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Résumé

Nous traitons l'e�et conjoint de l'induction et de la radiation électromagnétique

sur l'activité électrique des cellules biologiques excitables. Après une adéquate modélisation

théorique, des méthodes mathématiques et numériques appropriées sont utilisées pour étudier

chaque phénomène. Du point de vue biophysique, nous montrons que des ondes initiées à partir

du n÷ud sinusoidal du c÷ur se propagent dans les cellules du myocarde sous forme d'excitations

solitoniques modulées, régulant ainsi les pulsations cardiaques en tant que stimulateur. En outre,

il est révélé que le modèle amélioré avec induction électromagnétique peut également conduire à la

formation des structures spatio-temporelles non-linéaires et quasi-périodiques dont certaines ont

un comportement quasi-synchrone. Par ailleurs, l'induction électromagnétique dans les réseaux

de neurones pourrait également contribuer aux comportements coopératifs et collectifs des neu-

rones thalamocorticaux. En présence d'un fort rayonnement électromagnétique, on observe la

disparition progressive des motifs. Ce qui pourrait être assimilé à une conduction bloquée pendant

la propagation du signal. Cela pourrait fournir des indications et une meilleure compréhension

des insu�sances cardiaques et nerveuses soudaines lorsque les cellules sont exposées à un ray-

onnement électromagnétique élevé. L'application de la stimulation magnétique trans-crânienne

présent un avantage car les boucles électriques cérébrales anormales peuvent être corrigées. Ceci

constitue une méthode de correction indirecte qui pourrait aider à éviter des blessures graves

dans le ceveau.

Mots clés: Cellules du myocarde; les neurones; induction électromagnétique; rayonnement;

excitations non- linéaires; synchronisation; stimulation magnétique; intelligence arti�cielle.
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Abstract

This thesis deals with the e�ects of electromagnetic induction and radiation on the

electrical activity of biological excitable cells. After a good physical and mathematical model-

ing of biological excitable cells with electromagnetic induction and exposure to electromagnetic

�eld, appropriate mathematical and numerical methods are used to investigate the action of each

phenomenon on the electrical activity of cells. It is found from biophysical point of view that

cardiac electrical signals or waves initiated from the heart sinus node propagate in myocardial

cells both in temporal and spatial dimensions in the form of a localized modulated solitonic

wave thereby regulating heartbeat as powerful pacemaker. Also, it is revealed that the improved

model with electromagnetic induction can also lead to the formation of nonlinear quasi-periodic

spatiotemporal patterns with some features of synchronization. The generation of pulses and

rhythmics behaviors like breathing or swimming are highly relevant in brain researches. Further-

more, electromagnetic induction in neural networks could also contributes to the co-operative

and collective behaviors of the thalamocortical neurons. In the presence of electromagnetic radi-

ation, the formation of periodic pulse train presents disappearing pattern, which could be likened

to conduction blocked during signal propagation. This could provide guidance and better un-

derstanding of sudden heart failure exposed to heavily electromagnetic radiation. Currently,

neuro-computer scientists simulate the rich and complex behaviors of biological neural networks

to develop arti�cial neural networks for the improvement of arti�cial intelligence. The application

of trans-cranial magnetic stimulation is a fruitful avenue where abnormal brain electrical loop

can be corrected. This constitutes the non-direct invasive method of correction which could help

avoid major injury during the event of administration as the case may be with direct electrical

stimulation.

Keywords: Myocardial cells; neurons; electromagnetic induction and radiation; spatiotem-

poral patterns; neuronal synchronization; magnetic stimulation; arti�cial intelligence.
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General Introduction

Excitable systems are, in general, spatially distributed systems which as a result of ap-

plication of a super-threshold stimulus, are able to generate and conduct nonlinear waves

of excitation. Biological examples of excitable media include electrical membrane excita-

tion in nerves of the brain (neurons) and muscular tissue of the heart (myocardial cells),

intracellular waves of calcium induced calcium release and some simple morphogenetic

systems. Studies of the brain and the heart using methods of nonlinear science resulted

in the development of the concept of an excitable medium, which is currently one of the

most developed and important branches of modern computational biology [1].

The heart is made up of cardiac conducting cells helping to initiate and propagate the

action potential (the electrical impulse) that travels throughout the heart and triggers the

contractions that propel the blood to the rest of the body. The human heart is known to

beat about 2−3 billion times in a normal life span [2]. Under an unhealthy condition, the

heart may lose its normal rhythm, degenerating into a sudden much faster and irregular

rhythms, known as arrhythmias [3]. The actual transition from a normal healthy rhythm

to a lethal rhythm is known to be a transition from regular electrical wave conduction

to an irregular, turbulent wave conduction in the heart. This is a clear medical problem,

which is also a problem of Mathematics, Physics and Biophysics, respectively.

The brain is the most important but highly complex system in nature. It forms an

integral part of the nervous system and made up of a large number of neurons grouped

into functional ensembles generally called micro-circuits [4]. The neurons form the basic,

structural and functional units of information encoding and transmission within the brain.

Thus, they initiate and propagate the electrical impulse. Reliable micro-circuits are crucial

in discerning the potential mechanism of signal encoding and propagation in the brain,

which is one of the challenges of modern neuroscience.

This baroque complexities of cardiac and nervous system require some strong com-

putational treatments safely guided by mathematical insights, based on simple nonlinear
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systems, or rationally reduced models. The FitzHugh-Nagumo (FHN) model [5, 6] in the

discrete form is extended to include the e�ect of electromagnetic induction and radiation,

hence analytical and numerical techniques applied to study phenomena of spatiotemporal

pattern formation and neuronal synchronization (NS).

0.1 Context of the thesis

The biological Hodgkin-Huxley (HH) [7] neuron model has been available for bifurca-

tion analysis and understanding the dynamical response to external stimuli, synchroniza-

tion stability and evolution of collective behaviors under coupling. Based on this neuron

model, dynamical analysis is carried out on the isolate neuron model, particularly, co-

herence resonance and stochastic resonance are induced by imposing appropriate noise.

As a result, distinct regularity can be found in the sampled time series for membrane

potentials. Furthermore, collective behaviors are investigated on the neuronal network

connected with di�erent topological connection, such as synchronization transition, pat-

tern selection in the network. These results are important and helpful to understand

potential mechanism for occurrence of neuronal disease. So, reliable schemes can be pre-

sented to prevent the breakdown of neuronal systems. Many simpli�ed HH models have

been proposed; FHN model, Integrate-and-�re model [8], Morris-Lecar (ML) model [9],

Hindmarsh-Rose model [10�12] and Izhikevich model [13,14].

However, the excitability property of neuron is much too complex and many factors

should be considered as well. According to the Faraday's law of induction, the �uctua-

tion or changes in action potentials in excitable cells (neurons) can generate magnet �eld

in the media; in that sense, the excitability of neurons will be adjusted under feedback

e�ect [15,16]. Albeit the satisfactory results reported in the above mentioned studies, the

appropriate mechanism and the conditions under which spatiotemporal patterns emerge

and spread among coupled neurons under electromagnetic induction have been not inves-

tigated. Therefore, it is important to set more reliable FHN models so that the e�ect of

electromagnetic induction could be considered.

Myocardial cell excitations are also too complex [17�19] and many realistic biologi-

cal and physical factors should be included during the control of disease and dynamical

analysis. Complex electrophysiological activities in electrical activities and excitation dy-

namics have been detected and widely reported in cardiac tissues [20�22]. These spatial
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patterns can be reproduced and observed by collecting the sampled membrane potentials

in di�erent areas of myocardial tissue [23]. Many iterated maps of action potential [24]

and theoretical model [25, 26] have been proposed to study these patterns in relation to

its emergence, phase transition and pattern selection. In fact, it has been argued that as

a result of these complex electrophysiological conditions, complex distribution of electro-

magnetic �eld can be detected in cells [27, 28]. This implies, the dynamical behavior of

each cell can be changed according to Maxwell electromagnetic induction theorem. On

this background, the magnetic �ux and memristor are used to develop a more reliable

model. Magnetic �ux is used to describe the change and distribution of electromagnetic

�eld, while memristor couples the magnetic �ux change to the membrane action potential.

Magnetic �ux has been recently used to model the e�ect of electromagnetic induction on

the trans-membrane potential of neurons [29]. Indeed, the e�ect of electromagnetic radi-

ation can be detected and investigated when neuron or cell is exposed to electromagnetic

�eld. As a result of this exposure, the excitability of cells should be adjusted under feed-

back e�ect [30]. Albeit the satisfactory results reported in the above mentioned studies,

the appropriate di�erent mechanisms and conditions under which spatiotemporal patterns

emerge and spread among coupled myocardial cells under electromagnetic radiation have

not received enough investigations relevant for disease prediction and understanding. This

constitute a strong motivation of the present work. It is thus highly relevant to discuss

the onset and condition of the formation of modulated waves patterns in a network of

coupled myocardial cells and neurons mediated by modulational instablity(MI).

MI is one of the direct mechanism well documented that leads to the formation of

solitons and train of waves in systems where there are permanent competitive e�ects

between non-linearity and dispersion [31, 132]. Meier et al. [33], realized the �rst exper-

imental observation of MI in physical systems. We show in this work, that the e�ect of

electromagnetic induction and radiation can enhance spatiotemporal information through

the activation of MI. Through numerical experiment, the myocardial cell lattice reveals

to support the generation of localized modes, soliton-like in shape with breathing mo-

tion, which are relevant in cardiac researches. Furthermore, the potential mechanism of

external electromagnetic radiation-induced heart disease via pattern formation will be

discussed.
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0.2 Problematic and objectives of the thesis

Rapid industrial expansion and technological improvement have gradually increased

the exposure of man to the lethal e�ect of electromagnetic radiation throughout the last

century. These high exposures are contributed from the increased use of electromagnetic

portable instruments, multiplications of electrical devices in �ats, nearness of manufactur-

ing industries to the domain of habitations. This has increased the level of electromagnetic

interactions in human biological cells, notably the cells of the brain and the heart. These

interactions have been widely suggested to be responsible for some neuro-degenerative dis-

eases such as the more pathological forms of behavior like multiple sclerosis, Alzheimer,

migraines, epileptic seizures, Parkinson diseases etc. [34�36].

Cardiovascular disease is the major prevailing cause of death worldwide and accounts

for about a third of all deaths [37]. This disease may arise due to defects in the blood

vessels, arteries or veins resulting to heart attacks and strokes. These defects may also

disrupt the normal contraction of the ventricles, resulting in heart failure and impaired

blood supply. An abnormal or irregular heart rhythm, including atrial and ventricular

�brillation as well as ventricular tachycardia, are closely associated with the loss of rhythm

and synchronization of cardiac electrical impulses which initiate the pumping of blood.

Maintaining the optimal electrical activities of neurons are highly important for hu-

mans as any breakdown due from any external attack can lead to the collapse of brain

resulting to serious diseases and even death in case of injury of the nervous system. Lisi

et al. [38], reported the e�ect of electromagnetic radiations at a frequency of 50 Hz on

the development of newborn rat cerebellar granule neurons. Xu et al. [39], also investi-

gated the oxidative damage to mitochondrial DNA in primary cultured neurons exposed

to 1,800 MHz radio frequency radiation. For more review on the biological phenomena ef-

fect of electromagnetic radiation, readers can �nd survey in [40,41] and references therein.

However, the e�ect of electromagnetic induction, injury on neuron and electromagnetic

radiation is still under investigation relevant for disease discerning, predictions and con-

trol. Indeed, electromagnetic induction and radiation [42, 43], injury on neurons [44] can

cause serious nervous disorder due to the blocking of signal propagation and encoding

in neural activities. Zhang et al. [45], setup a reliable model with memristive synapse

and discussed spatial patterns emergence under electromagnetic induction. However, the

appropriate conditions and mechanism under which spatiotemporal patterns emerge and
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spread among the reliable neural networks under the e�ect of electromagnetic induction

and radiation, have not yet fully been unmasked and deserve to be properly investigated.

This constitutes the strong motivation to this work. In this thesis, the combination of

analytical and numerical methods is used to study waves propagation and neuronal syn-

chronization phenomena in the context of the transport and transfer of impulses in cardiac

tissue and neural networks in order to light, the e�ects of electromagnetic induction and

radiation.

0.3 Organization of the Thesis

This thesis is divided into three chapters that are outlined as follows:

z The �rst chapter, the biology of cardiac tissue and neuronal networks, focuses

on the biological excitable cells; the organization and properties of myocardial cells and

neurons as the basic units of cardiac excitation and information processing in the nervous

system respectively. Their networks are then viewed as the macroscopic structures for the

transport of impulses during signal encoding. In this chapter some of the most prominent

neural models are presented and resulting in the choice of the FHN model whose properties

are well discussed.

z Chapter 2, the improved models of FHN and methodologies, presents the di�er-

ent mathematical models developed in this thesis as well as the analytical and numerical

methods used. Some immediate applications are made in order to facilitate the under-

standing of the methods. Interestingly, a discrete nonlinear Schrödinger (DNLS) and a

complex Ginzburg-Landau (CGL) equations are derived from generic model and allow

to �nd analytical expression of some MI functions such as critical amplitude or MI gain

along with instability criterion.

z The third chapter, results and discussions, is devoted to obtained results and bio-

physical implications. We �rst discuss the e�ects of electromagnetic induction and ra-

diation on single-channel neuronal communication and secondly on the myocardial cells

. Then the high frequency mode is studied in a discrete model of one-dimensional FHN

network. We end this study by reporting the possibility of emphatic communication via

memristive electromagnetic induction.

The thesis ends with a general conclusion including the summary of the main results

and the futures orientations.
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Chapter 1

Literature review: The Biology of

Cardiac Tissue and Neuronal Networks

Introduction

Cardiac tissue are made up of two major types of cardiac muscle cells: myocardial con-

tractile cells and myocardial conducting cells. The myocardial contractile cells constitute

the bulk (99%) of the cells in the atria and ventricles. Contractile cells conduct impulses

and are responsible for contractions that pump blood through the body. The myocardial

conducting cells (1% of the cells) form the conduction system of the heart. Except for

Purkinje cells, they are generally much smaller than the contractile cells and have few of

the myo�brils or �laments needed for contraction. Their function is similar in many re-

spects to neurons, although they are specialized muscle cells. Myocardial conduction cells

initiate and propagate the action potential (the electrical impulse) that travels throughout

the heart and triggers the contractions that propel the blood. Recall that cardiac muscle

shares a few characteristics with both skeletal muscle and smooth muscle, but it has some

unique properties of its own. Not the least of these exceptional properties is its ability

to initiate an electrical potential at a �xed rate that spreads rapidly from cell to cell to

trigger the contractile mechanism. This property is known as auto-rhythmicity. Neither

smooth nor skeletal muscle can do this. Even though cardiac muscle has auto-rhythmicity,

heart rate is modulated by the endocrine and nervous systems.

The human brain is made up of about one hundred billion neurons that communi-

cate with each other through synaptic nodes. These neurons are analog units that work
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together, performing very sophisticated operations of cognitive and control functions.

Neurons communicate by means of electrical impulses (action potentials). The evolution

in time of these impulses forms a complex code that supports the treatment of the nervous

message. Obviously, the emission of an action potential by a neuron is favored by the elec-

trical properties of its plasma membrane which is ionically permeable. The abundance of

neurons in the cerebral tissue sometimes confers them complex and di�erent morphologies,

but still retains a basic structure consisting of a cell body, an axon and dendrites.

Naturally in the brain, each neuron can have approximatively ten thousand connec-

tions with other neurons, totaling a million billion electrochemical interactions in the

nervous system. Neurons interacting with each other via synapses form a network that

constitutes a very sophisticated and complex communication system. In a neurons family,

the knowledge of inherent properties of individual neuron does not necessarily allow the

knowledge of the properties of the network, since the electrical activity of each neuron

is in�uenced by those of the others to which it is connected likewise the conducting cells

in the heart. In particular the chemical substances of a given a�erent neuron as well as

transient electric �eld produced from a population of spikes for interneuronal communi-

cation may enhance nerve impulse transmission. This once more makes the phenomenon

of myocardial and neuronal activities very ambiguous.

To remove the equivocation, researchers have built, on the basis of experimental results,

mathematical models, more or less simple, to simulate the di�erent behavior of neurons

and myocardial cells. Thanks to these mathematical models, it is henceforth possible to

obtain spike-shaped patterns like those obtained by Hodgkin and Huxley via experiment

on the giant squid axon. Additionally, most of the behaviors related to a neural network

and cardiac tissue are accurately reproduced through these models, although most of

which not having biologically speci�city, have universal physical fundamentals.

This chapter is divided into four main parts. The �rst part presents; the structure

of cardiac muscle, the components of the conducting system that distributes electrical

impulses through the heart, the comparison of the e�ect of ion movement on membrane

potential of cardiac conductive and contractile cells, the related characteristics of an elec-

trocardiogram to events in the cardiac cycle and the identi�cation of blocks that can

interrupt the cardiac cycle. The second part presents; the neuron as the basic unit of the

nervous system with a particular emphasis on its structure and functions, and the prop-

erties of action potential. The third part presents the highlights of the role of synapses
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in the transmission of nerve impulses from one neuron to another in a neural network.

Finally we comment on the most famous mathematical models in the qualitative and

quantitative description of the electrical activity of neurons.

1.1 Cardiac Muscle and Electrical Activity

The heart is made up of cardiac conducting cells helping to initiate and propagate the

action potential (the electrical impulse) that travels throughout the heart and triggers

the contractions that propel the blood to the rest of the body. As for the most of the

biological systems, structure and various functions are closely dependent.

1.1.1 Structure of Cardiac muscle

Compared to the giant cylinders of skeletal muscle, cardiac muscle cells, or cardiomy-

ocytes, are considerably shorter with much smaller diameters. Cardiac muscle also demon-

strates striations, the alternating pattern of dark A bands and light I bands attributed

to the precise arrangement of the myo�laments and �brils that are organized in sarcom-

eres along the length of the cell. These contractile elements are virtually identical to

skeletal muscle. T (transverse) tubules penetrate from the surface plasma membrane,

the sarcolemma, to the interior of the cell, allowing the electrical impulse to reach the

interior. The T tubules are only found at the Z discs, whereas in skeletal muscle, they

are found at the junction of the A and I bands. Therefore, there are one-half as many

T tubules in cardiac muscle as in skeletal muscle. In addition, the sarcoplasmic retic-

ulum stores few calcium ions, so most of the calcium ions must come from outside the

cells. The result is a slower onset of contraction. Mitochondria are plentiful, providing

energy for the contractions of the heart. Typically, cardiomyocytes have a single, central

nucleus, but two or more nuclei may be found in some cells. Cardiac muscle cells branch

freely. A junction between two adjoining cells is marked by a critical structure called an

intercalated disc, which helps support the synchronized contraction of the muscle. The

sarcolemmas from adjacent cells bind together at the intercalated discs. They consist

of desmosomes, specialized linking proteoglycans, tight junctions, and large numbers of

gap junctions that allow the passage of ions between the cells and help to synchronize

the contraction. Intercellular connective tissue also helps to bind the cells together. The

importance of strongly binding these cells together is necessitated by the forces exerted
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Figure 1.1: (a) Cardiac muscle cells with myo�brils composed of myo�laments arranged

in sarcomeres, T tubules to transmit the impulse from the sarcolemma to the interior of

the cell, numerous mitochondria for energy, and intercalated discs that are found at the

junction of di�erent cardiac muscle cells. (b) A photomicrograph of cardiac muscle cells

shows the nuclei and intercalated discs. (c) An intercalated disc connects cardiac muscle

cells and consists of desmosomes and gap junctions. LM1600. (Micrograph provided by

the Regents of the University of Michigan Medical School © 2012) [46].
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Figure 1.2: Specialized conducting components of the heart; the sinoatrial node, the

internodal pathways, the atrioventricular node, the atrioventricular bundle, the right and

left bundle branches, and the Purkinje �bers [46].

by contraction(see Fig.1.1).

1.1.2 Conduction System of the Heart

If embryonic heart cells are separated into a Petri dish and kept alive, each is capable

of generating its own electrical impulse followed by contraction. When two independently

beating embryonic cardiac muscle cells are placed together, the cell with the higher inher-

ent rate sets the pace, and the impulse spreads from the faster to the slower cell to trigger

a contraction. As more cells are joined together, the fastest cell continues to assume

control of the rate. A fully developed adult heart maintains the capability of generating

its own electrical impulse, triggered by the fastest cells, as part of the cardiac conduction

system. The components of the cardiac conduction system include the sinoatrial node, the

atrioventricular node, the atrioventricular bundle, the atrioventricular bundle branches,

and the Purkinje cells.

Sinoatrial (SA) Node is a specialized clump of myocardial conducting cells located

in the superior and posterior walls of the right atrium in close proximity to the ori�ce

of the superior vena cava. Normal cardiac rhythm is established by the sinoatrial (SA)
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node. The SA node has the highest inherent rate of depolarization and is known as the

pacemaker of the heart. It initiates the sinus rhythm, or normal electrical pattern fol-

lowed by contraction of the heart. This impulse spreads from its initiation in the SA node

throughout the atria through specialized internodal pathways, to the atrial myocardial

contractile cells and the atrioventricular node. The internodal pathways consist of three

bands (anterior, middle, and posterior) that lead directly from the SA node to the next

node in the conduction system, the atrioventricular node. The impulse takes approxi-

mately 50 ms (milliseconds) to travel between these two nodes. The relative importance

of this pathway has been debated since the impulse would reach the atrioventricular node

simply following the cell-by-cell pathway through the contractile cells of the myocardium

in the atria. In addition, there is a specialized pathway called Bachmann�s bundle or

the interatrial band that conducts the impulse directly from the right atrium to the left

atrium. Regardless of the pathway, as the impulse reaches the atrioventricular septum,

the connective tissue of the cardiac skeleton prevents the impulse from spreading into the

myocardial cells in the ventricles except at the atrioventricular node. Fig.1.3 illustrates

the initiation of the impulse in the SA node that then spreads the impulse throughout

the atria to the atrioventricular node.

The electrical event, the wave of depolarization, is the trigger for muscular contraction.

The wave of depolarization begins in the right atrium, and the impulse spreads across

the superior portions of both atria and then down through the contractile cells. The

contractile cells then begin contraction from the superior to the inferior portions of the

atria, e�ciently pumping blood into the ventricles.

Atrioventricular (AV ) Node is a second clump of specialized myocardial conductive

cells, located in the inferior portion of the right atrium within the atrioventricular septum.

