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Abstract

Considering the technological advances, phonon number less than unity have been achieved
(neff < 1) during these five last years. However, reaching the Standard Quantum Limit
(neff = 0) remains an experimental challenge which seems to be explained in nonlinear
terms. To give a satisfactory explanation to this problem, we focused our thesis works on
the nonlinear phononics study at the single-phonon level in optomechanical systems. We
have shown that:

• Softening geometrical nonlinearity allows a classical control of the nanoresonator.
The nonlinear term, through a semiclassical study, gives results which agree well
with the quantum ones;

• Geometrical nonlinearity as the quantum decoherence, adds some of amount of
phonons on the lowest result, and then limits the quantum ground state achievement.
This allows us to show that high finesse structures (Ωm� 1) could be used to reduce
the nonlinear effects and therefore suppress the quantum decoherence;

• At the mechanical and optical resonances where the geometrical and optical non-
linearities reach their maximum value, the squeezing is limited;

• At the blue detuning sideband, geometrical nonlinearity enhances the generation of
robust CV entanglement against thermal decoherence.

The relevant fact of these results is that nonlinear effects not only contribute to the
advance of the fundamental science but also appear as pillar elements for an improvement
of quantum applications.
Keywords: Optomechanical oscillator, geometrical nonlinearity, optical non-

linearity, ground state, cooling, squeezing, entanglement.



Résumé

Avec les avancées technologiques, des nombres de phonons inférieurs à l’unité (neff < 1)
ont été atteints lors ces cinq (05) dernières années. Cependant, parvenir à la limite
quantique standard (neff = 0) reste un verrou expérimental qui semble s’expliquer en
termes de non-linéarités. Afin de donner une explication satisfaisante à ce chalenge, nous
focalisons nos travaux de thèse sur l’étude phononique non-linéaire à un niveau de phonon
dans les systèmes optomécaniques. Nous avons montré que:

• La non-linéarité géométrique de type “softening” permet un contrôle classique du
nanoresonateur. Une étude sémi-classique avec cette non-linéarité donne des résul-
tats qui corroborent avec les attentes quantiques;

• La non-linéarité géométrique, pareil que la décohérence quantique, rajoute un sup-
plément de phonons au résultat connu, limitant ainsi l’atteinte de l’état quantique
fondamental. Cela nous a permis de montrer que des structures de grandes finesse
(Ωm� 1) réduirait les effets non-linéares, supprimant la décohérence quantique;

• Aux résonances mécanique et optique où les non-linéarités géométriques et optiques
sont maximales, la compression des états est limitée;

• A la bande latéral bleu “blue sideband”, la non-linéarité géométrique améliore la
génération d’états intriqués continus robustes thermiquement.

Il ressort de ces résultats que les effets non-linéaires contribuent non seulement à
l’avancée de la science fondamentale mais aussi, se révèlent comme un levier pour améliorer
les applications quantiques.
Mots clés: Oscillateur optomécanique, nonlinéarité géométrique, nonlinéarité

optique, état fondamental, refroidissement, compression, intrication.



General Introduction

Light carries momentum which gives rise to radiation pressure forces. Such forces were
already postulated in 1619 by Kepler, who conjectured that the dust tails of comets point
away from the sunlight during a comet transit. Some 250 years later, this empirical ob-
servation of the mechanical effect of light, known as radiation pressure, was theoretically
derived through the famous equations of Maxwell’s theory on electromagnetic radiation.
In early 1909, Einstein derived the statistics of the radiation pressure force fluctuations
acting on a movable mirror, including the frictional effects of the radiation force, and
this analysis allowed him to reveal the dual wave-particle nature of blackbody radiation.
In pioneering experiments, both the linear and angular momentum transfer of photons
to atoms and macroscopic objects were demonstrated by Frisch [1] and by Beth [2], re-
spectively. But none satisfactory explanation about radiation pressure was not given
experimentally.

The situation drastically changed with the advent of lasers in the 1970s, which en-
ables highly focused and coherent light sources. Laser cooling was subsequently realized
experimentally in the 1980s and has became since then an extraordinarily important tech-
nique [3]. It was soon suggested to use optical force to manipulate the motion of mechan-
ical objects in a controlled manner. Radiation pressure is then used to cool atoms [3–6],
to trap small particles [7, 8] and also to cool ions to their motional ground state. Some
decades after, laser cooling enabled many applications [9] including what can be consid-
ered as true revolution in atomic physics, pivotal for discoveries such as Bose-Einstein
condensation, optical atomic clocks, precision measurements of the gravitational field and
systematic studies of quantum many-body physics in trapped clouds of atoms [10].

At the fundamental level, these experiments have established the fact that the motion
of laser-cooled atoms or ions oscillating in their trapping potential can only be under-
stood in quantum mechanical terms. For instance, when the quantum ground state is
reached [11], the generation of the non-classical states such as Fock or Schrödinger cat
states [12] becomes possible through optical manipulation. In the same sense, quantum
fluctuations of the cooling light give rise to the Doppler limit in the temperature [13]. This
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was the first time that such quantum effects have been observed with massive oscillators.
To handle this limit sets by quantum fluctuations, optomechanical coupling has been
proposed. Such coupling consists of confining highly laser light into an optical cavities.
Under the radiation pressure exerted by light on these cavities or these mechanical struc-
tures, they begin to vibrate leading to an optomechanical interaction. There are many
optomechanical system configurations such as Fabry-Perot cavity with one end moving
mirror, suspended macroscopic mirrors, trampoline resonators, microtoroid and optical
microsphere resonator. Using the quantum theory, one easily describes the optomechani-
cal systems like photon-phonon interactions. During the last decade, these new systems
have been proposed as potential candidates for laser cooling.

Several optomechanical cooling schemes, both theoretically and experimentally have
been proposed. Among whose we have the resolved sideband cooling [14], back-action
cooling [15–17] cooling by light scattering [18], cryogenic cooling [19–21], quadratic cooling
[22] and modulation cooling [23]. Despite these numerous efforts, cooling remains limited
by the Standard Quantum Limit (SQL). This limitation is experimentally induced by
the Radiation Pressure Shot Noise (RPSN) [24] and is theoretically explained by thermal
fluctuations [25] and laser phase noise [26–30]. Thus, ground state cooling or making
measurement beyond the SQL was the first optomechanical challenge.

In recent years, the tremendous progresses both in cryogenic dilution techniques and
in micro/nanofabrication technologies have provided unprecedented opportunities to en-
gineer novel optomechanical devices [31]. These new devices have led to cooling im-
provement, since phonon numbers less than unity have been achieved in optomechanics
devices [32] and in superconducting microwave circuits [33, 34]. With this achievement,
ultrasensitive measurements beyond the SQL became possible. This was a step forwards
the detection of ultra weak signals in the community of gravitational astronomy. Indeed,
in order to detect wobbles in space-time induced by gravitational waves, these scientists
conceived today’s most sensitive displacement meters: kilometer-scale laser-driven inter-
ferometers, the mirrors of which are suspended as pendula to isolate them from seismic
and technical noise (see Fig.1).

These exploits on ground state cooling were of great interest for the improvement
of quantum applications in quantum information and quantum computing, thanks to
quantum states as squeezed and entangled states. The generation of robust quantum
states is often limited by the thermal decoherence and certain instabilities. This is why the
authors of [34] stated that, new opportunities would be available as well as the generation
of highly non-classical states, if the study of nonlinear phononics at the single-phonon
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Figure 1: Description of Laser Interferometer Gravitational Wave Observatory (LIGO). (a)
LIGO laboratory in Livingston, Louisiana. (b) Schematic of LIGO. It consists of massive mirrors
suspended to form a pair of optical cavities, each some kilometers long. The cavities behave as
the arms of a Michelson interferometer and can detect changes in distance as small as 10−21

relative to the cavity length. (c) Mirrors used in the gravitational Wave detector GEO600, located
near Sarsteat, Germany [35].

level is done. We aim to tackle this problem in this thesis by studying at the single-
phonon level, the nonlinear phononics in optomechanical systems. We focus
this study on the so-called geometrical (softening) nonlinearity in order to
show its effects on quantum ground state cooling. We also need to bring out
the influence of optical nonlinearity on the optomechanical coupling.

To do this, we organize this thesis in three chapters.
In chapter one, elementary concepts of cooling are described and overview of nanome-

chanical cooling efforts is done.
The second chapter is devoted to the description of the mathematical tools used in

this thesis. The rate equations of the models used are also established.
The third chapter which presents and discusses our results is structured in four specific

points as follows:
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The first point studies the effect of the geometrical nonlinearity on both the dynamical
behavior of optomechanical system and on the optical bistability.

In the second point, the quantum ground state cooling is analyzed regarding on the
geometrical nonlinear term.

The third point is devoted to investigate the effect of geometrical and optical nonlin-
earities on the squeezing.

Finally, the fourth point studies the effect of the geometrical nonlinear term on the
generation of CV entanglement.

We end by a summary and outlook for feature challenges in nanomechanics.
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1.1 Introduction

This chapter starts with an overview of optomechanics, where some earlier interests that
have led researchers to explore this new field are highlighted. After that, some basic
concepts of opto/electromechanical quantum ground state cooling are presented. Later
on, various experimental and theoretical efforts to reach quantum ground state will be
reviewed. The section after describes briefly a new challenge poses by the geometrical
nonlinearity in quantum ground state cooling, which will enable us to figure out the
problem that our thesis aims to handle.

1.2 Overview

Pioneering experimental observation of optomechanical interaction was addressed by the
Braginsky’s group at Moscow State University. Conducting their research on general the-
ory of quantum measurements [36–38], they developed a comprehensive understanding of
optomechanical interactions as they occur in the fundamental building block of a gravi-
tational wave observatory (see Fig.3.2). Their setup consisted to trap a monochromatic
light in a high-finesse Fabry-Perot cavity resonator. This light exerts radiation pressure
on the massive end-mirrors which couples their oscillatory motion to the light. Similar
physics was explored theoretically for solid-state vibrations by Dykman [39]. In 1983,
Dorsel et al. [40] demonstrated for the first time in a cavity optomechanical experiment,
the bistability of the radiation pressure force acting on a macroscopic end-mirror. In
1967, Braginsky and coworkers showed that radiation pressure can change the dynamics
of the mechanical degree of freedom, by effectively adding an optically induced viscous
damping to the mirror motion. This was understood as dynamical back-action [41–44]
which could be used to amplify or cool the motion of the mirror [39,45]. For high enough
light powers, quantum fluctuations in radiation pressure start to induce random motion
in the mirror, masking the displacement to be detected [43], effect which is similar to the
one of the quantum back-action of the measurement. This inspired Braginsky to address
the fundamental consequences of the quantum fluctuations of radiation pressure, which
impose a limitation to detect the position of a moving mass [43]. This ponderomotive role
of quantum noise in interferometers is analyzed and clarified by Caves [46]. These works
set the standard quantum limit for continuous position detection, which is essential for
gravitational wave detectors such as LIGO or VIRGO.

Since then, optomechanics started to attract much attention of researchers in the
quantum optics community, resulting in a variety of proposals exploring quantum effects
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Figure 1.1: Generic optomechanical system, with a laser driven Fabry-Perot optical cavity.
The left mirror is fixed while the right one is attached to a spring which captures its motion [53].

in these systems. To mention just a few examples, quantum non-demolition measurements
of the light intensity or single quadratures of the mechanical displacement have been
suggested in Refs. [36, 37, 47]. The generation of non-classical states, such as squeezing
of light [48, 49], mechanical squeezed states [50, 51] and entangled states [52] have also
been put forward. Such quantum properties are used to characterize and measure weak
forces [43, 54, 55], to make ultrasensitive optical measurement in interferometric systems
and both in optical accelerometers and sensors [56–59]. The squeezed and entangled
states are used to improve the quantum teleportation, quantum key distribution, quantum
information and quantum computing tasks. The observation of these quantum effects is
enhanced if optomechanical cooling at the quantum ground state is achieved.

However, there are some experimental challenges to reach quantum ground state. The
weakness of optomechanical coupling by radiation pressure causes limitations on ground
state optomechanical cooling. This is due to the fact that the momentum transfer of a
single reflected photon changes the velocity of a free gram-scale mass by some 10−15 nm/s
only. At the same time, the oscillator displacements associated with quantum effects are
typically on the scale of its zero-point fluctuations xZPF =

√
h̄

2MΩ , where M and Ωm are
its mass and the resonance frequency, respectively. The increase of the optomechanical
coupling can be done by the reduction of the resonator size, in order to make them more
sensitive to the laser beam. Another challenge is the thermal noise which tends to mask
quantum signatures as long as the thermal energy kBT largely exceeds the energy scale
h̄Ωm of a motional quantum. Here, kB is the Boltzmann’s constant, h̄ is the reduced
Planck constant and T is the temperature.

According to the potential quantum opportunities offered by optomechanics, researchers
from diverse fields have been interested by this new research field. With a joint effort of
these researchers combined to the tremendous progress in micro/nano-fabrication tech-
nologies, new optomechanical devices have been devised and characterized. Some of these
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optomechanical devices are grouped in the devices’s zoo on figure Fig.3.3. The aim of
these devices is to induce strong optomechanical coupling, enabling to approach funda-
mental quantum limit both in terms of the quality of displacement sensitivity and the
occupation of the mechanical oscillator or phonon occupancy. This opens the way to the
research field of cavity quantum optomechanics [60,61].

Figure 1.2: Optomechanical devices’s zoo illustrating the variety of optomechanical cavities,
arranged according to mass and frequency. They are ranged from nanometer-sized structures
(10−20 kg), to micromechanical structures (10−11 kg) and to macroscopic, centimeter-sized mir-
rors weighing several kilograms. To get details about each of these optomechanical devices, see
Ref. [35].

Nano-structures exhibits the nonlinearities which are non negligible [62–64]. These
nonlinear effects pose a new experimental challenge to surpass the quantum ground state
limits. This new challenge constitutes the focus point that our thesis try to
elucidate. Two others research teams [65,66], have devoted their works in this
sense.

1.3 Basic concepts for optomechanical cooling

As the optical forces exerting on mechanical structure are typically weak, optical cavities
are employed to resonantly enhance the intracavity light intensity, so that the optical
forces become pronounced. Our investigations in this work, are based on a Fabry-Perot
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cavity where one end-mirror is attached to a spring while the other is fixed, as shown in
Fig.3.2. The advances in nano-fabrication lead to the simplification of this system where
the system end-mirror+spring is replaced by a cantilever elastic beam mirror (see Fig.3.4).
These two configurations have the same dynamics but, the former is cumbersome due to
its size while the later can be easily integrated in small devices since its size is reduced.
Here and below, unless otherwise specified, mechanical cooling refers to the center-of-mass
motion.

When the light circulates inside the cavity, it exerts a radiation pressure on the can-
tilever mirror which begins to vibrate. This mechanism induces a coupling between the
photon number of the intracavity field and the mechanical position of the movable mirror
which behaves as a harmonic oscillator. When it is coupled to the radiation pressure,
its mechanical susceptibility is modified given rise to two important optomechanical ef-
fects: the optical spring and the optical damping. During the optomechanical interaction,
the vibrations of the movable mirror induce a shift in the effective mechanical resonant
frequency, it is the the optical spring. Similarly, these vibrations of the movable mirror
change the effective damping of the mechanical oscillator which is known as the optical
damping. Both optical spring and optical damping scale linearly with the laser power,
and depend on the relative detuning of the laser frequency from the cavity resonance.
These two effects can be used to identify the nature of the back-action force which is
important in the cooling process in optomechanics. Thus, quantum ground state cooling
is deeply influenced by these optical effects [67].

Another important factor which is influenced by the optomechanical coupling is the
temperature. When the movable mirror vibrates, its mechanical modes are coupled to
the thermal bath temperature T , which fluctuates, leading to a Brownian motion of the
mirror [19]. Using the fluctuation-dissipation theorem, one shows that the optomechanical
interaction modifies the damping rate, but it does not change the thermal Brownian
drive. This means a change in the effective temperature of the mechanical mode [68]. To
appreciate this change, one considered a mean energy Em of a mechanical mode subjected
to a Brownian noise from the thermal bath at temperature T . Without optomechanical
interaction, the mean energy follows

Ė =−ΓEm+ ΓkBT, (1.1)

where Γ is the intrinsic mechanical damping rate. The steady state solution of this
equation is Em = kBT .

In the optomechanical interaction picture, when the laser or the optical field is intro-
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Figure 1.3: Simplified Fabry-Perot optomechanical cavity. The system right-mirror+spring of
the generic setup Fig.3.2 is replaced by a cantilever elastic beam mirror.

duced, Eq.(1.1) becomes
Ė =−ΓeffEm+ ΓkBT, (1.2)

where the steady state solution yields

Em = kBT
Γ

Γeff
= kBTeff . (1.3)

Γeff is the effective damping as it will be shown below and Teff = T Γ
Γeff is the effective

temperature modified by the optomechanical interaction. Eq.(1.3) shows that an optome-
chanical interaction can modify the effective temperature of a system putting it either in
a cooling (Γeff > Γ) or in a heating (Γeff < Γ) regime.

Adopting the corpuscular aspect of light, we can use the photon-phonon interaction
picture to give deep explanation of the cooling and heating processes. Let us characterize
the photon by the laser frequency ω0 while the phonon is characterized by the resonant
frequency Ωm of the nanoresonator (cantilever mirror). After the reflection of one photon
on the mirror, its frequency changes due to effect similar to an inelastic Raman scattering
creating a Stokes and anti-Stokes processes. Stokes process corresponds to the physical
process of creating one extra phonon by extracting energy from the optical mode while
the Stokes process, one phonon is absorbed and the energy h̄Ωm is transferred from
the mechanical mode towards the photon as shown on Fig.3.5a. These processes create
two sidebands around the optical frequency ω0 respectively at ω0±Ωm as indicated on
Fig.3.5b. The cooling and the heating of the mechanical mode correspond respectively
to the anti-Stokes and the Stokes process which are equivalent to blue and red detuning.
These two processes are equivalent at the optical resonance ω0 =ωc , where ωc is the cavity
frequency. This situation corresponds to the case where there is no energy transfer between
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mechanical and optical mode. To enhance one of these two phenomena, an asymmetry
between Stokes and anti-Stokes sideband needs to be induced. In the cooling process, the
anti-Stokes sideband requires to be put at the cavity resonance ωc (see Fig.3.5b), while
the heating process is enhanced when the Stokes sideband is accorded with the cavity
frequency. Practically, quantum ground state cooling is reached in the resolved sideband
limit which requires a large mechanical frequency compared to the cavity linewidth (Ωm�
κ). The theoretical effective minimum phonon number achieved at this limit,

neff =
(

κ

4Ωm

)2
, (1.4)

is experimentally limited by the radiation pressure shot noise and others sources which
always add a small amount of phonon. κ is the cavity decay rate.

In order to enhance ground state cooling, both high light intensity and high mechanical
factor Qm = Ωm

Γm are needed. This means that, an efficient cooling is achieved for both
high optical Q-factor Q� 1 (Q= ω0

κ ) and high mechanical Q factor Qm� 1.

Figure 1.4: Photon-phonon interaction in optomechanics. Corpuscular consideration of light
and mechanical mode can be used to explain cooling and heating which refer respectively to the
anti-stokes and Stokes process. (a) Elementary anti-stokes and Stokes process. (b) Cooling
process where the anti-stokes process is accorded with the cavity frequency (or where the Stokes
process is desaccorded with the cavity frequency).

1.4 Quantum cooling review

Many theoretical and experimental schemes have been proposed to study the quantum
ground state cooling of the mechanical vibrating mode of resonators. These schemes
cover both the field of quantum optomechanics and electromechanics. Depending on
the kind of the driving source which can be an optical beam or a microwave beam, one
distinguishes an optomechanical and electromechanical coupling respectively. According
to their high frequency of vibration and their easy integration on chip, the mechanical
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resonators using in the superconducting microwave circuits are the most promising to be
cooled in its quantum ground state rather than those used in optomechanical systems.
In the following, we review some important theoretical and experimental results on the
cooling in optomechanical systems.

