is presented in

Fig. 3.11. The used parameters correspond to the population inversion decay rate γ|| = 107s−1,

polarization decay rate γ⊥ = 3.9 × 109s−1, the cavity loss κ = 9.9 × 107s−1 and the lasing

wavelength λ = 10.6 µm [209], together with the atomic transition frequency ωa = 0.2×108s−1

for Fig. 3.11(a), and ωa = 2.5 × 108s−1 for Fig. 3.11(b). From Figs. 3.11(a) and 3.11(b), we
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can observe the appearance of two domains of instability (plane domain with zero potential

and the domain of maximum potential), and the stability domain with minimum values of the

effective potential, where the soliton can be trapped. For a good choice of dissipative parameters,

belonging to the stable domain (bottom of the effective potential), the generated symmetric

gaussian input solution will be self-trapped and will shows a stable propagation.

The time evolution of the solution parameters has been numerically investigated by means of

the fourth-order Runge-Kutta computational method.The results displayed in Figs. 3.12(a)and

3.12(b) show that the amplitude A, the widthX, the velocity N , and the unequal wavefront cur-

vature C evolve with a slight change at the beginning of their propagation. From Figs. 3.12(c)

and 3.12(d) (showing the input/output of the two solutions), one sees the increasing of the

widths, slight decrease of the intensities and the shift of the central position corresponding to

the two solutions. Despite this slight difference, the variational analysis gives a qualitative de-

tailed picture of the role and mode of action of each perturbation (such as coupled, diffraction,

self-phase modulation, loss or gain) on the pulse during propagation. Using parameters corre-

sponding to the stable domain of Fig. 3.11(b) (bottom of the effective potential), we obtain

Figs. 3.13(a) and 3.13(b). They present a stable evolution of the intensities of the coupled

moving dissipative solitons ψ− and ψ+ during propagation in the space-time domain. In fact,

each profile carry some information that is given by it spectral profile. The spectral profile

Figs. 3.13(c) and 3.13(d) show the corresponding spectral evolution of Figs. 3.13(a) and

3.13(b). Albeit the initial shift of their central position, which is in agreement with the analyti-

cal predictions (see Eqs. (3.31a)-(3.31f)) concerning particularly the influence of the dissipative

parameters on the solitons central position and the speed parameters, together with Fig. 3.11,

solitons remain stable during propagation. However, as we have noted, a continuous shift of

the initial central position during propagation, the corresponding spectral dynamics presents

constant central position (see Figs. 3.13(c) and 3.13(d)).
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Figure 3.12: Panels (a) and (b) display the evolution of the amplitude, the pulse widths, the

chirp, the unequal wavefront curvatures, the velocity, the central position and the phase with

respect to t. Panels (c) and (d) depict the input/output profiles of the solutions ψ+ and ψ− for

the following set of parameters: δ = −0.159, γr = 1.1087, γi = 0.2118, ν = −1, β = 0.0159,

δi = 0.1289, δr = −0.5074, and the initial central position X0 = 2.5.
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Figure 3.13: Panels (a) and (b) show the three dimensional spatial evolution as predicted by the

stability of the dissipative soliton trapped in the potential well. Panels (c) and (d) display their

corresponding spectral evolution V− and V+, respectively for the values of parameters ε = 0.72,

µ = −0.728 and X0 = 15.5.

It is well known that, in the case of the CQ-CGL equation, there can be several stable

solutions existing for the same set of parameters. It means that the characteristics of this

behavior are also given by the parameters of the system. Here we restrict ourselves to localized

solutions, i.e., dissipative solitons of CGL equation, the variety of these objects is still not

known in its full complexity although the regions of soliton existence have been studied quite

extensively [130]. Stable harmonic time evolution of solutions ψ+ and ψ− are shown in Figs.

3.14(a) and 3.14(b). So the results are confirmed by the prediction of Haken [210], showing

that the lasers are stable systems. Fig. 3.14(b) with its corresponding spectral evolution shown

in Fig. 3.14(d) reveal the moving harmonic dynamics. On the other hand, Figs. 3.14(a)

and the corresponding spectral evolution (see Fig. 3.14(c)), related to the solution ψ+, show

a stationary harmonic evolution with large period, compared to ψ− solution. This coherent

evolution is an important property of laser systems, and are used in some applications such as

holography and interferometry [211, 212]. When carefully adjusting the nonlinear parameters
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Figure 3.14: Panels (a) and (b) are the periodic evolution of max(ψ+(t)) and max(ψ−(t)) of

the dissipative soliton obtained by direct numerical simulation of Eq. (13). The correspond-

ing spectral evolution max(V+(t)) and max(V−(t)) are presented in panels (c) and (d), with

δr = −0.25016, ε = 0.72, and µ = −0.73, while the rest of parameters remains the same in

Figs. 3.11(b).

Figure 3.15: Potential U(ε, µ), as a function ε and µ, for δr = −0.25016. The other parameters

remain unchanged as in Fig. 3.11(b).
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around the bottom of the effective potential well, a typical optical evolution of the solution is

depicted and displayed in Figs. 3.16(a) and 3.16(b), for the maximum values of ψ+ and ψ−,

respectively. Their corresponding spectral evolutions are given in Figs. 3.16(c) and 3.16(d).

The variational results shows that, during the dynamic, the central position is affected by

the dissipative parameters, and the the soliton parameter. Also, the analysis of the effective

potential shown that the soliton can be traps in the bottom of the effective potential. Figs. 3.14

and 3.16 leads to a good agreement both for analytical and numerical results. In fact, a periodic

evolution is noted in Fig. 3.14 using parameters taken from the bottom of the potential well.

When shifting such values,we observe a gradually change of periodicity of the solutions ψ+ and

ψ−, which indicates a gradually lost of stability as presented in Fig. 3.16. Interestingly, similar

result was experimentally obtained by Cohen et al. [213], using a semiconductor laser with

quasi-periodic dynamics induced by external optical feedback from a cavity with two arms, also

known as the T-cavity. They showed the existence of frequency shifts in the spectrum occurring

in the optical domain, therefore given the way for the development of novel laser-feedback-based

devices with the capability for subwavelength, nanoscale, multidimensional position sensing.

Figures. 3.17(a), 3.17(c) and 3.17(e) for |ψ+(x, y)|2, and Figs. 3.17(b), 3.17(d) and

3.17(f) for |ψ−(x, y)|2 present the three-dimensional evolution of the dynamics given in Figs.

3.14(a) and 3.14(b), and reveal the formation of alternate structures, that had been predicted

and observed in the CO2 laser [214].

Fig. 3.18 presents profiles of dissipative solitons at different propagation times. The ob-

tained 3D stable spatiotemporal optical solitons, by direct numerical simulations,are among

new interesting dynamical aspects of dissipative optical solitons. The results are obtained with

X0 = 12.5, δr = −0.3, and the rest of parameters are the same as those of Fig. 3.17. We

observe that when carefully adjusting the value of δr, the initial symmetric solution (see Figs.

3.18(a) and 3.18(b)) evolves toward a new stable formation with a non-smooth vertex top
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Figure 3.16: Panels (a) and (b) show the quasi-periodic evolution ofmax(ψ+(t)) andmax(ψ−(t))

of the dissipative soliton by direct numerical simulation of Eq. (13). The corresponding spectrals

evolution max(V+(t)) and max(V−(t)) are presented in panels (c) and (d), with δr = −0.25016,

ε = 0.63051 and µ = −0.728. The rest of parameters are taken from Fig. 3.11(b).

Figure 3.17: Spatial profiles of the solution ψ+(x, y) (upper line) and ψ−(x, y) (bottom line )

at different steps of the evolution: (a) and (b) T = 0, (c) and (d) T = 4, (e) and (f) T = 10000

, using the following parameters: δ = −0.13761, β = 0.1761, ε = 0.7, γr = 1.0535, γi = 0.1001,

δi = 0.043, δr = −0.25016, ν = −1, µ = −0.73, and X0 = 2.5.

Alain DJAZET Ph.D-Thesis



Chapter III: Results and Discussions 93

Figure 3.18: Spatial profile of the solution ψ+(x, y) (upper line) and ψ−(x, y) (bottom line )

at different steps of the evolution: (a) and (b) T = 0, (c) and (d) T = 15000, (e) and (f)

T = 30000 , using the following parameters values: δ = −0.13761, β = 0.1761, ε = 0.7,

γr = 1.0535, γi = 0.1001, δi = 0.043, δr = −0.3, ν = −1, µ = −0.73, and X0 = 12.5.

profile. Recently, a similar result was obtained by Djoko et al. [215]. They showed that such

profiles are stable and can be considered as potential objet for long-distance transmission in

communication systems. These stable structures can be a good candidates for laser devices.In

order to confirm the results of Fig. 3.18, Fig. 3.19 displays the spectral evolution of the solu-

tion given in Fig. 3.18, and it follows that, in spite of the non-smooth vertex top profile, those

profiles remain stable. These structures can be a good candidates for class B laser devices.

