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ABSTRACT

In this thesis, we have determined the ground-state geometries and energies of aluminum,

A`N(3 ≤ N ≤ 170) clusters. We have developed a classical Molecular dynamics code using the

Gupta potential. The Gupta parameters have been fixed according to the experimental values

of the cohesive energy and lattice parameters. For each minimum, the energy and Point Group

(PG) have been obtained. The optimized structures are in good agreement with previous ones

obtained using Murrell-Mottram potential as well as those obtained using the Glue potential.

Aluminum clusters have shown some degree of stability through the little fluctuations observed

for few clusters with their number of atoms, known as magic numbers which is due to the

saturation of electronic orbitals generated by the entire atomic aggregate. A simple relation

between the ground state energy and the number of atoms has been proposed which can permit

one to predict the ground state for any cluster size with a known number of atoms. We have

obtained the cohesion energy of the aluminum crystal with an accuracy of 99.81%. We have

shown in our work that the centered cubic structure is not the optimized structure of A`9 as

mentioned in the literature. However, it remains an isomer because its energy is 2.0318 eV

greater than that of the optimized structure obtained in this work. Finally, we have obtained

with the best precision (98.13%), the distance between the two aluminum atoms of the A`2

dimer .

Keywords: Aluminum cluster, Ground state, Gupta potential, Molecular dynamics, Magic

numbers, Optimized structures.
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RESUME

Dans cette thèse, nous avons déterminé les géométries et les énergies de l’état fondamen-

tal des clusters d’aluminium, A`N(N ≤ 170). Nous avons développé un code de dynamique

moléculaire en utilisant le potentiel de Gupta. Les paramètres du potentiel de Gupta ont été

fixés en fonction des valeurs expérimentales de l’énergie de cohésion et du paramètre de maille

du cristal d’aluminium. Les structures optimisées sont en très bon accord avec celles obtenues

en utilisant les potentiels de Murrell-Mottram et de Glue. Parmi les structures optimisées

obtenues, nous avons déterminé les structures les plus stables. Ces dernières sont constituées

d’un certain nombre d’atomes appelé nombre magique et sont caractérisés par la saturation des

orbitales électroniques. Une relation simple entre l’énergie de l’état fondamental et le nombre

d’atomes a été proposée, ceci permet de prédire l’état fondamental d’un cluster quelconque des

lors que le nombre d’atomes est connu. Nous avons obtenu l’énergie de cohésion du cristal

d’aluminium avec une précision de 99.81%. Il ressort de notre travail que la structure cubique

centrée n’est pas la structure optimisée du cluster A`9 comme mentionné dans la littérature.

Elle reste cependant un isomère, car son énergie est de 2, 0318 eV supérieure à celle de la struc-

ture optimisée obtenue dans ce travail. Enfin, nous avons obtenu avec la meilleure précision

(98.13%), la distance entre les deux atomes d’aluminium du dimère A`2.

Mots clés: Cluster d’aluminium, état fondamental, Potentiel de Gupta, Dynamique molécu-

laire, Nombre magique, Structures optimisées.
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GENERAL INTRODUCTION

Aluminum is one of the most abundant elements on earth. It is estimated that the solid

portion of the earth’s crust to a depth of ten miles is about 8% aluminum, surpassed only

by oxygen (47%) and silicon (28%). Aluminum is a major constituent of clay and almost

all common rocks. Aluminum is never found as a pure metal in nature but only in chemical

compounds with other elements and especially with oxygen, with which it combines strongly [1].

Aluminum can form clusters with itself or with other elements.

Clusters are known to be aggregates composed of several to thousands of atoms (molecules)

bonded in certain physical or chemical forces, that exist stably in microscopic state [2]. It

has become a great interest for studies due to its unique physical and chemical properties and

potential applications in many fields such as the new material physics, the nanoelectronics and

the nano-catalyst [3–8].

Aluminum nanoclusters have attracted much attention for their rich display of interesting

basic-physics problems and possible applications [9–12]. For any research fields and techno-

logical applications which include catalysis, cluster deposition [13], microelectronics [14], and

superconductivity [15,16], atomic distribution on their surfaces play a fundamental role, where

the surface structure and its quality are of primary importance.

In other to find their lowest energy configurations, sophisticated minimization techniques

have been put in place [17,18]. It is clearly known that finding the global minimum on a cluster

is a difficult problem [19]. This is because the number of structurally distinct minima increases

almost exponentially with increasing nuclearity, due to the high dimensionality of configuration

space.

Ab-initio electronic structure methods are often used to determine the lowest energy struc-

ture. However, a very long time for convergence is needed when the number of atoms making

up the cluster increases, which is a drawback. As such, many empirical potentials which ad-

equately describe interactions between atoms in clusters have been developed [20]. For more

accuracy in the determination of the energy, the potential should incorporate well modeled
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different external surface twin planes, different crystal structures, and the response to strain.

Furthermore, vibrational properties need to be well described so as to model the potential tem-

perature dependence of the structure [21]. Therefore, the prediction of the correct structure of

a cluster represents a tough challenge for the potential in use.

The understanding of the structure of metal clusters has seen many developments in recent

years. However, there is still much to be learnt. A vast number of investigations have attempted

to specifically address the stability of various metal-containing clusters [22–27]. From the

theoretical perspective, for example, only recently developed global optimization techniques

have become sufficiently powerful to find the most stable structures of metal clusters with

up to 100 atoms even when described by relatively simple many-body potentials. This has

led to many interesting new structures being revealed that go beyond those classified for pair

potentials, but there are still probably many classes of structure that remain undiscovered.

The first objective of this work is to fix the Gupta parameters taking into account the

experimental values of the cohesive energy and lattice parameters of the Aluminum clusters.

The second objective is to use the many body Gupta potential to obtain the lowest energy,

which corresponds to the global minima (stable configuration), for each Aluminum cluster with

sizes ranging from 3 to 170 atoms. We then compared our results to those obtained using the

Murrell-Mottram potential, Glue potential, Sutton-Chen potential, Truhlar potential and the

Cleri-Rosato potential [28–32]. As the third objective of this thesis, we will determine some

characteristics of our proposed Aluminum clusters.

This thesis is subdivided into three chapters as follows:

The first Chapter is devoted to the physical background of clusters, properties of atomic

and molecular clusters, size dependant characteristics of clusters (the Jellium model), past

developments and current motivation of Aluminum clusters, importance of Aluminum clusters

and features of Aluminum clusters.

The second Chapter deals with the description of the methodology put in place. Here, we

presented the calculation method used in this work, exposing the reasons that justify our choice

for the many body Gupta potential, we describe the many-body Gupta potential model followed

by describing the molecular dynamics method which include the discretization of the ordinary

differential equation, global optimization technique, assigning initial values and velocities.

In Chapter 3 focused on the results, we presented our optimized structures, their respec-

tive energies and some global minima cluster structures obtained from our calculations. Our

structures are then compared to those obtained using different potentials. The stability of the

optimized structures is analyzed, the cohesive energy and some characteristics of the Aluminum
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clusters are determined.

The document ends with a general conclusion where the principal results of the work are

summarized and where perspectives for future investigations are proposed.
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Chapter 1

LITERATURE REVIEW

Introduction

In this chapter, we shall look at the ordered type of structures that simple atomic clusters

adopt at their ground state, followed by presenting the difference between clusters and their

bulk materials. We will also look at the melting behavior of clusters with respect to their sizes

and an emphasis shall be made concerning the stability of clusters as well as the reasons why

clusters are called superatoms. Clusters preparation together with the motivations for studying

clusters shall also be detailly regarded, followed by details on the physical, electrical, optical,

magnetic and chemical properties. Next, we shall present the size dependent characteristics

of clusters (the Jellium model) as well as an emphasis on the electronic and geometric magic

numbers. Furthermore, we shall present the different simulation methods used in stabilizing

clusters as well as the different types of potentials that can be used for the global optimization

of clusters. Finally, we shall lay emphasis on the problems to be solved in this thesis.

1.1 GENERALITIES ON CLUSTERS

1.1.1 Definition of clusters

Clusters in general, are aggregates of atoms that are too large compared to atoms and

molecules and too small compared to small pieces of crystals (bulk materials). The atoms and

molecules as well as the bulk materials have been studied many years ago by chemists and

physicists and their properties are now fairly well understood. As a whole, cluster does not

have the same structure or atomic arrangement as a bulk solid and can change its structure

with the addition of just one or few atoms.

One of the most interesting aspects of cluster structure is the possibility of non-crystallographic

symmetry which arises from the absence of translational periodicity. In particular, many clus-
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1.1 GENERALITIES ON CLUSTERS

ters are found to have fivefold axes of symmetry. The four main types of ordered structure

that simple atomic clusters adopt are tetrahedral, octahedral, decahedral and icosahedral. Ex-

amples of each are given in Figure 1.1. The decahedral structures have a single fivefold axis

of symmetry and are based on pentagonal bipyramids, and the icosahedral structures have six

fivefold axes of symmetry.

a) b) c) d)

Figure 1.1: The four main types of ordered structure adopted by simple atomic clusters, a) the regular

tetrahedron, b) the regular octahedron, c) the regular dodecahedron and d) the regular icosahedron.

The tetrahedron (Figure 1.1a)) has four faces, all of which are triangles. It also has four

vertices and six edges. Three faces meet at each vertex. The octahedron (Figure 1.1b)) has

eight faces, all of which are triangles. It also has six vertices and twelve edges. Four faces meet

at each vertex. The dodecahedron (Figure 1.1c)) has twelve faces, all of which are pentagons.

It also has twenty vertices and thirty edges. Three faces meet at each vertex. The icosahedron

(Figure 1.1d)) has twenty faces, all of which are triangles. It also has twelve vertices and thirty

edges. Five faces meet at each vertex.

1.1.2 Clusters and bulk materials

The wonderful experiment-theory effort is revealing specific characteristics to the reduced-

size dimensions and opening up new opportunities. A good example is the possibility of creating

new materials using atomic or compound clusters as the building blocks [27,33,34]. From this,

materials with desirable collective traits would be designed from the level of atomic control

realized in the properties of clusters. Clusters may be classified as metallic or nonmetallic

according to the atoms they are made up of and in general, some metallic character persist

from small clusters to bulk matter of the same composition and no metal-insulator transition

have been observed. As the number of atoms in the cluster increases, the bulk structure is

established and the addition of atoms has no more effect on the structure.

Nevertheless, there will be some rearrangement of the atoms on the surface of this bulk
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1.1 GENERALITIES ON CLUSTERS

structure, but since the surface to volume ratio is very low in bulk materials, it can be neglected

with a good approximation. However, in the case of clusters, most of the atoms lie on the

surface (extremely high surface to volume ratio) and such rearrangement produces a drastic

effect. Owing to their high surface to volume ratio, the surface science from both chemical and

physical points of view has become crucial in order to collect data and information about such

systems. The manner of study of such a small cluster is nearly the same manner in which they

have been fabricated. With Bottom-up approach (chemical point of view) these clusters are

formed from atoms and/or molecules by assembling them together to form the cluster and there

are many calculations based on this view point. Also these clusters can be fabricated, starting

from the bulk material by reducing its dimension somehow, which is the Top-down approach.

1.1.3 Melting behaviors of clusters

The melting behaviors of clusters are completely different from that of the bulk materials

and the melting points of clusters usually decrease with decreasing cluster size. Moreover, there

are apparent premelting temperature intervals of clusters. For the small clusters, their melting

behaviors are accompanied by obvious size effects. For example, the experimental study of

the melting behaviors of simple monovalent Na clusters [35] show that the melting points of

clusters change oscillatorily for clusters containing less than 200 atoms. The negative heat

capacity for Na147 cluster [7] has also been observed. Some exotic behaviors are also observed,

for example, for the simple trivalent Ga clusters in a small size regime, the melting temperatures

are observed to be higher than the bulk melting point [8,36]. The preeminent heat conductivity

and malleability of trivalent Aluminum crystal have brought extensive applications in social

practice. The study of Aluminum clusters has also revealed a series of singular behaviors.

For example, the ferromagnetic properties of extremely small Aluminum clusters [37] and the

super-stability of A`−13 cluster which can provide a great potential as being cluster-assembled ma-

terial [38] with good performance in catalyst [39]. Recently, Jarrold and co-workers conducted

numerous experiments on the melting properties of small and medium-sized A`N (N < 200)

cluster and observed generally irregular phenomenon on the heat capacity curves of small-sized

A`N (N < 100) clusters [40] (if the heat capacity curve has no clear peak, then considered

irregular). Moreover, a double-peak feature in heat capacity has been clearly observed for some

larger-sized A`N (N > 100) clusters and the authors also conjectured the reason of the double-

peak [41], but there is still lack of specific dynamic description at atomic level (like molecular

dynamics simulation study).
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1.1.4 Stability of clusters

For more than a decade ago, Khanna and Jena [27] discussed the possibility of designing

stable metallic clusters that could form the building blocks of solids. Their arguments were

derived from two different mass spectrometric experiments on simple metal clusters. The first

experiment was the observation by Knight et al. [42] who used small sodium clusters, containing

magic numbers of 2, 8, 18, 20, 34, 40 atoms, with the help of a simple Jellium model(as further

explained in section 1.3) to explain the enhanced stability at these magic numbers. Here, one

assumed that the positive charges of the free-electron metal nuclei within a cluster are evenly

distributed over a sphere, that is the size of the cluster and that of the energy levels for a

spherical Jellium potential, determined by considering all of the free electrons to be bounded

by this potential to have 1s2 1p6 1d10 2s2 1f14 2p6, shell closures. Like the noble gas atoms,

the magic-number clusters correspond to filled electronic shells, thereby indicating the role of

the total number of itinerant electrons on stability. Basing on the magic numbers in clusters

that contain more than a few dozen atoms, the second experiment showed that the most stable

species correspond to sizes with complete geometric shells in an icosahedral or cuboctahedral

atomic arrangement [43].

Alkali metal clusters, at least for sizes of up to thousands of atoms, conform to the Jellium

model in that, certain nuclearities are relatively stable, the so-called magic numbers, due to

their filled electronic shells [42]. Hakkinen and Manninen have also shown that, even for molten

clusters, the shapes of small sodium clusters are determined by electronic shell effects since

electron counts which do not correspond to closed Jellium shells, give rise to deformations of

the otherwise spherical liquid drop [44]. By contrast, clusters of alkaline earth elements such

as Ca and Sr (which have s2 closed sub-shell electronic configurations), exhibit magic numbers

which correspond to clusters consisting of concentric polyhedral shells (geometric shells) of

atoms where the relative stability of a given cluster is determined by the competition between

packing and surface energy effects [45].

In the case of Aluminum, due to the higher atomic valency (+3), the higher density of

electronic states and the involvement of p, as well as s orbitals in bonding, the situation is

more complex [46]. It is believed that the crossover from the regime where electronic factors

determine cluster stability to where packing and surface energy effects dominate, occurs at

lower nuclearities than for the alkali metals where Jellium effects is possibly being important

in the range 40 < N < 300 [46–48]. Variable temperature experiments by Baguenard et al.

have shown, however, that Jellium effects can be seen at much higher nuclearities when the
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A` clusters are generated at temperatures such that they are either molten or have molten

surfaces [49]. Martin and co-workers have demonstrated that the observation of electronic

shells or geometric shells is also strongly temperature dependent in the case of large sodium

clusters [50]. Finally, mass spectroscopic studies by Martin and co-workers indicate that A`

clusters, with up to a few hundred atoms, have octahedral shell structures based on face centered

cubic packing [45].

1.1.5 Chemical representation of clusters

The description of the electronic structure of clusters in terms of electronic shells raised the

interesting possibility that clusters can be regarded as superatoms. There are several reasons

for such an analogy. The ionization potentials of simple metal clusters exhibit local maxima at

sizes corresponding to filled electronic shells, as well as atoms [51]. Furthermore, clusters can

sometimes behave chemically similar to atomic species with like electronic valences. A proof

of this concept came from the experiments by Leuchtner et al. [52] who studied the reactivity

of A`−n clusters with oxygen. They showed that while other A`−n species were etched away by

oxygen, the species A`−13 , A`−23, and A`−37 were not. Since A`13 has 40 valence electrons, its

inertness could be understood in terms of a closed electronic shell meaning aluminum cluster

anions also showed Jellium shell closures for the 23 and 37 atoms.

These and other observations show that the Jellium picture though extremely simplistic and

marked by indisputable limitations, is amazingly successful in describing many of the globally

observed electronic features of a variety of systems, [53] which allows the description of certain

metallic clusters as superatoms. It is important to emphasize that although the electronic shells

are introduced through the Jellium model, the existence of electronic shells in fermionic systems

is known to occur for a far wider range of potentials [51]. For example, the energy levels in a

three dimensional harmonic oscillator, those in an intermediate and square well potential and

the energy levels in nuclei under a different class of potentials all lead to shells that would

produce closings at the magic number electrons.

1.1.6 Preparation of clusters

Clusters can be prepared in a number of ways. A large proportion of experimental studies

are now performed on clusters that are produced in molecular beams by free-jet expansion. The

discovery of this technique was one of the most important factors in the growth of cluster studies.
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The resulting clusters can then be mass-selected and subjected to many types of high-resolution

spectroscopies. However, although this technique allows very detailed and sensitive studies to

be performed, it is not so suitable for producing large quantities of (size-selected) clusters a

likely requirement for industrial applications and it is hard to make direct measurements of

structure.

One alternative that circumvents the latter problem is to deposit the clusters on a surface,

where their structure can then be probed by techniques such as high resolution electron mi-

croscopy, and scanning tunneling microscopy [54–56]. However, the effects of the surface on the

cluster is then to be taken into account.

The oldest route for the preparation of clusters is by colloidal chemistry: back in 1856

Faraday famously investigated the optical properties of gold colloids [57]. Typically, clusters

produced by this method are stabilized by the addition of a passivating layer, as compared to

the naked clusters produced in molecular beams. One of the main advantages of this method is

that large quantities of clusters can be produced. Furthermore, significant advances have now

been made in controlling the size, shape and structure of these particles [58–60].

1.1.7 Motivation of studying clusters

If we look back into the early cluster literature, three motivations are particularly common.

Firstly, clusters provide a bridge between the limits of isolated atoms and molecules and bulk

matter, and so much interest has focused on the evolution of properties with size, particularly

those, such as phase transitions, which have no counterpart in atomic physics, and which must

therefore emerge as collective behavior becomes possible. The hope is that such knowledge will

provide a new perspective on and an increased understanding of the behavior that occurs at

the more familiar limits.

A second motivation to study clusters, particularly from the theoretical viewpoint, is to

try to understand nucleation at an atomistic level, rather than by the continuum theories of

classical nucleation theory. However, these ambitions have never been fully realized; this task

is a far more difficult problem than perhaps was originally conceived.

Thirdly, much work has been, and is still, driven by the prospect that a fundamental un-

derstanding of the properties, particularly the chemical reactivity, of metal clusters could have

far-reaching consequences for catalysis. Small metal particles and clusters (supported, for in-

stance, within a zeolite) could provide both a large surface area to volume ratio and properties,

such as activity and selectivity that have been tailored to catalyze a specific reaction.
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1.2 PROPERTIES OF ATOMIC ANDMOLECULAR CLUS-

TERS

In case of clusters, its energy levels are neither too discrete nor do they form bands whereas

bulk systems form bands of energy and atoms have discrete energy levels. This is due to the

presence of large amount of electrons. The unusual electronic structure of clusters is due to the

quantum confinement of electrons belonging to molecular orbitals. Other significant properties

of clusters are their physical, electric, magnetic, optical and chemical properties.

1.2.1 Physical states

Clusters share some of the physical properties of bulk matter, a few of which are rather

surprising. Clusters of all substances except helium and possibly hydrogen are solidlike at low

temperatures as expected. The atoms or molecules of a cluster remain close to their equilibrium

positions, vibrating around these positions in moderately regular motions of small amplitude.

This is characteristic of all solids; their atoms are constrained to stay roughly in the same

position at all times. In a liquid or a gas, the atoms or molecules are free to wander through

the space accessible to the substance. A gas or vapor has so much empty space relative to

the volume occupied by the particles that the particles move almost unhindered, colliding only

occasionally with other particles or with the walls of the container [61,62]. A liquid is typically

almost as dense as a solid but has some empty spaces into which the atoms or molecules can

easily move.

Clusters can be liquidlike if they are warm enough, but typically the temperatures at which

clusters can become liquid are much lower than the melting points of the corresponding bulk

solids. If temperatures are measured on the Kelvin scale, small clusters become liquidlike at

temperatures of roughly half the bulk melting temperatures. For example, solid argon melts at

approximately 80 K, while small clusters of argon become liquid at about 40 K [63].

Some clusters are expected to show a gradual transition from solidlike to liquidlike, appear-

ing slushy in the temperature range between their solidlike and liquidlike zones. Other clusters

are expected to show, as seen in computer simulations, distinct solidlike and liquidlike forms

that qualitatively resemble bulk solids and liquids in virtually every aspect, even though they

may exhibit quantitative differences from the bulk [64]. Solid clusters, for example, show vir-

tually no diffusion, but the particles of a liquid cluster can and do diffuse. The forces that hold

a particle in place in a solid cluster are strong, comparable to those of a bulk solid; but those
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in a liquid cluster include, in addition to forces comparable in strength to those in solids, some

forces weak enough to allow a particle to wander far from its home base and find new equilib-

rium positions. Those same weak forces are responsible for making a liquid cluster compliant;

that is, weak forces allow the liquid to accommodate any new force, say, a finger inserted into

water.

