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Abstract

In this thesis, we analyze the influence of the deformable potential on the dynamics
of Brownian particles and the formation of localized modes in nonlinear deformable
lattices.

Firstly, the directed transport in a one-dimensional overdamped, Brownian motor
subjected to a travelling-wave potential with variable shape and exposed to an external
bias is studied numerically. In the whole thesis, we focus our attention on the class of
Remoissenet-Peyrard parametrized on-site potentials with slight modification, whose
shape can be varied as a function of a parameter r, recovering the sine-Gordon shape as
the special case. We demonstrate that in the presence of the travelling-wave potential the
observed dynamical properties of the Brownian motor, which crucially depends on the
travelling-wave speed, the intensity of the noise and the external load, respectively, is
significantly influenced also by the geometry of the system. In particular, we notice that
systems with broad wells and sharp barriers favour the transport under the influence
of an applied load. The efficiency of the transport of Brownian motors in deformable
systems remains equal to 1 (in the absence of an applied load) up to a critical value of
the travelling wave speed greater than that of the pure sine-Gordon shape.

Secondly, using the Langevin-Monte-Carlo method, we show that the average ve-
locity of Brownian particles is an increasing function of the shape parameter in the over-
damped case, and a decreasing function of the shape parameter in the underdamped
case. In the presence of the deformable travelling-wave potential, for negative as well
as positive values of the shape parameter, the underdamped case favors the transport
properties in the medium. The average velocity needed to cross the potential barriers
is lowest in the underdamped case. Moreover, the effective diffusion coefficient in both
cases exhibits peaks, and the diffusion process enhancement is discussed for some val-
ues of the shape parameter. The distribution of Brownian particles is also analyzed in the
deformed system by using the Smoluchowski equation and the finite-element methods.

In the presence of an external load, the deformable potential tilts. Using the ma-
trix continued fraction method, we compute the diffusion coefficient of Brownian par-
ticles via the dynamics factor structure at low temperature and intermediate values of
friction coefficient. It is numerically found that the transport properties of Brownian
particles such as the effective diffusion coefficient, the average velocity and the distri-

xvii
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bution probability are sensitive to the shape parameter r of the modified nonsinusoidal
Remoissenet-Peyrard deformable potential. The bistable behaviour and the distribu-
tion of velocity which also shed light on the diffusion anomalies are discussed for some
values of the shape parameter. We show that for negative values of the shape param-
eter (r < 0), the average velocity versus the external tilting of Brownian particles is
optimized, while for positive values (r > 0), the average velocity of Brownian particles
collapses due to the geometry of the system combined with the friction. We find a power
law for the effective diffusion coefficient in terms of the shape parameter r, and show
that, it evolves as Deffmax ∼ r2.

Keywords: Brownian particles; Effective diffusion; Fokker-Planck equation; Travelling-
wave deformable potential; external load; Matrix continued fraction method; Spectral
method; Euler-Muyurama Method; Kasdin algorithm.
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Résumé

Dans cette thèse, nous analysons l’influence du potentiel déformable sur la dynamique
des particules Browniennes ainsi que la formation des modes localisés dans des réseaux
déformables non linéaires.

Dans un premier temps, le transport dirigé des particules Browniennes, sur-amorties
dans un potentiel déformable en mouvement et soumis à une action externe est étudié
numériquement. Dans cette thèse, nous nous concentrons sur la classe des potentiels
de site paramétrés et modifiés mis sur pieds au début des années 80 par Remoissenet et
Peyrard, et dont la forme peut être modifiée en fonction d’un paramètre r, et prenant la
forme du potentiel de sine-Gordon comme un cas particulier. Nous démontrons qu’en
présence du potentiel déformable, les propriétés de transport des particules Browni-
ennes, qui dépendent essentiellement de la vitesse du potentiel, de l’intensité du bruit et
de la charge externe, sont également influencées de manière significative par la géométrie
du système. En particulier, nous remarquons que les systèmes avec de larges puits et
des barrières rétrécies favorisent le transport sous l’influence d’une action externe ap-
pliquée. Le rendement du transport des moteurs Browniens dans les systèmes déformables
reste égale à 1 (en l’absence de toute action externe appliquée) jusqu’à une valeur cri-
tique de la vitesse du potentiel supérieure à celle de la forme sine-Gordon.

Deuxièmement, en utilisant la méthode de Langevin-Monte-Carlo, nous mon-
trons que la vitesse moyenne des particules Browniennes est une fonction croissante
du paramètre de déformabilité dans le cas sur-amorti et une fonction décroissante du
paramètre de déformabilité dans le cas sous-amorti. En présence du potentiel déformable
en mouvement, pour des valeurs négatives et positives du paramètre de déformabilité,
le cas sous-amorti favorise les propriétés de transport dans le milieu. La vitesse moyenne
des particules Browniennes nécessaire pour franchir les barrières de potentiel est plus
faible dans le cas sous-amorti. En plus, le coefficient de diffusion effectif dans les deux
cas présente des pics, et l’amélioration du processus de diffusion est discutée pour cer-
taines valeurs du paramètre de déformabilité. La distribution des particules Browni-
ennes est également analysée dans le système déformé en utilisant l’équation de Smolu-
chowski et la méthode des éléments finis.

En présence d’une charge externe, le potentiel déformable s’incline. Ainsi, en util-
isant la méthode de decomposition en fraction de matrices continues, nous calculons le
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coefficient de diffusion des particules Browniennes via le facteur dynamique de struc-
ture à basse température, et pour les valeurs intermédiaires du coefficient de frottement.
Numériquement, les propriétés de transport des particules Browniennes telles que le
coefficient de diffusion effectif, la vitesse moyenne et les distributions sont sensibles
au paramètre de déformabilité r, du potentiel déformable. Le comportement bistable
et les distributions de la vitesse instantanée qui prédisent également les anomalies de
diffusion, sont discutés pour certaines valeurs du paramètre de déformabilité. Nous
montrons que pour les valeurs négatives du paramètre de déformabilité (r < 0), la
vitesse moyenne par rapport à la force externe appliquée aux particules Browniennes
est optimisée, tandis que pour les valeurs positives (r > 0), la vitesse moyenne des
particules Browniennes s’effondre en raison de la géométrie du système associée aux
frottements. Nous trouvons en plus une loi de puissance pour le coefficient de diffusion
effectif en fonction du paramètre de déformabilité r et montrons qu’il évolue selon la loi
Deffmax ∼ r2.

Mots clés: Particules Browniennes; Diffusion effective; Equation de Fokker-Planck;
Potentiels déformables en mouvement; Force externe; Méthode de la fraction continue
matricielle; Méthode spectrale; Méthode de Euler-Muyurama; Algorithme de Kasdin.
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General Introduction

Brownian motion is the seemingly random movement of a tracer particle suspended

in a fluid. In fact, The phenomenon of Brownian motion was first observed by Jan Ingen-

housz for coal dust particles on the surface of alcohol. However, Ingen-Housz provided

a quite incorrect physical explanation of his observations by ascribing the effect to the

evaporation of the suspension fluid. So, Brownian motion became more widely known

only later on by the work of botanist Robert Brown in 1827, who reported vigorous ir-

regular motion of small particles originating from pollen floating on water [1]. Puzzled

by the phenomenon, he performed a number of further experiments, using different

organic and inorganic objects, different surrounding fluids like water or alcohol and

different microscopes, where he concluded that this kind of motion is caused by the

bombardments by the small particles, which he calls ”active molecules”. His theory,

however, has one weakness: He claimed that the motion of active molecules originates

from the molecules themselves and not that it is caused by heat. Although Brown was

not the first observer of this kind of motion, he was the pioneering experimentalist who

made systematic investigations, trying to understand the origin of this random motion.

His study showed that this kind of motion is universal and in particular not restricted to

living matter. He turned the story of the neverending inanimate bodies dances in fluids

from biology to a problem of physics. It is Albert Einstein who will come along later

to give a plausible explanation of the Brownian motion through the molecular-kinetic

description [2]. There, he states (freely translated from the German) ”In this work, we

show, by use of the kinetic theory of heat, that microscopic particles which are sus-

pended in fluids undergo movements of such size that these can be easily detected with

a microscope. It is possible that, these movements, to be investigated here, are identi-
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cal with the so-called Brownian molecular motion; the information available to me on

the latter, however, is so imprecise that I cannot make a judgement”. Later, Jean Perrin

made some breakthrough experimental results in 1908 and 1909 (published in Annales

de Chimie et de Physique 18, 1-114, (1909)). It was these results that finally convinced

the general physics and chemistry community of the existence of atoms. Perrin said

about Brownian motion, ”Every particle situated in the liquid, instead of taking on, ac-

cording to its density, a regular movement of falling or rising, is rather found animated

by a completely irregular movement. It comes and goes, it stops, it starts again, it rises,

it sinks, it rises again, without at all tending to immobility ... the odd phenomena dis-

covered by Brown did not attract much attention. Rather, it was ignored for a long time

by most physicists, and it can be supposed that those who had heard about it believed

that it was analogous to the motion of dust motes that we see dancing in sunbeams

under the action of weak air currents caused by slight differences in temperature.” Nev-

ertheless, the two founders of Brownian motion theory, Einstein and Smoluchowski [3],

as well as their contemporaries, were also unaware of related, mathematical-statistical

precursors of the phenomenon: Already in 1880, Thorvald Nicolai Thiele [4] proposed

a model of Brownian motion while studying time series. Another important develop-

ment is the work by the founder of modern Mathematical Finance, Louis Bachelier [5],

who attempted to model the market noise of the Paris Bourse through a Gaussian pro-

cess. Moreover, Lord Rayleigh [6] also did study a discrete, heavy random walker and

performed a corresponding limiting procedure towards a heat equation which is aug-

mented by a drift term for the statistical velocity.

Since then, the Brownian motion of particles in periodic structures have attracted the

attention of many researchers due to their multidisciplinary applications and constitute

an active field of research over recent years, being relevant for various applications in

Condensed Matter Physics, Chemical Physics, Nanotechnology, and Molecular Biology

[7-16]. Indeed, the subtle interplay of thermal noise, nonlinearity, asymmetry, and un-

biased driving of either stochastic, or chaotic, or deterministic origin can indeed induce

a rectification of the noise, resulting in directed motion of Brownian particles. So, in
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biology, overdamped Brownian particles are molecular motors such as kinesins whose

importance is known in living biological cells and which have led to a great number of

theoretical and experimental works in recent years [17-21]. Particularly, many experi-

mental studies such as modern microscopic techniques, have been performed recently

in the domain of living cells and showed the emergence of the anomalous diffusion;

the relevant behaviour in these works is that although the mean displacement of the

tracking particle is not linear, but random, its resulting motion is directed ([19], and Refs

therein). They moving along a periodic structure performing basic tasks in living or-

ganisms, and they do not necessarily need an external applied load to accomplish their

task, that is, carrying a load across a viscous environment [22, 23]. Inspired by molecular

motors in biology, Magnasco [24] and Prost et al. [15] proposed that such particle trans-

port could be achieved with artificial Brownian motors (BMs) based on an asymmetric

energy landscape and non-equilibrium fluctuations.

Similarly, Brownian particles have also been studied in detail in connection with

superionic conductors, Josephson junctions, the dynamics of phase-locked loops [9,25-

29]. The common feature of these latter cases is that they consist of species of high

mobile particles considered to be Brownian particles moving on a periodic structure

with diffusion coefficients comparable to those found in liquids [30-38]. In either case,

Brownian particles are small machines that operate far from thermal equilibrium, using

the thermal energy imbalance to perform mechanical work so as to generate the directed

transport, with noise playing an important role in the process [39, 40]. Thus, the drift

of particles is generated when conditions such as the presence of thermal noise, the

anisotropy of the medium, and the time dependence are supplied by external variations

of the constraints on the system [8, 41]. Moreover, the interactions of the Brownian

particles with the surrounding bath may be considered statistically rather than treating

each Brownian particle individually due to the fluctuating forces described only by their

statistical properties [20,42-46].

In the present thesis, we study the transport properties and diffusion of Brownian

particles in deformable potentials. The original study consists of two parts, in the first
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part we investigate the transport properties of noninteracting Brownian particles in the

overdamped limit, while in the second part the transport properties of Brownian parti-

cles are investigated in the underdamped limit.

Accordingly, to what is reported in the literature, it is clear that the deformability of

sinusoidal potential can be a factor inducing deterministic chaos and instability in non-

linear systems [47, 48, 49, 50, 51, 52]. Thus, it was shown that the deformable potential

can serve as a tool to integrate variable surface due to atomic friction force in nanotri-

bology [53]. Moreover, Woafo et al. [54] used the deformable potential to explain the

gaps existing in experimental measurements of mobility, the diffusion, and the Peierls-

Nabarro barrier in the Frenkel-Kontorova lattice.

The thesis is structured in three parts described as follow:

In the first Chapter, we conducted a review of the scientific literature around the

theme of this thesis. It presents the Brownian particles and their usefulness both in bi-

ology systems and in condensed matters physics. In Chapter 2, this thesis presents the

approaches used to solve the problems mentioned in Chapter 1 and how they will be

used in order to obtain the results. Among the techniques used, the Langevin equation

is used to model the Brownian particles move along its track and the Fokker-Planck

equation its equivalent, is used to describe the dynamics of the system. Indeed, the

Fokker-Planck equation provides a powerful tool with which the effects of fluctuations

close to transition points can be adequately treated and that the approaches based on the

Fokker-Planck equation are superior to other approaches, e.g., based on Langevin equa-

tions. In the first part of the chapter, the dynamic properties of the overdamped Brow-

nian particles are examined in the deformable travelling-wave potential. The Fokker-

Planck equation is solved in order to compute the average velocity of Brownian particles

which is perfectly sufficient to describe the dynamics of Brownian particles in a system

as well as its transport properties. Meanwhile, the efficiency of Brownian particles to

converting the energy introduced by perturbations into useful work [39,46-48] is com-

puted analytically and numerically as a function of the shape parameter. In the second

part of chapter, using the Langevin-Monte-Carlo method [55, 56], the dynamic proper-
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ties of Brownian particles such as the average velocity, the diffusion, the distribution,

and the Monte-Carlo Error are analyzed both in the underdamped and overdamped

limits for several values of the shape of the system. Using the spectral method which is

a semi-analytical method, the solution of the Fokker-Planck equation is approximated

in the underdamped limit. Later on, the dynamic properties of Brownian particles is

analyzed in presence of an external perturbation when they are submitted to a variable

shape potential. The average and the distribution of the velocity is analyzed for some

values of the shape parameter. It is found that, the transport properties of Brownian

particles strongly depend on the form of the potential. Thus, using the matrix continued

fraction method (MCFM), the diffusion of Brownian particle is derived as a function of

the shape parameter. The Chapter 3 is devoted to the presentation of the key obtained

results and their discussions. In fact, we show in this part that the shape of the system

highly influences the performance of Brownian particles.

The document ends up by a general conclusion summarizing the main findings and

provides the future directions.
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CHAPTER I

LITERATURE REVIEW

I.1 Introduction

A great challenge for the burgeoning field of nanotechnology is to design and con-

struction of microscopic motors that can use input energy to drive directed motion in

the face of inescapable thermal and other noise. Driving such motion is what protein

motors perfected over the course of millions of years by evolution do in every cell in our

bodies [7,51-54]. Indeed, all materials at finite temperature store a substantial amount

of energy in the form of kinetic energy of electrons, atoms or molecules. It is an old and

tempting idea to convert this undirected, thermal motion (heat) into directed, useful

motion (work) by rectifying the random motion of particles [57, 58].

In this Chapter, we present some generalities on Brownian particles and their

applications in biology and technology. It is organized as follows: In Section II, molec-

ular motors are presented with their modus operandi. In Section III, without being ex-

haustive, we describe some systems such as Josephson junction, superionic conductors

that use the concept of Brownian particles in their modus operandi. The diffusion of

Brownian particles as a mode of transport is briefly described in Section IV. Section V

gives the motivation as well as the problematic of this thesis, whose eventual solutions

are presented in the next Chapter. The Chapter ends with a conclusion.

I.2 Molecular motors

The tiny machines in a living cell that are responsible for transport processes other than

pure diffusion are motors − molecular motors. Indeed, molecular motors are biological

machine of only 0.01µm in size that for example, perform mechanical tasks such as in-
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Figure 1: Image of two types of molecular motors [59].

tracellular transport, ion pumping, DNA replication and protein synthesis [59, 60, 61].

They can also generate a strength as well as play a role in cell mitosis. These are for ex-

ample complex protein assemblies (protein engines, Figure 1-a) or enzymes. The driving

force for a motor protein comes from a very important biochemical reaction, occurring

inside the protein, called ATP hydrolysis: ATP + H2O � ADP + Pi, where H2O is

water, ADP is adenosine diphosphate, and Pi is phosphate. These molecular engines

are therefore capable to convert the chemical energy into mechanical work. Despite

this similarity, molecular motors operate under conditions very different from artificial

macroscopic motors. They operate in an noisy environment, where thermal fluctua-

tions are significant and probably important for the operation of the particle. Indeed,

because of frequent collisions with other surrounding molecules, protein engines are

continuously subjected to substantial Brownian motion. This makes it impossible for a

molecular engine to move forward in a deterministic and smooth manner, such as a car

on the road. How Molecular Engines Treat Such a Noisy Environment? One model sug-

gests that these engines use random Brownian motion to perform work [15, 62, 63, 64].