By the means of the effective potential of the system, we have shown that solitons can be

trapped in the potential well, leading to a good agreement between analytical and numerical

results. In such dissipative systems, Cross-compensation involving self-focusing, loss/gain and

coupled effects appear as a stabilization mechanism of the controllable behavior of induced

optical vector moving solitons during propagation. As the stability criterium is based on the

possibility of the soliton trapped in the bottom of the potential well, an appropriate choice
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Figure 3.19: Spectral profile |V+|2 (upper line) and |V−|2 (bottom line ) of the results of Fig.

8, at different steps of the evolution: (a) and (b) T = 0, (c) and (d) T = 15000, (e) and (f)

T = 30000.

of parameters in the bottom of the effective potential leads to the generation light bullet,

harmonic, and quasi-periodic stable evolution, characteristic of laser system. Consequently, the

generation of the coupled moving dissipative solitons is well described by the coupled CQGL.

Since the results obtained in this work revealed the formation of alternate structures (pulse

and pulse trains, periodic and quasi-periodic dynamic), that had been predicted and observed

in the CO2 laser, and the coherent evolution which are known to be an important property of

the laser system, they could be of great importance for technology advances related to the laser

systems in order to increase their capabilities. In addition, they allow the development of novel

laser-feedback-based devices with the capability for subwavelength, nanoscale, multidimensional

position sensing. Also, since the obtained non-smooth vertex top profile have been proved to

be stable during propagation,these structures could also be considered as potential candidates

for laser devices.
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3.4 Conclusion

In this chapter, we have performed a detailed analytical and numerical studies of dissipative

optical soliton in optical media modeled by the (2+1)D CQ-CGL equation, and the coupled

(2+1)D CQ-CGL equation with SPM and XPM. By the variational approximation method ac-

companied by the stability method (the RH criterion, effective potential), we have obtained a

set of parameters, for which the system can generate and propagate a multidimensional stable

solitons. The direct numerical simulations of the CQ-CGL model present a good agreement

with the analytical prediction, and reveal the stable propagation of light bullet,periodic, and

pseudo-periodic dynamic, and the generation of stable pulse trains. The variational approach

has been performed, first by the use of the standard Gaussian pulse, after the moving Gaussian

solution. The stability analysis based on the possibility of the soliton trapped in the bottom

of the effective potential showed a good agreement with direct numerical simulations of the

coupled (2+1D CQ-CGL equation. The original results reported in this thesis are timely and

relevant for long-haul communication systems. The opportunity to treat analytically and nu-

merically asymmetrical input pulses propagating toward stable and robust dissipative soliton,

opens possibilities for diverse practical applications for conception of all-optical transmission

systems, signal processing, and mode-locked laser generating ultrashort pulses.
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General Conclusion

In this thesis, we have studied the formation and stability of new classes of spatial/spatiotemporal

optical dissipative solitons. This has been done in the framework of the (2+1)-dimensional cubic-

quintic complex Ginzburg-Landau[(2+1)D CQ-CGL], and coupled (2+1)D CQ-CGL equation

that we have derived. The first equation ((2+1)D CQ-CGL equation), which modeled the

propagation of ultrashort optical soliton in laser system, includes the effects of two-dimensional

transverse diffraction of the beam, and its evolution along the laser system. By means of the

variational approach associated to a good choice of two moving non symmetrical gaussian solu-

tions, we have derived a set of ordinary differential equations describing the pulse parameters

evolution inside the optical system. The equations have been solved for the particular symmetric

case, and by means of the Routh-Hurwith stability criterium, the stability condition has been

derived. From the parameters belonging to the stability domain, the numerical simulations of

the (2+1)D CQ-CGL equation showed the generation of localized solution, that move stably

during the propagation.

In the second step, starting with the well-known Maxwell-Bloch equation modeling the

interaction between the electric wave and the material inside the laser cavity, by considering the

vectorial characteristic of the electric wave, we have first derived the vectorial (3+1)-dimensional

CQ-CGL equation. After some approximations, the model is transformed to a coupled (2+1)D

CQ-CGL equation describing the circular polarized components of the electric wave inside the

laser cavity. The coupled (2+1)D CQ-CGL model include: third-, and fourth- order coupling
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terms, the cubic-, quintic nonlinearities, the diffusion, in addition to the linear loss/gain terms.

To investigate the possibility of solitons formation, our numerical investigations of the evolu-

tion of the pulse along a laser cavity have been carried out first by the means of the variational

approximation method, which with the help of the numerical method, allows us to investi-

gate the stability domains of parameters by which, our system can propagate. Moreover, a

fully direct numerical simulation of the coupled (2+1)D CQ-CGL equation using the split-step

Fourier method, finally tests the results of the stability analysis. The fourth-order Runge-Kutta

method, allows us to integrate the system of first order differential equations obtained by the

variational approach. The obtained variational equations show clearly how the pulse parameters

are affected by the physical system during the propagation. Moreover, a fully direct numerical

simulation of the coupled (2+1)D CQ-CGL equation using the split-step Fourier method, fi-

nally tests the results of the variational approach. The different cases obtained, also permitted

us to realize that the analytical and numerical treatment reveal the balance between gains and

losses, interplay between coupled, diffraction and nonlinearities. Then, the vector dissipative

light bullet can propagate in laser cavity due to the balance between nonlinearities and coupled.

To achieve our goals in this second step of our work, we used the variational approach

with the standard non symmetric Gaussian form of the spatiotemporal optical field to obtain

a set of differential equations characterizing the variation of the pulse parameters in laser

cavity. Secondly, we have investigated the propagation characteristics and stabilization of the

symmetric and elliptic moving-Gaussian pulse in coupled cubic-quintic nonlinear media with

third-, and fourth- order cross terms.

For some choice of parameters, in the case of the Gaussian form of the pulse, both dissipative

light bullets and double-bullet for coupled regime were obtained, by using extensive numerical

simulations. Then, by studying the propagation characteristics and stabilization of generalized-

Gaussian pulse based on coupled (2+1)-dimensional cubic-quintic complex Ginzburg-Landau
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equation, we have presented new numerical solutions of 3D stable vectorial optical bullets.

Also, with a symmetric moving Gaussian form of the spatiotemporal optical field, by exten-

sive analytical and numerical simulations, we have observed the generation one, two- shifting

soliton, and the formation with a non-smooth vertex top profile, periodic and pseudo-periodic

dynamics by the coupled (2+1)-dimensional CQ-CGL equation. We have discussed the theo-

retical generation of dissipative solitons and have made extensive use of numerical simulations

with various parameters to discuss the various structures that arise from the higher dimen-

sional CQ-CGL equation. The stability analysis have been done using the plot of the potential

function of the problem to show the existence of a stable stationary soliton.

The results have confirmed that, dissipative optical solitons that have been formed under

the combined interplay between diffusion, gain, loss, cubic and quintic coupled effect, and cubic-

quintic nonlinearities are good candidates for CO2 laser, and found application in the industrial

treatment, such as thermal treatment, cutting, etc.

This work may be interesting for all those, whether professionals or not, who want to

refresh their knowledge and obtain information or find the appropriate keys for the better

understanding of dissipative solitons.

Open problems and future directions

At the end of this work, numerous points related to this topic remain unsolved, and then

may be subject to future investigations.

-The numerical simulation of the Maxwell-Bloch equations,

- the generation of patterns formations such as the topological defect,

- the criterium of the generation of stable vortex solutions,

- and the analysis of the effect of non-locality inside the laser cavity.

The analysis can also be applied for other type of class B laser such as

- HeNe: λ = 633nm, GaAs: λ = 904,
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- YAG:Nd: λ = 1064 or 532nm, etc.., that found application in medicine, communication,

industry (laser printer, smoke detector, etc...). where λ is the laser wavelength.
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Appendix A:

In this Appendix, we present the effective potential derived from Eqs. (3.24a)-(3.24g):
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Appendix B:

The effective potential derived from Eqs. (3.31a) to (3.31e).
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Abstract. Pulse propagating in inhomogeneous nonlinear media with linear/nonlinear gain and loss
described by the asymmetrical (2 + 1)-dimensional cubic-quintic Ginzburg-Landau equation is considered.
The evolution and the stability of the dissipative optical solitons generated from an asymmetric input with
respect to two transverse coordinates x and y are studied. Our approach is based on the variational method.
This approach allows us to analyze the influence of various physical parameters on the dynamics of the
propagating signal and its relevant parameters. According to the parameters of the system and a suitable
choice of the test function, a domain of dissipative parameters for stable solitonic solutions is determined.
Bifurcation diagrams related to the existence of the stationary solutions presented show a good agreement
between analytical and numerical results.