The greatest differences between bulk solids and liquids and solid and liquid clusters arise

from the fact that a large fraction of the particles of a cluster are on its surface. As a result, the

particle mobility that characterizes liquids and enables them to exhibit diffusion and physical

compliance is enhanced in a cluster, for the cluster can easily expand by enlarging the spaces

between particles and can also transfer particles from its interior to its surface, leaving vacancies

that enhance the mobility of the interior particles. An important consequence is that the vapor

pressure of a cluster is higher than the vapor pressure of the corresponding bulk, and accordingly

the boiling point of a liquid cluster, the temperature at which the vapor pressure of a liquid

is equal to the pressure of the surrounding atmosphere-is lower than that of the corresponding

bulk liquid. The vapor pressure of clusters decreases with increasing cluster size, while the

boiling point increases [65].

Perhaps the greatest difference between clusters and bulk matter with regard to their trans-

formation between solid and liquid is the nature of the equilibrium between two phases. Bulk

solids can be in equilibrium with their liquid forms at only a single temperature for any given

pressure or at only a single pressure for any given temperature. Clusters differ sharply from

bulk matter in that solid and liquid clusters of the same composition are capable of coexisting

within a band of temperatures and pressures. At any chosen pressure, the proportion of liquid

clusters to solid clusters increases with temperature [66]. At low temperatures the clusters

are solid, as described above. As the temperature is increased, some clusters transform from

solid to liquid. If the temperature is raised further, the proportion of liquid clusters increases,

passing through 50 percent, so that the mixture becomes predominantly liquid clusters. At

sufficiently high temperatures all the clusters are liquid.

No cluster remains solid or liquid all the time; liquidlike clusters occasionally transform

spontaneously into solidlike clusters and vice versa. The fraction of time that a particular

cluster spends as a liquid is precisely the same as the fraction of clusters of that same type

within a large collection that are liquid at a given instant [66]. That is to say, the time average

behavior gives the same result as the ensemble average, which is the average over a large

collection of identical objects. This equivalence is not limited to clusters; it is the well-known

ergodic property that is expected of all but the simplest real systems.
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1.2.2 Electric properties

The electric properties of clusters, such as their conductivity and metallic or insulating

character, depend on the substance and the size of the cluster. Quantum theory attributes

wavelike character to matter, a behavior that is detectable only when matter is examined on

the scale of atoms and electrons. At a scale of millimeters or even millionths of millimeters, the

wavelengths of matter are too short to be observed. Clusters are often much smaller than that,

with the important consequence that many are so small that when examined their electrons

and electronic states can exhibit the wavelike properties of matter. In fact, quantum properties

may play an important role in determining the electrical character of the cluster. In particular,

as described previously, if a cluster is extremely small, the energy levels or quantum states of

its electrons are not close enough together to permit the cluster to conduct electricity [61,67].

Moreover, an alternative way to view this situation is to recognize that a constant electric

force and an alternating force can behave differently in a cluster. Direct current cannot flow

in an isolated cluster and probably cannot occur in a small cluster even if it is sandwiched

between slabs of metal. The current flow is prohibited both because the electrons that carry

the current encounter the boundaries of the cluster and because there are no quantum states

readily available at energies just above those of the occupied states, which are the states that

must be achieved to allow the electrons to move.

However, if a field of alternating electric force is applied with a frequency of alternation so

high that the electrons are made to reverse their paths before they encounter the boundaries

of the cluster, then the equivalent of conduction will take place [67, 68]. Ordinary 60 Hz

alternating voltage and even alternations at radio-wave frequencies switch direction far too

slowly to produce this behavior in clusters; microwave frequencies are required.

1.2.3 Optical properties

The optical properties of weakly bound clusters are much like those of their component

atoms or molecules; the small differences are frequently useful diagnostics of how the cluster

is bound and what its structure may be. Optical properties of metal clusters are more like

those of the corresponding bulk metals than like those of the constituent atoms [69,70]. These

properties reveal which cluster sizes are unusually stable and therefore correspond to magic-

number sizes. Optical properties of covalently bound clusters are in most cases unlike those of

either the component atoms or the bulk but are important clues to the structure and bonding

of the cluster [71–73].
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1.2.4 Magnetic properties

Magnetic properties of clusters, in contrast, appear to be rather similar to those of bulk

matter. They are not identical, because clusters contain only small numbers of electrons, which

are the particles whose magnetic character makes clusters and bulk matter magnetic. As a

result, the differences between magnetic properties of clusters and of bulk matter are more a

matter of degree than of kind. Clusters of substances being magnetic in the bulk also tend

to be magnetic. The larger the cluster, the more nearly will the magnetic character per atom

approach that of the bulk. The degree of this magnetic character depends on how strongly the

individual electron magnets couple to each other to become aligned in the same direction; the

larger the cluster, the stronger is this coupling.

Magnetic dipole moments of free atoms of Sc, V, Ti, Cr, Mn, Fe, Co and Ni are µb, 2µb, 3µb,

6µb, 5µb, 4µb, 3µb, 2µb respectively. While magnetism in Cr remains unchanged on benzenes,

the magnetic moments change dramatically for others [74–76]. For example, magnetic elements

(Fe, Co and Ni) exhibit reduced magnetic moments whereas Sc, V, Ti show increased moments.

This peculiar behavior suggests that magnetism in organometallic systems is greatly influenced

by supporting molecules.

1.2.5 Chemical properties

This is one of the most important properties of clusters. Here, organic molecules can be seen

binding to various sites of inorganic or metal clusters. Metal atoms, metal clusters and metal

surfaces can be observed to bind to various organic molecules thus providing great information in

the organometallic field [74,75,77–82]. With regard to these situations, transition metal clusters

bound with such organic molecules to achieve exceptional stability. Few examples have been

studied concerning the favorite binding positions of metal atoms on given organic molecules or

changes in the structure of clusters as multiple organic molecules attached themselves to metal

clusters. For example, the structural study of various 3d transition metal atoms like Sc, Ti,

V, Cr, Mn, Fe, Co and Ni attached to a benzene ring or a coronene (this is a benzene ring

surrounded by six other benzenes) [77, 83]. From the Mn(Bz)+
m mass spectra, it is observed

that only structures with m = n + 1 for M = Sc, Ti, V are favored. A single highest peak

corresponding to (n = 1, m = 2) is observed for Cr and Mn thus showing that transition metal

is sandwiched between stacking of benzene rings. In this process, the maximum number of

benzene rings in a stable cluster hardly exceeds four meanwhile, the number of metal atoms
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can exceed the number of benzene rings. For this reason, the reactivity of transition metal

decreases. Magnetism in such organometallic complexes has also been found to be unusual.

Many properties of cluster depend on their size, shape, composition and charge. So, some

clusters from their electronic structure are considered to be artificial elements. Theoretical

predictions and experimental evidence showed that, clusters behave as atoms. These type

of clusters are called superatoms and they are building blocks of the new three-dimensional

periodic table [84]. Castleman et al. observed that A`−13 has very less reactivity than its

neighboring clusters [52]. Since A` atom has three valence electrons, A`13 will have 39 electrons,

making electron affinity of A`13 very large so as to attain the magic number which is 40. Like the

normal salt, this cluster can form salt with alkali metals [85]. This was experimentally confirmed

by Wang [12] and Bowen [86] and their co-workers. Hence, A`13 became the first superatom

or rather superhalogen. On the other hand, Li3O cluster has ionization potential (3.54 eV),

lower than that of any alkali metal and H12F13 recorded highest electron affinity (13.87 eV),

higher than any halogen [87, 88]. Some boron clusters mimic the properties hydrocarbons [89]

while thiol protected gold cluster [Au25(SR)18]
− behaves as noble gas [90]. Clusters consisting

of all-inorganic elements can be used as ligands [91,92].

Although Jellium model is successful in describing the magical stability of alkali metal

clusters, it cannot be applied to study the stability of covalently bonded systems, such as

fullerene or planar boron clusters. However, for these systems a simple electron counting rule

can give a great understanding of stability. This is called the Hückel rule which says; if the

system has delocalized π electrons and if they are equal to 4n+2 (n is integer), then the system

is said to be aromatic and will be extra stable. If it is equal to 4n, then it is called antiaromatic

and will destabilize the system. For example benzene, it has 6π electrons and it is aromatic. A

planarity is also applied by the Hückel rule for aromaticity.

This rule is successfully applied to a large number of carbon and boron-based clusters and are

found to be aromatic [89,91,93–98]. Boron clusters BN (N ≤ 20) prefer to be planar and they

are governed by aromatic nature. A three-dimensional structure of B12 also shows enhanced

stability mainly because of largest HOMO-LUMO (Highest Occupied Molecular Orbital-Lowest

Unoccupied Molecular Orbital) gap and the most stable isomer of B12 is a planar structure

having 6π electrons like that of benzene. Based on the Hückel rule, several metallic clusters are

also found to exhibit aromaticity. A`2−
4 , for instance, is aromatic and square-planar due to two

π electrons, whereas A`4−
4 with four π electrons is antiaromatic [99, 100]. An aromatic, planar

boron cluster having wheel shape rotates when shined by a circularly polarized light [101,102].

This can be termed as the smallest aromatic nano-motor.
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1.3 THE JELLIUMMODEL: SIZE DEPENDANT CHAR-

ACTERISTICS OF CLUSTERS

1.3.1 Definition

Jellium, also known as the uniform electron gas or homogeneous electron gas, is a quantum

mechanical model of interacting electrons in a solid where the positive charges (atomic nuclei)

are assumed to be uniformly distributed in space; the electron density is a uniform quantity

as well in space. This model allows one to focus on the effects in solids that occur due to

the quantum nature of electrons and their mutual repulsive interactions (due to like charge)

without explicit introduction of the atomic lattice and structure making up a real material.

Jellium is often used in solid-state physics as a simple model of delocalized electrons in a

metal, where it can qualitatively reproduce features of real metals such as screening, plasmons,

Wigner crystallization and Friedel oscillations. At zero temperature, the properties of Jellium

depend solely upon the constant electronic density. This lends it to a treatment within density

functional theory; the formalism itself provides the basis for the local-density approximation to

the exchange-correlation energy density functional.

1.3.2 Applications of the Jellium model

Jellium is the simplest model of interacting electrons. It is employed in the calculation

of properties of metals, where the core electrons and the nuclei are modeled as the uniform

positive background and the valence electrons are treated with full rigor. Semi-infinite Jellium

slabs are used to investigate surface properties such as work function and surface effects such

as adsorption; near surfaces the electronic density varies in an oscillatory manner, decaying to

a constant value in the bulk [103–105].

Within density functional theory, Jellium is used in the construction of the local-density

approximation, which in turn is a component of more sophisticated exchange-correlation energy

functionals. From quantum Monte Carlo calculations of Jellium, accurate values of the correla-

tion energy density have been obtained for several values of the electronic density, which have
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been used to construct semi-empirical correlation functionals [106,107]. The Jellium model has

been applied to superatoms, and used in nuclear physics.

1.3.3 Electronic and geometric magic numbers

Magic numbers based on electronic shells were first observed in mass spectra of alkali metal

clusters [108]. These features are now well understood in the framework of the self-consistent

spherical Jellium model, in which the nearly-free valence electrons are assumed to move in a

homogeneous spherical ionic background. Further refinements, such as allowing the cluster to

deform into an ellipsoidal shape for incomplete electronic shells, improve the agreement with

experiment [109].

In experiments on large sodium clusters by Martin et al. electronic shell structure was

found to persist up to about 1000 atoms and above this size geometric magic numbers were

observed [110]. These magic numbers are associated with the completion of shells of the Mackay

icosahedron. Further temperature-dependent experiments have shown that for N > 1000 the

geometric magic numbers disappear as the temperature is increased [111]. This has been

attributed to the loss of icosahedral structure on melting (or surface melting) of the cluster and

so has been used to examine the size dependence of the melting temperature. At sufficiently high

temperatures, electronic magic numbers have been observed up to at least 3000 sodium atoms

[112]. Similarly, experiments on large Aluminum clusters have shown that as the temperature

is increased the observed magic numbers change from geometric (due to octahedra [113]) to

electronic [114].

The Jellium-type models can provide a good description of the alkali metals because these

elements most closely approximate free electron systems and understanding the electronic effects

becomes more difficult as one goes further from this limit. Our results lead us to expect that for

metals with shorter-ranged potentials geometric magic numbers could be seen at much smaller

sizes than for sodium. This may provide an explanation for the behavior of group II metals:

barium clusters of less than 50 atoms show magic numbers consistent with an icosahedral growth

sequence and magnesium and calcium have magic numbers due to Mackay icosahedra from 147

atoms upwards [115–117]. However, it is hard to judge the role many-body forces may play in

the energetic competition between regular and disordered structures in these systems.
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1.4 COMPUTER MODELING AND MOLECULAR DY-

NAMICS

1.4.1 Computer modeling of clusters

One of the simplest to describe, yet most difficult to solve, problems in computational

chemistry is the determination of molecular conformation. A molecular conformation problem

can be described as finding the global minimum of a suitable potential energy function, which

depends on relative atom positions. Progress toward solution techniques will facilitate drug

design, synthesis and utilization of pharmaceutical and material products.

The methods of quantum chemistry are quite suited to predict the geometric, electronic and

energy features of known and unknown molecules. However, it remains too expensive in terms

of computer time and nearly intractable, even at the simplest, semi-empirical level, for many

organic molecules or biological macromolecular structures.

In the modern nanotechnology age, microscopic analysis methods are indispensable in order

to generate new functional materials and investigate physical phenomena on a molecular level.

These methods treat the constituent species of a system, such as molecules and fine particles.

Macroscopic and microscopic quantities of interest are derived from analyzing the behavior of

these species.

These approaches, called molecular simulation methods, are represented by the Monte Carlo

(MC) and molecular dynamics (MD) methods. Monte Carlo methods exhibit a powerful ability

to analyze thermodynamic equilibrium, but are unsuitable for investigating dynamic phenom-

ena. Molecular dynamics methods are useful for thermodynamic equilibrium and are more

advantageous for investigating the dynamic properties of a system in a nonequilibrium situa-

tion.

1.4.2 Molecular Dynamics

Molecular dynamics is a computer simulation method for analyzing the physical movements

of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of

time, giving a view of the dynamic evolution of the system. In the most common version, the

trajectories of atoms and molecules are determined by numerically solving Newton’s equations
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of motion for a system of interacting particles, where forces between the particles and their po-

tential energies are often calculated using interatomic potentials or molecular mechanics force

fields. Because molecular systems typically consist of a vast number of particles, it is impos-

sible to determine the properties of such complex systems analytically; Molecular dynamics

simulation circumvents this problem by using numerical methods.

1.4.3 Areas of application

First used in theoretical physics, the Molecular dynamics method gained popularity in

materials science afterward, and since the 1970s is also common in biochemistry and biophysics.

Molecular dynamics is frequently used to refine 3-dimensional structures of proteins and other

macromolecules based on experimental constraints from X-ray crystallography.

In physics, Molecular dynamics is used to examine the dynamics of atomic-level phenomena

that cannot be observed directly, such as thin-film growth and ion-subplantation, and also to

examine the physical properties of nanotechnological devices that have not yet been created.

In biophysics and structural biology, the method is frequently applied to study the motions

of macromolecules such as proteins and nucleic acids, which can be useful for interpreting the

results of certain biophysical experiments and for modeling interactions with other molecules,

as in ligand docking.

In principle Molecular dynamics can be used for ab-initio prediction of protein structure by

simulating folding of the polypeptide chain from random coil.

1.4.4 Design constraints

The design of a molecular dynamics simulation should account for the available computa-

tional power. Simulation size (n =number of particles), time step, and total time duration

must be selected so that the calculation can finish within a reasonable time period. However,

the simulations should be long enough to be relevant to the time scales of the natural processes

being studied. To make statistically valid conclusions from the simulations, the time span sim-

ulated should match the kinetics of the natural process. Otherwise, it is analogous to making

conclusions about how a human walks when only looking at less than one footstep.
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1.5 POTENTIALS IN MOLECULAR DYNAMICS SIM-

ULATIONS

1.5.1 Generalities

A molecular dynamics simulation requires the definition of a potential function, or a de-

scription of the terms by which the particles in the simulation will interact. In chemistry and

biology this is usually referred to as a force field and in materials physics as an interatomic

potential. Potentials may be defined at many levels of physical accuracy; those most commonly

used in chemistry are based on molecular mechanics and embody a classical mechanics treat-

ment of particle-particle interactions that can reproduce structural and conformational changes

but usually cannot reproduce chemical reactions.

The reduction from a fully quantum description to a classical potential entails two main

approximations. The first one is the Born-Oppenheimer approximation, which states that

the dynamics of electrons are so fast that they can be considered to react instantaneously to

the motion of their nuclei. As a consequence, they may be treated separately. The second

one treats the nuclei, which are much heavier than electrons, as point particles that follow

classical Newtonian dynamics. In classical molecular dynamics, the effect of the electrons is

approximated as one potential energy surface, usually representing the ground state.

When finer levels of detail are needed, potentials based on quantum mechanics are used;

some methods attempt to create hybrid classical/quantum potentials where the bulk of the sys-

tem is treated classically but a small region is treated as a quantum system, usually undergoing

a chemical transformation.

1.5.2 Empirical potentials

Empirical potentials used in chemistry are frequently called force fields, while those used in

materials physics are called interatomic potentials. Most force fields in chemistry are empirical

and consist of a summation of bonded forces associated with chemical bonds, bond angles,

bond dihedrals, and non-bonded forces associated with van der Waals forces and electrostatic

charge. Empirical potentials represent quantum-mechanical effects in a limited way through

ad-hoc functional approximations.

These potentials contain free parameters such as atomic charge, van der Waals parameters

reflecting estimates of atomic radius, and equilibrium bond length, angle, and dihedral; these are

obtained by fitting against detailed electronic calculations or experimental physical properties
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such as elastic constants, lattice parameters and spectroscopic measurements.

Because of the non-local nature of non-bonded interactions, they involve at least weak

interactions between all particles in the system. Its calculation is normally the bottleneck in

the speed of MD simulations. To lower the computational cost, force fields employ numerical

approximations such as shifted cutoff radii, reaction field algorithms, particle mesh Ewald

summation, or the newer particle-particle-particle-mesh.

Chemistry force fields commonly employ preset bonding arrangements (an exception being

ab initio dynamics), and thus are unable to model the process of chemical bond breaking and

reactions explicitly. On the other hand, many of the potentials used in physics, such as those

based on the bond order formalism can describe several different coordination of a system

and bond breaking [54, 55]. Examples of such potentials include the Brenner potential [56] for

hydrocarbons and its further developments for the C-Si-H [57] and C-O-H [58] systems. The

ReaxFF potential [59] can be considered a fully reactive hybrid between bond order potentials

and chemistry force fields.

1.5.3 Pair potentials versus many-body potentials

The potential functions representing the non-bonded energy are formulated as a sum over

interactions between the particles of the system. The simplest choice, employed in many popular

force fields, is the "pair potential", in which the total potential energy can be calculated from

the sum of energy contributions between pairs of atoms. Therefore, these force fields are also

called "additive force fields". An example of such a pair potential is the non-bonded Lennard-

Jones potential (1.1), used for calculating van der Waals forces.

U(rij = ε

[(
rmin

rij

)12

− 2

(
rmin

rij

)6
]

(1.1)

The attractive long-range term α - 1
r6 is due to mutual polarization of the interacting atoms.

The indicated form of the repulsion term, α 1
r12 has no theoretical justification. In addition to

the Lennard-Jones potential, we have the Morse potential, Dzugutov potential and the Quasi

Sutton Chen potential as describe in section 1.6.

Another example is the Born (ionic) model of the ionic lattice. The first term in this model

is the Coulomb’s law for a pair of ions, the second term is the short-range repulsion explained
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by Pauli’s exclusion principle and the final term is the dispersion interaction term. Usually,

a simulation only includes the dipolar term, although sometimes the quadrupolar term is also

included [60,118].

In many-body potentials, the potential energy includes the effects of three or more particles

interacting with each other [119]. In simulations with pair-wise potentials, global interactions in

the system also exist, but they occur only through pair-wise terms. In many-body potentials,

the potential energy cannot be found by a sum over pairs of atoms, as these interactions

are calculated explicitly as a combination of higher-order terms. In the statistical view, the

dependency between the variables cannot in general be expressed using only pair-wise products

of the degrees of freedom.

For example, the Tersoff potential (1.2), [120] which was originally used to simulate carbon,

silicon, and germanium, and has since been used for a wide range of other materials, involves a

sum over groups of three atoms, with the angles between the atoms being an important factor

in the potential.

Utot =
1

2

∑
i

∑

i6=j

fcut(rij) [aijUR(rij)− bijUA(rij)] . (1.2)

The repulsive UR and attractive UA energy terms are given by

UR(rij) = Aexp(-λ1rij) and UA(rij) = Bexp(-λ2rij) Where A, B, λ1 and λ2 are parame-

ters of the potential. In addition to the Tersoff potential, we have the Sutton Chen potential,

Stillinger-Weber potential and the Gupta potential as describe in section 1.7.