In [11], the authors developed the cooling scheme based on the dynamical back-action
which is introduced by the radiation pressure. They showed that final phonon number
below unity can be attained at the resolved sideband. After having established an anal-
ogy between their scheme and the sideband cooling, they showed that the final average
occupancy can be retrieved directly from the optical output spectrum. The parame-
ters they used are those for a wide range of experimental realizations of cavity self-
cooling [8, 10]. Comparative study between the back-action cooling via a detuned cavity
and cold-damping via quantum-feedback cooling in optomechanical systems is done in [69],
for the full parameters range of a stable cavity. It is found that back-action cooling is
more efficient in the resolved sideband cooling (Ωm� κ) while the cold-damping is more
suitable in regime of unresolved sideband cooling.

Favero and Karrai [12] investigated the cooling by light scattering in a high finesse
Fabry-Perot cavity of small mode volume, within which a nanorod which constitutes the
nanoresonator acts as a position-dependent perturbation by scattering. In return, the
back-action induced by the cavity affects the nanoresonator dynamics and can cool its
fluctuations. They predicted the ground-state cooling in optomechanics by using such a
scheme, based on light scattering. Schliesser and co-workers combine for the first time in
2009, a cryogenic pre-cooling and resolved-sideband laser cooling to cool experimentally
the silica whispering gallery mode (WGM) microcavities having the mechanical frequency
range of 62−122MHz [13]. Using the input laser power of 0.2mW which increases the total
damping rate to Γeff = 370kHz, the mode temperature is reduced to Teff = 200±60mK
and the final phonon occupancy reaches neff = 63± 20. This was a best performance
in the context of experimental cavity optomechanical cooling reported in 2009; since the
occupancy of neff = 25 phonons was attained three years before only, in the context of con-
ventional dilution refrigeration of a nanomechanical resonator [14]. During the same year,
Groblacher and co-worker [15] demonstrated an ultracooling of a micro-optomechanical
oscillator in a cryogenic cavity. They used the optomechanical laser cooling to cool in a
cryogenic cavity, a nanoresonator having the fundamental frequency of Ωm = 2π×945kHz
with an effective mass of m= 43±2ng. Starting from environment temperature of 5.3K
which corresponds to 53×103 quanta, the final occupancy achieves neff = 30 quanta at
the cryogenic temperature of 1.3mK. According to the large laser cooling rates attained,
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the performance of this method is proved to be no longer limited by residual absorption
or phase-noise effects. This is why at the end of 2009, Rabl and co-workers investigated
the effect of laser phase noise on the ground state cooling in optomechanical systems [20].
They elucidated that phase fluctuations of the driving laser induce modulations of the
linearized optomechanical coupling as well as a fluctuating force on the mirror due to
variations of the mean cavity intensity. They showed out that laser phase noise induces
limitations on cooling in optomechanical systems. Other works confirmed this result some
years after, precisely in 2011 [21–23] and 2013 [24].

In Ref. [70], the authors showed how parametric interaction can enhance cooling. They
proposed an optical cavity which contains a nonlinear crystal which is pumped by a laser
to produce parametric amplification and to change photon statistics in this cavity. They
demonstrated how the addition of a parametric amplifier in a cavity can lead to cooling
of the micromirror to a temperature which is much lower than what is achieved in an
identical experiment without the use of a parametric amplifier. This method cools a
micromechanical mirror by radiation pressure from room temperature of 300K to sub-
Kelvin temperatures and it could provide a way to cool the mirror to its quantum ground
state or even squeeze it.

Genes and co-workers in [71] used the electromagnetically induced transparency (EIT)
to cool towards ground state a mechanical resonator in the unresolved sideband cooling.
To do this, they investigated a hybrid optomechanical system composed of a microme-
chanical oscillator as a movable membrane and an atomic three-level ensemble within
an optical cavity. They showed that a suitably tailored cavity field response via electro-
magnetically induced transparency in the atomic medium allows for strong coupling of
the membrane mechanical oscillations to the collective atomic ground-state spin, which
facilitates ground-state cooling of the membrane motion, even in the unresolved sideband
cooling. In 2009 [72], the same authors showed inhibition of the Stokes-scattering process
or enhancement of anti-Stokes scattering, leading to ground-state cooling of micromechan-
ical oscillators, even for short low-finesse optical cavities. They processed by modeling
the particles as a two-level ensemble which creates intracavity narrow bandwidth loss or
gain and induce tailored asymmetric structuring of the cavity noise spectrum interacting
with the oscillator.

In 2012, sequence of fast pulses laser were used to achieve quantum ground state [73].
These pulses add a term to the effective optomechanical interaction Hamiltonian which
tunes the cooling operator. This technique is shown to be experimentally feasible in both
the good cavity limit (Ωm� κ ), where it is capable of reaching the ground state much
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faster than the oscillator frequency, and the bad cavity limit (Ωm < κ ) , where sideband
cooling is incapable of approaching the ground state. It was shown that this scheme can
be implemented for strongly and weakly coupled optomechanical systems in both weakly
and highly dissipative cavities. Parametrically modulated optomechanical systems were
proposed in [16] as simple and efficient setting for the quantum ground state cooling.
Both sinusoidal modulations of the mechanical frequency and of the input laser intensity
are introduced in such system. The relevant result is that, the choice of the relative phase
between the two modulations can either enhance or cancel the desired quantum effects,
opening new possibilities for optimal quantum control strategies.

In 2013, a cavity mirror was cooled in the presence of an incoherently pumped atomic
medium [74]. The authors showed that the strong optomechanical coupling regime can
be reached by increasing the incoherent pump strength which increases the cooling rate
and enhances the minimum attainable phonon number. Both dispersive and dissipative
effects resulting from the modulation of the cavity frequency and the cavity linewidth
respectively were investigated on optomechanical cooling in [75]. They showed that in
the purely dissipative coupling, cooling is limited while it is enhanced in the purely dis-
persive coupling. In the combining case of the dispersive and dissipative optomechanical
couplings, they showed that the cooling is more efficient. Their work then showed how to
beneficially combine dispersive and dissipative optomechanical couplings to boost cooling.

These techniques can also be used for cooling processes in electromechanical systems.
Indeed, a single-electron transistors are used to detect the position approaching that set
by the Heisenberg uncertainty principle limit in [76,77] while the superconducting circuits
capacitively coupled are used to reach small phonon number in [14, 27, 28]. Particularly,
small phonon number of neff ≈ 0.3 and neff = 0.07 are respectively reached in electrome-
chanical superconducting microwave circuit in Ref [27] and Ref [28].

1.5 New challenges: Towards the nonlinear quantum
optomechanics

So far, scientists considered the linear optomechanical coupling between the oscillator
displacement and the optical or microwave field. Until 2008, there were only few studies
on nonlinear optomechanical coupling reported in the literature. In 2008, a quadratic
optomechanical coupling was proposed by Harris’s group at Yale University [78]. In the
same way, Painter’s group at the California Institute of Technology [26] suggested in
2011 the nonlinear study, as candidate for the improvement of quantum applications in
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optomechanics.
Since our thesis begun in 2010, it aimed to explore theoretically these new aspects

of the optomechanical coupling, which refer to the field of (nonlinear) quantum optome-
chanics. In order to bring out the problematic of our thesis, let us briefly describe at first
the works done in [26,78].

Figure 1.5: Photonic nanocrystal nanobeam cavity with phononic shield. (a) Scanning electron
microscope (SEM) image of the patterned silicon nanobeam and the external phononic bandgap
shield. (b) Enlarged image of the central region of the nanobeam. (c) Simulation of the optical
and mechanical modes. (d) Enlarged image of the nanobeam-shield interface. (e) Simulation of
the localized acoustic resonance at the nanobeam-shield interface [26].

In the Painter’s group, a nanomechanical oscillator was successfully cooled into its
quantum ground state by using the resolved sideband laser cooling technique. The me-
chanical frequency of the oscillator used in this experiment is Ωm = 2π×3.68 GHz. Both
mechanical factor (Qm ≈ 1.05× 105) and optical factor (Q ≈ 4× 105) used are enough
for a good cooling expectation towards quantum ground state, at the resolved sideband
limit. They used an optomechanical structure with co-located photonic and phononic
band gaps in a suspended on-chip waveguide. Their optomechanical resonator is rep-
resented on Fig.3.6. The structure was pre-cooled to 20K, corresponding to about 100
thermal quanta, and then cooled via radiation pressure to neff = 0.85±0.08. Considering
the laser cooling technique, this phonon occupancy is the lowest to date reported, apart
those reported in [27,28] where the final occupancies less than unity (neff < 1) have been
achieved by using the superconducting microwave cavities. In order to improve their
result, the authors of [26] suggested that many new opportunities would be
available if the regime of strong coupling at the single-quantum level could be
reached, not least the study of nonlinear phononics at the single-phonon level
and the generation of highly non-classical quantum states in mechanical or
optical systems. This means that nonlinearities limit quantum ground state
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achievement at the single-phonon level by adding some amount of phonon.
Thus, we take into account the nonlinear properties which appear in nano-systems in
order to improve quantum ground state cooling, given rise to possible enhancement of
quantum applications in optomechanics.

In the Harris’s group, a so-called membrane-in-the-middle optomechanical cavity was
designed for the first time in 2008. Such geometry is most interesting since it exhibits a
quadratic coupling in the displacement. As implied by its name, this geometry involves
an oscillating mechanical membrane placed inside a Fabry-Perot cavity fixed end-mirrors
(see Fig.3.7). An attractive feature of membrane-in-the-middle configurations is the abil-
ity to realize easily either linear or quadratic optomechanical couplings, depending on
the precise equilibrium position of the membrane (see section ??). Quadratic coupling
opens the way to numerous interesting possibilities in optomechanics, including the direct
measurement of energy eigenstates of the mechanical element, rather than the position
detection characteristics of linear coupling. As estimated by Harris and coworkers, such
coupling may be used in the future to observe particular behaviors as quantum jumps
of a mechanical system [79], quantum tunneling of an optomechanical system and can
allow the study of the quantum Zeno effect in a mechanical context [80]. This coupling
provides also a comparatively simple scheme for the preparation and characterization of
non-classical mechanical states of interest for quantum metrology and sensing [80]. Par-
ticularly, the quadratic coupling has appeared as key element to enhance optomechanical
cooling and squeezing even for high temperatures and weak coupling [16].

Figure 1.6: Conceptual illustration of the quadratic or dispersive optomechanical coupling.
The cavity is defined by rigid mirrors. The only mechanical degree of freedom is that of a thin
dielectric membrane (orange) in the cavity mode (green) [78].

So, in this work, we focus on the improvement of the quantum ground state cooling
at the single-phonon level, through nonlinearities.

Therefore, we proceed to the study of nonlinear phononics at the single-
phonon level by taking into account a geometrical nonlinearity, which occurs
for large displacements of the mechanical resonator. Such nonlinearity is used
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to correct the dynamics of the system and merges in the nanoscale systems
[62–64]. This allows to,

• Predict the dynamical behaviors such as quantum jump and chaos phe-
nomena in optomechanical systems. The effects of geometrical nonlinear-
ity as well as the quantum operator’s fluctuations on optical bistability
are also studied;

• Investigate the effects of geometrical nonlinearity on quantum ground
state cooling at the single-phonon level;

• Study the effect of optical and geometrical nonlinearities on the squeezed
states generation;

• Generate highly Continuous Variables entanglement via geometrical non-
linearity.

1.6 Conclusion

The purpose of this chapter was to give an overview of various efforts done to reach quan-
tum ground state, through otpomechanics. The phonon occupancies less than unity are
achieved in [26–28]. However, nonlinear effects which are non-negligible at the nanoscale,
constitute new challenge which limits quantum ground state cooling.

Hereafter, we will highlight important points of these nonlinear effects on optomechan-
ics, in order to surpass this limitation. To this end, we organize the rest of our thesis as
follows. Chapter two describes the analytical and numerical tools that have been used.
Chapter three explains and models the anharmonic terms of our optomechanical system.
The corresponding results will be also reported and discussed. Finally, we summarize and
will bring out future directions of the nonlinear quantum optomechanics.
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2.1 Introduction

This Chapter is devoted to the establishment of the optomechanical rate equations. Both
classical and semiclassical approaches are used. Analytical and Numerical methods as
well as the computational techniques used are briefly reviewed. The organization of this
chapter is as follows. The second section establishes the optomechanical rate equations
both in classical and semiclassical limits. Analytical methods used are described in sec-
tion three while numerical methods are presented in section fourth. We then end by a
conclusion in section five.

2.2 Modelling of optomechanical oscillators

We use both the energy conservation method [19] and the theory of elastic thin beam
equations [62,63] through optomechanical cavity to derive the rate equations in the clas-
sical limit. In the semiclassical limit, these equations come from the derivation of the
system Hamiltonian [81].

2.2.1 Classical limit

Optical part

Equations of the optical part are obtained by using the energy conservation method. Let
us consider the system represented on Fig.3.4, where Ein(t), Eout(t), α and α′ denote
respectively the amplitude of the input field, the amplitude of the output field, the intra-
cavity transmitted field and the intracavity reflected field. R and T denote respectively
the reflection and transmission coefficients. They are given by:

R = 1−γ and T =
√

1−R2 ≈
√

2γ, γ� 1. (2.1)

Considering the optical energy conservation through each element of the cavity, one
has the following conservation relations,

α(t) = iTEin(t) +Rα′(t), (2.2)

Eout(t) = iTα′(t)−REint(t), (2.3)

α′(t) = α(t− τ)eiΨ(t), (2.4)

where τ = 2d0
c is seen either as the round trip time of the light in the cavity or as the time
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delay of α′ with respect to α. d0 and c are the cavity length and the celerity respectively.
Ψ(t) = 2kd(x(t)) + σ is the phase shift between α′ and α. k is the wavenumber and
σ = iε0d0

2 characterizes the linear attenuation in the resonator where ε0 (in m−1) is a
coefficient caused by scattering, absorption and radiation. i is the complex number defined
by i2−1.

The phase shift can be written as the superposition of a linear part and nonlinear part
as [82]

Ψ(t) = ΨL+ ΨNL = Ψ0 +σ+ ΨNL = 2kd0 +σ+ 2kf(x), (2.5)

where f(x) is a function characterizing the optical nonlinearity induced by the radiation
pressure exerted on the cantilever nanobeam. After some arrangements, Ψ(t) takes the
form,

Ψ(t) = σ+ 2k
(
d0 +x+ x2

2d0
+ · · ·

)
. (2.6)

Close to resonance, both phase shift and round trip are small, so that [19]

eiΨ(t) ≈ 1 + iΨ(t) + · · · , (2.7)

α(t− τ)≈ α(t)− τ dα(t)
dt

. (2.8)

By inserting Eqs.(2.6) - (2.7) in Eq.(2.1), one finds that α satisfies the following differential
equation,

α̇ =
[
−γ
τ

+ i
σ

τ
+ i

(2πc
λn0
− 2πcγ
λn0

)
+ i

(4π
λτ

(1−γ)x
)]
α(t) + i

√
2γ
τ

Ein(t), (2.9)

where the second order nonlinear term (∝ x2) in Eq.(2.6) is neglected, since it is to small
as we will show later. n0, λ and c are respectively the refraction index of the intracavity
medium, the wavelength of the laser and the celerity. Equation( 2.9) can be rewritten as,

α̇ =
[
i
(

∆0 + gM
xZPF

x
)
− κ2

]
α(t) + i

√
κEin(t), (2.10)

where ∆0 = 2πc
λn −

2πcγ
λn = ω0−ωcav, gM = ωcavxZPF

d0
, xZPF =

√
h̄

2MΩm , ωcav = 4π
λτ (1− γ),

κ
2 = iστ −

γ
τ =−

(
1

2τ0
+ 1

2τex

)
=− 1

2θ ,
√
κ=

√
2γ
τ =

√
1
τex

. ω0 is the laser frequency and ωcav
is the cavity resonance frequency. The other parameters κ, ∆0 and gM are respectively,
the cavity decay rate, the laser detuning and the cantilever-cavity coupling.
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Mechanical part

The dynamics of the cantilever nanobeams is derived according to Euler-Bernoulli theory,
which reads the following nonlinear space-time equation [62–64],

EI
∂2

∂r2

∂2y(r, t)
∂r2

1 +
(
∂y(r, t)
∂r

)2−
3
2
+ρs

∂2y(r, t)
∂t2

+µ
∂y(r, t)
∂t

= frad(r, t), (2.11)

where E, I, ρ and s are respectively, the Young modulus, moment of inertia, density and
the section of the cantilever nanobeam which has the length `. frad(r, t) is the radiation
pressure force which is exerted on an infinitesimal length element of the cantilever beam.
The term

(
∂y(r,t)
∂r

)2
is the geometrical nonlinear term which is neglected here.

Using the Galerkin method, which allows us to separate the spatial and temporal
solutions and using the boundary conditions of cantilever beams known in the literature
[62–64], the modal solution of equation (2.11), by excluding the damping term and the
pressure force is,

y(r, t) = un(r)xn(t)

=
{
− sinkn`+ sinhkn`

coskn`+ coshkn`
(cosknr− coshknr) + (sinknr+ sinhknr)

}
xn(t),

(2.12)

where xn(t) is the time dependent component.
According to the form of equations of motion of the nanobeam, the radiation pressure

force can be written as

frad(r, t) = un(r)frad(t) = 2h̄kI(t) c

2d0
un(r) = h̄gM

xZPF
|α(t)|2un(r). (2.13)

Note that, for convenience, we have switched to normalization of |α(t)|2 to photon num-
ber, and will pursue this consistently sometimes in the following. Equivalently, |Ein(t)|2

denotes the photon flux impinging on the coupling region.
By inserting equations (2.12) and (2.13) in equation (2.11) and integrating the resulting

equation over the entire length of the nanobeam, considering a single mode dynamics, it
comes

ẍ+ Γmẋ+ Ω2
mx= h̄gM

MxZPF
|α(t)|2, (2.14)

where M = ρs, Ωm =
√
EI
ρs k

2
1, Γm = µ

ρs = Ωm
Q and k1 = 1.875

` . Ωm and Γm are respectively
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the frequency of the cantilever beam and damping rate of the cantilever beam motion.
Finally, the rate equations describing the linear optomechanical coupling device in the

classical approach is [83]:

α̇ =
[
i
(

0∆ + gM
xZPF

x
)
− κ2

]
α(t) + i

√
κEin(t), (2.15)

ẍ+ Γmẋ+ Ω2
mx= h̄gM

MxZPF
|α(t)|2. (2.16)

2.2.2 Semiclassical limit

Rate equations are derived from the semiclassical Hamiltonian, which describes the cou-
pling between the optical and mechanical degrees of freedom. The formulation of this
Hamiltonian is given by Law in [81],

Ĥ = (p+ Γm)2

2m +V (q) + h̄
∑
k

ωk(q)α̂†kα̂k−
h̄cπ

24q . (2.17)

In this Hamiltonian, k is the longitudinal mode number and ωk(q) = kπc
q , α̂k and α̂†k

are respectively the corresponding frequency, annihilation and creation operators; Γm
corresponds to an effective momentum in the optomechanical interaction, arising from
the mixing of different spatial modes. V (q) is the mechanical potential and the last term
Casimir term for one-dimensional space.