1 Introduction

Since the word solitons was coined in 1965, the field of soli-
tons in general and the one of optical solitons in particular
have grown enormously. In the context of nonlinear optics,
solitons are classified as being either temporal or spatial,
depending on whether the confinement of light occurs in
time or space during wave propagation [1]. The temporal
solitons are the optical pulses that maintain their shape
in the temporal domain [2,3], whereas spatial solitons rep-
resent self-guide beams that remain confined in the trans-
verse directions orthogonal to the direction of propagation
[4–6]. The earliest example of spatial solitons corresponds
to the 1964 discovery of the nonlinear phenomenon of
self-trapping of continuous-wave (CW) optical beams in a
bulk nonlinear medium [7,8]. Self-trapping was not linked
to the concept of spatial solitons immediately because
of its unstable nature. During the 1980s, stable spatial
solitons were observed using nonlinear media in which
diffraction was limited to only one transverse dimension
[8]. On the other hand, solitons in Bose-Einstein con-
densates represent coherent atomic structures due to the
competition between the spreading caused by its kinetic
energy and the attracting interaction potential [9,10]. The
uniqueness of solitons lies in the fact that they are robust
objects exhibiting particle-like properties during the

a e-mail: sergefewo@yahoo.fr

collisions [11,12]. Such solitons, originating from inte-
grable nonlinear models, collide elastically [13]. It should
be specified that dissipative systems in nonlinear optics
admit stable solitons in one, two, and three dimensions
[14–17]. Dissipative solitons have been widely studied in
nonlinear optics, from fundamental point of view and due
to the clear physical meaning in applications. Among oth-
ers, several important applications of dissipative solitons
are reachable in passively mode-locked laser systems and
optical transmission lines.

The complex Ginzburg-Landau Equation (CGLE) was
originally developed in the context of particle physics as
a model of super-conductivity, and has since been widely
used as a prototypical model for nonlinear wave propaga-
tion and pattern formation [14,15,18]. The CGLE may be
viewed as an extension of the nonlinear Schrödinger (NLS)
equation. Accordingly, it can describe a broad range of
behaviors suggested by the NLS dynamics, ranging from
chaos and pattern formation [19,20] to dissipative solitons
[21]. While solitons in conservative systems are supported
by the balance between the linear effects and the nonlin-
earity, dissipative solitons require an additional balance
between linear/nonlinear loss and gain [22,23]. Thus, they
do not form continuous families, but represent isolated
attractors. Recently, considerable efforts were focused on
the prediction of setting supporting stable multidimen-
sional localized patterns [16,17,24–27]. The CGLE with a
potential term as a model of dissipative solitons has been

https://epjd.epj.org
https://doi.org/10.1140/epjd/e2020-100467-7
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used recently to study stable two-dimensional localized
structures existing due to balance between gain and loss in
nonlinear systems far from equilibrium. New mechanism
of replication of both dissipative solitons and dissipative
vortices has been performed [28]. Moreover, a mecha-
nism performing nontrivial topological transformations by
applying an external potential which changes topological
characteristics of dissipative vortices in a controllable way
is proposed. It is found that, in a highly nonequilibrium
state, driven by an external potential, various topologi-
cal excitations emerge and decay. In addition, fascinating
transformations of topological structures are possible due
to the fact that the energy of the vortex excitations is not
conserved [29].

The properties and conditions of their existence have
been studied extensively [25,30–33]. Some recent works
have analyzed the effect of competing dissipative parame-
ters on the existence and stability of solitons. It has been
shown that the simultaneous presence of linear/nonlinear
loss and gain leads to the stabilization of complex soli-
tons structures [16,17,25,34–38]. The main purpose of this
work is to extend the stability analysis of the moving
asymmetrical dissipative solitons taking into consideration
two additional relevant parameters in the definition of the
function of study, accounting for the central position and
the motion of the soliton. They are put together in addi-
tion to the usually used parameters such as the amplitude,
spatial width, unequal wavefront curvature and phase [33].

This paper is organized as follows: the derivation of the
dynamical equations of the solution parameters, and the
analytical stationary solution of the system are presented
in Section 2. In Section 3, we present the general sta-
bility condition of the solutions of the dynamical equa-
tions based on the Routh-Hurwitz method. Section 4 is
devoted to the numerical investigations. Particularly, ana-
lytical results are numerically solved leading to the obser-
vation of the domain of stability/instability of dissipative
solitons, for various parameters of the dissipative system.
Moreover, bifurcation diagrams of the stationary solution
are also obtained numerically and compared to the ana-
lytical results, which showed a good agreement. Finally,
Section 5 concludes the paper.

2 Analytical treatment

We consider the propagation of a two-dimensional beam
with the slowly varying envelope ψ = ψ(x, y, z), where
x, y and z are transverse and longitudinal coordinates,
respectively. The model of dissipative soliton is the
(2 + 1) dimensional CQGLE which describes a wide range
of physical phenomena in various systems. This model
takes into account the cubic and the quintic nonlineari-
ties, and the spatial diffraction in the transverse coordi-
nates. In the paraxial wave approximation, the normalized
propagation equation reads [32,33]:

i
∂ψ

∂z
+
∂2ψ

∂x2
+
∂2ψ

∂y2
+ |ψ|2ψ − ν|ψ|4ψ = Q, (1)

with

Q = i

[
δψ + µ|ψ|4ψ + ε|ψ|2ψ + β

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)]
. (2)

The left-hand-side of equation (1) contains the conserva-
tive terms. The parameter ν is the saturation coefficient of
the Kerr nonlinearity. The right hand side of equation (1)
accounts for the dissipative terms. The parameter δ repre-
sents the linear gain/loss depending on the sign (δ < 0 for
linear loss) and β > 0 accounts for diffusive coefficient.
The cubic and quintic gain-loss parameters are respec-
tively ε and µ. The last term in equation (2) accounts for
the diffusive term. The generation of dissipative solitons
needs as prerequisite a simultaneous balance of the diffrac-
tion with the self-focusing as well as gain and loss. The
present paper deals with the study of the existence of the
stationary solution, including additional relevant param-
eters (the central position, and the linear frequency) in
comparison with some commonly used analytical soliton
solutions. This is performed in some aspects using a simi-
lar approach reported by Skarka et al. [33]. Moreover, we
extend our study in the characterization of the evolution
of the single parameters of the dissipative solitons as it
propagates in the medium. This leads to a general picture
of the stability conditions of the solitons as a function of
the several dissipative parameters.

In order to describe the dynamics of the pulse evolution,
various analytical treatments have been proposed, includ-
ing the variational method [16,17,38,39]. Since the nonlin-
ear propagation model (Eq. (1)) cannot be solved exactly,
the most commonly used direct method is the so-called
variational approach. This approach for optical solitons
is applied by considering the averaged Lagrangian of the
conservative system, where the conservative Lagrangian
density is given by,

lc =
i

2
(ψ∗

∂ψ

∂z
−ψ∂ψ

∗

∂z
) +
∣∣∣∣∂ψ∂x

∣∣∣∣2 +
∣∣∣∣∂ψ∂y

∣∣∣∣2 +
1
2
|ψ|4− ν

3
|ψ|6,

(3)
and the dissipative one

lQ = i(δ|ψ|2 + β(
∣∣∣∣∂ψ∂x

∣∣∣∣2 +
∣∣∣∣∂ψ∂y

∣∣∣∣2) +
ε

2
|ψ|4 +

µ

3
|ψ|6). (4)

Since the main objective of the present work is to ana-
lyze the influence of the central position and the linear
frequency on the stability of the 2D spatial optical dissi-
pative solitons, the following ansatz has been used [40–42].

ψ = A exp
{
− (x−X2)2

2X2
− (y −X2)2

2Y 2
+ iC(x−X2)2

+ iS(y −X2)2 + iY2(x−X2) + iY2(y −X2) + iφ

}
,

(5)

where A is the amplitude, X and Y are the spatial widths,
C and S are the unequal wavefront curvature, X2 the cen-
tral position, φ is the phase and Y2 account for the motion
of the soliton along the direction of x and y, all function
of the independent variable z.