Other examples are the embedded-atom method (EAM), [121] the EDIP, [119] and the

Tight-Binding Second Moment Approximation (TBSMA) potentials, [122] where the electron

density of states in the region of an atom is calculated from a sum of contributions from

surrounding atoms, and the potential energy contribution is then a function of this sum.

1.5.4 Semi-empirical potentials

Semi-empirical potentials make use of the matrix representation from quantum mechanics.

However, the values of the matrix elements are found through empirical formulae that estimate

the degree of overlap of specific atomic orbitals. The matrix is then diagonalized to determine

the occupancy of the different atomic orbitals, and empirical formulae are used once again to

determine the energy contributions of the orbitals.

There are a wide variety of semi-empirical potentials, termed tight-binding potentials, which

vary according to the atoms being modeled.
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1.6 OTHER TYPES OF PAIR POTENTIALS

1.6.1 Morse Potential

The Morse potential is a convenient model for the potential energy of a diatomic molecule. It

is a better approximation for treating the vibrational structure of a molecule than the harmonic

oscillator because it explicitly includes the effects of bond breaking. It also accounts for the

anharmonicity of chemical bonds. The Morse potential is implemented in the most general form

(1.3). The parameter r0 is the radial distance to the minimum of the potential, ε(κ− 1) is the

depth of the potential well, the parameters β (in units of inverse length) and κ (dimensionless)

define the steepness of the potential. The curves in Figure 1.2 show the Morse potential

calculated for several values of β

U(rij) = ε[exp(−κβ(rij − ro))− κexp(−β(rij − ro))] (1.3)

1.6.2 Dzugutov Potential

The Dzugutov pairwise potential is known to favor icosahedral ordering in the first neighbour

shell and was originally developed as a model of simple glass-forming liquid metals [123]. The

potential is constructed to suppress crystallization common to most monoatomic systems by

the introduction of a repulsive term representing the Coulomb interactions that are present in

a liquid metal. This term gives rise to a maximum that is needed to prevent particles residing

in the second neighbour shell from finding energetically favorable sites as in an FCC or BCC

configuration. The Dzugutov potential (1.4)

U(rij) = A

(
1

rm
ij −B

)
exp

(
c

rij − a

)
Θ(a− rij) + Bexp

(
d

rij − b

)
Θ(b− rij), (1.4)

where Θ (χ) is the Heaviside step function (1.5):

Θ(χ) = {1,ifχ>0
0,ifχ<0 (1.5)

The parameters a, b, c and d are measured in units of length, m is an integer, the units of A

and B are not fixed. The curves in Figure 1.3 illustrate the behaviour of the Dzugutov potential

for several values of the parameter a (as indicated) and for fixed values of other parameters.
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Figure 1.2: The Morse potential (scaled by ε) as a function of the radial distance r . The curves correspond

to κ = 2, r0 = 1 (arb. units) and for three indicated values of β (in arb. units) [123].

1.6.3 Quasi Sutton-Chen Potential

The pairwise Quasi Sutton-Chen potential is a pairwise potential, which is a simplified

version of the many-body Sutton-Chen potential discussed below. The quasi Sutton-Chen

potential is more convenient in some simulations because of its simple parametrisation, (1.6).

U(rij) = {+∞, rij<r0
a

(rij−r0)n
− b

rm
ij

, rij≥r0
(1.6)

where n,m are integers, the parameter r0 is measured in units of length and the parameters a,

b are measured in [EnergyLengthn] and [EnergyLengthm], respectively. Figure 1.4 illustrates

the quasi Sutton-Chen potential calculated for several sets (n,m) as indicated and for fixed

values of other parameters as specified in the caption.
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Figure 1.3: The Dzugutov potential as a function of the radial distance r . The curves correspond to b =

1.94, c = 1.1, d = 0.27, A = 5.82, B = 1.28 (all in arb. units), m = 16, and to three values of a (arb. units)

as indicated [123].

1.7 OTHER TYPES OF MANY BODY POTENTIALS

1.7.1 Sutton-Chen Potential

The Sutton-Chen potential is often employed for the description of the interaction between

metal atoms, for example, those which constitute a metallic cluster or a nanoparticle [123].

The total potential energy of N atoms can be written as a sum of the repulsive, UR, and the

attractive, UA, terms (1.7).

U(tot) = UR + UA (1.7)

The repulsive part of the Sutton-Chen potential is written in terms of the sum of pairwise

power potentials (1.8),
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Figure 1.4: The Quasi Sutton-Chen potential as a function of the radial distance r . The curves correspond

to r0 = 1, a = 1, b = 100 (arb. units) and for three indicated sets of the integers n and m [123].

U(R) =
ε

2

N∑

j 6=i

U(rij), U(rij) =

(
a

rij

)n

(1.8)

The attractive term accounts for the non-local effects of the interatomic interaction (1.9):

U(A) = −Cε

N∑
i=1

√
ρ(ri), ρ(ri) =

∑

j 6=i

(
a

rij

)m

(1.9)

In these formulae, the parameters of the Sutton-Chen potential are introduced: a and c (in

units of length) and dimensionless integers n,m.

1.7.2 Gupta Potential

The Gupta family of potentials can be used to model a variety of metals. Similar to the

Sutton-Chen potential, the Gupta potential can be written in the form indicated in (1.10) but

with the repulsive and attractive parts expressed in terms of the exponential potentials (1.11):
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U(R) = A

N∑

j 6=i

U(rij), U(rij) = exp

[
−p

(
rij

r0

− 1

)]
, (1.10)

U(A) = −ξ

N∑
i=1

√
ρ(ri), ρ(ri) =

∑

j 6=i

[
−2q

(
rij

r0

− 1

)]
(1.11)

where the parameters A and ξ are measured in units of energy, r0 in units of length and p,

q are dimensionless. More detailed information on the parameters as well as on their derivation

will be presented in chapter2.

1.7.3 Stillinger-Weber Potential

Simulation of the structure of carbon-like structures for example, single diamond, Si and

Ge crystals as well as of the superlattice Si1-xGex by means of molecular dynamics can be

performed by means of bond-ordered Tersoff and Brenner potentials. Another potential, allow-

ing this is the Stillinger-Weber. The Stillinger-Weber potential is written as a combination of

two-body and three body interactions (1.12) [123]:

U(tot) =
∑
i<j

V2(i, j) +
∑

i<j<k

V3(i, j, k) (1.12)

Here the first term stands for the contribution of the two-body interactions (1.13),

V2(i, j) = {
εijA

[
B

(
σij
rij

)p

−
(

σij
rij

)q]
exp(

rij
σij

−a)−1, if
rij
σij

<a

0, ifotherwise (1.13)

Dimensionless parameters A, B, as well as the cut-off radius a are used to tune the pairwise

potential. If the system in question consist of identical atoms, then for all pairs (i, j ) the

energy parameters εij and the length ones σij are set equal, that is εij −→ ε, σij −→ σ. For a

binary system, which consist of the atoms of two types, a1 and a2 (e.g., a Si-Ge superlattice)

one introduces εαβ = √
εαεβ and σαβ = (σα+σβ)

2
(α,β = 1, 2). The three-body interaction is

parametrised as shown in (1.14), (1.15), (1.16) and (1.17)

Va(i, j, k) = εijkh

(
rij

σij

)
,

(
rik

σik

, θijk

)
Θ

(
a− rij

σij

)
Θ

(
a− rik

σik

)
(1.14)

KEYAMPI WATIO Martial 26 PhD, UYI



1.8 PROBLEMS TO SOLVE IN THIS THESIS

Vb(i, j, k) = εjikh

(
rji

σji

)
,

(
rjk

σjk

, θjik

)
Θ

(
a− rji

σji

)
Θ

(
a− rjk

σjk

)
(1.15)

Vc(i, j, k) = εkijh

(
rki

σki

)
,

(
rkj

σkj

, θkij

)
Θ

(
a− rki

σki

)
Θ

(
a− rkj

σkj

)
. (1.16)

V3(i, j, k) = Va(i, j, k) + Vb(i, j, k) + Vc(i, j, k) (1.17)

Here, Θ (χ) is the Heaviside step function, θijk is the angle between rij and rik. The energy

parameters εijk are set equal in a homogenous material but defines εαβγ = √
εαβεβγ in the case

of a binary structure ((α, β, γ) = 1, 2). The function h is given by (1.18)

h

(
rij

σij

,
rik

σik

, θijk

)
= λijkexp

(
µ

[
(
rij

σij

− a)−1 + (
rik

σik

− a)−1

])
×

(
cos θijk +

1

3

)2

(1.18)

where λijk and µ are dimensionless parameters.

1.8 PROBLEMS TO SOLVE IN THIS THESIS

The study of clusters has become an increasingly interesting topic of research in both physics

and chemistry in recent years, since they span the gap between the microscopic and macroscopic

materials. The determination of structural and electronic properties and the growth pattern

of coinage Aluminum clusters are of much interest both experimentally [124] and theoretically

[28–32,83].

In addition, there remain uncertainties about the thermal behavior of crystal structures,

atomic configurations, cohesive energy and electronic structures for various intermediate phases.

The authors of references [28], [30], [31], [32], [83] and [29] have used respectively the Murrell-

Mottram potential, the Glue potential, the Gupta potential, the Sutton-Chen potential, the

Truhlar potential and the Cleri-Rosato potential to determine the optimized configurations of

Aluminum clusters. In the first five works mentioned previously, their optimized configurations

and the corresponding energies are not in agreement with the experimental results. On the

other hand, the configurations are obtained with good precision in the sixth work, but the

energy levels have some errors. Therefore, these authors have not succeeded to determine the

cohesive energy and the lattice parameter of the Aluminum crystal.
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The first problem to solve in this thesis is to determine the parameters of the Gupta potential

taking into account the cohesive energy and the lattice parameter of the Aluminum crystal.

As such, Jasper et al. have used the Gupta potential in their work but the parameters of the

potential was not well fitted [31].

The determination of the optimized configurations of Aluminum clusters and their funda-

mental energies will be the second problem to address. From these data, the cohesive energy

of the Aluminum crystal can be deduced and the stable configurations are also determined.

Conclusion

Studies have shown that optimized clusters usually adopt one of the following four types

of structures: Tetrahedral, Octahedral, Decahedral and Icosahedral. Atomic arrangement in

clusters and their bulk material have shown that the addition of atoms to bulk materials have

no effect though there is rearrangement of surface atoms whereas there is a drastic effect in

the case of clusters. The melting point of clusters depend on their sizes, in addition, some

clusters are extremely stable due to their completely filled electronic orbitals and they are

called magic number clusters. Chemically, clusters are similar to atomic species in behavior

and in electronic valencies thus giving them the name superatoms. The fact that clusters have

provided a link between isolated atoms, molecules and the bulk material so as to make phase-

transition studies very possible ( just to name a few), have attracted many researchers to the

field of clusters. Physically, clusters exist in the solid, liquid and gaseous states with very large

ranges of temperature at phase-transition and isolated clusters do not conduct electricity even

when sandwished between two metal slabs, except under high alternating electric forces and

frequencies. Magnetically, clusters are similar to those of their bulk materials. In addition,

Thermodynamic equilibrium and the dynamic properties of nonequilibrium systems can be

analyzed using both the Monte Carlo and Molecular Dynamic simulation methods.
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Chapter 2

MATERIAL AND METHODOLOGY

Introduction

In this chapter, we shall present the various steps involved in our calculation method.

We shall begin by showing how the ground state electronic properties of the clusters were

determined from the non relativistic Schrödinger equation, followed by showing the important

part played by the Gupta potential for our system. In addition, the mathematical model of our

system shall be presented together with other reasons for using the Gupta potential in this work.

The verlet algorithm together with the initial conditions shall be used to further explain the

global optimization method used for the cluster structures. Through the convergence criteria,

we shall show how the multiple independent simulation can be used to check a single stable

configuration and how the Basin hopping method is used to search the local minima, ensuring

that the potential energy surface for a particular minima does not change. A flow chart for

the verlet algorithm with multiple independent simulation methods shall be made, followed by

showing all the symmetry elements involved in a given point group. Finally, all the materials

used in this work shall be mentioned.

2.1 MODELING OF THE SYSTEM

2.1.1 Ground states determination

In this subsection, we are concerned with the ground state electronic properties of a finite

isolated system of Na atoms each containing Ne electrons. The coordinates of atoms and elec-

trons are denoted respectively by −→r and
−→
R . The non relativistic time independent Schrödinger

equation for the system is described as

Hψ
(−→r1 , · · · ,−→rNa ,

−→
R1, · · · ,

−−→
RNe

)
= Eψ

(−→r1 , · · · ,−→rNa ,
−→
R1, · · · ,

−−→
RNe

)
(2.1)
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where E is the ground state energy and the operator hamiltonian H is defined as follows:

H = −
Na∑

m=1

~2

2Ma

∇2
m−

Ne∑
n=1

~2

2me

∇2
n+

1

4πε0




Na,Na∑

n<`

e2

|−→rn −−→r` | +

Ne,Ne∑

m<k

Z2e2

∣∣∣−→Rm −−→Rk

∣∣∣
−

Na,Ne∑
n,m

Ze2

∣∣∣−→rn −−→Rm

∣∣∣


 .

(2.2)

The first and second terms of equation (2.2) represent the kinetic energies of nucleus and

electron respectively. The third and fourth terms represent the nucleus-nucleus interaction and

electron-electron interaction respectively while the fifth term represents the electron-nucleus

interaction. Here, Ma and Z are mass and atomic number of the nucleus, the electron mass and

charge are denoted by me and−e, and ε0 is the vacuum permittivity. Equation (2.1) is obviously

an insoluble problem without making approximations. The Born-Oppenheimer approximation

makes it possible to compute the wavefunction in two less formidable, consecutive steps.

We can then consider electronic motion for fixed nuclei and factorize the total wavefunc-

tion as ψ
(−→r1 , · · · ,−→rNa ,

−→
R1, · · · ,

−−→
RNe

)
= Θ

(−→
R1, · · · ,

−−→
RNe

)
Φ

(−→r1 , · · · ,−→rNa ,
−→
R1, · · · ,

−−→
RNe

)
, where

Θ
(−→
R1, · · · ,

−−→
RNe

)
describes the nuclei, and Φ

(−→r1 , · · · ,−→rNa ,
−→
R1, · · · ,

−−→
RNe

)
depends parametri-

cally on Ri and describes the electrons. The problem then can be reformulated in terms of two

separate Schrödinger equations:

HelΦ
(−→r1 , · · · ,−→rNa ,

−→
R1, · · · ,

−−→
RNe

)
= V

(−→
R1, · · · ,

−−→
RNe

)
Φ

(−→r1 , · · · ,−→rNa ,
−→
R1, · · · ,

−−→
RNe

)
. (2.3)

HiΘ
(−→
R1, · · · ,

−−→
RNe

)
= EΘ

(−→
R1, · · · ,

−−→
RNe

)
. (2.4)

where

Hel = −
Ne∑
n=1

~2

2me

∇2
n +

1

4πε0




Na,Na∑

n<`

e2

|−→rn −−→r` | +

Ne,Ne∑

m<k

Z2e2

∣∣∣−→Rm −−→Rk

∣∣∣
−

Na,Ne∑
n,m

Ze2

∣∣∣−→rn −−→Rm

∣∣∣




and

Hi = −
Na∑

m=1

~2

2Ma

∇2
m + V

(−→
R1, · · · ,

−−→
RNe

)
(2.5)

The equation (2.3) for the electronic problem gives the energy V
(−→
R1, · · · ,

−−→
RNe

)
that de-

pends parametrically on the coordinates of the nuclei, Ri. Once found, V
(−→
R1, · · · ,

−−→
RNe

)
enters
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equation (2.4) which describes the motion of nuclei. The later equation does not include any

electronic degrees of freedom, all the electronic effects are incorporated in V
(−→
R1, · · · ,

−−→
RNe

)

that is called interatomic potential.

Hence, in Molecular Dynamics, we can use potential function V
(−→
R1, · · · ,

−−→
RNe

)
to describe

interaction among atoms. But we know that in real materials the dynamics of atoms is con-

trolled by the laws of quantum mechanics and the bonding is defined by the electrons that are

not present in classical Molecular Dynamics.

2.1.2 System and potential

In order to use Molecular Dynamics we have to define the rules that are governing inter-

action of atoms in the system. In classical and semi-classical simulations these rules are often

expressed in terms of potential functions. The potential function V (−→r1 , −→r2 , · · · ,−→rN) describes

how the potential energy of a system of N atoms depends on the coordinates of the atoms,
−→r1 , −→r2 , · · · ,−→rN . It is assumed that the electrons adjust to new atomic positions much faster

than the motion of the atomic nuclei.

In this work, we will use the many body Gupta potential. The Gupta potential, was

originally proposed to study relaxation near surfaces and impurities in bulk transition metals

[125]. The principal part of the many body Gupta potential rests on the tight binding model

originally proposed by Ducastelle [16] and Friedel [17]. The main idea consists of constructing

a functional within the second momentum approximation [18,19,126] which takes into account

the essential band character of the metallic bond. The cohesive energy of the system depends

on five parameters. It is written in terms of repulsive pair and attractive many body terms

which are obtained by summing over all atoms. Its expression given in equation 2.6 results

from the summation of the total bonding energy between N atoms.

V =
N∑

i=1




N∑
j>i

V r
ij (rij)−

√√√√
N∑

j>i

V a
ij (rij)


, (2.6)

with

V r
ij = Ae

−p
(

rij
r0
−1

)
and V a

ij = B2e
−2q

(
rij
r0
−1

)
. (2.7)

A is the index to measure the interatomic repulsive strength and B is an effective jump

integral only related to the type of atoms. p and q are adjustable parameters, V r
ij and V a

ij are

respectively the repulsive potential and the attractive potential. r0 is the equilibrium distance

KEYAMPI WATIO Martial 31 PhD, UYI



2.1 MODELING OF THE SYSTEM

between atoms and rij = ‖−→rj −−→ri ‖ represents the distance between the ith and the jth atoms.

N is the total number of atoms with equal mass m.

2.1.3 Mathematical model of the system

In the molecular dynamics simulation methods the emphasis is on the motion of individual

atoms within an assembly of N atoms, or molecules, that make up the nanostructure under

study. The force acting on the ith atom and due to the potential is given by the gradient of

the potential energy (the force on atom i is a vector pointing in the direction of the steepest

decent of the potential energy):

−→
Fi = −−→∇V =




p

r0

N∑
j=1
j 6=i

V r
ij (rij)− q

r0

1√√√√
N∑

j=1
j 6=i

V a
ij (rij)

N∑
j=1
j 6=i

V a
ij (rij)




−→rij

rij

. (2.8)

By applying the second law of Newton to the ith atom , the equations of motion take the

form given as

m
d2−→ri

dt2
+ λ

d−→ri

dt
+




p

r0

N∑
j=1
j 6=i

V r
ij (rij)− q

r0

1√√√√
N∑

j=1
j 6=i

V a
ij (rij)

N∑
j=1
j 6=i

V a
ij (rij)




−→rij

rij

=
−→
0 , (2.9)

where λ is the damping coefficient and i = 1, · · · , N .

However, all the quantities in molecular dynamics simulations are very small. It is therefore

usual to introduce measurement units that are adapted to the task. This means that we measure

lengths in units of r0 and time in units of 1
ω0
. Hence, to conveniently describe the system, the

dimensionless equations of the system are established using the transformations τ = ω0t and
−→ri = r0

−→
Ri (i = 1, · · · , N), where τ and

−→
Ri are dimensionless variables. Let us introduce these

new variables inside equations (2.9), after some mathematical manipulations; the mathematical

model of the system is given as
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d2−→Ri

dt2
+ β

d
−→
Ri

dt
+




p0

N∑
j=1
j 6=i

U r
ij (Rij)− q0√√√√

N∑
j=1
j 6=i

Ua
ij (Rij)

N∑
j=1
j 6=i

Ua
ij (Rij)




−→
Rij

Rij

=
−→
0 . (2.10)

with i = 1, · · · , N . The new introduced parameters and functions are defined as follows:

β =
λ

mω0

, p0 =
p

mω2
0r

2
0

, q0 =
q

mω2
0r

2
0

, U r
ij = Ae−p(Rij−1) and Ua

ij = B2e−2q(Rij−1). (2.11)

2.1.4 Reasons for using the Gupta potential

Accurately simulating atoms for metal materials, using molecular dynamics technique, en-

tirely depends on the choice of the empirical potentials. Generally, the pair potentials such as

Lennard-Jones potential, Morse potential are unable to describe metals due to their many-body

effects in metallic cohesion, that is, the interaction strength per bond decreases with increasing

number of neighboring atoms [127]. It is based on this consideration that, in the 1980s, a variety

of empirical many-body potentials, such as the tight-binding (TB) potential by Gupta [125] and

Cleri and Rosato [122], Embedded Atom Method (EAM) potential by Daw and Baskes [128],

Finnis-Sinclair potential [129], Glue potential by Ercolessi et al. [130], were independently de-

veloped and today, they are successfully applied to metals and alloys of face-centered cubic

(fcc), body-centered cubic (bcc) and hexagonal close packed (hcp) phases, respectively. Among

these potentials, the Gupta potential has distinguished itself due to its simplest form as well

as fewest parameters. Many body potentials do have environmental dependence for example

atom in the bulk is not similar to the atom on the surface or near a defect site.