By considering only a single optical mode and assuming all others are unpopulated,
Γm must be zero since it gives rise only to terms that mix the different modes [81].
Such result suppose that we have treated the optical field in an adiabatic limit; if the
mechanical motion is not slow compared to the round trip time of a photon in the cavity,
it will cause coupling between the different modes, even if only one is initially occupied.
Then Eq.(2.17) takes the form,

Ĥ = p2

2m +V (q̂) + h̄ωcav(q)α̂†α̂−
h̄cπ

24q , (2.18)

where ωcav is the frequency of the single populated intracavity optical mode. Equation
Eq.(2.18) can be further simplified by ignoring the Casimir term, which is negligibly
weak for most optomechanical systems, and by assuming that the mechanical potential is
harmonic about some equilibrium position d0, we find

V (q) = 1
2mΩ2

mx
2, (2.19)
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where x= q−d0 is the displacement from equilibrium. Considering only small motion of
the resonator around this equilibrium position (x� d0), we can tailored ωcav around this
equilibrium point and Eq.(2.18) then yields

Ĥ = p2

2m + 1
2MΩ2

mx
2 + h̄

ωcav(d0) +x
dωcav(q)

dq

∣∣∣∣∣
q=d0

+ · · ·
 α̂†α̂. (2.20)

Both mechanical position and momentum can be written with respect to their quantum
counter-parts as,

x= xZPF x̂m, p= h̄

2xZPF
p̂m, [x̂m, p̂m] = 2i. (2.21)

This allows to write the mechanical energy as

p2

2m + 1
2mΩ2

mx
2 = h̄Ωm

4 (p̂2
m+ x̂2

m). (2.22)

By taking into account the optical energy and after the rotating wave approximation, the
Hamiltonian takes its final form,

Ĥ =−h̄(∆0 +gM x̂m)α̂†α̂+ h̄Ωm

4 (p̂2
m+ x̂2

m) + h̄
√
κEin(α̂†+ α̂) + Ĥκ+ ĤΓ, (2.23)

where Ĥκ and ĤΓ are the Hamiltonian terms which capture respectively the decay of a
photon and the mechanical damping of the cantilever mirror beam. The optomechanical
coupling term is gM = gxZPF = −xZPF dωcav(q)

dq

∣∣∣
q=d0

, with g = − dωcav(q)
dq

∣∣∣
q=d0

= ωcav
d0

for
the Fabry-Perot cavities.

It should be noted that the quantum Hamiltonian can be deduced from Eq.(2.23) by
setting x̂m and p̂m as,

x̂m = b̂†+ b̂ and p̂m = i(b̂†− b̂), (2.24)

where b̂ and b̂† are the annihilation and creation operators of the mechanical mode.

2.3 Analytical methods

This section describes the analytical methods that have been used in this work.

2.3.1 Langevin derivation method

The Langevin equations of the system are the stochastic differential equations, describing
the time evolution of a subset of degrees of freedom, where the mean value of the system
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slowly varies and is treated dynamically, while the small fluctuations around the mean
value are treated probabilistically. Initially, Paul Langevin considered the Brownian mo-
tion of particles [84] and assumed that such particles are subject to a systematic force, i.e.,
a viscous drag, and a rapidly fluctuating force, which comes from surrounding particles
randomly impacting on the system under investigation with a mean amplitude of zero,
i.e. the net force is zero on average. He treated this rapid force statistically, assuming
that it was independent from the viscous drag and arrived to an expression for the mean
motion of the particle. Indeed, for a given operator O, its Langevin equation is

∂O

∂t
= i

h̄

[
Ĥ,O

]
+N, (2.25)

where N is the corresponding noise operator of O. Using this Langevin relation and taking
into account some commutators relation, one obtains the following quantum Langevin
equations (QLEs) of optomechanical systems,

ẋm = Ωmpm, (2.26)

ṗm =−Ωmxm−Γmpm+ 2gMα†α+Fth, (2.27)

α̇ =
[
i(∆0 +gMxm)− κ2

]
α− i

√
κEin+

√
καin, (2.28)

where Fth and αin are the Brownian stochastic force and the optical vacuum input noise,
both with zero mean amplitude.

2.3.2 Stability analysis

To analyze the stability of our system, we have used some specific approaches.

Steady states and dynamics fluctuations

The steady state values are obtained by setting the time derivatives in the Langevin
equations to zero. Applying to the system Eqs.(2.26)-(2.28), one gets the following steady
state values,

xs = 2 gMΩm
|ᾱ|2, |αs|2 = 2κPin

h̄ω0
(
∆2 + κ2

4

) , (2.29)

where ∆ = ∆0 +gMxm is the effective detuning.
By assuming a strong intracavity amplitude field, i.e., |αs| � 1, needed for a strong

coupling, one can write a steady state amplitude for each operator with small zero-mean
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fluctuations. For the generic operator O, one has

O =Os+ δO, (2.30)

where Os is its mean value and δO its corresponding the fluctuation operator. The
Langevin equations can then be linearized by replacing each operator by its corresponding
form given by Eq.(2.30) as,

δẋm = Ωmδpm, (2.31)

δṗm =−Ωmδxm−Γδpm+GδI+ δFth, (2.32)

δİ =−κ2 δI−∆δϕ+
√
κIin, (2.33)

δϕ̇=−κ2 δϕ+ ∆δI+Gδxm+
√
κϕin, (2.34)

where the higher order of fluctuations are safely neglected. The linearized QLEs show
that the mechanical mode is coupled to the cavity mode quadrature fluctuations by the
effective optomechanical coupling G = gM |αs|. An appropriate method can be now used
to analyze the stability of our system.

Routh-Hurwitz criterion

The solution of a stochastic Ordinary Differential Equations (ODEs) given by its general
form (see subsection 3.4.1),

u̇(t) = Au(t) +n(t), (2.35)

is,
u(t) =M(t)u(0) +

∫ t

0
dsM(s)n(s), (2.36)

where M(t) = eAt. This system is stable and reaches its steady state as t −→∞ only if
the real parts of all the eigenvalues of the matrix A are negative so that M(∞) = 0 [85].
One can then use the Jacobian matrix method or the Routh-Hurwitz criterion to analyze
the stability of such a system. As we have used the Routh-Hurwitz criterion here, we
briefly describe it.

Let us consider a linearized stochastic ODEs given by its compact form of Eq.(2.35).
The stability of this system depends on the nature of the solutions of its characteristic
equation defined by,

det(A−λI) = 0⇔ λn+a1λ
n−1 +a2λ

n−2 + · · ·+an−1λ+an = 0, (2.37)
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where I is a n× n identity matrix, ai=1,n ∈ R are the coefficients and λ ∈ C are the
eigenvalues of the matrix A and the roots of the characteristic equation. The Routh-
Hurwitz determinants are defined as,

H1 =
∣∣∣a1
∣∣∣ , H2 =

∣∣∣∣∣∣a1 1
a3 a2

∣∣∣∣∣∣ , H3 =

∣∣∣∣∣∣∣∣∣
a1 1 0
a3 a2 a1

a5 a4 a3

∣∣∣∣∣∣∣∣∣ , (2.38)

...

Hj =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 · · · 0
a3 a2 a1 · · · 0
a5 a4 a3 · · · 0
... ... ... ...

a2j−1 a2j−2 a2j−3 · · · aj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.39)

...

Hn =

∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 · · · 0
a3 a2 a1 · · · 0
... ... ... ...
0 0 0 · · · an

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.40)

Proposition 2.1. For a n×n matrix, the hjk elements (j,k = 1, · · · ,n) of the Routh-
Hurwitz determinants are defined as,

• hjk = a2j−k for 0< 2j−k ≤ n;

• hjk = 1 for 2j = k⇔ 2j−k = 0;

• hjk = 0 for 2j < k⇔ 2j−k < 0 or 2j > n+k⇔ 2j−k > n.

Proposition 2.2. The system is stable if only if ∀i <(λ)< 0⇔∀i Hi > 0.

As a simplified Routh-Hurwitz criterion in R4, the characteristic equation is,

λ4 +a1λ
3 +a2λ

2 +a3λ+a4 = 0. (2.41)

The corresponding determinants are,

H1 =
∣∣∣a1
∣∣∣= a1, H2 =

∣∣∣∣∣∣a1 1
a3 a2

∣∣∣∣∣∣= a1a2−a3, (2.42)
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H3 =

∣∣∣∣∣∣∣∣∣
a1 1 0
a3 a2 a1

0 a4 a3

∣∣∣∣∣∣∣∣∣= a1

∣∣∣∣∣∣a2 a1

a4 a3

∣∣∣∣∣∣−a3

∣∣∣∣∣∣ 1 0
a4 a3

∣∣∣∣∣∣= a1a2a3−a2
1a4−a2

3, (2.43)

H4 =

∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 0
a3 a2 a1 0
0 a4 a3 a2

0 0 0 a4

∣∣∣∣∣∣∣∣∣∣∣∣
= a4H3. (2.44)

One then finds that the Routh-Hurwitz criterion for the stability in R4 is satisfied for the
following conditions, 

a1 > 0,

a1a2 > a3,

a1a2a3−a2
1a4−a2

3 > 0,

a4 > 0.

(2.45)

Cardano’s Method

Generally in the nonlinear approach, the steady state equations or the equilibrium equa-
tions lead to the m-order polynomial equation (m > 2) which needs specific method to
be solved. Particularly for m = 3, the roots of the namely third-order polynomial equa-
tion are obtained by using the method known as Cardano’s Method. The roots of this
equation, in the steady state equations case, are helpful to analyze the stability of the
system.

Let us consider the following third-order polynomial equation,

ax3 + bx2 + cx+d= 0. (2.46)

To solve it, we have first to set,
x= z− b

3a, (2.47)

which allows us to transform Eq.(2.46) on the form,

z3 +pz+ q = 0, (2.48)

with p= −b2

3a2 + c
a and q = b

27a

(
2b2

a2 − 9c
a

)
+ d
a .

The roots of Eq.(2.48) depend on the sign of the discriminant ∆ = q2 + 4
27p

3 as follows:
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• For ∆> 0, it has one real root z0 and two complex roots z1, z2 as,
z0 = u+v,

z1 = ju+ j̄v,

z2 = j2u+ j̄2v,

(2.49)

where j =−1
2 + i

√
3

2 = ei(
2π
3 ) with j̄ its conjugate, u= 3

√
−q+

√
∆

2 and v = 3
√
−q−

√
∆

2 .

• For ∆ = 0, it has one real root z0 and one double real root z1 = z2 as,
z0 = 2 3

√
−q
2 =−2

√
−p
3 = 3q

p ,

z1 = z2 =− 3
√
−q
2 =

√
−p
3 = −3q

2p .
(2.50)

• For ∆< 0, it has three distinct real roots z0, z1 and z2 defined as,

zk = 2
√
−p
3 cos

(
1
3 arccos

(
−q
2

√
27
−p3 + 2kπ

3

))
, k ∈ {1,2,3}. (2.51)

2.3.3 Quantum Fourier Transform and fluctuation spectrum

Quantum Fourier Transform (QFT) is used to solve analytically the ODEs by transforming
them into the frequency domain. For a given operator O(t), depending on the time, its
expression in the Fourier domain is,

O(Ω) =
∫ +∞

−∞
dteiΩtO(t), (2.52)

O†(Ω) =
∫ +∞

−∞
dte−iΩtO†(t) = (O(−Ω))†. (2.53)

From these relations, the QFT of the time derivative and of the fluctuation of operators
can be deduced.

By replacing each operator in a ODEs system with its corresponding QFT, one obtains
a simple algebra system of the dynamics fluctuations which be easily solved. From this
dynamics system of the fluctuations, all informations induce by small change in the system
can be extracted, revealing so the quantum aspects of the system.

The quantum effects of the system are contained in the spectrum fluctuations of each
operators in system and in their variance, which allow both to quantify the minimum
phonon occupancy, the squeezing and the entangling in the system. The spectrum fluc-
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tuation SO(Ω) of an operator O is defined by

2πδ(Ω + Ω′)SO(Ω) = 〈δO(Ω)δO†(Ω′)〉. (2.54)

The symmetrized spectrum S̄O(Ω) of the operator O is defined by,

S̄O(Ω) = 1
2(SO(+Ω) +SO(−Ω)), (2.55)

which allows us to defined its variance as,

〈δO2(Ω)〉=
∫ +∞

−∞

dΩ
2π S̄O(Ω). (2.56)

Characterization of Squeezing

For two given quadrature operators ∆X and ∆Y , squeezing is used to reduce their quan-
tum noise. As coherent states, squeezed states minimize the Heisenberg relation as follows,

∆X∆Y ≥ |12[X,Y ]|. (2.57)

For the coherent states, there is a symmetry between the two quadratures (see Fig.3.13a
below):

∆X = ∆Y =
√
|12[X,Y ]|, (2.58)

which then minimizes the Heisenberg relation as

∆X∆Y = |12[X,Y ]|. (2.59)

For the squeezed states, this symmetry disappears as shown on Fig.3.13b. One remarks
that this asymmetry reduces quantum fluctuations along the quadrature ∆X,

∆X <

√
|12[X,Y ]|, (2.60)

and adds them along the quadrature ∆Y ,

∆Y >

√
|12[X,Y ]|. (2.61)

Despite this asymmetry, squeezed states also verify the standard quantum limit (SQL),
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∆X∆Y = |12 [X,Y ]|. The quadrature ∆X is said to be squeezed while the ∆Y one is said
to be unsqueezed.

Minimum phonon occupancy

Quantum cooling is characterized by the final phonon occupancy in a system. When this
occupancy decreases, the cooling process increases on the mechanical mode of the system.
The effective phonon number neff is extracted from the mean mechanical energy of the
system defined by,

〈Em〉= h̄Ωm

4 (〈δx2
m〉+ 〈δp2

m〉) = h̄Ωm(neff + 1
2), (2.62)

where 〈δx2
m〉 and 〈δp2

m〉 are the position and momentum variances of the mechanical
resonator which satisfy the commutation relation [xm,pm] = 2i. Analytical expression of
neff is found by integrating the variances 〈δx2

m〉 and 〈δp2
m〉 using Eq.(2.56). This can be

accomplished in a straightforward manner using the residue theorem.

Residue theorem

This theorem is used to evaluate the integrals in the complex domain. Let consider a
complex function f(z) = g(z)

h(z) which has n (n ∈ N∗) singularities at certain points zj ,
j = 1, · · · ,n. Applying residue theorem to f leads to

∫ +∞

−∞
dzf(z) =

∫ +∞

−∞
dz
g(z)
h(z) = 2iπ

n∑
j=1

Res(f,zj), (2.63)

where Res(f,zj) is the residue of the function f at the singular point zj . There are
different ways to evaluate the residue of a function f (Res(f,zj)) depending on the type
of its singularities:

• Res(f,zj) = 1
(m−1)! lim

z−→zj

[
dm−1

dzm−1 (z− zj)mf(z)
]
, if zj is a m−order singular point of

the function f ;

• Res(f,zj) = g(zj)
h′(zj) , if zj is a simple singular point of the function f which can be

written on the form g(z)
h(z) .
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2.3.4 Logarithmic negativity EN

Logarithmic negativity is used to quantify the level of the quantum entanglement in a
system. When it is positive, the system is said to be entangled and when it is negative,
the system is not entangled. For high values of EN , the entanglement is said to be robust.
Entanglement characterized the intrication between different parts of a system, similarly
to the EPR effect. Such quantum effects are then used to share information in the
quantum networks as dense coding, quantum teleportation and quantum cryptography.

Let us consider a bipartite system describes by the compact form given by Eq.(2.36).
Assuming that the quantum noises are zero-mean quantum Gaussian noises and that
the dynamics is linearized, the quantum steady state for the fluctuations is a zero-mean
bipartite Gaussian state, fully characterized by its 4×4 correlation matrix which has the
components Vij = 1

2〈ui(∞)uj(∞)+uj(∞)ui(∞)〉. When the system is stable, one obtains

Vij =
∑
kl

∫ ∞
0

ds
∫ ∞

0
ds′Mik(s)Mjl(s′)Φkl(s− s′), (2.64)

where Φkl(s− s′) = 1
2〈nk(s)n`(s

′) +n`(s′)nk(s)〉 is the matrix of stationary noise correla-
tion functions. Using the fact that the three components of n(t) are uncorrelated, we find
Φkl(s− s′) =Dklδ(s− s′), where D =Diag[0,Γm(2nth+ 1),κ,κ] is a diagonal matrix and
Eq.(2.64) becomes V =

∫∞
0 dsM(s)DM(s)T which leads, for a stable system (M(∞) = 0)

and after applying Lyapunov’s first theorem, to

AV +V AT =−D. (2.65)

V is known as the system covariance matrix (CM) and it contains all information about
the steady state. Equation (2.65) can be straightforwardly solved. The entanglement of
the steady state can then be quantified by means of the logarithmic negativity EN which,
in the continuous variable (CV) case, is defined as [86–88]

EN = max[0,− ln2η], (2.66)

where

η =

√√√√∑(V )−
√∑(V )2−4detV

2 , (2.67)

is the lowest symplectic eigenvalue of the partial transpose of the CM, with ∑(V ) ex-
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pressed in terms of 2×2 block matrix

V =
 Vm Vcorr

V T
corr Vcav

 , (2.68)

as ∑(V ) = detVm + detVcav− 2detVcorr. The matrix Vm is associated to the oscillating
mirror, Vcav to the cavity mode and Vcorr describes the optomechanical correlations.
According to Eq.(2.66), a Gaussian state is entangled (EN > 0) if only if η < 1

2 , which is
equivalent to Simon’s necessary and sufficient entanglement nonpositive partial transpose
criterion for Gaussian states.

2.4 Numerical methods

These methods, that can be sustained by various reasons, are used to solve directly the
rate equations of optomechanical systems. They are used to analyze complex dynamical
behaviors as well as the dynamical behavior of the systems for which the rate equations are
not readily apparent or solvable. When analytical solutions are not apparent, numerical
integration can be used to obtain information about the trajectory. Many numerical
methods exist and are used to solve various types of ODEs.

However, the Runge-Kutta family of algorithms comes arguably the most well-known
and used methods for numerical integrations. Thus, we choose to review briefly two
kinds of numerical integration methods namely 4th order Runge-Kutta (RK4) for ODEs
and some computational techniques that we have used to characterize the dynamical
behaviors of our system. These numerical methods are run on a Laptop computer using
MS Windows 7 operating system and three major softwares: Fortran, Matlab and Maple.

2.4.1 Fourth-order Runge-Kutta method for first-order ordi-
nary differential equation

According to the fact that it is the commonly used method, this numerical integration
method gives more accurate solutions of the nonlinear ordinary differential equations
(NODEs). Let us consider the first order differential equation

du(t)
dt

= f(t,u(t)), with u(t0) = u0, (2.69)

where u(t) = (x1(t),x2(t), · · · ,xn(t))T and the vector of noises f = (f1,f2, · · · ,fn)T .
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The RK4 method gives the solutions of this problem after each time step h. Next
solution is a function of the previous one. The solutions are given with respect to the
following scheme:

u(t+h) = u(t) + 1
6(`1 + 2`2 + 2`3 + `4). (2.70)

where

`1 = hf(t,u(t)), (2.71)

`2 = hf(t+ h

2 ,u(t) + `1
2 ), (2.72)

`3 = hf(t+ h

2 ,u(t) + `2
2 ), (2.73)

`4 = hf(t+h,u(t) + `3). (2.74)

For a given an initial value u(t0) = u0, this procedure runs and evaluates all the other
values taken by the function u after other times separated by the time step h.

2.4.2 Dynamical behaviors characterization

Behaviors of nonlinear systems are usually characterized with a number of numerical
tools such as the time history diagram, phase portraits diagrams, Poincaré section and
bifurcation diagrams. Here, we briefly summarize the computational techniques which
are used to characterize the dynamical behaviors of optomechanical systems used in this
thesis.

Time histories and phase portraits diagrams

Time histories diagrams gives the evolution of each system parameter versus the time.
It is constructed straight form the RK4 procedure described above. This diagram shows
different forms of traces which inform about the regular and the complex behaviors of the
system. The limit of this techniques is the fact that, it can not offer sufficient information
to make difference between complex behaviors such as the quasi-periodicity and chaos
phenomenon.

A phase portrait is a mathematical space having orthogonal coordinate directions
which represent each of the variables needed to specify the instantaneous state of the
system. The commonly coordinates used to construct a phase diagram are the position
and velocity. It reveals information such as whether an attractor or limit cycle is present
for the chosen parameter value. As the time histories diagrams, it is not easy to distinguish
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the quasi-periodicity and chaos phenomena by using the phase portrait diagram.
One of reliable numerical tools used to know if a dynamical system exhibits a chaotic

phenomenon for a given parameter values is the Poincaré section.

Poincaré section

Poincaré map is the intersection of an orbit in the state space of a continuous dynamical
system with a certain lower dimensional subspace. This map known as Poincaré sec-
tion, provides sufficient informations to distinguish easily different behavior in nonlinear
system. Generally for an n−dimensional flow, the Poincaré section will be an (n− 1)
dimensional hypersurface transverse to the flow. To construct the Poincaré section for a
three dimensional attractor, choose a plane transverse to the direction of motion of the
trajectories. Put a point on this plane every time the trajectory crosses it. This plane then
constitutes the Poincaré section for the attractor. Noting that motion of the trajectories
only in one direction has to be considered and the time interval between successive inter-
sections need not be equal. Regarding the distribution of points on a computer generated
Poincaré section, one easily distinguishes between different motions.