A physical model for how such a Brownian engine can work is the ratchet. Indeed, it is

thought that some molecular motors in biological systems can use ratchet effects [65, 66].
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For example, ratchet flashing has been proposed as a model for linear molecular motors,

such as the kinesin, Myosin molecule transporters [63]. Kinesin is a protein molecule

Figure 2: Representation of the structure of a Microtubules (MT). (a) Illustration of the
hollow and cylindrical shape of a MT, (b) The size of a MT, (c) Illustration of a cellular
organelles transport [67, 68].

that can “walk” along microtubules (Figure 2) [22, 23, 69, 70, 71] in living cells in the

presence of an unbalanced concentration of ATP, and carries material (Figure 3). Single

molecule kinesin takes 8 nm steps [14, 70] per ATP hydrolysis [71, 72] on a microtubule

rail and generates ≃ 7pN maximum force [72, 73, 74]. For example, the periodic polar

microtubule may be interpreted as a ratchet potential, to which the kinesin engine binds

closely during one step of the ATP cycle, while it remains much less bound, and capa-

ble to perform a one-dimensional diffusion along the microtubule, in another stage of

the cycle. Another example is myosin, which is active when a muscle contracts. In a

similar way, some enzymes (molecular motors) in living cells are able to move along the

polymer filaments by the hydrolysis of ATP [64]. The interaction (chemical ”affinity”)

Ph.D. Thesis of Kepnang Pebeu Laboratory of Mechanics, Materials and Structures



Literature review 9

between the molecular motor and the filament is spatially periodic and asymmetric, and

thermal fluctuations play an important role on these small scales. The result would be

essentially a diffusion of a particle (like an ion or a polypeptide) whose net motion is

strongly polarized in one direction.

Among the various families of kinesins and myosins, we find motors that work as

monomers, dimers, trimers or tetramers, move to the plus end or the minus end of their

track, and take just one or many steps before dissociating. The two heads of the kinesin

dimer work in a coordinated manner to move along one of 13 protofilament tracks of

the microtubule. Each protofilament consists of asymmetric α β-tubulin heterodimers.

A heterodimer is about 8nm long and is asymmetric because it is composed of two glob-

ular subunits α-tubulin and β-tubulin which are joined together in a head-to-tail fashion

so that the dimer has a translational symmetry. Because the α β-tubulin heterodimers

are asymmetrical, the microtubule is polar and its ends are structurally different. One

consequence of this polarity is that polymerization is faster at one end than the other.

The fast-growing end is called the plus-end, whereas the slow-growing end is called the

minus-end. The conventional kinesin moves towards the plus-end. There are other bio-

motors like e.g. ncd dimer. Despite this wide spectrum of behaviours, in all motors the

initial events in the generation of movement are similar and can be explained by step-

wise amplification [22, 23, 73, 74, 75]. Furthermore, it is not a surprising fact that most of

the defects in motor-dependent transport are associated with a large range of diseases,

including neurodegeneration, tumorigenesis and developmental defects. Thus, a uni-

directional motion may be generated by allowing thermal fluctuations in the favored

direction while blocking those in the opposite direction.

The two catalytic sites (heads) hydrolyze ATP in a “hand-over-hand” manner that

mimics bipedal walking [76, 77, 78] by alternating its two heads in coordination with

different nucleotide-microtubule binding states [79]. Kinesin shows backward steps oc-

casionally at no load and frequently at high loads [76, 77, 78]. Recent experiments in-

dicate that the biased unidirectional motion is achieved by regulating selective binding

(unbinding) of the head to (from) the appropriate binding site [80, 81, 82, 83, 84]. In all
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Figure 3: Schematic view of most important linearly translocating motor proteins. A)
Dimeric MyosinV motor proteins step unidirectionally along actin cytoskeleton fila-
ments. B) A group of monomeric myosin-II motor proteins combined in the filament
can move together along several actin filaments. C) Conventional kinesin motor pro-
teins translocate along the microtubules in the positive direction, while the dynein mo-
tors step along the microtubules in the opposite direction [85].
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molecular motor classes, ATP hydrolysis causes a conformational change in a globular

motor domain that is amplified and translated into movement with the aid of accessory

structural motifs [86]. The conformational change associated with the movement of in-

terspersed molecular motors can be exploited to reorganize a nematic liquid-crystal film

and thus change its color, which is a macroscopic property. In fact, the conformational

changes lead to changes in binding strength and catalytic activity for different possi-

ble ligands (ATP, ADP, Pi, and Mg2+) [87], modifying also the interactions between the

substrate and its surroundings while evaluating implicitly the interaction between the

molecular motor and itself.

Brownian motors (or microscopic ratchets) are excellent models for understanding

how machines can operate at the nanoscale in the presence of substantial thermal mo-

tion. It is for this reason that the Brownian motor concept is often used to model biolog-

ical and molecular motors.

I.2.1 Mechanisms of molecular motors

At first, the mechanics of proteins may seem counterintuitive because their motions are

dominated by Brownian motion, the name given to the frequent changes in velocity of

a macromolecule as it is buffeted about by random thermal motions of surrounding wa-

ter molecules. In addition to ”smearing out” deterministic trajectories, Brownian motion

serves as an effective ”lubricant,” allowing molecules to pass over high energy barriers

that would arrest a deterministic system. More subtly, it makes possible ”uphill” mo-

tions against an opposing force by ”capturing” occasional large thermal fluctuations.

Generally, a Brownian motion or stochastic process refers to a random variable that

evolves in time. An example is a one-dimenisonal coordinate, x(t), locating a protein

diffusing in an aqueous solution. The rationale for this is twofold. Discrete random

variables are conceptually simpler than their continuous counterparts. The results for

the discrete case are applicable when studying continuous random processes because

continuous random variables represent limiting behavior of their discrete counterparts.
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Our discussion is restricted to Markov processes. A Markov process is a mathematical

idealization in which the future state of a protein is affected by its current state but is in-

dependent of its past. That is, the system has no memory of how it arrived at its current

state. To a very good approximation, all systems consisting in Brownian motion in this

thesis satisfy the Markov property. The mathematics involved with studying stochastic

processes that are non-Markovian is considerably more complicated [88, 89, 90]. Indeed,

motor protein kinesis is known to carry out intracellular vesicle transport along mi-

crotubules. Various polymerases are moving along their corresponding templates. All

these processes are essential to a living cell. In a muscle cell, the motor protein is called

myosin, and its designated track is called an actin filament. The actin filament has a

periodic structure of ∼ 36nm [73, 74, 75, 91, 92]. In fact, the radius of a water molecule is

about 0.1nm, while proteins are two orders of magnitude larger, in the range 2− 10nm.

This size difference suggests that we can view the fluid as a continuum. This will be

subject of our investigations in the next chapter.

I.3 Artificial Brownian motors

Nanotechnology has been intricately linked with biological systems since its inception.

Fascinated by the complexity and smallness of the cell, Feynman [93] challenged the

scientific community to ”make a thing very small which does what we want”. In his

visionary response, Drexler [94] proposed to focus on protein synthesis as a pathway for

creating nanoscale devices. Both Feynman’s and Drexler’s propositions were met with

much skepticism, as accurate manipulations at the nanoscale were deemed impossible.

However, in view of the recent advances in systems biology [7, 95], cellular mechanisms

are now being cited as the key proof of the nanotechnological viability of devices with

atomic precision. In spite of their established complementarity, a fundamental difference

between systems biology and nanotechnology is their ultimate goal. Systems biology

aims to uncover the fundamental operations of the cell in an effort to predict the exact

response to specific stimuli and genetic variations, whereas nanotechnology is chiefly
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concerned with useful design.

I.3.1 Josephson junction (JJ)

For several decades, there has been intense interest in the effect of noise on the static

and dynamic characteristics of JJ. A theoretical description of thermal fluctuations in su-

perconducting weak links has been developed via the Fokker-Planck equation for the

probability density function (PDF) of the phase, by analogy with the Brownian mo-

tion of a particle in a tilted periodic potential, and has been applied to both d.c. and

a.c. Josephson effects and to the driven Josephson oscillator (see, for example, Refs.

[96, 97, 98, 99, 100, 101, 102]). The specific dynamics of tunneling was predicted by

Josephson [96] in the junction built as two bulk superconductors separated by a thin di-

electric layer, across which Cooper pairs of superconducting electrons may tunnel keep-

ing their coherence, i.e., the thickness of the dielectric barrier is much smaller than the

correlation length of the superconducting state [96, 98, 99]. A typical scheme of the long

JJ is displayed in Fig. 4a. The phase difference ϕl − ϕr between the wave functions for

(a)

Figure 4: (a) Schematic drawings of a typical long Josephson junction and its cross sec-
tion. In this case, the JJ is made of bulk niobium superconductors (S) and aluminum
oxide used as the dielectric barrier. Typical values of the junctions length (L), width (W)
and thickness are indicated in the figure. The bias current (I) driving the JJ, and the
magnetic field (H) applied at its edges, are designated too. (b) A long circular JJ. (c) The
same as in (a), but for a stack of two parallel magnetically coupled junctions. [97].
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the left and right superconductors is given [98] by the Josephson equation

(a)

Figure 5: (a) Brownian particle in a tilted periodic potential. (b) Equivalent circuit of the
JJ.

dϕ(t)

dt
=

2e

~
. (1)

Here, U(t) is the potential difference across the junction; e is the charge of the electron,

and ~ = h/2π, where h is Planck’s constant. If the junction is small enough, it may be

modeled (see Fig. 5) by a resistance R in parallel with a capacitance C, across which is

connected a current generator Idc (representing the bias current applied to the junction).

At the other end of the junction (across the resistanceR) is connected a phase-dependent

current generator, Ic sinϕ, representing the Josephson supercurrent resulting from the

Cooper pairs tunneling through the junction. Since the junction operates at a temper-

ature above absolute zero, there exists a white-noise current j(t) superimposed on the

bias current, which satisfies the conditions

j(t) = 0,

j(t1)j(t2) =
2kT

R
δ(t1 − t2),

(2)

where T is the temperature of the device, and k is the Boltzmann constant. The meaning

of the noise is simply that the current through the normal shunt resistor equals U/R −

j(t), where the thermal fluctuations noise current j(t) is assumed independent on V .
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The current-balance equation for the junction is [98]

C
dU(t)

dt
+

1

R
U(t) + Ic sinϕ(t) = Idc + j(t). (3)

Substitution of Eq. (1) in Eq. (3) yields the Langevin equation for the phase ϕ(t)

~C
2e

d2

dt2
ϕ(t) +

~
2eR

d

dt
ϕ(t) + Ic sinϕ(t) = Idc + j(t). (4)

This is modeled in the Kirchhoff equation above (Fig. 5b) by making an equivalent

assumption that the current through the resistor is V/R, but the bias current is Idc + j(t).

In the next subsection, we show the mechanical model of Eq. (4) also called the Stewart-

McCumber Model.

1.3.1-1 Mechanical Analogy for the Josephson Junction Model

In Josephson junction, the quantities of physical interest are the current-voltage char-

acteristics, the linear and nonlinear junction impedance to an external high-frequency

current, the Josephson radiation spectrum, and so on [96, 98, 99]. Here, the junction is

treated as a purely classical system, where the phase difference ϕ across the junction and

the charge CU on the junction are considered as classical variables, which can be deter-

mined with arbitrary accuracy. However, the classical accuracy is inherently limited by

Heisenberg’s uncertainty principle, which, in this case, is ∆ϕ∆N ≥ 1, where N is the

number of Cooper pairs transferred across the junction [98]. Hence, the results of classi-

cal theory require modification when quantum effects become important. These effects

are usually negligible in the temperature range T > 1K; however, they can play a vi-

tal role at temperatures below 0.1K [98]. For typical Josephson junctions, such as those

studied experimentally in Refs. [101] and [103], where their current-voltage characteris-

tics have been measured, use of the classical resistively shunted junction (RSJ) model is

entirely justified (see Fig. 5).

As shown in Fig 5a, Eq. (4) can be formulated in terms of Brownian classical particle

of mass M moving in a spatially periodic potential V (x) = V (x + L) of period L and
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barrier height ∆V , subjected to an external, unbiased external force and a Gaussian

white noise.

Indeed, The mechanical analogy is useful for the purpose of developing physical

intuition about Josephson junction. The mechanical analogy, that is, a one-to-one corre-

spondence with the so-called “phase particle” will help us to apply the laws of quan-

tum mechanics to the description of Josephson junction. The analogy follows from the

Stewart-McCumber dynamic equation (4), can be written as

~2C
(2e)2

ϕ̈(t) +
~2

(2e)2R
ϕ̇(t) +

Ic~
2e

sinϕ(t)− ~Idc
2e

=
~
2e
j(t), (5)

or

mpϕ̈(t) = −γϕ̇(t)− Ic~
2e

sinϕ(t) +
~Idc
2e

+
~
2e
j(t), (6)

where the effective “phase particle” mass is defined as mp =
~2C
(2e)2

, so that the left term

appears as mass times acceleration. Note that the effective mass is proportional to the

parallel capacitance of the junction C. We also have introduced the damping coefficient

γ =
~2

(2e)2
1

R
=

~2

2π

Rq

R
. (7)

The definition shows that the damping is proportional to the normal conductance of the

shunt, G =
1

R
and inversely proportional to the normal resistance R. This means that

plasma oscillations become more and more damped if more and more normal electrons

couple to the oscillating condensate. The reason is that as the condensate flows, a charge

builds up on the electrodes, causing some voltage and the electric field to occur. This

voltage accelerates normal electrons, which then dissipate their kinetic energy into heat.

Thus, the energy of the plasma oscillations converts into heat with a rate proportional

to G.

Now, to stress the analogy with classical mechanics, we introduce three effective

forces, namely, the damping (friction) force Fd = −γϕ̇, the phase difference force Fϕ =

Ic~
2e

sinϕ, and the bias current force Fb =
Ic~
2e

. Also, let us look at ϕ as though it is the
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position of the effective phase particle. We will denote this position as x, and define it

simply as x = ϕ. In that case, Fd = −γẋ, Fϕ =
Ic~
2e

sin x, and Γ(t) =
~
2e
j(t) equals to

the Gaussian white noise coming from a fluctuating current representing the Johnson-

Nyquist thermal current noise j in the shunt resistor R. Then, the dynamics equation of

the Josephson Junction is the Langevin equation

mpẍ = Fd + Fϕ + Fb + Γ(t) = −γẋ− Ic~
2e

sin x+
Ic~
2e

+
~
2e
j(t). (8)

The fact that a classical particle and the Josephson Junction are both described by the

same differential equation implies that the known classical-particle solution and meth-

ods of solving the equation apply to Josephson Junction.

As is usual in classical physics, the conservative forces, that is, Fϕ and Fb, can be

represented by corresponding potentials. The potential corresponding to the force Fϕ is

Uϕ = Ej(1− cosx), so that, as usual, Fϕ = −dUϕ

dx
. Here, Ej =

Ic~
2e

is called the Josephson

energy. The bias potential energy is Ub =
Ic~x
2e

, so that Fb = −dUb

dx
=

Ic~
2e

. The total

potential energy, which is, in fact, the Gibbs free energy of the current-biased junction,

is

Uwb = Uϕ + Ub = Ej [(1− cosx)− ix] , (9)

where i = I/Ic is the normalized bias current which defines the tilt. The potential energy

Uwb is frequently called the “tilted washboard potential” (Figure 5a) because it resembles

a hand-washing board.

Using these notations, the equation of motion of the Stewart-McCumber (MS) model

becomes

mpẍ = −dUwb

dx
− γẋ+ Γ(t). (10)

Equation (10) is the same as the Langevin equation for a single particle moving in a tilted

washboard potential. The analogy between the MS model and the Brownian particle is

contained in the fact that the same differential equation describes both systems. The

equation tells us that the mass of the particle times its acceleration equals the force.
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The damping force, which is proportional to the velocity, slows down the particle and

dissipates its energy.

For the Josephson weak link we are most interested in the time-averaged voltage,

⟨V ⟩t =
~
2e

⟨
dϕ

dt

⟩
t

as a function of applied current. By analogy, for the mechanical model,

we are most interested in the time-averaged rate of position,
⟨
dx

dt

⟩
t

as a function of

applied load.

In addition, the mechanical model allows us to study the nonlinearities of the motion.

It slows down the characteristic periods from the order of 10−10 to 1 sec. Furthermore,

we are able to acquire a better physical intuition from the behavior of this mechanical

system than from the electrical system [104]. In particular, the pair phase difference ϕ

becomes directly observable as the position x of the Brownian particle. Thus, the model

clearly illustrates the extremely complex nonlinear behavior of both ϕ and
dϕ

dt
with time.

By studying the motion of the mechanical model, we gain great insight into the behavior

of a Josephson weak link.

The model Eq. (10) has been the subject of numerous theoretical and experimental

investigations these recent years. Indeed, adding to Eq. (10), a time-periodic excitation,

many phenomena have been found out. Among others, we have the absolute nega-

tive mobility [39, 105], illustrated in Fig .6, where the particle noisily moves backwards

against a small constant bias. The negative differential mobility [106], where under the

action of a constant external load, the velocity-load behavior becomes now considerably

more complex (Fig. 7), exhibiting distinct non-monotonic characteristics. As we can see

in Fig. 7, an increase of the bias F results in a corresponding decrease of the average

velocity.

This observation was corroborated theoretically by Speer et al. [107] and Kostur et

al. [108] and experimentally by Nagel et al. [109]. All these anomalous behaviour come

from the fact that the inclusion of inertia adds significant complexity to the problem.

This is so, because a periodically rocked, single degree of freedom with nonzero mass

possesses a three dimensional phase-space that can exhibit a chaotic dynamics [110, 111,
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Figure 6: Illustration of the absolute negative mobility. The mobility coefficient µ =
∂ ⟨v⟩ /∂f is depicted versus the dimensionless temperature strenght D0 ∝ T , for three
values of the cosine-driving strength a [106].

Figure 7: Illustration of the negative differential mobility. In fact, here the velocity of the
inertial particle as a function of an external load, constant F exhibits a negative value.
The Brownian particle performs against the load [39].

Ph.D. Thesis of Kepnang Pebeu Laboratory of Mechanics, Materials and Structures



Literature review 20

112], and consequently the ac cycle-averaged drift velocity ⟨ẋ⟩ may be oriented against

the dc bias F , as the result of a delicate interplay of chaotic and stochastic dynamics.