In reality, the strength of the individual bonds should decrease as the local environment

becomes too crowded as mentioned by the Pauli’s principle, but since many body potentials

do depend on the environment, it can account for this decrease. Furthermore, many body

potentials do account for directional nature of the bond and so, the covalent contributions, of

the transition metals can be described. Originally, Gupta potential was developed to calculate

the surface relaxation of fcc transition metals and only included the first nearest neighboring

atoms [125]. From this basis, Cleri and Rosato [122] interpreted the Gupta potential form

in terms of the second-moment approximation of TB theory and fitted a series of potential

parameters for those common in fcc and hcp transition metals (Ni, Cu, Rh, Ti, Zr, Co, etc)

KEYAMPI WATIO Martial 33 PhD, UYI



2.2 GLOBAL OPTIMIZATION METHOD

that can successfully reproduce the fundamental properties such as elastic moduli and melting

points. Nowadays, the Gupta potential has been parameterized for wide atomistic simulations

of clusters, liquids, surfaces and alloys of different transition metals [131–135].

2.2 GLOBAL OPTIMIZATION METHOD

In molecular dynamics, the most commonly used time integration algorithm is probably the

so-called Verlet algorithm [136]. The basic idea is to assume that the positions, velocities and

accelerations can be approximated by a Taylor series expansion.

2.2.1 Verlet algorithm

The algorithm was rediscovered by Verlet in 1960’s for molecular dynamics simulations after

Delambre in 1791. It was also used by Cowell and Crommelin in 1909 to compute the orbit of

Halleys comet and by Störmer in 1907 to study the motion of electrical particles in a magnetic

field [137]. To simplify our analysis, we assume that the model of the system is given by the

following equation:

d2−→Ri

dτ 2
= −→ai (τ) , i = 1, · · · , N. (2.12)

The 3N coupled differential equations of motion can then be solved by a variety of numerical

finite-difference techniques, one of which is the velocity Verlet algorithm, according to which

the positions,
−→
Ri, and velocities,

−→Vi , of the particles are updated at each time step, h, by

−→
Ri (τ + h) =

−→
Ri (τ) + h

−→Vi (τ) +
1

2
h2−→ai (τ) , i = 1, · · · , N. (2.13)

−→Vi (τ + h) =
−→Vi (τ) + h−→ai (τ) , i = 1, · · · , N. (2.14)

As we can immediately see, the truncation error of the algorithm when evolving the system

by h is of the order of h4, even if third derivatives do not appear explicitly. This algorithm is at

the same time simple to implement, accurate and stable, explaining its large popularity among

molecular dynamics simulators.
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2.2.2 Assigning initial conditions

Molecular dynamics simulation starts from an initial configuration of atoms and determines

the trajectories of all the atoms. The initial condition for such a simulation consists of all the

positions,
−→
Ri (0) and velocities

−→Vi (0) at the initial time. In order to model a realistic system,

it is important to choose the initial configuration with some care.

In particular, since most potentials such as the Gupta potential increase very rapidly as the

interatomic distance Rij goes to zero, it is important not to place the atoms too close to each

other. We therefore often place the atoms regularly in space, on a lattice, with initial random

velocities. We generate a lattice by first constructing a unit cell and then copying this unit cell

to each position of a lattice to form a regular pattern of unit cells. In this work, we have used

cubic and hexagonal unit cells of length r0.

2.3 CONVERGENCE CRITERIA

Convergence to equilibrium is an essential requirement for molecular simulation output to

be accurate and reproducible. In the absence of any general technique for a prior prediction

of run lengths, it is necessary to carry out some form of statistical analysis in order to assess

convergence. These procedures, which are called convergence diagnostics, fall into two general

categories: those based solely on the output values (positions, velocities and energy) of the sim-

ulation, and those that also use additional information about the target density. The methods

described in this work are the entire first category.

2.3.1 Multiple independent simulations

In this work, we have used a quantitative method for monitoring convergence based on

multiple independent simulations starting from four different initial configurations [138]. For

illustration, an example is shown in Figure 2.1 where the energies of a certain system starting

from four different initial configurations are sketched.

In this particular case, the system converges to one stable configuration as all the curves

have approximately the same value for a sufficient long time.

We quantify the distance between the independent cluster population vectors using the

distance δ (t) defined as:
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Figure 2.1: The energies of a certain system according to four different initial configurations.

δ (t) =
1

2
max

j

(
N∑

i=1

∥∥∥Rij (t)−Ri (t)
∥∥∥
)

, (2.15)

where Rij (t) is the position of the ith particle of the jth simulation at time t, Ri (t) = 1
4

4∑
j=1

Rij (t),

and N is the number of atoms. This distance is computed against time and the system consid-

ered equilibrated when it decreases below a pre-chosen threshold and remains below. A 10−2

threshold has been used in this thesis.

2.3.2 Basin-hopping method

In applied mathematics, Basin-hopping is a global optimization technique that iterates by

performing random perturbation of coordinates, performing local optimization, and accepting

or rejecting new coordinates based on a minimized function value. The algorithm was described

in 1997 by David J. Wales and Jonathan Doye [139]. It is a particularly useful algorithm for

global optimization in very high-dimensional landscapes, such as finding the minimum energy

structure for molecules.
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The basic idea of the method rests on monitoring an initial Potential Energy Surface (PES)

V (rij) of N atoms which is transformed so that the resulting PES does not change the global

minimum or the relative energies of local minima [139,140]. In other words, the PES of V (rij)

is deformed into a multidimensional staircase topography Ṽ (rij) given by equation (2.16),

Ṽ (rij) = min [V (rij)] , (2.16)

where the min(·) represents a local energy minimization starting from the coordinates −→ri of N

atoms. For illustration, an example of the energy of the original surface and its corresponding

transformed energy are shown in Figure 2.2.

0

0

 t  (fs)

 E
n

er
g

y
 (

eV
)

Figure 2.2: A schematic diagram illustrating the effects of our energy transformation for a one-dimensional

example. The solid line is the energy of the original surface and the dashed line is the transformed energy Ṽ .

Technically the numerical procedure runs as follows: For a cluster of N atoms, we randomly

generate an atomic configuration that is confined inside a sphere of radius Rd defined as follows:

Rd = r0

(
1 + 3

√
3N

4π
√

2

)
, (2.17)
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where r0 represents the nearest-neighbor distance, whose origin is located at the center-of-mass

of the cluster. The confinement of N atoms within Rd is done to prevent the whole cluster

from evaporating.

It is next identified with precision (pinpoint) that particular atom whose location rmax from

the origin is farthest compared with others. Given the configuration of a cluster, the potential

energy is calculated using (2.16).

Some technical points on the method include:

1) Angular move and random displacement

Given the configuration of an N -atoms cluster, the local minimum is determined as follows,

the angular moves and random displacements to the n-atoms cluster is applied. This process

is called a step. For an additive potential, it is easy to write down the energy as in equation

(2.18),

E =
1

2

N∑
i=1

V (i). (2.18)

V (i) refers to the potential of the ith atom due to its interaction with all the other atoms

at (Ri). Among the V (i), i = 1, · · · , N the two particles with the lowest, V`, and the highest,

Vh, energies are sorted out. If Vh > νV`, where the constant ν satisfies 0 < ν < 1, the Vh atom

is moved to the surface of Rmax and displaces all others by a random number δ that lies in the

range 0 < δ < 1.

2) Seeding

To reduce computing time, the existing set of coordinates for the initial configuration is used.

This procedure is applied in parallel with a randomly generated configuration (no seeding) to

check the reliability of the calculated results.

3) Limited BFGS algorithm

This is one of the variable metric methods and it is an efficient approach in searching the

local minimum [141]. The basic idea lies in the usual Monte Carlo moves where the root-

mean-square gradient is applied to determine how far the moves are to be accepted during

the iterations of the L-BFGS. Initially the convergence criterion needs not be very tight, thus

saving a lot of computing time. In the final stage the L-BFGS is carried out again now using

a tightly convergence criterion.

4) Quenching

Based on Markov’s process, the Monte Carlo simulation starts by going downhill, which

leads to a local but not necessarily a global minimum. Statistically the system must obey

KEYAMPI WATIO Martial 38 PhD, UYI



2.4 POINT GROUPS DETERMINATION

a Boltzmann probability distribution P (E) in thermal equilibrium at temperature T for all

different energy states E that satisfies equation (2.19)

P (E) ' exp

(
−∆E

KT

)
. (2.19)

Although the original Monte Carlo method is used at a constant Temperature, in the basin

hopping method the temperature may still increase or decrease in the course of taking steps.

For example, supposing ∆E > 0 which only happens when the search for the energy landscape

is difficult, the temperature may be varied to find the range of energy states so that the later

difficulty can be resolved. In general, after a few intervals of steps, the temperature is lowered

slowly, which corresponds to narrowing the range of energy states.

2.3.3 Flow-chart of the code used in this work

We show in Figure 2.3 the flow chart of our energy optimization procedure for the genetic

algorithm strategy. Technically, the genetic algorithm is a search procedure inspired by the

Darwinian evolution process. Numerically it is an iterative, algorithm maintaining a population

of atoms. Each individual atom in the system consists of three unknown variables (position)

in the Cartesian coordinates.

The potential is computed using the set of equations (2.2) and (2.3). In the other hand,

the force, the positions and the velocities are computed using the equations (2.8), (2.13) and

(2.14) respectively. The distance δ between clusters is evaluated according to equation (2.15).

2.4 POINT GROUPS DETERMINATION

2.4.1 Definition

Each molecule has at least one point which is unique and which remains unchanged, no

matter how many or what type of symmetry operations are performed. Such point is termed

singular point. The number and nature of the symmetry elements of a given molecule are

conveniently denoted by its point group. These point groups belong to the classes of C groups,

D groups and special groups, the latter containing groups that possess special symmetries, that

is, tetrahedral (Td), octahedral (Oh) and icosahedral (Ih) [142]. The complete set of symmetry

operations that characterize a molecule’s overall symmetry is known as the Point group (PG).
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Figure 2.3: Flow chart for the Verlet algorithm combined with the multiple independent simulations method.
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2.4.2 Point groups

To determine the point group of a certain molecule or cluster, we have to identify all its

symmetry elements. Below are the most important classes of point groups, involving their

characteristics type of symmetry elements.

PG Symmetry elements

Cs One symmetry plane or mirror

Ci One inversion center

Cn One Cn axis

Cnv One Cn axis and nσv planes

Cnh One Cn axis, one σh plane, one Sn ≡ Cn axis

Dnh One Cn axis, nC2 axes, one σh plane, nσv planes, one Sn-fold axis

Dnd One Cn axis, nC2 axes, nσv planes, one S2n-fold axis

Td 8C3 axes, 3C2 axes, 6S4 axes and 6σd

T 4C3 axes, 4C2
3 axes and 3C2 axes

Th 4C3 axes, 4C2
3 axes, 3C2 axes, i, 4S6, 4S5

6 axes and 3σh

Oh 8C3 axes, 6C2 axes, 6C4 axes, 3C2 axes, i, 6S4, 8S6, 3σh and 6σd

O 8C3 axes, 6C2 axes, 6C4 axes and 3C2 axes

Ih 12C5 axes, 12C2
5 axes, 20C3 axes, 15C2 axes, i, 12S10, 12S3

10, 20S6 and 15σ

I 12C5 axes, 12C2
5 axes, 20C3 axes and 15C2 axes

Table 2.1: Different Point groups and their corresponding symmetry elements.

2.5 SOFTWARES USED

For the realization of this thesis, we have used four fundamental softwares, and each for a

precise task. For writing the codes and their compilation, FORTRAN 90 (FORmula TRANs-

lator) software was used. It is a general-purpose, compiled imperative programming language

that is especially suited to numeric computation and scientific computing. MATLAB (MAtrix

LABoratory) software has been used to plot the graphs. For the visualization of the clusters,

we chose RASTOP and for the determination of the point groups, we have used CHEMCRAFT

software.
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2.5.1 Some important features involved in Fortran 90 (formula trans-

lator) software that were used when writting this code and to

compile

To set the project, we opened the Project Settings dialog box Figure 2.4 from where the

project workspace was opened and in the project menu, we clicked on setting. The Fortran tab

of the dialog box will presented options grouped under different categories. We then selected

the category from the Category drop-down list:

Figure 2.4: Project settings dialog box [143].

To save the project settings Fortran environment Figure 2.5, we opened to the appropriate

workspace and modified the Project Settings dialog box as needed. If the actual file names

for output is specified, then we use the default file naming conventions. In the File menu, we

clicked Save Fortran Environment or clicked the green tree on the Fortran toolbar. A window

resembling the following dialog box appeared.

The Tool Combo box allowed us to view the project settings for either the Fortran or the
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Figure 2.5: Project Settings Environment [143].

displayed tools (such as Linker). The Release and Debug configuration values are displayed for

the selected tab. It is then verified if the displayed values are acceptable. The edit box titled

Saved Fortran Console Environment allowed us to specify the name of the environment to be

saved. And finally, a click on the save settings button saved the settings as a project settings

environment.

To use an existing Fortran environment when creating a new project Figure 2.6, If the

Fortran environment exists for the specified new Fortran project type, you will be asked whether

you want to apply project settings options from a saved Fortran environment. If you click Yes,

a window resembling the following dialog box will appear.

For the selected Fortran project type, a list of saved Fortran environments appears Figure

2.7. The Fortran environment is then selected. The selected environment is verified to be correct

by viewing the Project Settings options. After selecting the appropriate Fortran environment

for the Fortran project being created, we clicked to the Apply button to use the saved settings

for the new project. Other tasks associated with creating a new project, such as adding source

files, and so on is completed. To manage saved Fortran environments, in the Tools menu, we

clicked on Managed Saved Fortran Environment or clicked the saw on the Fortran toolbar. A

dialog box resembling the following appears.
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Figure 2.6: An Existing Fortran Project Settings Environment [143].

Initially, this dialog box displays the project types for which there are saved Fortran environ-

ments. We then double-click on the project type name to view the saved Fortran environments

for that project type. This dialog box allows one to display the Fortran environments associated

with each project type. to display the Fortran environments associated with that project type,

double-click the name of a project type .

To display the project settings for a Fortran environment, we Click the name of a Fortran

environment and View the project settings for the Fortran tab. Followed by Clicking other tool

tab (such as Linker) and viewing the tool’s project settings and If needed, we click (select) a

different Fortran environment.

To determine whether a duplicates exist for a Fortran environment, we Click (select) the

name of an environment or a project type and Click the Display Environments with Duplicate

Settings button. If the Fortran environments have different project settings, No Duplicates

Found is displayed. But if the Fortran environments have identical project settings, the dupli-

cate environments are displayed.
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Figure 2.7: Saved Fortran Project Settings Environments [143].

To delete a Fortran environment, we Click (select) the name of an environment or the project

type followed by Clicking the Delete button and finally Click OK to the delete confirmation

box.

To set the browse option for the current configuration in the visual development environ-

ment, in the Project menu, we click on Settings. In the General category of the Fortran tab,

we set the Generate Source Browse Information check box. Then Click the Browse Info tab

and set the Build Browse info check box. We Click OK and Build our application. In the

Tools menu, we click Source Browser and near the bottom on the Browse window, we locate

the Case sensitive check box. Since Fortran is a case-insensitive language, we make sure the

Case sensitive check box is clicked off. When we are done using the Browse window, we click

OK. The Browse window allows us to view graphs of calling relationships between functions

and view the symbols contained within the file, inother to perform other functions.

For the setting of projects Figure 2.8, If aiming at using the compiler and linker from the

Microsoft visual development environment, we select the options needed by using the various
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tabs in the Project menu Settings item.

Figure 2.8: Project Settings, Fortran Tab [143].

The options are grouped under functional categories (the initial Category is General, as

shown) to help locate the options needed for our application. From the Fortran tab, one can

select one of the following categories from the Category drop-down list.

To prepare the program for debugging Figure 2.9, we start the visual development environ-

ment (click Developer Studio in the Compaq Visual Fortran program folder). And Open the

appropriate Workspace (File menu, either Open Workspaces or Recent Workspaces). Click the

FileView pane. To edit the source file to be debugged, we double-click on the file name and

Click the Project name. The screen might appear as follows (the ClassView tab only appears

if Visual C++ is also installed)

In the Build menu, we click Set Active Configuration and select the debug configuration.

To check the project settings for compiling and linking, in the Project menu, we click Settings,

then click the Fortran tab. Similarly, to check the debug options set for our program (such

as program arguments or working directory), we click the Debug tab in the Project Settings
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Figure 2.9: Debugging Fortran Programs [143].

dialog box.

To compile the program, we select the source file to be compiled and in the Build menu, we

click Compile filename. One can eliminate any compiler diagnostic messages in the text editor

and recompile if needed. To build our application, in the Build menu, we click Build file.EXE.

Set breakpoints in the source file and debug the program.

To creat a Fortran COM Server Project Figure 2.10, The first step is to create a new project.

We Start Developer Studio. In File menu, we click New. In the New Projects dialog box, we

select (click) the Fortran COM Server project type, as shown below (if Microsoft Visual C++

is installed on your system, additional project types will appear).

We enter ’Adder’ as the name of the project and accept or modify the project folder location.

We click the OK button. (If you click Back, the previous screen appears, allowing you to change

the name, location, or project type of the project being created). To define the initial attributes

of the Fortran COM server project being created, additional information is requested. The

following screen shows the Fortran COM Server AppWizard Figure 2.11. One can use the
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Figure 2.10: Creating a Fortran COM Server Project [143].

project AppWizard once per project to create the project files and skeleton template (as with

other project types).

To Accept the default server type (DLL). Type the class name AddingMachine. Default

text appears for the default interface name and class derived type name. To shorten the default

interface name to IAdd and accept the default class derived type name, we Click the Finish

button. (If you click Cancel, project creation is terminated). A summary screen appears Figure

2.12that summarizes the location and template information created for this project.

When we then click OK, the project is created and the Fortran COM Server Wizard appears.

2.5.2 Some important features when using Matlab (Matrix Labora-

tory) software that was used to plot the graphs in this work

To start MATLAB, the desktop appears with the default layout Figure 2.13, as shown in

the figure below. The MATLAB desktop consists of the following parts, Command Window

used to run MATLAB statements, Current Directory used to view, open, search for, and make
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Figure 2.11: Fortran COM Server AppWizard [143].

changes to MATLAB related directories and files, Command History is used to display a log of

the functions we have entered in the Command Window. One can copy them, execute them,

and more Workspace which Shows the name of each variable, its value, and the Min and Max

entry if the variable is a matrix.

In case where the desktop does not appear with the default layout, one can change it from

the menu Desktop → Desktop Layout → Default.

The MATLAB editor can be used to create and edit M files, in which you can write and

save MATLAB programs. An m-file can take the form of a script file or a function. A script

file contains a sequence of MATLAB statements; the statements contained in a script file can

be run in the specified order, in the MATLAB command window simply by typing the name of

the file at the command prompt. M files are very useful when we use a sequence of commands

over and over again, in many different MATLAB sessions and we will not want to manually

type these commands at the command prompt every time we want to use them.

We can run a script, or a function that does not require an input argument, directly from
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Figure 2.12: Creating a COM Server [143].

the Editor/Debugger Figure 2.14either by pressing F5 or selecting Save File and Run from the

Debug menu. If we only want to run a part of a script, we can use the mouse to highlight the

corresponding lines in the m-file and press F9. The results are shown in Command Window.

MATLAB has an extensive built-in help system, which contains detailed documentation for

all of the commands and functions of MATLAB . There are different ways of asking for help

when using MATLAB Command Line. HELP FUN displays a description of and syntax for the

function FUN in the Command Window (e.g., help plot), DOC FUN displays the help browser

for the MATLAB function FUN (e.g. doc help).

We can invoke the MATLAB help browser by typing "helpbrowser" at the MATLAB com-

mand prompt, clicking on the help button, or by selecting Start→ MATLAB→ Help from the

MATLAB desktop.

To plot the graph of a function, we need to take the following steps:

• Define x, by specifying the range of values for the variable x, for which the function is to

be plotted,
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Figure 2.13: MATLAB Desktop(default layout) [144].

• Define the function, y = f(x),

• Call the plot command, as plot(x, y).

Following example would demonstrate the concept. Let us plot the simple function y = x

for the range of values for x from 0 to 100, with an increment of 5.

We create a script file and type the following code:

x = [0 : 5 : 100];

y = x;

plot(x, y)

When you run the file, MATLAB displays the plot.

MATLAB allows the addition of title, labels along the x− axis and y− axis, grid lines and

also to adjust the axes to spruce up the graph.

• The xlabel and ylabel commands generate labels along x− axis and y − axis.

• The title command help to put a title on the graph.

• The grid on command allows us to put the grid lines on the graph.
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Figure 2.14: MATLAB Editor [144].

• The axis equal command allows generating the plot with the same scale factors and the

spaces on both axes.

• The axis square command generates a square plot.

Example

Create a script file and type the following code:

x = [0 : 0.01 : 10];

y = sin(x);

plot(x, y), xlabel(′x′), ylabel(′Sin(x)′), title(′Sin(x)Graph′),

grid on, axis equal

MATLAB will generates the graph with all the above included.