We now focus on the analytical technique in order to
perform the analytical description of the model, and then

https://www.epjd.epj.org
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characterize the solutions depending on the various dissi-
pative parameters. Optimization of each function in equa-
tion (5) gives an Euler-Lagrange equation over transverse
coordinates x and y [39,43–46]

d

dz

∂Lc

∂
·
η
− ∂Lc

∂η
= 2<e

∫ ∫
dxdxQ

∂ψ∗

∂η
, (6)

where Lc =
∫ ∫

lcdxdy is the conservative Lagrangian, <e
denotes the real part and (∗) denotes the complex conju-
gate, while η = A,X, Y,C, S, Y2, X2, ϕ and η̇ = dη

dz ·
The application of the variational approach to the par-

tial differential (2+1)D CQCGL equation leads to a set of
eight coupled first-order differential equations (FODEs)
resulting from the variation with respect to the linear
frequency, unequal spatial widths, the unequal wavefront
curvature, the amplitude, the central position and the
phase respectively:

dY2

dz
= −2βY2

Y 2
+ δY2 −

2βY2

X2
− 2βC2X2Y2 − 2βS2Y 2Y2,

(7)
dX

dz
= 4CX − 2βC2X3 − ε

4
A2X +

2β
X

+
δ

2
X − 2µ

9
A4X,

(8)
dY

dz
= 4SY − 2βS2Y 3 − ε

4
A2Y +

2β
Y

+
δ

2
Y − 2µ

9
A4Y,

(9)

dC

dz
= −1

3
A2

X2
+

4
X4

+
4ν
9
A4

X2
− 4C2 − 8β

C

X2
, (10)

dS

dz
= −1

3
A2

Y 2
+

4
Y 4

+
4ν
9
A4

Y 2
− 4S2 − 8β

S

Y 2
, (11)

dA

dz
= −2A(C + S) +

8µ
9
A5 +

5ε
4
A3 − 4βAY 2

2 − 3β
A

Y 2

+
δ

2
A− 3β

A

X2
− βAC2X2 − βAS2Y 2, (12)

dX2

dz
= 2Y2 − βCX2Y2 − βSY 2Y2, (13)

dφ

dz
=

1
2
A2 − 2

X2
− 2
Y 2
− 5ν

9
A4 + 2βC + 2βS + 2Y 2

2

− 2βCX2Y 2
2 − 2βSY 2Y 2

2 . (14)

As can be seen, the additional parameters X2 and Y2 (cen-
tral position and the speeds) influence the dynamics of the
other parameters of the soliton (in comparison to some
previous works [33]). Consequently, it is the dynamics of
the entire soliton which can be greatly affected during
propagation in the system. However, explicit information
regarding the different solutions and their stability can
not be gained at this stage of the analytical procedure.

Looking for steady state solutions of the system given by
equations (7)–(12), the derivatives of soliton parameters
with respect to z are set equal to zero. Thus, after some
algebra we obtained the steady state amplitude (Eq. (15))
with two discrete values A+ and A− steady state solu-
tions. We note that only the symmetric steady state solu-
tions, with equal widths (X = Y ) and spatial chirps
(C = S) have been considered. For convenience reasons,

the higher coupled term has been neglected, and the dis-
sipative parameters are considered as θ = max(β, δ, ε, µ).

A± =



β
(

4

3
+ 2βε

)
±

√

β2
(

4

3
+ 2βε

)2
−

256δβ

9
(1 + 2β2)(−βµ + ν)




1/2

(
92β

β
(−βµ + ν)

)−1/2
+ 0

(
θ
2
)
. (15)

Figure 1 presents the region of existence of the station-
ary solutions in the space of the dissipative parameters
respectively in the case of β = 0.5, δ = −0.1, ν = 0.72 (see
Fig. 1a) and the case of β = 0.05, δ = −1, ν = 0.72 (see
Fig. 1b) in the plane of (µ, ε) parameters. We obtained
the width

X =
2
√

2 + 2β2√
4
9 (βν − µ)A4 + ( 1

2 + 1
3βε)A

2 + δ
β

, (16)

the linear frequency

Y2 =
1
6

√
9A2ε

β
+

6A4µ

β
, (17)

and the chirp

C =
4
9

(βν + µ)A4 +
(

1
2
ε− 1

3
β

)
A2. (18)

It is important to point out that the balance between
the gain/loss and the diffraction with saturating nonlin-
earity can lead to a fixed steady state solution only for
non zero curvature, which is not the case with conserva-
tive systems [47–49].

Using the previous equations, the steady state power
(P =

∫ ∫
|ψ|2dxdy = A2XY ) is therefore defined as:

P = 8A2(1+β)
(

4
9

(βµ− ν)A4 +
(

1
2

+
βε

3

)
A2 +

δ

β

)−1

.

(19)
It is important to point out that the used ansatz

(Eq. (5)) is a simplification of a general form (Eq. (20))
where the central positions and the soliton speed may be
taken different in the two transverse axis x and y. There-
fore, we consider the following solution

ψ = A exp

{
− (x−X2)2

2X2
− (y − Y22)2

2Y 2
+ iC(x−X2)2

+ iS(y − Y22)2 + iX3(x−X2) + iY2(y − Y22) + iφ

}
,

(20)

where additional parameters Y22 account for the central
position coordinate in the y direction, and X3 the speed in
the x direction. Following the same analytical approach,
we obtain

dX3

dz
= −8βX3(C2X2 − 1

X2
), (21)

dY2

dz
= −8βY2(S2Y 2 − 1

Y 2
), (22)
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Fig. 1. Double steady state solution A−(red) and A+ (blue). (a): ν = 0.72, β = 0.5, δ = −0.1; (b): ν = 0.72, β = 0.05, δ = −1.
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Fig. 2. Domain of stable solutions with X3 = Y2. (a) ν = 0.72, β = 0.5, δ = −0.1, (b) ν = 0.2,β = 0.5, δ = −0.01 and
(c) ν = 0.72, β = 0.5, δ = −1. We can observe the great influence of the system on the stability domain.

dX

dz
= 4XC + 4β(

1
X2
− C2X3)− ε

4
XA2 − 2µ

9
XA4,

(23)
dY

dz
= 4Y S + 4β(

1
Y 2
− S2Y 3)− ε

4
Y A2 − 2µ

9
Y A4, (24)

dC

dz
= − 4β

X2
(5C + S) +

3
4
A2

X2
− 2ν

9
A4

X2
+

4
X4
− 4C2,

(25)

dS

dz
= − 4β

Y 2
(C + 5S) +

3
4
A2

Y 2
− 2ν

9
A4

Y 2
+

4
Y 4
− 4S2 (26)

dA

dz
=

3ε
4
A3 +

5µ
9
A5 + δA− 2A(S + C)

− 2βA(
1
X2

+
1
Y 2

)− βA(X2
3 + Y 2

2 ), (27)

dX2

dz
= 2X3(1− 2βCX2), (28)
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dY22

dz
= 2Y2(1− 2βSY 2), (29)

dϕ

dz
= 12β(S + C)− 7

4
A2 +

5ν
9
A4 − 4

(
1
X2

+
1
Y 2

)
+X2

3 + Y 2
2 − 4β(X2X2

3C + Y 2Y 2
3 S). (30)

We noted that, the speeds (X3, Y2) and the central posi-
tions (X2, Y22) respectively influence the dynamics of the
other parameters as we observed in equations (7)–(14).
However, some relevant new characteristics appear con-
cerning the dynamics of the new parameters (X3, Y2) and
(X2, Y22). In comparison to equations (7)–(14), we noted
that the parameter δ do not affected the dynamics of the
linear frequencies, and it also appears that the dynamics
of the central positions X3 and Y2 respectively for x and y
directions are influenced by the soliton parameters respec-
tively for the same directions. Another relevant result is
related to the mismatch between the unequal wavefront
curvature in their dynamics.

The steady state solutions arising from equations (21)–
(27) are obtained by considering X = Y , C = S, X3 = Y2.
Then, after some algebra, we have:
the steady amplitude

A± =

√
−b±

√
b2 − 4ac

2a
, (31)

with

a = −64
81

[
(6β2(18β2 + 1)− 2)µ2 + 20βν(1 + 6β)µ

+β2ν2(1− 12β2) +
ν2

2

]
b =

1
9

[
(32(1− 3β2(1 + 6β2))ε+

80
3
β(1 + 6β2))µ2

−80βν(1 + 6β2)ε+ 48β2ν(1 + 12β) + 24ν
]

c = 2(−3β2(1 + 18β2) + 1)ε2 + 30β(1 + 6β2)ε

+ 9β2(12β2 − 1)ε− 9
2
.