• A k−periodic motion maps to k− points on the Poincaré section, i.e., period−1
motion maps to a single point on the Poincaré section, period −2 motion maps to
two points, etc.;

• A quasiperiodic motion which contains a finite number of incommensurable frequen-
cies traces a continuous closed curve on the Poincaré map since it does not converge
to a single point;

• If the Poincaré map does not consist of either a finite set of points or a closed curve,
the motion is chaotic.

2.5 Conclusion

This chapter has presented the mathematical formalisms used for analytical investigations
and the numerical methods used to integrate the optomechanical ordinary differential
rate equations. We started by the presentation of the analytical methods and some
mathematical formalism used. After that, the numerical methods and some computational
techniques used both to solve the ODEs and to characterize dynamical behavior of the
system have been described. The hardware as well as the software used are indicated.
The next chapter focuses on the results and discussions.
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3.1 Introduction

This chapter investigates the effect of geometrical and optical nonlinearities in optome-
chanical systems. The geometrical nonlinearity comes from the bending of a mechanical
structure, the cantilever nanobeam mirror, when it moves under large excitations while the
optical nonlinearity originates form the interaction between laser beam and the nanomir-
ror.

We organize the chapter as follows. In the second section we perform the modelling
of the nonlinear Fabry-Pérot optomechanical cavity by taking into account the geomet-
rical nonlinear term. In the third section, we study both the effect of nonlinear term
and quantum noises on the dynamical behavior of the system, considering the classical
and semiclassical limit. This study is focused on the optomechanical behaviors such as
the instabilities which includes chaos, jump phenomena and the bistability. We have rep-
resented the hysteresis cycles to characterize this bistability. In the fourth section , we
investigate the effect of geometrical nonlinearity on the quantum ground state cooling.
The section five is devoted to the study of the geometrical and optical nonlinear effects
on the generation of optical and mechanical squeezed states. The last section investigates
the effect of geometrical nonlinearity on the generation of continuous variables entangled
states in optomechanical systems. The interest allowed to the last two sections comes
to the fact that squeezed and entangled states are useful for in quantum information
processing and other quantum technologies applications.

3.2 Effects of geometrical and optical nonlinearities
in nano-optomechanics

3.2.1 Nonlinear optomechanical rate equations

The meaning of nonlinear optomechanical equations here refers to those which contain
the geometrical nonlinear term. Such a nonlinearity is used to correct the dynamics of
a mechanical structure when it is subjected to a strong external excitation. As strong
external excitation induces large displacement of the structure (Fig.3.1), geometrical non-
linearity then depends on the bending moment of the nanoresonator (nanobeam mirror)
and becomes important for its large deflections. The curvature of the nano-mirror when
it deflects under various loads such as molecules in suspension in the air contributes also
to increase this nonlinearity [62,89].
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Figure 3.1: Large displacements of a nanobeam mirror under high laser beam excitation [25].

In order to take into account the geometrical nonlinearity, we refer to the Eq.(2.11)
where the geometrical nonlinear term

(
∂y(r,t)
∂r

)2
is considered.

Using the ansatz approach and boundary conditions of cantilever beams equations
[62–64], one obtains the modal solution of Eq.(2.11) given by Eq.(2.12). By following
the same procedure as for the linear limit presented in paragraph 2.2.1, one obtains the
nonlinear equation,

ẍ+ Γmẋ+ Ω2
mx−β′x3 = h̄gM

MxZPF
|α(t)|2, (3.1)

where the nonlinear term is captured by

β′ = 3EI
2ρs

∫ l
0
[
u′′′′n (u′n)2 + 6u′′′n u′′nu′n+ 2(u′′n)3

]
dr∫ l

0 un(r)dr
. (3.2)

By combining Eq.(3.1) with the optical one (Eq.(2.10)), one easily obtains the following
nonlinear optomechanical rate equations,

α̇ =
[
i
(

∆0 + gM
xZPF

x+ gM
2xZPFd0

x2
)
− κ2

]
α+ i

√
κEin, (3.3)

ẍ+ Γmẋ+ Ω2
mx−β′x3 = h̄gM

MxZPF
|α|2, (3.4)

where gM
2xZPF d0

x2 is the second order optical nonlinear term [90].
The variables t, x and α can be rescaled as ta = Ωmt, xa = gM

ΩmxZPF x and αa = Ωm
2i
√
κĒin

α,
so that the coupled equations of motion contain only the dimensionless parameters Ψ, ∆

Ωm ,
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κ
Ωm , Γm

Ωm , β and η. Thus equations (3.3) and (3.4) become

α̇a =
[
i

(
∆0
Ωm

+xa+ηx2
a

)
− κ

2Ωm

]
αa+ 1

2 , (3.5)

ẍa+ Γ
Ωm

ẋa+xa−βx3
a = Ψ|αa|2. (3.6)

β = β′x2
ZPF

g2
M

and η = ΩmxZPF
2gMd0

denote respectively the dimensionless geometrical nonlinear
parameter and the dimensionless second order optical nonlinear parameter and, Ψ =
16g2

Mκ2

h̄ω0Ω4
m
Pin.

By taking into account the nonlinear terms in the semiclassical limit, one gets an
anharmonic Hamiltonian,

Ĥ =−h̄
(

∆0 +gMxm+ gMxZPF
2d0

x2
m

)
α̂†α̂+ h̄Ωm

2

p2
m+x2

m−
β
′
x2
ZPF

Ω2
m

x4
m


+ h̄
√
κEin(α̂†+ α̂) + Ĥκ+ ĤΓ,

(3.7)

where β′x2
ZPF

Ω2
m

x4
m and gMxZPF

2d0
x2
m are the aforementioned geometrical nonlinearity and the

second order optical nonlinearity. To obtain the equations in the semiclassical approach
by starting from the Hamiltonian given by Eq.(3.7), we apply the Langevin equation
described in subsection 2.3.1. The nonlinear quantum Langevin equations (NQLEs) then
yield,

α̇ =
[
i
(

∆0 + gM
xZPF

x+ gM
2xZPFd0

x2
)
− κ2

]
α+ i

√
κEin+

√
καin, (3.8)

ẍ+ Γẋ+ Ω2
mx−

gMΩmxZPF
d0

|α|2x−2β′x3 = h̄gM
2MxZPF

|α|2 +
√
h̄ΩmΓm
M

ξ. (3.9)

By rescaling the parameters as in Eqs. (3.5) and (3.6), the dimensionless NQLEs are
derived as,

α̇a =
[
i

(
∆0
Ωm

+xa+ηx2
a

)
− κ

2Ωm

]
αa+ 1

2 +χ0α
in, (3.10)

ẍa+ Γ
Ωm

ẋa+xa−
ΨΩmxZPF

2gMd0
|αa|2xa−2βx3

a = Ψ
2 |αa|

2 +χ1ξ, (3.11)

where χ0 =
√

h̄ω0
8κPin and χ1 = gM

Ω3
mxZPF

√
h̄ΩmΓm
M are the optical and mechanical noises in-

tensity respectively with Γm = MΩ3
mx

2
ZPF

h̄

(
1− βg2

M

Ω2
m

)2
.
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The mechanical energy of the cantilever nanobeam is,

EM = Ek +Ep = 1
2Mẋ2 + 1

2MΩ2
mx

2− 1
4Mβ′x4, (3.12)

where Ek and Ep respectively denote the kinetic and potential energy. In the dimensionless
form, Eq.(3.12) becomes

EM
E0

= A2
(
ẋ2
a+x2

a−
β

2x
4
a

)
, (3.13)

where A = ΩmxZPF
gMxFWHM

and E0 = 1
2MΩ2

mx
2
FWHM with xFWHM the mechanical cantilever

amplitude which moves the cavity just out of its resonance [83].
By using the experimental parameters of [26] given in Table 3.1, we have computed

the following dimensionless parameters: A = 7.36; β = 8× 10−3; η = 2.18× 10−7; κ
Ωm =

6.8×10−2; Γ
Ωm = 9.51×10−6; Ψ

Pin
= 1,47×108; Γ

Ψ = 50; ΨΩmxZPF
2gMd0

= 9.6×10−4 and −2≤
∆0
Ωm ≤ 2. The driving strength Ψ should satisfy the condition Γm

Ψ � 1 that means that the
dynamical multistability is precluded [91]. According to the small value of η, it will be
neglected in this part of our simulations and so the value β = 0 corresponds to the linear
case of the system.

Ωm/2π Γm/2π Qm g0/2π κ/π P0 T
3.6GHz 35kHz 1.05×105 910kHz 529MHz 0.7mW 270mK

Table 3.1: Experimental parameters of Ref. [26].

3.2.2 Dynamical behaviors

A comparative study between the classical and semiclassical limit in optomechanical sys-
tems is done in this section. These studies analyze the effects of both geometrical non-
linearity and the quantum noises on the dynamics of the system. Firstly, we present the
results of optomechanical dynamics. After that, the effects of geometrical nonlinearity
and both Brownian and shot noises on the mechanical energy of the cantilever mirror are
analyzed.

Dynamical behavior of the system in classical limit

This dynamical behavior is presented by distinguishing the linear limit from the nonlinear
one, in order to bring out the effect of the geometrical nonlinearity on the system. The
equations use to this purpose are the Eqs.(3.5) and (3.6).
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Linear limit The input laser beam used in our simulation is a continuous laser beam,
which when it is sending in the cavity, various types of time dependent optical outputs
are obtained [90]: sinusoidal (Fig.3.2a), pulsating (Fig.3.2b) and chaotic (Fig.3.2c and
Fig.3.2d). As mentioned in paragraph 2.4.2, the Poincaré’s map represented on Fig.3.2d
does not consist of either a finite set of points or a closed curve. This Poincaré’s section
then reveals the chaotic state in the system.

Figure 3.2: Oscillation state of optical intracavity (a), pulsating state (b) and chaotic state
(c). The Poincare’s section (d) reveals more the chaotic behavior shown in (c). These curves
are plotted for ∆0

Ωm
= 0 (a and b) and for ∆0

Ωm
= 1 (c and d). The values of input power used are:

Pin = 5×10−5W for (a), Pin = 8×10−4W for (b) and Pin = 10−2W for (c).

The optical energy stored in the cavity which is represented on Fig.3.3a, shows two
peaks. In the resolved sideband limit (κ�Ωm) and weak driving, the cantilever nanobeam
occupation peaks around the resonance between the cavity and the input laser

(
∆0
Ωm = 0

)
.

Therefore the number of photons in the cavity is large. Another peak appears around the
first sideband ( ∆0

Ωm = 1) corresponding to a resonance between a photon into the cavity
and a phonon of the cantilever nanobeam. The first peak is higher than the second peak.
But the mechanical amplitudes as well as the cantilever energy show the reversed effect.
The highest maximum for these two quantities (Fig.3.3b and Fig.3.3c) appears around
∆0
Ωm = 1, rather than around ∆0

Ωm = 0. In the study of the optomechanical couplings, the
zones of small amplitudes ([−2;−0.41] and [1.22;2]) are called stable zones while the zones
of high amplitudes are known as unstable zones (]−0.41;1.22[). In the unstable zone, two
jump phenomena (indicated by arrows) appear (Fig.3.3).

Figures 3.4 presents the amplitude of the mechanical oscillations and optical energy
stored in the cavity versus the input power of the laser. The threshold power here is
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Figure 3.3: Optical intracavity energy (a), Mechanical amplitude (b) and Cantilever energy
(c) versus the detuning in the linear regime (β = 0). The input power used for these plots is
Pin = 3×10−5 W.

up to about 2× 10−6 W. The mechanical amplitude just increases until its saturation
(Fig.3.4a). At the same time, the optical energy starts to increase from this threshold
power, reaches its maximum at Pin = 3.7×10−6 W and ends by a saturation toward the
small values (Fig.3.4b).
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Figure 3.4: Mechanical amplitude (a) and Optical intracavity energy (b) versus the input power
in the absence of the nonlinearity and ∆0

Ωm
= 1. These curves reach their saturation respectively

towards the high amplitudes (a) and the small amplitudes (b).

Nonlinear limit The introduction of nonlinear terms affect the dynamics of the sys-
tem. Figure 3.5 shows that when the geometrical nonlinearity increases, the peaks heights
are reduced consequently; but the stable zone remain unchanged. The reduction of peaks
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expresses the diminution of cantilever energy. The gap between the linear and the non-
linear limits is more significant around the second peaks. For β = 5×10−2, the cantilever
energy shifts from about 546 to 340. When β increases, the detuning value for which the
jump phenomenon appears does not change in the first peak while in the second peak,
that detuning is reduced: e.g. for β = 0, ∆0

Ωm = 0.72; for β = 8× 10−3, ∆0
Ωm = 0.7 and

for β = 5× 10−2, ∆0
Ωm = 0.64. It appears that the geometrical nonlinear term affects the

behavior of the intracavity energy the same way it affects the cantilever energy. But the
difference is that what happens around the first peak of cantilever energy is what rather
happens around the second peak of intracavity energy. We mentioned that antagonism
between intracavity energy and the cantilever energy in the linear case. We then note
that geometrical nonlinearity, in the classical limit, tends to stabilize or to control the
behavior of the nano-mirror since it reduces its amplitudes of vibration.
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Figure 3.5: Effect of the geometrical nonlinearity on the cantilever energy. When the nonlin-
earity increases, the amplitude of the cantilever energy decreases.

Dynamical behavior of the system in semiclassical limit

In order to use the full nonlinear equation of motion for the operators given by the
anharmonique Hamiltonian Eq.(3.7), we have to work in regime of very small mean photon
number. In Ref. [83], it is shown that the amplitude of the optical field in the classical
limit is greater than in the quantum case. In order to show that the classical Langevin
equations try to mimick the quantum noise, it is sufficient to show numerically that the
amplitude of the optical field in the semiclassical limit is small than in the classical case.
Hence, numerical simulations are concerned by Eqs. (3.10) and (3.11).
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Linear limit In the semiclassical approach, |α|2 denotes the photons number in the
cavity. The input laser power used here is Pin = 3×10−5 W and corresponds to the zone
where optical intracavity energy reaches its saturation towards the small values of the
mean photon number. The point indicated on Fig.3.4b corresponds to the value that we
use in the following study. One shows that the amplitude of photons number in the cavity
decreases in the semiclassical approach (Fig.3.6a), in comparison with the classical limit
(Fig.3.3a). This result confirm that the semiclassical limit try to mimick the quantum
behavior in the case of small mean photon number. The increase of the noise amplitude
induces a slight increase of the photon number in the cavity (blue and dash-dot curve on
Fig.3.6a). As suggested in [83], Fig.3.6b shows that the increase of the noise amplitude
induces a slight decrease of the cantilever energy. When the noise amplitude becomes
significant, another zone of instability appears around the second sideband ∆0

Ωm = 2. It is
remarked that the point where the jump phenomenon appears (around ∆0

Ωm =−0.5) shifts
toward the left to small values of detuning. Therefore, in the presence of noises, the cavity
tends to become stable and new zones of oscillations appear.
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Figure 3.6: Effect of noise on the optical and cantilever energy. (a) and (b) are in linear
regime while (c) and (d) are in nonlinear regime where the nonlinear term is β = 5×10−2.

Nonlinear limit In presence of the nonlinearity, it is observed a reduction of the values
of both optical and cantilever energy mainly around the first sideband (Fig.3.6c and
Fig.3.6d). Thus, in general in the semiclassical approach and in the presence of the
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nonlinearity, not only the cantilever energy decreases, the first peak also move towards
small values of the detuning. The significant decrease of the cantilever energy in Fig.3.6d
is in good agreement with the quantum limit observations [83]. This means that, the
quantum behavior is better approached when the effects of geometrical nonlinearity are
taking into account in the semiclassical limit. The next subsection (3.2.3) studies the
hysteresis loops for optical energy stored in the cavity in order to deduce the existence
of the bistable zones. It also shows how the nonlinearity influences on the bistable zones
both in the classical and semiclassical approach.

3.2.3 Optical bistability and effects of both geometrical nonlin-
earity and quantum noises

To approach the idea of bistability, the optical intracavity energy versus detuning char-
acteristic is plotted both in forward and backward evolution of detuning.

In the classical approach and in the linear limit (Fig.3.7a), three hysteresis loops
appear in the system. The first one is located within ∆0

Ωm ∈ [−2;−0.41]; the second within
∆0
Ωm ∈ [0.67;0.71] and the third corresponds to the zone ∆0

Ωm ∈ [1.7;2]. The first and the
third are unclosed loops while the second is a closed loop. One remarks that the unclosed
hysteresis loops are located in the stable zones whereas the closed hysteresis loop is in
the unstable zone. We deduce that the completely closed hysteresis loops characterize
the instabilities in the cavity. One remarks that when we enlarge the horizontal axis,
the opened hysteresis loop which appeared at the zone [−2;−0.41] becomes a closed
hysteresis loop while the other opened hysteresis loop which appeared at the zone [1.7;2]
disappears. In the nonlinear limit (Fig.3.7b), the first hysteresis loop ( ∆0

Ωm ∈ [−2;−0.41])
reduces ( ∆0

Ωm ∈ [−1.05;−0.41]) and becomes a closed hysteresis loop. It is also remarked
that the second hysteresis loop widens ( ∆0

Ωm ∈ [0.42;0.64]) while the third disappears.
In the semiclassical approach and in the linear limit, the hysteresis loops are at the

same places as in the classical case. In the nonlinear case (Fig.3.7c), the hysteresis loop
([−1.05;−0.41]) reduces and becomes [−0.75;−0.41]. Therefore, by combining the noises
and the nonlinearity in the system, the result is that, the width of the hysteresis loops are
reduced (compare Fig.3.7b and Fig.3.7c). The width of the first and the second loops are
now respectively [−0.75;−0.41] and [0.57;0.62]. Similar result is also presented in [92],
where stochastic force is used to reduce and/or suppress hysteresis zone in a Duffing
oscillator. According to the fact that the quantum noise reduction is important near the
bistability turning points [93], one deduces that this system behaves as an optical filter
and improves so many quantum optomechanical applications.
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Globally, we have noted that for large detuning range, the effects of nonlinear term
as well as the effects of noise terms remain the same as in the zone [−2;2]. Nevertheless,
it is noted that when the variable detuning zone is chosen large, some small details of
optomechanical coupling are masked.
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Figure 3.7: Effects of noise and the nonlinearity on the bistability. In the classical limit, (a)
and (b) represent the bistability in the linear and in the nonlinear regime respectively while (c)
is the bistability in the nonlinear semiclassical limit.

3.3 Quantum ground state cooling in nonlinear op-
tomechanics

Enormous efforts have been done in quantum nanomechanical cooling during the last
decade. Indeed, the phonon number less than unity is achieved in optomechanical laser
cooling [26] and in electromechanical microwave cooling [27,28]. The enhancement of these
results can be done through a nonlinear study at the single phonon level as suggested
in [26]. This is why the effect of the geometrical nonlinearity is investigated on the
cooling at the single phonon level here. As result, nonlinearity adds a small amount of
phonon on the well known minimum theoretical phonon number (Eq.(1.4)). This means
that geometrical nonlinearity behaves as thermal decoherence (or re-thermalization time
τth = h̄Qm

kBT
) and then constitutes a limiting factor for quantum cooling. Best cooling can
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then be achieved by minimizing the value of geometrical nonlinear term, which also induces
the suppression of the thermal decoherence. In the following, the dynamics fluctuations
of the system is performed and the effects of geometrical nonlinearity on optical spring
and phonon number are analyzed.