The septum prevents the impulse from spreading directly to the ventricles without passing

through the AV node. There is a critical pause before the AV node depolarizes and

transmits the impulse to the atrioventricular bundle(see image above, step 3). This delay

in transmission is partially attributable to the small diameter of the cells of the node,

which slow the impulse. Also, conduction between nodal cells is less e�cient than between

conducting cells. These factors mean that it takes the impulse approximately 100 ms to

pass through the node. This pause is critical to heart function, as it allows the atrial

cardiomyocytes to complete their contraction that pumps blood into the ventricles before

the impulse is transmitted to the cells of the ventricle itself. With extreme stimulation
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Figure 1.3: (1) The sinoatrial (SA) node and the remainder of the conduction system

are at rest. (2) The SA node initiates the action potential, which sweeps across the

atria. (3) After reaching the atrioventricular node, there is a delay of approximately 100

ms that allows the atria to complete pumping blood before the impulse is transmitted

to the atrioventricular bundle. (4) Following the delay, the impulse travels through the

atrioventricular bundle and bundle branches to the Purkinje �bers, and also reaches the

right papillary muscle via the moderator band. (5) The impulse spreads to the contractile

�bers of the ventricle. (6) Ventricular contraction begins. [46].
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by the SA node, the AV node can transmit impulses maximally at 220 per minute. This

establishes the typical maximum heart rate in a healthy young individual. Damaged

hearts or those stimulated by drugs can contract at higher rates, but at these rates, the

heart can no longer e�ectively pump blood.

Atrioventricular Bundle (Bundle of His), Bundle Branches, and Purkinje

Fibers proceeds through the interventricular septum before dividing into two atrioven-

tricular bundle branches, commonly called the left and right bundle branches. The left

bundle branch has two fascicles. The left bundle branch supplies the left ventricle, and

the right bundle branch the right ventricle. Since the left ventricle is much larger than

the right, the left bundle branch is also considerably larger than the right. Portions of

the right bundle branch are found in the moderator band and supply the right papillary

muscles. Because of this connection, each papillary muscle receives the impulse at ap-

proximately the same time, so they begin to contract simultaneously just prior to the

remainder of the myocardial contractile cells of the ventricles. This is believed to allow

tension to develop on the chordae tendineae prior to right ventricular contraction. There

is no corresponding moderator band on the left. Both bundle branches descend and reach

the apex of the heart where they connect with the Purkinje �bers (see image above, step

4). This passage takes approximately 25 ms.

Purkinje �bers are additional myocardial conductive �bers that spread the impulse

to the myocardial contractile cells in the ventricles. They extend throughout the my-

ocardium from the apex of the heart toward the atrioventricular septum and the base of

the heart. The Purkinje �bers have a fast inherent conduction rate, and the electrical

impulse reaches all of the ventricular muscle cells in about 75 ms (see image above, step

5). Since the electrical stimulus begins at the apex, the contraction also begins at the

apex and travels toward the base of the heart, similar to squeezing a tube of toothpaste

from the bottom. This allows the blood to be pumped out of the ventricles and into the

aorta and pulmonary trunk. The total time elapsed from the initiation of the impulse in

the SA node until depolarization of the ventricles is approximately 225 ms.

1.1.3 Membrane Potentials and Ion Movement in Cardiac Con-

ductive Cells

Action potentials are considerably di�erent between cardiac conductive cells and car-

diac contractive cells. While Na+ and K+ play essential roles, Ca2+ is also critical for
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Figure 1.4: The prepotential is due to a slow in�ux of sodium ions until the threshold is

reached followed by a rapid depolarization and repolarization. The prepotential accounts

for the membrane reaching threshold and initiates the spontaneous depolarization and

contraction of the cell. We note the lack of a resting potential [46].

both types of cells. Unlike skeletal muscles and neurons, cardiac conductive cells do not

have a stable resting potential. Conductive cells contain a series of sodium ion channels

that allow a normal and slow in�ux of sodium ions that causes the membrane potential to

rise slowly from an initial value of −60 mV up to about 40 mV. The resulting movement

of sodium ions creates spontaneous depolarization (or pre-potential depolarization). At

this point, calcium ion channels open and Ca2+ enters the cell, further depolarizing it at

a more rapid rate until it reaches a value of approximately +5 mV. At this point, the

calcium ion channels close and K+ channels open, allowing out �ux of K+ and resulting

in repolarization. When the membrane potential reaches approximately −60 mV, the K+

channels close and Na+ channels open, and the prepotential phase begins again. This

phenomenon explains the auto-rhythmicity properties of cardiac muscle (Fig.1.8).

1.1.4 Comparative Rates of Conduction System Firing

The pattern of prepotential or spontaneous depolarization, followed by rapid depo-

larization and repolarization just described, are seen in the SA node and a few other

conductive cells in the heart. Since the SA node is the pacemaker, it reaches threshold

faster than any other component of the conduction system. It will initiate the impulses

spreading to the other conducting cells. The SA node, without nervous or endocrine con-

trol, would initiate a heart impulse approximately 80− 100 times per minute. Although
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each component of the conduction system is capable of generating its own impulse, the

rate progressively slows as you proceed from the SA node to the Purkinje �bers. Without

the SA node, the AV node would generate a heart rate of 40−60 beats per minute. If the

AV node were blocked, the atrioventricular bundle would �re at a rate of approximately

30−40 impulses per minute. The bundle branches would have an inherent rate of 20−30

impulses per minute, and the Purkinje �bers would �re at 15 − 20 impulses per minute.

While a few exceptionally trained aerobic athletes demonstrate resting heart rates in the

range of 30 − 40 beats per minute (the lowest recorded �gure is 28 beats per minute for

Miguel Indurain, a cyclist), for most individuals, rates lower than 50 beats per minute

would indicate a condition called bradycardia. Depending upon the speci�c individual, as

rates fall much below this level, the heart would be unable to maintain adequate �ow of

blood to vital tissues, initially resulting in decreasing loss of function across the systems,

unconsciousness, and ultimately death.

1.2 Neurons

Neurons are nervous cells specialized either in the reception of the nerve impulse

coming from the brain, or in the transmission of this nerve impulse towards the brain.

1.2.1 Structure and Functions

There is a wide variety of neurons, with di�erent shapes and sizes. However, they all

have a common structure (see Fig.1.9) comprising:

• the cell body, also called the soma,

• numerous short processes of the soma, called the dendrites; and,

• the single long nerve �ber, the axon.

The body of a nerve cell is similar to that of all other cells. The cell body generally in-

cludes the nucleus, mitochondria, endoplasmic reticulum, ribosomes, and other organelles.

Nerve cells contain about 70−80% water; the dry material is about 80% protein and 20%

lipid. The cell volume varies between 600 and 70.000 µmL. The soma, or cell body, is

the processing center of a neuron. When it receives information, it processes it and, if it

is su�cient important relative to a certain threshold, sends a signal into the axon. The
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Figure 1.5: Annotated diagram of a neuron [47].

unique feature of the cell body is that it is the only part of a neuron that contains a cell

nucleus in which DNA molecule is con�ned. Most RNA in a neuron is produced by the

cell nucleus. Therefore, most proteins are produced in the cell body and then transported

to the entire neuron.

Dendrites are a multiple extensions that arise at the level of the soma to branch out

as a tree. They function as an "antennae" of the neuron and are covered by thousands

of synapses. They ensure the continuity of the propagation of information between the

di�erent neurons that make up the information path. When we move away from the soma,

the dendrites diameter decreases, what di�er them from the axon whose diameter remains

almost uniform, except on the the axonal terminations level. Dendrites receive electrical

impulses passed by other neurons and propagate them to the cell body. The dendritic

membrane under the synapse (the post-synaptic membrane) has many specialized protein

molecules called receptors that detect the neurotransmitters in the synaptic cleft.

The axon is the main conducting unit of the neuron, capable of conveying electrical

signals from the soma, along distances that range from as short as 0.1mm to as long as 2m.

Many axon split into several branches, thereby conveying information to di�erent targets.

Many neurons do not have axons. For instance, in amacrine neurons, all the neuronal

processes are dendrites. Neurons with very short axons are also found. The axons of

many neurons are wrapped in a myelin sheat, which is composed of the membranes of

intersticial cells and is wrapped around the axons to form several concentric layers. The

myelin sheath is broken at various points by the nodes of Ranvier, so that in cross section
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it looks like a string of sausages. The myelin protects the axon, and prevents interference

between axons as they pass along in bundles, sometimes thousands at time. The cells that

wrap around peripheral nerve �bers (nerve �bers outside of the brain and spinal cord)

are called Schwann cells (because they were �rst described by Theodor Schwann). The

cells that wrap around axons within the central nervous system (brain and spinal cord)

are called oligodendrocytes. The axon, with its surrounded sheath, is called a nerve �ber.

Between each pair of successive Schwann cells is a gap or a node of Ranvier. The axon

hillock is where the axon is joined to the cell body. It is from here that the electrical

�ring, known as an action potential, usually occurs.

1.2.2 Classi�cation of neurons

We encounter structural and functional classi�cation of neurons. Structurally, neurons

are classi�ed by the number of processes that originate from the cell body. For this pur-

pose, we have four types of neurons: anaxonic neurons, bipolar neurons, pseudounipolar

neurons and multipolar neurons as shown in Fig.1.2.

Anaxonic neurons have dendrites, but no axons. They produce local electrical

variations (graded potential), but no action potential.

Bipolar neurons have two extensions that emerge from the cell body: a dendrite

and an axon; they are present in certain sense organs, eg, in the retina, the inner ear, and

the olfactory mucosa.

Pseudounipolar neurons have a simple and short extension. They are divided

into two extensions in T-shaped: one goes towards the central nervous system (CNS),

peripheral extension (dendrites to the cell body); and the other, towards the peripheral

nervous system, central extension (cell body to the CNS). These two extensions constitute

a single long axon.

Multipolar neurons represent the most common type; they have many dendrites

and a single axon.

Functionally, neurons can be divided into three functional classes namely sensory (af-

ferent) neurons, interneurons and e�erent (somatic motor and autonomic) neurons.

A�erent neurons carry information about temperature, pressure, light, and other

stimuli from sensory receptor to the CNS. Sensory neurons or a�erent neurons are unipo-

lar, bipolar, or multipolar shaped cells that conduct action potentials toward or into the

central nervous system. They carry somatic nervous system signals from the skin, joints,
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Figure 1.6: Structural categories of neurons [48].

skeletal muscles, sensory organs (eyes, ears, mouth, and nose). They also carry autonomic

nervous system signals from the visceral organs (heart, lungs, vessels, etc).

In comparison,motor neurons (e�erent neurons; lower motor neurons) are multipolar

shaped cells that conduct action potentials out of the central nervous system. Their cell

bodies and dendrites are located in the central nervous system and their axons run inside

the nerves to the peripheral organs.

Interneurons (internuncial or association neurons) are the billions of cells that form

much of the central nervous system and link the sensory and motor neurons. After receiv-

ing input from the sensory neurons, the interneurons perform many complex tasks inside

the CNS. First, they integrate, image, and interpret, the sensory information. Next, they

form judgments and make needed decisions. Finally, they plan and initiate appropriate

response behaviors, which they transfer to the motor neurons.

1.2.3 Electrical Activity of Neurons

The nervous signal delivered by the neuron is of an electrical nature. This property

is an exclusivity of the plasma membrane of the nerve tissue which is very permeable to

certain ions. The �ow of ions through this membrane is therefore at the origin of a mem-

brane current that re�ects the electrical activity of neurons. The ionic unbalance between

the intra- and extracellular media of the membrane promotes the electrical activity of the
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neurons. Therefore, it is important to understand both anatomy and physiology of the

cell membrane.

1.2.3.1 The cell membrane

The neuronal membrane serves as a barrier to enclose the cytoplasm inside the neuron,

and to exclude certain substances that �oat in the �uid that bathes the neuron. The

membrane with its mosaic of proteins is responsible for many important functions:

• keeping certain ions and small molecules out of the cell and letting others in,

• accumulating nutrients, and rejecting harmful substances,

• catalyzing enzymatic reactions,

• establishing an electrical potential inside the cell,

• conducting an impulse being sensitive to particular neurotransmitters and modula-

tors .

The membrane is made of lipids and proteins-fats and chains of aminoacids. The basic

structure of this membrane is a bilayer or sandwich of phospholipids, organized in such a

way that the polar (charged) regions face outward and the non polar regions face inward.

The external face of the membrane contains the receptors, small specialized molecular re-

gions which provide a kind of "attachment port" for other external molecules, in a scheme

analogous to a key and a keyhole. For each external molecule there is a corresponding

receptor. Whenever receptors become attached to a molecule, some alterations of the

membrane and in the interior of the cell ensue, such as the modi�cation of permeability

to some ions. The main ions found on both sides of the membrane are Na+ (sodium) ions,

K+ (potassium) ions and Cl− (chlorite) ions. The schematic view of neuron cell membrane

is drawn in Fig.1.11. At rest, the cell membrane is the seat of a resting potential.

1.2.3.2 The resting Potential

The relatively static membrane potential of quiescent cells is called the resting mem-

brane potential (or resting voltage). Generally the value of resting potential is about

−70mV . This value measured using a microelectrode arti�ce (see Fig.1.11), corresponds

to the di�erence in electrical state between the intracellular medium on the one hand and

the extracellular medium on the other hand. Negative value of resting potential is due to:

TAKEMBO NTAHKIE Clovis PhD Thesis



Literature review 20

Figure 1.7: Cell membrane �ow diagram [49].

• presence of large number of positive Na+ ions towards outside of membrane,

• presence of large number of positive K+ ions towards inside of membrane,

• zwitterionic protein molecules of cytoplasm behave as negative ions in presence of

highly charged K+,

• Na+ − K+ ion pump continuously pumps out three sodium ions while only two

potassium ions are taken inside the cell.

All these factors mean that the inside of the cell is negatively charged with respect to

the outside, hence the existence of a resting potential. However, when cell membrane is

excited, the resting potential splits into action potential.

1.2.3.3 The action Potential

The action potential is a localized, short-lived electrical signal emitted by excitable

cells (eg, neuron) when subjected to suitable stimuli. In fact, the stimulus intensity must

reach a certain threshold value in order to generate this signal. As depicted in Fig.1.9,

the action potential displays four transient phases ranging from:
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Figure 1.8: Measuring charge across a Membrane with a voltmeter. A recording electrode

is inserted into the cell and a reference electrode is outside the cell. By comparing the

charge measured by these two electrodes, the transmembrane voltage is determined. It is

conventional to express that value for the cytosol relative to the outside [49].

• failure phase where the action potential is between −70mV and −55mV . The

limit value −55mV represents the threshold value that the action potential must

reach in order for it to appear. Thus, the action potential obeys to the threshold

law. During this phase, the sodium channels open gradually causing the entry of

sodium ions inside the cell, but their concentration remains low. At the same time,

the potassium channels are inactive and therefore remain closed,

• depolarization phase where the action potential increases from −55mV to+30mV ,

reaches its peak before starting to decrease. It is important to note that this maxi-

mum value can not be exceeded whatever the greatest possible value that can reach

the intensity of the stimulus. As a result, the action potential responds to the all-or-

nothing law. During this phase, all sodium channels are opened and the potassium

channels closed but active. A large amount of sodium ions invade the intracellular

�uid thus creating a reverse polarity of the membrane. Thus, unlike the resting

state, the inside of the membrane becomes positively charged, while the outside

becomes negatively charged. At the end of this phase, the sodium channels close,

becoming inactive, as the potassium canals open.

• repolarization phase occurs when action potential decreases from its maximum

value +30mV to their resting state −70mV . Throughout this stage, more and more
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K+ ions �ow towards outside of membrane, thus leading to the initial polarization

state where more positive charges are on the outside and more negative charges on

the inside.

• hyperpolarization phase occurs when action potential falls below the resting

potential value. This is due to the slow closing of the potassium channels and

results in a recrudescence of potassium ions outside the cell. As these canals close,

the sodium pump will initiate the slow entry of sodium ions into the cell thus allowing

the action potential to recover its resting value. At the end of this transition, the

sodium channels become active, that is to say close to respond to a new stimulus.

It should also be noted that the time interval separating the onset of depolarization and

the end of repolarization constitutes the refractory period during which the cell membrane

can not respond to a new stimulus whatever its intensity. Moreover, since action potential

is generated locally in the neuron, it becomes like a stimulus and will regenerate along

the axon to the synaptic connections. It is said that the action potential undergoes a

conduction that is saltatory in the case of myelinated axons and continues in the case of

unmyelinated ones. In summary, the action potential obeys to four main laws that govern

its properties namely:

• the threshold law: the action potential emerges only when the membrane potential

reached a certain threshold level which is proportional to the stimulus intensity [51].

• the all-or-nothing law: The amplitude of an action potential is independent of

the amount of current that produced it. In other words, larger currents do not

create larger action potentials. Therefore, action potentials are said to be all-or-

none signals, since either they occur fully or they do not occur at all [52]. The

frequency of action potentials is correlated with the intensity of a stimulus. This is

in contrast to receptor potentials, whose amplitudes are dependent on the intensity

of a stimulus [51].

• the refractory period law: each action potential is followed by a refractory period,

which can be divided into an absolute refractory period, during which it is impossible

to evoke another action potential, and then a relative refractory period, during which

stronger than usual stimulus is required [51]. These two refractory periods are caused

by changes in the state of sodium and potassium channel molecules. When closing
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Figure 1.9: Action potential graph [50].

after an action potential, sodium channels enter an "inactivated" state, in which

they cannot be made to open regardless of the membrane potential. This gives

rise to the absolute refractory period. Even after a su�cient number of sodium

channels have transitioned back to their resting state, it frequently happens that a

fraction of potassium channels remains open, making it di�cult for the membrane

potential to depolarize, and thereby giving rise to the relative refractory period.

Because the density and subtypes of potassium channels may di�er greatly between

di�erent types of neurons, the duration of the relative refractory period is highly

variable. The absolute refractory period is largely responsible for the unidirectional

propagation of action potentials along axons [51]. At any given moment, the patch

of axon behind the actively spiking part is refractory, but the patch in front, not

having been activated recently, is capable of being stimulated by the depolarization

from the action potential.

• the law of conduction: the action potential generated at the axon hillock propa-
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gates as a wave along the axon without turning back because of the refractory period

law. The currents �owing inwards at a point on the axon during an action potential

spread out along the axon, and depolarize the adjacent sections of its membrane.

If su�ciently strong, this depolarization provokes a similar action potential at the

neighboring membrane patches. This basic mechanism was demonstrated by Alan

Lloyd Hodgkin in 1937 [53].

1.2.3.4 The Nerve Impulse

It is important to distinguish the concepts of action potential on the one hand, and the

nerve impulse on the other hand. In fact, the action potential is an electrochemical signal

that results from the depolarization phenomenon of the plasma membrane of neuron, while

nerve impulse is the phenomenon of propagation of an action potential along the nerve

�ber. The nerve pulse propagates through the nerve �ber without decay and with constant

velocity. An impulse can be formed and spread because the nerve �ber contains a nonlinear

element, which suppresses small deviations from normal state and strengthens big ones.

In this case, the nonlinear dependence of the membrane permeability (through which the

nerve impulse is spread) from the momentum and the di�usion of ions across the membrane

are balanced. In Ref. [54], it is shown that non-linearity can actually balance di�usion

and, as a result, a running solitary wave with constant speed and shape can occur, i.e., a

soliton. A nerve impulse is then an extension of an action potential. Physiological studies

have shown that propagation of a nerve impulse through NNs has autowave character.

This also allows simulating such processes using soliton theory which describes the form

and velocity of propagation of the nervous pulse, stability of its characteristic parameters

in time, and process locality with very good precision [55]. The conduction of an action

potential along the axon can be continuous or saltatory. In saltatory conduction, an action

potential at one node of Ranvier causes inwards currents that depolarize the membrane

at the next node, provoking a new action potential there; the action potential appears to

"hop" from node to node. This propagation mode enable fast and e�cient transduction

of electrical signals in the nervous system for certain neuronal axons that are covered

with myelin sheaths. However, in the absence of the myelin sheath, the conduction of the

nerve impulse proceeds continuously, thus reducing its propagation speed. As a general

rule, myelination increases the conduction velocity of action potentials and makes them

more energy-e�cient. Whether saltatory or continue, the mean conduction velocity of an
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Figure 1.10: A neural network with three neurons [57]

action potential ranges from 1 metre per second (ms−1) to over 100ms−1, and, in general,

increases with axonal diameter [56]. In practice, the nerve impulse emitted by a neuron

does not remain con�ned in the latter, it is transmitted to the neighboring neuron via

synaptic connections. The recipient neuron in turn transmits it to its nearest neighbor

by the same process, and so on until its �nal destination, which is either the brain or a

motor organ. Thus, the path taken by the nerve impulse from its source to its destination

constitutes the neural network.

1.3 The Neural Networks

A network of biological neurons is a series of neurons interconnected by synapses whose

activation de�nes a recognizable linear pathway capable of communicating with each other

by sharing nerve impulses. Therefore, the synapse appears as the main characteristic

entity of such a network. Fig.1.10 is an illustration of a simple neural network.

1.3.1 The Synapses

Synapses are the junctions formed with other nerve cells where the presynaptic termi-

nal of one cell comes into 'contact' with the postsynaptic membrane of another. It is at
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Figure 1.11: Chemical synapse diagram [61].

these junctions that neurons are excited, inhibited, or modulated. Brie�y, the synapse is

the system which allows the neurons to communicate between them, it is the place where

information passes from a neuron to another. Structurally, we distinguish two types of

synapses, electrical and chemical. However, from a functional point of view, there are

excitatory, inhibitory and modulatory synapses.

1.3.1.1 Chemical Synapses

In general in chemical synapses (Fig.1.11), action potentials that reach the synaptic

knobs cause a neurotransmitter to be released into the synaptic cleft [58]. Neurotrans-

mitters are small molecules that may open ion channels in the postsynaptic cell; most

axons have the same neurotransmitter at all of their termini. The arrival of the action

potential opens voltage-sensitive calcium channels in the presynaptic membrane; the in-

�ux of calcium causes vesicles �lled with neurotransmitter to migrate to the cell's surface

and release their contents into the synaptic cleft [59]. This complex process is inhibited

by the neurotoxins tetanospasmin and botulinum toxin, which are responsible for tetanus

and botulism, respectively [60]. There are two types of chemical junctions. Type I is an

excitatory synapse, generally found on dendrites, type II is an inhibitory synapse, gener-

ally found on cell bodies. Di�erent substances are released at these two types of synapse.