The axis command allows us to set the axis scales. We can provide minimum and maximum

values for x and y axes using the axis command in the following way:

axis ( [xmin xmax ymin ymax] )

When we create an array of plots in the same figure, each of these plots is called a subplot.
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The subplot command is used for creating subplots and the syntax for the command is:

subplot(m, n, p)

where, m and n are the number of rows and columns of the plot array and p specifies

where to put a particular plot. Each plot created with the subplot command can have its own

characteristics.

Conclusion

The non relativistic Schrödinger equation used to determine the ground state electronic

properties of our system has been described. A dimensionless equation of motion have been

established to represent the mathematical model of our system. Suitable reasons for using the

Gupta potential here have been sorted. Detail steps for updating the position and velocities

at a given time step in the verlet algorithm have clearly been made. In addition, the cubic

and hexagonal unit cells used to generate our lattices for assigning our initial conditions have

also been explained. The convergence criteria have been based on the multiple independent

simulation of four different initial configurations and the system has been considered to be

in equilibrium only when it remains below a certain pre-chosen threshold 10−2. The verlet

algorithm with the multiple independent simulation method have been summarized in a flow

chart. Using the following steps in the Basin hopping method, angular move and random

displacement, seeding, quasi Newton minimization algorithm and quenching, the local minima

have been efficiently searched at reduced computing time with the assurance that the actual

or final ground state is at thermal equilibrium and that any resulting potential energy surface

does not change the global minimum of the local minima. The symmetry elements of each

point group have been summarized. Lastly, the role played by each of these softwares in this

work ( Fortran 90, Chemcraft, Rastop and Matlab), have been summarized.
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Chapter 3

RESULTS AND DISCUSSION

Introduction

In this chapter, we will explain how the Gupta parameters for the A` clusters were obtained,

proceeding by carrying out some verifications to show how these parameters are accurate. We

shall then proceed to obtain the energies, geometries, point groups and bond lengths of all the

A` clusters within the range 3 ≤ N ≤ 170 using these obtained parameters. A mathematical

relation to analytically obtain the ground state energy of any cluster size will be of further

obtained. In addition, their binding energies are to be obtained in other to study their structural

stability. This stability behavior will be analyzed to distinguish those structures with enhance

stability. The equilibrium distance of these clusters shall further be determined from the bond

length and the total number of symmetries sorted from the optimized structures. Furthermore,

comparison of the obtained results with the experimental works as well as other authors shall

be made in detail. Still under this comparison, we are going to further show how accurate

and efficient the Gupta potential is, using the A`9 cluster and the dimer. Lastly, through the

octamer (A`8), we are to demonstrate how difficult it is to obtain all the global minima involved

in a cluster as their nuclearity increases.

3.1 DETERMINATION OF THEGUPTA PARAMETERS

AND VERIFICATION

3.1.1 Determination of the Gupta parameters

The first investigation was dedicated to the determination of the parameter values. Let

r2 and r3 be the equilibrium separation distances in A`2 and A`3 respectively. Since the A`3

cluster had an equilateral triangle geometry with D3h symmetry, from the Gupta potential

given by the equation 2.6 and the force on the ith particle given by the equation 2.8. Also,
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knowing that the force Fi = 0 at equilibrium and taking F2 and F3 at equilibrium and solving

them simultaneously, we expressed p and B as function of q and A as follows:

p = q +
r0 ln

√
2

r3 − r2

, (3.1)

B = A

(
1 +

r0 ln
√

2

q (r3 − r2)

)
exp

(
r2 − r0

r2 − r3

ln
√

2

)
. (3.2)

Taking into account the experimental values of the cohesive energy and lattice parameters

[124], the approximated values of q and A have been fitted. Under these considerations, the

values of the parameters used in this work are given in Table 3.1.

Parameters A B p q

Values 7.69 · 10−2eV 1.1280eV 15.1194 1.930

Table 3.1: Gupta parameters for Aluminum clusters.

3.1.2 First verification of the Gupta parameters

For the first verification, the Gupta pair potential for A`2 dimer and the corresponding force

are displayed in Figure 3.1a) and Figure 3.1b) respectively.

The distance in the horizontal axis is in unit of r0. As shown on the graph, the Gupta pair

potential modeled to Aluminum decreases very rapidly to its minimum value as the distance

increases from 0 to the equilibrium distance 0.9524r0. After the equilibrium distance, the

potential increases slowly with the distance. According to the shape of the curve in Figure

3.1b), we can notice that the atoms repel each other when the distance between them is less

than 0.9524r0 and attract each other otherwise. The smaller the distance between atoms

becomes, the greater the intensity of the repulsive force. In the other hand, the attraction

between the atoms reaches it maximum when r2 = 1.1085r0.

3.1.3 Second verification of the Gupta parameters

For the second verification of the many-body Gupta potential for Aluminum parameters

listed in Table 3.1 above, we will determine the optimal configurations of A`3, A`50, A`100 and

A`150 all presented in Figure 3.2 using different initial conditions. The obtained structures are

then compared to the results presented by the authors of references [28,29].

Starting with the A`3 cluster, we obtained the total energy of −4.3498eV. Whatever the

initial configuration, we ended up with the same stable configuration or lowest energy structure
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Figure 3.1: a) The Gupta potential for the dimer of the Aluminum metal and b) The Gupta force acting on

one atom in the dimer.

A`3 A`50 A`100 A`150

a) b) c) d)

Figure 3.2: Final configurations of: a)A`3, b)A`50, c)A`100 and d)A`150.

which was a D3h with the only difference being the time taken to reach this final configuration.

These results are in good agreement with those obtained by Doye [29]. We also obtained

an A`−A` bond of 0.9787r0. We tried several initial configurations and we noticed from our

analysis that linear initialized coordinates were the ones that required more time to reach the

optimized configuration. For illustration, Figure 3.3 shows the different optimization steps or

paths for A`3.
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Figure 3.3: An illustration of the evolution of the lowest-energy A`3 molecule with the Gupta potential

starting from a linear initialized coordinates.

As shown in Figure 3.3, there are two stable configurations. The linear one was obtained

after t = 50 and was maintained until t = 1850. During this phase, the kinetic energy of

the molecule is approximately zero and the bond distance is 0.951068r0. After this phase, the

molecule started a significant modification from the linear to the triangular form. The kinetic

energy of the atoms increased to reach 0.5827 eV when t = 2000. At t = 2050, the kinetic

energy was at its maximum (1.2177 eV) and then dropped abruptly to zero. The molecule then

reached its most stable configuration at its lowest total energy.

Secondly, we considered A`50 molecule and proceeded in the same manner as A`3 molecule

to have an energy of −139.1150eV. From different initial configurations, we obtained the same

final optimized or stable configuration which is a (C1). The initial configuration chosen here

was a double ring of 25 atoms each and the minimization process for A`50 is shown in Figure

3.4.
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Figure 3.4: An illustration of the evolution of the lowest-energy A`50 molecule with the Gupta potential

starting from a cylinder initialized coordinates.

The minimum distance between A`50 atoms is approximately constant and very close to

0.9446r0.

From our simulations, we have also observed that the structure remained almost constant

until t = 1250. Between t = 1250 and t = 3000, one ring performed a rotation with angle π
25

around the rings axis. After t = 3000, the kinetic energy started to increase and reaches its

maximum around t = 4000. As shown in the graph of Figure 3.4, important modifications of

the structure were found after t = 3000. The optimized configuration was obtained for t > 7000

and is in good agreement with that obtained by the authors of reference [29].

Focusing on A`100 and A`150 molecules, we analyzed their optimizations starting from two

different initial structures: the simple cubic lattice and the cylindrical configurations for each

molecule. As illustrated in Figure 3.5 and Figure 3.6, we have shown some transformation steps

for A`100 and A`150 respectively.
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Figure 3.5: An illustration of the evolution of the lowest-energy A`100 molecule starting from a simple cubic

lattice (black curve) and from a cylinder initialized coordinates (blue curve).

For both figures, the black and the blue curves respectively correspond to the simple cubic

lattice and cylindrical structures used as initial coordinates. From different initials configura-

tions shown in Figures 3.5 and 3.6, we obtained the same final optimized configurations which

are respectively (C1) and (Cs). These structures are shown in Figure 3.2c) and Figure 3.2d)

with energies −292.1767 eV and −447.9025 eV respectively which are in good agreement with

those of Doye [29]. The minimum distance between A`100 atoms is approximately constant and

very close to 0.9444r0 and for A`150 atoms, it is almost constant and very close to 0.9408r0. The

peaks observed in the figures corresponded to some important modifications of the structures.

We can notice from the two figures that, the simple cubic configurations stabilized first before

the cylindrical configurations.

Our results for A`3, A`50, A`100 and A`150 molecules, using Gupta potential agrees well in

terms of point groups and structures, with those found in the literature [28, 29]. According to

the above results, we can notice that our Gupta parameters presented in Table 3.1 are well

fitted.
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Figure 3.6: An illustration of the evolution of the lowest-energy A`150 molecule starting from a simple cubic

lattice (black curve) and from a cylinder initialized coordinates (blue curve).

3.2 OPTIMIZED STRUCTURES AND CORRESPOND-

ING ENERGIES FOR 3 ≤ N ≤ 170

3.2.1 Different energies and geometries

We then proceed to obtain all the global energy minimum structures of the clusters obtained

using Gupta potential. The basin-hopping algorithm has proved to be particularly successful

in locating putative global minima for a wide variety of cluster systems [17]. Anyway, there

is no guarantee that we have located the true global minima, since the probability to miss a

global minimum increases with cluster size.

However, according to the fact that the same lowest-energy minimum is obtained using

different initial configurations, and also according to the good precision between our results

and the given cohesive energy of aluminum, we are confident that our obtained global minima
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are well estimated. Table 3.2 depicts the potential energy, point group and A`−A` bond of all

the clusters for 3 ≤ N ≤ 170.

The Structural assignment has been made in Table 3.2 where C stands for cyclic, D for

decahedral, I for icosahedral, T for tetrahedral and O for octahedral. It should be noted that,

of course, there is no guarantee that the simulations have been able to locate the true global

minima, and the probability that a global minimum has been missed will increase with cluster

size, as the size of the search space, and hence the number of minima, increases exponentially

with N .

For each structure, the result obtained from the basin-hoping method is compared to that

obtained from multiple independent simulations. For example, the lowest-energy structure

found in a basin-hopping run for A`147 is at −446.9617 eV while the same Mackay icosahedron

structure obtained from multiple independent simulations has an energy of −446.9719 eV.

However, this is the only example we found where reoptimization of a structure gives results

with a difference 0.0102 eV greater than 0.00017 eV.

3.2.2 Mathematical relation between energies and number of atoms

We can notice from Table 3.2 that the ground state energy decreases with the number N of

atoms. In order to go far in our analysis, we plotted on Figure 3.7 the ground state energy as

function of N (curve in black color).

This curve brought out the following analysis: the shape of the curve is almost linear.

Then, the cluster energies of geometric shell clusters are fitted to the following cubic expansion

in N1/3:

E(N) ' aN + bN2/3 + cN1/3 + d. (3.3)

By using the cubic regression method we obtained the parameter values: a = −3.40444eV,

b = 2.17026eV, c = 0.12859eV and d = 1.03007eV. To verify our assumption, we have plotted

in Figure 3.7 (curve in blue) the above relation. A good agreement is obtained here between

numerical result and semi-analytical one. The result obtained in equation (3.3) is an important

outcome because this can help to predict the ground state energy of any cluster size knowing

N and without the need for numerical simulation. As in the case of Nouemo et al [126],

using the linear regression, showed that the ground state energy of iron could also be obtained

analytically without numerical simulations with the relation VN ≈ aN + b, with a = 8.54862eV

and b = 25.55493eV.
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N Energy(eV) Bond(r0) PG N Energy(eV) Bond(r0) PG

3 −4.34983 0.9787 D3h 4 −6.8961 0.9941 Td

5 −9.34712 0.9923 D3h 6 −12.0278 1.0017 Oh

7 −14.5962 0.9949 D5h 8 −17.0885 0.9983 C2v

9 −19.7611 0.9954 C2v 10 −22.4982 0.9854 C3v

11 −25.2357 0.9798 C2v 12 −28.2547 0.9739 C5v

13 −31.6329 0.9829 Ih 14 −33.9797 0.9823 C3v

15 −36.7320 0.9784 C2v 16 −39.4368 0.9817 Cs

17 −42.1397 0.9847 C2 18 −45.0494 0.9398 Cs

19 −48.3574 0.9304 D5h 20 −51.0270 0.9288 C2v

21 −53.6976 0.9318 C1 22 −56.5141 0.9397 Cs

23 −59.7394 0.9456 D3h 24 −62.3914 0.9411 C2v

25 −65.1848 0.9498 Cs 26 −68.2925 0.9576 Td

27 −71.0629 0.9441 C2v 28 −73.8040 0.9447 Cs

29 −76.8017 0.9538 D3h 30 −79.5915 0.9419 C2v

31 −82.4369 0.9418 Cs 32 −85.2960 0.9478 C2v

33 −88.0976 0.9493 C5v 34 −90.8948 0.9453 D5h

35 −94.3272 0.9255 C2v 36 −97.2693 0.9299 Cs

37 −100.0447 0.9500 Cs 38 −103.0710 0.9262 D6h

39 −106.1741 0.9285 C6v 40 −109.0568 0.9260 D6h

41 −111.9302 0.9296 C2v 42 −115.0334 0.9311 C1

43 −118.0820 0.9353 Cs 44 −120.9767 0.9222 C2v

45 −124.0708 0.9386 C1 46 −127.2073 0.9386 Cs

47 −130.3143 0.9363 C3v 48 −133.3006 0.9373 Cs

49 −136.0027 0.9394 Cs 50 −139.1150 0.9446 C1

51 −141.9827 0.9307 C1 52 −145.1069 0.9345 Cs

53 −148.0852 0.9328 C5v 54 −153.6278 0.9623 Cs

55 −156.9316 0.9643 Ih 56 −157.1739 0.9256 C3v

57 −160.4398 0.9347 S4 58 −163.3002 0.9255 Cs

59 −166.3712 0.9258 C2v 60 −169.1812 0.9273 C3v

61 −172.2358 0.9277 Td 62 −175.2437 0.9283 Cs

63 −178.4397 0.9255 C1 64 −181.3260 0.9225 C2v
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N Energy(eV) Bond(r0) PG N Energy(eV) Bond(r0) PG

65 −184.5851 0.9321 C1 66 −187.7525 0.9390 C1

67 −190.7509 0.9319 C1 68 −193.6235 0.9398 C1

69 −196.6888 0.9376 C3 70 −199.8774 0.9413 C2

71 −202.7042 0.9245 Cs 72 −205.8481 0.9331 Cs

73 −208.7526 0.9237 Cs 74 −212.1544 0.9343 Cs

75 −215.4319 0.9360 Cs 76 −218.5124 0.9397 D3h

77 −221.5578 0.9310 C3v 78 −224.4132 0.9162 D3h

79 −227.2243 0.9200 Cs 80 −230.6202 0.9295 Cs

81 −233.5749 0.9225 Cs 82 −236.6836 0.9320 C2

83 −239.5451 0.9361 C1 84 −242.7113 0.9378 Cs

85 −245.5700 0.9251 C2v 86 −248.5707 0.9258 Cs

87 −252.1090 0.9284 C1 88 −255.1910 0.9281 Cs

89 −258.3163 0.9280 Cs 90 −261.1174 0.9316 Cs

91 −264.4623 0.9545 D3h 92 −267.3222 0.9383 C2

93 −270.5029 0.9373 C1 94 −273.5429 0.9295 C2v

95 −276.6024 0.9307 Cs 96 −279.7527 0.9336 C2

97 −282.7939 0.9478 C1 98 −286.1358 0.9512 C1

99 −289.2391 0.9493 C1 100 −292.1767 0.9444 C1

101 −295.3935 0.9416 C1 102 −298.5960 0.9420 C1

103 −301.4776 0.9471 C1 104 −304.4115 0.9325 C1

105 −307.5460 0.9382 Cs 106 −310.1656 0.9301 C1

107 −313.0646 0.9277 Cs 108 −316.4403 0.9375 Cs

109 −320.1979 0.9396 C1 110 −323.2767 0.9408 C1

111 −326.3590 0.9353 C1 112 −329.3589 0.9393 C1

113 −332.4441 0.9339 C1 114 −335.2425 0.9398 Cs

115 −338.8164 0.9451 C1 116 −341.7280 0.9378 Cs

117 −344.8550 0.9386 C1 118 −347.8365 0.9388 C1

119 −350.9419 0.9359 C1 120 −354.0818 0.9397 C2

121 −356.9454 0.9413 C1 122 −359.9576 0.9418 C2

123 −363.4546 0.9366 C1 124 −366.2721 0.9325 C1

125 −369.4206 0.9312 C1 126 −372.5688 0.9369 C1

127 −376.0505 0.9312 C1 128 −379.2189 0.9255 C1
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N Energy(eV) Bond(r0) PG N Energy(eV) Bond(r0) PG

129 −381.9535 0.9356 C3 130 −385.4508 0.9371 C1

131 −388.1855 0.9338 C1 132 −391.2332 0.9336 C2

133 −394.2573 0.9384 Cs 134 −397.0438 0.9412 C2

135 −400.4313 0.9401 Cs 136 −403.3256 0.9357 Cs

137 −406.7123 0.9367 Cs 138 −409.6199 0.9393 C2v

139 −412.9599 0.9357 Cs 140 −416.0248 0.9387 Cs

141 −419.1856 0.9323 Cs 142 −422.5587 0.9394 C2v

143 −425.7004 0.9331 Cs 144 −428.7183 0.9254 C2v

145 −431.5097 0.9328 C1 146 −434.5826 0.9286 C1

147 −446.9617 0.9554 Ih 148 −441.0488 0.9265 Cs

149 −444.0072 0.9269 C1 150 −447.9025 0.9408 Cs

151 −451.1330 0.9373 C2v 152 −454.0891 0.9348 Cs

153 −457.3169 0.9249 C2v 154 −459.5114 0.9310 Cs

155 −462.9513 0.9362 Cs 156 −465.8317 0.9363 C3v

157 −469.3694 0.9391 C1 158 −472.5375 0.9506 C2

159 −475.7368 0.9519 Cs 160 −478.9933 0.9424 D3h

161 −482.0470 0.9486 C1 162 −485.2691 0.9395 Cs

163 −488.3247 0.9484 Cs 164 −491.5816 0.9476 C2

165 −494.6451 0.9397 Cs 166 −497.7476 0.9451 Cs

167 −500.9590 0.9438 C1 168 −503.9306 0.9436 C2

169 −507.1065 0.9467 C1 170 −510.1182 0.9463 Cs

Table 3.2: Potential energy, point group and A`−A` bond length of the lowest energy configurations.

3.2.3 The binding energy of the Aluminum cluster

To investigate the structural stabilities for A`N clusters, the average binding energy (Eb)

for any A` cluster is defined as

Eb = −E(N)

N
' 3.40444− 2.17026N− 1

3 − 0.12859N− 2
3 − 1.03007

N
(3.4)

where E(N) is the total energy of the cluster containing N Aluminum atoms. Variation of

the average binding-energies of the lowest-energy structures of A`N (3 ≤ N ≤ 170) clusters is

given in Figure 3.8.
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Figure 3.7: Ground state energy as function of the number of atoms. The curve with solid line (black) is our

numerical result while curve with dashed line (blue) is our semi analytical result.

From Figure 3.8, one can see that the average binding energies increase overall but with

little fluctuation around few cluster sizes (which are relevant to the magic-number clusters).

The origin of the magic-number clusters is related to the type of atoms. For noble gas

atoms, the magic-number clusters correspond to filled electronic shells, thereby indicating the

role of the total number of itinerant electrons on stability. Basing on the magic numbers in

clusters that contain more than a few dozen atoms, it has been shown that the most stable

species correspond to sizes with complete geometric shells in an icosahedral or cuboctahedral

atomic arrangement [43]. Alkali metal clusters (s1) conform to the Jellium model in that,

certain nuclearities are relatively stable due to their filled electronic shells [42]. By contrast,

clusters of alkaline earth elements (s2), exhibit magic numbers which correspond to clusters

consisting of concentric polyhedral shells of atoms where the relative stability of a given cluster

is determined by the competition between packing and surface energy effects [45].

In the case of aluminum, due to the higher atomic valency (+3), the higher density of
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Figure 3.8: The average binding energy Eb as a function of cluster size.

electronic states and the involvement of 3p1, as well as 3s2 orbitals in bonding, the origin of these

peaks is more complex [46]. It is believed that the crossover from the regime where electronic

factors determine cluster stability to where packing and surface energy effects dominate, occurs

at lower nuclearities than for the alkali metals [46, 47]. Variable temperature experiments

by Baguenard et al. have shown, however, that Jellium effects can be seen at much higher

nuclearities when the A` clusters are generated at temperatures such that they are either

molten or have molten surfaces [49].