3.3.1 Quantum dynamics of the fluctuations

From the aforementioned steady state relations Eq.(2.2), one can obtains the following
third-order polynomial equation for the mechanical steady state displacement,

x3
s + 2∆0

gM
x2
s + (4∆2

0 +κ2)
4g2
M

xs−
4κPin

h̄ω0ΩmgM
= 0. (3.14)

This polynomial equation is solved by the cardano’s method (see paragraph 2.3.2) in order
to get the steady state values. The quantum behavior of the optomechanical systems is
then detected in the dynamics of the fluctuations around these steady states. Rewriting
each Heisenberg operator of NQLEs as the classical steady state value plus an additional
fluctuation operator with zero mean value, and neglecting high order terms in the equa-
tions (which is justified whenever |αs| � 1), one gets the following linearized NQLEs for
the fluctuations,

δα̇ =
[
i
(

∆0 + gM
xZPF

xs+ gM
2xZPFd0

x2
s

)
− κ2

]
δα

+ igM
xZPF

αs

(
1 + xs

d0

)
δx− iδE+

√
κδαin,

(3.15)

δẍ+ Γmδẋ+ Ω2
mδx−3β′x2

sδx= h̄gM
MxZPF

αs(δα+ δα†) + δFth
M

, (3.16)

where the mechanical equations have been combined. Transforming these dynamics equa-
tions into the Fourier space and by using the hermeticity property for the displacement
(δx(t) = δx†(t)), one obtains the following fluctuation equations

[
−i
(

∆0 + gM
xZPF

xs+ gM
2xZPFd0

x2
s + Ω

)
+ κ

2

]
δα[Ω] =

igM
xZPF

αs

(
1 + xs

d0

)
δx[Ω]− iδE[Ω] +

√
κδαin[Ω],

(3.17)

[
i
(

∆0 + gM
xZPF

xs+ gM
2xZPFd0

x2
s−Ω

)
+ κ

2

]
δα†[Ω] =

− igM
xZPF

αs

(
1 + xs

d0

)
δx[Ω] + iδE†[Ω] +

√
κδαin[Ω],

(3.18)
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(Ω2
m−Ω2− iΩΓ−3β′x2

s)δx[Ω] = h̄gM
MxZPF

αs(δα[Ω] + δα†[Ω]) + δFth[Ω]
M

. (3.19)

Equation (3.19) shows that the mechanical displacement δx is the sum of a displacement
induced by the radiation pressure force fluctuations (δFrp = h̄gM

MxZPF
αs(δα+ δα†)) and

a displacement induced by the thermal Langevin force fluctuations (δFth). For room
temperatures, thermal fluctuations mask the quantum effects of light. To observe this
quantum effects, cryogenic treatment (T ≤ TQ) of the cavity is necessary. It should be
Noted that TQ = h̄Ωm

kB
is the the quantum temperature of the system, while T is the room

temperature. As the quantity iδE[Ω]+
√
κδαin[Ω] and its conjugate are usually absorbed

into the effective susceptibility, they will be neglected in the following.
To obtain the full dynamics of the mechanical part, the expressions of δα[Ω] and

δα†[Ω], deduced from Eqs.(3.17) and (3.18), must be replaced in Eq.(3.19). At the room
temperature, the expression of radiation pressure force is given by

δFrp =
ih̄g2

Mα
2
s

(
1 + xs

d0

)
2x2

ZPF

 κ

(∆ +η+ Ω)2 + κ2
4
− κ

(∆ +η−Ω)2 + κ2
4

δx[Ω]

−
h̄g2

Mα
2
s

(
1 + xs

d0

)
x2
ZPF

 ∆ +η+ Ω
(∆ +η+ Ω)2 + κ2

4
+ ∆ +η−Ω

(∆ +η−Ω)2 + κ2
4

δx[Ω],

(3.20)

where we have set ∆ = ∆0 + gM
xZPF

xs = ∆0 + η0 as nonlinear or effective detuning and
η = gM

2xZPF d0
x2
s as the second order optical nonlinearity.

By setting

A1 =
h̄g2

Mα
2
s

(
1 + xs

d0

)
2x2

ZPF

 κ

(∆ +η+ Ω)2 + κ2
4
− κ

(∆ +η−Ω)2 + κ2
4

 , (3.21)

and

A2 =
h̄g2

Mα
2
s

(
1 + xs

d0

)
x2
ZPF

 ∆ +η+ Ω
(∆ +η+ Ω)2 + κ2

4
+ ∆ +η−Ω

(∆ +η−Ω)2 + κ2
4

 , (3.22)

Eq.(3.19) can be written under the theory of linear response as

δx[Ω] = χeff [Ω]δFth[Ω]. (3.23)

From Eq. (3.23), the effective mechanical susceptibility of the system χeff is defined as

χeff [Ω] = 1
M(Ω2

eff −Ω2− iΓeffΩ) , (3.24)
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where
Ω2
eff [Ω] = Ω2

m+ A2
M
−3β′x2

s and Γeff [Ω] = Γ + A1
MΩ , (3.25)

denote respectively the effective mechanical frequency and the effective damping of the
nanomechanical oscillator. The quantity Ω2

eff which describes the optical spring effect
and Γeff contain both important information about the quantum behavior of the system.
Their detailed expressions are obtained by replacing in Eq.(3.25) the quantities A1 and A2

which are expressed in Eqs.(3.21) and (3.22). Thereafter, we define the Stokes coefficients
A− and A+ as follows,

A± = G2

Ωm

κ
Ωm

4
(

∆
Ωm + η

Ωm ∓1
)2

+
(
κ

Ωm

)2 , (3.26)

where G2 = 4g2
Mα

2
s

(
1 + xs

d0

)
denotes the optomechanical coupling parameter. To simplify

the analytical calculations, we assume that the system is at a quasiresonance regime and
then set Γeff [Ω]≈ Γeff [Ωm] and Ω2

eff [Ω]≈ Ω2
eff [Ωm]. Therefore,

Γeff [Ωm] = Γ +A−−A+ = Γ + Γopt (3.27)

and

Ω2
eff [Ωm] = Ω2

m

1 + 2G2

Ω2
m


∆

Ωm + η
Ωm + 1

4
(

∆
Ωm + η

Ωm + 1
)2

+
(
κ

Ωm

)2

+
∆

Ωm + η
Ωm −1

4
(

∆
Ωm + η

Ωm −1
)2

+
(
κ

Ωm

)2

− 3β′x2
s

Ω2
m


(3.28)

where Γopt = A−−A+ and β = 3β′x2
s

Ω2
m

denote respectively the optical cooling rate and
the mechanical nonlinearity. Using the experimental parameters of the Table 3.1 and
the boundary conditions of the equations of beams in the ansatz approach, we obtain the
dimensionless values of the geometrical nonlinearity in the Table 3.2, which are comparable
to those obtained in [89]. Concerning the optical nonlinearities, one obtains η0

Ωm = 0.9813
and η

Ωm = 2.14× 10−7. The first term is the first order optical nonlinearity which is
included into the nonlinear detuning while the second term is neglected.

Optomechanical cooling can be characterized by the optical cooling rate Γopt through
the Stokes coefficients A− and A+. This is represented on Fig.3.8 where the Stokes
processes are stronger at the sideband detuning points ±1. The positive peak corresponds
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Mean displacement
of the nanobeam xs

Length of the
nanobeam (m)

Geometrical nonlinearity

10−7 5×10−7 2.34
5×10−6 2.34×10−2

10−8 10−7 5×10−6

5×10−6 2.34×10−4

Table 3.2: Values of the geometrical nonlinearity computed by using experimental parameters
of Ref. [26].

to the cooling ( ∆
Ωm = −1 where appears the anti-Stokes process or antiresonance) of the

nanomechanical oscillator while the negative peak corresponds to its heating ( ∆
Ωm = +1

where appears the Stokes process or resonance). One remarks that the cooling appears in
the stable zone where the mechanical displacements are weak, while the heating appears
in the unstable zone where the mechanical displacements are important [83]. Therefore,
the cooling takes place in the blue-detuning zone (∆< 0) and the heating takes place in
the red-detuning zone (∆> 0). Figure 3.8 also shows that the cooling is efficient for weak
values of optical linewidth κ

Ωm .

Figure 3.8: Normalized cooling rate versus the detuning and optical linewidth. Stokes and anti-
Stokes processes are efficient respectively, at ∆

Ωm
= ±1 and for small values of the normalized

optical linewidth.

According to Eqs.(3.26) and (3.27), one remarks that the effective cooling is efficient
in the strong optomechanical coupling regime (for large values of G), since the effective
damping Γeff is proportional to G2.

Another important parameter which characterizes the cooling or heating in nanome-
chanics is the final phonon number obtained. This is the focus point of next subsection.
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3.3.2 Effective phonon number in nonlinear optomechanics

By assuming the cantilever nanobeam mirror as an harmonic oscillator, its energy can be
defined as

〈H〉= 1
2
〈δp2〉
M

+ 1
2MΩ2

m〈δx2〉= h̄Ωm

(
〈neff 〉+

1
2

)
, (3.29)

where neff = b†b is the phonon number operator, with b and b† the phonon creation and
annihilation operators. In the literature, the lowest attainable value of neff is given by
the expression Eq.(1.4). By considering the anharmonic term β, this expression rigorously
becomes

〈neff 〉=
(

κ

4Ωeff

)2
∝ 1

(1−β) , (3.30)

where Ωeff is defined in Eq.(3.28). Eq.(3.30) shows that, in the nonlinear optomechanics
which is quite described the real system, effective phonon number is inversely proportional
to (1−β). This explains how geometrical nonlinearity adds a small amount of phonon
to the lowest phonon number and then, constitutes a limiting factor as the thermal deco-
herence. From the expressions of β = 3β′x2

s

Ω2
m

and the re-thermalization time τth = h̄Qm
kBT

=
h̄Ωm
ΓkBT , cooling can be enhanced in nonlinear optomechanics by increasing the mechanical
frequency Ωm of the oscillator. This action minimizes the value of β and increases the
re-thermalization time τth allowing so the possibility to observe more quantum effects.
Let us apply now this analysis to our system.

The spectrum of both Langevin force and radiation pressure force are respectively
given by [94,95],

SthFF (Ω) = h̄MΓΩcoth
(

h̄Ω
2kBT

)
≈ 2MΓkBT, (3.31)

SqnFF (Ω) = h̄2

2xZPF
(A−+A+), (3.32)

where the approximation done is valid for temperatures such that kBT � h̄Ω. The total
displacement spectrum is then given,

Sxx(Ω) = |χeff |2[SthFF (Ω) +SqnFF (Ω)]. (3.33)
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Both position and momentum variances can then be respectively defined as,

〈δx2〉=
∫ +∞

−∞
Sxx(Ω)dΩ

2π , (3.34)

〈δp2〉=M2
∫ +∞

−∞
Ω2Sxx(Ω)dΩ

2π . (3.35)

These variances are integrated by using the residue theorem described in paragraph 2.3.3.
This yields to:

〈δx2〉right〉= 1
MΓeffΩ2

eff

[
kBTΓ + A−+A+

2 h̄Ωm

]
, (3.36)

〈δp2〉= M

Γeff

[
kBTΓ + A−+A+

2 h̄Ωm

]
. (3.37)

Replacing these variances in the phonon number extracted from Eq.(3.29), one obtains,

〈neff 〉=
1 + Ω2

m

Ω2
eff

( kBTΓ
2h̄ΩmΓeff

+ A−+A+
4Γeff

)
− 1

2 . (3.38)

When Ω2
eff = Ω2

m in Eq.(3.38), one finds the usual expression of the phonon number.
However, according to the values of the mechanical nonlinearity, one can have Ω2

eff <Ω2
m,

which adds supplemental phonon in the cavity.

Figure 3.9: Effective phonon number versus the detuning and mechanical nonlinearity. We
see that the minimum phonon number depends on the mechanical nonlinearity.

Two kinds of phonon are expressed in relation Eq.(3.38). The thermal phonon (nth)
which are generated by the Langevin thermal force, and the optical phonon (nopt) gen-
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erated by the radiation pressure force one. As previously mentioned in section 1.1,the
challenge in optomechanical cooling is to reduce considerably the first one which implies
implicitly a reduction of the thermal noise.
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Figure 3.10: Effect of the mechanical nonlinearity on the effective cooling in the regime of
good cavity cooling (κ < Ωm). Cooling becomes less efficient when β increases.
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Figure 3.11: Effect of β on the quantum cooling. The effective phonon number increases
when β increase. For ∆

Ωm
=−1, the phonon number reaches is neff = 0.33 which corresponds to

β = 4×10−3 while neff = 0.85 corresponds to β = 0.55.

Figure 3.9 shows that when the mechanical nonlinearity is small (close to zero), the
minimum effective phonon number is obtained at the detuning equal to −1. But when the
mechanical nonlinearity becomes significant in the system, the minimum phonon number
is reached at a detuning different to −1. Another effect of the mechanical nonlinearity is
that it limits the cooling phenomenon. Indeed, the increase of the mechanical nonlinearity
induces the increase of the effective phonon number (Figs.3.10 and 3.11). Figure 3.10 also
reveals that optomechanical systems with high mechanical frequency are more affected
by the mechanical nonlinearity effect, while those with low mechanical frequency are less
sensitive to the effect of the mechanical nonlinearity since at low frequencies, the gap
between the curves is smaller compared to the gap at high frequencies.

The influence of β on optical spring effect, plots versus the normalized detuning, is
presented on Fig.3.12. This shows the decrease of the optical spring effect when geomet-
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rical nonlinearity increases [94]. This result means that β limits the effects of radiation
pressure in optomechanics, and confirms once again the fact that geometrical nonlinearity
is a limiting factor for quantum effects in nanomechanics. This conclusion allows us, in
the next sections, to look for the effects of geometrical nonlinearity on the generation of
non-classical states which are used to enhance quantum applications such as quantum
teleportation, quantum cryptography, dense coding, etc.
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Figure 3.12: Effect of β on the optical spring effect. The effective mechanical frequency de-
creases when β increases. This implies an increase of the effective phonon number (see Eq.3.38)
and the decrease of optical spring effect, meaning that β limits both quantum cooling and optical
effects in optomechanics.

In order to validate quantitatively our results, we will make some comparisons with
those obtained experimentally in Ref. [26]. Experimental minimum phonon number
achieved in this work at ∆

Ωm = −1 is 〈neff 〉 = 0.85± 0.08. In the absence of nonlin-
earities (η = β = 0) and at ∆

Ωm =−1, the minimum phonon number obtained analytically
in our study is 〈neff 〉= 0.33 (see Fig.3.11). The gap between the experimental result and
our theoretical result is ∆(〈neff 〉) = 0,51±0.08. Our investigation shows that the phonon
number of 〈neff 〉= 0.85 is reaches for β = 0.55 (η = 0) at the same detuning value. Since
this experiment is carried out with the highest drive power which corresponds to a photon
number equal to 2000, one suggests that the device studied in Ref. [26] exhibits a nonlin-
earity of about β = 0.55. Indeed, the high photon number used can induce the increase of
the nanomechanical displacement and therefore, increases the geometrical nonlinearity.
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3.4 Squeezed states generation in the nonlinear quan-
tum optomechanics

This section analyzes the effects of both geometrical (β) and optical (η0) nonlinearities on
the squeezed states generation. The description of the squeezing is presented in paragraph
2.3.3.

Figure 3.13: These figures represent coherent (a) and squeezed states (b).

According to the reduction of quantum fluctuations, squeezed states are useful to
improve the quantum applications which are limited by the quantum fluctuations. Among
these applications, one can mention quantum teleportation [96–99], quantum information
processing [66], dense coding [100], quantum keys distribution [101, 102] and quantum
measurement [103].

To generate squeezed states, the common technique consists to use an optical cavity
filled with a nonlinear Kerr medium which is fed with an external pumping field. With
the recent advances in cooling techniques for nano scale optomechanical systems, various
setups have been designed to generate highly squeezed states.

Squeezing of the nanoresonator state produced by periodic measurement of position
by a quantum point contact or a single-electron transistor is analyzed in Ref. [50]. The
mechanism of this squeezing is the stroboscopic quantum nondemolition measurement
generalized to the case of continuous measurement by a weakly coupled detector. The
magnitude of squeezing is calculated for the harmonic and stroboscopic modulations of
measurement, taking into account detector efficiency and nanoresonator quality factor.
In Ref. [104], a parametrically driven nanomechanical resonator capacitively coupled to a
microwave cavity is used to squeeze a quadrature of the nanoresonator motion.
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Mechanical squeezing of nonlinear optomechanical systems in which an optical cavity
mode is coupled quadratically rather than linearly to the position of mechanical oscillator
have been studied in Ref. [17]. This mechanical oscillator is driving by two laser beams.
The authors of [105] investigate nonlinear effects in an optomechanical system containing
a quantum well and show that the transmitted field exhibits strong squeezing at certain
hybrid resonance frequencies and system parameters. The quadrature squeezed states of
a moving mirror in a Fabry-Perot cavity via a parametric scheme is proposed in Ref. [106].
This is achieved by exploiting the fact that when the cavity is driven by an external field
with a large detuning, the moving mirror behaves as a parametric oscillator. It is shown
that parametric resonance can be reached approximately by modulating the driving field
amplitude at a frequency matching the frequency shift of the mirror. This parametric
resonance leads to an efficient generation of squeezing, which is limited by the thermal
noise of the environment. Similar scheme, explicitly based on modulation and without
condition on the detuning, is used to generate strong squeezing in Ref. [16].

The squeezing of the oscillator amplitude is analyzed via an anharmonic term, orig-
inated from the static longitudinal compressive force F0 close to a critical value at the
Euler buckling instability in Ref. [89]. It is shown that this squeezing can be controlled
by bringing F0 close to or far from the critical value Fc.

Squeezed light is obtained from a silicon micromechanical resonator in Ref. [107].
Laser light sent into the cavity is used to measure the fluctuations in the position of
the mechanical resonator at a measurement rate comparable to its resonance frequency
and greater than its thermal decoherence rate. Despite the mechanical resonator’s highly
excited thermal state (104 phonons), it is observed, through homodyne detection, squeez-
ing of the reflected light’s fluctuation spectrum at a level 4.2± 0.2 per cent below that
of vacuum noise over a bandwidth of a few megahertz around the mechanical resonance
frequency of 28 megahertz. With further device improvements, on-chip squeezing at sig-
nificant levels should be possible, making such integrated micro-scale devices well suited
for precision metrology applications. The dissipative nature of the mechanical resonator
is used to generate squeezed output light from an optomechanical cavity in Ref. [108].
The squeezing generated in this approach can be directly used to enhance the intrinsic
measurement sensitivity of the optomechanical cavity.

In 2014, the Duffing nonlinearity, which behaves as a hardening geometrical nonlin-
earity, is used to generate robust squeezed state in optomechanics [109]. This work comes
one year after ours one [110], which shows that softening geometrical and optical nonlin-
earities limit the robustness of mechanical and optical squeezed states respectively. Our
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study is done at the specific points where these nonlinearities reach their maximum value
in the system as we will see in the following sections.

3.4.1 Mechanical squeezing

After neglecting the second order optical nonlinearity as aforementioned in Section 3.2,
the NQLEs of the system read,

ẋm = Ωmpm, (3.39a)

ṗm =−Ωmxm−Γmpm+gMα
†α+β′′+Fth, (3.39b)

α̇ =
[
i(∆0 +gMxm)− κ2

]
α− iE+

√
καin, (3.39c)

α̇† =
[
−i(∆0 +gMxm)− κ2

]
α†+ iE∗+

√
καin†. (3.39d)

where β′′ = β′x2
ZPF x

3
m

Ωm and gMxmα represent respectively the mechanical and optical an-
harmonic terms.