The direction of �ow of information is usually one way at these junctions.
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Figure 1.12: Electrical synapse �ow diagram [62].

1.3.1.2 Electrical Synapses

Electrical synapses (Fig.1.12) dispense with the "middleman" of the neurotransmit-

ter, and connect the presynaptic and postsynaptic cells together [63]. When an action

potential reaches such a synapse, the ionic currents �owing into the presynaptic cell can

cross the barrier of the two cell membranes and enter the postsynaptic cell through pores

known as connexion [64]. Thus, the ionic currents of the presynaptic action potential can

directly stimulate the postsynaptic cell. Electrical synapses allow for faster transmission

because they do not require the slow di�usion of neurotransmitters across the synaptic

cleft. Hence, electrical synapses are used whenever fast response and coordination of tim-

ing are crucial, as in escape re�exes, the retina of vertebrates, and the heart. Additionally,

ions can generally �ow both ways at these junctions i.e. they tend to be bi-directional,

although there are electrical junctions where the ions can only �ow one way, and hence

are known as rectifying junctions. Rectifying junctions are used to synchronize the �ring

of nerve cells.

In short, the comparative table between electrical and chemical synapses is presented

below
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Electrical synapses Chemical synapses

Cytoplasmic continuity between pre-and

post-synaptic cells

No cytoplasmic continuity between pre-and

post-synaptic cells

Communicating agent is ionic current Communicating agent is a chemical trans-

miter

Essentially no synaptic delay Signi�cant synaptic delay

Typically bidirectional Unidirectional

Rare in complex animals Common in complex animals

Common in simple animals Rare in simple animals

Direct communication among neurons Indirect communication among neurons

Post synaptic signal is similar to presynap-

tic

Post synaptic signal can be di�erent

Only excitatory Excitatory or inhibitory

synchronized activity speci�city: point to point communication

temperature-insensitive temperature-sensitive

Table 1.1: Comparative table between electrical and chemical synapses.

1.3.1.3 Excitatory Synapses

Most excitatory synapses in the brain use glutamate or aspartate as the neurotrans-

mitter. These neurotransmitters bind to non-selective cationic channels that allow for

Na+ and K+ to pass. As mentioned earlier, it takes many excitatory post synaptic poten-

tials (EPSPs) from these kinds of synapses to depolarize a postsynaptic neuron enough

to reach threshold and trigger an action potential. A very important subset of synapses

in the brain includes a group capable of forming memories by increasing the activity and

the strength of the synapse. This process is called long-term potentiation. Long-term

potentiation operates at the synapse, using the neurotransmitter glutamate and the re-

ceptor known as the N-methyl-D-aspartic acid (NMDA) receptor. The NMDA receptor

is unique in that it is both ligand and voltage regulated. When activated by ligands, it

becomes permeable to Na+, but if the charge di�erence is su�cient, the channel becomes

permeable to Ca2+ as well. Ca2+ can initiate a second messenger cascade that results in

an increase in the number of glutamate receptors, thereby increasing the strength of the

synapse. The change in strength can last for weeks, months, or even years depending on
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whether or not the synapse is continually used.

1.3.1.4 Inhibitory Synapses

It may seem somewhat of a paradox to have inhibitory synapses, but the excitability

of neurons is essentially governed by a balance between excitation and inhibition. The

main inhibitory neurotransmitters are G-Amino-Butyric Acid (GABA) and glycine. Both

neurotransmitters bind to receptors that result in an increase conductance of Cl− . Be-

cause of the negative charge of Cl− and the fact that it usually moves into the cell, the

e�ect is to oppose depolarization and cause the membrane to move away from threshold.

1.3.1.5 Modulatory synapses

Modulatory synapses are those that can be "primed" by neuromodulators so that

they are able to respond more powerfully to other inputs. An example of a priming

neuromodulator is norepinephrine. By itself, norepinephrine has little e�ect on synap-

tic transmission, but when a cell is exposed to norepinephrine �rst, it will react more

powerfully to glutamate.

1.3.2 Functional and behavioral properties of neural networks

The human brain is a cluster of roughly 1015 neural networks. Although each of

these networks may operate independently of each other, they perform almost the same

functions as a whole and may adopt similar behaviors. If the neuron in its individuality

is capable of generating, processing and transmitting information, its role remains limited

to the microscopic scale. Its natural membership in a network allows it to modulate its

activity while giving it still interesting and more promising properties. In general, NNs

provide �ve major cognitive functions [65] namely:

• Perception: it is a sensory property that allows each individual to communicate

with his external world through the �ve senses of sight, hearing, smell, touch and

taste. Thus, the perception of an object for example is transmitted to the brain

by a specialized neural network for this task, then the information received by the

brain is analyzed and then decoded before being sent via another neural network to

the receiving organ (the eye) in the form of a real image of the perceived object.

TAKEMBO NTAHKIE Clovis PhD Thesis



Literature review 30

• Thought: it is a mental process that is triggered by internal stimuli. It consists of

mental operations that the awake brain performs on internal information stored by

a network of neurons. This property involves the networks of cortical neurons and

allows the brain to imagine, perform mental or complex calculations and even move

from one place to another.

• Language: it is a communicative property that uses neural networks. Language

is one of the most elaborate, complex, and rich brain functions. Its pathological

alterations are numerous and, at �rst sight, often bizarre. The cerebral cortex is a

mosaic of specialized areas richly interconnected with each other. When an area is

damaged, speci�c symptoms appear which quench the communication. Even more

gravely, when two zones are disconnected, they develop disorders just as speci�c.

Thanks to language, the wording of words becomes possible.

• Consciousness:, it is a discerning property of neural networks. It is thanks to it

that we make good and bad choices. But it also makes it possible to distinguish sick

subjects from healthy subjects. A loss of consciousness can lead to a comatic state

surmountable but sometimes irreversible.

• Memory: it is one of the most fascinating properties of neural networks. Thanks to

memory, enormous amounts of information are recorded during the learning process.

It also allows you to remember people or images already seen before. There is long-

term memory that can store information over a long period of time and short-term

memory that temporarily stores information.

Some behavioral properties such as the rhythm in the alpha and gamma frequency range in

the mammalian hypothalamus, NS, spiral and spindle waves formation, sleep oscillations

and many others result from the dynamics of set of a neural network. Some of these

behaviors are involved in the degradation of brain activity.

1.4 Mathematical Neuron Models

The functional complexity of the neuron, and more importantly, the great complexity

of a neural network, require the use of new tools beyond simple physiological considerations

to better understand the ability of neurons to mutually exchange information. One of the

best tools in this regard is the development of mathematical models to accurately simulate
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the dynamics of nerve impulses as well as the various biological phenomena that it may

undergo during its propagation. The models in this category describe the relationship

between neuronal membrane currents at the input stage, and membrane voltage at the

output stage. The most extensive experimental inquiry in this category of models was

made by Hodgkin-Huxley in the early 1950's using an experimental setup that punctured

the cell membrane and allowed to force a speci�c membrane voltage/current.

1.4.1 Hodgkin-Huxley Model

The HH model is one of the most important models in computational neuroscience

built on the basis of logical physiological assumptions. In biophysically based neural

modeling, the electrical properties of a neuron are represented in terms of an electrical

equivalent circuit. Capacitors are used to model the charge storage capacity of the cell

membrane, resistors are used to model the various types of ion channels embedded in

membrane, and batteries are used to represent the electrochemical potentials established

by di�ering intra-and extracellular ion concentrations. In Fig.1.13, we have drawn the HH

electrical equivalent circuit. Based on the simple application of Kirchho�'s laws, Hodgkin

and Huxley derived a model of four �rst-order ordinary di�erential equations described

by:

CmV̇m = ḠKn
4(EK − Vm) + ḠNam

3h(ENa − Vm) + ḠL(EL − Vm) + Iext, (1.1a)

ṅ = αn(Vm)(1− n)− βn(Vm)n, (1.1b)

ṁ = αm(Vm)(1− n)− βm(Vm)m, (1.1c)

ḣ = αh(Vm)(1− h)− βh(Vm)h, (1.1d)

where (.) denotes the derivative with respect to time. Iext is the current per unit area,

and αi and βi are rate constants for the ith ion channel, which depend on voltage but

not time. Ḡn is the maximal value of the conductance. n, m, and h are dimensionless

quantities between 0 and 1 that are associated with potassium channel activation, sodium

channel activation, and sodium channel inactivation, respectively. Cm is the membrane

capacitance per unit area, Vm denotes the membrane potential; EK , ENa and EL are

the potassium, sodium and leak reversal potentials, respectively. The time-dependent

functions αi and βi are given by:
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Figure 1.13: Electrical equivalent circuit for a short segment of squid giant axon accord-

ing to [7]. The capacitor represents the capacitance of the cell membrane; the two variable

resistors represent voltage-dependent Na+ and K+ conductances, the �xed resistor repre-

sents a voltage-independent leakage conductance and the three batteries represent reversal

potentials for the corresponding conductances.

αn(Vm) =
0.01(10− Vm)

exp

(
10−Vm

10

)
− 1

, αm(Vm) =
0.1(25− Vm)

exp

(
25−Vm
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)
− 1
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(
− Vm
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)
,
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(
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)
, βm(Vm) = 4 exp

(
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)
, βh(Vm) =

1

exp

(
30−Vm

10

)
+ 1

.

The numerical values for the parameters of the HH model are given in the table 1.2. The

HH model is known to exhibit only two main features namely tonic and chaotic spik-

ing under the original values of parameters regime. But if the parameters are tuned,

the HH model could exhibit other interesting neuro-computational properties including

tonic, phasic and chaotic bursting, mixed mode, spike frequency adaptation, spike latency,

subthreshold oscillations, rebound spike or burst just to cite a few. As we have already

pointed out above, the HH model is one of the few neural models with a biological mean-

ingful. Such models are important not only because their parameters are biophysically

meaningful and measurable, but also because they allow to investigate questions related
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Parameter Unit Value

Cm µF.cm−2 1.0

EK mV +12

ENa mV −115

EL mV −10.63

ḠK mS.cm−2 36

ḠNa mS.cm−2 120

ḠL mS.cm−2 0.3

Table 1.2: HH model parameters [7].

to synaptic integration, dendritic cable �ltering, e�ects of dendritic morphology, the inter-

play between ionic currents, and other issues related to single cell dynamics. But one of

its disadvantages is that it has too many time-dependent parameters. Also the number of

ordinary di�erential equations to integrate (in total four) makes its implementation very

di�cult. That is why Izhikevich said that one can use the HH formalism only to simulate

a small number of neurons or when simulation time is not an issue.

1.4.2 Integrate and Fire Model

Because of its simplicity, the leaky IF model [8] is one of the most widely used models

in computational neuroscience. It is only governed by one ordinary di�erential equation

which describes the dynamics of membrane potential:

v̇ = a− bv + I, if v ≥ vth, v ← c, (1.2)

where v is the membrane potential, I is the input current, and a, b, c and vth are the

parameters. It is found that, when the membrane potential reaches the threshold value vth,

the neuron is said to �re a spike, and v is reset to c. The IF neuron is Class-1 excitable, i.e.,

the frequency of tonic spiking of neocortical regular spiking excitatory neurons depends on

the strength of the input, and it may span the range from 2Hz to 200Hz, or even greater;

it can �re tonic spikes with constant frequency, and it is an integrator (IF neurons prefer

high-frequency input; the higher the frequency the more likely they �re). Because of the

lack of nonlinear terms in this model, it would be useless to explore it analytically.
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1.4.3 FitzHugh-Nagumo Model

The FHN neuron model [5, 6] is the equivalent reduced HH model. To derive it,

FitzHugh and Nagumo have used phase space methods (nonlinear mechanics). This model

is a generic model of excitability and oscillatory dynamical behavior. This model is

described by two ODEs given by:

ẋ = x(x− a)(1− x)− y + I, (1.3a)

ẏ = ϵ(x− γy), (1.3b)

where x represents the membrane potential, y is the slow ion current through the mem-

brane and I stands for the input current. Model parameters are such that, 0 < a < 1,

0 < ϵ << 1, γ > 0 and 1/γ − (1− a+ a2)/3 > 0, (1− a+ a2)/3− ϵγ > 0.

Indeed, Based on the seminal work by Hodgkin and Huxley combined to electrophys-

iological experiments, it is nowadays well accepted that information �ow in neurons in

the form of bioelectrical signals that have the form of impulses, originating from the

potential di�erence across the cell membrane. The HH was re�ned to obtain the FHN

model. The FHN model itself is a generalization of the Van der Pol (VDP) oscillator,

whose modi�ed version has been recently proposed with the assumption that the neural

environment implies some periodic excitations. The importance given to the VDP model

equation in recent years come from the fact that it describes self-excited or self-sustained

oscillations, suitable to describe some important processes like those related to brain and

cardiac waves [66]. This has been con�rmed many years ago by some experimental data

published by Brandt [67]. The FHN model is a generic model of excitability and oscilla-

tory dynamical behavior in excitable media. It is con�rmed that external stimuli can be

e�ective to change the excitability and electrical activities of myocardial cells and neurons.

Furthermore, it is argued [68,69] that electrical and chemical autapses which are speci�c

synapses connected to the body through closed loop, can modulate the electrical behaviors

of neural and myocardial cells, and hence can regulate the collective behaviors in the net-

work by inducing continuous pulses and wave fronts. Also, when reliable excitable models

are set, with the modulation of astrocyte included [70], the collective behaviors such as

synchronization and pattern selection can be carried out on the network of neurons under

di�erent topological connections. The electrical activities in neuron are also dependent on

conductance of ions channels as channels blocking [71] can modulate the electrical modes

of trans-membrane potential of neurons.
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1.4.4 Hindmarsh-Rose Model

One of the most ubiquitous models explored by neuroscientists, the HR model [11] can

be described by three ODEs written as:

ẋ = y − ax3 + bx2 − z + I, (1.4a)

ẏ = c− dx2 − ey, (1.4b)

ż = r[s(x− xe)− z], (1.4c)

where dimensionless variables x, y and z are membrane potential, fast and slow current,

respectively. I represents the excitation current, while parameters (a,b,c,d,e,r,s>0). xe

refers to the resting membrane potential which is generally negative and r is the ratio of

fast/slow time scales. The original parameters values of this model are a = 1.0, b = 3.0,

c = 1.0, d = 5.0, e = 1.0, r = 0.006, s = 4.0 and xe = −1.60. In recall, HR model includes

fast-variables known as x and y, then the slow variable indicated by z. Since y-variable

is known to generate spike activity and z-variable to produce bursting-like activity, HR

system exhibits a multi-time-scale spike-burst activity with more suitable values of input

current I. The interplay between spiking and bursting regimes within this model allows it

to reproduce a rich variety of membrane potential features of thalamic neurons classi�ed

from regular spiking/bursting, chaotic spiking/bursting or post-inhibitory rebound just

to cite a few.

1.4.5 Izhikevich Model

Izhikevich's formalism [13, 14] is based on a model that reproduces the behavior of

biological neurons. This model, described by a set of two �rst-order ordinary di�erential

equations, is given by:

v̇ = 0.04v2 + 5v + 140− u+ I, (1.5a)

u̇ = a(bv − u), (1.5b)

with the auxiliary after-spike resetting

if v ≥ +30mV, then

 v ← c

u← u+ d.
(1.6)
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Here variable v represents the membrane potential of the neuron and u represents a

membrane recovery variable, which accounts for the activation of K+ ionic currents and

inactivation of Na+ ionic currents, and it provides negative feedback to v. The model can

exhibit �ring patterns of all known types of cortical neurons with the choice of parameters

a, b, c and d given in Ref. [13].

1.4.6 Morris-Lecar Model

Morris and Lecar [9] suggested a simple 2-D model to describe oscillations in barnacle

giant muscle �ber. It consists of a membrane potential equation with instantaneous

activation of calcium ions current and an additional equation describing slower activation

of current. The model reads:

CV̇ = gL(VL − V ) + gKn(VK − V ) + gCam∞(V )(VCa − V ) + I, (1.7a)

ṅ = λ(V )(n∞(V )− n), (1.7b)

where

m∞(V ) =
1

2

{
1 + tanh

[
(V − V1)

V2

]}
,

n∞(V ) =
1

2

{
1 + tanh

[
(V − V3)

V4

]}
,

λ(V ) = λ̄ cosh

[
(V − V3)

2V4

]
, (1.8)

with parameters: C = 20µF.cm−2, gL = 2mS.cm−2, VL = −50mV , gCa = 4mS.cm−2,

VCa = 100mV , gK = 8mS.cm−2, VK = −70mV , V1 = 0, V2 = 15mV , V3 = 10mV ,

V4 = 10mV , λ̄ = 0.1s−1, and applied current I(µA.cm−2).

The model can exhibit various types of spiking, but could support tonic bursting only

when an additional equation is added, e.g., slow inactivation of calcium ion current. In

this case, the ML model becomes equivalent to the HH model since both have transient

inward and persistent outward currents.

1.4.7 Comments on the various Models

Without being exhaustive, we have reviewed the most prominent neuronal models

above. Some of them have biophysically meaningful and measurable parameters, notably

HH and ML models. The others although not biophysically meaningful, exhibit the some
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Table 1.3: Comparison of the neuro-computational properties of spiking and bursting

models [14]; of FLOPS is an approximate number of �oating point operations (addition,

multiplication, etc.) needed to simulate the model during a 1ms time span. Each empty

square indicates the property that the model should exhibit in principle (in theory) if the

parameters are chosen appropriately, but the author failed to �nd the parameters within

a reasonable period of time.

fundamental properties of thalamocortical spiking neurons, for this purpose we can men-

tion FHN, HR, Izhikevich models. All other aspects of comparison between these models

are contained in the table 1.3. Accordingly, HH, HR and Izhikevich models appear to be

the three most powerful neuro-models that accurately reproduce a rich electrical activity

of real neurons followed by ML and FHN ones. The IF model, although very simple to

handle, remains one of the poorest models because it cannot exhibit even the most fun-

damental properties of cortical spiking neurons, and for this reason it should be avoided

by all means.
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Conclusion

This chapter has allowed us to understand the anatomy and physiology of biologi-

cal neurons with the culminating point of interneuronal communication ensured by the

synapses. It is through the synapses that a neuron is connected with its nearest neigh-

bors to form a neural network in which information are shared. If chemical synapses

are more abundant than electrical synapses, we must not forget the role played by the

latter in the NS, a phenomenon known as the true source of many cerebral pathologies.

Also, the most prominent computational models for reproducing the spikes and bursts-like

patterns of the electrical activity of neurons have been studied from top to bottom. It ap-

pears that only the HH and ML models hold biologically acceptable properties, since the

parameters of these two models have been deduced experimentally, unlike other models

whose basic principle was to simulate the biological behavior of neurons observed exper-

imentally. In this last category, we focused our attention on the HR model that does

not fail this mission. This three-dimensional model accurately describes the biological

mechanisms that accompany the generation, conduction, and transmission of nerve mes-

sages. Moreover, because of its nonlinear nature and its dynamics at multiple time scales

characterized by emergence of spikes-bursts patterns known as the fundamental units of

nervous message, the HR model can easily be explored both analytically and numerically

and produce very interesting results to enrich the understanding of the functioning of the

central nervous system. Therefore, in the rest of this work, we propose to study long-

range, two-dimensional interneuronal communication and then analyze the phenomenon

of neuronal synchronization by means of HR model.
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Chapter 2

Improved models of FitzHugh-Nagumo

and methodologies

Introduction

In the past years, mathematical and physical contributions devoted to neurological

sciences have improved our understanding of pattern formation using the FHN mathe-

matical model. Just to cite a few, simpler pulse solutions in the discrete FHN model have

been constructed asymptotically [72�74]. Taking into account two di�erent time con-

stants, Pan�lov and Hogeweg [75] modi�ed the standard FHN model for excitable tissue

and showed that a spiral wave can break up into an irregular spatial pattern. Dimitry et

al [76] showed that particle-like behavior can lead to the formation of complex periodic

and chaotic fractal-like spatiotemporal wave patterns in modi�ed FHN network. Male-

vanets and Kapral [77] showed that fully developed labyrinthine pattern can be observed

in a microscopic reaction model with a FHN mass action law. Very recently, Zhenga

and Shena [78] showed that the FHN model has very rich dynamical behaviors, such as

spotted, stripe and hexagon patterns. FHN model soliton solutions have been detected

in di�erent ways [79,80]. Daihai et al [81] using small-world connections in an inhomoge-

neous excitable medium obtained a well behaved pattern of spiral waves. It is con�rmed

that patterns like spiral waves and targeted waves and their breakdown show the com-

plexity of brain and related to horrible disease in neuron system. Stripe, sported, and

hexagon patterns are also revealed in a modi�ed FHN model which are very similar to the

case in reaction di�usion system. Di�erent dynamical regimes are observed to be induced
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by external noise. Stochastic resonance is reported to been enhanced in FHN model by

colored noise [82].

One of the great challenges associated with the manipulation of developed mathemati-

cal models is the search for analytical solutions that give, in the long term, a clear view on

the temporal or spatiotemporal dynamics of the studied systems. Therefore, given their

complexity, these generic models are sometimes reduced to partial di�erential equations

with soliton-like solutions using a well-known analytical methods such as the discrete

multiple scale expansions [83�89] that lead to the discrete nonlinear Schrödinger (DNLS)

equations; or the SDA [90�97] that lead whether in NLS equation or in the generalized

Ginzburg-landau equation. These generally laborious methods require some skill on the

part of the manipulator and provide more reliable results that are consistent with physical

reality.

It is well-known that the FHN model can support solitary waves propagation as the

best tool for nerve impulses transmission. These waves result from the interplay between

nonlinearity and dispersion properties of the medium and are often highlighted by the

MI phenomenon that has been extensively applied to a broad range of physical settings

including nonlinear optics [98], hydrodynamics [99], nonlinear transmission lines (NLTLs)

[91�93], biophysics [84,85,100], just to name a few.

The phenomenon of the MI studied through the linear stability analysis method un-

fortunately does not make it possible to make long-term predictions on the manifestations

of the phenomenon. However, numerical methods such as the fourth-order Runge-Kutta

integration method are generally exploited, not only to give a validity to the linear sta-

bility analysis, but also to reveal di�erent patterns of the model. In this chapter, we will

present the four important neuronal models that we have developed in the framework of

this thesis with a particular focus on network morphology and the synaptic transmission

known as the drive belt, or the bridge, which relays the nervous impulse from one neu-

ron to an another. Also, we will apply the di�erent analytical and numerical methods

mentioned above in order not only to simplify them, but also to solve them.
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2.1 Improved FHN models

2.1.1 The discrete FHN neural model under magnetic �ow

It is well known that the standard FHN model is described by two variables v(t) and

w(t) which represent the membrane potential and the recovery variables, respectively.