The calculated average binding energy of the cluster with the largest-size (A`170) is about

3.4044 eV, and it is very closed to the cohesive energy of A` crystal (3.3978 eV). This small

relative error of 0.19% indicates that there is still a negligible discrepancy between properties

of the aluminum clusters investigated and that of the bulk materials.
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3.2.4 Stability analysis

An important feature of this graph (Figure 3.8)is the small peaks at N = 13, N = 55 and

N = 147, corresponding to a region of enhanced stability for 3 ≤ N ≤ 170. Such regions are

more evident when the second difference in the binding energy D2(N) defined as

D2 = −Eb(N − 1) + 2Eb(N)− Eb(N + 1), (3.5)

is plotted against N , as presented in Figure 3.9.
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Figure 3.9: Second difference in the binding energy D2 as a function of cluster size.

The second difference is related to the thermodynamic stability of a cluster with respect to

disproportionality, assuming a quasi-equilibrium exist during cluster formation [145]. Figure 3.8

shows that there are pronounced peaks in D2(N) at N = 4, 6, 13, 19, 53, 55, 56, 146, 147, and

148 and small peaks at 14, 23 and 35. Experimentally they do appear to be enhanced stability

at around 4, 6, 13 and 19 atoms for small clusters with N ≤ 20 [146]. Jellium calculations by

Chou and Cohen [147] predict peaks in D2(N) at N = 6, 13 and 19, where the numbers of
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valence electrons (3N for neutral clusters) are close to Jellium shell closings [42]. Even here,

our results are in good agreement with the experimental ones as well as with those obtained

numerically by Chou and Cohen.

3.2.5 Bond length and the cluster size

On the other hand, the distances between the nearest A`−A` aluminum atoms remain

almost constant as shown in Figure 3.10.
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Figure 3.10: A`−A` bond length as function of the number of atoms.

The average A`−A` bond was found to be 0.9443r0 while the lower 0.9162r0 and higher

1.0017r0 distances were obtained in the case of A`78 and A`6 clusters respectively. Taking

into account the lattice constant of the aluminum crystal (404.95 pm), the value of r0 can be

determined as r0 = 303.2312 pm.
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3.2.6 Optimized structures

A`3, [D3h] A`4, [Td] A`6, [Oh] A`7, [D5h] A`8, [C2v]

a) b) c) d) e)

A`10, [C3v] A`12, [C5v] A`13, [Ih] A`16, [Cs]

f) g) h) i)

A`17, [C2] A`21, [C1] A`38, [D6h]

j) k) l)

A`39, [C6v] A`57, [S4] A`69, [C3]

m) n) o)

Figure 3.11: Ground-state structures for aluminum cluster geometries, as predicted by the Molecular Dy-

namics with the Gupta potential. The other optimized structures are presented in the index.
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From our simulations, we came out with 15 symmetry groups: D3h, Td, Oh, D5h, C2v, C3v,

C5v, Ih, Cs, C2, C1, D6h, C6v, S4, and C3. For each of these symmetry groups, one molecule was

chosen together with its corresponding global minimum structure and was depicted in Figure

3.11. Following the order in which the symmetry groups are given above, structures of A`3,

A`4, A`6, A`7, A`8, A`10, A`12, A`13, A`16, A`17, A`21, A`38, A`39, A`57 and A`69 are plotted

in Figures 3.11a), 3.11b), 3.11c), 3.11d), 3.11e), 3.11f), 3.11g), 3.11h), 3.11i), 3.11j), 3.11k),

3.11l), 3.11m), 3.11n) and 3.11o) respectively. The other optimized structures are presented in

the index.

3.3 COMPARISON WITH OTHER WORKS

3.3.1 General comparison

The results obtained here using a Gupta potential agree well with those obtained by

Doye [29] and by Noya et al. [148] using the glue potential and the monte-carlo simulations re-

spectively. For more comparison, the values of energies and point groups of Aluminum clusters

obtained by Doye using the Glue potential are presented in Table 3.3.

The comparison of Tables 3.2 and 3.3 shows that the point groups of the structures are

identical with the exception of the following clusters: A`47, A`48, A`50, A`52, A`53 and A`54.

For these clusters, the point groups obtained in this work (and with the Glue potential) are C3v

(Cs), Cs (C3v), C1 (Cs), Cs (C1), C5v (Cs) and Cs (C5v) respectively. In addition, for a given

cluster, the corresponding energy obtained in this thesis is slightly higher than that obtained

with the Glue potential. Moreover, according to Table 3.3, the relationship between the energy

and the number of atoms in the cluster is given as follows:

Eglue = −3.360N + 1.890N2/3 + 1.170N1/3 − 0.267. (3.6)

Equation (3.6) shows that the binding energy of Aluminum cluster as predicted using the Glue

potential is 3.360 eV. Consequently, our results have the best precision since the results obtained

by Doye admit an error of 1.11%.

Andrés et al. demonstrated using Kohn sham Density Functional Theory that from A`13

to A`22, the icosahedral growth dominates global minima structures and this agrees with our

work for A`13 to A`18 [149]. Also, Khanna et al. had earlier confirmed that from A`13 to A`18,

icosahedral structures are more stable in all-electron PBE calculations [150].

KEYAMPI WATIO Martial 70 PhD, UYI



3.3 COMPARISON WITH OTHER WORKS

N Energy(eV) PG N Energy(eV) PG N Energy(eV) PG

3 −4.099029 D3h 4 −6.242292 Td 5 −8.607257 D3h

6 −11.257920 Oh 7 −13.860178 D5h 8 −16.353276 C2v

9 −19.063671 C2v 10 −21.862051 C3v 11 −24.616176 C2v

12 −27.780117 C5v 13 −31.278787 Ih 14 −33.585594 C3v

15 −36.321872 C2v 16 −39.039888 Cs 17 −41.750455 C2

18 −44.777004 Cs 19 −48.182587 D5h 20 −51.823659 C2v

21 −53.470949 C1 22 −56.404346 Cs 23 −59.732308 D3h

24 −62.350544 C2v 25 −65.195739 Cs 26 −68.459809 Td

27 −71.162534 C2v 28 −73.946989 Cs 29 −77.115629 D3h

30 −79.792682 C2v 31 −82.634873 Cs 32 −85.678623 C2v

33 −88.453125 C5v 34 −91.447319 D5h 35 −94.464663 C2v

36 −97.324975 Cs 37 −100.214276 Cs 38 −103.264168 D6h

39 −106.437242 C6v 40 −109.401628 D6h 41 −112.178113 C2v

42 −115.154425 C1 43 −118.128134 Cs 44 −120.260703 C2v

45 −124.074147 C1 46 −127.238882 Cs 47 −130.228220 Cs

48 −133.418980 C3v 49 −136.111570 Cs 50 −139.090832 Cs

51 −142.098016 C1 52 −145.091286 C1 53 −148.261944 Cs

54 −151.376943 C5v 55 −154.612749 Ih 56 −157.245282 C3v

57 −160.381251 S4 58 −163.479187 Cs 59 −166.601625 C2v

60 −169.702701 C3v 61 −172.787060 Td 62 −175.512306 Cs

63 −178.554122 C1 64 −181.598713 C2v 65 −184.466611 C1

66 −187.498248 C1 67 −190.610516 C1 68 −193.508419 C1

69 −196.696161 C3 70 −199.701093 C2 71 −202.700030 Cs

72 −205.819266 Cs 73 −208.794190 Cs 74 −211.818219 Cs

75 −215.088423 Cs 76 −218.367742 D3h 77 −221.514884 C3v

78 −224.595480 D3h 79 −227.336269 Cs 80 −230.318346 Cs

81 −233.343636 Cs 82 −236.308999 C2 83 −239.278725 C1

84 −242.456890 Cs 85 −245.646464 C2v 86 −248.606413 Cs

87 −251.592963 C1 88 −254.736772 Cs 89 −257.685396 Cs

90 −260.675290 Cs 91 −263.877164 D3h 92 −266.936839 C2

93 −270.089293 C1 94 −273.244125 C2v 95 −276.204093 Cs

96 −279.154395 C2 97 −282.115807 C1 98 −285.257294 C1

99 −288.206364 C1 100 −291.309715 C1 101 −294.334721 C1
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N Energy(eV) PG N Energy(eV) PG N Energy(eV) PG

102 −297.418136 C1 103 −300.517946 C1 104 −303.576439 C1

105 −306.773455 Cs 106 −309.860784 C1 107 −312.991830 Cs

108 −315.964908 Cs 109 −319.100302 C1 110 −322.261377 C1

111 −325.367188 C1 112 −328.390553 C1 113 −331.327112 C1

114 −334.422411 Cs 115 −337.598496 C1 116 −340.759024 Cs

117 −343.817038 C1 118 −346.764630 C1 119 −349.862568 C1

120 −353.034842 C2 121 −356.055763 C1 122 −359.102294 C2

123 −362.088084 C1 124 −365.266998 C1 125 −368.426994 C1

126 −371.572700 C1 127 −374.661505 C1 128 −377.808061 C1

129 −380.862378 C3 130 −383.890586 C1 131 −387.030763 C1

132 −390.138328 C2 133 −393.177026 Cs 134 −396.274720 C2

135 −399.361340 Cs 136 −402.433300 Cs 137 −405.526322 Cs

138 −408.694151 C2v 139 −411.773939 Cs 140 −414.942360 Cs

141 −418.022390 Cs 142 −421.159084 C2v 143 −424.234289 Cs

144 −427.293974 C2v 145 −430.398146 C1 146 −433.528391 C1

147 −436.702421 Ih 148 −439.807282 Cs 149 −442.741345 C1

150 −445.909288 Cs 151 −449.086382 C2v 152 −452.190934 Cs

153 −455.278091 C2v 154 −458.319723 Cs 155 −461.506096 Cs

156 −464.682681 C3v 157 −467.796799 C1 158 −470.980712 C2

159 −474.154929 Cs 160 −477.328706 D3h 161 −480.408455 C1

162 −483.573938 Cs 163 −486.653798 Cs 164 −489.818114 C2

165 −492.896801 Cs 166 −496.054542 Cs 167 −499.123863 C1

168 −502.260998 C2 169 −505.328765 C1 170 −508.459278 Cs

Table 3.3: Energies and point groups of the global minima of Aluminum clusters obtain by Doye

using the Glue potential [29].

In general, the structures obtained in this manuscript are similar to those obtained by the

authors of reference [30] who also used Gupta potential for their work. Nevertheless, we have

noticed two differences between our results and theirs. Firstly, for N = 9 as an example,

Gilles et al [30]. considered high symmetry structures and found the body-centered cubic to be

lowest in energy, in disagreement with our present results. Although the body-centered cubic

structure is stable, it is not the optimized structure. To verify this, we used their structure given

in Figure 3.12a) as initial configuration, after a relatively long simulation time, the structure is

transformed as shown in Figure 3.12c).
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Figure 3.12: a) Optimized A`9 according to Gilles et al [30]. b) An illustration of the evolution of the lowest-

energy A`9 molecule with the Gupta potential starting from a body-centered cubic initialized coordinates. c)

Optimized A`9 obtained here.

As shown in the curve of Figure 3.12b) their simulated body-centered cubic is a stable

structure that is 2.0318 eV above the global minimum obtained in this manuscript, and which

is, in fact, the second lowest-energy isomer. Secondly, the curve of the binding energy obtained

in [30] is qualitatively similar to that obtained in this work. We believe that the quantitative

differences that appear between the results are due to the values of the parameters of the

potential.

In terms of absolute binding energies, our results are in good agreement with the experimen-

tal values. In comparison with some computed ones using Sutton-Chen potential, the Truhlar

potential and the Cleri-Rosato potential as reported by Jasper et al. [31,32], the smallest error

(0.19%) is found between our results and the experiment.

3.3.2 Aluminum Dimer A`2

Next we focus our attention on the performance of the potentials for the description of the

A`2 dimer. The characterization of A`2 dimer has provided a challenge for both theory and

experiment due to the closeness in energy of the singlet and triplet states. Table 3.4 shows the
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equilibrium separation values for the Gupta potential, along with the values obtained using the

other potentials or methods, as several ab initio and Density Functional Theory calculations,

as well as experiment for comparison.

Potentials r2 (
o
A) Precision

Sutton-Chen [151] 2.092 73.79%

Streitz-Mintmire [152] 2.207 77.85%

Cleri-Rosato [122] 2.325 82.01%

Truhlar potential (NP-B) [32] 2.523 88.99%

Gupta (this work) 2.888 98.13%

Experiment [124] 2.835 −

Table 3.4: A`2 equilibrium separation values (r2).

The A`2 equilibrium separation distance as calculated using the Gupta potential agrees well

with the experimental value with a precision of 98.13%. It is followed by the NP-B predicted

value 82.01%, while the Sutton-Chen potential presents the lowest precision of 73.79%. This

may be due to the Sutton-Chen being fitted to just structural data, which does not take into

account the energetics data such as the vacancy formation energy and surface energies.

3.3.3 Aluminum Trimer A`3

There have been several calculations of low-lying states of the Aluminum trimer. The most

stable isomers have bond angles α ' 600. Configuration interaction (CI) calculations lead either

to (in C2v notation) an 2A1 ground state [153–155] or a near degeneracy between 2A1 and 4A2

states [156].

Electron spin resonance measurements of matrix isolated A`3 shows a quartet ground state,

[157] while magnetic deflection measurements shows a doublet. However, recent calculations

have proven that the most stable form of A`3 is an equilateral triangle (2A1 with the equilibrium

bond length re = 246.4500 pm [158]. As presented in Figure 3.2a), our optimized configuration

is also an equilateral triangle and the equilibrium bond length equals 0.9787r0 = 296.7724 pm

(r0 = 303.2312 pm).

3.3.4 Aluminum Tetramer A`4

There have been several calculations of the aluminum tetramer, and they have led to different

predictions shown in Figure 3.13.
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a) b) c)

d) e)

Figure 3.13: Structures of isomers of A`4. The internuclear separations are given in pm. The unmarked

separations in e) are 295.21 pm and 246.98 pm [156].

• A planar rhombus structure with symmetry D2h and energy −6.3851 eV has been obtained

by Pettersson et al. as optimized configuration of A`4 cluster [157]. The corresponding

structure is presented in Figure 3.13a) and is a planar rhombus with bond angle α = 56.50.

• In the other hand, Upton predicted a three-dimensional deformed rhombus with C2v

symmetry as optimized configuration. Its energy equals −6.2649 eV and its structure is

shown in Figure 3.13b) [156].

• Jug et al. have proposed a trigonal pyramid (C3v) with the corresponding energy −5.9950

eV. Its structure presented in Figure 3.13c), is a Jahn-Teller distortion of a tetrahedron.

The structure is somehow flattened from Td symmetry [156].

• A quintet roof structure given in Figure 3.13d) with the energy −5.9338 eV and dihedral

angle 122.70 (viewed as a distorted rhombus) has been obtained by Meier et al. [156].

• Pacchioni and Koutecky, [158] have predicted a square with symmetry D4h and energy

−6.1547 eV as optimized A`4 cluster.

• Finally, a singlet C2v structure of Figure 3.13e) with −5.9149 eV has been presented [159].

This structure represents a tetrahedron with the opposite distortion and with the apex

atom moved away from C3v symmetry.
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To verify this, we have done many simulations starting with different initial conditions. As

shown in Figure 3.14, we have obtained three stable configurations of A`4 especially when the

ring configuration is introduced as initial structure.
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Figure 3.14: An illustration of the evolution of the lowest-energy A`4 molecule with the Gupta potential

starting from a ring initialized coordinates.

In the graph, the parameters S1, S2 and S3 represent the stable configurations obtained with

the Gupta potential. After further investigations, we have found that a regular tetrahedron

with symmetry Td, bond length r4 = 301.4421 pm and energy E4 = −6.8956 eV is the most

stable isomer of A`4 cluster. It is followed by a planar rhombus structure with symmetry

D2h, bond length r4 = 296.2568 pm and energy E4 = −6.3863 eV. The square structure with

symmetry D4h, bond length r4 = 294.7710 pm and energy E4 = −6.1417 eV appears to be the

third isomer. The three stable isomers are depicted in Figure 3.15 with their corresponding

point groups.

We can notice here that, our square and our planar rhombus structures are very closed to

those obtained by Pettersson et al. and by Pacchioni and Koutecky respectively. As mentioned

previously, the tetrahedral structure has been also obtained by the authors of references [29]

and [30].
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[D4h] [D2h] [Td]

a) b) c)

Figure 3.15: Different isomers of A`4 obtained in this work. a) Square configuration, b) Rhombus configu-

ration and c) Tetrahedral configuration.

3.3.5 Aluminum Pentamer A`5.

Several studies have been carried out on Aluminum pentamer. Upton [153] found the Jahn-

Teller distorted pyramidal structure (C2v) to be the lowest in energy, Jug et al. [160] found that

the pyramidal form (C4v) was the most stable and Pettersson et al. found that a planar (C2v)

is more stable than the distorted pyramid which is also more stable than the regular pentagon

(D5). Similarly, Jones et al. have shown that the ideal pyramid (C4v) is more stable than the

planar structure but less stable than the triangular biprism D3h [159].

To verify if we can obtain all these isomers with our model, we have performed different

simulations starting from different initial configurations. An illustration of the evolution of the

lowest-energy A`5 molecule starting from a linear initialized coordinates (black curve), from

a ring initialized coordinates (blue curve) and from a pyramid coordinates (green curve) is

presented in Figure 3.16.

From the graph of Figure 3.16, we can identify five different isomers named S1, S2, S3,

S4 and S5 as indicated on the curves. These isomers are presented with their point group

respectively in Figures 3.17a), 3.17b), 3.17c), 3.17d) and 3.17e).

According to our simulations, the most stable isomer is the triangular biprism configuration

(D3h, r5 = 300.8963 pm and E5 = −9.3471 eV), followed by the regular pyramid (C4v, r5 =

298.2582 pm and E5 = −9.1115 eV). After that, we have the three planar equilateral triangles

(C2v, r5 = 295.6201 pm and E5 = −8.3860 eV), the pentagon isomer (D5h, r5 = 294.4678 pm

and E5 = −7.6492 eV) and finally the linear structure (r5 = 288.0726 pm and E5 = −6.5248

eV). We can also notice here that, the equilibrium bond length r5 increases with the stability

of the isomer. Our obtained most stable isomer is in good agreement with the results obtained

by the authors of references [29] and [30] as mentioned above.
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Figure 3.16: An illustration of the evolution of the lowest-energy A`5 molecule starting from a linear initial-

ized coordinates (black curve), from a ring initialized coordinates (blue curve) and from a pyramid coordinates

(green curve).

[D16h] [D5h] [C2v] [C4v] [D3h]

a) b) c) d) e)

Figure 3.17: Different isomers of A`5 obtained in this work. a) linear configuration, b) pentagon config-

uration, c) three planar equilateral triangles configuration d) pyramidal structure and e) triangular biprism

configuration.

3.3.6 Aluminum Hexamer A`6.

The aluminum hexamer has been studied by a number of groups. The most stable form

found by Upton [153] was a distorted octahedron, and Pettersson et al. [157] found that the

octahedron was the most stable of the (symmetric) structures they studied.
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The present study led to a large number of local minima, some of which and their corre-

sponding point groups are shown in Figure 3.18.

[D6h] [D3h] [D3h] [Oh]

a) b) c) d)

Figure 3.18: Different isomers of A`6 obtained in this work. a) planar hexagonal configuration, b) triangular

configuration, c) prims configuration and d) octahedral configuration.

We also find that the octahedral (Oh) structure with the bond length r6 = 303.7467 pm

and energy E6 = −12.0278 eV is the most stable isomer of A`6. The prism structure (D3h)

with the bond length r6 = 296.9240 pm and energy E6 = −11.1372 eV is our obtained second

isomer. The planar triangular (D3h, r6 = 296.0749 pm and E6 = −10.3427 eV) and hexagonal

structures (D6h, r6 = 294.7104 pm and E6 = −9.0700 eV) represent our third and fourth

isomers respectively.

The first, the second and the fourth isomers are obtained when the ring is taken as initial

configuration. In the other hand, if the cylinder is used as initial configuration, the third and

the fourth isomers will be obtained. Also here, our results are in good agreement with those

mentioned previously.

3.3.7 Aluminum Septamer A`7

The most stable form of A`7 was predicted by Jug et al. [160] and by Raghavachari [161]

to be a C3v structure. Recently, a D5h structure has been found to be the most stable isomer

among the numerous local minima. It has been shown that the simulated C3v structure is

0.4168 eV above the D5h structure [162].

During our investigations, we have found that the D5h structure with the bond length

r7 = 301.6847 pm and energy E7 = −14.5962 eV is the most stable isomer of A`7. This structure

is followed by two different C3v structures: the first one is characterized by r7 = 300.6537 pm

and E7 = −14.4059 eV while the second one has the following characteristics: r7 = 298.2582

pm and E7 = −14.1794 eV. The three isomers found in this work are shown in Figure 3.19 with

their corresponding point group.
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[C3v] [C3v] [D5h]

a) b) c)

Figure 3.19: Different isomers of A`7 obtained in this work. a) the less C3v structure, b) the most C3v

structure and c) the D5h structure.

Our D5h structure shown in Figure 3.19c) is 0.4168 eV less than the structure C3v shown

in Figure 3.19a). Hence, our results are in good agreement with those obtained by the authors

of references [160–162]. One local minimum also found between the two previously obtained is

shown in Figure 3.19b) and is 0.1903 eV above the global minima.