For |ᾱ| � 1 (satisfied with experimental data or Ref. [26]), one can linearize the above
NQLEs by expanding the operators around their steady states: xm = x̄m+ δxm and α =
ᾱ+δα. By introducing the vector of quadrature fluctuations u(t) = (δxm(t), δpm(t), δI(t), δϕ(t))T

and the vector of noises n(t) = (0,Fth(t),
√
κδIin(t),

√
κδϕin(t))T , the linearized dynamics

of the system can be written in a compact form

u̇(t) = Au(t) +n(t), (3.40a)

with

A=


0 Ωm 0 0

Ωm(β−1) −Γm G 0
0 0 −κ2 −∆
G 0 ∆ −κ2

 . (3.40b)

It should be noted that δI = (δα†+δα), δϕ= i(δα†−δα) are the intracavity quadratures of
the intensity and the phase and δIin, δϕin are their corresponding hermitian input noise
operators respectively. The higher order of fluctuations are safely neglected ( |ᾱ| � 1).
The linearized NQLEs show that the mechanical mode is coupled to the cavity mode
quadrature fluctuations by the effective optomechanical coupling G = gM |ᾱ|, which can
be made large by increasing the input laser power Pin. β = 3β′x2

ZPF x
2
s

Ω2
m

and ∆ = ∆0 +gMxs
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denote the new dimensionless geometrical nonlinearity and the effective detuning. The
range values of the geometrical and optical nonlinearities are given in the Table 3.3. As
expected in the Table 3.3, the optical and the mechanical effects are respectively highly
pronounced at the optical (∆0 ≈ 0) and the mechanical (∆0 ≈Ωm) resonances. This leads
us to investigate the squeezing at this particular sidebands. The values of x̄ obey the
following steady state third order algebraic equation, solved for Pin = 1mW and the other
parameters of Ref. [26],

x̄3 + 2∆xZPF
gM

x̄2 + (4∆2 +κ2)x
2
ZPF

4g2
M

x̄− 4κx3
ZPFPin

h̄Ωmω`gM
= 0. (3.41)

Detuning ∆0 Mean displacement of
the nanobeam x̄(m)

Range of values of nonlin-
earities

0 2.77×10−11 η ∈ [2.54×10−3;6.79×10−2]
7.42×10−10 β ∈ [7.87 × 10−6;5.72 ×

10−4]

Ωm
1.27×10−13 η ∈ [1.17×10−5;1]
1.09×10−8 β ∈ [1.66×10−10;1.22]

Table 3.3: The range of values of the optical nonlinearity η and the geometrical nonlinearity
β at the detuning ∆ = 0 and ∆ = Ωm respectively, using the parameters of Ref. [26].

In the Fourier space, one obtains the following fluctuations dynamics of the system,

B(Ω)u(Ω) +n(Ω) = 0, (3.42a)

where

B(Ω) =


iΩ Ωm 0 0

Ωm(β−1) (iΩ−Γm) G 0
0 0 (iΩ− κ

2 ) −∆
G 0 ∆ (iΩ− κ

2 )

 . (3.42b)

Solving the matrix equation straightforwardly, we obtain the solution for the mechanical
displacement operator to be

χ−1
eff (Ω)δxm(Ω) = a1GΩm

√
κ
(

∆2 + κ

4
2
−ω2 + iκΩ

)
×
[
−∆δϕin+

(
−iΩ + κ

2

)
δIin

]
+ ΩmFth,

(3.43)
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where

a1 =
[(

∆2 + κ

4
2
−Ω2

)2
+κ2Ω2

]−1
, (3.44)

and
χeff (Ω) = (Ω2

eff −Ω2− iΩΓeff )−1, (3.45)

is the effective susceptibility of the oscillator with the effective resonance frequency and
damping rate given by

Ω2
eff (Ω) = Ω2

m

(
1 +a1G

2 ∆
Ωm

(
∆2 + κ

4
2
−Ω2

)
−β

)
, (3.46)

Γeff (Ω) = Γm−a1G
2Ωm∆κ. (3.47)

By using the correlation functions of the noise sources for a coherent beam in the frequency
domain, the oscillator position and the momentum variances are defined by,

〈δx2
m〉= 1

2π

∫ +∞

−∞
dΩ|χeff |2Sx, (3.48)

〈δp2
m〉= 1

2π

∫ +∞

−∞
dΩ Ω2

Ω2
m
|χeff |2Sx, (3.49)

where the position noise spectrum is given by

Sx(Ω) = a1G
2Ω2

m
κ

2

(
∆2−Ω2 + κ

4
2
− iκ∆

)
+ 2ΓmΩmΩ

(
1 + coth

(
h̄Ω

2kBT

))
.

(3.50)

At the quasi resonant frequency (Ω ≈ Ωm) and for coth
(

h̄Ω
2kBT

)
≈ 2kBT

h̄Ω (satisfied with
experimental parameters used), the exact solutions of integrals (3.48) and (3.49) are given
by

〈δx2
m〉= Ω2

m

4ΓeffΩ2
eff

a2, (3.51)

〈δp2
m〉= 1

4Γeff
a2, (3.52)

where

a2 =
G2

Ω2
m
κ
(

∆2

Ω2
m

+ κ2

4Ω2
m
−1− i κ∆

Ω2
m

)
(

∆2

Ω2
m

+ κ2

4Ω2
m
−1

)2
+ κ2

Ω2
m

+ 4Γm
(

1 + 2kBT
h̄Ωm

)
. (3.53)

Djorwe Philippe Nonlinear Quantum Optomechanics



3.4. SQUEEZED STATES GENERATION IN THE NONLINEAR QUANTUM
OPTOMECHANICS 59

These position and momentum variances should satisfy the Heisenberg relation,

〈δx2
m〉〈δp2

m〉 ≥ |
1
2[xm,pm]|2, (3.54)

that is,
〈δx2

m〉〈δp2
m〉 ≥ 1, (3.55)

since [xm,pm] = 2i. At the SQL, the coherent states must satisfy 〈δx2
m〉 = 〈δp2

m〉 = 1.
When one variance is below the SQL, i.e., 〈δx2

m〉 < 1 or 〈δp2
m〉 < 1, the corresponding

quadrature is said to be squeezed. According to Eqs. (3.46) and (3.51), only 〈δx2
m〉

depends on the geometrical nonlinearity through the term Ω2
m

Ω2
eff

. Contrariwise, the value

of 〈δp2
m〉 is obtained by using experimental parameters of Ref. [26] in Eq. (3.52) and it

appears to be squeezed up to about 37% (see Fig.3.14). Therefore, the position variance
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Figure 3.14: Momentum variance 〈δp2
m〉 versus normalized detuning ∆0

Ωm
for η = 0, using

experimental parameters of Table 3.1. The value of ∆0
Ωm

= 1 corresponds to the momentum
variance 〈δp2

m〉= 0.6362 which means that the momentum is squeezed up to about 37%.

is deduced from the mean energy of the nanoresonator in the steady state,

E = h̄Ωm

4 (〈δx2
m〉+ 〈δp2

m〉)≡ h̄Ωm

(
neff + 1

2

)
, (3.56)

by substituting the effective phonon number with the experimental value neff = 0.85±
0.08 [26]. The value obtained is 〈δx2

m〉 ≈ 4.44 which is unsqueezed (see Fig.3.15). Indeed,
the ratio Ω2

m

Ω2
eff

increases when β increases (for the high mechanical displacements) and

rises up the position variance 〈δx2
m〉. So, as the re-thermalization time of the mechanical

resonator or the decoherence time, the geometrical nonlinearity limits the squeezing and
other quantum effects [111]. In fact, β depends on the bending moment of the resonator
and takes into account its internal vibrations. For 〈δx2

m〉 ≈ 4.44, β is evaluated to be
about 0.88 (see Fig.3.15 ) and is in the domain given in Table 3.3 and corresponds to
the high mechanical displacements for the nanoresonators [26]. It also appears that for

Djorwe Philippe Nonlinear Quantum Optomechanics



3.4. SQUEEZED STATES GENERATION IN THE NONLINEAR QUANTUM
OPTOMECHANICS 60

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

1

2

3

4

5

6

7

8

P
o
si

ti
o
n

 v
a
ri

a
n

ce
 <

δ
 x

m

2
>

Normalized detuning ∆/Ω
m

 

 

β = 0.88

β = 0.39

β = 0.1

Figure 3.15: Position variance 〈δx2
m〉 versus normalized detuning ∆0

Ωm
for different values of

β when η = 0. The dot dashed line is plotted for β = 0.39 and corresponds to the SQL ( ∆0
Ωm

= 1;
〈δx2

m〉 = 1). The full line is plotted with β = 0.88 and experimental parameters of Table 3.1.
This shows that the position is unsqueezed ( ∆0

Ωm
= 1; 〈δx2

m〉 ≈ 4.44). The cercled line is plotted
for β = 0.1 and shows that the position is squeezed ( ∆0

Ωm
= 1; 〈δx2

m〉 ≈ 0.69).

β = 0.1, the position variance 〈δx2
m〉 is under the standard quantum limit (see Fig.3.15),

allowing therefore the squeezing (up to about 31%). In order to investigate the effect of
the optical nonlinearity η on the mechanical squeezing, we consider η 6= 0 in the expression
∆

Ωm = ∆0
Ωm + η which appears in Eqs. (3.51) and (3.52). Figure 3.16 shows the effect of η

on the position variance 〈δx2
m〉 for β = 0.1. One remarks on Fig.3.16a that the position

variance 〈δx2
m〉 becomes unsqueezed for high values of η (η > 0.042). This effect of η

is similar to that of the β shown in Fig.3.15. It appears in Fig.3.16b that η shifts the
optimal squeezing towards the left. Since η is always present in optomechanical systems,
it is then important to quantify it in experiments in order to determine exactly at which
detuning the optimal squeezing can be evaluated. On Fig.3.16c where the two mentioned
effects of η are represented, 〈δx2

m〉 increases with η and the optimal position squeezing is
not always at ∆0

Ωm = 1 but depends on the value of η in the range ∆0
Ωm ∈ [0.9;1]. One also

notes that the effects of η on the momentum variance are the same as these described on
Fig.3.16.

After these analyzes of the geometrical and optical nonlinearities on the mechanical
squeezing, the next section investigates their effects on the output optical beam from the
cavity.
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Figure 3.16: Effect of optical nonlinearity η on the position variance for β = 0.1. (a) Posi-
tion variance versus η shows that 〈δx2

m〉 becomes unsqueezed when η increases. (b) shows that
optimum squeezing shifts towards the left when η increases. (c) shows the combined effects of η
on 〈δx2

m〉.

3.4.2 Optical output squeezing

From the matrix equation (3.42a) we also obtain the solutions for the intracavity phase
and intensity quadratures operators to be

δI =−a3

[
∆Gδxm−∆

√
κδϕin+

√
κ
(
−iΩ + κ

2

)
δIin

]
, (3.57)

and
δϕ= a3

[
(Gδxm+

√
κδϕin)

(
−iΩ + κ

2

)
+ ∆
√
κδIin

]
, (3.58)

with

a3 =
[(
−iΩ + κ

2

)2
+ ∆2

]−1
. (3.59)

In order to analyze their squeezing, we use the well-known input-output relation [50]

αout =−αin+
√
κα, (3.60)

and then deduce

δIout =−a3

[
∆
√
κGδxm−∆κδϕin+

(
Ω2 + κ2

4 −∆2
)
δIin

]
, (3.61)
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and

δϕout = a3

[
√
κG

(
−iΩ + κ

2

)
δxm+

(
Ω2 + κ2

4 −∆2
)
δϕin+ ∆κδIin

]
. (3.62)

By using the spectral density

SAout(Ω) = 1
2π

∫ +∞

−∞
dωe−i(Ω+ω)t〈δAout(Ω)δAout(ω)〉, (3.63)

we obtain the output spectrum of the intensity and phase as,

SIout(Ω) = a1∆2G2κ|χeff |2Sx(Ω) + a1
2

(
Ω2 + κ2

4 −∆2
)2

+a1∆2κ2 +A(Ω)−B(Ω)−C(Ω),
(3.64)

Sϕout(Ω) = a1G
2κ

(
κ2

4 + Ω2
)
|χeff |2Sx(Ω) + a1

2

(
Ω2 + κ2

4 −∆2
)2

+a1∆2κ2 +G2κΩm(D(Ω) +E(Ω)),
(3.65)

where,

A(Ω) = a∆G2Ωmκ(Ω2
eff −Ω2)(∆−Ω), (3.66)

B(Ω) = b∆G2ΩmκΩΓeff (∆−Ω), (3.67)

C(Ω) = ∆G2κ
2

4 Ωm[2b(Ω2
eff −Ω2)−2aΩΓeff ], (3.68)

D(Ω) =
[
(Ω2

eff −Ω2)
(

∆2 + κ2

4 −Ω2
)

+κΩ2Γeff
](

c

2 −Ωd
)
κa1, (3.69)

E(Ω) =
[
κ(Ω2

eff −Ω2)−Γeff
(

∆2 + κ2

4 −Ω2
)](

Ωc+ κ2

2 d
)

Ωa1, (3.70)

with

a= a2
1κ

[
∆
(

∆2 + κ2

4 −Ω2
)
−Ω

(
Ω2 + κ2

4 −∆2
)]
, (3.71)

b= a2
1

[(
∆2 + κ2

4 −Ω2
)(

Ω2 + κ2

4 −∆2
)

+ ∆κ2Ω
]
, (3.72)

c= 2(Ω−∆)
(

Ω2 + κ2

4 −∆2
)

+κ2∆ (3.73)

d= 2∆(Ω−∆)−
(

Ω2 + κ2

4 −∆2
)
. (3.74)
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In Eqs. (3.64) and (3.65), the first terms are proportional to the position spectrum Sx

(Eq. (3.50)) and to the effective mechanical susceptibility (Eq. (3.45)). These terms
derive from the mechanical fluctuations of the oscillator. The other terms in Eqs. (3.64)
and (3.65) originate to the fluctuations of the input beam. Assuming that the system is
in the quasi resonant regime (Ω ≈ Ωm), all the contributions related to the input beam
fluctuations take constant values. The expressions (3.64) and (3.65) can now be integrated.
By using the residue theorem, one easily obtains

〈δIout2〉=
∆2

Ω2
m

G2

Ω2
m
κ(

∆2

Ω2
m

+ κ2

4Ω2
m
−1

)2
+ κ2

Ω2
m

〈δx2
m〉, (3.75)

and

〈δϕout2〉=

(
1 + κ2

4Ω2
m

)
G2

Ω2
m
κ(

∆2

Ω2
m

+ κ2

4Ωa2
m
−1

)2
+ κ2

Ω2
m

〈δx2
m〉, (3.76)

where 〈δx2
m〉 is given by Eq. (3.51).

At the mechanical resonance (∆≈Ωm) where it is established above that the position
variance is unsqueezed (〈δx2

m〉= 4.44), we deduce from Eqs. (3.75) and (3.76) that both
optical variances are unsqueezed. However, the effective detuning ∆≈∆0 + gM x̄m leads
at the optical resonance ( ∆0= 0) to

∆
Ωm
≈ gM x̄m

Ωm
= η. (3.77)

Figure 3.17 shows that ∆Iout is squeezed when |η| ≤ 7.44×10−5 which is obtained with
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Figure 3.17: Mean square fluctuation of the output light ∆Iout versus the optical nonlinearity
η for β = 5.72× 10−4. With the low input power used for the system Pin ≤ 30µW [112], the
output intensity is squeezed (|η| ≤ 7.44×10−5).

the input power Pin ≤ 30µW [112]. This means that at the optical resonance and for the
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low input power, the optomechanical cavity behaves as an optical filter or noise eater [93].
Thus, the quantum fluctuations (shot noise) in the input coherent laser beam (∆Iin = 1)
are reduced after been reflected out of the optomechanical cavity (∆Iout < 1). To improve
this squeezing at the optical resonance one can increase η (for the negative values of the
detuning) or decrease η (for the positive values of the detuning) (see Fig.3.17). By using
Eqs.(3.39c) and (3.60), one can expressed output field as

αout = a4 + ia5(
∆0
Ωm +η−1

)2
+ κ2

4Ω2
m

, (3.78)

with

a4 = κ2

4Ω2
m
αin+

(
∆0
Ωm

+η−1
)((

∆0
Ωm

+η−1
)
αin+

√
κ

Ωm
E

)
, (3.79)

a5 =
((

∆0
Ωm

+η−1
)

κ

Ωm
αin− κ

√
κ

2Ω2
m
E

)
, (3.80)

where Ein =
√

2κPin
h̄Ωm . One remarks that αout depends only on the optical nonlinearity

which allows us to quantify his effect on the output field. Figure 3.18a shows that the
output field decrease when η increases. This means that it is important to control the
value of η in order to obtain the output field needed. This control of η also gives the
value of the detuning at which the output field is optimal (see Fig.3.18b). Figure 3.18c
shows the two mentioned effects of η on the output field αout. It is also found that, as for
the position, the decrease of temperature induces an improvement of intensity squeezing.
Regarding the geometrical nonlinearity, it contributes to reduce the squeezing when it
becomes large. But, it is generally weak around the optical resonance (see Table 3.3), so
its effects are neglected at this sideband.

Another important quantum application which is enhanced at the quantum ground
state is the entanglement. The following section analyzes effect of geometrical nonlinearity
on the generation of continuous variable (CV) entangled states.

3.5 Entanglement in the nonlinear quantum optome-
chanics

As a Einstein-Podolsky-Rosen state (EPR), an entangled state characterizes (quantum)
intrication between elements of m-partite system (m> 1). When the entanglement is ro-
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Figure 3.18: Effect of optical nonlinearity η on the output field. (a) Output field versus η
shows that αout decreases when η increases. (b) The optimal output field shifts towards the left
when η increases. (c) Combined effects of η on αout.

bust, the corresponding states can be used to improve the sharing information in quantum
network applications [66,96–103] and for quantum computational tasks [113].

Entanglement is considered as a distinguishing feature that separates quantum from
classical physics and then, it can be used to inform us about the quantum theory’s limit
[114]. This is for example why scientists are interested nowadays to know difference
between quantum entanglement and classical synchronization [115–117]. This study does
not given a satisfactory conclusion and this research field remains an actual preoccupation.

There are two types of entanglement depending on the fact that the variables used
are discrete [85, 118] or continuous. Our study is focused on the continuous variables
entanglement according to their easy manipulation in an experimental context.

According to the great interest attached to the nanomechanics during this last decade,
optomechanical systems, superconducting microwave cavities and hybrid systems have
been very recently used as a novel tool for generating strong CV entangled quantum
states. This consists to couple optical and/or microwave mode to the mechanical mode
of the resonator which vibrates under the electromagnetic field. There are many con-
figurations which have been proposed to this end. In [119], stationary entanglement
between optical field and mechanical mode of vibrating end mirror is generated from op-
tical Fabry-Perot cavity. Strong quantum correlation between the mirror and the optical
Stokes sideband is explained in [120] as being generated by a scattering process. The
configuration used in [121] consists of a whispering-gallery mode (WGM) cavity with a
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movable boundary. Entanglement between mechanical and radiation mode is achieved
in [74] by using a suitable modulation of the driving field. Pulsed field is used to cre-
ate EPR-type entanglement between mechanical mode and light pulses and microwave
pulses respectively in optomechanical cavity [97] and microwave cavity [122]. In [100], a
membrane-in-the-middle geometry is used to generate output entangled light from a fixed
end Fabry-Perot cavity. The optical-microwave quantum interface is used in [123,124] to
produce robust entangled signal which can be used for high-fidelity transfer of quantum
states between optical and microwave fields. All these schemes aim to generate robust
entangled states against decoherence which limits their lifetime [99] and their perfor-
mance in quantum applications. This decoherence is often manifested by various factors
such as the stability conditions that place constraints on the magnitude of the effective
optomechanical couplings and the thermal noise of the mechanical mode.

3.5.1 Dynamical equations

We proposed here a scheme based on the geometrical nonlinearity which generates robust
entangled states against thermal decoherence [125]. The study is done at the blue detuning
and the parameters are those of Table 3.1. We assume that range of the nonlinearity β is
given in the Tables (3.2) and (3.3).

To analyze the stability of our system, we have used the Routh-Hurwitz criterion
which yields the two following nontrivial conditions on the system parameters,

s1 = Γmκ
{[
κ2

4 + (Ωm−∆)2
][
κ2

4 (Ωm+ ∆)2
]

+Γm
[
(Γm+κ)

(
κ2

4 + ∆2
)

+κΩ2
m

]}
−∆ΩmG

2(Γm+κ)2 > 0,
(3.81)

s2 = Ωm

(
∆2 + κ2

4

)
+G2∆> 0. (3.82)

With respect to physical parameters in Table 3.1, these stability conditions lead at the
blue sideband of the cavity (∆ = −Ωm) to G < 2.26× 1010 s−1 or αs < 2.07× 103 while
at the red sideband (∆ = Ωm), one has G< 2.89×107 s−1 or αs < 0.26. Optomechanical
entanglement is then possible within the blue sideband detuning range where the coupling
is strong. We describe the mirror Brownian noise Fth(t) as,

1
2〈Fth(t)Fth(t′) +Fth(t′)Fth(t)〉 ≈ Γm(2nth+ 1)δ(t− t′), (3.83)

which is delta-correlated [66], with the mean thermal excitation number sets as nth =
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(eh̄Ωm/kBT − 1)−1. This means that Fth(t) is a Markovian process. As the parameters
used here lead to a large mechanical factor, Q= Ωm

Γm ≈ 1.05×105� 1, the quantum effects
can be achieved.