Since the discovery of memristor, the fourth fundamental circuit element by Chua in

1971 [101], the e�ect of the electromagnetic �ux has recently been introduced by Lv et

al. [16] in the HR model. In the present work, we introduce the magnetic �ux variable

ϕ(t), which is used to describe the e�ect of electromagnetic induction. The equations for

an improved FHN model for N = 400 identical neurons mutually coupled to their nearest

neighbors through the gap junction is now made of three ordinary di�erential equations

for the dimensionless variable v(t), w(t) and ϕ(t) as follows

dvn
dt

= K(vn+1 − 2vn + vn−1) + vn(vn − a)(2− vn)− wn − k1ρ(ϕn)vn + Iext, (2.1a)

dwn

dt
= λ(vn − bwn), (2.1b)

dϕn

dt
= vn − k2ϕn + ϕext, (2.1c)

with i = 1, ...N . The The parameter K is the coupling parameter between cells,

while the parameter λrepresents the ratio of the time scales for vn(t)and wn(t). The

function ρ(ϕn) = α + 3βϕ2
n is the conductance developed from memristor and used for

memory associated with magnetic �eld. According to the Faraday law of electromagnetic

induction and description about memristor, the term k1ρ(ϕn)vn could be regarded as

additive induction current on the membrane. ϕext the external electromagnetic radiation

which for simplicity is taken as a periodical function ϕext = Acos(2πft). The ion currents

of sodium, potassium contribute the membrane potential and also the magnetic �ux across

the membrane; thus, a negative feedback term −k2ϕn has been introduced in the third

of Eqs. (2.1). Iext represents the external forcing current. The parameter values used in

this work are: a = 0.3, b = 0.5, λ = 0.01, k2 = 1, α = 0.1 and β = 0.02. The parameters

K, k1, Iext and ϕext will be selected so to display formation of complex patterns of the

action potential.

The model of Eqs. (2.1) will be useful to evaluate the impact of internal magnetic

induction and external electromagnetic radiation on the propagation of nerve impulses
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in a network of electrically coupled neurons with nearest-neighbor interactions. For this

purpose we will �rst reduce it to a DNLS equation using the multiple scale expansion and

further we will integrate it numerically by the RK4 method in order to highlight some

typical dynamical regimes under electromagnetic induction.

2.1.2 The discrete FHN myocardial model under magnetic �ow

During the time period when electrical waves of excitations are emitted from the sinus

node and spread among cardiac tissues, a time varying electromagnetic �eld is induced.

The simple two variables FHN model proposed by Aliev and Pan�lov [25, 26] does not

include this important physical e�ect. The new model for myocardial excitations and

electrical activities include the third variable ϕn(t), which is the magnetic �ux parameter

describing the physical e�ect of electromagnetic induction. The new three-variables dy-

namical equations for myocardial cell excitations and electrical activities are described as

follows:

dvn
dt

=K(vn+1 − 2vn + vn−1)− kvn(vn − a)(vn − 1.0)− vnwn + k0ρ(ϕn)vn + Iext, (2.2a)

dwn

dt
= (ε+

µ1wn

vn + µ2

)[−wn − kvn(vn − a− 1.0)], (2.2b)

dϕn

dt
= k1vn − k2ϕn + ϕext. (2.2c)

The system of equations above is a three species FHN equations, with vn(t) and wn(t)

representing respectively, the fast variable trans-membrane potential and slow variable

ions current. The �rst equation is �nite di�erence discretized ordinary di�erential FHN

equations with the cubic nonlinearity in vn(t), the second equation is a nonlinear ordinary

di�erential equation in wn(t) and vn(t). The last one is a linear ordinary di�erential equa-

tion in ϕn(t). −kvn(vn − a)(vn − 1) is a nonlinear term representing the trans-membrane

ionic currents per unit area. ρ(ϕn) is a nonlinear function representing the memdutance of

memristor, used to describe the feedback of the time-varying electromagnetic �eld on the

trans-membrane potential during electrical and ions concentration �uctuations in cells.

It's given by ρ(ϕn) = α + 3βϕ2
n. ϕn is the magnetic �ux describing the e�ect of electro-

magnetic induction. ϕext = H0 cos(Ωt) is a periodic forcing describing the in�uenced of

electromagnetic radiation, where H0 and Ω are the amplitude and angular frequency while

Iext = I0 sin(ωt) is the mapped trans-membrane current from the external forcing current.

We consider nearest neighbor interactions among myocardial cells in the network, where
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cells only make electrical connections with their nearest neighbors. K represents the cou-

pling strength of the gap junction. The parameter values used in this work are, a=0.15,

k=8.0, µ1=0.2, µ2=0.3, k1=0.2, k2=1.0, ε=0.002, α=0.1, and β=0.2. The parameters K,

k0, Iext and ϕext will be selected so as to display the formation of complex patterns of the

action potential.

The model realized will be useful to evaluate the impact of internal magnetic induc-

tion and external electromagnetic radiation on the propagation of waves in a myocardial

network of electrically coupled cells with nearest-neighbor interactions. For this purpose

we will �rst reduce it to a DNLS equation using the multiple scale expansion and further

we will integrate it numerically by the RK4 method in order to highlight some typical

dynamical regimes under electromagnetic induction and radiation.

2.1.3 The FHN neuronal network with memristive electromag-

netic induction coupling

The FHN model is a generalization of the Bonhoe�er-Van der Pol oscillator. It sug-

gests that an oscillating variable x, modulated by a damping function is modeled by the

dynamical equation

∂2x

∂t2
+

1

a
(x2 − 1)

dx

dt
+ x = 0. (2.3)

The term 1
a
(x2 − 1) represents the nonlinear damping function, dependent on the

oscillating variable x while a is a positive constant. Eq. (2.3) can be broken down into

two variables, �rst order di�erential equations(ODE) by introducing an auxiliary variable

y, given by

dx

dt
=

1

a
(x− x3

3
− y), (2.4a)

dy

dt
= ax. (2.4b)

The above ODEs can be merged to obtain Eq. (2.3) by simply di�erentiating the

�rst equation and substituting in the second equation. From the physical law of Maxwell

Electromagnetic Induction(MEI), when the variable x is used as a membrane potential

then the variable y can be thought as the magnetic �ux variable( ẏ = ax). The model is
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then further improved to detect essence of electrical activity [102]. This enables Eq. (2.4)

to be rewritten as

dx

dt
=

1

a
(x− x3

3
− y + Iext), (2.5a)

dy

dt
= ax− by + c, (2.5b)

where x is the transmembrane potential and y, the traditional current variable now re-

garded as the magnetic �ux from MEI theorem. Iext is the external stimulus. Many

researchers prefer to perform dynamical analyzes on reliable model rather than standard

mathematical models to be consistent with biological experiments. During the �uctuation

of inter-cellular and extra-cellular ion concentration in cells, time-varying electromagnetic

�eld can be triggered [27]. The e�ect of electromagnetic induction should be consid-

ered during the dynamical analysis of the electrical behaviors of neuron and neuronal

network. The memory e�ect of neuron can be described by using magnet �ux on the

Hindmarsh-Rose and other neuron models [29]. Magnetic �ux is used to describe the

e�ect of time-varying electromagnetic �eld, where the memristor is used to bridge the

membrane potential and magnetic �ux based on the consensus and consistency in phys-

ical units of variables in the neuron model. The induction current is then regarded as

additive current on membrane.

Recent studies revealed that some neuronal networks with memristive synapse can

portray abundant complex dynamics [45, 103, 104], signi�cative of real brain dynamics.

Inspired by these results, magnetic controlled gain in synaptic connection is proposed

to model the synapse current using memristor coupling. This model detects essence

of electrical activity and memory e�ect, holding more bifurcation parameters and can

reproduce similar dynamical behaviors like the original FHN model. For simplicity in

parameter manipulation and recognition, we let λ = 1
a
and y = ϕ. The dynamics of the

chain network of nthneurons is given by

dxn
dt

= λ(xn − ϕn −
x3n
3

+ Iext) +Kρ(ϕn)(xn+1 − 2xn + xn−1), (2.6a)

dϕn

dt
= axn − bϕn + c+ ϕext. (2.6b)

The nonlinear term Kρ(ϕn)(xn+1−2xn+xn−1) is used to approach the synaptic current
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associated with memristor. a calculates the e�ect of electromagnetic induction induced by

the transport of ions in the cell, b represents the degree of polarization and magnetization,

which may be regarded as the parameter adjusting the saturation of magnetic �ux, c

represents the threshold voltage. K is the feedback gain which bridges the coupling and

modulation on gap junction membrane potential from magnetic �eld. K thus calculates

memristive synaptic coupling strength. ρ(ϕn) calculates the memdutance of memristor,

which is used to describe the modulation of time-varying electromagnetic �eld on the gap

junction membrane. It's given by;

ρ(ϕn) = α+ 3βϕ2
n. (2.7)

To be consistent with the previous work, we select the parameters as; α = 0.2, β = 0.2

and ϕext = A cos(2πft) selected as the external electromagnetic radiation of periodic type.

A is the amplitude of the radiation while f is the frequency of the radiation. The rest of

the parameters are set as; a = 0.1, b = 0.8, c = 0.7, λ = 10. The parameters K, Iext and

ϕext will be selected so as to display formation of complex patterns of the action potential.

In what shall follows, we will use the discrete multiple-scaling expansion and show that

the above system of coupled equations can be reduced to a single di�erential-di�erence

equation, on which the linear stability analysis of MI will be performed. After discussing

the possibility of modulated wave formation, full numerical simulations will be performed

on the generic system (Eq. 2.6) to verify our analytical predictions. The e�ect of the

memristive synaptic coupling parameter will be notably discussed with respect to pattern

formation and synchronization.

2.1.4 The one dimensional di�usive FHN myocardial network

under electromagnetic induction

Generally in NNs and particularly in FHN-NNs, the nerve or cardiac impulses can

propagate in one dimension where the membrane potential will be given by xi(t) at the

lattice point (i) reads:

v̇i = −λvi(vi − a)(vi − 1.0)− viwi + Iext + k0ρ(ϕi)vi +D(vi+1 − 2vi + vi−1), (2.8a)

ẇi = (ε+
µ1wi

vi + µ2

)[−wi − λvi(vi − a− 1.0)], (2.8b)

ϕ̇i = k1vi − k2ϕi, (2.8c)
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with 1 ≤ i ≤ N . Where N represents the node position in the network. vi is the

cardiac transmembrane potential, wi is the slow variable for current, Iext represents the

mapped transmembrane current. D is the gap junction coupling between adjacent cells

and −λvi(vi − a)(vi − 1.0) − viwi is the nonlinear representing the transmembrane ionic

current per unit area. The rest parameter are carefully selected so as to reproduce the

main properties of excitable medium. To be consistent with previous work on the model,

we selected a = 0.15, µ1 = 0.2, µ2 = 0.3, λ = 8.0 and ε = 0.002.

During the rhythmic relaxation and shrinking of the heart so as to perform it's func-

tional role of supplying blood to various organs of the body, complex electrophysiological

activities have been detected in cardiac tissue. Indeed, during the �uctuation of con-

centration of ions in cells, a time-varying electromagnetic can be set up. This makes it

important to consider the e�ect of electromagnetic induction according to Faraday's law

of electromagnetic induction. In the above stated model, ϕi represents the magnetic �ux

variable used to describe the e�ect of this electromagnetic induction. As explained in

Refs. [27,29], the memristor is used to realize the modulation of the measured �eld on the

transmembrane potential. The nonlinear ρ(ϕi) measures the memductance of memristor.

The term +k0ρ(ϕi)vi is the positive induced current from electromagnetic induction. By

expanding the nonlinear terms in Eq. (1), we have;

v̇i + α0vi =− λv3i + α1v
2
i − viwi + α2viϕ

2
i + Iext +D(vi+1 − 2vi + vi−1), (2.9a)

ẇi + εwi = β0vi + β1w
2
i + β2v

2
i + β3viwi + β4v

2
iwi + β5viw

2
i , (2.9b)

ϕ̇i + k2ϕi = k1vi, (2.9c)

where,
α0 = aλ− k0α β0 = (1 + a)ελ β3 = λ(1 + a)µ1

µ2

α1 = λ(1 + a) β1 = −µ1

µ2
β4 = −λ(1 + (1+a)

µ2
)µ1

µ2

α2 = 3βk0 β2 = −ελ β5 =
µ1

µ2
2
.

Eqs. (2.9) can be transformed into a waveform by �rst di�erentiating Eq. (2.9a),

which follows that:

v̈i + Ω2
0vi + [γ0 − 2α1vi + wi − α2ϕ

2
i + 3λv2i ]v̇i + (β0 − εα1)v

2
i + (β2 + ελ)v3i + α2(2k2 − ε)viϕ2

i−

2α2k1v
2
i ϕi + β1viw

2
i + β3v

2
iwi + Iext = D0(vi+1 − 2vi + vi−1) +D1(v̇i+1 − 2v̇i + v̇i−1),

(2.10a)
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ẇi + εwi = β0vi + β1w
2
i + β2v

2
i + β3viwi + β4v

2
iwi + β5viw

2
i , (2.10b)

ϕ̇i + k2ϕi = k1vi, (2.10c)

with Ω2
0 = εα0, γ0 = ε + α0, D0 = εD and D1 = D. The above dynamical equations

are similar to those generally used in modeling the dynamics of atomic chain. Nonlinear

dynamical equations owing to their complexity, are typically not accessible to analytical

approaches. It's only possible to obtain nearly exact solution through a special perturba-

tion technique. In the process, we introduce the new variables;

vi = ϵψi,

wi = ϵφi,

ϕi = ϵσi,

(2.11)

with ϵ << 1. It's important to remark that the variation of the membrane potential(ψi)is

greater than that of the slow variable(φi). Since β3 is the coe�cient relating these two

variables, the nonlinear term ψiφi have then be perturbed to the order ϵ2. As we are

looking for exact solution in a weakly dissipative medium, γ0ψ̇i and D1(ψ̇i+1−2ψ̇i+ ψ̇i−1)

have also been perturbed to the order ϵ2. We �nally have the resulting system

ψ̈i + Ω2
0ψi + ϵ[ϵγ0 − 2α1ψi + ϵφi − ϵα2σ

2
i + 3ϵλψ2

i ]ψ̇i + ϵ(β0 − εα1)ψ
2
i+

ϵ2(β2 + ελ)ψ3
i + ϵ2α2(2k2 − ε)ψiσ

2
i − 2ϵ2α2k1ψ

2
i σi + ϵ2β1ψiφ

2
i + ϵ2β3ψ

2
iφi =

D0(ψi+1 − 2ψi + ψi−1) + ϵ2D1(ψ̇i+1 − 2ψ̇i + ψ̇i−1),

(2.12)

φ̇i + εφi = β0ψi + ϵβ1φ
2
i + ϵβ2ψ

2
i + ϵ2β3ψiφi + ϵ2β4ψ

2
iφi + ϵ2β5ψiφ

2
i , (2.13)

σ̇i + k2σi = k1ψi. (2.14)

The above system of equations are therefored those regulating the dynamics of the cardiac

tissue under magnetic �ow e�ect. The above equations show proofs of support of dispersive

e�ect due to the presence of the term D0(ψi+1 − 2ψi + ψi−1). Dissipative e�ects brought

about by the dissipative terms ϵ[ϵγ0 − 2α1ψi + ϵφi − ϵα2σ
2
i + 3ϵλψ2

i ]ψ̇i and ϵ2D1(ψ̇i+1 −
2ψ̇i+ ψ̇i−1). Nonlinear e�ects are supported by the rest of the nonlinear terms in the local

kinetics of the above system of equations.

In what follows, the system of equations Eqs. (2.12)-(2.14) will be reduced into a

CGL equation by applying the SDA, while the version Eqs. (2.8) will be numerically

simulated using the RK4 method. Globally, the models will be used to show the existence

of solitonic-like regimes in a one-dimensional FHN myocardial network.
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2.2 Analytical and Numerical methods

2.2.1 The multiple scale expansion in the discrete approximation

Built by Leon and Manna [86], the multiple-scale allows to deduce simpli�ed equa-

tions from a basic model without loosing its characteristic features. The method consists

essentially in an asymptotic analysis of a perturbation series, based on the existence of

di�erent scales. More speci�cally, the method generates a hierarchy of (small) scales for

the space and time variations of the envelopes of a fundamental (linear) plane wave and

all the overtones. The scale is moreover directly related to the (small) amplitude of the

wave itself. The multiple scale method is quite appropriate for the study of boundary

value problems and leads to a DNLS equation (with reversed space-time), the goal being

the study of a nonlinear dispersive chain with dispersion relation Ω(Q) where Ω represents

the wave frequency and Q the wave number of the carried wave. The physical problem

we are concerned with is the following: the �rst particle of the chain (say n = 0) is

given an oscillation (or is submitted to an external force) at frequency Ω. Would the

chain be linear that this oscillation would propagate without distorsion as the plane wave

exp[i(Ωt + Qnd)], with d being the lattice spacing. But the nonlinearity induces some

deviations from the value Ω, namely, the wave propagates with actual frequency ω and

wave number q that are de�ned as:

ω = Ω+ ϵλ, and q = Q+ ϵ
λ

vg
+ ϵ2cgλ

2 + ... (2.15)

where vg = ∂Ω
∂Q

is the group velocity and 2cg =
∂2Q
∂Ω2 represents the group velocity dispersion.

λ is a small deviation from the natural frequency Ω.

The principle of this method can be summarized as follow: given a discrete di�erential

equation in the form

F (ün, u̇n(t), un(t), un+1(t), un−1(t), u
2
n(t), u

3
n(t), ..., u

r
n(t)) = 0. (2.16)

One �rst seeks a solution of Eq. (2.16) in the form of a Fourier expansion in harmonics of

the fundamental A(n, t) = exp[i(Ωt+Qnd)], where the Fourier components are developed

in a Taylor series in power of the small parameter ϵ measuring the amplitude of the initial

wave, that is to say
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un(t) =
∞∑
p=1

ϵp
p∑

l=−p

ψ(l)
p (m, τ)A(l)(n, t). (2.17)

Note that the above serie includes all overtones A(n, t) = exp[i(Ωt + Qnd)] up to order

p. These are generated by the nonlinear terms which explain that the corresponding

coe�cients are of maximum order ϵp. Here we have the real-valued-ness condition

ψ(−l)
p (m, τ) =

(
ψ(l)
p (m, τ)

)∗
, (2.18)

with the asterisk denoting complex conjugations. The slow variables ξn = m and τn = τ

are introduced via

τ = ϵ(t+
nd

vg
), m = ϵ2n. (2.19)

We then insert solution (2.17) into Eq.(2.16) to obtain a linear homogeneous system for

ψ
(l)
p (m, τ) polynomial in A(l)(n, t). Finally we can proceed to collect and solve di�erent

orders of ϵp and harmonics l, order (p, l) in the obtained equation or system of equations.

Note that it is enough to consider l > 0 as negative values follow from the reality condition

(2.18). The culminating stage comes from order (3, 1) where the cubic DNLS equation is

derived. In addition, the general formulas of this method are given as follows:

un+1 − un−1 =

[
A(l)(n+ 1, t)− A(l)(n− 1, t)

]
ψ(l)
p (m, τ)

+ ϵ

[
A(l)(n+ 1, t) + A(l)(n− 1, t)

](
d

vg

)
∂

∂τ
ψ(l)
p (m, τ)

+
ϵ2

2

[
A(l)(n+ 1, t) + A(l)(n− 1, t)

][
ψ(l)
p (m+ 1, τ)− ψ(l)

p (m− 1, τ)

]
+
ϵ2

2

[
A(l)(n+ 1, t)− A(l)(n− 1, t)

](
d

vg

)2
∂2

∂τ 2
ψ(l)
p (m, τ)

(2.20)

and

un+1 − 2un + un−1 =

[
A(l)(n+ 1, t)− 2A(l)(n, t) + A(l)(n− 1, t)

]
ψ(l)
p (m, τ)

+ ϵ

[
A(l)(n+ 1, t)− A(l)(n− 1, t)

](
d

vg

)
∂

∂τ
ψ(l)
p (m, τ)

+
ϵ2

2

[
A(l)(n+ 1, t) + A(l)(n− 1, t)

](
d

vg

)2
∂2

∂τ 2
ψ(l)
p (m, τ)

+
ϵ2

2

[
A(l)(n+ 1, t)− A(l)(n− 1, t)

][
ψ(l)
p (m+ 1, τ)− ψ(l)

p (m− 1, τ)

]
(2.21)
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2.2.1.1 Derivation of DNLS equation with coe�cients depending on MF pa-

rameter

As a reminder, the system of Eqs. (2.1) has three equations with three unknowns,

describing the FHN model under MF e�ect. The general solution of this equation can be

considered in the form

Un(t) =
∞∑
p=1

ϵp
p∑

l=−p

U (l)
p (m, τ)A(l)(n, t), (2.22)

with A(l)(n, t) = exp[il(Ωt+ qn)] and the lattice spacing was taken equal to unit, and the

state variables Un(t) = {vn(t), wn(t), ϕn(t)} and U (l)
p (m, τ) = {η(l)p (m, τ), ψ

(l)
p (m, τ), ϕ

(l)
p (m, τ)}.

By substitution of solution (2.22) into Eqs. (2.1), we obtain a linear homogeneous sys-

tem for η(l)p (m, τ), ψ(l)
p (m, τ) and ϕ(l)

p (m, τ) polynomial in A(l)(n, t) that will be solved at

di�erent orders of the small parameter ϵ, with the corresponding harmonics l. For the

leading order (1,l), with l = 0, the solutions

η01(m, τ) = ψ0
1(m, τ) = ϕ0

1(m, τ) = 0 (2.23)

are found, while for l = 1 the dispersion relation

[
(iΩ− 2K(cos(q)− 1) + 2a+ αk1)(iΩ + λb) + λ

]
(iΩ + k2) = 0 (2.24)

should be satis�ed for the system to admit non-trivial solutions in the form

η11(m, τ) = η(m, τ),

ψ1
1(m, τ) =

λ

iΩ + λb
η(m, τ),

ϕ1
1(m, τ) =

η(m, τ)

(iΩ + k2)
.