The width

X =
(

2A2 3(2βε− 1) + 2(6βµ+ 1)A2

(6β2 + 1)

)−1/2

, (32)

the wavefront curvature

C =

(
1
2 (3β + ε) + 4

9 (µ− βν)A4
)
A2

8(6β2 + 1)
, (33)

and the linear frequency

X3 =

√
2
3

(
(8β2 + 1)µ + 1

3βν
)
A4 +

(
( 15

2 β
2 + 1)ε− 3

4β
)
A2 + 2δ

(
6β2 + 1

)

2β(6β2 + 1)
·

(34)
In the third part of this work, we analyze their stabilities.

3 Stability analysis

As it is well-known, the CGLE admits localized solu-
tions which are dissipative solitons [21,40]. The stabil-
ity of these solitary waves has been widely investigated
[7,50,51]. This investigation is extended in many domains
of research including plasma, fluids, optics, Bose-Einstein
condensates, and so on [25,50,51]. We are looking for a
stable steady state that can evolve towards a soliton.

An important criterion that gives necessary and suffi-
cient conditions for the stability of the roots of the charac-
teristic polynomial (with real coefficients) to lay in the left
half of the complex plane is known as the Routh-Hurwitz
(R-H) criterion [52,53]. The stable stationary solutions of
equation (1) are determined by the analysis of the eigen-
values λj (j = 1, . . . , 6) of the matrix Mij = ∂η̇i

∂ηj
given as

follows:

λ6 + a1λ
5 + a2λ

4 + a3λ
3 + a4λ

2 + a5λ+ a6 = 0, (35)

where η = A,X, Y, Y2, C or S, η̇ = dη
dz , with ai

(i = 1, . . . , 6) depending on the system parameters and
the fixed points. To be a stable fixed point according to
Lyapunov method, all the eigenvalues must have nega-
tive real parts [51]. Using the Routh-Hurwitz criterion,
the necessary and sufficient conditions for equation (35)
to have Re(λi) < 0, i = 1, . . . , 6 are given as follows:

ai > 0, b1 > 0, c1 > 0, d1 > 0, e1 > 0, (36)

with

b1 = −1
a1

(a3 − a2a1), b3 = −1
a1

(a5 − a1a4)

c1 = −1
b1

(a1b3 − b1a3), c3 = −1
b1

(a1a6 − b1a5)

d1 = −1
c1

(b1c3 − c1b3), e1 = −1
d1

(c1a6 − c3d1).

It follows that solutions with amplitudes A− satisfied
the above stability conditions as we can see in Figure 2.
Figure 2 shows the influence of the dissipative parameters
on the stability domain of the solutions when the speed
has the same value in transverse directions x and y.

For the symmetric case, equation (35) is reduced to the
polynomial of degree 4 as:

λ4 + a3λ
3 + a2λ

2 + a1λ+ a0 = 0, (37)

with

a3 > 0, a0 > 0, a3a2 − a1 > 0 and a1b1 − a3a0 > 0.
(38)

This symmetric case, with the stability condition given in
equation (38) had been study by Zhu [42] for the CQ CGL
equation, including a linear potential.

Considering the ansatz (Eq. (20)), the stable stationary
solutions of equation (1) are determined by the analysis of
the eigenvalues λj (j = 1, . . . , 7) of (7X7) matrix given by:

λ7+α1λ
6+α2λ

5+α3λ
4+α4λ

3+α5λ
2+α6λ+α7 = 0, (39)

where αi(i = 1, .., 7) depend on the system parameters and
the stationary solutions related to equations (31)–(34).
The necessary and sufficient conditions for the stability
are given by:
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Fig. 3. Domain of stable solutions with δ = −1 and ν = 0.72, for (a) β = 0.5, X3 = Y2/2, (b) β = 0.5, X3 = Y2/5; (c) β = 1.5,
X3 = Y2/5.

αi > 0, β11 > 0, β21 > 0, β31 > 0, β41 > 0 and β51 > 0,

(40)
where

β11 = α2 − α3
α1

β13 = α4 − α5
α1

β15 = α6 − α7
α1

β21 = α3 − β13α1
β11

β23 = α5 − β15α1
β11

β31 = β13 − β11β23
β21

β33 = β15 − β11α7
β21

β41 = β23 − β21β33
β31

β51 = β33 − β31α7
β41
·

Numerical result reads to numerous stability domains
(see Fig. 3) and the solution satisfied these conditions
behave stable during long distance of propagation (see
Fig. 7).

4 Numerical results

In order to check the predictions of our analytical
approach concerning the appearance of the stable station-
ary solutions, the numerical simulations of equation (1)
are carried out by the use of the Split-Step Fourier
Method.

For Y2 = X3, the stable domain of dissipative solu-
tion (see Fig. 2) is given for different set of dissipative

parameters. For δ = −0.1, β = 0.5 and ν = 0.72,
Figure 2a shows a blue stability domain. When δ = −.01,
β = 0.5, ν = 0.2, Figure 2b shows a decrease of the stability
domain, and for δ = −1, β = 0.5 and ν = 0.72, Figure 2c
shows an increase of the stability domain. As observed in
Figures 1a and 1b, Figure 2 confirms that the stability of
the solutions is influenced by the parameters of the system.
These results correspond to those given by the previous
variational equations (see Eqs. (7)–(14) and (21)–(29)).

For the case of solution given by equation (20), Figure 3
presents the blue stability domains, for some particular
cases of ratio between the soliton speeds X3 and Y2 (corre-
sponding to the x and y transverse axis). Figure 3a show-
ing a wide domain of the stability solution is obtained
for β = 0.5, δ = −1, ν = 0.72 and X3 = Y2/2. Using
the same previous dissipative values as in Figure 3a, with
X3 = Y2/5, the stability domain decreases as can be seen
in Figure 3b. For β = 1.5 δ = −1, ν = 0.72 andX3 = Y2/5,
the corresponding stability domain (Fig. 3c) is consider-
ably reduced. From Figure 3, we notice that the compo-
nents of the soliton speed as well as the amplitude, the
widths, the chirps are greatly dependent on the dissipative
parameters of the system, and consequently, the stability
of the stationary solution.

The evolution of the steady state amplitudes as func-
tion of the cubic nonlinearity has been analyzed through
the bifurcation diagram for the case of solution given by
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Fig. 4. Bifurcation diagrams of stable A− and unstable A+ solutions with ν = 0.2 in (a): β = 0.05, δ = 0.01, µ = −1.324;
(b): β = 0.05, δ = 0.001, µ = −0.18; (c): β = 1.5, δ = 0.01, µ = −1.324; (d): β = 0.05, δ = 0.01, µ = −2.24.

equation (5). Then, in Figure 4, typical bifurcation dia-
grams are shown where the amplitude of the steady state
solution is plotted as a function of the parameter ε. As it is
known, the valid variationally obtained analytical curves
corresponding to Figure 4 must be a good approximation
of the numerical obtained results. In Figure 4, we have
shown the comparison between analytical and numerical
bifurcation diagrams.

At this stage of our analysis, we have noted sev-
eral behaviors of the comparison between analytical and
numerical results of the amplitudes A− an A+. It can be
seen in Figures 4a and 4b that the solutions amplitude A+

(numerical and analytical) present a very good agreement
for smaller values of the nonlinear parameter ε, associ-
ated with some discrepancies for increasing values of the
amplitude. At the same time, the solutions A− present a
very good agreement for small amplitude (Fig. 4a) and
zero amplitude (Fig. 4b). When varying the parameters
β and µ, the comparison of bifurcation diagrams is shown
in Figures 4c and 4d, where a good agreement is also noted
between the solution A− of lower amplitudes on the lower
branch and the solution A+ of the upper branch. It is
important to point out that the results in Figure 4d are
similar as those obtained by Skarka et al. [33,49]. There-
fore, our work presents a more general behavior of the
dynamics of solutions A+ and A− in the very large space of

parameters, where the cross compensation between the
linear/nonlinear and loss/gain parameters is necessary to
obtain the stability of the soliton solutions.