I.3.2 Superionic conductors

Brownian particles have also been studied in detail in connection with superionic con-

ductors. Superionic conductors, represent a class of solid materials that shows an un-

usually high ionic conductivity of an order of magnitude as usually found for molten

salts [113, 114]. They consist of species of high mobile particles considered to be Brow-

nian particles moving on a periodic structure with diffusion coefficients comparable to

those found in liquids [33, 34, 115]. Their structure is characterized by a strong disorder

in the sublattice of conductivity ions. All the ions of one sublattice are in this highly mo-

bile state. There is another species of ions which cannot diffuse. They form a framework

which is usually called the rigid sublattice. The activation energy required for the mo-

bile ions to diffuse is far lower than that found in ordinary ionic solids. As an example,

we consider silver iodide (α− AgI) for illustration (see Fig. 8). Here, the lattice consists

Figure 8: Highly movable Ag+ ions in the nearly fixed iodide lattice and the correspond-
ing potential in one dimension [9].

of iodide (I−) ions, while the silver ions (Ag+) are highly mobile (Fig. 8). In α − AgI

at 3000C, the diffusion coefficient for Ag+ ions is close to 2 × 10−5cm2/s. The one of the

I− ions is negligible. In this context, the motion of ions considered as noninteracting

Brownian particles is treated as a stochastic motion in a medium with periodic lattice
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structure. These materials show high ionic conductivity and have led to very impor-

tant advances in designing new devices based on the motion of ions through periodic

structures. This may help to improve components in electrochemical energy storage and

conversion devices such as batteries, fuel cells and electrochemical membranes [35, 36],

which are critical in the societal shift to renewable energy. In a number of these ma-

terials, the conduction process is confined to lower dimensionality; examples include

β-alumina (d = 2), potassium hollandite (d = 1), etc. If an external field F is applied to a

one-dimensional model, neglecting interaction of different Ag+ ions, then, the equation

of motion divided by the mass m in the periodic potential mf(x) is [37,115-117]

mẍ+ γẋ+ f ′(x) = F + Γ(t). (11)

In Eq. (11), we added a damping force γẋ and a Gaussian white-noise force Γ(t) (per

mass)

⟨Γ(t)Γ(t′)⟩ = 2γ

(
KT

m

)
δ(t− t′). (12)

By these two forces i.e., γ and Γ(t), the effect of the small lattice vibrations on the motion

of the Ag+ ions is taken into account. It is relevant to mention that, the driving force

or an external field F is defined as any influence which causes the jump frequency for

a jump in one direction between two given sites to differ from that for a jump in the

opposite direction between exactly analogous sites. Driving forces include gradients of

stress, electrical potential, temperature or chemical potential. If the motion of the Ag+

ions is slow compared to the lattice vibrations, the white-noise approximation in Eq.

(12) is justified. In this application, we are mainly interested in the current. This current

can be expressed by the drift velocity or by the mobility (⟨ẋ⟩ , µ), or in the dynamical

case, by the susceptibility. In the stochastic motion of Brownaian particles, the intuitive

picture of particle migration is a thermal-activated series of jumps over a potential bar-

rier from a potential well to another, with thermal noise playing a construction role by

providing a mechanism by which particles can escape over the barriers. Thus, the jumps
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Figure 9: Schematic illustration of single-ion migration versus multi-ion concerted mi-
gration. For single-ion migration (upper insets), the migration energy barrier is the same
as the barrier of the energy landscape. In contrast, the concerted migration of multiple
ions (lower insets) has a lower energy barrier as a result of strong ion-ion interactions
and unique mobile ion configuration in super-ionic conductors [35].
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are performed by the diffusion of particles (diffusional spreading of Brownian particles

around their mean motion) comparable to those found in the fluid (see Fig. 9). Notice

that, the energy barriers significantly suppress the diffusion [9, 38]. During diffusion,

a mobile particle migrates through the energy landscape, and the highest energy of the

energy landscape along the diffusion path determines the energy barrier of the particle

diffusion.

Indeed, in a superionic conductor, the Brownian motion of particles in a periodic

potential is largely used for describing the conductivity of mobile ions in a supercon-

ductor. So, to understand the diffusion phenomenon, two main theoretical models have

been developed [118-121]: the continuous diffusion and the jump models.

1.3.2-1 Continuous diffusion

The continuous model considers the mobile particles as the Brownian particles mov-

ing in a periodic potential. The dynamics of these particles are described either by the

Langevin equation (11) or by the Fokker-Planck equation (FPE) [121, 122]. Due to the

difficulty of solving these equations for a long time, a high dimensional space and for

N particles, we use semi-analytic numerical methods such as the matrix continued frac-

tion method (MCFM)(developed in the next chapter) [123, 124] or numerical simulations

such as the finite element method or the Monte Carlo simulations [125, 126]. We take

Eq. (11) as a plausible model which is traited as part in this thesis. The problem in the

deformable lattice will be deeply discussed in the next chapter. Apart from the continu-

ous variation of x, the main new effect is contained in the term mẍ, which contains the

inertia of the particle and allows for oscillations. Normally, one converts the stochastic

equation for x into an equation for the probability p(x, v, t) to find the particle at time t

at point x, with velocity v. This is the Fokker-Planck equation that will be derived in the

next chapter, and it reads [127]

∂p(x, v, t)

∂t
= γ

(
1 + ẋ

∂

∂ẋ
+
kT

ẋ

∂2

∂ẋ2

)
p(x, v, t)− ẋ

∂p(x, v, t)

∂x
− f ′(x)

m

∂p(x, v, t)

∂ẋ
. (13)

1.3.2-2 Hopping models
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The hopping models (lattice gas) consider only the jump motion of particles. These

models suppose that the particles are distributed at the minima of the substrate potential

and perform sudden transitions. They are rather simple and a complete discussion of

their dynamical properties is possible. One can also easily see their limitations. For these

reasons, we present them in some detail.

The situation is the following: the lattice defines a periodic array of sites, where the

mobile ions can sit. An ion placed at one site is kicked out of it after a certain time

and hops away. Usually, only hopping to nearest-neighbour sites is considered and

successive hops are taken to be independent: The time of flight is assumed to be short

compared to the mean residence time τR and is neglected. This will be a good approx-

imation if the temperature is small compared to the height of the potential barriers. In

fact, the continuous diffusion can be reduced to a hopping model in such a limit. In the

high friction limit, the particle jumps from a site to another vacant nearest neighbor and

in the low friction limit, the particle can execute the long jumps [9, 38].

I.4 Diffusion of Brownian particles as the mechanism of

transport

Diffusion can be observed almost everywhere: in the material world (diffusion of parti-

cles, atoms, molecules, proteins, cytoplasmic macromolecules) [128, 129] and in the non-

material world of human civilization at various levels of society organizations (diffusion

of ideas, opinions, innovations, price values) [130]. A physical archetype of diffusion is

a Brownian motion resulting from interaction of a particle with its environment [8]. In

the literature, one can find several quantifiers which characterize a diffusion process

and spread of trajectories. An example is the mean-square displacement of the particle

coordinate. In this thesis, we will consider the mean-square deviation (variance) of the
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particle position x(t) around its mean value, namely,

σ2
x(t) =

⟨
[x(t)− ⟨x(t)⟩]2

⟩
, (14)

where the averaging is over all thermal realizations as well as over initial conditions.

The diffusion process can be classified through the scaling function [131, 132]

σ2
x(t) ∼ tα. (15)

The normal diffusion corresponds to the scaling index α = 1. Any deviation from this

linear time dependence is classified as anomalous diffusion. For the superdiffusive case,

σ2
x(t) increases over time faster, while for the subdiffusion, it grows slower than for nor-

mal diffusion. An example of the former is ballistic diffusion with the scaling index

α = 2. The hallmark of the latter is famous Sinai subdiffusion which follows the loga-

rithmic law σ2
x(t) ∼ ln2 t [133]. This ultraslow process can be observed for a Brownian

particle moving in a static random Gaussian force field imitating quenched disorder

in heterogeneous media. “Quenched” means that random traps, barriers or comb-like

structures do not evolve with time. This is usually the model considered to describe

the dynamical properties of materials containing impurities, defects, or intrinsic ran-

domness like it is the case for amorphous systems [134]. However, recent progress in

single particle tracking techniques [135] has allowed to probe transport processes oc-

curring in more complex setups. For instance, the diffusive motion of macromolecules

and organelles inside living cells is typically subdiffusive [136, 137]. This behaviour is

commonly attributed to macromolecular crowding of their interior, summarizing their

densely packed, heterogeneous and fluctuating environment [138-141].

So, as part of this thesis, we are interested to the behaviour of the effective diffu-

sion of Brownian particles in the presence of an external load. Actually, the diffusion

of Brownian particles has been extensively investigated in periodic and double-well po-

tential. Thus, the determination of the effective diffusion coefficient of the system for
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arbitrary temperature, tilting force, and periodic force potential has been, and remains a

challenging task both at the overdamped and underdamped limit in nonlinear stochas-

tic systems [29, 116, 138]. Directed Brownian particle transport is typically controlled

both by the fluctuation statistics of the jittering objects and the phase space available to

their dynamics. Many phenomena have been observed on the behaviour of diffusion

these recent years. In the presence of an external load, by using the two-state theory,

the diffusion coefficient of underdamped Brownian particles moving on a tilted wash-

board potential is enhanced with decreasing noise in a finite range of forces (see Fig. 10).

Moreover, it has been suggested and shown that in the presence of external perturba-

tion, the maximal diffusion coefficient grows with the inverse temperature like a power

and the force range of diffusion enhancement shrinks to zero when approaching zero

temperature. This corresponds to regions of bistability of the deterministic velocity dy-

namics. This comes from the fact that, for example, as the particle in drifts with average

speed ⟨ẋ⟩ in the direction of an external force F , the random switches between locked

and running state cause a spatial dispersion of the particle around its average position

[134, 135, 136, 137, 138, 139, 140]. Therefore, two simple approaches for giant enhancing

diffusion were proposed, such as the periodic potential which is either tilted or rocked

[26, 141].

I.5 Motivations

I.5.1 Deformable potential

The vast majority of works on Brownian motors is done in systems based on the stan-

dard sinusoidal periodic potential and, concentrates on the behaviour and the selective

control of the emerging directed transport as a function of parameters of the system such

as temperature, energy barrier, or some other control variable. However, these systems

with periodic structure, although interesting, describe realistic systems only with certain

approximations. To obtain a physically more realistic periodic substrate for several com-
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Figure 10: Finite force range for a giant enhancement of diffusion. The behavior of the
diffusion coefficient for vanishing temperature defines the critical range of bias (orange),
corresponding to enhanced diffusion [29].

plex systems (Atomic chains, ratchet models), the effects of physical parameters such as

temperature and pressure should be considered. Under such constraints, some physical

systems may undergo changes such as shape distortion, variation of crystalline struc-

tures, or conformational changes. Hence, it appears necessary to take into account the

deformable character of the medium in Brownian particles. Indeed, deformable mod-

els have been considered both from mathematical and physical points of view. From a

mathematical point of view, the foundations of deformable models represent a conflu-

ence of geometry, physics, and approximation theory. Geometry serves to represent ob-

ject shape, physics imposes constraints on how the shape may vary over space and time,

and optimal approximation theory provides the formal underpinnings of mechanisms

for fitting the models to measured data. From a physical point of view, deformable mod-

els are viewed as elastic bodies that respond naturally to applied forces and constraints

[142, 143]. In fact, the term deformable models stems primarily from the use of elasticity

theory at the physical level, generally with a Lagrangian dynamics setting.

In fact, Fopossi et al. [144, 145] have shown that depending on the shape of the poten-

tial and a particular set of system parameters, dispersionless transport and anomalous

diffusion can be generated in the system. Djuidje et al. [146] studied the phenomenon
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of stochastic resonance as a function of the shape potential through the hysteresis loop

area and showed that the shape parameter can induce the phenomenon of stochastic

resonance. In the same vain, in the presence of the deformable potential, it was shown

that the chaos can destroy the stochastic resonance phenomenon [147].

I.5.2 Deformable potential as realistic potential for Brownian parti-

cles and lattices

Indeed, in an overdamped Brownian particles modelling most often molecular motors,

aiming at a more realistic description on the molecular level, some authors [15] have

added an internal variable, which becomes necessary if the time required to achieve,

for instance, a conformational change is not small compared with other time scales. In

this thesis, the attention was focused on the influence of the system on the transport

properties of Brownian particles. So, the deformable travelling-wave potential and the

deformable potential are used. We model the deformation of the system by the modified

Remoissenet-Peyrard on-site potential, which is distinguished by its sine-Gordon shape.

This potential can be also model the conformational change in the realm of molecular

motors.

I.5.3 Travelling potential

the travelling potential V (x − ωt) is given by aperiodic array of traps (local minima

of the potential), travelling at a constant velocity ω along the x-axis. Hence, it models

basically the working principle of a screw or screw like pumping device both invented

by Archimedes [148] in the presence of random perturbation. Qualitatively, we expect

that the Brownian particle x(t) will be dragged in the direction of the travelling potential

traps. In fact, the travelling-wave potential has been introduced by Borromeo et al. [149]

to study Brownian surfers. They have shown that the travelling wave has the capability

of dragging Brownian particles along. Indeed the travelling-wave potential represents

a very common transport mechanism in condensed phase at thermal equilibrium. For
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instance, laser plasma interactions are known to accelerate classical charged particles

trapped by a perpendicularly propagating electrostatic wave, obtained by beating two

laser beams, until they get out of phase with the beat wave [150]. A similar mechanism of

travelling-wave potential has been proposed in quantum optics to upshift the frequency

of the photons in a plasma (photon accelerators [151]). However, laser driven plasma

waves are sensitive to the temperature as well. In fact, due to their velocity fluctuations,

charged particles trapped by an electric wave propagating in a collisionless plasma may

still get spatially dispersed, thus causing a reversible loss mechanism known as Landau

damping [152]. Moreover, the travelling-wave potential has been used by Li et al. [46]

to characterize the orientation of a molecular motor’s internal electric dipole in order to

describe the nature of the interaction between the motors and the filaments, as well as

the interplay of the interaction and ATP hydrolysis, in order to understand the physical

mechanism of molecular motors.

As part of the present study, underdamped Brownian particles in the deformable

travelling potential could model driven laser plasma waves, known to accelerate clas-

sical charged particles trapped by perpendicular propagating electrostatic waves [150],

and where the deformed on-site potential can represent a substrate that has abnormal-

ities and defects. This deformable substrate potential could also model ionic solids,

whose species, considered to be noninteracting Brownian particles, occupy vacant sites

of the rigid framework diffusing through a lattice [149]. More examples of the mecha-

nism under the travelling potential can be found in the transport of mesoscale particles

along narrow channels, like ion channels in cellular membranes, percolating ducts in

porous media, capillary vessels in the lymphatic system, etc.

The study presented in the present thesis is, to our knowledge, the first generaliza-

tion of the known field theoretical treatment of the non-interacting Brownian particles

when the substrate potential is controlled by a shape parameter, exhibiting thus its de-

formable character. We shall study in the next Chapters the feasibility of such a phe-

nomenon on the basis of a simple model of itinerant particles on a deformable substrate

potential.
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I.6 Conclusion

In this Chapter, we have explained the concept of Brownian particles in numerous sys-

tems. Brownian particles are useful to model many systems from biology to nanotech-

nology. We have presented how Brownian particle manifest and their modus operandi

in biology, JJ, superionic conductor also the diffusion which is the mode of transport of

these particles in their noisy environment.

Under some particular constraints, some physical systems and nonlinear lattices may

undergo changes. The investigations of these changes are our main motivations, devel-

oped in the next Chapters.
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CHAPTER II

MODEL AND METHODOLOGY

II.1 Introduction

The previous chapter has globally presented the Brownian particles under its di-

verse forms, in many systems including biology, nanotechnology and engineering fields.

So regarding the Brownian particles, from a theretical point of view, the problem is at-

tractive because it is simple to formulate; it has many applications but also possesses a

rich phenomenology as a nonlinear stochastic system. Indeed, rectification in nanode-

vices cannot ignore fluctuations and Brownian motion, in particular. New experiments

on both biological and artificial devices showed how noise rectification can actually be

utilized to effectively control particle transport on the small scale. The present chapter,

presents the mathematical modeling, the theoretical and numerical methods, allowing

to investigate, not only the transport properties of Brownian particles in the deformable

potential, but also the formation of localized modes in deformable substrate lattices.

The Chapter is divided as follows: in Section II and III, the General model of Brownian

particles is presented in the travelling-wave deformable potential. Thus, we single out

two limits in our study: the overdamped limit which most often models the dynamics

of molecular motors in their environment, and the underdamped limit which models

with success systems such as Josephson junction, the superionic conductors etc.... In

the overdamped limit, we solve the Fokker-Planck equation, while in the underdamped

limit, the spectral and the matrix continued fraction methods allow us to approximate

the solution of the Fokker-Planck equation so as to deduce the effective diffusion of the

system. Section IV gives some numerical methods to addresses stochastic systems.
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II.2 Model of Brownian particles in the travelling-wave

deformable potential

(a) (b)

Figure 11: (a) Cartoon of a motor protein moving with velocity v along a periodic and
polar track filament. As it carries some cargo along its way, it moves against an external
force fext and consumes r ATP molecules per unit time, which are hydrolyzed to ADP
and phosphate (P). As part of this thesis, the periodic filament is deformable and moving
with a velocity ω [15]. (b) Representation of the Brownian particle and its track. The
small circle and the inside arrow represent the Brownian particle and its internal dipole,
respectively. The semicircles arranged in a row represent the track. The arrows fixed
along a straight line denote track dipoles. The spatial and internal degrees of freedom
of the Brownian particle are described by coordinates θ and ϕ, respectively.