(2.25)

The order (2, l), when l = 0, has the solutions

η02(m, τ) =
2b(2 + a)

1 + b(2a+ αk1)
|η(m, τ)|2,

ψ0
2(m, τ) =

2(2 + a)

1 + b(2a+ αk1)
|η(m, τ)|2,

ϕ0
2(m, τ) =

2b(2 + a)

k2(1 + b(2a+ αk1))
|η(m, τ)|2.

(2.26)

TAKEMBO NTAHKIE Clovis PhD Thesis



Improved models of FitzHugh-Nagumo and methodologies 51

The case l = 1, with a zero determinant, should satisfy the Fredholm condition

Vg =
2iK(iΩ + λb)2

(iΩ + λb)2 − λ
sin(q) (2.27)

For the solution to be found in the form

η12(m, τ) = δ(m, τ),

ψ1
2(m, τ) =

−λ
(iΩ + λb)2

∂η(m, τ)

∂τ
+

λ

(iΩ + λb)
δ(m, τ),

ϕ1
2(m, τ) =

−λ
(iΩ + k2)2

∂η(m, τ)

∂τ
+

1

(iΩ + k2)
δ(m, τ),

(2.28)

where δ(m, τ) is an arbitrary function. At the same order, but for l = 2, solutions are

derived in the form

η22(m, τ) =
(2 + a)(2iΩ + λb)

∆′ η2(m, τ),

ψ2
2(m, τ) =

λ

(2iΩ + λb)
η2(m, τ),

ϕ2
2(m, τ) =

1

(2iΩ + k2)
η2(m, τ),

(2.29)

where

∆
′
= (2iΩ− 2K(cos 2q − 1) + 2a+ αk1)(2iΩ + λb) + λ = 0.

Finally, we solve the system for η13(m, τ), ψ
1
3(m, τ) and ϕ

1
3(m, τ),which is obtained for

p = 3 and l = 1, which yields, after making use of the previous solutions, the amplitude

equation in ηm as follows:

iP (ηm+1 − ηm−1) +Q
∂2ηm
∂τ 2

+R|ηm|2ηm = 0, (2.30)

where

P = K sin(q),

Q = − λ

(iΩ + λb)3
− ((iΩ + λb)2 − λ)2 cos(q)

4K(iΩ + λb)4 sin2(q)
,

R =
4(2 + a)2(2iΩ + λb)

∆′ − 6βk1
(iΩ + k2)2

+
4b(2 + a)2

1 + b(2a+ αk1)
− 3.

(2.31)

The global form of Eq. (2.30) is now similar to the one obtained by Leon and Manna

[87] in the case of electrical transmission lines. This equation will be used only for the
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linear stability analysis, while the direct numerical experiments will be performed on the

generic Eqs. (2.1).

2.2.1.2 Derivation of a DNLS equation with coe�cients depending on the

EMI gain

The four-variables model of the system of Eqs. (2.2) describes the dynamics of my-

ocardial action potential under EMI and EMR. The general solution of such equations

according to the multiple scale expansion reads:

vn(t) =
∞∑
p=1

ϵp
p∑

s=−p

ψs
p(ζn, τn)A

s(n, t),

wn(t) =
∞∑
p=1

ϵp
p∑

s=−p

ηsp(ζn, τn)A
s(n, t),

ϕn(t) =
∞∑
p=1

ϵp
p∑

s=−p

φs
p(ζn, τn)A

s(n, t),

(2.32)

with A(s)(n, t) = exp[is(Ωt+Qn)] and the lattice spacing was taken equal to one unit.

By substitution of solution (2.32) into Eqs. (2.2), we obtain a linear homogeneous system

for ψ(s)
p (m, τ), η(s)p (m, τ) and φ

(s)
p (m, τ) polynomial in A(s)(n, t). At the leading order

(1, s), we obtain a homogeneous set of equations, where when s = 0, gives:

ψ0
1(m, τ) = η01(m, τ) = φ0

1(m, τ) = 0. (2.33)

Similarly, taking s = 1 leads to a linear system whose determinant is null, yielding the

dispersion relation:

[
iω − 2K(cos(q)− 1) + α0

]
(iω + ε)(iω + k2) = 0. (2.34)

According to the above dispersion relation given by Eq. (2.34), the non-trivial solutions

ψ1
1, η

1
1 and φ

1
1 of the resulting homogeneous set of equations can be looked out in the form:

ψ1
1(m, τ) = χ(m, τ),

η11(m, τ) =
ε+ iω

β0
× χ(m, τ),

φ1
1(m, τ) =

k1
k2 + iω

× χ(m, τ),

(2.35)
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with χ(m, τ) being an arbitrary function of m and τ . At the order (2, s), when s = 0, the

solutions of the resulting system equations give

ψ0
2(m, τ) =(

2α1

α0

− 2ε

β0
)× | χ(m, τ) |2,

η02(m, τ) =[
β0
ε
(
2α1

α0

− 2ε

β0
) +

2β1
εβ2

0

(ε2 − (iω)2)

+
2β2
ε

]× | χ(m, τ) |2,

φ0
2(m, τ) =

k1
k2

(
2α1

α0

− 2ε

β0
)× | χ(m, τ) |2 .

(2.36)

With a zero determinant, the case s = 1 should satisfy the Fredholm condition

Vg = 2iK sin(q). (2.37)

For the solution to be found in the form

ψ1
2(m, τ) = δ(m, τ),

η12(m, τ) =
β0

(ε+ iω)
δ(m, τ)− 1

β0

∂χ(m, τ)

∂τ
,

φ1
2(m, τ) =

k1
(k2 + iω)

δ(m, τ)− k1
(k2 + iω)2

∂χ(m, τ)

∂τ
,

(2.38)

where δ(m, τ) is taken to be an arbitrary function. At the same order, but for s = 2,

solutions are derived in the form

ψ2
2(m, τ) =

α1β0 − (ε+ iω)

β0(2iω − 2K(cos(2q)− 1) + α0)
× χ(m, τ)2,

η22(m, τ) =
1

(ε+ 2iω)
[(

α1β0 − (ε+ iω)

β0(2iω − 2K(cos(2q)− 1) + α0)
)

+
β1

β2
0(ε+ iω)2

+ β2]× χ(m, τ)2,

φ2
2(m, τ) =

k1[α1β0 − (ε+ iω)]

β0(k2 + 2iω)[(2iω − 2K(cos(2q)− 1) + α0)]
× χ(m, τ)2.

(2.39)

Finally, we solve the system for ψ1
3(m, τ) and η13(m, τ), obtained for p = 3 and s =

1, which yields, while making use of the previous solutions, the amplitude equation in

χ(m, τ) = χm as:

iP (χm+1 − χm−1) +Q
∂2χm

∂τ 2
+R|χm|2χm = 0, (2.40)
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with

R = 2α1(
2α1

α0

− 2ε

β0
+ θ2) + α2k

2
1[

1

(k2 + iω)2
+

2

k22 − (iω)2
]

+
(ε+ iω)

β0
(
2ε

β0
− 2α1

α0

)− (3k + θ1 + θ2 + θ3),

Q =
− cos(q)

4K sin2(q)
,

P = K sin(q),

(2.41)

where

θ1 =
1

(ε+ 2iω)
[(

α1β0 − (ε+ iω)

β0(2iω − 2K(cos(2q)− 1) + α0)
)

+
β1

β2
0(ε+ iω)2

+ β2],

θ2 =
α1β0 − (ε+ iω)

β0(2iω − 2K(cos(2q)− 1) + α0)
,

θ3 =
β0
ε
(
2α1

α0

− 2ε

β0
) +

2β1
εβ2

0

(ε2 − (iω)2) +
2β2
ε
.

(2.42)

This equation is similar to one obtained in the previous section, but with neural

networks.

2.2.1.3 Derivation of a DNLS equation with coe�cients depending on the

MSC parameter

The two-variable model of FHN equation Eqs. (2.6) detects essence of electrical ac-

tivity and memory e�ect, holding more bifurcation parameters and can reproduce simi-

lar dynamical behaviors like the original FHN model but in which neurons are coupled

through the memristive synaptic coupling created from EMI. The general solution of such

equations according to the multiple scale expansion reads:

xn(t) =
∞∑
p=1

ϵp
p∑

l=−p

ηlp(m, τ)A
l(n, t),

ϕn(t) =
∞∑
p=1

ϵp
p∑

l=−p

ψl
p(m, τn)A

l(n, t).

(2.43)

Inserting the above expressions in the generic system of equations, we arrive at
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η01 =ψ0
1 = 0, η11 = Φ,

ψ1
1 =

a

(iΩ + b)
Φ, η02 = ψ0

2 = 0,

η12 =δ, ψ1
2 = ψ1

1 −
a

(iΩ + b)2
∂Φ

∂τ
, η22 = ψ2

2 = 0,

(2.44)

where Φ = Φ(m, τ) = Φm(τ) and δ = δm(τ) are the new unknowns. The dispersion

relation found, expressed as;

(iΩ)2 + U(iΩ) + bU − b2 + λ = 0, (2.45)

where U = 4Kα sin2 q
2
− λ + b. This allows the determination of the group velocity,

following the Fredholm solvability condition given by;

Vg =
∂Ω(q)

∂q
=

2iKα(iΩ + b)2 sin(q)

(iΩ + b)2 − λ
. (2.46)

Solving then the system for ψ1
3 and η13, the unknown function δ = δm(τ) cancels out and

the system eventually reduces to;

i

2
(Φm+1 − Φm−1) +Q

∂2Φm

∂τ 2
−R|Φm|2Φm = 0, (2.47)

with the coe�cients, Q and R depending on the memristive synaptic coupling(K) and

wave number(q) given by;

Q =
cot(q)

2V 2
g

+
λ

2αK(iΩ + b)3 sin(q)
,

R =
12β sin2( q

2
)

b2−(iΩ)2
+

λ

2αK sin(q)
.

(2.48)

The continuous version of Eq. (47) is a well known model for boundary value problems

in optical �bres. It has features of cubic Schrödinger equation and recently been reported

in other biophysical settings such as in calcium and cardiac wave propagation [84,138].

2.2.2 The semi-discrete approximation

The SDA is a perturbation technique in which the carrier waves are kept discrete

while the amplitude is treated in the continuum limit. Applying this method allows one

to study the modulation of a plane wave caused by nonlinear e�ects. Its principle is
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almost identical to the full-discrete approximation, but the derived amplitude equations

are either the NLS type or the generalized CGL. In practice, having a nonlinear di�erential

equations as in Eqs. (2.12)-(2.14), one seeks solutions in the form:

un(t) = U(ξ, τ)eiθn + U∗(ξ, τ)e−iθn + ϵ[V (ξ, τ) +W (ξ, τ)e2iθn +W ∗(ξ, τ)e−2iθn ], (2.49)

where the slow variables ξ and τ are related to fast ones n and t as

ξ = ϵ(n− vgt) and τ = ϵ2t (2.50)

with 0 < ϵ << 1 and θn = kn−ωt. Note that index n denotes the cell number. Parameters

k, vg and ω, respectively stand for the wave number, group velocity and angular frequency

and they are known to be related by the dispersion relation, or the solvability condition

that determines the group velocity as

vg =
∂ω

∂k
. (2.51)

Then such solution (2.49) is inserted into model of Eqs. (2.12)-(2.14) yield a linear ho-

mogeneous system for U , V and W polynomial in eilθn , l = 0, 1, 2 that will be solve later.

In order to evaluate the di�usion term un+1(t) − 2un(t) + un−1(t), it is worthy to treat

amplitudes U , V and W like the continuum functions such that U(ξn±1, τ), V (ξn±1, τ)

and W (ξn±1, τ) are developed up to order ϵ2 in Taylor series as

U(ξn±1, τ) = U(ξ, τ)± ϵ∂U(ξ, τ)
∂ξ

+
ϵ2

2

∂2U(ξ, τ)

∂ξ2
+O(ϵ2). (2.52)

Therefore, we obtain the following formula

un+1 − 2un + un−1 =

(
2U
(
cos(k)− 1

)
+ 2iϵ sin(k)

∂U

∂ξ
+ ϵ cos(k)

∂2U

∂ξ2

)
eiθn

+

(
2ϵW

(
cos(2k)− 1

)
+ 2iϵ2 sin(2k)

∂W

∂ξ

)
e2iθn + c.c.+O(ϵ3).

(2.53)

Furthermore the temporal derivative operators are given by

∂

∂t
=

(
ϵ2
∂

∂τ
− ϵvg

∂

∂ξ
− ilω

)
,

∂2

∂t2
=

(
ϵ2v2g

∂2

∂ξ2
− 2ilωϵ2

∂

∂τ
+ 2ilωϵvg

∂

∂ξ
− l2ω2

)
+O(ϵ3).

(2.54)
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2.2.2.1 Derivation of damped CGL equations for myocardial cell WP.

Here, we will attempt to apply the technique of the SDA on the model of Eqs. (2.12)-

(2.14) whose trial solutions are given by:

ψi = A(X,T )eiθ + ϵC(X,T ) + ϵD(X,T )e2iθ + c.c+ 0(ϵ2), (2.55a)

φi = E(X,T )eiθ + ϵF (X,T ) + ϵG(X,T )e2iθ + c.c+ 0(ϵ2),

,
(2.55b)

σi = H(X,T )eiθ + ϵQ(X,T ) + ϵP (X,T )e2iθ + c.c+ 0(ϵ2), (2.55c)

where the change of variables X = ϵ(n− vgt) and T = ϵ2t has been applied, with vg being

the group velocity that will be de�ned later. We should however notice that according to

the new variables, the direction n is the dominant one. In solutions (2.55), θn = kn− ωt
is the phase of the carrier wave and c.c. represents the complex conjugate. Inserting the

above trial solutions (2.55) into system of Eqs. (2.12)-(2.14), we obtained at the order

ϵ0 × eiθ, the dispersion relation

ω2 = Ω2
0 + 4D0 sin

2(
q

2
). (2.56)
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Figure 2.1: Panel displays the plot of angular frequency (ω), vs. the wave number (q),

as given by the dispersion relation in Eq. (2.56), for D0 = 0.05 and k0 = 1.2

We plot the angular frequency(ω) versus the wave number(q) [Fig. (2.1)]. This plot

is similar to that of the pass band �lter, with corresponding lower and upper cuto�

frequencies. The in�uence of feedback gain through the memristor coupling is clearly
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Figure 2.2: Panel shows how ω is a decreasing function of the memristor coupling parame-

ter k0. The lower and upper cut o� frequencies are lowered as the e�ect of electromagnetic

induction is increased thus more cells could be recruited into conduction process. The

parameter values are the same as in Fig. (2.1)

depicted in Fig. (2.2) to be a decreasing function of the angular frequency. As the

memristor coupling is increased, the lower cut o� frequency is observed to be lowered.

The rest of the system equations give the following relations

E = (a1 + ia2)A,

H = (b1 + ib2)A
(2.57)

with

a1 =
β0ε

ε2 + ω2
, a2 =

β0ω

ε2 + ω2
,

b1 =
k0k2

k22 + ω2
, b2 =

k0ω

k22 + ω2
.

(2.58)

At the order ϵ1 × eiθ, we have the group velocity relation;

Vg =
D0 sin(q)

ω
. (2.59)

A plot of the group velocity relation is clearly revealed in Fig. (2.3) and the in�uence

of feedback gain depicted in Fig. (2.4). The group velocity is an increasing function of

the memristor coupling parameter.

As our �rst analytical prediction, it's con�rmed that the e�ect of electromagnetic

induction describing time-varying electromagnetic �eld set up in cardiac tissue during

the �uctuation of ionic concentration has strong e�ect on the dynamical properties of

electrical signals and wave propagation. Electromagnetic induction e�ect lowers the pass
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Figure 2.3: Panel displays the plot of group velocity (Vg) vs. the wave number (q), as

given by the dispersion relation in Eq. (2.59), for k0 = 1.0
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Figure 2.4: Group velocity is an increasing function of the memristor coupling.

band frequencies of signal,with the speed of the signals correspondingly enhanced by this

e�ect. This is indicative that the feedback e�ect of magnetic �ow can modulate the

excitation behavior of cardiac tissue by changing the �ring rate of cells.

At the order ϵ1 × e0iθ and ϵ1 × e2iθ, we obtain some useful relations

C = a11 × |A|2,

F = a22 × |A|2,

Q = a33 × |A|2,

(2.60)

where,
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a11 =
2(a2ω − β0 + εα1)

Ω2
0

,

a22 =
2(a2ω − β0 + εα1) + 2Ω2

0(β1a
2
1 + β1a

2
2 + β2)

εΩ2
0

,

a33 =
2k1(a2ω − β0 + εα1)

k2Ω2
0

.

(2.61)

At the order ϵ1 × e2iθ, we obtained as well, the following relations

D =(c1 + ic2)× A2,

G =(d1 + id2)× A2,

P =(e1 + ie2)× A2,

(2.62)

where

c1 =
a2ω + β0 − εα1

3Ω2
0 + 16sin4( q

2
)
, c2 =

ω(2α1 − a1)
3Ω2

0 + 16sin4( q
2
)
, (2.63)

d1 =
εβ0c1 + 2β0c2ω + εβ1(a

2
1 − a22) + 4β1a1a2ω

ε2 + 4ω2
,

d2 =
εβ0c2 − 2β0c1ω − 2β2ω − 2β1ω(a

2
1 − a22) + 2β1a1a2ε

ε2 + 4ω2
,

(2.64)

e1 =
k1(c1k2 − 2c2ω)

k22 + 4ω2
, e2 =

k1(c2k2 + 2c1ω)

k22 + 4ω2
. (2.65)

Finally at the order ϵ2 × eiθ, while making use of the previous, we obtained the useful

relation;

i
∂A

∂T
+
Pr

2

∂2A

∂X2
+ (Qr + iQi)|A|2A+ i

Rr

2
A = 0. (2.66)

Eq. (2.66) corresponds to the modi�ed CGLE, with subscripts r and i representing the

real and imaginary parts for real parameters given by

Pr =
D0ω

2 cos(q)−D2
0 sin

2(q)

ω3
, (2.67)
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Qr =c1a2 + c2(α1 − a1) +
1

2
(d2 − b2α2) +

1

ω
[3b1k1α2 − (β0 − α1ε)(a11 + c2)]

− 1

2ω
[3(a1β3 + β2 + ελ) + β1(3a

2
1 + a22) + α2(2k2 − ε)(3b21 + b22)],

(2.68)

Qi =
3λ

2
− α1(a11 + c1) +

1

2
[α2(b1 − 2b21 − 2b22)− (d1 − a22 − 2a1c1 − 2a2c2)] +

1

ω
[k1k2b2 − c2(β0 − εα1)

− (2k2 − ε)b1b2α2 − a1a2β1]−
a2β3
2ω

,

(2.69)

Rr = γ0 + 4D1 sin
2(
q

2
). (2.70)

The Complex Ginzburg-Landau Equation(CGLE) and many of its modi�ed versions

have drawn great attentions and subjected to wide investigations due to its merits in

describing both at the qualitative and even quantitative levels, many physical and bio-

physical phenomena. In many domains of Physics, the one dimensional CGLE has been

revealed to be the generic equation, describing dissipative phenomena above point of bi-

furcation [106]. We recall that dissipative systems driven far from equilibrium always

supports soliton-like localized states. The modi�ed CGLE plays an important in the de-

scription of broad spatiotemporal gap and optical solitons in optical wave guides [107].

CGLE plays vital roles in describing transition of Bose-Einstein condesnsation to liquid

cystals and dynamics of insulin in glucose-blood system [89]. The CGLE has been pro-

posed recently in the study of nonlinear neural impulses in a di�usive Hindmarsh Rose

model [90]. In this work, one proposes to explore the existence of localized excitations in

the FHN cardiac network with magnetic �ow e�ect included.

The CGLE obtained in this context is very signi�cant from biophysical point of view.

Eq. (2.66) reveals that the modi�ed Complex Ginzburg-Landau Equation describes the

evolution of the modulated cardiac impulses in the cardiac tissue. Indeed, electrical signals

and waves emitted from the sinus node propagates within the cardiac tissue using both

space and time domains in order to regulate heart beat as powerful pacemaker. In another

regards, the oscillation of myocardial cells at the sinus node generate a spatiotemporal

dynamics of waves between cells as modi�ed by the e�ect of electromagnetic induction

set up during ions �uctuation inside and outside of the cell. Then, the spatiotemporal

modulated waves in physiological environment travel not only across individual cells, but

also from one myocardial cell to its neighbors. This proposition is related to a physiological
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regard like calcium waves propagation between cells through intercellular waves capable

of propagating across many cells.

In the CGLE [Eq. (2.66)], we remark that the dispersion and dissipation coe�cients

are real, while the nonlinearity coe�cient is complex. This is indicative that the dynamics

of modulated cardiac impulses in our model will always be described by the CGLE even

when the dissipation coe�cient is neglected. The variation of Pr, Qr, Qi, Rr and Pr ×Qr

versus the wave number(q) are presented.
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Figure 2.5: A plot of the dispersion coe�cient vs. wave number in panel (a) and the

in�uence of memristor coupling depicted in panel (b).

Fig. (2.5a) illustrates the variation of the dispersion coe�cient with respect to the

wave number while Fig. (2.5b) portraits the in�uence of electromagnetic induction. In

the region where Pr is positive, the in�uence of electromagnetic induction through the

memristor coupling increases Pr and vice versa where Pr is negative.

Fig. (2.6a) shows the variation of the dissipation coe�cient Rr with respect to the

wave number while Fig. (2.6b) indicates the in�uence of the memristor coupling. Higher

value of memristor coupling is observed to reduce the dissipation coe�cient. That is, the

dissipation coe�cient is seen to be a decreasing function of the memristor coupling.

In Fig. (2.7a) and (2.7b), the variation of the real part of the nonlinearity coe�cient

(Qr) with respect to the wave number and the e�ect of memristor coupling are depicted.
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Figure 2.6: A plot of the dissipation coe�cient vs. wave number in panel (a) and the

in�uence of memristor coupling depicted in panel (b).
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Figure 2.7: A plot of the real part of nonlinearity coe�cient vs. wave number in panel

(a) and the in�uence of memristor coupling depicted in panel (b).
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Figure 2.8: A plot of the imaginary part of nonlinearity coe�cient vs. wave number in

panel (a) and the in�uence of memristor coupling depicted in panel (b).