3.3.8 Aluminum Octamer A`8

Finally, we analyze the isomers of the octamer A`8. For this purpose, we have done many

simulations of A`8 clusters starting from different initial configurations. An illustration of the

evolution of the lowest-energy A`8 molecule starting from a linear initialized coordinates (blue

curve), from a simple cube initialized coordinates (black curve) and from a ring initialized

coordinates (green curve) as shown in Figure 3.20.

The graph of Figure 3.20 reveals many isomers for A`8 since we can identify many time

intervals where the curves have constant behavior. We have selected seven isomers and their

pictures are depicted in Figure 3.21.

The isomers shown in Figures 3.21a), 3.21b), 3.21c), 3.21d), 3.21e), 3.21f) and 3.21g) have

the following energies −14.0131 eV, −14.2975 eV, −14.3460 eV, −15.5112 eV, −16.5919 eV,

−16.9825 eV and −17.0885 eV respectively. Their corresponding bond lengths are given re-

spectively as follows: 296.1659 pm, 294.5891 pm, 295.3169 pm, 297.3182 pm, 300.0473 pm,

298.4401 pm and 302.7157 pm. The large number of local minima in the energy surface for

A`8 indicates how difficult it would be to find the structures of all the stable isomers of larger

clusters.
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Figure 3.20: An illustration of the evolution of the lowest-energy A`8 molecule starting from a linear

initialized coordinates (blue curve), from a simple cube initialized coordinates (black curve) and from a ring

initialized coordinates (green curve).

[D4h] [D2h] [D2h] [Oh]

a) b) c) d)

[Oh] [Cs] [C2v]

e) f) g)

Figure 3.21: Different isomers of A`8 obtained in this work and listed according to their symmetry. a) [D4h],

b) [D2h], c) [D2h], d) [Oh], e) [Oh], d) [Cs] and e) [C2v].
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Conclusion

The dimer and trimer have been used to established a relation of P and B in terms of q

and A, such that from the cohesive energy and lattice parameter of aluminium cluster, q and A

would be obtained and hence P and B are fitted. The Gupta parameters have been used to plot

the potential energy and force curves for the dimer, to show that for the potential energy curve,

there exist an equilibrium position, r2 = 0.9524r0, below which the potential energy decreases

rapidly and above which this energy increases slowly. For the force curve, r2 = 1.1085r0, is such

that below this value, the force between the pair of atoms is repulsive and above this value, the

force is attractive.

The A`3, A`50, A`100 and A`150 have further been optimized with the obtained Gupta

parameters using different initial configurations in each case to obtain the same final config-

uration, with the linear initialized configuration taking the longest time to reach this stable

configuration. From here, the Gupta parameter have then been used to obtain the ground state

energy, geometry, point group and bond length of each A` cluster in the range 3 ≤ N ≤ 170.

From these energies, a mathematical relation have been established to analytically calculate

the ground state energy of any A` size without need of any numerical simulation. Through

the obtained average binding energy relations, the stability of A` clusters have been analyzed.

Some structures have shown extremely high stabilities at N = 4, 6, 13, 14, 19, 23, 35, 53, 55,

56, 146, 147 and 148 for 3 ≤ N ≤ 170. From the lattice constant and the obtain bond length,

the value of r0 have been determined to be r0 = 303.2312pm.

A total of 15 symmetry groups have been obtained namely: D3h, Td, Oh, D5h, C2v, C3v,

C5v, Ih, Cs, C2, C1, D6h, C6v, S4, and C3. Furthermore, basing on the average binding energy

of aluminum clusters, results obtained using the Gupta potential are slightly higher than those

obtained with the Glue potential. In addition, these results with Gupta potential have shown

an error of just 0.19% compared to the relatively large error of 1.11% shown by the Glue

potential. Gupta potential together with these new parameters have proven that the high

symmetry body centered cubic A`9 cluster is not the most stable as mentioned by Gilles et

al but that it is the second in terms of lowest energy. Furthermore, this Gupta potential

have obtained the equilibrium separation of the dimer (A`2) with the best precision (98.13%)

compared to those obtained by Sutton-Chen (73.79%), Streitz-Mintmire (77.85%), Cleri-Rosato

(82.01%) and Truhlar potential (88.99%). Lastly, the octamer (A`8) have been used to show

how difficult it is to locate all the local minima as the cluster size increases.
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GENERAL CONCLUSION

This work has been based on the determination of the structures and the ground state ener-

gies of aluminum clusters (3 ≤ N ≤ 170) through the classical molecular dynamics method with

the Gupta potential as the interatomic potential. As a result, the non relativistic Schrödinger

equation used to determine the ground state electronic properties of our system have been

described. A dimensionless equation of motion have been established to represent the mathe-

matical model of our system. Suitable reasons for using the Gupta potential here have been

sorted. Detail steps for updating the position and velocities for a given time step in the verlet

algorithm have clearly been made. In addition, the cubic and hexagonal unit cells used to

generate our lattices for assigning our initial conditions have also been explained. The conver-

gence criteria have been based on the multiple independent simulation of four different initial

configurations and the system has been considered to be in equilibrium only when it remains

below a certain pre-chosen threshold. The verlet algorithm with the multiple independent sim-

ulation method have been summarized in a flow chart. Using the following steps in the Basin

hopping method, angular move and random displacement, seeding, quasi Newton minimization

algorithm and quenching, the local minima have been efficiently searched at reduced computing

time with the assurance that the actual or final ground state is at thermal equilibrium and that

any resulting potential energy surface does not change the global minimum of the local minima.

The symmetry elements of each point group have been summarized. Lastly, the role played by

each of these softwares in this work ( Fortran 90, Chemcraft, Rastop and Matlab), has been

summarized.

The dimer and the trimer have been used to established a relation of P and B in terms

of q and A, such that from the cohesive energy and lattice parameter of aluminum cluster, q

and A would be obtained and hence P and B are fitted. The Gupta parameters have been
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used to plot the potential energy and force curves for the dimer, to show that for the potential

energy curve, there exist an equilibrium position, r2 = 0.9524r0, below which the potential

energy decreases rapidly and above which this energy increases slowly. For the force curve,

r2 = 1.1085r0, is such that below this value, the force between the pair of atoms is repulsive

and above this value, the force is attractive. The A`3, A`50, A`100 and A`150 have further been

optimized with the obtained Gupta parameters using different initial configurations in each

case to obtain the same final configuration, with the linear initialized configuration taking the

longest time to reach this stable configuration. From here, the Gupta parameters have then

been used to obtain the ground state energy, geometry, point group and bond length of each

A` cluster in the range 3 ≤ N ≤ 170.

From these energies, a mathematical relation has been established to analytically calculate

the ground state energy of any A` cluster size without need of any numerical simulation.

Through the obtained average binding energy relations, the stability of A` clusters has been

analyzed. Some structures have shown extremely high stabilities at N = 4, 6, 13, 14, 19,

23, 35, 53, 55, 56, 146, 147 and 148 for 3 ≤ N ≤ 170. From the lattice constant and the

obtain bond length, the value of r0 has been determined to be r0 = 303.2312pm. A total of

15 symmetry groups have been obtained namely: D3h, Td, Oh, D5h, C2v, C3v, C5v, Ih, Cs, C2,

C1, D6h, C6v, S4, and C3. Furthermore, basing on the average binding energy of aluminum

clusters, results obtained using the Gupta potential are slightly higher than those obtained

with the Glue potential. In addition, these results with Gupta potential have shown an error

of just 0.19% compared to the relatively large error of 1.11% shown by the Glue potential.

Gupta potential together with these new parameters have proven that the high symmetry body

centered cubic A`9 cluster is not the most stable as mentioned by Gilles et al but that it is the

second in terms of lowest energy. Furthermore, with this Gupta potential, we have obtained

the equilibrium separation of the dimer (A`2) with the best precision (98.13%) compared to

those obtained by Sutton-Chen (73.79%), Streitz-Mintmire (77.85%), Cleri-Rosato (82.01%)

and Truhlar potential (88.99%). Lastly, the octamer (A`8) has been used to show how difficult

it is to locate all the local minima as the cluster size increases. Finally, it is logical to conclude

that the study of the structure and stability of aluminum clusters using the Gupta potential

has permitted us to solve some among the many worries about clusters and those of aluminum

in particular.
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PERSPECTIVES

In our future plan of research, we shall include the following:

• Determination of the optimized configurations of other atoms and doped materials.

• The analysis of the physical properties of some clusters as well as the thermodynamic

properties of pure A` clusters and some A` clusters.
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INDEX

Below are the optimized structures of all the aluminium clusters with their point groups

obtained using Molecular dynamics with Gupta potential, ranging from 3 to 170, with exception

of those already presented in chapter3.

A`5, [D3h] A`9, [C2v] A`11, [C2v] A`14, [Cs]

A`15, [C2v] A`18, [Cs] A`19, [D5h] A`20, [Cs]

A`22, [Cs] A`23, [D3h] A`24, [C2v]

A`25, [Cs] A`26, [Td] A`27, [C2v]

KEYAMPI WATIO Martial 95 PhD, UYI



INDEX

A`28, [Cs] A`29, [D3h] A`30, [C2v]

A`31, [Cs] A`32, [C2v] A`33, [C5v]

A`34, [D5h] A`35, [C2v] A`36, [Cs]

A`37, [Cs] A`40, [D6h] A`41, [C2v]
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A`42, [C1] A`43, [Cs] A`44, [C2v]

A`45, [C1] A`46, [Cs] A`47, [C3v]

A`48, [Cs] A`49, [Cs] A`51, [C1]

A`52, [Cs] A`53, [C5V ] A`54, [CS]
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A`55, [Ih] A`56, [C3v] A`57, [S4]

A`58, [Cs] A`59, [C2v] A`60, [C3v]

A`61, [Td] A`62, [Cs] A`63, [C1]

A`64, [C2v] A`65, [C1] A`66, [C1]
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A`67, [C1] A`68, [C1] A`69, [C3]

A`70, [C2] A`71, [Cs] A`72, [Cs]

A`73, [Cs] A`74, [Cs] A`75, [Cs]

A`76, [D3h] A`77, [C3v] A`78, [D3h]
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A`79, [Cs] A`80, [Cs] A`81, [Cs]

A`82, [C2] A`83, [C1] A`84, [Cs]

A`85, [C2v] A`86, [Cs] A`87, [C1]

A`88, [Cs] A`89, [Cs] A`90, [Cs]
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A`91, [D3h] A`92, [C2] A`93, [C1]

A`94, [C2v] A`95, [Cs] A`96, [C2]

A`97, [C1] A`98, [C1] A`99, [C1]

A`101, [C1] A`102, [C1] A`103, [C1]
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A`104, [C1] A`105, [Cs] A`106, [C1]

A`107, [Cs] A`108, [Cs] A`109, [C1]

A`110, [C1] A`111, [C1] A`112, [C1]

A`113, [C1] A`114, [Cs] A`115, [C1]
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A`116, [Cs] A`117, [C1] A`118, [C1]

A`119, [C1] A`120, [C2] A`121, [C1]

A`122, [C2] A`123, [C1] A`124, [C1]

A`125, [C1] A`126, [C1] A`127, [C1]
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A`128, [C1] A`129, [C3] A`130, [C1]

A`131, [C1] A`132, [C2] A`133, [Cs]

A`134, [C2] A`135, [Cs] A`136, [Cs]

A`137, [Cs] A`138, [C2v] A`139, [Cs]
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A`140, [Cs] A`141, [Cs] A`142, [C2v]

A`143, [Cs] A`144, [C2v] A`145, [C1]

A`146, [C1] A`147, [Ih] A`148, [Cs]

A`149, [C1] A`151, [C2v] A`152, [Cs]
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A`153, [C2v] A`154, [Cs] A`155, [Cs]

A`156, [C3v] A`157, [C1] A`158, [C2]

A`159, [Cs] A`160, [D3h] A`161, [C1]

A`162, [Cs] A`163, [Cs] A`164, [C2]
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A`165, [Cs] A`166, [Cs] A`167, [C1]

A`168, [C2] A`169, [C1] A`170, [Cs]
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A B S T R A C T

In this paper, the ground-state geometries and energies of AℓN ( ⩽N 170) clusters have been investigated using
the Gupta potential combined with the molecular dynamics simulation quenching method. The Gupta para-
meters have been fixed according to the experimental values of the cohesive energy and lattice parameters. For
each minimum, the energy and point group (PG) have been obtained. Our optimized structures are in agreement
with previous ones obtained using Murrell-Mottram potential as well as those obtained using the Glue potential.
A simple relation between the ground state energy and the number of atoms has been proposed which can permit
one to predict the ground state for any Aluminum cluster with a known number of atoms.

1. Introduction

In physical chemistry, clusters refer to stable aggregates made of
several atoms (molecules) bonding in certain physical or chemical
forces that exist in microscopic states [1]. Studying metals in cluster
form is of great interest due to the following reasons: development of
bulk properties with increasing cluster size, the central position of
clusters between molecules and condensed matter and thirdly their
nature of phase transitions in finite systems [2]. Understanding clusters
have become a new and important field of research with a focus on the
dynamics of its formation, structures and other properties [3–8]. It has
become a new and significant field to study the formation, structures,
evolutional behavior and other properties of clusters. Due to their small
size, nanoclusters can remain in a “liquid-like” state at temperatures
below the melting point [9,10], and their magnetic moments can ex-
ceed large values of up to cluster sizes of several hundred atoms [11].

In general, the geometric structures of clusters do not resemble
those of bulk metals since there are no constraints on rotational sym-
metry from the crystallographic restriction theorem. Due to their rich
and interesting basic physical problems and possible applications,
Aluminum nanoclusters have attracted much attention [12]. Aluminum
in many research fields and technological applications such as catalysis,
cluster deposition [13], microelectronics [14], and superconductivity
[15], atomic distribution on their surfaces play a fundamental role,
where the surface structure and its quality are of primary importance.

In the hope of understanding the properties of molecules in terms of
their structures and of the microscopic interactions between them, si-
mulations are generally carried out. Simulations results need to be

compared to experimental ones for confirmation. The isolation of large
species of fullerene and the determination of their geometries have
been carried out successfully through experiment. In other to find their
lowest energy configurations, sophisticated minimization techniques
have been put in place [16,17]. It is clearly known that finding the
global minimum on a cluster is a difficult problem [18]. This is because
the number of structurally distinct minima increases almost ex-
ponentially with increasing nuclearity, due to the high dimensionality
of configuration space.

Ab-initio electronic structure methods are often used to determine
the lowest energy structure. However, a very long time for convergence
is needed when the number of atoms making up the cluster increases,
which is a drawback. As such, many empirical potentials which ade-
quately describe interactions between atoms in clusters have been de-
veloped [19]. For more accuracy in the determination of the energy, the
potential should incorporate well modeled different external surface
twin planes, different crystal structures, and the response to strain.
Furthermore, vibrational properties need to be well described so as to
model the potential temperature dependence of the structure [20].
Therefore, the prediction of the correct structure of a cluster represents
a tough challenge for potential in use.

The first objective of this work is to fixe the Gupta parameters
taking into account the experimental values of the cohesive energy and
lattice parameters of the Aluminum clusters. The second objective is to
use the many body Gupta potential to obtain the lowest energy, which
corresponds to the global minima (stable configuration), for each
Aluminum cluster with sizes ranging from 3 to 170 atoms. We then
compared our results to those obtained using the Murrell-Mottram
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potential, Glue potential, Sutton-Chen potential, Truhlar potential and
the Cleri-Rosato potential [21–25]. Gupta potential has been ex-
tensively used in metallic cluster simulations [26], which leads to re-
sults that are in good agreement to those generated from first-principle
methods [27]. One of the most important aspects with the Gupta po-
tential is that for an adequate time, corresponding to each structure, the
structure converges directly to its stable configuration irrespective of
the initial configuration. Additionally, this method can permit one to
simulate much larger clusters than previously accessible thus enlarging
the range of materials science issues that could be addressed. Gupta
potential allows one to perform simulations involving more than three
hundred atoms on small work stations.

This work has been organized as follows: in the second section, we
describe the many-body Gupta potential model and provide details on
the simulation method. In section three, we present our optimized
structures, their respective energies and some global minima cluster
structures obtained from our calculations. Our structures are then
compared to those obtained using different potentials. Finally, in
Section four we conclude the work.

2. Gupta potential and methodology

2.1. Gupta-type potential

The many-body Gupta potential was originally proposed to study
relaxation near surfaces and impurities in bulk transition metals [28].
The principal part of the many-body Gupta potential rests on the tight-
binding model originally proposed by Ducastelle [29] and Friedel [30].
The main idea consists of constructing a functional within the second
momentum approximation [31,32] which takes into account the es-
sential band character of the metallic bond. The cohesive energy of the
system depends on five parameters. It is written in terms of repulsive
pair and attractive many-body terms which are obtained by summing
over all atoms. Its expression is given in Eq. (1) and results from the
summation of the total bonding energy between N atoms.
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A is the index to measure the interatomic repulsive strength, and B
is an effective jump integral only related to the type of atoms. p and q
are adjustable parameters, Vij

r and Vij
a are respectively the repulsive

potential and the attractive potential. r0 is the equilibrium distance
between atoms and = → − →r r r‖ ‖ij j i represents the distance between the
ith and jth atoms. N is the total number of atoms with equal mass.

The choice of these potentials is motivated by the need for com-
putational efficiency in order that global optimization is feasible for the
sizes we consider in this work and by our intention to compare with
previous results.

2.2. Methodology

All the global optimization calculations in this work were performed
using a numerical code based on the molecular dynamics method
(Which is a computer simulation method for studying the physical
movements of atoms and molecules). Molecular dynamics was used
here for determination of the possible spatial structures. It is based on
numerical integration of Newton’s equations:

→
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where mi and →ri are the mass and the position of the ith particle,

respectively.
⎯→⎯
Fi is the total force exerted on the ith particle by all other

particles and Vi is the potential energy created on the ith particle by all
other particles.

We have calculated the structural changes as a function of the
cluster energy. Newton’s equations of motion for each atom within the
cluster were treated using the Verlet algorithm. To define the cluster
configurations that are local and global minima, one must construct an
initial geometry from which to start the molecular dynamics. While it is
possible that the intuitively chosen initial geometry could be close to a
local minimum, this is unlikely. The initial velocities of each atom were
chosen randomly and the time step of = −h 5·10 3 fs was used. The ve-
locity and the position of the ith particle at +t h are given as

→ + = → + →

→ + = → + → + →
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Following this path, the atomic positions and velocities as a function
of time were obtained and were used to calculate time-averages of
physical quantities characterizing the cluster structure and dynamics.
The global optimization of the aluminum clusters was performed using
the basin-hopping method. It is a particularly useful algorithm for
global optimization, such as finding the minimum energy structure for
atomic clusters [16].

Since each translational degree of freedom contributes to the total
kinetic energy by K T

2
B , the temperature of the system may be defined by:

∑= →
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where KB is the Boltzmann constant and N is the total number of atoms
in the cluster under consideration.

In this work, we have used a quantitative method for monitoring
convergence based on multiple independent simulations starting from
four different initial configurations [39]. We quantify the distance be-
tween the independent cluster population vectors using the distance
δ t( ) defined as:
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where R t( )ij is the position of the ith particle of the jth simulation at time
= ∑ =t R t R t, ( ) ( )i j ij

1
4 1

4 , and N is the number of atoms. This distance is
computed against time and the system considered equilibrated when it
decreases below a pre-chosen threshold and remains below. A

−10 2threshold has been used in this manuscript.

3. Results and discussions

3.1. Parameter values

The first investigation was dedicated to the determination of the
parameter values. Let r2 and r3 be the equilibrium separation distances
in Aℓ2 and Aℓ3 respectively. Since the Aℓ3 cluster had an equilateral
triangle geometry with D h3 symmetry, we can express p and B as
function of q and A as follows:
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Taking into account the experimental values of the cohesive energy and
lattice parameters, the approximated values of q and A have been fitted.
Under these considerations, the values of the parameters used in this
manuscript are given in Table 1.

To verify the many-body Gupta potential for Aluminum parameters
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listed in Table 1 above, we first determined the optimal configurations
of Aℓ3, Aℓ50, Aℓ100 and Aℓ150 all presented in Fig. 1 using different initial
conditions. The obtained structures are then compared to the results
presented by the authors of references [21,22].

Starting with the Aℓ3 cluster, we obtained the total energy of
− 4.3498 eV. Whatever the initial configuration, we ended up with the
same stable configuration or lowest energy structure which was a (D h3 )
with the only difference being the time taken to reach this final con-
figuration. These results are in good agreement with those obtained by
Doye [22]. We also obtained an Aℓ–Aℓ bond of r0.9787 0. We tried
several initial configurations and we noticed from our analysis that
linear initialized coordinates were the ones that required more time to
reach the optimized configuration. For illustration, Fig. 2 shows the
different optimization steps or paths for Aℓ3.

As shown in Fig. 2, there are two stable configurations. The linear
one was obtained after =t 50 and was maintained until =t 1850.
During this phase, the kinetic energy of the molecule is approximatively
zero and the bond distance is r0.951068 0. After this phase, the molecule
started a significant modification from the linear to the triangular form.
The kinetic energy of the atoms increased to reach 0.5827 eV when

=t 2000. At =t 2050, the kinetic energy was at its maximum (1.2177 eV)
and then dropped abruptly to zero. The molecule then reached its most
stable configuration at its lowest total energy.