We consider a one-dimensional Brownian particle with spatial position x(t) Fig. 44,

subjected to an external static force or load F . Indeed, a molecular motor moving

through the fluid is acted on by frequent and uncorrelated momentum impulses arising

from the thermal motions of the fluid. We model these fluctuations as a time-dependent

random Brownian force, Γ(t), whose statistical properties can be mimicked by a ran-

dom number generator in a computer in a appropriate fashion. At the same time, the

fluid continuum exerts on the moving protein a frictional drag force, fd, proportional to

the protein’s velocity: fd = −γv, where γ is the frictional drag coefficient. The physics

behind the friction is that the molecules of the fluid collide with the particle. The mo-

mentum of the particle is transferred to the molecules of the fluid and the velocity of

the particle therefore decreases to zero [9]. Therefore, without loss of generality, we as-

sume that the Brownian particle moves in a force field with deformable traveling-wave
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Remoissenet-Peyrard (RP) potential energy function [153] modified according to [154]

V (x, t, r) = U

[
(1 + r)2(1− cos(x− ωt))

(1− r)2 + 2r(1− cos(x− ωt))
− 1

]
, (16)

where |r| < 1 represents the deformation parameter. V (x, t, r): V (x + L, t, r) = V (x, r),

represents also the molecular interaction between the Brownian particle and its track

and where L is 36 nm for actin for example. In figure 13 we represent the RP poten-

tial for the traveling potential speed ω = 0. The RP potential reduces to a sinusoidal

x
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Figure 12: Schematic representation of V (x, r) as a function of x for a few values of the
shape parameter r, with ω = 0.

shape for r = 0; it provides broad wells separated by narrow barriers and deep narrow

wells separated by broad flat barriers, respectively, for r < 0 and r > 0, with U the

potential height. It is relevant to mention that, the reflection symmetry of this potential

must be broken, that is V (x, t, r) ̸= V (−x, t, r), because in the field of molecular motors

for instance, the ab-heterodimers that build the microtubule, a highway for the bioma-

chine are asymmetrical. This is a crucial fact because it determines the mechanism of the

molecular motor movement-the ratchet effect [62, 155]. So, if we assume that the molecu-

lar motor is a particle of mass m moving in a periodic potential V (x, t, r) of period L and
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of the barrier height U = V max − V min. The equation of motion for the motor is the

Newton equation with a complementary random force which corresponds to thermal

fluctuations, i.e. the Langevin equation in the form:

mẍ+ γẋ =
dV (x, t, r)

dx
+ F +

√
2γkBTΓ(t), (17)

which depicts the Markov process of Brownian particles. Inertial effects, related to the

mass, are described by the first term on the left hand side where the overdot indicates

differentiation with respect to time t. Since Eq. (17) is a stochastic differential equation,

we consider a statistical ensemble of stochastic processes belonging to independent re-

alizations of the random fluctuations Γ(t). Because in the Langevin equation (17) the

stochastic force Γ(t) varies from system to system in the ensemble, the velocity of the

particle will also vary from system to system, i.e., it will become a stochastic quantity

too. Therefore, it is natural to ask for the probability to find the velocity in the interval

(v, v + dv), i.e., the number of systems of the ensemble. since v and x are continuous

variable one introduces the probability density P (x, v). Then, the probability density

times the length of the interval dv and dx is the probability of finding the particle in the

interval (x, x + dx) and (v, v + dv). This distribution function depends on time t and

the initial distribution. The probability density P (x, v, t) for x, v at time t follows as an

ensemble average of the form

P (x, v, t) = ⟨δ(x− x(t))δ(v − v(t))⟩ , (18)

where δ is the Dirac’s δ-function whose the properties will be defined in below; by ⟨...⟩

we indicate the ensemble average, which is the statistical average of the quantity inside

the angular brackets at a given time over all systems of the ensemble. An immediate

consequence of Eq. (18) is the normalization

∞∫
−∞

π∫
−π

P (x, v)dvdx = 1, (19)
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and that P (x, v, t) ≥ 0 for all values of x, v, and t. The method of the Langevin equa-

tion gives a natural way for a stochastic generalization of the deterministic description.

However, an adequate mathematical grounding for the approach of Langevin was not

available until more than 40 years later, when Itô published his formulation of stochastic

differential equations [156].

The dissipation is included via the Stokes force with the friction coefficient γ which

is proportional to linear size R of the particle i.e.,

γ = 6πηR, (20)

and is additionally determined by the viscosity η of the medium the particle moves in.

The potential force

f(x, t, r) = −dV (x, t, r)

dx
, (21)

is zero over a period L,

⟨f(x, t, r)⟩L =
1

L

L∫
0

f(x, t, r)dx =
1

L
(V (L, t, r)− V (0, t, r)) = 0. (22)

Equation (17) is called a stochastic differential equation because it contains the stochastic

force Γ(t).

To proceed further one has to know some properties of this Langevin force Γ(t).

II.2.1 Gaussian white noise

Assuming the environment to be an equilibrium heat bath with independent collisions,

Γ(t) is the Gaussian white noise of zero mean

⟨Γ(t)⟩ = 0. (23)
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Usually, the duration time τ0 of a collision is much smaller than the relaxation time

τ = 1/γ of the velocity of the small particle. We may therefore take the limit τ0 → 0

as a reasonable approximation. The white noise satisfies also the fluctuation-dissipation

relation

⟨Γ(t)Γ(t′)⟩ = 2D0δ(t− t′), (24)

where t and t′ are different times. Indeed, the fluctuation-dissipation theorem expresses

the fact that the energy dissipation and random fluctuations are not independent of each

other since both of them have the same origin, namely the interaction of the particle with

a huge number of macroscopic degrees of freedom of the environment. D0 = kBT/γ is

the diffusion coefficient of the Brownian particle, kB is the Boltzmann constant, and T

is the temperature of the bath. The δ function denotes the Dirac delta function which

appears because otherwise the average energy of the small particle cannot be finite as it

should be according to the equipartition law

1

2
m < v2 >=

1

2
kBT. (25)

For smaller mass m, the thermal velocity vth =
√
< v2 > =

√
kT/m may be observable

and therefore the velocity of a “small” particle cannot be described exactly by (17). The

fact that the friction force only depends on the present state of the system and not on

what happened in the past has its counterpart in the assumption that the random fluc-

tuations are uncorrelated in time, i.e.

⟨Γ(t)Γ(t′)⟩ = 0, (26)

if t ̸= t′. Furthermore, the fact that the friction involves no explicit time dependence

has its correspondence in the time-translation invariance of all statistical properties of

the fluctuations, i.e., the noise Γ(t) is a stationary random process, which implies that

⟨Γ(t)Γ(t′)⟩ = ⟨Γ(t− t′)Γ(0)⟩. Finally, the fact that the friction force acts permanently in

time indicates that the same will be the case for the fluctuations [157]. In other words, a
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noise Γ(t) exhibiting rare but relatively strong “kicks”, caused e.g. by impacts of single

molecules in a diluted gas, is excluded. Technically speaking, one says that Γ(t) cannot

contain a shot noise component [158, 159, 160, 161, 162]. During a small time interval, the

effect of the environment thus consists of a large number of small and, according to (26)

practically independent, contributions. Due to the central limit theorem [163] the net

effect of all these contributions on the particle coordinate x(t)is Gaussian-distributed.

Returning to Eq. (24), the Dirac δ function is a very convenient “function”. More

exactly it is the limiting case of a family of functions [164]. It has the property of singling

out a particular value of a function f(t) at a value t = t0. The function is characterized

by the following properties:

δ(t− t0) =


0 if t ̸= t0

∞ if t = t0,

in such a way that for any ϵ > 0,

∫ t0+ϵ

t0−ϵ

δ(t− t0)dt = 1, (27)

which means that the function δ(t − t0) has a very sharp peak at t = t0, but the area

under the peak is unity.

A random force with the δ-correlation is called white noise, because the spectral den-

sity distribution [9], which is given by the Fourrier transform of (25), is independent of

frequency. If the spectral density depends on frequency, one uses the color noise and

Eq. (25) must be modified. Of course white noise does not exist as physically realizable

process; it is, however fundamental in mathematical, and indeed in a physical sense,

in that it is an idealization of many processes that do occur. Furthermore, situations

in which white noise is not a good approximation can often be indirectly expressed in

terms of white noise [156]. In this sense, white noise is the starting point from which a

wide range of stochastic models can be derived.
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II.2.2 Transport properties of Brownian particles and the Einstein re-

lation

Averaging over many realizations of the stochastic process one finds the average par-

ticle position ⟨x(t)⟩ and the average velocity ⟨v(t)⟩. Usually one is interested in the

asymptotic (t → ∞) behavior of these quantities. In the absence of any external pe-

riodic perturbations, Eq. (17) yields that in the long time limit (t → ∞), ⟨v⟩ = 0 and

⟨x⟩ = ⟨x(0)⟩+ ⟨v(0)⟩ t. The general definition of the particle current is,

⟨v⟩ = lim
t→∞

⟨x(t)⟩ − ⟨x(0)⟩
t

. (28)

Besides the average particle position and current, also interested is the behavior of the

mean square displacement,

⟨
δx2(t)

⟩
=
⟨
[x(t)− ⟨x(t)⟩]2

⟩
=
⟨
x2(t)

⟩
− ⟨x(t)⟩2 . (29)

Dealing with normal diffusion, in the long time limit the mean square displacement

grows linearly in time, and the diffusion coefficient is defined in the the following way

D = lim
t→∞

⟨δx2(t)⟩ − ⟨δx2(0)⟩
2t

, (30)

while the effective diffusion coefficient is defined by

Deff = lim
t→∞

⟨x2(t)⟩ − ⟨x(t)⟩2

2t
. (31)

The Monte Carlo error is defined by

σ =
1√
L

√
⟨v2⟩ − ⟨v⟩2, (32)
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with L, the number of realizations of the fluctuating forces. Thus, Brownian particles

move with a velocity in the range ⟨v⟩ ≡ [⟨v⟩ − σ, ⟨v⟩+ σ]. As previously mentioned by

Machura et al. [105], if σ is greater than ⟨v⟩, the Brownian particles may move in the

opposite direction, making the displacement of the particles less effective and complex.

In the absence of an applied force, Eq. (30) defines the free diffusion coefficient D0.

Let us find an expression for the coefficient D0 characterizing the free diffusion. In

the absence of any external force, Eq. (17) becomes

mẍ = −γẋ+
√

2γkBTΓ(t). (33)

Multiplying the modified Langevin equation (33) by x(t) and averaging over a large

number of different realizations, one obtains

m

⟨
d2x(t)

dt2
x(t)

⟩
= −γ

⟨
dx(t)

dt
x(t)

⟩
+ ⟨Γ(t)x(t)⟩ . (34)

The main characteristic of Eq. (34) is that it results from

m
dv(t)

dt
= −γv(t) + Γ(t), (35)

whose a crucial assumption is the independent of the friction force, and hence also of

the fluctuation force Γ(t), from the system coordinate x(t) [156], i.e.

⟨Γ(t)x(t′)⟩ = 0, (36)

for t ≥ t′. This relation reflects the assumption that the environment can be represented

as a heat bath so that its properties are practically not influenced by the behavior of the

particle [157]. The left hand side of Eq. (34) can be written as

m

⟨
d2x(t)

dt2
x(t)

⟩
= m

⟨
dx(t)

dt
x(t)

⟩
−m

⟨(
dx(t)

dt

)2
⟩
. (37)
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From Eq. (30) with (29), we have for asymptotically large times that in the absence of an

external force

2D0t =
⟨
x2(t)

⟩
, (38)

as ⟨x(t)⟩ = const. for t→ ∞. By differentiating Eq. (38), we have
⟨
dx(t)

dt
x(t)

⟩
= D0 and

d ⟨ẋx⟩
dt

= 0. Observing Eqs. (25) and (36), we finally obtain from Eqs. (34) and (37) for

the free diffusion coefficient, the following expression [2, 156, 165, 166]

D0 =
kBT

γ
, (39)

known as Einstein relation. Equation (39) is a special form of the fluctuation-dissipation

theorem. It implies that fluctuation and dissipation are intimately related, and that one

cannot be present one without the other. However, dissipation would also occur if the

collisions with the molecules were not randomly distributed, but occurred at regular in-

tervals. In that case, the motion of the particle would damped, but would not fluctuate.

The reason for the relation between dissipation and fluctuation is that the time between

collisions is a random variable [160]. One can easily verify that the Einstein relation (39)

is valid also in the presence of a space-independent force. In this case, the system is out

of equilibrium and instead of Eq. (25), one has

1

2
m
⟨
δv2
⟩
=

1

2
kBT, (40)

where ⟨δv2⟩ = ⟨v2⟩ − ⟨v⟩2.

II.2.3 Overdamped limit

The dynamics of fluctuations of microscopic system can often be described within a

good approximation with the overdamped dynamics [161, 162]. This approximation

perfectly described the dynamics of molecular motors in their environment. In this ap-

proximation, the inertia term mẍ is neglected and the thermal fluctuations play any
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notable role. We thus arrive at our minimal Smoluchowski-Feynman ratchet model

γẋ =
dV (x, t, r)

dx
+ F +

√
2γkBTΓ(t). (41)

The molecular motors (kinesin) are perfectly described in this approximation (see Figure

3). Indeed, one should note that the velocity v(t) =
dx(t)

dt
, in the corresponding Langevin

equation, is the velocity of the kinesin head during the diffusion phase, which should

be distinguished from the overall velocity of the kinesin moving along microtubules.

The radius of the kinesin head (the ellipsoidal catalytic core head is often approximated

as a sphere) is R = 3nm, and the mass of the head domain is of order m = 100kDa =

1.66.10−22kg. The aqueous medium of the cell around the kinesin has a viscosity of

approximately η = 10−3kg/ms. Therefore, the friction coefficient γ = 6.10−11kg/s is

calculated from the Stokes formula with the use of the viscosity of aqueous medium.

The Langevin time relaxation is τ = 1.08.10−12s, which is so fast that the inertial term

in the equation of motion can be neglected [167, 168, 169, 170]. In a typical Brownian

domain, the activation energy is 5 time higher than the thermal energy ∆V = 5kBT , and

the temperature inside cell is about 310K (37oC).

Approximating the second order Langevin equation by the first order equation af-

fects neither the fluctuation-dissipation relation (24), nor the transport properties deriv-

ing from the Einstein relation that we will see in the next section.

II.3 Fokker-Planck equation in the overdamped limit

Another widely used description of diffusion under an external force field is offered

by the Fokker-Planck equation [9], which is just an equation of time evolution for the

probability function. It follows as a generalization of the Einstein’s approach, based on

the discussion of the deterministic equations for the probability densities.

Thus, to derive the Fokker-Planck equation, let x(t) : t ≥ 0 be a one-dimensional

stochastic process with t1 > t2 > t3. We use P (x1, t1;x2, t2) to denote the joint proba-
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bility distribution, i.e., the probability that x(t1) = x1 and x(t2) = x2, and P (x1, t1|x2, t2)

to denote the conditional (or transition) probability distribution, i.e., the probability that

x(t1) = x1 given that x(t2) = x2, defined as P (x1, t1; x2, t2) = P (x1, t1|x2, t2)P (x2, t2). We

will assume x(t) is a Markov process, namely

P (x1, t1|x2, t2; x3, t3) = P (x1, t1|x2, t2). (42)

For any continuous state Markov process, the following Chapman-Kolmogorov equa-

tion is satisfied [9, 156]:

P (x1, t1|x3, t3) =
∫
P (x1, t1|x2, t2)P (x2, t2|x3, t3)dx2. (43)

In the following, we will also assume x(t) is time homogeneous:

P (x1, t1 + s;x2, t2 + s) = P (x1, t1, x2, t2), (44)

so that x is invariant with respect to a shift in time. For simplicity of notation, we use

P (x1, t1 − t2|x2) ≡ P (x1, t1|x2, t2).

We will now outline the derivation of the Fokker-Planck equation, a partial differ-

ential equation for the time evolution of the transition probability density function to

finding a Brownian particle at any position and any time. Consider

∞∫
−∞

h(y)
∂P (y, t|x)

∂t
dy, (45)

where h(y) is any smooth function with compact support. Writing

∂P (y, t|x)
∂t

= lim
∆t→0

P (y, t+∆t|x)− P (y, t|x)
∆t

, (46)
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and interchanging the limit with the integral, it follows that

∞∫
−∞

h(y)
∂P (y, t|x)

∂t
dy = lim

∆t→0

∞∫
−∞

h(y)

[
P (y, t+∆t|x)− P (y, t|x)

∆t

]
dy. (47)

Applying the Chapman-Kolmogorov identity Eq. (43), the right hand side of Eq. (47)

can be written as

lim
∆t→0

1

∆t

 ∞∫
−∞

h(y)

∞∫
−∞

P (y, t|Z)P (z, t)dzdy −
∞∫

−∞

h(y)P (y, t|x)dx

 . (48)

Interchanging the limits of integration in the first term of Eq. (48), letting y → z in the

second term, and using the identity
∞∫

−∞
P (y,∆t|z)dy = 1, we have

lim
∆t→0

1

∆t

 ∞∫
−∞

P (z, t|x)
∞∫

−∞

P (y, t|z)(h(y)− h(z))dzdy

 . (49)

Taylor expansion of h(y) about z gives

lim
∆t→0

1

∆t

 ∞∫
−∞

P (z, t|X)

∞∫
−∞

P (y, t|z)
∞∑
n=1

hn(z)
(y − z)n

n!
dzdy

 . (50)

Defining the jump moments as

Dn(z) =
1

n!
lim
∆t→0

1

∆t

∞∫
−∞

(y − z)nP (y,∆t|z)dy, (51)

it follows that

∞∫
−∞

h(y)
∂P (y, t|x)

∂t
dy =

∞∫
−∞

P (z, t|x)
∞∑
n=1

Dn(z)hn(z)dz. (52)

Integrating each term on the right side of Eq. (52) by parts n times and using the as-
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sumptions on h, after moving terms to the left hand side, it follows that

∞∫
−∞

h(y)

(
∂P (y, t|x)

∂t
−

∞∑
n=1

(
− ∂

∂z

)n

[Dn(z)P (z, t|x)]

)
dz = 0. (53)

Now, because h is an arbitrary function, it is necessary that

∂P (y, t|x)
∂t

= −
∞∑
n=1

(
− ∂

∂z

)n

[Dn(z)P (z, t|x)] . (54)

We define the probability distribution function P (x, t) of x(t) as the solution of Eq. (54)

with initial condition given by a δ-distribution at x0 at t = 0. In this case, P (x, t) =

P (x, t|x0, 0) and we may write Eq. (54) as

∂P (x, t)

∂t
= −

∞∑
n=1

(
− ∂

∂x

)n

[Dn(x)P (x, t)] , (55)

with

Dn(x0) =
1

n!
lim
∆t→0

1

∆t
⟨[x(t+∆t)− x(t)]n⟩ |t=0, (56)

which is commonly called the Kramers-Moyal expansion. Now, if we assume Dn(x) = 0

for n > 2, then, we have the Fokker-Planck equation

∂P (x, t)

∂t
= − ∂

∂x
[α2P (x, t)] +

∂2

∂x2
[α1P (x, t)] , (57)

where α1 = D0 = D0(x0) is the diffusion coefficient and keeps the same value also in

the presence of an external force. Finding the first moment of Eq. (57), one sees that

D1(x0) = ∂ ⟨x⟩ /∂t = ⟨α2⟩, which corresponds to the overdamped Langevin equation

Eq. (41)
∂P (x, t)

∂t
= − ∂

∂x

[
f(x, t, r) + F

γ
P (x, t)

]
+D0

∂2

∂x2
P (x, t). (58)

The latter equation is the Fokker-Planck equation and is mathematically equivalent to

the Langevin equation (41) [171]. It describes the overdamped Brownian motion under

a force F field that can be space-and time-dependent. In fact, P (x, t) is the probability
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density function of the Brownian particle at position x for time t. The first term on the

right-hand side is associated with the diffusion flux according to Fick’s law. The second

term is due to the convection associated with an overdamped Newtonian motion: −γẋ+

f(x, t, r) + F = 0. In the absence of an external force, the Fokker-Planck equation (58)

reduces to the following diffusion equation

∂P (x, t)

∂t
= D0

∂2

∂x2
P (x, t), (59)

which, by assuming, for the initial distribution, the δ-function, that is P (x0, t0) = δ(x0 −

X0), the solution is given by Gaussian distribution,

P (x, t) =
1√

4πD0(t− t0)
exp

[
− (x−X0)

2

4D0(t− t0)

]
. (60)

The diffusion-like equation (58) was first proposed by A. D. Fokker in his dissertation

in 1914 [172], and discussed by M. Planck in 1918 [173]. Fokker presented an equation

for the distribution function of the velocity, P (v, t). In 1915, Smoluchowski proposed

the same equation for the distribution function of the position, P (x, t), [57, 174] and

therefore, Eq. (58) is also known as the Smoluchowski equation.