Qr is an increasing function of the memristor coupling. In Fig. (2.8a) and (2.8b), variation

of the imaginary part of nonlinearity and the in�uence of memristor are illustrated. Once

again the coe�cient is sensitive to the e�ect of electromagnetic induction translated by

the memristor.

According to Benjamin-Feir instability criteria, the stability of the network plane waves

depends on the sign of Pr × Qr. We recall that the plane waves under modulation will

become unstable when Pr ×Qr is positive while the waves will be stable when Pr ×Qr is

negative. Figs. 9 depicts the variation of this criterium with respect to the wave number.

It clearly reveals regions where unstable waves are expected in the network structure

(Pr ×Qr > 0). It is important to remark that this criterium only indicates region where

we expect the propagating plane waves to evolve into a localized periodic wave train and

not the manner in the the wave will propagate in the network. The dependence of this

criterium on the memristor coupling is also revealed in Figs. (2.9). We remarked from

the �gure that when the memristor is �xed at 1.0 is increased to 3.0, the critical wave

number is observed to reduce from 0.48π to 0.45π.

The clear dependence of the CGLE coe�cients and the Benjamin-Feir instability cri-
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Figure 2.9: A plot of the instability criteria coe�cient vs. wave number in panel (a) and

the in�uence of memristor coupling depicted in panel (b).

teria on the memristor coupling is important from both physical and biophysical point of

view. Firstly, as earlier stated, the whole system dynamical equations are showed to be

described by the CGLE. This indicates how electrical signals and waves emitted from the

heart sinus node propagates within the physiological environment using both space and

time domains in order to regulate heart beat as powerful pacemaker. Secondly, instability

criteria and the various solutions of the CGLE being functions of Pr, Qr, Qi, Rr, sensitive

to the memristor coupling are also highly relevant. It indicates the dependance of wave

propagation in the heart physiological environment on magnetic �ow e�ect. In the next

paragraph, we shall be dedicated to �ning the various solitonic solutions of the CGLE.

2.2.2.2 Exact solutions of the modi�ed CGLE

As earlier stated, getting exact solution of systems of nonlinear equations are usually

challenging. The technique employed here was to convert these equations to a more ma-

nipulable and integrable equation, without losing it's real characteristics nature. Through

the application of a speci�c perturbation approach and multiple scale analysis in the semi-

discrete limit, the obtained integrable equation in this context corresponds the modi�ed
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CGLE. In the next paragraph we derive and plot the exact solution of the CGLE. The

e�ect of some important system parameters on the resulting wave solution pro�le shall be

clearly examined.

We rewrite Eq. (2.66) in the form

i
∂A

∂T
+
Pr

2

∂2A

∂X2
+Qr|A|2A = −i(Qi|A|2 +

Rr

2
)A. (2.71)

The left hand side of the above equation corresponds to the well known Nonlinear

Schrödinger (NLS) equation whose exact solution is well known, depending on the sign of

PrQr. When PrQr is positive, the solution corresponds to envelopes. It's very important to

point out from physical perspective that the results of the plot of above clearly illustrates

how the region where these envelops are expected strongly depends on the memristor

coupling. The general solution of the left hand side of Eq. (2.71) is given by

A(X,T ) = A0sech[A0(
Qr

Pr

)
1
2X] exp i(

QrA
2
0

2
)T (2.72)

The solution of Eq. (2.71) is now obtained by using the change of variable

F (X,T ) = A(X,T ) exp i(σT ), (2.73)

where A(X,T) is the general solution of NLSE, given by Eq. (2.71). Inserting Eq. (2.73)

in Eq. (2.66) yields

σ = −i(Qi|A|2 +
Rr

2
). (2.74)

By making use of useful previous relations, we write the solution as

vi(n, t) =2V0sech[V0(
Qr

Pr

)
1
2 (n− Vgt)] cos[qn+ (

QrV
2
0

2
− ϵ2ω)t]×

exp[−(ϵ
2Rr

2
+QiV

2
0 sech

2[V0(
Qr

Pr

)
1
2 (n− Vgt)])] + 0(ϵ2),

(2.75)

with V0 = 2A0. The above equation represents the exact soultion of the obtained CGLE.

The soliton solution of the ionic wave amplitude Eq. (2.66) can also be obtained using

the Nozaki and Bekki ansatz [108,109]. This ansatz is given by

A(n, t) =
A0e

ϱ

1 + e(ϱ+ϱ∗)(1+iν)
, (2.76)
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with

ϱ =ϵq(n− Vgt)− ϵ2ωt,

ν =
3Qr

2Qi

±
√

8Q2
i + 9Q2

r

2Qi

.
(2.77)

The above ansatz can be written in the form

A = Ar + iAi, (2.78)

where

Ar = A0[
e−ϱ + cos(2νϱ)eϱ

2(cosh(2ϱ) + cos(2νϱ))
],

Ai = −A0[
sin(2νϱ)eϱ

2(cosh(2ϱ) + cos(2νϱ))
].

(2.79)

Using the above ansatz, we obtained

vn(t) = 2ϵ(Ar cos θ − Ai sin θ) + ϵ2[C + 2(Dr cos 2θ −Di sin 2θ)], (2.80)

where Dr and Di are the real and imaginary part of D where

C =a11(A
2
r + A2

i )

Dr =c1(A
2
r − A2

i )− 2c2ArAi,

Di =c2(A
2
r − A2

i ).

(2.81)

2.2.2.3 Linear stability analysis on a discrete NLS equation

In order to perform the linear stability analysis, we assume solution in the form

ηm(τ) = η0(τ)e
i(νm−µτ) for the amplitude Eq. (2.30), where the complex amplitude and

frequency are related to the perturbation wave number ν via the nonlinear dispersion

relation

µ2 =
R

Q

[
|η0|2 −

2D sin(q)

R
sin(ν)

]
. (2.82)

Unstable waves will develop in the modi�ed FHN model if µ2 < 0. Such a condition

depends both on the signs of R/Q and
[
|η0|2− 2D sin(q)

R
sin(ν)

]
. In fact, sin(ν) is bounded,

and

if R/Q < 0, then |η0|2 >
2D sin(q)

R
= η20,cr. (2.83)
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When the above condition is satis�ed, the plane wave will be say to be unstable under

modulation, and wave patterns will be expected in the system. Otherwise, the plane

wave will be stable. Along the same line, if R/Q < 0, there will instability given that

|η0|2 > |η0,cr|2. For this to be possible, we have �xed ν = π/2. From Eq. (2.83), we

extract the expression of the threshold amplitude given by:

η0,cr =

√
2K

R
sin(q). (2.84)

The same approach can be applied on Eq. (2.40) and Eq. (2.47) to yield the same result

obtained above and which yields

η0,cr =

√
1

R
. (2.85)

Obviously, the two expressions, although similar, are quite di�erent because one carries the

information related to the coupling between the membrane potential and the magnetic �ux

induced by its memory e�ects in the neuronal network and the others carry information

related to the same e�ect but in cardiac tissue as well information related to MSC in

neuronal network and will be used in the next chapter.

2.2.3 The RK4 numerical integration method

In numerical analysis, the Runge-Kutta methods are a family of implicit and explicit

iterative methods, which include the well-known routine called the Euler Method, used

in temporal discretization for the approximate solutions of ordinary di�erential equations

[110]. These methods were developed around 1900 by the German mathematicians C.

Runge and M. W. Kutta. Amongst those, the RK4 method is the most widely used in

programming. Let us examine the main steps of this ubiquitous method. Given the initial

value problem speci�ed as follows:

ẏ = f(t, y), y(t0) = y(0), (2.86)

where y is an unknown function (scalar or vector) of time t, which we would like to

approximate; we are told that ẏ, the rate at which y changes, is a function of t and of y

itself. At the initial time t0 the corresponding y-value is y0. The function f and the data

t0, y0 are given. Therefore the formulas of RK4 method are given by:

y(n+ 1) = y(n) +
1

6
(k1 + 2k2 + 2k3 + k4)

t(n+ 1) = t(n) + h

(2.87)
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for n = 0, 1, 2, 3, ..., using

k1 = hf

(
t(n), y(n)

)
k2 = hf

(
t(n) +

h

2
, y(n) +

k1
2

)
k3 = hf

(
t(n) +

h

2
, y(n) +

k2
2

)
k4 = hf

(
t(n) + h, y(n) + k3

)
(2.88)

where h > 0 represents the step-size and n stands for the iteration number. y(n + 1) is

the RK4 approximation of y(tn+1), and the next value (y(n + 1)) is determined by the

present value (y(n)) plus the weighted average of four increments, where each increment

is the product of the size of the interval, h, and an estimated slope speci�ed by function

f on the right-hand side of the di�erential equation. The RK4 method is a fourth-order

method, meaning that the local truncation error is on the order of O(h5), while the total

accumulated error is on the order of O(h4). Note that the above results are necessary and

su�cient to �nd the numerical solutions of Eq.(2.86) as long as it remains continuous.

However, considering a discrete model, one needs moreover to these results, additional

conditions called boundary conditions whose choice depends on the studied problem.

Throughout our experiments, we have adopted periodic boundary conditions since the

di�erent models explored are assumed to be cyclic. For example, a network of N neurons

with nearest neighbors interactions obeys the following boundary conditions

x(0) = x(N) and x(N + 1) = x(1). (2.89)

Conclusion

This chapter has been organized around two main themes. The presentation of the four

improved FHN models; the model with the consideration of the electromagnetic e�ects

induced by a memristive coupling on both neural and myocardial networks, and then

the coupled model with MSC. In addition, the analytical methods such as the multiple

scale expansion, the linear stability analysis and the RK4 numerical integration method

furnished the second part of the chapter. Thanks to the SDA, we have been able to

reduce the challenging generic equations to a NLS and CGL equations whose solutions
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have been extensively developed in the literature. Then the analysis of the linear stability

allowed us to determine the critical amplitude above which the plane wave would become

unstable. We are therefore interested not only in the various patterns induced by the MI

phenomena, but also in the study of the di�erent phenomena that are associated with the

transmission of nerve impulses when taking into account the e�ects of MSC, EMI and

EMR.
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Chapter 3

Results and Discussion: Linear

Stability Analysis and Spatiotemporal

Patterns under Magnetic Flow

Introduction

Wave propagation, synchronization and pattern formation are among the most inves-

tigated research areas in �eld of both cardiac and brain researches. In this chapter we �rst

study MF e�ect in a discrete FHN neural network. The impact of the MC on the emer-

gence of nonlinear patterns is discussed analytically and numerically, via the MI. Some

features of the critical amplitude are given by the relation (2.84) will be presented with an

emphasis on the modi�cations of instability zones when the MC parameters are modi�ed.

Also a numerical study will be done on the various generic models in order to con�rm

our analytical results. Furthermore, other mechanisms of pattern formation is presented

when the network is exposed to EMR. Secondly, the same mechanism is applied to the

network of myocardial cells and a possible mechanism of heart failure suggested when

exposed to continuous EMR. Thirdly, we will study both analytically and numerically

the conditions for the formation of synchronized nonlinear patterns in electrically coupled

Memristive based FHN under EMR. MSC is showed to importantly modi�ed instability

feature. The stability of WP under EMR will also be further discussed. Finally the for-

mation of localized modulated wave in the improved model for myocardial cell through

analytical and numerical methods will be presented. We end with a summarized results
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of our investigation.

3.1 MF patterns in FHN neural networks

Here we study pattern formation in the FHN model with MF through the MI tech-

nique. In that respect, e�ects of some parameters on nonlinear patterns such as the

Memristor coupling, electric synaptic coupling, external stimulus current and electromag-

netic radiation ϕext are investigated both analytically and numerically.

3.1.1 Analytical analysis of MI

To remind the critical amplitude is a threshold value of the plane wave amplitude above

which the plane wave becomes unstable under modulation, and wave patterns are expected

in the system. Such critical amplitude should be useful to predict the MI phenomenon in

our system. We therefore propose to examine the critical amplitude η0,cr of Eq. (2.84) as

a function of the wave number q of the plane wave.

We have plotted the critical amplitude vs. the wave number in Figs. (3.1), where

the stable and unstable regions are clearly displayed. We take the memristor coupling

parameter k1 = 1.5 and the coupling parameter between cells K = 0.1. However, since

the main purpose is to bring out the e�ect of the magnetic �ux through the memristor

coupling parameter, we plot in Fig. (3.1b) the critical amplitude η0,cr for three di�erent

values of the memristor coupling parameter k1, namely 0.2, 1.0 and 1.7. We take the

coupling parameter K = 0.1. It is observed that the critical amplitude is an increasing

function of k1, thus showing how the electromagnetic induction could be important in the

process of intercellular communication in neural networks via MI activation. Comparing

Fig. (3.1a) and (3.1b), it is observed that the increasing of the coupling parameter K also

increases the critical amplitude η0,cr.

The direct e�ect of the latter, however, is to expand the interval of instability, thus

increasing the possibility of �nding the investigated wave patterns. Unfortunately, this

is just a consequence of the linearization of the perturbation around the plane wave

solution, and could not give more information on the way wave patterns could emerge in

the network, neither can it tell us about the longtime evolution of the perturbed plane

wave.

We therefore intend to perform full numerical simulations on the generic Eqs. (2.1).
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Figure 3.1: Panels display the critical amplitude η0,cr, vs. the wave number q, as given

by the instability criterion (20). Panel (a) displays the critical amplitude for k1 = 0.1 and

K = 0.05 , while panel (b) shows how η0,cr is an increasing function of the MC parameter

for K = 0.5

3.1.2 Numerical analysis of MI

The linear stability analysis does not give any information about the long-time evo-

lution of the modulated waves, since it is mainly based on the linearization around an

unperturbed plane wave. We therefore intend to perform full numerical simulations on the

generic system given by Eq. (2.1). Results are obtained via the fourth-order Runge-Kutta

computational scheme with periodic boundary conditions and time-step ∆t = 10−2. The
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number of FHN neurons forming the network has been chosen in order to avoid wave re-

�exion, while initial conditions correspond to the combination of the respective solutions

used both in the analytic calculations and through the linear stability analysis. The wave

number q has been chosen in regions of instability as q = 0.15π, while we have considered

ν = 0.1π. For further investigations, the MF e�ects are investigated and the features of

the subsequent waves patterns of the membrane potential vn(t) are discussed.

In Figs. (3.2), we perform the numerical simulations for K = 0.05. That is to say

we have considered two nearest neighbors coupling in a weak coupling regime. A weak

coupling between neighboring cells is also related with a situation that arises in the study

of non-linear oscillating waves in the β-cell islets of the pancreas, which secrete insulin

in response to glucose in the blood [111]. In the detected regions of instability, one

should expect di�erent behaviors of the system, depending on the value of k1, which

indubitably in�uences the instability features. Therefore, we can control the feature of

pattern through the variation of parameter k1. Then, we �x all the other parameters

and play on the values of k1 for the suitable phenomena of memristor coupling in pattern

formation to be described. It is well known that time and space are of high importance

in the process of interneuronal communication, some good examples being visual, sensory

motors and olfactory cortices [112]. Therefore, we represent the spatiotemporal dynamics

of the membrane potential in Figs. (3.2) and (3.3) under low dispersive e�ect. We

use two di�erent values of k1, namely k1=1.5[Fig. (3.2)] and k1=2.5[Fig. (3.3)]. As

one can remark, the system presents multiple states comprised of patterns with di�erent

topologies. The obtained patterns con�rm our analytical expectations as one observes

patterns of waves. This once more con�rms the fact that wave patterns are possible in all

systems where dispersion and nonlinearity are present. In Fig. (3.2) that is for k1=1.5,

we observe the formation of quasi-periodic wave patterns with swimming behavior. As

interestingly observed in Fig. (3.2), the (X,Z) plane presents breathing modes. Such

generated rhythmic behaviors like breathing or swimming have been observed in central

pattern generators (CPGs) [113] and are particularly important in brain researches due

to their striking capacity to produce a considerable variety of coordinated patterns in

response to their surrounding changes and their behavior needs. Inspired by the fact the

CPGs have some similarity and are able to share their morphological dynamical properties,

Yuste et al. [114] introduced and developed the idea of considering CPGs as the theoretical

framework to understand cortical micro-circuits. The oscillations connected to the rate
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Figure 3.2: Panels show the spatiotemporal features of patterns at �xed parameters

k1=1.5, K = 0.05 and Iext = 0.05, (a) 3D feature, (b) X, Z plane and (c) X, Y plane
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Figure 3.3: Panels show the spatiotemporal features of patterns at �xed parameters

k1=2.5, K = 0.05 and Iext = 0.05, (a) 3D feature, (b) X, Z plane and (c) X, Y plane
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of breathing are very tied to bringing sensory data together as perceptions [115]. In fact,

breathing is highly connected to altering perceptions related to emotions and di�erent

physical activities [115].

Still, we do not change the value of k2, but as the memristor coupling parameter k1

increases, we expect the formed patterns to change their features as this is the case for Fig.

(3.3), where we have �xed k1 = 2.5. The features observed in Fig. (3.2) are a�ected, as

swimming patterns are now more visible. Then, feedbacks can also modulate the traveling

waves and can produce complex spatial patterns in various developmental contexts [116].

We observe also in Fig. (3.3c) that each structure generated is well separated from each

other. Also, the amplitude of patterns decreases when the memristor coupling parameter

increases, however this leads to a more observation of swimming patterns in the second

case. Synchronization can be enhanced at di�erent levels, that is, the constraints on which

the synchronization appears. Those can be on the trajectory amplitude, requiring the

amplitudes of oscillators to be equal, giving place to complete synchronization [117]. Figs.

(3.2c) and (3.3c) give an example of this where patterns of membrane potential display

synchronized states described by the obtained quasi-periodic patterns. Such synchronized

patterns may represent a generic property of globally coupled neural networks, which

might be of interest for experimental studies. There are evidences that such patterns may

be related to a series of processes in the brain such as movement control and cognition

[118�120]. Although quasi-periodic-like behaviors are signi�cative for brain functions, they

should be controlled to avoid some pathological brain rhythms such as the Parkinson's

disease and epileptic seizure, which have identical physiological anatomic structures [121].

In Fig. (3.4), the numerical simulations are performed for k1 = 2.5 under higher

coupling strength between cells K = 0.5, while the other parameters remain unchanged.

It is observed that the increasing of the coupling strength K more depicts the breathing

in swimming of patterns as time progresses. In fact, as one can observe in Fig. (3.4),

the initial wave gives rise to additional vagueness that tend to form visible swimming

patterns. More interesting, such dynamical properties are seen in many forms of cortical

activity [122]. On the other hand, strong coupling between neurons under the e�ect

of electromagnetic radiation can give rise to visible swimming or breathing patterns in

excitable systems.

We have plotted in Fig. (3.5), the spatial evolution of patterns for K = 0.5 and

k1 = 2.5. These patterns, being plotted at di�erent times, see their behaviors change as
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Figure 3.4: Panels depict the (X,Z) and (X,Y) planes of spatiotemporal features of

patterns for K=0.5 at �xed parameters k1=2.5 and Iext = 0.05
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Figure 3.5: Panels show the spatial features of patterns at �xed parameters k1 = 2.5,

K=0.5 and Iext = 0.5 at: (a) t=1500 and (b) t=2500

time increases. Remarkably, at t = 2500, series of spikes are obtained [this can be seen

in Fig. (3.5b)], and their behaviors clearly picture memristor coupling e�ects. We clearly

notice that cells display the same dynamics. These oscillations depicted in Figs. (3.5) are

nonlinear oscillations with some features of synchronization as already mentioned above.

Synchronous oscillations from groups of neurons have been shown to correlate with quickly

changing mental states, such as absorbing and analyzing new information [123]. Along the

same line, synchronized �ring of neurons also forms the basis of periodic motor commands

for rhythmic movements [124]. We should however stress that the observed behaviors

reinforce the e�ciency in describing waves �owing in discrete networks of coupled cells

which can behave as excitable media.
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Figure 3.6: Panels show the features of patterns by setting di�erent transmembrane

currents at �xed parameters K=0.5, ω=0.05, k1 = 1.5 for (a) I0=0.01, (b) I0=1.00 and

(c) I0=2.50
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In Fig. (3.6), distinct patterns for membrane potential are observed. The transmem-

brane current is taken in the form of a periodical function Iext = I0sin(ωt) and I0 is

selected to detect the mode response of electrical activities. In Fig. (3.6a) for I0 = 0.01,

it is observed the generation of pulses. However, when I0 is increased, these pulses are

linked each other from the time t = 800 for I0 = 1 and from t = 600 for I0 = 2.5. In fact,

patterns are individually localized at the beginning, but after a given time, there appear

linked structures which suggest connectivity between cells. Interestingly, the linked struc-

tures, when the transmembrane current is appropriate should tend to become linear as

displayed by Fig. (3.6c). In the latter, information is e�ectively shared between all the

cells from t = 600, so that as time increases, intercellular communication tends to become

perfect. Then Fig. (3.6) reveals that various states for patterning can be observed by

varying the transmembrane current. These results con�rm those recently obtained by Ma

et al. [28] who found that transmembrane current can be responsible for complex modes

of the action potential in excitable media.

It is found in Figs. (3.7) that the electrical activity of cells can present multiple types

of pattern with increasing the angular frequency. In Figs. (3.7a) that is for ω = 0.1,

as displayed in Figs. (3.6), from t = 600 intercellular communication is favored due to

the emergence of linked structures with solitonic features. In Figs. (3.7b), that is for

ω = 0.5, patterns are robust and periodically separated in time while in Figs. (3.7c), that

is for ω = 1.5, they appear as individual entities in the form of lobes. Spatiotemporal

pattern and synchronization dynamics are very crucial in understanding normal function

and dysfunction of neuronal systems, but they rely on speci�c frequencies. Experimen-

tally, such frequencies are known and lots of contributions have been devoted to their

subsequent wave patterns, especially those related to pathological rhythmic brain activity

in Parkinson�s disease, essential tremor, and epilepsies.

In Figs. (3.8), di�erent feedback gains k1 are applied by selecting ω = 0.5 and I0 = 1.

It is observed various patterns depend-ing of the choice of k1. As k1 increases, the formed

patterns display rows which are obviously separated. The linear stability analysis could

not predict the emergence of separated structures, which in present work is new and

appears to be a consequence of discreteness e�ects. This is the main characteristic of MI,

which involves sequences of lattice cells in collective oscillations. These results con�rm

the fact that modulated traveling waves and complex spatial patterns can be produced

by feedbacks in various developmental contexts [116]. The numerical results reported in
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Figure 3.7: Panels show the features of patterns by setting di�erent values of angular

frequency of transmembrane currents at �xed parameters K = 0.5, k1 = 2.5, I0 = 1 for

(a) ω = 0.1, (b) ω = 0.5 and (c) ω = 1.5
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Figure 3.8: Panels show the features of patterns when induction current k1ρ(ϕn)vn is

generated with di�erent intensities. The parameters are selected by K = 0.5, ω = 0.5, I0 =

1.0 for (a) k1 = 0.1, (b) k1 = 0.5 and (c) k1 = 2.5
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this subsection 3.1 can be extended to account for these processes.