We are now interested on the global evolution of
the solution taken in some stable domain obtained in
Figures 2 and 3. As an initial input solution at posi-
tion z = 0 (Fig. 5a), the steady state amplitude A− is
considered with parameters system ν = 0.2, β = 0.05,
δ = 0.01, ε = 1.3, µ = −0.15. The evolution of the propa-
gation of this solution is depicted in Figures 5b–5d where
we observed that the shape of the solution is practically
maintained, but associated to a decrease of its amplitude.
We can also mention the effect of the speed on the central
position of the dynamics of the soliton which has been ana-
lytically predicted by means of the variational approach.
Considering the set of parameters system ν = 0.2, β =
0.005, δ = 0.001, ε = 1.349, µ = −0.4996, the propa-
gation of the steady state solution A+ is represented in
Figure 5 for some positions along the propagation dis-
tance z. From the initial input solution (Fig. 6a), we can
also observe that the shape of the propagating solution
is maintained with a considerable reduction of the ampli-
tude. The central position (as for the case of the solution
A−) is also affected during the propagation as can be seen
in Figures 6b–6d. When dealing with equation (20), we
have noted an evolution of the initial solution as depicted
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Fig. 5. Profiles of the steady state solution (which amplitude is A−) at different positions along the propagation distance with
parameters ν = 0.2, β = 0.05, δ = 0.01, ε = 1.3, µ = −1.8. (a) (z = 0), (b) (z = 1), (c) (z = 5), (d) (z = 12).

Fig. 6. Profiles of the steady state solution (which amplitude is A+) at different positions along the propagation distance with
parameters ν = 0.2, β = 0.005, δ = 0.001, ε = 1.349, µ = −0.4996. (a) z = 0, (b) z = 1, (c) z = 5 and (d) z = 12.
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Fig. 7. Profiles of the steady state solution at different positions along the propagation distance with parameters ν = 0.72,
β = 0.5, δ = −1, ε = 1.349, µ = −0.3. (a) z = 0, (b) z = 10, (c) z = 100 and (d) z = 4000.

in Figure 7 with ν = 0.2, β = 0.5, δ = −1, ε = 1.349,
µ = −0.3. During this evolution, the soliton intensity
remains practically constant around an average value for
different propagation distances.

From the dynamics depicted in Figures 5–7, we can
clearly note the influence of the additional parameters dur-
ing the propagation, in comparison with the work reported
by Skarka et al. [33]. From this analysis, the stability of the
solutions A− and A+ is a necessary condition to obtain a
soliton after self-organizing evolution as reported also in
references [33,35,36,49].

It appears that the variational analysis associated to
the Routh-Hurwitz conditions is a useful treatment for the
study of stability criteria for the propagation of dissipa-
tive solitons in nonlinear media. Due to the large param-
eters space, more detailed numerical simulations of both
the variational equations and the CQGLE lead to a great
variety of behaviors of the solutions.

5 Conclusion

Based on the joint variational approach and numerical
simulations, we have successfully carried out analytical
and numerical studies on the stability of dissipative soli-
tons modeled by the cubic-quintic CGLE. We have clearly
established that the system admits two steady state ampli-
tudes for which domains of stability/instability are well

defined in function of dissipative parameters of the sys-
tem. Remarks on the comparison with some parallel works
earlier performed are worth mentioning in the literature.
An interesting effect here is the chirped soliton stabilities
indicated by Skarka et al. [33], showing that chirped soli-
tons are stable for a positive β diffusive parameter.

Another result concerned the influence of the wave
speed on the soliton stability. This impractical restriction
has been overcome by Esbensen et al. [41] who performed a
perturbed variational approach using the Gaussian ansatz
type pulse to obtain a dynamical system due to the five
characteristic parameters of interest for the pulse, namely
the amplitude, the initial phase, the spatial position, the
spatial width and the speed. We have recovered some of
the previously mentioned results of Skarka et al. [33], as
concerning the steady state amplitudes assuming some
approximations. We have noted the great influence of
the speed on the stability of the stationary solution (see
Fig. 3a), where X3 = Y2/2, and Figure 3b for X3 = Y2/5.
Through the bifurcation diagrams, we have also character-
ized the evolution of the steady state amplitudes as a func-
tion of the nonlinearity. A very good agreement between
the analytical and numerical results has been obtained.
Then, assuming an initial input solution, the steady state
amplitude solution evolves towards a self-organized dissi-
pative soliton for various values of dissipative parameters
in the stable domain. Another relevant result obtained
in this work is that we have also shown the influence
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of the speed on the evolution of the steady state solu-
tions as reported in Figures 5–7. Thus, additional relevant
parameters of the Gaussian solution lead to a more general
behavior of the dynamics of the dissipative solitons in the
system.
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Abstract
The dynamics of light bullets propagating in nonlinear media with linear/nonlinear, gain/loss and coupling described by the 
(2+1)-dimensional vectorial cubic–quintic complex Ginzburg–Landau (CGL) equations is considered. The evolution and 
the stability of the vector dissipative optical light bullets, generated from an asymmetric input with respect to two transverse 
coordinates x and y, are studied. We use the variational method to find a set of differential equations characterizing the vari-
ation of the light bullet parameters in the laser cavity. This approach allows us to analyze the influence of various physical 
parameters on the dynamics of the propagating beam and its relevant parameters. Then, we solve the original coupled (2+1)D 
cubic–quintic CGL equation using the split-step Fourier method. Numerical results and analytical predictions are confronted, 
and a good agreement between the two approaches is obtained.

1  Introduction

Solitons, which are fascinating nonlinear wave phenomena, 
are self-trapped light beams or pulses supported by the bal-
ance between diffraction and/or dispersion (in the spatial 
and/or temporal domain) and nonlinearities of various types 
[1–6]. The generation, propagation and interaction of opti-
cal vortices in nonlinear media have attracted much atten-
tion and have been the subject of extensive studies in recent 
years. In the single-mode fibers (SMFs), in which the soliton 
formation has drawn a lot of attention, the light propagation 
is governed by the nonlinear Schrödinger equation (NLS) 

equation [7] and, when considering the vectorial nature of 
light, its propagation in the SMF is governed by a set of cou-
pled NLS equations [8], whose characteristics and dynamics 
are richer than those of the scalar NLS equation.

In laser systems, the formation and dynamics of transverse 
light patterns in nonlinear resonator remains a field of intense 
research [9–12]. Assuming that the direction of the electric 
field is constant and applying the slowly varying envelope 
approximation to the Maxwell–Bloch (MB) equations helped 
to establish the relationship between nonlinear optics and the 
cubic complex Ginzburg–Landau (CGL) equation [12, 13]. 
Considering the interaction of an electromagnetic field with 
matter in a laser cavity without the assumption of a fixed 
direction of the transverse electric field, Gil [9], using the 
standard perturbative nonlinear analysis, exclusively pro-
posed that the MB equations could be reduced to a vecto-
rial cubic CGL equation. Although this later formulation 
has been widely adopted, soliton solutions in this context 
are usually not stable, both for anomalous [14] and normal 
dispersions [15], except if higher-order nonlinear (quintic) 
terms are introduced, leading to the so-called cubic–quin-
tic CGL equation. The competition between the cubic and 
quintic nonlinearities may open new possibilities with a 
broad range of behaviors, characterized by different kinds 
of patterns formation in one-(localized structures) [16–18] 
and two-spatial dimensions (topological defects) [16, 19–24] 
for the vectorial cubic CGL equation. Motivated by these, 
we recently adopted the same procedure as Gil and rather 
derived a vectorial cubic–quintic CGL equation from which 
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we obtained that the modulational instability (MI) mecha-
nism may lead to localized modes with interesting and new 
behaviors, strongly related to the change in the laser cavity 
parameters [25]. However, the MI technique becomes obso-
lete when it comes to describe the main characteristics of 
individual pulse evolution, namely its amplitude, temporal 
and spatial widths, position of the maximum, unequal wave-
front curvatures, chirp parameters and phase shift. Depend-
ing on the field of application, a number of treatments have 
been adopted, namely the method of moments [26], method 
of collective coordinates [27–29], time-dependent varia-
tional method [30], effective-particle method [31], averaged 
Lagrangian description [32], just to name a few. Particu-
larly, the variational method has been successfully applied 
to address a variety of nonlinear problems through the use of 
the Lagrange density and its relation to the Euler–Lagrange 
equations [33]. Besides, the fundamental advantage of the 
variational approach is that it provides an outline under the 
field dynamics during propagation [34, 35]. A potential well 
is generated into a stationary point due to the exact balance 
between repulsive and attractive potentials, justifying the 
formation of stable optical solitons. In the present work, to 
investigate the generation of the vector light bullets of the 
laser coupled cubic–quintic CGL equation, and their stability 
for several dynamical regimes, we make use of the variational 
method to obtain physical insight in terms of a few important 
parameters and then propose numerical simulations that con-
firm qualitatively our analytical predictions.