The Fokker-Planck equation (58) can be also written in the form of a continuity equa-

tion for the probability density P (x, t):

∂P (x, t)

∂t
= − ∂

∂x
J(x, t), (61)

where J(x, t) is the probability flux,

J(x, t) =

(
f(x, t, r) + F

γ
P (x, t)

)
−D

∂P (x, t)

∂x
P (x, t). (62)

A generalization of Eq. (58) to the N variables x1, ..., xN has the form

∂P

∂t
=

[
−

N∑
i=1

∂

∂xi
D

(1)
i (x) +

N∑
i,j=1

∂2

∂xi∂xj
D

(2)
ij (x)

]
P. (63)
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The drift vector D(1)
i and the diffusion for the distribution tensor D(2)

ij generally depend

on the N variables x1, ..., xN = x. The Fokker-Planck equation (63) is an equation for the

distribution function P (x, t) of N macroscopic variables x. (Here, xi may be variables of

different kinds for instance position and velocity.)

II.3.1 Solution of the Fokker-Planck equation and transport proper-

ties of Brownian particles in the overdamped limit subjected to

a travelling-wave deformable potential

Having presented above the general model of Brownian particles in the overdamped

limit, in this subsection, we give a solution of the Fokker-Planck equation in the presence

of the travelling-wave deformable potential. We set γ = 1 in this part. In fact, By solving

the Fokker-Planck equation, one obtains distribution functions from which any averages

of macroscopic variables are obtained by integration. Thus, the Fokker-Planck equation

in the overdamped limit in presence of the travelling-wave deformable potential is given

by

∂P (x, t)

∂t
= − ∂

∂x

[
−∂V (x− ωt, r)

∂x
− F −D0

∂

∂x

]
P (x, t) . (64)

Assuming that the x(t) motion is restricted to a periodically repeated segment length

2π, we apply the following periodic boundary condition and normalization condition,

P (x+ 2π, t) = P (x, t) , (65)

2π∫
0

dxp (x, t) = 1. (66)

In the study of small micro- or even nano-machines, operating far from thermal equilib-

rium by extracting the energy from both thermal and non-equilibrium fluctuations, in
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order to generate work against external loads, one usually refers to quantities such as the

average directed velocity, the efficiency. In fact, the average velocity of Brownian par-

ticles is perfectly sufficient to describe its dynamics in a system as well as its transport

properties. Here, our aim is to obtain the analytical link between the most important

transport quantity, which is the average directed velocity ⟨v⟩ of the Brownian particle,

where v = v(t) denotes the stochastic process
dx

dt
in Eq. (41), and other parameters of the

system.

By setting P (x, t) = P (x− ωt), following the form of the travelling wave potential,

the Fokker-Planck Eq. (64) becomes

− ∂

∂x

[
−∂V (x− ωt, r)

∂x
− (F + ω)−D0

∂

∂x

]
P (x− ωt) = 0. (67)

By integrating Eq. (67), we have

[
−∂V (x− ωt, r)

∂x
− (F + ω)−D0

∂

∂x

]
P (x− ωt) = C, (68)

with C, the constant of integration, depending on the parameters of the system, and

which is given by Eq. (71). P (x− ωt) being function of space and time, one of the char-

acteristics of the Markov processes is that their probability density P (x, t) satisfies the

famous master equation. With the boundary condition and the condition of normal-

ization given above by Eqs. (65) and (66), we obtain, after some algebra, the following

probability of Brownian particles

P (x− ωt) =
1

Z

2π∫
0

exp

(
V (x+ α− ωt)− V (x− ωt) + (F + ω)α

D0

)
dα, (69)

with α, a small variation in space, while Z which is the normalization constant, is given

by

Z =

2π∫
0

dα

2π∫
0

dx exp

(
V (x+ α)− V (x) + (F + ω)α

D0

)
. (70)
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Being different from the stationary situation, where distribution function is independent

of time, the probability density given by Eq. (69) changes with time at any point x.

Equivalent probability points propagate in the x direction with velocity ω. So, P (x−ωt)

in Eq. (69) is a solitary wave with phase velocity ω. By replacing Eq. (69) into Eq. (68),

we obtain after some algebra, the following expression of C

C =
D0 (1− exp ((2π/D0)(F + ω)))

2π∫
0

dα
2π∫
0

exp

(
1

D0

)
(V (x+ α, r)− V (x, r) + (F + ω)α)dx

. (71)

The expression of the average velocity is given by

⟨v⟩ =
2π∫
0

vP (x− ωt)dx. (72)

By using the Langevin equation (41) and Eq. (69), the average velocity of Brownian

particles is written as follows

⟨v⟩ = ω + 2πC. (73)

It is clearly seen that the average directed velocity of the Brownian particle is directly

related to the travelling potential speed ω, but also depend on the shape of the system,

the intensity of the noise and the external load through the constant C, respectively.

To optimize the effectiveness of the Brownian motor motion, we must introduce a

measure for the efficiency η that account for velocity fluctuations. Assume that the

Brownian motor works against an external force F not yet defined. Efficiency is usually

defined as the ratio of useful work E = F ⟨v⟩ τ to energy input Ein, that is, η = E/Ein,

where τ is the period of time of observation. Indeed, it is accepted that to measure

the efficiency, a constant external opposing force is applied against, which the motor

does useful work. For instance, for molecular motors, there are two aspects of biologi-

cal functions. One is to generate forces such as the one which myosins uses in muscle

contraction, another is to transport organelles as done kinesins in cells. In order to mea-
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sure the ability of molecular motors to generate force and transport, respectively, it is

better to express the efficiency in two forms ηF and ηT , for generating force and trans-

portation. Because the ability to generate force can be measured by doing work against

an external applied opposing constant force, ηF is defined as the ratio of the work to

energy input. The ability of transportation is just how fast the average velocity is. In

the absence of any external opposing force, energy input can be divided into two parts

before dissipation into heat bath: one part is used to generate directed motion of the

Brownian particle with average velocity, and the other part is for aggravating random

motion of the Brownian particle. So, efficiency ηT for transportation can be defined as

the ratio of work done against viscous friction moving with average velocity to energy

input. The input energy is also the energy transfer between the system and the external

agent [175]. For a Brownian motor working against a constant external load force F , the

same definition of efficiency can be used to define the efficiency of generating force or

energy conversion [46, 64, 157, 176], that is

ηF =
F ⟨v⟩ τ
Ein

. (74)

This characterization leads to a vanishing measure of efficiency in the absence of the

external force F .

In many cases, such as protein transport within a cell, the Brownian motor works

at zero force regime (F = 0), in a viscous environment. In fact, in the presence of the

dissipation γ, the force needed to displace a particle over a distance is proportional to

its velocity. In this case, for a defined period of time τ , the transport is accomplished at

an average motor velocity ⟨v⟩ and the necessary energy given is finite. Thus, by putting

for F the average viscous force γ ⟨v⟩, we can then define the efficiency for transport as

follows

ηT =
γ ⟨v⟩2 τ
Ein

. (75)
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In a period of time T
(
T =

2π

ω

)
, the energy input is calculated according to [177]

Ein =

T∫
0

dt

2π∫
0

dx
∂V (x− ωt)

∂t
P (x− ωt). (76)

By using Eq. (68), it is easily shown that

Ein = 2π (F + ⟨v⟩) . (77)

In the system, the energy from outside is input by changing the potential energy of the

Brownian motor.

II.4 Approximated solution of the Fokker-Planck in the

underdamped limit

II.4.1 Spectral methods

Unlike the previous case, we move to the two-dimensional Fokker-Planck equation in

the deformable potential. In fact, this corresponds to the underdamped Brownian parti-

cle in the travelling-wave deformable potential (17). Therefore, the equivalent of the free

Langevin equation (F = 0) (17), in the underdamped limit, for the distribution function

P (x, v, t), in the phase space (x, v), is written as

∂

∂t
P (x, v, t) = LFP (x, v, t), (78)

with the Fokker-Planck operator LF

LF = −v ∂
∂x

+

(
∂

∂v

)(
∂V (x, t, r)

∂x
+ γv

)
+D0

∂2

∂v2
. (79)
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As we said before, the relevance of such a model is well known in many areas of sci-

ence, most notably motions of defects or interstitial in crystalline materials [178, 179],

Josephson junctions [180], diffusion of ions, superionic conductors [30-38], relaxation

and spectral properties of dipolar molecular liquids [181]. In these contexts, the model

has repeatedly been used to explore the interplay between, on the one hand, the driving

force and the shape of the potential and, on the other hand, the particle current and its

fluctuations.

To solve the equation (78), a number of numerical methods have been developed.

In Cartling [182], difference method has been applied, whereas in Moore and Flaherty

[183], Galerkin’s method with adaptive mesh refinement techniques has been applied to

the above Fokker-Planck equation. Also recently, the matrix continued fraction method

(MCFM) [9, 29, 184, 206] has been developed to approximate the analytical solution of

the Fokker-Planck equation. This method appears as a powerful means of solving the

Fokker-Planck equation, which we will develop in the next subsection. Nevertheless,

we are going to use the spectral method, or again a “semi-analytical” method, to ap-

proximate the solution of the Fokker-Planck equation [186, 187].

Since the range of the velocity variable v is (−∞,+∞), it is natural to represent the

unknown function P (x, v, t) by an expansion of Hermite polynomials in v, with coeffi-

cients depending on x and t, i.e.,

P (x, v, t) =
∞∑
n=0

Cn(x, t)ψn(v), (80)

where Cn(x, t), n = 1, 2,... are the expansion coefficients. The ψn(v) are the nth order

Hermite polynomial and its factorial factor are chosen so that the coefficient matrix of the

induced partial differential equation system for Cn is symmetric, which implies that this

partial differential equation is hyperbolic. It is relevant to note that Hermite functions,

ψn(v), were chosen because they form an orthonormal set and satisfy natural boundary

conditions [9] in velocity space. The Hermite functions obey the following recurrence
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relations
dψn(v)

dv
= −α

√
2(n+ 1)ψn+1(v), (81)

d2ψn(v)

dv2
= −α2

√
4(n+ 1)(n+ 2)ψn+2(v), (82)

v
dψn(v)

dv
=
√

(n+ 1)(n+ 2)ψn+2(v)− (n+ 1)ψn(v), (83)

vψn(v) =

(
α√
2

)(√
n+ 1ψn+1(v) +

√
nψn−1(v)

)
. (84)

where α is a constant, equivalent to
√
2kBT . By inserting Eq. (80) in the time-dependent

Fokker-Planck equation, Eq. (78), and applying Eqs. (81)-(84), we obtain the following

coupled system, which constitutes a partial differential equation system that obey the

expansion coefficients

∂Cn(x, t)

∂t
= −α

√
n√
2

∂Cn−1(x, t)

∂x

− α
√
n+ 1√
2

∂Cn+1(x, t)

∂x

−
√
2n

α
(V ′(x, t))Cn−1 − γnCn(x, t)

+
√
n(n− 1)

(
2γKT

α2
− γ

)
Cn−2(x, t).

(85)

To solve Eq. (85), we use the spectral method of orderN . This method consists of solving

the first (N + 1) equation of (85) for the N + 1 expansion coefficients C0, C1, C2,..., CN .

Thus, all the functions Cn(x, t), n ≥ N +1, are set to 0, i.e., take the approximate solution

to P (x, v, t) as the following truncated series PN(x, v, t).

C denotes a (N + 1) dimensional column vector defined by

C = C(x,t) = [C0(x, t), ..., CN(x, t)]
T . The coupled system (85) becomes

∂C
∂t

= −αR
∂C
∂x

+ SC, (86)
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where R and S are (N + 1)× (N + 1) matrices given by

R =



0 α1

α1 0 α2

. . . . . . . . .

αN αN


(87)

and

S =



0 0 · · · 0 · · ·

−
√
2

α
A −γ 0 · · ·

0 − 2
α
A −2γ 0 · · ·

0 0 −
√
6

α
A −3γ · · ·

... . . . . . . . . . . . .


(88)

with A =
∂V (x, r, t)

∂x
and αn =

√
n/2.

Obviously, R is a symmetric matrix, and thus, N + 1 real eigenvalues. Furthermore,

we have

z Theorem 1: [see [187]] The eigenvalues of R are the zeroes of the (N + 1) − th order

Hermite polynomial HN+1(λ).

z Proof 1: Let PN+1(λ) be the characteristic polynomial of R. Since R is tridiagonal,

we have

PN+1 = λPN(λ)− λ2NPN−1(λ) = λPN(λ)−
N

2
PN−1(λ), for N = 2, 3, 4, ...., (89)

and

P1 = λ, (90)

P2 = λ2 − 1

2
. (91)

We shall prove that

PN = 2−NHN , (92)
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for n ≥ 1.

Obviously, this is true for N = 1, 2. Assume Eq. (92) is true, for N ≤ n. From Eq. (89)

and the recurrence relations among Hermite polynomials, we have

Pn+1 = λPn(λ)−
n

2
Pn−1(λ) = λ2−nHn(λ)−n2−nHn−1(λ) = 2−(n+1) (2λHn(λ)− 2nHn−1(λ)) .

(93)

This complete the proof of the theorem. Let λ0 < λ1 < ... < λn, be the zeros of the

Hermite polynomial HN+1 and Ck defined by

Ck =

[
N∑

n=0

1

2nn!
[Hn(λk)]

2

]−1/2

. (94)

We have the following result regarding the eigenvectors of R.

z Theorem 2: [see [187]] The eigenvector of R corresponding to the eigenvalue λk can be

given by

uk = [u0k, u1k, ..., uNk]
T , (95)

in which unk is defined by

unk =
Ck√
2nn!

Hn(λk). (96)

PN+1 = λPN(λ)− αNPN−1(λ) = λPN(λ)−
N

2
PN−1(λ), (97)

z Proof 2 Assume that an eigenvector ofR corresponding to λk is y = [y0, y1, ..., yN ]
T .

Then

Ry = λky. (98)

This is equivalent to the following difference equation

√
n

2
yn−1 +

√
n+ 1

2
yn+1 = λkyn, if n = 0, 1, ..., N, (99)

with boundary conditions y−1 = yN+1 = 0. This could be directly verified by setting yn = unk,

noticing the fact that HN+1(λk) = 0. The theorem is therefore proved.
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Obviously, the eigenvectors defined by Eq. (95) are normalized and they are mutu-

ally orthogonal, since R is a symmetric matrix.

R is a symmetric matrix. So, the set of its eigenvectors is also an orthogonal matrix.

let us define the eigenvectors as U = [u0, u1, ...uN ]. It is easily verified that UTRU = ∆ =

diag[λ0, λ1, λ2, ..., λN ]. If we multiply Eq. (86) by UT , we obtain,

∂C̃

∂t
= −α∆∂C̃

∂x
+ S̃C̃, (100)

with C̃ = UTC and S̃ = UTSU . Since Eq. (100) is a nonlinear and coupled system, it is

difficult to obtain an analytical solution for all the different modes. Thus, the finite dif-

ference method should be used to approximate the solution C̃(x, t). It is for this reason

that we call it the “semi-analytic method”. In order to ensure the stability of the finite

difference method in our case, different schemes are used according to the sign of the

eigenvalue of the matrix R. So, λi < 0, the forward space difference scheme should be

used, and λi > 0, the backward space difference scheme should be used. Combining all

this, we obtain the following different numerical schemes

C̃i(x, t+ dt) = C̃i(x, t)−
αλidt

dx
(C̃i(x, t)− C̃i(x− dx, t))+ dt(S̃C̃)i(x, t) if λi > 0, (101)

C̃i(x, t+ dt) = C̃i(x, t)−
αλidt

dx
(C̃i(x+ dx, t)− C̃i(x, t))+ dt(S̃C̃)i(x, t) if λi < 0, (102)

and

C̃i(x, t+ dt) = C̃i(x, t) + dt(S̃C̃)i(x, t) if λi = 0. (103)

It is easy to see that the Eqs. (101)-(103) can produce stable solutions for the hyperbolic

system (100).