As a partial conclusion, the above work was devoted to pattern formation via the

modulational instability analysis in excitable media under the e�ect of electromagnetic

induction. We have shown that a simple and physically-motivated modi�cation of the

FitzHugh�Nagumo equations can mimic the coexistence of dynamical motifs seen as

swimming or breathing patterns. Analytically, it has been shown that increasing the value

of the feedback gain considerably modi�es the instability features. Numerical simulations

have been carried out to con�rm analytical predictions. The results have suggested that

the e�ect of electromagnetic induction through the memristor coupling in excitable cells

enhances e�cient information transfer among coupled cells, therefore can lead to memory

signaling. However, another point of interest is to understand in the main time the e�ect

of MF in coupled myocardial cell interneuronal communication under electromagnetic

radiation.

3.2 MF patterns in FHN cardiac tissue under electro-

magnetic radiation

During the time period when electrical waves of excitations are emitted from the sinus

node and spread among cardiac tissues, a time varying electromagnetic �eld is induced.

Here we study pattern formation in the FHN myocardial model with MF through the

MI technique. In that respect, e�ects of some parameters on nonlinear patterns such

as the Memristor coupling, external stimulus current and electromagnetic radiation are

investigated both analytically and numerically.

3.2.1 Analytical analysis of MI

In engineering nowadays, modulated waves are highly preferred to non-modulated ones

since they can be transmitted along much longer distances. It generally has the form of

soliton-like objects and one of the mechanisms to generate such waves is via MI. MI has

been demonstrated to be a pathway to energy localization in bio-molecules and in discrete

systems, in general. It results from the interplay between nonlinearity and dispersion. To

remind, modulated waves generally arise when the plane wave solution of the system

equation, becomes unstable under slight modulation. Using the same stability of MI used
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Figure 3.9: Figure displays the plot of critical amplitude χ0,cr, vs. the wave number q,

as given by the instability criterion (3.5), with k0 = 1.6 and K = 0.01

in the previous section, we construct an approximate solution vn(t) of Eq. (2.40) as

vn(t) = ϵχ(m, τ)ei(qn−ωt) + λ(ϵ2) + c.c, (3.1)

from where we can now express the slightly perturbed solution of the paradigm equation

as

χ(m, τ) = χ0e
i(ϑm−Γτ) (3.2)

with the wave number ϑ and the frequency of perturbation Γ obtained by inserting Eq.

(3.1) in Eq.(2.4). It gives the nonlinear dispersion relation

Γ2 =
1

γ(q)
[|χ0|2 −

2K sin(q)

R
sin(ϑ)]. (3.3)

Unstable waves will emerge when Γ2 < 0. This can be achieved by technically considering

the sign of γ(q) = Q
R
and |χ0|2 − 2K sin(q)

R
sin(ϑ). We are deally with a boundary condition

problem as ϑ is bounded due to discreteness e�ect, thus we set sin(ϑ) = 1. The quantity

γ(q) < 0, implies MI result when |χ0|2 − 2K sin(q)
R

> 0. We can now express the later term

as

|χ0|2 >
2K sin(q)

R
= χ2

0,cr. (3.4)

When the above condition is not respected, the wave remains stable and will propagates

via the lattice without distortion. The instability condition can now be stated exclusively

as
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Figure 3.10: Figure displays the plot of critical amplitude χ0,cr, vs. the wave number

q, as given by the instability criterion (3.5) for di�erent values of memristor coupling k0,

with K = 0.02. We observe; η0,cr is an increasing function of memristor coupling k0

γ(q) < 0; |χ0|2 > χ2
0,cr (3.5)

It's expected from the above analyzes that when the parameters fall inside the unstable

region, unstable patterns of waves should be observed via the cell lattice through the

activation of MI.

We have therefore plotted the critical amplitude (χ0,cr) versus(vs.) the wave number(q)

in Fig.1, where the stable and unstable regions are clearly presented. In order to picture

the e�ect of induced electromagnetic gain created by the external electromagnetic �eld,

we have also plotted χ0,cr vs. q for di�erent values of the memristor coupling k0 as

indicated in Fig. (3.9). The critical amplitude is seen to be an increasing function of the

memristor coupling, thus showing how important electromagnetic induction created from

the external �eld could be vital in the process of intercellular myocardial communication

through the activation of MI. The reader should remark that in Fig. 1, the gap junction

coupling was set at K = 0.01 and in Fig. (3.10), its value has been increased to K = 0.02.

Comparing Fig. (3.9) and Fig. (3.10), there is an increased in threshold amplitude as the

value of the gap junction coupling is increased. This is an indication of its importance in

cell communication due to its ability to modify instability features. In the next paragraph

this analytical prediction will be con�rmed through numerical simulation by using initial

conditions whose parameters values are chosen from the instability region of our analytical

prediction.
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3.2.2 Spatiotemporal patterns and biological implications

We numerically integrate the generic model of Eq. (2.2) using the fourth-order Runge-

Kutta computational scheme with time-step h=0.01 and periodic boundary conditions.

The initial conditions are selected to be a slightly modulated plane waves [?, 31] with

q = 0.01π, a0 = 0.001, ϑ = 0.12π and v0 = 0.01. The corresponding values of w0 and ϕ0

follow from Eqs. (2.35);

v(t = 0) =v0(1 + a0 cos(qn)) cos(ϑn),

w(t = 0) =w0(1 + a0 cos(qn)) cos(ϑn),

ϕ(t = 0) =ϕ0(1 + a0 cos(qn)) cos(ϑn).

(3.6)

Our aim in this numerical analysis is to bring out the impact of the e�ects of electro-

magnetic induction through the memristor coupling and radiation imposed as a periodic

forcing on the magnetic �ux variable equation, on the occurrence of unstable wave patterns

activated by MI.

Figure 3.11: Figure shows the spatiotemporal features (the 3D feature) of patterns for

the magnetic �ux gain k0 = 2.51, t = 200. Other parameter values used are; K = 0.5, I0 =

0.035 and ω = 0.8

It is well known that time and space are of high importance in the process of intercellu-

lar communication, with some good examples being visual, sensory motors and olfactory
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Figure 3.12: Panels show the spatial features of patterns for di�erent magnetic �ux gain

k0; (a) 2.51, (b) 2.53 and (c) 2.58

cortices [125]. Therefore, we represent the spatiotemporal dynamics of the cardiac action

potential under low dispersive e�ect. In Fig. (3.11), the spatiotemporal features(3D) of

patterns for the magnetic �ux gain k0 = 2.51 is represented. Using three di�erent values

of magnetic �ux gain, the spatial features(2D) of the patterns are represented[Fig. (3.12)].

As a �rst remark, the introduced plane wave breaks into trains of waves, which have the

appearance of soliton-like shape objects. This is as expected from the linear stability

analysis, when appropriate values of wave numbers q and k0 are chosen. This suggests

that the fundamental question for the existence of nonlinear excitations with soliton-like

shape in our myocardial tissue model, as predicted by analytical predictions, appears to

have been answered by numerical experiments. Such excitations are known to be robust

and usually important in the coherent transfer of energy. This once more supports the

suggestion that wave patterns exist in all systems where there is the presence of dispersion

and nonlinearity. We recall that the localized unstable wave oscillations obtained in this

work have been reported in many other biophysical systems, where under certain condi-

tions , they can move and transport energy along the system [126, 127]. In [126], such

localized oscillations are known to be precursors of bubbles that appear in the thermal

denaturation of DNA and have been reported to describe the breaking of the hydrogen

bonds linking two bases.

Furthermore, it's also expected that depending on the value of k0, one should observe

di�erent behaviors of the system in the detected regions of instability, which should un-

questionably a�ects the instability features. We can thus control these characteristics

features of pattern through the variation of parameter k0. As one expected, there is

a modi�cation in the obtained pattern as the value of the magnetic �ux gain, via the
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memristor coupling is increased. We observe in Figs. (3.12), how the localized patterns

have been modi�ed. There is a gradual decreased in amplitudes of the soliton-like shape

objects. Such decreased in amplitude could be associated with the suppression of os-

cillating behavior of electrical activities, where heartbeat can be terminated. More so,

the e�ect of electromagnetic radiation can be detected and investigated when neurons

or cells are exposed to electromagnetic �eld [128]. A periodical type of electromagnetic

radiation(H0 cos(Ωt)) is imposed to change the distribution of magnetic �eld and also the

magnetic �ux. To discern this e�ect of electromagnetic radiation, the forcing current Iext

is set at I0 =0.035 and ω =0.08. In Figs. 5, di�erent values of radiation amplitude H0

are applied to observe the in�uence on pattern formation. The angular frequency is kept

constant at Ω =0.05. Figs. (3.13) reveal localized structures appearing in the form of a

breather-like coherent excitation. Zdravkovi et al. [127] suggested these oscillations to be

triggering signal for motor proteins to start moving along microtubule systems. In the

brain, such generated rhythmic behaviors like breathing or swimming have been reported

in the central pattern generators(CPGs) [113] and are particularly important in brain

researches due to their striking capacity to produce a considerable variety of coordinated

patterns in response to their surrounding changes and their behavior needs. In fact,

breathing is highly connected to altering perceptions related to emotions and di�erent

physical activities [115].

Figure 3.13: Panels show the spatial features of patterns for the electromagnetic intensity

(a) H0=2.50, (b) H0=2.54 and (c) H0=2.65, with k0 = 1.50

This result has clearly revealed mode transition in oscillating behaviors as the angular

frequency of the external electromagnetic radiation is increased with strong amplitude.

The induced multiple modes in electrical activities have been reported to be consistent

with biological experiments [129]. This dynamical response could be related to the magne-

tization and polarization of the heart medium. That is, when the external radiation is low,
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(a)

(b)

(c)

Figure 3.14: Panels show the spatiotemporal features of patterns for the memristor

coupling parameter (a) k0=0.50, (b) k0=1.50 and (c) k0=2.04, with H0=1.3

the medium can absorb the radiation, with the cell still being able to select appropriate

modes in electrical activities. In the case of a high-frequency electromagnetic radiation,

the heart medium can be polarized and magnetized alternatively when the medium is ex-

posed to an external electromagnetic �eld. This e�ect can thus contribute in suppressing

electrical behaviors. This con�rms the work reported in [28]. It could thus account for

information encoding of myocardial cells. In the next paragraph, parameters are set as

H0 = 1.3, I0 = 0.035, ω = 0.05,Ω = 0.08, then di�erent feedback gains k0 are applied to

observe its in�uence on pattern formation. The results are presented in Figs. (3.14).

Figs. (3.14) presents spatially broadened pulses, or front waves, ubiquitous in excitable

media like neurons and cell membranes [130]. In the heart, they have the responsibility
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to trigger harmonized contractions, whose failure can lead to important physiological

disturbances [131]. We remark also that, as the value of the feedback k0 is increased, the

amplitude of the pulses are greatly reduced, with a diminishing pattern. Once again such

disappearing patterns suggest once more the suppression of myocardial cell excitations.

As such, the normal electrical activities of myocardial cells can be seriously disturbed. In

the next paragraph, we present the e�ect of increasing the intensity of the trans-membrane

current at a constant angular frequency (Ω =0.05). The observed patterns are presented

in Figs. (3.15).

Figs. (3.15) present pulses which are linked together as the intensity of the trans-

membrane current is increased, notably at t=300 and t=500 in Figs. (3.15c). This

formation of some extra-patterns, between the localized mode as the intensity of forcing

current is increased, could mediate intercellular communication among myocardial cells.

This once more prove that MI is an excellent and a direct mechanism that lead to the

formation of solitons and train of waves in systems where there are permanent competitive

e�ects between nonlinearity and dispersion [132]. The cardiac tissue and brain consist of

billions of neurons, which forms a complex network. It could be better to further discussed

this problem by setting di�erent topological network of neurons [81] for better dynamical

analysis and potential disease occurrence. Based on this new model, di�erent noise-like

electromagnetic radiation can be used to better investigate the dynamical response in

excitation and electrical activities. This could improve our understanding of potential

mechanism of nervy diseased induced by electromagnetic radiation.

Modulational instability was used to study pattern formation in an improved cardiac

model, whose cells are exposed to external electromagnetic radiation of periodic type.

This improved model included the magnetic �ux variable used to describe the e�ect of

electromagnetic induction in cells, created during the �uctuation of electrical activities

and ions concentration from Faraday electromagnetic induction theory. Indeed, appropri-

ate electromagnetic �eld can be induced in cardiac tissue, when exposed or surrounded by

external electromagnetic radiation. We use the powerful discrete multiple scale expansion

method to reduce the generic equations to a single di�erential-di�erence amplitude non-

linear equation, on which linear stability analysis is performed. Using data obtained from

our linear stability analysis, we performed the numerical experiments. As earlier predicted

from our stability analysis, the system supports multiple localized modes, with di�erent

topologies, consistent with biological experiments. This include breather-like excitations,
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soliton-like in shapes, where under certain conditions, have been reported to move and

transport energy along biophysical systems. This result suggests from biological point

of view that the electrical wave of excitations initiated from sinus node can propagate

in cardiac tissue in the form of localized modulated solitonic waves thereby regulating

heart beat. Other patterns include spatially broadened pulses or front waves reported

in triggering harmonized contractions in the heart, whose failure can lead to important

physiological disturbances. We remark as well that, pattern dynamics generally presents a

diminishing pattern under a high frequency electromagnetic radiation with high intensity.

Such pattern disappearance under a high frequency electromagnetic radiation with high

intensity could greatly reduce oscillating behavior in electrical activities and heartbeat

terminated. This can possibly cause the heart not being able to pump enough blood to

supply the body needs, leading to a collapse of the body normal functioning. The result

of this subsection 3.2 recommends prevention against electromagnetic radiation, vital for

the healthy functioning of the heart.

Due to the complex topology of neural constitution in the brain, it would be very

interesting to investigate the e�ect of EMR on neural dynamics coupled by memristive

synaptic coupling.

3.3 E�ect of EMR on the dynamics of spatiotemporal

patterns in memristor-based neuronal network

In this section, we discuss the e�ects of electromagnetic radiation on the electrical

activity of neurons coupled by a memristive synapse. For this purpose, we study analyt-

ically and numerically the MI phenomenon, �rst by representing the di�erent pro�les of

the critical amplitude given by the relation (2.85), then by numerically integrating the

system of Eq. (2.6) which describes the spatiotemporal dynamics of the action potential

in�uenced by memristive synapse and external electromagnetic radiation . We �nd that

small memristive synaptic coupling may be responsible for regular bursting patterns and

may enhance synchronous states in the network. However, with increasing the coupling,

full synchronization is di�cult to realize and leads to irregular spatiotemporal patterns

of action potentials. It is con�rmed that under strong electromagnetic radiation, the

propagating waves encountered turbulent electrical activities, with patterns breakdown

into a homogeneous state. This disordered state, collapse and instability of traveling
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pulse is monitored and analyzed using the sampled time series for membrane potential.

It decreases to quiescent state under strong electromagnetic �eld.

3.3.1 Analytical features of MI

In a discrete lattice, MI phenomenon can be predicted from the pro�les of the critical

amplitude which characterizes the threshold amplitude of the plane wave above which the

latter become unstable under a slight disturbance due to the interplay between nonlinear-

ity and dispersive e�ects of the medium. Indeed, the critical amplitude Bcr given by Eq.

(2.85) depends on several parameters such as the wave numbers q and ϑ of carrier and

plane waves, respectively and the memristive synaptic coupling strength K just to cite a

few. In what follow we will attempt to picture the variations of the threshold amplitude

as a function of q and K as a system control parameters.

Fig. (3.16) depicts the variation of critical amplitude (Bcr) with respect to the wave

number (q). The stable and unstable regions of MI are clearly displayed. To bring out the

e�ect of the memristive synaptic coupling (K), the critical amplitude has been plotted for

di�erent values of K. The critical amplitude is found to be an increasing function of the

memristive synaptic coupling, thus showing how important such coupling could be in the

process of signal processing in the brain. However, linear stability analysis is based mainly

on linearization around the unperturbed plane wave, valid only when the amplitude of

the perturbation is small in comparison with the amplitude of the carrier wave. This

makes such linear approximation to fail at large time scales as the amplitude of the

unstable sideband grows exponentially. In addition, linear stability analysis minimizes

the consequence problem of wave-mixing, by not taking into account extra, additional

combination of waves formed through this process, which albeit small at the onset stage,

will not remain negligible at great time scales hence cannot give us the long time evolution

of a modulated nonlinear plane wave. In the next paragraphs, the generic model will be

integrated numerically to explore the long-time evolution of the slightly modulated plane

wave propagating in the networks.

3.3.2 Numerical analysis of MI

To con�rm the analytical results, we have solved numerically the generic Eqs. (2.6)

using the RK4 computational scheme with time-step h = 0.01. The initial conditions
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correspond to slightly modulated plane waves, with wave numbers selected as q = 0.15π

and ϑ = 0.1π, chosen from the instability regions of the MI [Fig. (3.16)]. It is therefore

expected that for these selected values of q and ϑ, while �xing K, unstable wave patterns

will emergence in the cell lattice. In the rest of the paper, we investigate through pat-

tern formation and time series analysis, the e�ect of memristive synaptic coupling and

electromagnetic radiation on the features of subsequent wave patterns of the membrane

potential. Firstly, we �x K=0.05 and the results plotted in Fig. (3.17).

The panel in Fig. (3.17) presents spatially homogeneous patterns, with temporal

periodic-like structures. This obtained pattern con�rmed our analytical prediction as the

system clearly displays separated rows of localized wave pattern. As earlier predicted,

this is the consequence of the simultaneous e�ect of dispersion and nonlinearity in the

system. The formation of separated structures with rows appeared as a consequence of

the highly pronounced discreteness e�ect, which involves the sequencing of the cells lattice

involved in collective oscillations. We further investigate the e�ect of memristive synaptic

coupling gain on pattern formation by increasing its value, which will indubitably a�ects

the behavior of the system. The results are presented in Fig. (3.18).

As expected, higher value of memristive synaptic coupling has greatly in�uenced the

calculated spatiotemporal patterns. As the value of the memristive synaptic coupling is

increased from left to the right of Figs. (3.18) , we observed a modi�cation in the spatial

pattern, through the formation of more curved localized wave patterns [Figs. (3.18c)].

The formation of these curved patterns clearly destroys the formal synchronized patterns

obtained for small memristive coupling. The large memristive synaptic coupling K with

corresponding unsynchronized patterns in Figs. (3.18c) could implies strong information

transmission through the lattice and can account for the variation of sleep rhythms at

di�erent stages in thalamocortical networks [133]. Dynamical properties accompanied by

the destruction of coherency by strong interactions have been con�rmed to be a general

phenomenon in neural networks [134]. As a potential mechanism, diversity in synaptic

connection between neurons may initiate traveling wavefronts in the network to act as

regulator of collective electrical behaviors. However, strong interactions may give rise to

small radiation, with features of incoherent wave collisions. As such, in a large neural

population, when �ring is done simultaneously, a number of multiple collisions could be

undergone by the subsequent waves, which could unquestionably destroy coherency as

observed in Figs. (3.18c) . The time series for membrane potential at are calculated at
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di�erent nodes and results plotted in Figs. (3.19).

Figs. (3.19) presents nonlinear quasi-periodic oscillations with some features of syn-

chronization. This is highly signi�cant from biological point view and has been reported

to account for large dynamical range of sensory cortex [135]. Synchronous oscillations

from groups of neurons have been shown to correlate with quickly changing mental states,

such as absorbing and analyzing new information [123]. It is known that external stimuli

can be e�ective to change the excitability and electrical activities of neurons. By setting

appropriate forcing for Iext, the results are presented in Figs. (3.20).

It is found in Figs. (3.20) that electrical activities are modulated by appropriate trans-

membrane current under memristive synaptic interactions. Distinct oscillatory properties

are observed in the sampled time series for trans-membrane potential and con�rmed that

electrical activities are controlled by external stimuli. Networks with complex topology

can display complex spatiotemporal patterns essential for a higher coordination of brain

functions as well as it ability to adapt to a variety of di�erent environmental conditions.

Though the emergence of spatial disordered state under strong coupling interactions are

recognized general phenomena of neural networks, they should be controlled to avoid

some pathological brain rhythms such as Parkinson's and epileptic seizures, which have

been reported to have the same anatomical-physiological structures [121]. In the past

years many contributions have been made towards eliminating some nerve diseases by

stimulating some closely packed cells in the internal regions of the brain [136]. We further

investigate the e�ect of an external forcing on the resulting disordered patterns created

by the strong memristive synaptic coupling. The results are plotted in Figs. (3.21).

The results of Figs. (3.21) suggests the possibility of achieving spatial regularity or

coherency in the network by increasing the value of the external forcing. The rise in the

use of electromagnetic portable instruments, multiplications of electrical devices in �ats,

nearness of manufacturing industries to the domain of habitations have increased elec-

tromagnetic interactions in human biological cells, notably the cells of the brain and the

heart. We approached this e�ect of electromagnetic radiation by considering a periodical

type of radiation(ϕext = A cos(2πft)), imposed to change the distribution of magnetic

�eld and also the magnetic �ux. We �rst set the frequency f=0.2, and amplitude A=0.04,

with the observed patterns and corresponding time series presented in Figs. (3.22).

The results in Figs. (3.22) con�rmed the modulation in electrical activities of cells

in the presence of an external electromagnetic radiation. The spatiotemporal pattern
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revealed the breakdown of the initial separated localized wave pattern in the cell lattice

into a clearly disordered state under electromagnetic radiation. The sampled time series

which is helpful in predicting the occurrence of breakdown in a network is also presented

in Figs. (3.22) at the cell node 300. It is observed that the cells excitability are highly

reduced by this external in�uence of electromagnetic radiation. At about 350 time units,

oscillatory behavior are observed to have completely reduced to the quiescent state. To

better comprehend this e�ect, we keep the frequency of the electromagnetic radiation �xed

and the e�ect of the electromagnetic radiation intensity on pattern formation is examined.

The results are plotted in Figs. (3.23) as the amplitude of the electromagnetic radiation

is increased.