The rest of the paper is organized as follows. In Sect. 2, 
we present the propagation model of the optical light bullet 
which includes the cubic and quintic coupling terms, dif-
fraction terms, cubic and quintic nonlinearity terms. In addi-
tion, with the help of the variational method involving trial 
function, the set of variational equations resulting from the 
Euler–Lagrange equations is obtained. In Sect. 3, the aver-
age equations for the effective potential function is derived 
along with the numerical treatment of the analytical results. 
Section 4 is devoted to some concluding remarks.

2 � Model and analytical treatment using 
variational approach

In the good cavity limit, when both the induced polarization 
and population inversion are enslaved by a slowly varying 
vector electromagnetic field of a multi-transverse-mode laser 
(MTM), a general form of the equations describing vector 
soliton process is reduced to the coupled (2+1)D cubic–quin-
tic CGL equation [25]

with

The left-hand-side of Eq. (1) contains the conservative 
terms, where Δ =

�2

�x2
+

�2

�y2
 . The optical envelope �±(x, y, t) 

is the normalized complex function of three real variables x, 
y and t, where x and y are the normalized two transverse 
coordinates and t is the normalized propagation time. All the 
parameters of Eqs. (1) and (2), i.e., � , � , � , �r , �i , � , �r and �i , 
are real constants, and the pump profile parameter related to 
�± is normalized to unity [36]. The negative coefficient � is 
the saturation of the Kerr nonlinearity, and the quintic coef-
ficient 𝛿r < 0 is the saturation of the cubic coupling absorp-
tion �r . The right term Q± of Eq. (1), given by Eq. (2), stands 
for the dissipation, where � is the linear loss/gain coefficient, 
� is the diffusion coefficient, � is the cubic gain, � is the 
quintic loss, �i and �i , respectively, denote the cubic and the 
quintic coupling coefficients.

Due to its complexity, the coupled (2+1)D cubic–quin-
tic CGL equation does not allow exact analytical solutions. 
Therefore, the use of an approximated analytical approach 
is needed, which includes for example the collective coordi-
nate method [37], the moment method [38], the variational 
method [34, 35, 39, 40], and so on. Solutions are in general 
analyzed by considering trial Gaussian [34] functions with 
a few free parameters such as the amplitude, spatial pulse 
widths, the central position of the pulse maximum, the unequal 
wavefront curvatures, and the phase shift, which depend on the 
propagation time t. In this respect, the variational method for 
dissipative systems is used in the following, with the objec-
tive to obtain more physical insight in terms of a few relevant 
parameters and then present numerical simulations that con-
firm the analytical predictions. In so doing, the left-hand side 
of Eq. (1) is derived from the Lagrangian density given by

where �∗
±
 stands for the complex conjugate of �± . To 

extend our study to the characterization of the evolution of 

(1)

i
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the single parameters of the dissipative light bullet during 
propagation in the medium, we adopt the following Gauss-
ian trial function

where A is the amplitude, X and Y are the unequal spatial 
widths, C and S are the unequal wavefront curvature, Xm is 
the central position, and � is the phase of the light bullet, all 
of which are functions of the independent variable t.

To proceed to the analytical treatment of the model and 
characterize the solutions depending on the various dissipa-
tive parameters, the equations for the motions of the varia-
tional parameters � are obtained through the Euler–Lagrange 
equations [34, 35]

where 𝜂̇ =
d𝜂

dt
 . Here, � represents the parameters A, X, Y, C, 

S, Xm and � in the ansatz, while

is the average Lagrangian of the conservative system 
obtained by substituting Eqs. (4) into (3) and taking out 
integration over coordinates x and y. Thus, we make use of 
the Euler–Lagrange equation [40] and obtain the following 
set of differential equations describing the dynamics of the 
seven relevant parameters of the trial solution (4): 

(4)
�± =A exp
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2
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2Y2
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 Eqs. (7a–7g) represent the coupled equations that show how 
pulse parameters change during propagation. Looking for 
steady state solutions of the system of Eqs. (7a–7g) after 
vanishing derivatives of amplitude, width, curvature, and 
central position, we focus our study on the symmetric steady 
state solutions, with Xm = 0 , equal widths (X = Y) and spa-
tial chirps (C = S) . For convenience, all dissipative param-
eters are considered as small quantities � = max(�, �, �,�) . 
The corresponding steady state amplitude has two discrete 
values A+ and A− given by

with Δ =
(1+��+�r)

2

16�2
−

4�(��+4�+4�r)

9�
 . We also obtain the width,
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and the chirp

with C4 =
1

3
(2� + 3�i + 4�(�r +

�

3
)) , and C2 =

1

4
(2(� + �

i
)

+�(1 + �
r
)).

3 � Stability analysis and numerical results

To study the dynamical stability of the vector light bullet 
solution given above, we first calculate the effective poten-
tial. An important criterion for the stability of our station-
ary solution is to investigate the possibility of bullets to be 
trapped in the well. We examine the dynamical behaviors 
of a light bullet using the initial conditions given by Eqs. 
(8–10), from its symmetric equilibrium. Integration of vari-
ational Eqs. (7a–7g) gives [7, 35, 39, 41]

where U(X, Y) is the effective potential given in "Appen-
dix". Equation. (11) describes the dynamics of the widths 
and shows a competition among diffraction and nonlinearity, 
and can be adopted to study the stability of the optical light 
bullet through the medium. The existing stationary solution 
describes the motion of a particle located at the bottom of 
the potential well. Given the effective potential U(X, Y), we 
have the equations 

(9)
X =

(((
�

3
+

�i

2

)
A4 +

1

2
(� + �i)A

2 + �
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)−1∕2

+ 0(�2),

(10)C =
C4A

4 + C2A
2 + �

4�2
,

(11)1

4

(
dX

dt
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+
1

4

(
dY

dt

)2

+ U(X, Y) = U(X0, Y0),

 which are equivalent to those describing the dynamics of a 
particle in two-dimensional potential well. When the non-
linearity exactly balances both the diffraction, the curve of 
the potential shows an extremum, which is an equilibrium 
solution. In such a direction, the obtained effective poten-
tial U, in the plane of nonlinear dissipative parameters, is 
depicted in Fig. 1, where panel (a) describes the effective 
potential versus (�, �i) , while panels (b) and (c) show U ver-
sus ( �,� ), confirming that the effective potential has a global 
minimum. This reveals the existence of a stable stationary 
light bullet. This confirms as well the existence of the sta-
tionary soliton solution corresponding to the optical dissipa-
tive soliton located at the bottom of the effective potential 
well. From Fig. 1, we observe that the shape of the effective 
potential depend on both the dissipative and soliton param-
eters. However, from Fig. 1a–c, the areas corresponding to 
the bottom of the effective potential well (minima) are the 
domains of parameters for which the soliton can be trapped, 
leading to a stable propagation. These confirm the analyti-
cal predictions from Eqs. (7a–7g). Figure 1 presents two 
extrema, minima and maxima. Therefore, depending on the 
dissipative parameters and the central position, the beam 
will be either trapped or diffracted. The beam with initial 
condition corresponding to the point lying on the potential 
curve below the maximum will always be trapped, therefore, 
generating a light bullet [7]. Using the variational method, it 
can be predicted that all beams initially around the minimum 
of the potential well will form light bullets pulsating around 

(12a)d2X

dt2
= −2

�U(X, Y)

�X
,

(12b)d2Y

dt2
= −2

�U(X, Y)

�X
,

Fig. 1   Effective potential U versus ( � , �i ) in panel a, and versus 
(�,�) in panels b, c for the parameters � = −0.01059 , � = 0.49 , 
�i = 0.25118 , � = −1 , and: a �r = 1.1087 , �r = −0.5074 , � = −.9 , 

Xm = 1.3 , b �r = 0.9 , �r = −0.5074 , �i = 0.04289 , Xm = 1.3 , c 
�r = 0.9 , �r = −0.35074 , �i = 0.04289 , Xm = 0.05
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its equilibrium condition, with initial condition focusing 
until the turning point at the bottom region. The analysis of 
the potential well reveals the existence of a stable equilib-
rium which plays the role of an attractor [35, 39].