Originally, system (86) is a Cauchy problem and we know that only those solutions

Ph.D. Thesis of Kepnang Pebeu Laboratory of Mechanics, Materials and Structures



Model and methodology 56

which go to zero as t goes to infinity make sense in physics. So, we may turn the Cauchy

problem into an initial-boundary problem by setting the following artificial boundary

conditions

C̃j(M, t) = 0, ∀ t ≥ 0, j = 0, 1, 2, ...,
N − 1

2
, (104)

and

C̃j(−M, t) = 0, ∀ t ≥ 0, j =
N + 1

2
,
N + 1

2
+ 1, ..., N, (105)

when N is odd, and

C̃j(−M, t) = 0, ∀ t ≥ 0, j =
N

2
+ 1,

N

2
+ 2, ..., N, (106)

when N is even. So, the Ci(x, t) are substituted into Eq. (80) to approximate the solution

of the Fokker-Planck equation. Thus, in the next chapter, for some iterations, results will

be displayed and commented as a function of the shape parameter.

II.4.2 Matrix continued fraction method in the presence of an external

force

In the presence of an external force, the expression of the effective potential is given by

Veff (x, r) = V (x, r) − xf , with V (x, r) given by Eq. (16) when the travelling speed of

the potential is canceled. Thus, an illustration is given below for some values of the

shape parameter. So, in this subsection, the Fokker-Planck equation in the deformable

potential, in the presence of an external load, is solved applying the MCFM [29, 188, 189,

190]. The Fokker-Planck equation in the presence of an external load is written as

∂

∂t
P (x, v, t) = LFP (x, v, t), (107)

with the Fokker-Planck operator LF

LF = −v ∂
∂x

+

(
∂

∂v

)(
∂V (x, r)

∂x
+ γv − f

)
+D0

∂2

∂v2
. (108)
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Figure 13: Schematic representation of the tilted deformable potential for the external
load f = 0.35 as a function of the position x. The potential is represented for some
values of the shape parameter r = 0, −0.5 and 0.5.

The Fokker-Planck operator (Eq. (108)) is not Hermitian and, on the contrary of what

happens in the one-variable (position) case for the Fokker-Planck and the SWE (Smoluchowski-

Wilemski equation) [191], it cannot be brought into an Hermitian form by some proper

transformation. From Eq. (107), P (x, v, t)dxdv represents the probability of finding the

particle in the phase space element between (x, v) and (x + dx, v + dv). Indeed, vari-

ous methods to solve Eq. (107) have been used such as transformation of Fokker-Planck

equation, Schrödinger equation, numerical integration methods and spectral methods.

However, the MCFM developed by Risken (see Ref. [9], where a complete description

of the method with many applications are given) is adopted in the present work in the

presence of an external load. This method remains the most efficient semi-analytical

method and has been largely adopted these last years to successfully analyze the prob-

lem of Brownian motion in periodic structures [29]. The MCFM can be applied to a

wide class of Fokker-Planck operators because it does not require their transformation

into a Hermitian form. So, it consists to the expansion of the solution into a basis set of

plane waves for the position variable and of Hermite functions for the velocity variable.

By analogy to what is done in quantum mechanics for the harmonic oscillator, let us
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introduce, in the dimensionless v space, the operators b and b†

b =
∂

∂v
+

1

2
v, b† = − ∂

∂v
+

1

2
v, (109)

which have the well-known properties of annihilation and creation operators, when

applied to the harmonic oscillator eigenfunctions ψn(v)

b†b = nψn(v), bψn(v) =
√
nψn−1(v),

b†ψn(v) =
√
n+ 1ψn+1(v),

ψ0(v) =
1

(2π)
1
2

exp

(
−1

4
v2
)
, ψn(v) =

(b†)n√
n!
ψ0(v).

(110)

Furthermore, in the dimensionless x space, we define the operators

B(x) =
∂

∂x
− 1

2

∂U(x, r)

∂x
, B̂(x) =

∂

∂x
+

1

2

∂U(x, r)

∂x
, (111)

whereU(x, r) = V (x, r)−xf . Then, the Fokker-Planck operator (Eq. (108)) can be written

as

LFP = −ψ0(v) exp

[
−1

2
U(x, r)

] [
γb†b+ bB + b†B̂

]
exp

[
1

2
U(x, r)

]
ψ−1
0 (v). (112)

In this form, LFP is composed of algebraic and differential operators. The differential

operator γb†b is irreversible and Hermitian, while the differential operator bB + b†B̂ is

reversible and anti-Hermitian. Thus, we define the dynamic structure factor S(q, ω),

in the presence of the external force F . It plays an essential role in light and neutron

scattering experiments [192, 193]. So, the Van Hove self-correlation function may be

evaluated, if the distribution function of the stochastic process is known, as

H(q, t) =

π∫
−π

dx0

∞∫
−∞

dv0

∞∫
−∞

dx

∞∫
−∞

dv exp(jq(x− x0))Pst(x0, v0)Pc(x, v, t|x0, v0, t0). (113)
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Pst(x0, v0) is the stationary solution of Eq. (107) and is given by the Boltzmann distribu-

tion

Pst(x0, v0) = Nψ2
0(v0) exp(−U(x0, r)), (114)

where N−1 =
∞∫

−∞
exp(−U(x, r))dx is determined by imposing that Pst is normalized to

1, in the unit cell for x as well as in the whole space for v; ψn(v) is the Hermite func-

tion. As already mentioned below, Hermite functions, ψn(v), were chosen because they

form an orthonormal set and satisfy natural boundary conditions in velocity space [9].

Pc(x, v, t|x0, v0, t0) is the transition probability of finding a particle at x and v, at time t,

if there was a particle at the origin x0 and v0, at time t = 0. This transition probability

is also the Green function of the Fokker-Planck equation, i.e., the solution of Eq. (107)

with initial δ-condition in both variables x and v, given by

Pc(x, v, t|x0, v0) = δ(x− x0)δ(v − v0). (115)

Since H(q, t) is the correlation function of a stationary process, it is an even function of

time and then, the dynamic factor structure S(q, ω) is defined as

S(q, ω) =
1

2π

∞∫
−∞

dt exp(−iωt)H(q, t). (116)

In order to compute the transition probability Pc(x, v, t|x0, v0), Bloch’s theorem is applied

and any nonstationary solution of P (x, v, t) of the Fokker-Planck equation is developed

into periodic functions P̃ (k, x, v, t),

P (x, v, t) =

1/2∫
−1/2

dk exp (ikx) P̃ (k, x, v, t), (117)
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which are further expanded in Fourier series in x and into Hermite functions ψn(v) in v

as

P̃ (k, x, v, t) exp (ikx) = ψ0(v) exp

[
−1

2
U(x, r)

]
1√
2π

∞∑
p=−∞

∞∑
n=0

cpn(k, t)ψn(v) exp [i(p+ k)x] .

(118)

To obtain a solution P of the Fokker-Planck equation (107) with initial δ-condition, it is

sufficient to impose the same condition on P̃ ,

P̃ (k, x, v, 0) exp (ikx) = δ(x− x0)δ(v − v0). (119)

This gives

cln(k, 0) =
1√
2π

ψm(v0)

ψ0(v0)
exp [−i(l + k)x0] exp

[
1

2
U(x0, r)

]
. (120)

The coefficients at time t may be found in terms of Green functions as

cpn(k, t) =
∞∑

l=−∞

∞∑
m=0

Gpl
nm(k, t)c

l
n(k, 0), (121)

or, in matrix notation

cn(k, t) =
∞∑

m=0

Gnm(k, t)cm(k, 0), (122)

where Gpl
nm is the Green functions satisfying the initial condition

Gnm(k, 0) = Iδn,m. (123)

where I is the identity matrix and δn,m is the Kronecker delta

δn,m =


1 if n = m

0 if n ̸= m.
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By Eqs. (117), (118), (120), (121), the conditional probability Pc(x, v, t|x0, v0) may be writ-

ten as (see Refs. [9, 188] for further details)

Pc(x, v, t|x0, v0) =
1

2π

exp
(
−1

2
U(x; r)

)
ψ0(v)

exp
(
−1

2
U(x0; r)

)
ψ0(v0)

∞∑
n,m

ψn(v)ψm(v0)

×
1/2∫

−1/2

dk
∞∑

p,l=−∞

exp(ik(x− x0)) exp(ipx) exp(−ilx0)Gpl
nm(k, t).

(124)

Inserting Eqs. (124) and (114) into Eq. (113), the self-correlation function becomes

H(q, t) = 2πN
∞∑

p,l=−∞

Gp,l
0,0(k, t)Mp−rM

∗
l−r, (125)

where q = r + k must be multiple of the reciprocal lattice vector in the language of a

Solid-State physicist, with −1/2 < k ≤ 1/2 restricted to the first Brillouin zone, and

where r is an integer. Ml is the modified Bessel function depending on the deformable

potential and is written as

Ml =
1

2π

∫ 2π

0

exp

(
−U(x, r)

2

)
exp(ilx)dx. (126)

Then, the Laplace transform of the dynamic structure factor will be written as

S̃(q, z) = 2πN
∞∑

p,l=−∞

G̃p,l
0,0(k, z)Mp−rM

∗
l−r, (127)

and finally

S(q, ω) = NRe

(
∞∑

p,l=−∞

G̃p,l
0,0(k, iω)Mp−rM

∗
l−r

)
, (128)

with Re(...) is the real part of the quantity in the bracket. G̃p,l
0,0(k, iω) is the Laplace trans-

form of the matrix elements Gpl
0,0(k, t). Notice that, if U(x, r) is an even function of x,

the coefficients Ml in Eq. (126) are real. Finally, the matrix G̃0,0 is found by a matrix-

continued fraction expansion. Inserting Eq. (118) into Eq. (107) and using Eq. (110), a
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tridiagonal recurrence relation for cn, (Brinkman’s hierarchy [194]) is obtained

∂cn(k, t)

∂t
= −nΓcn(k, t)− i

√
n+ 1B+cn+1(k, t)− i

√
nB−cn−1(k, t), (129)

in which the matrices Γ, B+ and B− are given by

Γlp =
1

2π

π∫
−π

dx exp (−ilx) γ exp (ipx) (130)

iBlp
+ (k) =

1

2π

π∫
−π

dx exp [−i(l + k)]B(x) exp [i(p+ k)] , (131)

iBlp
− (k) =

1

2π

π∫
−π

dx exp [−i(l + k)] B̂(x) exp [i(p+ k)] . (132)

Inserting Eq. (122) into Eq. (129), a tridiagonal recurrence relation for matrices Gn,m is

obtained

∂Gn,m(k, t)

∂t
= −nΓGn,m(k, t)− i

√
n+ 1B+Gn+1,m(k, t)− i

√
nB−Gn−1,m(k, t)(k, t). (133)

The last equation, for m = 0, is employed to get G̃0,0. Performing the Laplace transform

and recalling Eq. (123), the following relationship is obtained

zG̃n,0(k, z)− Iδn0 = −nΓG̃n,0(k, z)− i
√
n+ 1B+G̃n+1,0(k, z)− i

√
nB−G̃n−1,0(k, z) (134)

which is solved by standard methods [9], obtaining

G̃p,l
0,0(k, iω) =

I
iωI +Dp,l I

(iω+γ)I+2Dp,l
I

(iω + 2γ)I + 3Dp,l
I

(iω + 3γ)I + ...
D̃p,l

D̃p,l

D̃p,l
, (135)
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with k = iω. The matrix elements of the matrices D and D̃ are given by the following

equation

Dp,l(k) = (l + k)δp,l +
i

4π

∫ 2π

0

∂V (x, r)

∂x
exp(i(l − p)x)dx− i

f

2
δp,l, (136)

and

D̃p,l(k) = (l + k)δp,l −
i

4π

∫ 2π

0

∂V (x, r)

∂x
exp(i(l − p)x)dx+ i

f

2
δp,l. (137)

The diffusion coefficient is computed via the Green-Kubo relationship

D = π lim
ω→0

ω2 lim
q→0

S(q, ω)

q2
. (138)

It is clearly seen that the Green function of the Fokker-Planck equation is related to the

external force f , but also depends on the shape of the system and the friction, respec-

tively.

II.5 Numerical methods to solve stochastic differential equa-

tions

In this section, we give some numerical techniques and methods to solve the differen-

tial equation. In the previous section, we have traited the Brownian motion in terms of

the Fokker-Planck equation which is focused mainly on probalities as in Einstein’s treat-

ment. However, the Langevin equation (17) that describes the stochastic differential evo-

lution of the Brownian particle focuses on its trajectories. In principle, both ways, i.e.,

the Fokker-Planck and the Langevin equations allow the characterization of the stochas-

tic processes, such as calculating averages or correlations. However, in many instances,

looking at the individual trajectories allows one to extract valuable information that is

not so easy to obtain from the time evolution of the probability density function. In

fact, the generation and visualization of some representative trajectories is usually quite

helpful in providing physical understanding of what is going on.
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Therefore, here, we focus on numerical methods to generate trajectories. To be more

precise, consider that we have a given Langevin stochastic differential equation and

we would like to obtain with a computer, several representative trajectories. As the

noise will be different in each trajectory, even if we start always from the same initial

condition, all the trajectories will be different and, in principle, there will be an infinite

number of them. Therefore, we cannot aim at generating all possible trajectories, but

just a finite number of them. Still, if properly done, this finite number of trajectories can

be sufficient to obtain averages or correlations with a certain degree of accuracy.

Because for a given realization of the noise a stochastic equation becomes an ordinary

differential equation, one may naively consider that it can be numerically integrated

using any standard method, such as the Euler method, the popular fourth-order Runge-

Kutta method, or a predictor-corrector method.

II.5.1 Euler-Muyurama method

To solve the differential Eq.(17), we set ẋ = v, and ẍ = v̇, and we obtain the following

equation:

ẋ = v, v̇ = −γv + f(x, r) + F +
√

2γkBTΓ(t). (139)

The Euler method assumes that the function f(x, r, t) is differentiable. Runge-Kutta

methods or predictor-corrector methods assume that they are differentiable to a higher

order. However, as described in subsection 2.2.1, the white noise Γ(t) is not a differ-

entiable function. Even for a single realization of the white noise term, Γ(t) is highly

irregular and not differentiable even at first order. As discussed in that subsection, it

can be thought of as a series of Dirac delta functions spread all over the real axis. In fact,

the numerical value that the noise takes at a given time is not properly defined since

it is a Gaussian random number with infinite variance. As a consequence, we cannot

directly use the standard methods for ordinary stochastic differential equations (139). If

one were dealing with a stochastic differential equation with smooth functions as ran-

dom processes, we could certainly use the standard methods [195, 196].
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In what follows, we disregard that the equation can be solved and instead focus on a

numerical solution in which we generate trajectories and velocities: that is, we want to

obtain x(t) and v(t) at discrete time intervals. Thus, by integrating Eq. (139), we have

t+∆t∫
t

ẋ(s)dt =

t+∆t∫
t

v(s)dt,

t+∆t∫
t

v̇(s)dt = −γ
t+∆t∫
t

v(s)dt+

t+∆t∫
t

f(x(s), r)dt+

t+∆t∫
t

Fdt

+
√

2γkBT

t+∆t∫
t

Γ(t)dt.

(140)

We discretize the time t = ti = t0 + i∆t, where t0 is the time of the initial condition, i =

0, 1, 2, ..., and ∆t is the integration time step. Our goal is to obtain a recurrence relation

that provides the value of v(ti+1), x(ti+1) as a function of v(ti) and x(ti), respectively. We

can write Eq. (140) as

x(ti+1) = x(ti) +

ti+1∫
ti

v(s)ds, (141)

v(ti+1) = v(ti)− γ

ti+1∫
ti

v(s)ds+

ti+1∫
ti

f(x(s), r)ds+

ti+1∫
ti

Fds+
√
2γkBT

ti+1∫
ti

Γ(s)ds. (142)

f(x, r) being differentiable function, we expand it in a Taylor series around x = x(ti):

f(x(s), r) = f(x(ti), r) +
df(x, r)

dx
|x(ti) (x(s)− x(ti)) + 0

(
(x(s)− x(ti))

2) . (143)

Substitution of this expansion into Eq. (142) leads to

x(ti+1) = x(ti) + ∆tv(ti), (144)

v(ti+1) = v(ti) + ∆tv(ti)− γ∆tv(ti) + ∆tf(x(ti), r)

+ f ′(x(ti), r)

ti+1∫
ti

(x(s)− x(ti))ds+∆tO
[
(x(s)− x(ti))

2
]
+∆tF +

√
2γkBTwh(ti), (145)
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where we used the notation f ′(x(ti), r) ≡ df((x), r)

dx
|x(ti) and wh(ti) =

ti+1∫
ti

Γ(s)ds, is the

difference of the Wiener process at two different times. It is a Gaussian process and can

be fully characterized by giving the mean and correlations:

⟨wh(t)⟩ =
t+∆t∫
t

⟨Γ(s)⟩ ds = 0, (146)

⟨wh(t)wh(t
′)⟩ =

t+∆t∫
t

t′+∆t∫
t′

⟨Γ(s)Γ(u)⟩ dsdu =

t+∆t∫
t

t′+∆t∫
t′

δ(s− u)dsdu. (147)

To evaluate the integral, we make use of the properties of the Dirac δ function. We can

assume, without loss of generality, that t′ > t. If t′ > t+ h, the integral is 0, as there is no

overlap in the integration intervals, and the delta function vanishes. If t ≤ t′ < t + ∆t,

the double integral equals the length of the overlap interval, that is

⟨wh(t)wh(t
′)⟩ =

t+∆t∫
t′

ds = t− t′ +∆t. (148)

In particular, for t′ = t, one has ⟨
wh(t)

2
⟩
= ∆t. (149)

In numerical calculations, time takes always discrete values as multiples of the integra-

tion time step. If we consider discrete times t = ti = ih, t′ = tj = jh, the correlation

becomes

⟨wh(ti)wh(tj)⟩ = ∆tδij. (150)

We introduce now a set of independent Gaussian random variables ui of zero mean and

variance 1:

⟨ui⟩ = 0, ⟨uiuj⟩ = δij, (151)

in terms of which we can write

⟨wh(ti)⟩ =
√
hui. (152)
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Bring all the terms together, the recurrence relation to generate numerically trajectories

and velocity of the stochastic process are

x(ti+1) = x(ti) + ∆tv(ti), (153)

and

v(ti+1) = v(ti)− γ∆tv(ti) + ∆tf(x(ti), r) + ∆tF +
√
2γkBThui. (154)

The recurrence equations (153) and (154) can be readily implemented in a program that

allows the generation of a numerical trajectory. Averages and correlations can be ob-

tained by integrating many trajectories with independent values for the noise. Besides,

if the initial condition is given by a probability distribution, it is also necessary to sample

this distribution of initial conditions.