Since the quantum noises Fth and αin are zero-mean quantum Gaussian noises and
the dynamics is linearized, the quantum steady state for the fluctuations is a zero-mean
bipartite Gaussian state, fully characterized and described as in subsection 2.3.4. This
description allows us to quantity the Gaussian CV entanglement in our system. Thus,
we use the definition of the logarithmic negativity EN (Eq.2.66) for this purpose and the
system is said to be entangled if only EN > 0.
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Figure 3.19: Linear regime obtained with the physical parameters in Tab.3.1. (a) Logarithmic
negativity EN versus normalized detuning ∆

Ωm
. The entanglement is maximal around the blue-

detuning ∆
Ωm

=−1. (b) Logarithmic negativity EN versus intracavity field with high input power
P0 = 10mW. The entanglement is enhanced for high input power.

3.5.2 Effect of geometrical nonlinearity on stationary entangle-
ment

The parameters of Table 3.1 not only satisfy our aforementioned stability conditions,
but also lead to a generation of a lightly mechanical and optical mode entanglement in
linear regime. This entanglement, which is present only in a finite interval of detuning
values around the blue-sideband ∆

Ωm = −1 (Fig.3.19a), can be increased by significant
optomechanical coupling as shown in [90,119,121], which consists for example to increase
the input power Pin. This is shown on Figure 3.19b where the high power is P0 = 10mW,
which corresponds to the intracavity field of |αs| = 103, and is in accordance both with
current state-of-art optics and our stability condition. The above value of intracavity field
have been recently used to generate entangled states [121] and squeezed states [124] in
optomechanical systems. Such a high input power induces large mechanical displacement
of the nanoresonator which exhibits a geometrical nonlinearity in the system [65,97,112].
A more interesting situation is depicted in Fig.3.20a which represents the logarithmic
negativity versus the normalized detuning for different values of nonlinear parameter
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Figure 3.20: These figures are plotted for an input power of P0 = 10mW and the others
parameters are those in Tab.3.1. (a) The logarithmic negativity versus the normalized detuning
for different values of geometrical nonlinearity. The increase of nonlinear parameter enhances
the entanglement and shifts its maximum value towards high detuning values (compare gray dash-
dots line and full black line). (b) The logarithmic negativity versus the geometrical nonlinearity
for ∆

Ωm
= −0.5. This shows the robustness of the entanglement in the presence of geometrical

nonlinearity.

β. One remarks that the entanglement increment is related to the increasing of the
nonlinear parameter for ∆

Ωm ∈ [−1.1;−0.16], with a significant enhancement around the
normalized detuning ∆

Ωm =−0.5. In other terms, the entanglement becomes robust with
the nonlinearity within the above interval of ∆

Ωm . In the case where β = 0 (linear case),
the optimal entanglement remains near ∆ = −Ωm (full black line on Fig.3.20a), and for
β 6= 0 it is shifted towards high detuning values (other curves on Fig.3.20a). Reverse
effects are induced on entanglement in [126] and [119] by the resonator mass and the
Kerr nonlinearity respectively. This means that softening nonlinear effect study here is a
promising way to improve quantum information processing such as quantum teleportation
and quantum key distribution. For the small normalized detuning values, ∆

Ωm ∈ [−2;−1.1],
the increase of the nonlinearity induces a decrease of the entanglement. However, this
opposite effect of the parameter β on the entanglement is not important in the system. In
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Figure 3.21: Plot of the logarithmic negativity versus the mean bath occupation for different
values of nonlinear parameter with an input power of P0 = 10mW. This shows the robustness
of entanglement against thermal decoherence depending on the nonlinear term. For β = 0.6 this
robustness persists far to nth = 2500 (gray dash-dots line).
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Fig.3.20b we have fixed the normalized detuning at ∆
Ωm =−0.5 and varied the nonlinear

parameter β. This curve shows the robustness of entanglement when the nonlinearity
increases in the system. Thus, in the system which exhibits geometrical nonlinearity, the
optimal entanglement depends on the value of the detuning and should be checked around
the detuning ∆

Ωm =−0.5 but not around ∆
Ωm =−1 as in linear system [119].

Finally, Fig.3.21 shows the robustness of the entanglement against the environmental
temperature in the presence of such nonlinearity. As expected, in the linear regime (β = 0),
there is a decrease of the entanglement with respect to the bath temperature. However,
the entanglement persists until nth = 600 or T = 98K, which is several order magnitude
larger than the temperature needed to cool a mechanical resonator to its quantum ground
state. This enlightens the performance of the system studied here to resist to thermal
decoherence. Figure 3.21 mostly reveals that by increasing the geometrical nonlinearity,
one definitely improve the robustness of the entanglement against thermal decoherence
in an optomechanical system. Indeed, gray dash-dots shows that entanglement persists
until nth = 2500, which corresponds to the room temperature. It should be noted that
similar results have recently been found in [120] and [124] with the inverse bandwidth and
quantum optomechanical interface respectively. Particularly in [124], where the hybrid
system is studied, the entanglement remains strong even for nth = 104 which is greater
than that found here (nth = 2500). This may be understood by the fact that hybrid
systems combine two optomechanical couplings, optical and microwave couplings, to drive
a nanoresonator.

Since the physical parameters used here have been recently experimented and the
fact that they satisfy the system’s stability condition for the feasible input power of
P0 = 10mW, our results can then be implemented. This technique of entanglement which
used the geometrical nonlinearity is further promising to observe the quantum effects
even for high environmental temperatures. This could lead to the improvement of the
robustness of quantum teleportation protocols and other quantum applications.

3.6 Conclusion

In this chapter we have studied the nonlinear effects in optomechanics.
In the classical limit, we have shown that the geometrical nonlinearity reduces the

mechanical amplitudes of the nanomirror. In the semiclassical limit, the combined effects
of quantum noises and geometrical nonlinearity allow to obtain similar results than those
of the quantum limit. It is also shown that these combined effects reduce optical bistability
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in the system studied.
The effect of geometrical nonlinearity on the quantum ground state achievement is

shown to be the same as the one of the thermal decoherence. Thus, by reducing the effect
of the geometrical nonlinearity, we have shown how it is possible to reduce the thermal
decoherence in quantum mechanics. This opens a way to a long time quantum effects
observation in optomechanics.

For the generation of the nonclassical states, we have found that both geometrical and
optical nonlinearities limit the robustness of the squeezing at certain points. Indeed, at
the mechanical and optical resonance where geometrical and optical nonlinearities reach
their maximum respectively, the squeezing is limited by nonlinear effect. However, the
robustness of entanglement against thermal decoherence is proved at the blue detuning.

In the next chapter, we will used a quadratic coupling, exhibited from superconducting
microwave circuit, to control the dynamical behavior of a nanoresonator. The effect of
this coupling will be also investigated on ground state cooling and on the entanglement.
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General Conclusion

The main purpose of this thesis was to analyze the effects of nonlinearities on quantum
ground state achievement and on the quantum states generation in order to improve
quantum applications. To do this, we have organized our thesis in three chapters.

The first chapter overviews the progresses done in the field of quantum ground state
cooling. This chapter allows us to bring out the challenge of this field and then to state
the problem that we try to solve.

In the second chapter, we have described the rate equations of optomechanical systems.
The mathematical formalism as well as the numerical methods used for our analysis are
presented and explained. Analytical formalism used to generate squeezed and entangled
states are also briefly explained.

The main results obtained are presented in the third chapter and are summarized in
the following points: The first point studied the effect of geometrical nonlinear term as
well as the quantum noises on both the dynamical system behavior and optical bistability.
Indeed, we have shown that geometrical nonlinearity reduces the mechanical amplitudes
of vibration in classical limit. This means that it can be used to control instabilities
in an optomechanical system. In semiclassical limit, the combined effect of geometrical
nonlinearity and the operator’s noises has produced the results which are similar to those
in the quantum limit. As the dynamics in nano-scale is better described in quantum
mechanical terms, this result means that, nonlinearity and noise should be taking into
account to give a good dynamical behavior of a nano-structure. This result is confirmed
when we have studied the optical bistability in the system. Indeed, we have shown that
the combined effect of geometrical nonlinearity and noises reduces the optical bistability,
which is the signature of instabilities in the system (jump phenomenon here).

In the second point, we have shown that geometrical nonlinearity behaves as a thermal
decoherence and then, limits the ground state cooling in nanomechanics. To improve
cooling in this situation, we have shown that an increase of the mechanical frequency
reduces intensity of geometrical nonlinear, inducing an increase of the thermal decoherence
time. This is a good thing for quantum applications which can then be observed in a longer
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time. This result shows how it is necessary to build very high finesse optomechanical
cavities having the GHz frequency range.

In the third point, we have shown that the CV mechanical squeezing is limited by
the geometrical nonlinearity at the mechanical resonance where it reaches its maximum
value. Optical CV squeezing is shown to be limited by the optical resonance at the optical
resonance where it also reaches its maximum value.

The fourth point is devoted to the generation of CV entanglement based on the ge-
ometrical nonlinearity. Precisely, we have generated the CV entanglement at the blue
sideband detuning and we have shown how geometrical nonlinearity enhances the robust-
ness of this entanglement even against thermal decoherence.

Outlook

Here, we highlight some points which can further improve the present work. Firstly,
deeply dynamical study of this system regarding to the geometrical nonlinear term is
necessary. In fact, as the nonlinear effect can be used for the classical control of the
system, we think that it has a profound influence on the different phase transition points.
Secondly, we intend to deeply investigate on the fact that a reduction of nonlinear term
induce the decoherence suppression, in order to further explain this result. This will be
more important for the improvement of the quantum applications. Thirdly, the sideband
detuning at which the squeezing can be enhanced by the nonlinear term must be checked.
This will enhance the quantum information processing.

As the geometrical nonlinearity is used to generate robust CV entanglement, it can be
used to perform applications such as quantum teleportation, quantum cryptography and
dense coding protocol.

In order to further cool close to the quantum ground state, we think that both the
effects of geometrical and quadratic nonlinearities should be investigated in the super-
conducting microwave circuits capacitively coupled. Since the gap between the two gates
of the coupling capacitance in such systems is small (. 100nm), then the effects of both
Casimir and Wan der waals forces on the quantum ground state cooling should also be
checked.

In the nearest future, we intend to show the effect of quantum synchronization in
quantum sharing information. This preoccupation comes from the fact that we need to
quantify the performance of quantum sharing information based one hand on entangle-
ment and the other hand on quantum synchronization.

Djorwe Philippe Nonlinear Quantum Optomechanics



Bibliography

[1] Von R. Frisch, Expementeller Nachweis des Einsteinschen Strahlungsrüsckstobes,
Zeitschrift für Physik B 86, 42 (1933).

[2] R. A. Beth, Mechanical Detection and Measurement of the Angular Momentum of
Light, Phys.Rev. 50, 115 (1936).

[3] S. Stenholm, The semiclassical theory of laser cooling, Rev. Mod. Phys. 58, 699
(1986)

[4] T. W. Hansch and A. L. Schawlow, Cooling of gases by laser radiation, Optics Com-
munications 13, 68 (1975).

[5] D. J. Wineland, R. E. Drullinger and F. L. Walls, Radiation-pressure cooling of
bound resonant absorbers, Phys. Rev. Lett. 40,1639 (1978).

[6] S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable and A. Ashkin, 3-dimensional viscous
confinement and cooling of atoms by resonance radiation pressure, Phys. Rev. Lett.
55, 48 (1985).

[7] A. Ashkin, Applications of laser radiation pressure, Science 210,1081 (1980).

[8] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm and S. Chu, Observation of a single-beam
gradient force optical trap for dielectric particles, Optics Letters 11, 288 (1986).

[9] H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping, Springer-Verlag
New York, p. 317 (1999).

[10] I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases, Rev.
Mod. Phys. 80, 885 (2008).

[11] F. Diedrich, J. C. Bergquist, Wayne M. Itano and D. J. Wineland, Laser cooling to
the zero-point energy of motion, Phys. Rev. Lett.62(4), 406 (1989).

73



BIBLIOGRAPHY 74

[12] D. Leibfried, R. Blatt, C. Monroe and D. Wineland, Quantum dynamics of single
trapped ions, Rev. Mod. Phys. 75(1), 324 (2003).

[13] W. M. Itano, J. C. Bergquist, J. J. Bollinger and D. J. Wineland, Laser cooling of
trapped ions, Laser Manipulation of Atoms and Ions, North-Holland, Amsterdam,
p.p. 519-537 (1992).

[14] S. Gigan, H. R. Bohm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C.
Schwab, D. Bauerle, M. Aspelmeyer and A. Zeilinger, Self-cooling of a micromirror
by radiation pressure, Nature (London) 444, 67 (2006).

[15] O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard and A. Heidmann, Radiation-
pressure cooling and optomechanical instability of a micromirror, Nature (London)
444, 71 (2006).

[16] A. Schliesser, P. DelHaye, N. Nooshi, K. J. Vahala and T. J. Kippenberg, Radiation
Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction, Phys.
Rev. Lett. 97, 243905 (2006).

[17] I. Wilson-Rae, N. Nooshi, W. Zwerger and T. J. Kippenberg, Theory of Ground
State Cooling of a Mechanical Oscillator Using Dynamical Backaction, Phys. Rev.
Lett. 99, 093901 (2007).

[18] I. Favero and K. Karrai, Cavity cooling of a nanomechanical resonator by light scat-
tering, New J. Phys. 10, 095006 (2008).

[19] A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger and T. J. Kippenberg, Resolved-
sideband cooling and position measurement of a micromechanical oscillator close to
the Heisenberg uncertainty limit, Nature Physics 5, 509 (2009).

[20] A. Naik, O. Buu, M. D. LaHaye, A. D. Armour, A. A. Clerk, M. P. Blencowe and K.
C. Schwab, Cooling a nanomechanical resonator with quantum back-action, Nature
443, 193 (2006).

[21] S. Gröblacher, J. B. Hertzberg, M. Vanner, G. Cole, S. Gigan, K. C. Schwab and
M. Aspelmeyer, Demonstration of an ultracold microoptomechanical oscillator in a
cryogenic cavity, Nature Physics 5, 485 (2009).

[22] A. Nunnenkamp, K. Børkje, J. G. E. Harris and S. M. Girvin, Cooling and squeezing
via quadratic optomechanical coupling, Phys. Rev. A 82, 021806(R) (2010).

Djorwe Philippe Nonlinear Quantum Optomechanics



BIBLIOGRAPHY 75

[23] A. Mari and J. Eisert, Gently Modulating Optomechanical Systems, Phys. Rev.
Lett.103, 213603 (2009); A. Mari and J. Eisert, Opto- and electro-mechanical entan-
glement improved by modulation, New J. Phys. 14, 075014 (2012); A. Farace and V.
Giovannetti, Enhancing quantum effects via periodic modulations in optomechanical
systems, Phys. Rev. A 86, 013820 (2012).

[24] C. Yang, Progress Toward Observing Quantum Effects in an Optomechanical System
in Cryogenics, PhD Thesis, Yale University, 2011.

[25] Y. Hadjar, Etude du couplage optomécanique dans une cavité de grande finesse.
Observation du mouvement Brownien d’un miroir, Ph.D. thesis, Université Paris VI
(2004).

[26] P. Rabl, C. Genes, K. Hammerer and M. Aspelmeyer, Phase-noise induced limitations
on cooling and coherent evolution in optomechanical systems, Phys. Rev. A 80,
063819 (2009).

[27] G. A. Phelps and P. Meystre, Laser phase noise effects on the dynamics of optome-
chanical resonators, Phys. Rev. A 83, 063838 (2011).

[28] M. Abdi, Sh. Barzanjeh, P. Tombesi and D. Vitali, Effect of phase noise on the
generation of stationary entanglement in cavity optomechanics, Phys. Rev. A 84,
032325 (2011).

[29] T. J. Kippenberg, A. Schliesser and M. L. Gorodetsky, Phase noise measurement of
external cavity diode lasers and implications for optomechanical sideband cooling of
GHz mechanical modes, New J. Phys. 15, 015019 (2013).

[30] A. H Safavi-Naeini, J. Chan, J. T. Hill, S. Gröblacher, H. Miao, Y. Chen, M. As-
pelmeyer and O. Painter, Laser noise in cavity-optomechanical cooling and thermom-
etry, New J. Phys. 15, 035007 (2013).

[31] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt, Cavity Optomechanics,
arXiv:1303.0733v1.

[32] J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S.Gröblacher,
M. Aspelmeyer and O.Painter, Laser cooling of a nanomechanical oscillator into its
quantum ground state Nature (London) 478, 89 (2011); S. Meenehan, J. D. Cohen,

Djorwe Philippe Nonlinear Quantum Optomechanics



BIBLIOGRAPHY 76

S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini, M. Aspelmeyer and O. Painter, Ther-
malization properties at mk temperatures of a nanoscale optomechanical resonator
with acoustic-bandgap shield, arXiv:1403.3703v1.

[33] J. D. Teufel, T. Donner, Dale Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J.
Sirois, J. D. Whittaker, K. W. Lehnert and R. W. Simmonds, Sideband cooling of
micromechanical motion to the quantum ground state, Nature 475, 359 (2011).

[34] A. D.O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, Erik
Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis and
A. N. Cleland, Quantum ground state and single-phonon control of a mechanical
resonator, Nature 464, 697 (2010).

[35] M. Aspelmeyer, P. Meystre and K. Schwab, Quantum optomechanics, Phys. Today
65(7), 29 (2012).

[36] V. B. Braginsky, Y. I. Vorontsov and K. Thorne, Quantum Nondemolition Measure-
ments, Science 209, 557 (1980).

[37] V. B. Braginsky and F. Ya. Khalili, Quantum nondemolition measurements: the
route from toys to tools, Rev. Mod. Phys. 68, 11(1996).

[38] V. B. Braginsky, M. L. Gorodetsky, F. Ya. Khalili, A. B. Matsko, K. S. Thorne
and S. P. Vyatchanin, Noise in gravitational-wave detectors and other classical-force
measurements is not influenced by test-mass quantization, Phys. Rev. D 67, 082001
(2003).

[39] M. I. Dykman, Heating and cooling of local and quasilocal vibrations by a nonreso-
nance field, Soviet Physics - Solid State, 20, 1311 (1978).

[40] A. Dorsel, J. D. McCullen, P. Meystre, E. Vignes and H. Walther, Induced by Ra-
diation Pressure Optical Bistability and Mirror Confinement, Phys. Rev. Lett. 51,
1550 (1983).

[41] V. B. Braginskii and A. B. Manukin, Ponderomotive effects of electromagnetic radi-
ation, Soviet Physics JETP Letters 25(4), 655 (1967).

[42] V. B. Braginskii, A. B. Manukin and M. Yu. Tikhonov, Investigation of dissipative
ponderomotive effects of electromagnetic radiation, Soviet Physics JETP 31 830
(1970).

Djorwe Philippe Nonlinear Quantum Optomechanics



BIBLIOGRAPHY 77

[43] V. B. Braginsky and A. B. Manukin, Measurement of Weak Forces in Physics Ex-
periments, University of Chicago Press (1977).

[44] V. B. Braginsky, S. E. Strigin and V. P. Vyatchanin, Parametric oscillatory instability
in Fabry-Perot interferometer, Phys. Lett. A 287(5-6), 338 (2001).

[45] V. B. Braginsky and S. P. Vyatchanin, Low quantum noise tranquilizer for Fabry-
Perot interferometer, Phys. Lett. A 293, 234 (2002).

[46] C. M. Caves, Quantum-mechanical radiation-pressure fluctuations in an interferom-
eter, Phys. Rev. Lett.45(2), 79 (1980); C. M. Caves, Quantum-mechanical noise in
an interferometer, Phys. Rev. D 23, 1693(1981).

[47] A. Heidmann, Y. Hadjar and M. Pinard, Quantum non-demolition measurement by
optomechanical coupling, Applied Physics B 64, 180 (1997).