To confirm the analytical predictions, the coupled (2+1)
D cubic–quintic CGL Eqs. (1) have been numerically solved 
by means of split-step Fourier method (SSFM) with a time-
step Δt = 10−3 , on a mesh of size 100 × 100 , with space-steps 
Δx = Δy = 0.01 . The used initial conditions are Gaussian trial 
function given by Eq.(4), with amplitude A = A− (see Eq. (8)), 
the unequal spatial widths X given by Eq. (9) and Y = X∕3 , the 
unequal wavefront curvature C given by Eq. (10) and S = C . 
For SSFM, the propagation of the wave solution from t to 
t + Δt is carried out in two steps. In fact, the main idea behind 
this method is to obtain an approximate solution by assuming 
that for the wave solution over a small time Δt , the dispersive 
and nonlinear effects act independently. In the first step, the 
nonlinearity acts alone, and in the second step dispersion acts 
alone [39, 42]. In this context, Eqs. (1) are written as 

 where D̂ is the operator for dispersion and absorption in the 
linear medium,

while ℵ̂+ and ℵ̂− are the nonlinear operators for pulse propa-
gation defined by 

 Then, to improve the accuracy of the standard SSFM over a 
small interval of time, i.e., [t, t + Δt] , we adopt the following 
procedure to propagate the wave:

(13a)
𝜕𝜓+

𝜕t
= (D̂ + ℵ̂+)𝜓+,

(13b)
𝜕𝜓−

𝜕t
= (D̂ + ℵ̂−)𝜓−,

(14)D̂ = (𝛿 + i) + (𝛽 + i)(
𝜕2

𝜕x2
+

𝜕2

𝜕y2
),

(15a)
ℵ̂+ =(𝜀 + i)||𝜓+

||2 +
(
𝛾i + i𝛾r

)||𝜓−
||2 + (𝜇 + i𝜈)||𝜓+

||4

+
(
𝛿i + i𝛿r

)(||𝜓−
||2 + 2||𝜓+

||2
)||𝜓−

||2,

(15b)
ℵ̂− =(𝜀 + i)||𝜓−

||2 +
(
𝛾i + i𝛾r

)||𝜓+
||2 + (𝜇 + i𝜈)||𝜓−

||4

+
(
𝛿i + i𝛿r

)(
2||𝜓−

||2 + ||𝜓+
||2
)||𝜓+

||2.

and similarly for �−(x, y, t + Δt).
The corresponding results are summarized in Figs. 2, 3, 4, 

5. For a good choice of dissipative parameters in the vicin-
ity of the effective potential of Figs. 1, 2a, d show the spa-
tial transverse profiles of the initial asymmetric dissipative 
light bullets with corresponding values of parameters taken 
around the bottom of the effective potential of Fig. 1c, with 
�r = −0.35074 , � = 0.456 , and � = −0.98047 . During the 
evolution, we note a regular change from an asymmetrical 
to a symmetrical light bullet for each solution �+ and �− 
(see Fig. 2c, f). We also observe a small shift of the central 
position, accompanied by a reduction of the intensity of the 
solution during a short time of propagation. Thereafter, a 
stable propagation for longer time is observed. Fig. 2b, e 
have been recorded at t = 100 , and Fig. 2c, f correspond to 
t = 50000 . The results of Fig. 2 are in very good agreement 
with analytical results, concerning the soliton trapped at the 
bottom of effective potential.

To evaluate the influence of dissipative parameters on 
the stable dynamics of our predicted soliton solutions, 
the results of Fig. 3a, b have been obtained for �r = 0.9 
�r = −0.3074 , � = 0.456 , � = −0.98047 , Xm = 1.5 (values 
of other parameters are the same as in Fig. 2). Similarly to 
Fig. 2, we observe a small shift of the central position, a 
decreasing of the widths and also a small reduction of the 
intensity during a short-time of propagation, which shows 
that stable dynamics for longer time of propagation. To bet-
ter appreciate the influence of the coupled terms on the light 
bullet stability, Fig. 3c ,d have been obtained for �r = 1.109 , 
(values of other parameters are the same as in Fig. 3a, b). A 
regime of stable evolution of solutions �+ (see Fig. 3c) and 
�− (see Fig. 3d) is obtained in comparison to Fig. 3a, b for 
this value of the coupling coefficient.

Second, we evaluated the influence of the quintic-cou-
pling term, and the results are summarized in Fig. 4. Fig-
ure 4a, b display the evolution of the cross-section of the 
dissipative light bullets obtained from direct numerical 
simulations of the full coupled (2+1)D cubic–quintic CGL 
equation for �r = −0.15074 , � = 0.49 , � = −0.9 , Xm = 10 , 
while the other parameters remain the same as in Fig. 3c, 
d. Figure 4a, b show the generation of the second couple of 

(16)
𝜓+(x, y, t + Δt) ≈ exp

⎛⎜⎜⎝
Δt

t+Δt

∫
t

D̂
�
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light bullets with stable evolution. To have a stable evolution 
of the coupled dissipative light bullets, we need the balance 
between gain/loss, diffraction/nonlinearity and, as shown in 
our analysis, the balance between the coupled effects [35].

In Fig. 5, we have summarized the stable evolution the 
dissipative light bullets. The obtained (2+1)D stable coupled 
spatial dissipative light bullets are among new interesting 
dynamical aspects of laser optics. We have realized through 

numerical simulations that the intensity of the initially gen-
erated asymmetric light bullets (see Fig. 5a, b) decreases in 
the beginning (see Fig. 5c, d), which is followed thereafter 
by the reconstitution of the coupled light bullets when the 
coupling changes (see Fig. 5e, f). This gets more pronounced 
when time increases and remains very sensitive to the cou-
pling parameters, leading to a stable evolution of the light 
bullets over longtime propagation (see Fig. 5g ,h).

Fig. 2   Spatial profile of �+(x, y) (panels a to c) and �−(x, y) (pan-
els d to f). a, d Correspond to t = 0 , b, e correspond to t = 100 , 
while c, f have been recorded at time t = 50000 , with the param-

eters: � = −0.01059 , � = 0.45 , � = 0.456 , �r = 0.9 , �i = 0.25118 , 
�i = 0.04289 , �r = −0.35074 , � = −1 , � = −0.98047 , and Xm = 10
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Fig. 3   The density profiles of the cross section of the space-time behavior of �+ (panels a and c) and �− (panels b and d). a, b Correspond to 
Xm = 0.5 and �r = 0.9 , while c, d give the results related to Xm = 5 and �r = 1.109 . The rest of parameters remains the same as in Fig. 2

Fig. 4   Cross sections of the wave space-time dynamics, which corroborates the stability of the dissipative light bullets a �+(x, 0, t) and b 
�−(x, 0, t) obtained for the �r = 1.109 and �r = −0.15074 , with the other parameters keeping the similar values as in Fig. 2
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Fig. 5   (2+1)D stable spatial profiles of the light bullet intensities 
|�+(x, y)|2 (left column) and |�−(x, y)|2 (right column) obtained from 
direct simulation of Eq. (1) at times t = 0 [a, b], t = 10 [c, d], t = 25 

[e, f], and t = 50000 [g, h], with the set of parameters: � = −0.01059 , 
� = 0.45 , � = 0.49 , �r = 0.9 , �i = 0.25118 , �i = 0.04289 , 
�r = −0.25074 , � = −1 , � = −0.9 , and Xm = 10
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4 � Conclusion

We have reported a comprehensive analysis on the forma-
tion of vector light bullets in an optical nonlinear medium 
described by a set of (2+1)D cubic–quintic CGL equa-
tions. Through the variational method, we have performed 
the theoretical analysis using a Gaussian trial function as 
solution, and we have obtained seven coupled first-order 
differential equations whose solutions have been discussed. 
Such analytical results have been confronted to direct 
numerical simulations via the the SSFM, where we have 
successfully shown that the system is able to interchange 
energy to keep both light bullets bounded, this under the 
balance between gain/losses, dispersion/diffraction and 
nonlinearities. Under such conditions, we have noticed 
the emergence of asymmetric dissipative light bullets and 
their disintegration on one hand, and a stable evolution 
of the coupled dissipative light bullets on the other hand. 
Moreover, the formation of (2+1)D stable coupled spa-
tial dissipative light bullets has been detected. They have 
been found to be very sensitive to coupling parameters, 
whose impact on the long-time dynamics was pronounced. 
However, this implies new interesting dynamical aspects 
of laser optics, since the involved coupling mechanism 
can be adopted as a tool to generate appropriate stabilized 
vector light bullets which could be otherwise difficult to 
obtain. Interestingly, no collapse phenomena are observed 
in simulations when input focussing, chirping, as well as 
noise both in x and y, are introduced, leading to robust 
generation of new vector light bullets.
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Appendix

The effective potential obtained for the stability analysis is 
given by
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