II.5.2 Generating Gaussian random variables

To realize the simulation described above, we need to generate Gaussian random vari-

ables with zero mean. The following method generates two independent zero mean

Gaussian variables with variance σ = 1 [195, 196, 197, 198]. We first take two random

variables, x and y, that are uniformly distributed on the interval [0, 1] (All modern pro-

gramming languages include in built functions to generate such variables). We then

calculate

x′ = 2x− 1, (155)

y′ = 2y − 1. (156)

These new random variables are now uniformly distributed on the interval [-1,1]. We

now calculate

r = x′2 + y′2. (157)
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If r = 0, or r ≥ 1, then, we return to the first step and calculate new random variables x

and y. If r ∈ (0, 1), then, we calculate

g1 = x′
√

−2 ln(r)/r, (158)

g2 = y′
√
−2 ln(r)/r. (159)

The variables g1 and g2 are Gaussian with zero mean and unit variance, and mutually

independent. If, instead, we want g1 and g2 to have variance a, then, we simply multiply

them by
√
a.

II.5.3 Runge-Kutta method: Kasdin algorithm

In this part, we introduce an implementation of the fourth-order Runge-Kutta (RK) al-

gorithm developed by Kasdin [199] for numerical integration of stochastic differential

equation. This method is known for its performance and relatively easy implementa-

tion. To implement this method, we separate the one variable equation with second

order derivatives (Eq. (17)) into two variable equations with first order derivatives, that

is

Ẋ = F(X, t) + Γ(t) (160)

ẋ
v̇

 =

 v

−γv − ∂V (x, r, t)

∂x
+ F

+

 0

Γ(t)

 (161)

where ẋ = v and v̇ = ẍ are used to reduce the derivative order of the equation. Now, we

can use vectors X, F(X, t), and Γ(t) with two elements, each to describe the variables of

the equation sets.

Assuming that we know the value for Xk =
(
x
v

)
at time step tk, through fourth-step
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calculation (see equations below), we obtain the value for Xk+1 at time tk+1 as

k1 = δtF(Xk, tk) + δtD1/2

(
0

r1

)
, (162)

kj = δtF

(
Xk +

j−1∑
i=1

ajiki, tk + cjδt

)
+ δt(Dqj)

1/2

(
0

rj

)
, (163)

Xk+1 = Xk + α1k1 + ...+ αnkn, (164)

where δt is the time step, D =
2γkBT

δt
, j = 2...n, n = 4, for the fourth-order algorithm,

and r is sampled by a standard Gaussian distribution with zero mean value and a vari-

ance of 1. The variables aji, ai, and qj are constant coefficients whose values are given

in Table 1, and c is a constant that can be obtained by cj =
j−1∑
i=1

aji. More details of the

algorithm can be found in Kasdin’s article [199, 200].

Table 1: Fourth-order, time-varying RK coefficients
Coefficient Value

α1 0.25001352164789
α2 0.67428574806272
α3 -0.00831795169360
α4 0.08401868181222
a21 0.66667754298442
a31 0.63493935027993
a32 0.00342761715422
a41 - 2.32428921184321
a42 2.69723745129487
a43 0.29093673271592
q1 3.99956364361748
q2 1.64524970733585
q3 1.59330355118722
q4 0.26330006501868

II.6 Conclusion

In this chapter, we have presented the general model of Brownian particles in the de-

formable potential. In the overdamped limit (absence of mass of the Brownian particle),

by solving the Fokker-Planck equation in the deformable traveling-wave potential, we
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have found an expression of the density probability to find a Brownian particle, at po-

sition x, at time t. From the density probability, transport properties such as average

velocity and efficiencies of Brownian particles have been derived. We have shown that

all these quantities depend not only on the speed of the potential, the intensity of noise,

but also on the shape of the system. Thanks to the spectral method, the solution of

the Fokker-Planck equation in the absence of an external load in the travelling-wave

deformable potential has been approximated in the underdamped limit. Using the ma-

trix continued fraction methods and the dynamic structure factor, the solution of the

Fokker-Planck equation is approximated in the presence of an external force. Some nu-

merical methods to solve the stochastic differential equations used in this thesis such

as the Euler-Muyurama method, the Kasdin’s algorithm or the Fourth-order Runge-

Kutta stochastic method have been used to solve numerically the Langevin equation

(17). The different methods developed in this Chapter are used to obtain results pre-

sented in Chapter III.
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CHAPTER III

RESULTS AND DISCUSSIONS

III.1 Introduction

In this chapter, we present and discuss the results of our thesis using both analytical

and numerical methods presented in chapter II. This chapter is organized as follows: In

the second Section, the transport properties of Brownian particles in the deformable

travelling-wave potential in overdamped and underdamped limits are presented. In

Section III, the transport properties of Brownian particles is discussed in the presence of

an external load.

III.2 Transport properties of Brownian particles in the travelling-

wave potential

Focusing on the transport properties of the deformable system, the long-time limit of

statistical quantities of interest is determined in terms of the statistical average over

different realizations of the process in Eq. (17). We perform our numerical studies with

the Euler algorithm. The time step is ∆t = 10−2. For initial conditions, x = 0 at t = 0,

the Brownian particle is at rest at the bottom of the deformable traveling-wave potential

(ẋ = 0). All quantities are averaged over 500 to 1000 different realizations, each of which

evolves over tmax = 103, for an overdamped case, and tmax = 104, for an underdamped

case.
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III.3 Overdamped limit

III.3.1 Average velocity in the overdamped Brownian motion

ω
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<
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0
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Figure 14: Numerical solution of the average velocity obtained from Eq.(41) as a function
of the travelling speed ω, for r = −0.5 (black line), r = 0 (blue line), r = 0.5 (green line).
Also represented is its analytical solution (Eq.(73)) for r = −0.5 (black open circle), r = 0
(blue closed circle), r = 0.5 (green square). Other parameters used are U = 20, γ = 1,
D = 0.5.

In the previous chapter, we have derived, in the overdamped limit, an expression for

the average velocity of Brownian particles in the deformable travelling-wave potential.

In order to see the influence of the shape parameter of the deformable potential on the

average velocity, we represent, first, the average velocity of the Brownian particles as a

function of the travelling speed obtained through a numerical integration of Eq. (41),

and, second, some analytical results [see Eq. (73)] for r = -0.5, 0.0, and 0.5 (see Fig.14).

In this figure, it is noted that the general evolution of the average velocity is the same

for different shapes of the travelling potential. In fact, the average velocity increases

approximatively from 3% to 86% when r increases from 0 to ±0.5 [201, 202]. We note

that our numerical solution is in good agreement with the analytic solution. Indeed, in

the absence of an external applied load (F = 0), the average velocity of the particle ⟨v⟩
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increases in speed ω up to a critical value ωun named the unlocking speed of the system,

depending on the shape parameter r and then decreases monotonically to a nonzero

value as the driving speed increases. In general, in the system, the potential advances

with the travelling speed ω when the particle motion due to the force generated by the

potential barrier lags behind. When ω is less than or equal to the unlocking speed of the

system ωun, the particle is pinned in one potential well and moves along at the full speed

of the travelling wave potential. As the travelling potential speed increases (ω > ωun),

the driving force generated by the potential energy becomes large enough and the par-

ticle jumps in the next potential well. Continuously increasing, the travelling potential

speed ω leads to a backward and forward movement of the Brownian particle, leading to

a decrease of the average velocity to a nonzero value due to very few back-turns. It is im-

portant to mention that the maximum value of the average velocity of Brownian particle

that can be generated by the potential barrier has an intrinsic link to the shape param-

eter of the travelling potential. In fact, when the absolute value of the shape parameter

of the system increases, the unlocked value of the driving force due to the potential en-

ergy increases too. This increase matches with an increase of the unlocking speed ωun

and consequently to an increase of the corresponding average velocity of the particle

as shown in Fig. 14. However, this behavior requires a comment. Indeed, referring to

Fig. 14, which depicts the average velocity of the Brownian particle as a function of the

travelling-wave potential speed ω, there exists a slight discrepancy with Fig. 2 of [201].

Moreover, as illustrated in these numerical simulations, the deformed system dissipated

less thermal energy than the nondeformed system. In Ref. [201], the maximum average

velocity of Brownian particles obtained from numerical simulation was greater for r =

0.5 than that of r = -0.5, given by 18.7910 and 19.9589, respectively, whereas in Fig. 14,

by using Eq. (28), the average velocities are greater for the shape parameter r = -0.5 than

r = 0.5, which are given by 32.1434 and 31.4817, respectively. Consequently, this last case

exhibits a good enough agreement with the analytical result that we have derived [see

Eq. (73)] [201]. In fact, in [201], the Kasdin algorithm was used to numerically simulate
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the stochastic differential equation, and then, the formula

⟨v⟩ = 1

L

L∑
i=1

1

tmax

tmax∫
0

v(t)dt, (165)

(tmax −→ ∞) was used to compute the average velocity of Brownian particles. Thus,

in this context, it turns out that the use of Eq. (28) seems to be more reliable to address

the stochastic differential equation since it matches well effectively with the theory pro-

posed in [201]. Nevertheless, from a phenomenological point of view, the average veloc-

ity of Brownian particles in both cases presents the same shape. However, by varying the

shape parameter with both formulas, some discrepancies related to numerical methods

take place. This suggests that Eq. (165) is more appropriate when the system is subjected

to an external periodic excitation [39, 105, 203, 204], while Eq. (28) is more appropriate

for systems that are not externally perturbed by a periodic excitation [29, 205].
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Figure 15: Monte Carlo error σ vs ω for different values of the shape parameter r, with
U = 20.0, D = 0.5, γ = 1. Note that σ follows the same shape as the average velocity
when |r| increases.

To understand the displacement of the Brownian particles in the travelling deformable

system, we compute Eq. (32) together with Eq. (41) using the numerical method out-

lined above. It turns out that the Monte Carlo error σ as a function of the driving speed
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presents the same evolution as the average velocity for each value of the shape parame-

ter. These fluctuations are always smaller than the corresponding average velocity (see

Fig. 15). Also presented is the average velocity of Brownian particles given by Eq. (73)

r
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Figure 16: Schematic representation of the average velocity of the Brownian particle in
the overdamped case as a function of r, for U = 20.0, D = 0.5, ω = 20.0. This curve has
nearly symmetric variations as the shape parameter evolves.

as a function of r (Fig. 16). The general behavior of ⟨v⟩ is almost the same when the ab-

solute value of r increases, for a fixed value of the traveling speed. Although the effect of

each collision between the particle and its surrounding is important in the overdamped

regime, the Monte Carlo errors show that the transport properties of Brownian particles

are performed with less turn-back. In the deformed system, and in the overdamped

regime, the transport properties of Brownian particles are shown in the directed direc-

tion. Moreover, thermal energy is less dissipated in the deformable potential compared

to the sinusoidal shape (r = 0).

III.3.2 Differences ωun-⟨v⟩max and ⟨v⟩max (−r) - ⟨v⟩max (r) versus the shape

parameter

To fully characterize the role of the shape parameter of the system on the dynamics of

Brownian particle in the presence of the travelling wave potential, our attention is fo-
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(a)

(b)

Figure 17: Differences between maximum values of the speed of the travelling wave
potential and the corresponding maximum of the average velocity of the Brownian mo-
tor, and maximum values of the average velocity of the Brownian motor for symmetric
values of the shape parameter r as a function of the shape parameter for D = 0.5, F = 0,
U = 10 and γ = 1.
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cused on the most important feature of Fig. 14, which is the dependence of the peak

values of the average velocity ⟨v⟩max, and the corresponding unlocking speed of the

travelling wave potential ωun on the shape parameter of the system. For this purpose,

Fig. 17 represents two plots. In the upper panel of this figure, the difference between the

unlocking speed of the travelling wave potential ωun and the corresponding maximum

value of the average velocity of the Brownian particle ⟨v⟩max as a function of the shape

parameter r is plotted. In the lower panel, the difference between the maximum values

of the average velocity of the Brownian particle ⟨v⟩max for each symmetrical couple (−r,

r) as a function of the absolute value of r is presented. It can be seen in the upper panel

of this figure that the difference between the unlocking speed of the travelling potential

and the corresponding maximum of the average velocity (ωun − ⟨v⟩max) is a decreasing

function of the shape parameter r of the system. In fact, for each couple of symmetric

values of the shape parameter r, the unlocking speed of the travelling wave potential

and the corresponding values of the average velocity of the Brownian particle are differ-

ent. For example, ωun = 33.1, and 33.5 for r = 0.5 and r = −0.5, respectively and ⟨v⟩max is

equal to 32.1434 and 31.4817 for r = -0.5 and r = 0.5, respectively. This means that the un-

locking speed of the travelling wave potential is always greater than the corresponding

maximum value of the average velocity of the Brownian particle. Consequently, differ-

ences ωun-⟨v⟩max decrease when r increases (according to data given here for r = −0.5,

ωun-⟨v⟩max is equal to 1.6183 and r = 0.5, ωun-⟨v⟩max is equal to 1.3566). It is obviously

seen that for each couple of symmetric values of the shape parameter r, the maximum

value of the average velocity of the Brownian particle, that can be generated by the po-

tential barrier, in the presence of the travelling speed, is higher for negative values of

r (broad narrow wells and deep barriers). As shown in the lower panel of Fig. 17, the

difference between ⟨v⟩max (r) - ⟨v⟩max (−r) is an increasing function of the absolute value

of r. This behaviour of the Brownian particle in the presence of the travelling wave po-

tential may be due to the fact that the energy gains through thermal fluctuations is less

dissipated in deformable potentials with broad narrow wells and deep barriers. These

observed changes of the dynamical quantities indicate that the shape parameter plays
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an important role in systems with travelling wave potential. The behaviour of the av-

erage velocity of the Brownian particle ⟨v⟩ as a function of the intensity of noise D, for

different values of the shape parameter r (see Fig. 18), is investigated. When the shape

parameter r = 0, the unlocking speed and the corresponding maximum value of the av-

erage velocity of the Brownian particle are equal to the height of the potential barrier U

(i.e ⟨v⟩max ≃ ω ≃ U , here U = 20) at zero temperature or intensity of the noiseD as stated

in [46, ?] and shown in Fig. 18. This behaviour of the average velocity is also verified

when the shape parameter of the system is different from zero (r < 0 and r > 0). Each

curve in this figure (Fig. 18) is characterized by a particular shape of the system, but, in

general, the average velocity is a decreasing function of the intensity of the noise.

Figure 18: Mean velocity of the Brownian particle as a function of the intensity of noise
D, for few values of the shape parameter of the travelling-wave potential, r = -0.5, 0.0,
0.5. Where F = 0, U = 20 and ω = 20.

III.3.3 Efficiency of generating force versus the external load

As stated before, the efficiency measures the capacity of a system to transform the input

energy into useful work. The efficiency of generating force is obtained through numer-

ical simulation of Eqs. (41), (74) and Eq. (77). Results of these simulations are plotted

in Fig. 19, for some values of the shape parameter of the travelling-wave potential and
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their corresponding analytical results. It can be seen in this figure that, for r = 0, there is

a good agreement between numerical and analytical results. However, for r = −0.5 and

r = 0.5, one observes also an enough good agreement between numerical and analytical

solutions. It can be also seen, in this figure, that the efficiency of generating the force ηF

is generally an increasing function of the external load F . Specifically, this increase of the

efficiency in the travelling-wave potential is not only due to the external load and/or the

low temperature regime, but is largely affected by the shape parameter of the system.

For example, the maximum value of the efficiency ηF tends to 0.9435, 0.8979, 0.7438 for

r = −0.5, 0, 0.5, respectively, as shown in Fig. 19. If the load increases continuously, the

systems with positive shape parameter (r < 0) work efficiently even for large values of

the load F , before dropping rapidly at a critical value FMax. This value FMax of the force

represents, for each value of the shape parameter, the maximum value of the load that

can be supported by the system and beyond or above, no useful work can be performed

in the system any more. To gather insight on the influence of the shape parameter on

the capacity of the Brownian motor to convert energy against an external load in the

travelling-wave potential, Fig. 20a reports the maximum efficiency of generating force

ηF (Max) as a function of the shape parameter r, for the same set of parameters used in

Fig. 19. In Fig. 20b, the corresponding maximum values of the external load FMax is

depicted. It can be seen that ηF (Max) is a decreasing function of the shape parameter

r and tends to 0.94 as r tends to -0.8. The corresponding applied forces decrease also

as a function of the shape parameter r. In general, for a fixed value of the speed of the

travelling-wave potential and under the influence of the external load, the displacement

of a Brownian particle in the system with broad wells and sharp barriers, namely r < 0,

is done with a smaller loss of energy within the potential well. This implies a high effi-

ciency of generating the force for an applied load less than or equal to the critical value

FMax, depending on the value of the shape parameter r. Thus, in the travelling-wave po-

tential, broad well potentials favour the transport of Brownian particles in the presence

of an external applied load.
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(a) (b)

(c)

Figure 19: Efficiency of generating force as a function of F , for few values of the shape
parameter r, with D = 1, U = 60 and ω = 5.