It is observed in Figs. (3.23) clear modi�cation in the obtained pattern of waves as the

intensity of electromagnetic radiation is increased. This is witnessed through the formation

of more scattered patterns as the intensity of electromagnetic radiation is increased. With

the amplitude �xed, the e�ect of the electromagnetic radiation frequency is investigated,

with results illustrated in Figs. (3.24).

Figs. (3.24) depicts the e�ect of high frequency electromagnetic radiation on the net-

work. We observe a gradual breakdown in network synchronized spatial patterns into

scattered and chaoting patterns as the frequency of the electromagnetic radiation is in-

creased. The results in Figs. (3.24) related to high frequency electromagnetic radiation

could result from uncontrolled �ring of nerves. This uncontrolled �ring leads to uncon-

trolled transfer of information which is sometimes noticed in corticothalamic circuits in

the case of epileptic seizure [137]. Indeed, large intensity of electromagnetic radiation

can cause complex responses in myocardial and neural networks [138]. The sampled time

series for trans-membrane potential is plotted in Figs. (3.25).

It is found in Figs. (3.25) that the sampled time series for membrane potentials

decrease to quiescent state with the increase of calculating time when external electro-

magnetic radiation is imposed on the media. In another regards, at a low frequency

electromagnetic radiation, the media may absorb the electromagnetic radiation, and the

cell can select appropriate modes in electrical activities. At a high frequency electromag-

netic radiation, the oscillating behavior of electrical activities are seriously suppressed. In

the case of high-frequency electromagnetic radiation, the media becomes polarized by the

external electromagnetic �eld thus the electrical activities can be greatly a�ected.

Strong coupling in a network may enhance pattern formation while a collapsed or
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breakdown in the lattice is usually observed when it su�ers an external attack. It could also

be much better to discuss this problem on networks with di�erent topological connection so

to re�ect the real nature of brain neuronal connection. This may be achieved by including

the action of chemical synapse, �eld coupling, synapse plasticity. Improved models with

autapse can also be used to investigate the e�ect of noise-like electromagnetic radiation

such as white Gaussian noise, necessary for potential mechanism of disease occurrence to

be understood.

In short, based on the modi�ed di�usive FitzHugh-Nagumo neural network model with

memristive coupling, the conditions and mechanisms leading to the formation and prop-

agation of modulated wave in neural tissues via the activation of modulational instability

are exclusively addressed. By reducing the whole system networks to a single di�erential-

di�erence nonlinear equation with features of cubic Schrödinger equation , we perform

linear stability with emphasizes on the magnetic �ux. The memristive synaptic coupling

K is found to importantly modify instability features. Our analytical predictions are

con�rmed via numerical experiments on the generic model, where the system is revealed

to support localized excitation mode. This mode identi�ed as nonlinear quasi-periodic

wave patterns with feature of synchronization are highly relevant from biophysical point

of view. It has been observed in the thalamic relay neurons to mediate interneuronal

communication [139]. Among others, we further observed a modi�cation in excitation

patterns, through the formation of more curved localized wave patterns as K is increased.

A potential mechanism is suggested to be related to strong interactions which give rise to

small radiations, with features of incoherent wave collisions. That is, its possible to say

that in a large number of neurons, when �ring is done simultaneously, a number of mul-

tiple collisions could be undergone by the subsequent waves, which could unquestionably

destroy coherency.

With electromagnetic radiation imposed as a periodic forcing on the improved model,

large intensity electromagnetic radiation has clearly been found to induce the breakdown

of spatial patterns of the neural network wave patterns. It's thought that when the exter-

nal radiation is weak, the media may absorb the electromagnetic radiation, and the cell can

select appropriate modes in electrical activities. Otherwise, in the case of high-frequency

electromagnetic radiation, the media becomes seriously polarized by the external elec-

tromagnetic �eld thereby suppressing the electrical activities neurons. It indicates that

brain functioning can be impaired, when it is exposed to external electromagnetic �eld
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with strong radiation intensity. This could provide helpful potential mechanism in un-

derstanding and better investigating various brain seizures. It tells us that prevention

against electromagnetic radiation is essential and helpful for our normal brain functions.

3.4 Modulated wave solution of di�usive myocardial

network under magnetic �ow e�ects

Analytical study has revealed the existence of localized modulated wave in the di�u-

sive FitzHugh-Nagumo myocardial network, through the analytical solution for membrane

action potential xn,m(t) which has been proposed with direct dependence on the electro-

magnetic induction gain and certain parameters which are know to be strongly in�uenced

by such frequency regimes. Also analytical expressions of angular frequency and group

velocity have also been derived and their dependence on electromagnetic induction gain

clearly illustrated. Our analytically predicted solution is then veri�ed numerically.

As earlier stated from Benjamin-Feir instability criteria, the stability of the network

plane waves depends on the sign of Pr×Qr. Modulated unstable wave arise in the region

Pr×Qr > 0. This is possible only when the propagating plane wave has wave number less

than the threshold or critical wave number qcr as illustrated in Figs. (2.9). In accordance

to this criterium, we shall in all our numerical plot use wave number always far less than

the threshold wave number.

Figs. (3.26) shows the form of the cardiac ionic impulse propagating in the network in

all the computational domains for q = 0.02π. It clearly shows how the solution Eq. (2.80)

has the form of an asymmetric envelope soliton. Fig. (3.26a) depicts the three-dimensional

spatiotemporal evolution of the traveling cardiac ionic impulse with an oscillatory pro�le

inside an envelope. Fig. (3.26b) shows upper view of the pulse while Fig. (3.26c) depicts

its spatial pro�le at t = 3010. The spatial pro�le is clearly a single asymmetric pulse

expected to carry information from one site to another for a better coordination of some

important cardiac processes on one side, and in pathological situations on the other [131].

The e�ect of perturbation on the form of the soliton development is illustrated in Fig.

(3.27). The variation of the parameter ϵ does not a�ect the form of the ionic wave but its

amplitude. The perturbation increases the amplitude of the cardiac ionic wave.

The impact of the induction current created by time-varying electromagnetic �eld

as a result of internal bioelectricity �uctuation of cardiac tissue is illustrated in (3.27).
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Increasing the memristor coupling decreases the ionic wave amplitude. This indicates that

a higher positive feedback gain in induction current can provoke higher excitability capable

of blocking wave propagation in the network. This con�rms some of the predictions by

Takembo et al in Ref. [138], where electromagnetic induction and radiation is imposed on

myocardial cells and the mechanism of heart failure explained.

The above outcomes show that signal processing and transmission in cardiac tissue

are achievable by means of localized excitations. These nonlinear excitations are generally

known to be localized solutions of widespread category of weakly nonlinear dispersive

partial di�erential equations. They were originally observed in surface water wave by John

Scott Russel [126] and is well known to originate from the balance between nonlinearity,

dispersion and dissipation. Motivated by the presence of these features as earlier identi�ed

from Eq. (2.12), we predicted the existence of this solitary wave as con�rmed by the

present outcome.

Solitary waves are ideal communication tools in diverse domain of physics due to their

regenerative character, which gives it's robustness and stability. Nevertheless a challenge

still remain, being that of concomitantly conveying not only safely but also quantitatively,

a huge diversity of information. This challenge of simultaneously transmitting huge set of

harmonics along biochemical milieu can be addressed by relying on stimulus in the form

of wave packet. In the next paragraph, we search for an envelope soliton solution of our

nonlinear equation of motion.

A form of the soliton solution of the ionic wave amplitude Eq. (2.66) obtained using

the Nozaki and Bekki ansatz [82,109] is given by Figs. (3.29) below

Figs. (3.29) portrays the shape and behavior of cardiac ionic wave in all the computa-

tional domains, from Figs. (3.29). It is clear this analytical solution emerges in the form

of a single asymmetric pulse, propagating along the medium. These �gures show the 3D

spatiotemporal evolution [Figs. (3.29a)] of the traveling ionic impulse where, its upper

view is presented in Figs. (3.29b), and its spatial pro�les at t = 10 in Fig. (3.29c).

The solution plotted in Figs. (3.29) depict once again envelope solitons that have all the

features of the impulses, ubiquitous in excitable media like neurons and cell membranes.

They have in fact an oscillatory pro�le inside an envelope and carry information from one

site to another for a better coordination of some important cardiac processes on one side,

and in pathological situations on the other. In [140], for example, it was showed that due

to the presence of dissipation, these waves could be unstable, and in�uenced by time as
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clearly depicted in Figs. (3.30).

We note the in�uence of the parameter ϵ in helping us di�erentiate the orders of

development of the solitonic pulse. This is presented in Fig. (3.31). We notice that as

the perturbation increases, the oscillation remains breather modulated solitonic excitation

and the amplitude of the ionic wave enhanced. A similar phenomenon has already been

observed di�usively coupled Hindmarsh-Rose neural networks [90].

3.4.1 Numerical experiments

We recall that the results already obtained and discussed in the previous section were

realized after some approximations. The main objective of this section is to ascertain

the ability of the original FHN neuronal network model to support the type of analyt-

ical solutions obtained above. For this reason, we solve the generic set of Eqs. (2.8)

via the standard fourth-order Runge-Kutta computational scheme with time-step of 0.01

and periodic boundary condition. To achieve this initial value integration, we select the

analytical solution given by Eq. (2.80) as the initial conditions. Figs. (3.29) depicts

the time behavior of the numerical solution of the generic set of Eqs. (2.8). As earlier

predicted analytically, the time behavior of the obtained solution depicts a propagating

breather soliton. This result testi�es that our discrete model supports breathing solution

and hence our analytical solution agrees with numerical experiments.

Usually, trains of modulated waves obtained in this context are generally the result

of the activation of modulational instability, and some results on this issue are reported

for example in Refs. [127, 141]. In Refs. [127], such solitonic waves in microtubule model

are understood as triggering signals for motor proteins to commence motion. As well,

modulated solitonic waves have been suggested to be precursor of bubbles that appear

in DNA thermal denaturation, responsible for the breaking of hydrogen bond linking the

bases [141].

The often non-observance clinical e�ect attributed to some pathological heart diseases,

motivated this paper in the light of obtaining the type of localized structures that propa-

gate in the polynomial form of the realistic cardiac tissue networks using fairly standard

perturbation approach. Comprehending the mechanisms underlying such waves in cardiac

tissues is of deep importance, relevant in understanding both physiological and patholog-

ical phenomena. Bursting features in excitable media is a recurrent alternation between

quiescent phases (small amplitude oscillations) and active phases (large amplitude oscil-
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lations). Investigating the characteristics of regularly and irregularly oscillating localized

structures could be fruitful for fundamental insights into spatiotemporal dynamics and

chaos in the cardiac population. This could stimulate possible further investigation in the

domain of cardiac cells population information encoding and transmission where several

cells �re within a population.

In summary, the main objective of this subsection 3.4 was to study nonlinear localized

excitations in an improved FitzHugh-Nagumo (FHN) cardiac networks where adjacent

cells are connected through gap junction with nearest neighbor interactions. We begin

our investigation by transforming the three variable model equations into wave form, with

the equation governing the motion of the membrane voltage in a Lienard form. We proceed

to �nd low amplitude modulated wave solution of the FHN cardiac tissue networks. To

achieve this, the multiple scale analysis in the semi-discrete limit is employed. We obtain

at the �rst and second order, the dispersion and group velocity relations of the stimulus

dependent on the memristor coupling and other system parameters. At the third order

of approximation, we obtain a modi�ed Complex Ginzburg-Landau equation (CGLE)

from the transmembrane potential equation of motion, which is an equation governing

the evolution of modulated waves in the coupled cardiac networks. From biophysical

point of view, electrical signals and waves emitted from the sinus node propagates within

the cardiac tissue using both space and time domains in order to regulate heart beat as

powerful pacemaker. In another regards, the oscillation of myocardial cells at the sinus

node generate a spatiotemporal dynamics of waves between cells as modi�ed by the e�ect

of electromagnetic induction set up during ions �uctuation inside and outside of the cell.

By direct resolution of the obtained CGLE, the analytical solution portrays an asym-

metric envelope soliton with features of impulses. This modulated soliton properties are

showed to be greatly in�uenced by memristor coupling as well as the impact of small

perturbation. Furthermore, using the Nozaki and Bekki ansatz, the soliton solution of the

ionic amplitude equation is obtained. Once again, the obtained analytical solution is an

envelop soliton, appearing in the form of a breather-like coherent excitation. In another

regards, such structures have been showed to be mechanically relevant in other biophysical

settings [127, 141]. For example, in microtubule model they are understood as triggering

signals for motor proteins dynamics [127]. They have also been suggested to be precursor

of bubbles that appear in DNA thermal denaturation, responsible for the breaking of hy-

drogen bond linking the bases [141]. The relationship with the present paper may indicate
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the essential role of breathers and other nonlinear excitations in regulation of heartbeat.

Conclusion

The e�ect of the physical phenomenon of magnetic �ow; electromagnetic induction

and radiation, on co-operative behaviors; wave propagation, synchronization and pattern

formation, have been studied in this chapter in order to better understand the complex

functioning of biological excitable cells. The phenomenon of MI due to the combined

e�ects between nonlinearity and the dispersion of the explored systems, allowed to realize

that the transport and the transfer of nerve and cardiac impulses can be ensured by a

soliton-like solitary wave, thus consolidating the theory on the solitonic essence of nerve

impulses. Indeed, we have shown that the phenomenon of MI is a�ected by electromag-

netic induction and radiation. Electromagnetic induction feedback gain in both neuronal

network and cardiac tissue promotes MI via the formation of multiple localized wave pat-

terns. However, in the presence of an external magnetic �eld induced by the memristive

current, MI phenomenon is reduced for high electromagnetic induction thus giving rise

to the synchronization phenomenon. It was showed that MI phenomenon and synchro-

nization are complementary phenomena since MI can be used analytically to predict the

emergence of nonlinear synchronous patterns in neural networks. High intensity electro-

magnetic radiation initiates turbulent behaviors in electrical activities of excitable cells

via pattern breakdown. It is hopeful that this work will improve our knowledge of the

role of electromagnetic induction and radiation in mediating intercellular communication

in both neuronal and cardiac networks.
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(a)

(b)

(c)

Figure 3.15: Panels show the spatiotemporal features of patterns for the stimulation

current(a) I0=0.09, (b) I0=0.19, and (c) I0=0.29. Other parameters were set at K0=1.80,

ω=0.8 and Ω=0.05
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Figure 3.16: Plot of critical amplitude, vs. the wave number for di�erent values of mem-

ristive synaptic coupling (K). The growth rate of modulational instability is an increasing

function of the memristive synaptic gain(K).

Figure 3.17: Panel presents spatially homogeneous patterns, with temporal periodic-like

structures calculated for the memristive synaptic gain K = 0.05, with Iext = 0.6
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Figure 3.18: Panels show the spatiotemporal features for di�erent values of the memris-

tive synaptic gain; (a) K=1.0, (b) K=5.0, and K= 10.0, with Iext = 0.6
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Figure 3.19: Time series for membrane potential at the nodes 10, 200, and 500 with

K=0.05 and Iext = 0.6
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Figure 3.20: Time series of the node 300 for di�erent external stimuli; (a) Iext = 1.300

(b) Iext = 1.410 (c) Iext = 1.418 and (d) Iext = 1.421

Figure 3.21: Spatiotemporal evolution of the membrane action potential and the e�ect

of an external stimulus on wave patterns. It has been plotted for (a)Iext = 0.60, (b)

Iext = 1.0 and (c) Iext = 1.4 for K=10.0
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Figure 3.22: Developed spatiotemporal pattern and time series calculated for the con-

stant frequency external electromagnetic radiation intensity A = 0.04, with f = 0.2 and

Iext = 1.418

Figure 3.23: Spatiotemporal evolution of the membrane action potential and the e�ect

of an external electromagnetic radiation intensity on wave patterns. It has been plotted

for A = 0.055, A = 0.065 and A = 0.075, from Left to Right.
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Figure 3.24: Spatiotemporal evolution for di�erent frequencies of external electromag-

netic radiation, (a) f=0.002, (b) f=0.02, and (c) f=0.04, with A=0.05
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Figure 3.25: Corresponding time series evolution for di�erent frequencies of external

electromagnetic radiation for parameter values illustrated by Figs. (3.24). The intensity

increases from Top to Bottom.
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Figure 3.26: Spatiotemporal evolution of the cardiac ionic wave in all the computational

domains: (a) 3D view of the traveling cardiac pulse, (b) upper view, and (c) spatial ionic

wave pro�les at t=10. Signal appears in the form of a nearly symmetric wave packet.

k0 = 1.0, q = 0.02π, ϵ = 0.01, A0 = 0.01 and t=3010

TAKEMBO NTAHKIE Clovis PhD Thesis



Results and Discussion 110

-10 -8 -6 -4 -2 0 2 4 6 8 10
Lattice site

-1

-0.5

0

0.5

1

1.5

2

2.5

C
ar

d
ia

c 
io

n
ic

 w
av

e 
×10-4

ε=0.008
ε=0.010
ε=0.015

Figure 3.27: Impacts of small perturbations on the cardiac ionic wave. k0 = 1.0, q =

0.02π,A0 = 0.001 and t=3010
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Figure 3.28: Impact of electromagnetic induction on the cardiac ionic wave. q =

0.02π,A0 = 0.001 and t=3010
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Figure 3.29: Spatiotemporal evolution of the cardiac ionic wave in all the computational

domains: (a) 3D view of the traveling cardiac pulse, (b) upper view, and (c) spatial ionic

wave pro�les at t = 10. Signal appears in the form of an asymmetric wave packet. The

parametric values are; D0 = 0.05, k0 = 1.0, q = 0.02π, ϵ = 0.70 and A0 = 1.00
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Figure 3.30: Ionic wave pro�les at di�erent times
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Figure 3.31: Impacts of small perturbations on the cardiac ionic wave (a) ϵ = 0.05, (b)

ϵ = 0.1 and (c) ϵ = 0.6
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Figure 3.32: Time behavior of the cardiac ionic wave. The rest parameter values are:

D0 = 0.05, k0 = 1.0, q = 0.1π, ϵ = 0.30 and A0 = 0.02
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Summary

In this thesis, we have investigated wave propagation, pattern formation and synchro-

nization phenomena in biological excitable cells. In order to better describe the complex dy-

namical behaviors of these cells in a more realistic way, we have taken into account the e�ect of

intracellular and extracellular magnetic �ow e�ects. Using the continuous version of the FHN

excitable model, we have developed the improved discrete models under magnetic �ow e�ects,

which provides an overview of the collective dynamic of neural and myocardial networks. Our

investigations were conducted both analytically and numerically, not only for a better under-

standing of the studied phenomena, but also to highlight the main properties of the explored

model.

To achieve our main goals, the work of this thesis has been subdivided into three chapters. The

�rst one has dealt with an overview on myocardial cells, neurons and NNs. Here some generalities

have been presented with emphasis on the functioning of synapses as the bridges that connected

two neurons in NNs. We found that both electrical and chemical synapses are structurally and

functionally di�erent and the main di�erence is related to the synaptic delay which is larger

in chemical synapses than in electrical ones. That is why electrical synapses are appropriately

used in the achievement of NS phenomenon. We have also reviewed some phenomenological

mathematical neural models. The biological HH model and many of developed versions have

con�rmed their e�ectiveness for recognizing and understanding the electrical activities in neurons.

The HH was re�ned to obtain the FHN model. The FHN model itself is a generalization of

the Van der Pol (VDP) oscillator, whose modi�ed version has been recently proposed with the

assumption that the neural environment implies some periodic excitations. The importance

given to the VDP model equation in recent years come from the fact that it describes self-excited

or self-sustained oscillations, suitable to describe some important processes like those related to

brain and cardiac waves. That why the FHN was adopted in this thesis in order to better analyze

waves propagation, pattern formation and NS phenomena.
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In chapter 2, we have presented the improved FHN mathematical models which have been

developed along with both analytical and numerical methods. The �rst model is the di�usive

FHN neural network under magnetic �ow e�ects allowing to investigate e�ects of memristive

coupling strength, stimulus current and external electromagnetic radiation either on, modulated

wave patterns or, eventual synchronous structures of membrane action potential. The second

model depicts the electrical activity of myocardial cells under magnetic �ow e�ect. The role of the

memristive coupling and external electromagnetic radiation on instability and pattern formation

examined. The third model depicts the complex wiring of neurons in the brain through the

memristive synaptic coupling. The fourth one is the one-dimensional FHN NNs where e�ects

of memristive coupling strengths on membrane potential have been explored considering each

of frequency regimes which were detected analytically and con�rmed numerically. The above

models have been handled by means of some analytical and numerical methods. In this context,

the DNLS equation describing the spatiotemporal dynamics of envelop soliton has been derived

in the discrete approximation. The RK4 method with periodic boundary conditions has been

used in the numerical simulations for integrating of original models. As initial conditions usually

are known to be in�uenced by DNLS or CGL equation coe�cients, the comparison between both

analytical and numerical analysis has been done and suggests a perfect correlation between the

found results.

Chapter 3 presents the main results. Through MI phenomenon, the transport and the transfer

of the nerve impulses can be ensured by a soliton-like solitary wave. This phenomenon is in-

�uenced by strong memristive coupling, external stimuli current, electromagnetic radiation and

high synaptic coupling strengths. Collective behaviors of NNs can be characterized by patterns

formation and synchronous activity. We found that NS can be enhanced either by small value of

stimulus current and MC parameter, or large values of di�use and memristive coupling strengths.

Obviously, our �ndings set a wide range of biological implications, including the prevention and

e�cient treatment of many cardiac and brain diseases through the control of NS phenomenon.

Future orientations

The work of this thesis has contributed to the improvement of mathematical FHN models

to better understand the dynamics of nerve impulses in NNs. Most of the investigations carried

out aimed at studying the phenomena of wave propagation and NS as a function of certain

parameters, the number of which is not exhaustive. That is why we are prospecting other

research directions that include:

• Thermal e�ects on modulated synchronous patterns using FHN model with or without
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LRI since, temperature appears to play a crucial role in generation and conduction of the

nerve impulse.

• Synchronizability between two or more NNs coupled by memristor with intra-and-inter

LRI will also be investigated where memristor would behave as electrical synapse.

• The formation and removal of spiral waves in cardiac cells have also attracted much at-

tention in recent decades. Unfortunately, the detection of such waves which result from

the inhomogeneities of the target media has been done only either numerically or experi-

mentally. Therefore analytical �nding of these survival waves could open new horizons in

neuroscience.
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