Secondly, we considered Aℓ50 molecule and proceeded in the same
manner as Aℓ3 molecule to have an energy of − 139.1150 eV. From
different initial configurations, we obtained the same final optimized or
stable configuration which is a (C1). The initial configuration chosen
here was a double ring of 25 atoms each and the minimization process
for Aℓ50 is shown in Fig. 3.

The minimum distance between Aℓ50 atoms is approximately con-
stant and very close to r0.9446 0.

From our simulations, we have also observed that the structure re-
mained almost constant until =t 1250. Between =t 1250 and =t 3000,
one ring performed a rotation with angle π

25
around the rings axis. After

=t 3000, the kinetic energy started to increase and reaches its max-
imum around =t 4000. As shown in the graph of Fig. 3, important
modifications of the structure were found after =t 3000. The optimized
configuration was obtained for >t 7000 and is in good agreement with
that obtained by the authors of reference [22].

Focusing on Aℓ100 and Aℓ150 molecules, we analyzed their

optimizations starting from two different initial structures: the simple
cubic lattice and the cylindrical configurations for each molecule. As
illustrated in Fig. 4 and Fig. 5, we have shown some transformation
steps for Aℓ100 and Aℓ150 respectively.

For both figures, the black and the blue curves respectively corre-
spond to the simple cubic lattice and cylindrical structures used as

Table 1
Gupta parameters for Aluminum clusters.

Parameters A B p q

Values −7.69·10 2 eV 1.1280 eV 15.1194 1.930

Fig. 1. Final configurations of: a) Aℓ3, b) Aℓ50, c) Aℓ100 and d) Aℓ150.

Fig. 2. An illustration of the evolution of the lowest-energy Aℓ3 molecule with
the Gupta potential starting from a linear initialized coordinates.

Fig. 3. An illustration of the evolution of the lowest-energy Aℓ50 molecule with
the Gupta potential starting from a cylinder initialized coordinates.
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initial coordinates. From different initials configurations shown in
Figs. 4 and 5, we obtained the same final optimized configurations
which are respectively (C1) and (Cs). These structures are shown in
Figs. 4 and 5, and Fig. 1d) with energies − 292.1767 eV and
− 447.9025 eV respectively which are in good agreement with those of
Doye [22]. The minimum distance between Aℓ100 atoms is approxi-
mately constant and very close to r0.9444 0 and for Aℓ150 atoms, it is
almost constant and very close to r0.9408 0. The peaks observed in the
figures corresponded to some important modifications of the structures.
We can notice from the two figures that, the simple cubic configurations
stabilized first before the cylindrical configurations.

Our results for Aℓ3, Aℓ50, Aℓ100 and Aℓ150 molecules, using Gupta
potential agrees well in terms of point groups and structures, with those
found in the literature [21,22]. The above results permitted us to fixe
our parameters as shown in Table 1 above.

3.2. Results

We then proceed to obtain all the global energy minimum structures
of the Gupta clusters. The basin-hopping algorithm has proved to be
particularly successful in locating putative global minima for a wide
variety of cluster systems [16]. Anyway, there is no absolute guarantee
that we have located the true global minima, since the probability to
miss a global minimum increases with cluster size. However, according
to the fact that the same lowest-energy minimum is obtained using
different initial conditions, and also according to the good precision
between our results and the given cohesive energy of Aluminum, we are
confident that our obtained global minima are well estimated. Table 2
depicts the potential energy, Group Point and the length of Aℓ–Aℓ bond
of all the clusters for ⩽ ⩽N3 170. The structural assignment has been
made in Table 2 where C stands for cyclic, D for decahedral, I for ico-
sahedral, T for tetrahedron and O for octahedron.

We can notice from Table 2 that the ground state energy decreases
with the number N of atoms. In order to go far in our analysis, we
plotted on Fig. 6 the ground state energy as a function of N (curve in
black color).

This curve brought out the following analysis: the shape of the curve
is almost linear. Then, the cluster energies of geometric shell clusters
are fitted to the following cubic expansion in N1/3:

≃ + + +E N aN bN cN d( ) .2/3 1/3 (9)

By using the cubic regression method we calculated the parameter
values: = −a 3.40444 eV, =b 2.17026 eV, =c 0.12859 eV and

=d 1.03007 eV. To verify our assumption, we have plotted in Fig. 6
(curve in blue) the above relation. A good agreement is obtained here
between numerical result and semi-analytical one. The result obtained
in Eq. (9) is an important outcome because this can help to predict the
ground state energy of any cluster size knowing N and without the need
for numerical simulation.

To investigate the structural stabilities for AℓN clusters, the average
binding energy (Eb) for any Aℓ cluster is defined as

= − ≃ − − −− −E E N
N

N N
N

( ) 3.40444 2.17026 0.12859 1.03007 ,b
1/3 2/3

(10)

where E N( ) is the total energy of the cluster containing N aluminum
atoms. The average binding energy of the lowest energy isomer of AℓN
( ⩽ ⩽N3 170) is plotted, as a function of N in Fig. 7.

From Fig. 7, one can see that the average binding energies increase
overall but with little fluctuation around a few cluster sizes (which are
relevant to the magic-number clusters).

The origin of the magic-number clusters is related to the type of
atoms. For noble gas atoms, the magic-number clusters correspond to
filled electronic shells, thereby indicating the role of the total number of
itinerant electrons on stability. Basing on the magic numbers in clusters
that contain more than a few dozen atoms, it has been shown that the
most stable species correspond to sizes with complete geometric shells
in an icosahedral or cuboctahedral atomic arrangement [33]. Alkali
metal clusters s( )1 conform to the jellium model in that, certain nu-
clearities are relatively stable due to their filled electronic shells [34].
By contrast, clusters of alkaline earth elements s( )2 , exhibit magic
numbers which correspond to clusters consisting of concentric poly-
hedral shells of atoms where the relative stability of a given cluster is
determined by the competition between packing and surface energy
effects [35].

In the case of aluminum, due to the higher atomic valency +( 3), the
higher density of electronic states and the involvement of p3 1, as well as
s3 2 orbitals in bonding, the origin of these peaks is more complex [36].
It is believed that the crossover from the regime where electronic fac-
tors determine cluster stability to where packing and surface energy
effects dominate, occurs at lower nuclearities than for the alkali metals
[36,37]. Variable temperature experiments by Baguenard et al. have

Fig. 4. An illustration of the evolution of the lowest-energy Aℓ100 molecule
starting from a simple cubic lattice (black curve) and from a cylinder initialized
coordinates (blue curve). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 5. An illustration of the evolution of the lowest-energy Aℓ150 molecule
starting from a simple cubic lattice (black curve) and from a cylinder initialized
coordinates (blue curve). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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shown, however, that jellium effects can be seen at much higher nu-
clearities when the Aℓ clusters are generated at temperatures such that
they are either molten or have molten surfaces [38].

The calculated average binding energy of the cluster with the lar-
gest-size (Aℓ170) is about 3.4044 eV, and it is very closed to the cohesive
energy of Aℓ crystal (3.3978 eV). This small relative error of 0.19% in-
dicates that there is still a negligible discrepancy between properties of
the aluminum clusters investigated and that of the bulk material.

An important feature of this graph is the small peaks at
= =N N13, 55 and =N 147, corresponding to a region of enhanced

stability for ⩽N 170. Such regions are more evident when the second
difference in the binding energy D N( )2 defined as

= − − + − +D E N E N E N( 1) 2 ( ) ( 1),b b b2 (11)

is plotted against N, as presented in Fig. 8.
The second difference is related to the thermodynamic stability of a

cluster with respect to disproportionality, assuming a quasi-equilibrium
exists during cluster formation [40]. Fig. 8 shows that there are pro-
nounced peaks in D N( )2 at =N 4, 6, 13, 19, 53, 55, 56, 146, 147,
and 148 and small peaks at 14, 23 and 35.

Experimentally there does appear to be enhanced stability at around
4, 6, 13 and 19 atoms for small clusters with ⩽N 20 [41]. Jellium
calculations by Chou and Cohen [42] predict peaks in D N( )2 at

=N 6, 13 and 19, where the numbers of valence electrons (= N3 for
neutral clusters) are close to Jellium shell closings [43]. Even here, our
results are in good agreement with the experimental ones as well as
with those obtained by Chou and Cohen.

Table 2
Potential energy, group point and Aℓ–Aℓ bond of the lowest energy configurations.

N Energy(eV) Bond r( )0 PG N Energy(eV) Bond r( )0 PG N Energy(eV) Bond r( )0 PG

3 − 4.34983 0.9787 D h3 4 − 6.89561 0.9941 Td 5 − 9.34712 0.9923 D h3
6 − 12.0278 1.0017 Oh 7 − 14.5962 0.9949 D h5 8 − 17.0885 0.9983 C v2
9 − 19.7611 0.9954 C v2 10 − 22.4982 0.9854 C v3 11 − 25.2357 0.9798 C v2
12 − 28.2547 0.9739 C v5 13 − 31.6329 0.9829 Ih 14 − 33.9797 0.9823 C v3
15 − 36.7320 0.9784 C v2 16 − 39.4368 0.9817 Cs 17 − 42.1397 0.9847 C2
18 − 45.0494 0.9398 Cs 19 − 48.3574 0.9304 D h5 20 − 51.0270 0.9288 C v2
21 − 53.6976 0.9318 C1 22 − 56.5141 0.9397 Cs 23 − 59.7394 0.9456 D h3
24 − 62.3914 0.9411 C v2 25 − 65.1848 0.9498 Cs 26 − 68.2925 0.9576 Td
27 − 71.0629 0.9441 C v2 28 − 73.8040 0.9447 Cs 29 − 76.8017 0.9538 D h3
30 − 79.5915 0.9419 C v2 31 − 82.4369 0.9418 Cs 32 − 85.2960 0.9478 C v2
33 − 88.0976 0.9493 C v5 34 − 90.8948 0.9453 D h5 35 − 94.3272 0.9255 C v2
36 − 97.2693 0.9299 Cs 37 − 100.0447 0.9500 Cs 38 − 103.0710 0.9262 D h6
39 − 106.1741 0.9285 C v6 40 − 109.0568 0.9260 D h6 41 − 111.9302 0.9296 C v2
42 − 115.0334 0.9311 C1 43 − 118.0820 0.9353 Cs 44 − 120.9767 0.9222 C v2
45 − 124.0708 0.9386 C1 46 − 127.2073 0.9386 Cs 47 − 130.3143 0.9363 C v3
48 − 133.3006 0.9373 Cs 49 − 136.0027 0.9394 Cs 50 − 139.1150 0.9446 C1
51 − 141.9827 0.9307 C1 52 − 145.1069 0.9345 Cs 53 − 148.0852 0.9328 C v5
54 − 153.6278 0.9623 Cs 55 − 156.9316 0.9643 Ih 56 − 157.1739 0.9256 C v3
57 − 160.4398 0.9347 S4 58 − 163.3002 0.9255 Cs 59 − 166.3712 0.9258 C v2
60 − 169.1812 0.9273 C v3 61 − 172.2358 0.9277 Td 62 − 175.2437 0.9283 Cs
63 − 178.4397 0.9255 C1 64 − 181.3260 0.9225 C v2 65 − 184.5851 0.9321 C1
66 − 187.7525 0.9390 C1 67 − 190.7509 0.9319 C1 68 − 193.6235 0.9398 C1
69 − 196.6888 0.9376 C3 70 − 199.8774 0.9413 C2 71 − 202.7042 0.9245 Cs
72 − 205.8481 0.9331 Cs 73 − 208.7526 0.9237 Cs 74 − 212.1544 0.9343 Cs
75 − 215.4319 0.9360 Cs 76 − 218.5124 0.9397 D h3 77 − 221.5578 0.9310 C v3
78 − 224.4132 0.9162 D h3 79 − 227.2243 0.9200 Cs 80 − 230.6202 0.9295 Cs
81 − 233.5749 0.9225 Cs 82 − 236.6836 0.9320 C2 83 − 239.5451 0.9361 C1
84 − 242.7113 0.9378 Cs 85 − 245.5700 0.9251 C v2 86 − 248.5707 0.9258 Cs
87 − 252.1090 0.9284 C1 88 − 255.1910 0.9281 Cs 89 − 258.3163 0.9280 Cs
90 − 261.1174 0.9316 Cs 91 − 264.4623 0.9545 D h3 92 − 267.3222 0.9383 C2
93 − 270.5029 0.9373 C1 94 − 273.5429 0.9295 C v2 95 − 276.6024 0.9307 Cs
96 − 279.7527 0.9336 C2 97 − 282.7939 0.9478 C1 98 − 286.1358 0.9512 C1
99 − 289.2391 0.9493 C1 100 − 292.1767 0.9444 C1 101 − 295.3935 0.9416 C1
102 − 298.5960 0.9420 C1 103 − 301.4776 0.9471 C1 104 − 304.4115 0.9325 C1
105 − 307.5460 0.9382 Cs 106 − 310.1656 0.9301 C1 107 − 313.0646 0.9277 Cs
108 − 316.4403 0.9375 Cs 109 − 320.1979 0.9396 C1 110 − 323.2767 0.9408 C1
111 − 326.3590 0.9353 C1 112 − 329.3589 0.9393 C1 113 − 332.4441 0.9339 C1
114 − 335.2425 0.9398 Cs 115 − 338.8164 0.9451 C1 116 − 341.7280 0.9378 Cs
117 − 344.8550 0.9386 C1 118 − 347.8365 0.9388 C1 119 − 350.9419 0.9359 C1
120 − 354.0818 0.9397 C2 121 − 356.9454 0.9413 C1 122 − 359.9576 0.9418 C2
123 − 363.4546 0.9366 C1 124 − 366.2721 0.9325 C1 125 − 369.4206 0.9312 C1
126 − 372.5688 0.9369 C1 127 − 376.0505 0.9312 C1 128 − 379.2189 0.9255 C1
129 − 381.9535 0.9356 C3 130 − 385.4508 0.9371 C1 131 − 388.1855 0.9338 C1
132 − 391.2332 0.9336 C2 133 − 394.2573 0.9384 Cs 134 − 397.0438 0.9412 C2
135 − 400.4313 0.9401 Cs 136 − 403.3256 0.9357 Cs 137 − 406.7123 0.9367 Cs
138 − 409.6199 0.9393 C v2 139 − 412.9599 0.9357 Cs 140 − 416.0248 0.9387 Cs
141 − 419.1856 0.9323 Cs 142 − 422.5587 0.9394 C v2 143 − 425.7004 0.9331 Cs
144 − 428.7183 0.9254 C v2 145 − 431.5097 0.9328 C1 146 − 434.5826 0.9286 C1
147 − 446.9617 0.9554 Ih 148 − 441.0488 0.9265 Cs 149 − 444.0072 0.9269 C1
150 − 447.9025 0.9408 Cs 151 − 451.1330 0.9373 C v2 152 − 454.0891 0.9348 Cs
153 − 457.3169 0.9249 C v2 154 − 459.5114 0.9310 Cs 155 − 462.9513 0.9362 Cs
156 − 465.8317 0.9363 C v3 157 − 469.3694 0.9391 C1 158 − 472.5375 0.9506 C2
159 − 475.7368 0.9519 Cs 160 − 478.9933 0.9424 D h3 161 − 482.0470 0.9486 C1
162 − 485.2691 0.9395 Cs 163 − 488.3247 0.9484 Cs 164 − 491.5816 0.9476 C2
165 − 494.6451 0.9397 Cs 166 − 497.7476 0.9451 Cs 167 − 500.9590 0.9438 C1
168 − 503.9306 0.9436 C2 169 − 507.1065 0.9467 C1 170 − 510.1182 0.9463 Cs
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On the other hand, the distances between the nearest Aℓ–Aℓ alu-
minum atoms remained almost constant as shown in Fig. 9.

The average Aℓ–Aℓ bond was found to be r0.9443 0 while the lower
r0.9162 0 and higher r1.0017 0 distances were obtained in the case of Aℓ78

and Aℓ6 clusters respectively. Taking into account the lattice constant of

the aluminum crystal (404.95pm), the value of r0 can be determined as
=r 3.0323Å0 .
From our simulations, we came out with 15 symmetry groups:

D T O D C C C I C C C D C S, , , , , , , , , , , , ,h d h h v v v h s h v3 5 2 3 5 2 1 6 6 4, and C3. For each
of these symmetry groups, one molecule was chosen together with its
corresponding global minimum structure and was depicted in Fig. 10.
Following the order in which the symmetry groups are given above,
structures of Aℓ3, Aℓ4, Aℓ6, Aℓ7, Aℓ8, Aℓ10, Aℓ12, Aℓ13, Aℓ16, Aℓ17, Aℓ21,
Aℓ38, Aℓ39, Aℓ57 and Aℓ69 are plotted in Fig. 10a), 10b), 10c), 10d), 10e),
10f), 10g), 10h), 10i), 10j), 10k), 10l), 10m), 10n) and 10o) respec-
tively.

3.3. Comparison

The results obtained here using a Gupta potential agree well with
those obtained by Doye [22] and by Noya et al. [44] using the glue
potential and the monte-carlo simulations respectively. Even if the
minimized energies are approximatively the same, we have noticed that
the Gupta potential favored the Icosahedral structures while the Glue
potential favored the polytetrahedral structures.

Andrés et al. demonstrated using Kohn sham Density Functional
Theory that from Aℓ13 to Aℓ22, the icosahedral growth dominates global
minima structures and this agrees with our work for Aℓ13 to Aℓ18 [45].
Also, Khanna et al. had earlier confirmed that from Aℓ13 to Aℓ18, ico-
sahedral structures are more stable in all-electron PBE calculations
[46].

In general, the structures obtained in this manuscript are similar to
those obtained by the authors of reference [23] who also used Gupta
potential for their work. Nevertheless, we have noticed two differences
between our results and theirs. Firstly, for =N 9 as an example, Gilles
et al. considered high symmetry structures and found the body-centered
cubic to be lowest in energy, in disagreement with our present results.
Although the body-centered cubic structure is stable, it is not the op-
timized structure. To verify this, we used their structure given in
Fig. 11a) as initial configuration, after a relatively long simulation time,
the structure is transformed as shown in Fig. 11c).

As shown in the curve of Fig. 11b) their simulated body-centered
cubic is a stable structure that is 2.0318 eV above the global minimum
obtained in this manuscript, and which is, in fact, the second lowest-
energy isomer. Secondly, the curve of the binding energy obtained in
[23] is qualitatively similar to that obtained in this work. We believe
that the quantitative differences that appear between the results are due
to the values of the parameters of the potential.

In terms of absolute binding energies, our results are in good
agreement with the experimental values. In comparison with some
computed ones using Sutton-Chen potential, the Truhlar potential and
the Cleri-Rosato potential as reported by Jasper et al. [24,25], the
smallest error (0.19%) is found between our results and the experiment.

Next we focus our attention on the performance of the potentials for
the description of the Aℓ2 dimer. The characterization of Aℓ2 dimer has
provided a challenge for both theory and experiment due to the clo-
seness in energy of the singlet and triplet states. Table 3 shows the
equilibrium separation values for the Gupta potential, along with the
values obtained using the other potentials or methods, as several ab
initio and Density Functional Theory calculations, as well as experiment
for comparison.

The Aℓ2 equilibrium separation distance as calculated using the
Gupta potential agrees well with the experimental value with a preci-
sion of 98.13%. It is followed by the NP-B predicted value 82.01%, while
the Sutton-Chen potential presents the lowest precision of 73.79%. This
may be due to the Sutton-Chen being fitted to just structural data,
which does not take into account the energetics data such as the va-
cancy formation energy and surface energies.
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Fig. 6. Ground state energy as a function of the number of atoms curve with a
solid line (black) is our numerical result while curve with a dashed line (blue) is
our semi-analytical result.
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4. Conclusion

In this present work, the optimized geometry, as well as the ground
state energy of aluminum clusters with up to 170 atoms, have been
analyzed. We have then determined the Gupta parameters for alu-
minum clusters. Comparison between our results and other results
found in the literature have been carried out. We found that for

⩽ ⩽N3 170, the ground state energy of aluminum cluster obtained
using Gupta potential decreases quadratically with the number N of
atoms. But the Aℓ–Aℓ bond fluctuates slightly around r0.9443 0. In
comparison with other results found in the literature, our obtained

Fig. 10. Ground-state structures for aluminum cluster geometries, as predicted by the Molecular Dynamics with the Gupta potential.
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Fig. 11. a) Optimized Aℓ9 according to Gilles et al. b) An illustration of the evolution of the lowest-energy Aℓ9 molecule with the Gupta potential starting from a body-
centered cubic initialized coordinates. c) Optimized Aℓ9 obtained here.

Table 3
Aℓ2 equilibrium separation values (r2).

Potentials r (Å)2 Precision

Sutton-Chen [47] 2.092 73.79%
Streitz-Mintmire [48] 2.207 77.85%
Cleri-Rosato [49] 2.325 82.01%
Truhlar potential (NP-B) [25] 2.523 88.99%
Gupta (this work) 2.888 98.13%
Experiment [50] 2.835 –
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values such as binding energy and lattice constant are in very good
agreement with the experimental ones. Our next investigation will be to
determine the optimized configurations of other atoms and doped
materials. We think also that the analysis of the physical properties of
some clusters is an interesting subject.
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