[48] S. Mancini and P. Tombesi, Quantum noise reduction by radiation pressure, Phys.
Rev. A 49, 4055 (1994).

[49] C. Fabre, M. Pinard, S. Bourzeix, A. Heidmann, E. Giacobino and S. Reynaud,
Quantum-noise reduction using a cavity with a movable mirror, Phys. Rev. A 49,1337
(1994).

[50] R. Ruskov, K.Schwab and A. N. Korotkov, Squeezing of a nanomechanical resonator
by quantum nondemolition measurement and feedback, Phys. Rev. B 71, 235407
(2005); R. Ruskov, K. Schwab and A. N. Korotkov, Quantum Nondemolition Squeez-
ing of a Nanomechanical Resonator, IEEE transactions on nano-technology 4, 132
(2005).

[51] A. Mari and J. Eisert, Gently modulating optomechanical systems, Phys. Rev.Lett.
103, 213603 (2009).

[52] S. Mancini, V. Giovannetti, D. Vitali and P. Tombesi, Entangling Macroscopic Os-
cillators Exploiting Radiation Pressure, Phys. Rev. Lett. 88, 120401 (2002).

[53] L. Yong-Chun, Hu Yu-Wen, Wong Chee Wei and Xiao Yun-Feng, Review of cavity
optomechanical cooling, Chin.Phys. B 22(11), 114213 (2013).

[54] W. W. Johnson and M. Bocko, Approaching the Quantum Limit for Force Detection,
Phys. Rev. Lett. 47, 1184 (1981).

Djorwe Philippe Nonlinear Quantum Optomechanics



BIBLIOGRAPHY 78

[55] M. F. Bocko and R. Onofrio, On the measurement of a weak classical force coupled
to a harmonic oscillator: experimental progress, Rev. Mod. Phys. 68, 755 (1996).

[56] O. Arcizet, T. Briant, A. Heidmann and M. Pinard, Beating quantum limits in an
optomechanical sensor by cavity detuning, Phys. Rev. A 73, 033819 (2006).

[57] G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riviere, A. Schliesser, E.
M. Weig, J. P. Kotthaus, T. J. Kippenberg, Near-field cavity optomechanics with
nanomechanical oscillators, Nature Physics 5,909 (2009).

[58] J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow and K.W.Lehnert,
Nanomechanical motion measured with precision beyond the standard quantum limit,
Nat. Nanotech. 4, 820 (2009).

[59] A. G. Krause, Martin Winger, T. D. Blasius, Q. Lin and O. Painter, A high-resolution
microchip optomechanical accelerometer, Nature Photonics 6 (11), 768 (2012).

[60] T. J. Kippenberg and K. Vahala, Cavity Opto-Mechanics, Optics Express 15, 17205
(2007).

[61] T. J. Kippenberg and K. J. Vahala, Cavity Optomechanics: Back-Action at the
Mesoscale, Science 321, 176 (2008).

[62] A.N. Cleland, Foundations of Nanomechanics (SpringerVerlag, Berlin, 2003).

[63] R.Lifshitz and M.C. Cross, Nonlinear Dynamics of Nanosystems (WILEY-VCH Ver-
lag GmbH & Co. KGaA, Weinheim, 2010).

[64] L. G. Villanueva, R. B. Karabalin, M. H. Matheny, D. Chi, J. E. Sader and M. L.
Roukes, Nonlinearity in nanomechanical cantilevers, Phys. Rev. B 87, 024304 (2013).

[65] X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross and T. J. Kippenberg,
Slowing, advancing and switching of microwave signals using circuit nanoelectrome-
chanics, Nat. Phys. 9, 179 (2012).

[66] S. Rips, M. Kiffner, I. Wilson-Rae and M. J. Hartmann, Steady-state negative
Wigner functions of nonlinear nanomechanical oscillators, New Journal of Physics
14, 023042(2012); S. Rips and M. J. Hartmann, Quantum Information Process-
ing with Nanomechanical Qubits, Phys. Rev. Lett.110, 120503 (2013); S. Rips, I.
Wilson-Rae and M. J. Hartmann, Nonlinear nanomechanical resonators for quantum
optoelectromechanics, Phys. Rev. A 89, 013854 (2014).

Djorwe Philippe Nonlinear Quantum Optomechanics



BIBLIOGRAPHY 79

[67] S.Gröblacher, S. Gigan, H. R. Bohm, A. Zeilinger and M. Aspelmeyer, Radiation-
pressure self-cooling of a micromirror in a cryogenic environment, Eur. Phys. Lett.
81, 54003 (2008).

[68] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt and R. J. Schoelkopf,
Introduction to quantum noise, measurement and amplification, Rev. Mod. Phys.
82,1155 (2010).

[69] C. Genes, D. Vitali, P. Tombesi, S. Gigan and M. Aspelmeyer, Ground-state cooling
of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling
schemes, Phys. Rev. A 77, 033804 (2008).

[70] S. Huang and G. S. Agarwal,Enhancement of cavity cooling of a micromechanical
mirror using parametric interactions, Phys. Rev. A 79, 013821 (2009).

[71] C. Genes, Atom-membrane cooling and entanglement using cavity electromagneti-
cally induced transparency, Phys. Rev. A 84, 051801(R) (2011).

[72] C. Genes, H. Ritsch and D. Vitali, Micromechanical oscillator ground-state cooling
via resonant intracavity optical gain or absorption, Phys. Rev. A 80, 061803 R (2009).

[73] S. Machnes, J. Cerrillo, M. Aspelmeyer, W. Wieczorek, M. B. Plenio and A. Retzker,
Pulsed Laser Cooling for Cavity Optomechanical Resonators, Phys. Rev. Lett. 108,
153601 (2012).

[74] Li Ge, S. Faez, F. Marquardt and H. E. Türeci, Gain-tunable optomechanical cooling
in a laser cavity, Phys. Rev. A 87, 053839 (2013).

[75] T. Weiss and A. Nunnenkamp, Quantum limit of laser cooling in dispersively and
dissipatively coupled optomechanical systems, Phys. Rev. A 88, 023850 (2013).

[76] A. Hopkins, K. Jacobs, S. Habib and K. Schwab, Feedback cooling of a nanomechan-
ical resonator, Phys. Rev. B 68, 235328 (2003).

[77] M. D. LaHaye, O. Buu, B. Camarota and K. C. Schwab, Approaching the Quantum
Limit of a Nanomechanical Resonator, Science 304, 74 (2004).

[78] J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin and J. G.
E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical
membrane, Nature 452, 72 (2008).

Djorwe Philippe Nonlinear Quantum Optomechanics



BIBLIOGRAPHY 80

[79] A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D. Thompson, S. M. Girvin, A.
A. Clerk, F. Marquardt and J. G. E. Harris, Dispersive optomechanics: a membrane
inside a cavity, New J. Phys. 10, 095008 (2008).

[80] P. Meystre, A short walk through quantum optomechanics, Ann. Phys. (Berlin) 525
(3), 215 (2013).

[81] C. K. Law, Interaction between a moving mirror and radiation pressure: A Hamilto-
nian formulation, Phys. Rev. A 51, 2537 (1995).

[82] M. Eichenfield, J. Chan, R.M. Camacho, K.J. Vahala, O. Painter, Optomechanical
Crystals, Nature 462, 78 (2009).

[83] Max Ludwig , Björn Kubala and Florian Marquardt, The optomechanical instability
in the quantum regime, New J. Phys. 10, 095013 (2008).

[84] P. Langevin, Sur la théorie du mouvement brownien, C. R. Acad. Sci. 146, 530
(1908).

[85] G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A 65,
032314 (2002).

[86] G. Adesso, A. Serafini and F. Illuminati, Extremal entanglement and mixedness in
continuous variable systems, Phys. Rev. A 70, 022318 (2004).

[87] J. Laurat, G. Keller, J. A. Oliveira-Huguenin, C. Fabre, T. Coudreau, A. Serafini,
G. Adesso and F. Illuminati, J. Opt. B: Quantum Semiclass. Opt. 7, 577 (2005).

[88] S. Huang and G. S. Agarwal, Entangling nanomechanical oscillators in a ring cavity
by feeding squeezed light, New J. Phys. 11 103044 (2009).

[89] A. Kolkiran and G. S. Agarwal, amplitude noise reduction in nano-mechanical oscil-
lator, Mathematical and Computational Applications 16, 290 (2011).

[90] P. Djorwé, J.H. Talla Mbé, S.G. Nana Engo and P. Woafo, Classical and semiclassical
studies of nonlinear nano-optomechanical oscillators, Eur. Phys. J. D 67 (45), 1
(2013).

[91] F. Marquardt, J. G. E. Harris and S. M. Girvin, Dynamical Multistability Induced
by Radiation Pressure in High-Finesse Micromechanical Optical Cavities, Phys. Rev.
Lett. 96, 103901 (2006).

Djorwe Philippe Nonlinear Quantum Optomechanics



BIBLIOGRAPHY 81

[92] S. Datta and J. K. Bhattacharjee, Effect of stochastic forcing on the Duffing oscillator,
Phys. Lett. A 283, 323 (2001).

[93] S. Reynaud, C. Fabre, E. Giacobino, A. Heidmann, Photon noise reduction by passive
optical bistable systems, Phys.Rev. A 40 (3), 1440 (1989).

[94] P. Djorwé, J.H. Talla Mbé, S.G. Nana Engo, P. Woafo, Nonlinearity-induced limita-
tions on cooling in optomechanical systems, Phys. Rev. A 86, 043816 (2012).

[95] Albert Schliesser, Cavity Optomechanics and Optical Frequency Comb Genera-
tion with Silica Whispering-Gallery-Mode Microresonators, PhD thesis, Ludwig-
Maximilians-University, Munchen (2009).

[96] A. Mari and D. Vitali, Optimal fidelity of teleportation of coherent states and en-
tanglement, Phys. Rev. A 78, 062340 (2008).

[97] S. G. Hofer, W. Wieczorek, M. Aspelmeyer and K. Hammerer, Quantum entangle-
ment and teleportation in pulsed cavity optomechanics, Phys. Rev. A 84, 052327
(2011).

[98] C. A. Muschik, K. Hammerer, E.S. Polzik and I. J. Cirac, Quantum Teleportation
of Dynamics and Effective Interactions between Remote Systems, Phys. Rev. Lett.
111, 020501 (2013).

[99] M. Abdi, S. Pirandola, P. Tombesi and D. Vitali, Continuous-variable-entanglement
swapping and its local certification: Entangling distant mechanical modes, Phys.
Rev. A 89, 022331 (2014).

[100] S. Barzanjeh, S. Pirandola and C. Weedbrook, Continuous-variable dense coding by
optomechanical cavities, Phys. Rev. A 88, 042331 (2013).

[101] P. Horak, The role of squeezing in quantum key distribution based on homodyne
detection and post-selection, J. Mod. Opt 51 (8), 1249 (2004).

[102] V. C. Usenko and R. Filip, Squeezed-state quantum key distribution upon imperfect
reconciliation, New J. of Phys. 13, 113007 (2011).

[103] H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S.
Gobler, K. Danzmann and R. Schnabel, Observation of Squeezed Light with 10−dB
Quantum-Noise Reduction, Phys. Rev. Lett. 100, 033602 (2008).

Djorwe Philippe Nonlinear Quantum Optomechanics



BIBLIOGRAPHY 82

[104] M. J. Woolley, A. C. Doherty, G. J. Milburn and K. C. Schwab, Nanomechanical
squeezing with detection via a microwave cavity, Phys. Rev.A 78, 062303 (2008).

[105] E. A. Sete and H. Eleuch, Controllable nonlinear effects in an optomechanical res-
onator containing a quantum well, Phys. Rev. A 85, 043824 (2012).

[106] Jie-Qiao Liao and C. K. Law, Parametric generation of quadrature squeezing of
mirrors in cavity optomechanics, Phys. Rev. A 83, 033820 (2011).

[107] A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer and O.
Painter, Squeezed light from a silicon micromechanical resonator, Nature 500, 185
(2013).

[108] A. Kronwald, F. Marquardt and A. A. Clerk, Dissipative optomechanical squeezing
of light, New J. Phys. 16, 063058 (2014).

[109] X-Y. Lu, J-Q Liao, L. Tian and F. Nori, Steady-state Mechanical Squeezing in
an Optomechanical System via Duffing Nonlinearity, arXiv:1403.0049v1 [quant-ph]
1 Mar 2014.

[110] P. Djorwé, S. G. Nana Engo, J. H. Talla Mbé and P. Woafo, Limiting effects of
geometrical and optical nonlinearities on the squeezing in optomechanics, Physica B
422, 72 (2013).

[111] C. Genes, A. Mari, D. Vital, P. Tombesi, Quantum effects in optomechanical sys-
tems, Adv. Atom. Mol. Opt. Phy. 57, 33 (2009).

[112] A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin,
J. T. Hill, D. E. Chang and O. Painter, Electromagnetically induced transparency
and slow light with optomechanics, Nature 472, 69 (2011).

[113] J. Stolze and D. Suter, Quantum Computing: A short course from Theory to Ex-
periment (WILEY-VCH GmbH & Co. KGaA, Dortmund, 2004).

[114] K. Hammerer, Quantum Mechanics Tackles Mechanics, Science 342, 702 (2013).

[115] V. M. Vinokur, T. I. Baturina, M. V. Fistul, A. Yu. Mironov, M. R. Baklanov and
C. Strunk, Superinsulator and quantum synchronization, Nature 452, 613 (2008).

[116] M. Bagheri, M. Poot, L. Fan, F. Marquardt and H. X. Tang, Photonic Cavity
Synchronization of Nanomechanical Oscillators, Phys. Rev. Lett. 111, 213902 (2013).

Djorwe Philippe Nonlinear Quantum Optomechanics



BIBLIOGRAPHY 83

[117] A. Mari, A. Farace, N. Didier, V. Giovannetti and R. Fazio, Measures of Quan-
tum Synchronization in Continuous Variable Systems, Phys. Rev. Lett. 111, 103605
(2013).

[118] M. B. Plenio and S. F. Huelga, Entangled Light from White Noise, Phys. Rev. Lett.
88, 197901-1(2002).

[119] D. Vitali, S. Gigan, A. Ferreira, H. R. Bohm, P. Tombesi, A. Guerreiro, V. Vedral,
A. Zeilinger and M. Aspelmeyer, Optomechanical Entanglement between a Movable
Mirror and a Cavity Field, Phys. Rev. Lett. 98, 030405 (2007).

[120] C. Genes, A. Mari, P. Tombesi and D. Vitali, Robust entanglement of a microme-
chanical resonator with output optical fields, Phys. Rev. A 78, 032316 (2008).

[121] Z. Ying and Y-J. Han, Generating EPR beams in a cavity optomechanical system,
Phys. Rev. A 79, 024301 (2009).

[122] T. A. Palomaki, J. D. Teufel, R. W. Simmonds and K. W. Lehnert, Entangling
Mechanical Motion with Microwave Fields, Science 342, 710 (2013).

[123] Sh. Barzanjeh, M. Abdi, G. J. Milburn, P. Tombesi and D. Vitali, Reversible
Optical-to-Microwave Quantum Interface, Phys. Rev. Lett.109, 130503 (2012).

[124] L. Tian, Robust Photon Entanglement via Quantum Interference in Optomechanical
Interfaces, Phys. Rev. Lett.110, 233602 (2013).

[125] P. Djorwé, S. G. Nana Engo and P. Woafo, Robustness of continuous-variable en-
tanglement via geometrical nonlinearity, arXiv:1405.4483v1.

[126] S. Shahidani, M. H. Naderi, M. Soltanolkotabi and S. Barzanjeh, Steady-state en-
tanglement, cooling, and tristability in a nonlinear optomechanical cavity, J. Opt.
Soc. Am. B 31, 1095 (2014).

Djorwe Philippe Nonlinear Quantum Optomechanics



Publications from this thesis

1. P. Djorwé, S. G. Nana Engo and P. Woafo, Robustness of continuous-variable
entanglement via geometrical nonlinearity, accepted in Phys. Rev. A (2014).

2. P. Djorwé, S. G. Nana Engo, J. H. Talla Mbé and P. Woafo, Limiting effects of
geometrical and optical nonlinearities on the squeezing in optomechanics, Physica B
422, 72 (2013).

3. P. Djorwé, J. H. Talla Mbé, S. G. Nana Engo and P. Woafo, Classical and semi-
classical studies of nonlinear nano-optomechanical oscillators, Eur. Phys. J. D 67,
45 (2013).

4. P. Djorwé, J. H. Talla Mbé, S. G. Nana Engo and P. Woafo, Nonlinearity-induced
limitations on cooling in optomechanical systems, Phys. Rev. A 86, 043816 (2012).

84



Conferences presentation

1. P. Djorwé, S.G Nana Engo and P. Woafo, Entanglement enhanced by geometrical
nonlinearity in optomechanical systems, School on Non-linear Dynamics, Dynamical
Transitions and Instabilities in Classical and Quantum Systems, 14 July - 1 August
2014, Miramare-Trieste (Italia). Poster .

2. P. Djorwé, Student Chapter Leadership Workshop, Official Officer Travel Grant
Award for SPIE Photonics Europe 2014, 13−17 April, Brussels, Belgium. Poster .

3. P. Djorwé, S.G Nana Engo and P. Woafo, Semiclassical study of Casimir effect
on pull-in phenomenon and on quantum ground state cooling, 3rd International
conference of the Cameroon Physical Society, Yaoundé, 25− 29 November 2013.
Oral presentation.

4. P. Djorwé, S.G Nana Engo, J.H.Talla Mbé and P. Woafo, Limiting effects of geo-
metrical and optical nonlinearities on squeezing in optomechanics, 3rd International
conference of the Cameroon Physical Society, Yaoundé, 25− 29 November 2013.
Oral presentation.

5. P. Djorwé, S.G Nana Engo, J.H.Talla Mbé and P. Woafo, Nonlinear phononics
study at the single-phonon level in optomechanics, Frontiers of Nanomechanics con-
ference, Miramare-Trieste (Italia), 9−13 September 2013. Poster .

6. P. Djorwé, J.H.Talla Mbé, S.G Nana Engo and P. Woafo, Dynamical behaviour
of optomechanical systems: classical, semi-classical and quantum limits, 2nd Inter-
national Conference of the Cameroon Physical Society, Yaoundé, 6− 8 December
2011. Poster .

85


	Faculty List
	Dedications
	Acknowledgements
	List of Abbreviations
	Abstract
	Résumé
	General Introduction
	1 Literature Review
	1.1 Introduction
	1.2 Overview
	1.3 Basic concepts for optomechanical cooling
	1.4 Quantum cooling review
	1.5 New challenges: Towards the nonlinear quantum optomechanics
	1.6 Conclusion

	2 Methods and Materials
	2.1 Introduction
	2.2 Modelling of optomechanical oscillators
	2.2.1 Classical limit
	2.2.2 Semiclassical limit

	2.3 Analytical methods
	2.3.1 Langevin derivation method
	2.3.2 Stability analysis
	2.3.3 Quantum Fourier Transform and fluctuation spectrum
	2.3.4 Logarithmic negativity EN

	2.4 Numerical methods
	2.4.1 Fourth-order Runge-Kutta method for first-order ordinary differential equation
	2.4.2 Dynamical behaviors characterization

	2.5 Conclusion

	3 Results and discussions
	3.1 Introduction
	3.2 Effects of geometrical and optical nonlinearities in nano-optomechanics
	3.2.1 Nonlinear optomechanical rate equations
	3.2.2 Dynamical behaviors
	3.2.3 Optical bistability and effects of both geometrical nonlinearity and quantum noises

	3.3 Quantum ground state cooling in nonlinear optomechanics
	3.3.1 Quantum dynamics of the fluctuations
	3.3.2 Effective phonon number in nonlinear optomechanics

	3.4 Squeezed states generation in the nonlinear quantum optomechanics
	3.4.1 Mechanical squeezing
	3.4.2 Optical output squeezing

	3.5 Entanglement in the nonlinear quantum optomechanics
	3.5.1 Dynamical equations
	3.5.2 Effect of geometrical nonlinearity on stationary entanglement

	3.6 Conclusion

	General Conclusion
	List of Publications