(a) (b)

Figure 20: Maximum efficiency of generating force and maximum load F applied to the
system to generate force as a function of r. The simulation parameters are the same as
for Fig. 19.
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III.3.4 Efficiency of transport versus driving speed

In the absence of the external load, Brownian motor works in a viscous environment.

The efficiency of transport ηT of the Brownian motor is obtained from simulations of

Eqs. (41), (75) and Eq. (77) and is represented in Fig. 21 as a function of the travelling

potential speed ω, for few values of the shape parameter r of the system (r = -0.5, 0.0,

0.5), and for the following chosen set of parameters: U = 20, D = 0.5 and F = 0. This

figure shows that ηT is widely influenced by the shape parameter r in the presence of

Figure 21: Efficiency of transport as a function of the travelling potential speed for three
values of the shape parameter r, with U = 20, D = 0.5 and F = 0.

the travelling speed of the potential. Indeed, for r ̸= 0, the unloaded transport efficiency

of the Brownian particle remains equal to 1 up to a larger value of the travelling potential

speed. Up to a critical value of this travelling potential speed, any increase of the speed

leads to a monotonically decrease of the efficiency of transport to a nonzero constant

value. This critical value of the travelling potential speed increases with the absolute

value of the shape parameter r. In contrast to the case of the transport of Brownian

motor in the presence of an external applied load, where the efficiency is an increasing

function of the shape parameter r, the efficiency of transport evolves more or less the

same for both positive and negative values of r. But, the relevant point here is that even
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in the absence of any external load, the Brownian motor transport is more efficient in

systems with a deformed potential for large speed of the travelling wave potential.

III.3.5 Effective diffusion in the overdamped Brownian motion
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Figure 22: Schematic representation of the effective diffusion of the Brownian particle in
the overdamped regime as a function of the travelling speed ω for few values of r. The
other parameters are U = 20, D = 0.5, γ = 1.

The behavior of the effective diffusion coefficient of the Brownian particle Deff as a

function of the travelling speed of the deformable potential for different values of the

shape parameter r is investigated in the overdamped case. It exhibits a pronounced

”resonance” peak at ω = ωopt, for different values of the shape parameter r (see Fig. 22).

In fact, the presence of thermal fluctuations and/or the difference between the travel-

ling speed of the potential and the velocity of the surrounding medium may induce the

motion in the system, thus inducing the diffusion of a Brownian particle. The effective

diffusion is closely linked to the geometry of the system since peaks change when the

shape parameter varies from sinusoidal to nonsinusoidal case (see Fig. 22). For exam-

ple, the peak of the effective diffusion coefficient is approximatively equal to 5, 14, and

18 times the Einstein diffusion (D = kBT/γ) for r = 0,−0.5 and 0.5, respectively.
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III.4 Underdamped limit

III.4.1 Average velocity in the underdamped Brownian motion
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Figure 23: Representation of the average velocity as a function of ω, for different values
of the shape parameter r, in the underdamped case. The transport properties are con-
trolled by the shape parameter. The average velocity is higher for the negative value of
the shape parameter, r = −0.5 than the positive values, r = 0 and r = 0.5. Note also
that due to the presence of inertia, the potential energy is minimized. Other simulation
parameters are kBT = 0.56, γ = 0.4, and m = 1 .

In this Section, we use the same numerical method as in the previous section to study

the case in which the term mẍ is not neglected. The results of numerical simulations of

the average velocity of Brownian particles ⟨v⟩ as a function of the travelling speed ω of

the deformable potential are plotted in Fig. 23, while the corresponding Monte Carlo

error σ as a function of the traveling speed of the deformable potential ω is plotted in

Fig. 24. It should be noted that in the underdamped case, the weight of the Brownian

particle plays an important role in its displacement in the system. It helps to reduce the

height of the potential barrier, as well as the time of displacement of the Brownian parti-

cle in the system. We can say that the dynamical behavior of the system, which is more

regular, is controlled by the shape parameter r, as can be seen in Fig. 23. What is remark-

able in this case is the behavior of Brownian particles whose average velocity decreases

as the shape parameter r takes positive values. This behavior is contrary to what we
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Figure 24: Monte Carlo error representation in the underdamped case. Other simulation
parameters are γ = 0.4, kBT = 0.56 and m = 1.

observed in Fig. 14 in the case of overdamped Brownian motion. In fact, we notice that

in the overdamped case, more energy is needed for the Brownian particle to cross the

potential barrier. Thus, in the overdamped and underdamped Brownian motions, this

crossover energy depends strongly on the shape parameter r. Once the particle crosses

the potential barrier, there is a smooth decreasing of the energy provided by the potential

as ω increases and the Brownian particle slowly moves to a stable position where it oscil-

lates. This behavior is illustrated by the smooth decrease seen in Fig. 14. Meanwhile, in

the underdamped case, the influence of both inertia and damping contributes to lower

the potential barrier, so that when the particle crosses the barrier, it jumps quickly to the

equilibrium position (see Fig. 23). The Monte Carlo error plotted in Fig. 24 follows the

same behavior as ⟨v⟩, but it always remains lower. Thus, in both cases (overdamped and

underdamped), the Brownian particle moves in the directed direction. To gain good in-

sight into the motion of the Brownian particle in the deformed travelling-wave potential

in the underdamped case, we have plotted in Fig. 25 the maximum average velocity of

the Brownian particle as a function of the shape parameter r, for several values of m,

and the evolution of the average velocity obtained by direct simulation of Eq. (17) for m

= 1 (Fig. 26). It is shown in Figs. 25 and 26 that the error bars are much pronounced in

the underdamped case. However, in all cases, the maximum of ⟨v⟩ is a decreasing func-

tion of the shape parameter r. So, we observe that the maximum average velocity of
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Figure 25: Schematic representation of the maximum average velocity of the Brownian
particle as a function of the shape parameter r, in the underdamped case. Note here that,
contrary to the overdamped case, the average velocity decreases as the shape parameter
r evolves from negative values to positive ones.

Brownian particles increases when the mass of the system decreases, thus evolving into

the overdamped case, where the error bars are weak (see Fig. 25). This behavior of the

average velocity may be due to the complex displacement of the Brownian particle in

the system in the presence of inertia and thermal noise. These results are in good agree-

ment with the theory of the chaotic behavior in the system when inertia is taken into

account [206]. Moreover, we observe an abrupt decrease of the average velocity of the

Brownian particles as a function of the shape parameter r compared to the overdamped

case. One can say that the inertia has a positive influence on the transport properties of

the system since it reduces the effect of fluctuations in the system and controls the trans-

port properties. This behavior of the Brownian particle in the underdamped case could

be advantageous in the sense that even with lower energy, the unpinning of the system

may be possible, but due to the inertia, the cargo may or may not reach the target.
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Figure 26: Numerical simulation of the average velocity as a function of the shape pa-
rameter r, for different values of ω. We can see the decrease of the average velocity as
the shape parameter r evolves from negative values to positive values, for three values
of the travelling potential speed. We also remark that the form of these curves follows
the same shape as that of the Fig. 8. This decrease comes from the fact that the neces-
sary thermal energy for the particle to make a transition to the adjacent potential well is
less dissipated in the deformable potential with broad wells and narrow deep and the
particle in this case holds a necessary momentum to cross the potential barrier. Other
simulation parameters are kBT = 0.56, γ = 0.4 and m = 1.
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Figure 27: Plot of the effective diffusion Deff as a function of the travelling potential
speed ω for some values of shape parameter r (r = −0.5, r = 0, r = −0.5) as indicated in
the figure. Other parameters of simulation are U = 5, kBT = 0.56, γ = 0.4, and m = 1.
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III.4.2 Diffusion in the underdamped Brownian motion

In Fig. 27, we depict the effective diffusion as a function of the travelling-wave potential

speed ω, obtained numerically from Eqs. (17) and (31), for some values of the shape pa-

rameter r. Indeed, recent investigations have shown that under the effect of weak noise,

and regardless of the value of the friction coefficient, there can appear a giant enhanced

diffusion when the system undergoes an external constant load [7, 29, 207]. This is due

to the presence of the locked-to-running transition that takes place when the Brownian

particle diffuses on a one-dimensional periodic substrate and is subject to a weak tilt.

However, it has also been demonstrated through a Fokker-Planck equation that, in the

absence of external constant load, in the overdamped regime, a travelling-wave poten-

tial could induce a nonzero current ⟨ẋ(t)⟩ ≠ 0, if the total energy of the Brownian particle

is higher than that of the potential barrier [46]. Thus, when the particle drifts under the

force exerted by the potential, the random switches between locked and running states

also take place and causes an average spreading R(t) =
⟨
[x(t)− < xCM(t) >]2

⟩
of parti-

cles around its average position. In our case (see Fig. 27 for m = 1), this diffusion regime

is very pronounced for negative values of the shape parameter r, and thus, the optimum

values of the travelling-wave potential speed that can be generated by the shape param-

eter r are also higher for the negative values of r (deep barriers and broad wells) than the

positive ones. Moreover, for each peak corresponding to each value of the shape param-

eter r, there exists a value of ωopt for which the effective diffusion takes its maximum,

which is slightly higher than that of the transition (ωopt, for average velocity). Indeed,

for r = −0.5, ωopt = 6.3, Deffmax = 2.3181 × 104; for r = 0, ωopt = 5.3, Deffmax = 1.398 ×

104, and finally, for r = 0.5, ωopt = 4.4, Deffmax = 1.3158 × 104.

Next, we focus our attention on the effects of the shape parameter of the system on

the peak values of the diffusion of Brownian particles in the underdamped case and

the corresponding optimal deformable travelling-wave potential speed ωopt for several

values of m (m = 0.5, 1, 1.5).

To achieve this purpose, Fig. 28 represents two plots. In the upper panel of this fig-
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(a)

(b)

Figure 28: Maximum values of the effective diffusion for m = 0.5, 1, 1.5 of the Brownian
particle and the corresponding travelling potential speed ωopt, as a function of the shape
parameter r.
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ure, the maximum value of the effective diffusion of the Brownian particle as a function

of the shape parameter r is plotted for m = 0.5, 1, 1.5. In the lower panel, the corre-

sponding deformable travelling-wave potential speed ωopt as a function of the shape

parameter r is depicted for the same values of m. It can be seen in the upper panel of

this figure that the maximum value of the effective diffusion is a decreasing function of

the shape parameter r for m = 1 and 1.5. However, for m = 0.5, one notes an almost

parabolic behavior of the maximum diffusion. One should note that this case obviously

gets closer to the overdamped case. In the lower panel, the corresponding travelling

potential speed ωopt is also a decreasing function of the shape parameter r for all val-

ues of m. This behavior of the diffusion of the Brownian particle in the presence of the

deformable travelling-wave potential may be due to the fact that, when the potential

wells get narrow, the particle does not acquire the necessary space to cross the potential

barrier, and then finds it difficult to disperse in the system, involving also the decrease

of ωopt as the shape parameter evolves from negative to positive values. To completely
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Figure 29: Effective diffusion as a function of the shape parameter r for a particle moving
in the deformable travelling potential for some values of potential speed ω = 5, 5.3, 6,
with the parameters previously used.
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illustrate the behavior of the effective diffusion in the deformable medium, we plot, for

m = 1 the effective diffusion as a function of the shape parameter r, for some values of

the travelling-wave potential speed ω = 5, 5.3, and 6.3 (Fig. 29). When ω = 5 the red

curve presents a maximum at r = 0.2. For ω = 5.3, the blue curve presents a maximum at

r = 0. For ω = 6.3, the green curve shows a maximum at r = -0.5. As one might expect,

the effective diffusion in this last case is very pronounced compare to the previous ones.

This observation from numerical simulation corroborates effectively the previous obser-

vation, that is, in addition to the inertia term, the geometry of the potential, particularly

the flat bottom, enhances the effective diffusion.

III.4.3 Fokker-Planck treatment in the underdamped Brownian mo-

tion

In this subsection, an analysis of the distribution for various shape parameters r is pre-

sented. These distributions are plotted for r = −0.5, r = 0 and r = 0.5 at t = 1, 2, in

the phase space (x, v) and also, as the travelling potential speed is switched off (ω = 0).

Thus, by using the semi-analytic method (spectral method) developed in Chapter 2 as

well as the numerical method (Finite element method), for r = 0, we observe in Figs. 30

and 31, the presence of two narrow peaks corresponding to the minimum of the poten-

tial. For r = −0.5, we observe a large peak which also corresponds to the minimum of

the potential (see Figs. 32, 33). However, for r = 0.5, we observe a splitting of the num-

ber of peaks. Let us recall here that, the Fokker-Planck equation has been computed

over two periods, characterized by the presence of two peaks. Indeed, for r = −0.5,

the peaks are large compared to r = 0 and r = 0.5, respectively. This corresponds to

a large dispersion of particles inside the potential well, indicating that the particles are

spread out over a wider range of values due to the flat potential well and narrow barrier.

However, for r = 0.5, which corresponds to a narrow well and flat barrier, we observe

a splitting of the number of peaks which pass from two peaks to four peaks (see Figs.

34, 35). A similar behaviour is observed by adopting the semi-analytic method although

Ph.D. Thesis of Kepnang Pebeu Laboratory of Mechanics, Materials and Structures



Results and discussions 91

the two other peaks are not well visible. To explain all these behaviors, let us analyze

the different periods of oscillation of particles in different forms of potential. The period

of oscillation around the ground states in deformable potential is Tr = 2π/ωr, with ωr

= V ′′(x0), given by ωr = U(1+r)2

1+r2
. Thus, the oscillation periods for r = −0.5, r = 0 and

r = 0.5, are given by T1 = 10πU , T2 = 2πU and T3 = 1.11πU , respectively. In fact,

the time that the particles take in shrink potential well to perform oscillations is smaller

with respect to r = 0 and r = −0.5. For r = 0.5, as has been said before, the particles do

not acquire the necessary momentum to cross potential barrier to the adjacent well and

consequently, oscillate continuously around several equilibria position due to the ther-

mal energy, so that the metastable positions can take place leading to the appearance of

new extrema (multimodality) in the probability distribution.
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Figure 30: Approximate solution of the Fokker-Planck equation showing the distribu-
tion of the Brownian particle in deformable potential for r = 0 at t = 1. This case
reduces to the sine-Gordon case. The distribution exhibits two peaks corresponding to
two adjacent minima of the potential.
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Figure 31: Numerical simulation of the Fokker-Planck equation in deformable potential
for r = 0, obtained from the finite element method at t = 1.
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Figure 32: Approximate solution of the Fokker-Planck equation showing the distribu-
tion of the Brownian particle in deformable potential for r = −0.5 at t = 2. This case
also exhibits two modes corresponding to two adjacent minima of the potential.
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Figure 33: Numerical simulation of the Fokker-Planck equation in deformable potential
for r = −0.5, obtained from the finite element method at t = 2.
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Figure 34: Approximate solution of the Fokker-Planck showing the distribution of the
Brownian particle in deformable potential for r = 0.5 at t = 2. This case tends to split in
several modes.
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Figure 35: Numerical simulation of the Fokker-Planck equation in deformable potential
for r = 0.5 at t = 2, obtained from the finite element method. We observe a complete
splitting of modes which pass from two modes in previous cases to four modes. This
may be due to the metastable states that take place in the system, which is due to deep
wells potential and broad barriers.
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III.5 Transport properties of Brownian particles in the de-

formable potential in the presence of an external load

In this subsection, results on the dynamics and diffusion of the underdamped Brown-

ian particles are displayed and commented as a function of the shape parameter r, in

presence of an external load.

III.5.1 Bistable behavior of velocity of Brownian particles and its cor-

responding distribution

In Figs. 36-39, we have plotted the asymptotic long-time velocity of Brownian parti-

cles as a function of time for some values of the shape parameter, r = 0, r = −0.5 and

r = 0.5, for different mean thermal energy kBT , and external forces. We have associated

with these asymptotic long-time velocities v(t) their corresponding probability distri-

butions P (v). So, in Figs. 36 and 39, the behaviour of velocities of particles and the

probability distributions exhibit similar features. Indeed, in Fig. 36, we plot the veloc-

ity of Brownian particles and the probability distribution for r=-0.5, 0, and 0.5 for some

values of the mean thermal energy in the case kBT = 0.03 for r = −0.5, kBT = 0.02 for

r = 0, and kBT = 0.06 for r = 0.5. In Fig. 39, we represent the behaviour of velocities

and the probability distribution P (v) of particles for r=-0.5, 0, and 0.5 for f = 0.5. We

observe that for the given values of the mean thermal energy and external force, the dis-

tribution of particles P (v) boils down to a single-peaked Maxwell distribution, around

v ≈ 0. This indicates that for the three values of the shape parameter r, the particles

are mainly trapped in potential wells regardless the shape of the potential. The mean

thermal energy and external force provided to the system are not sufficient to making

the particles cross the potential barriers. In Fig. 37, for the three values of the shape pa-

rameter r and kBT < ω2
0 , the velocity exhibits a bistable behaviour as found in Ref. [29].

This behaviour is characterized by the presence of two discrete states, i.e, the locked

state, where, due to small forces, Brownian particles remain at the minima during large
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(a) (b)

(c)

Figure 36: Plot of transitions of Brownian particles, associated with the different transi-
tion distribution in the deformable potential, for three values of the shape parameter r:
r=-0.5, 0, and 0.5 for kBT = 0.06. We can see that the distribution probability exhibits
a single-peaked Maxwell distribution for all of the three values of the shape parameter
r. In these cases there exist only locked solutions due to the weak value of the mean
thermal energy. We used f = 1, for r = −0.5, f = 0.72, for r = 0, and f = 0.72, for
r = 0.5. The dissipation coefficient used is γ = 0.4.
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(a) (b)

(c)

Figure 37: Plot of transitions of Brownian particles, associated with the different transi-
tion distribution in the deformable potential, for three values of the shape parameter r:
r = −0.5, kBT = 0.06, f = 1 is given by the blue curve; r = 0, kBT = 0.04, f = 0.72
the red curve, while r = 0.5, kBT = 0.09, f = 0.72 is given by the green curve. The
dissipation coefficient is γ = 0.4
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(a) (b)

(c)

Figure 38: Plot of transitions of Brownian particles, associated with the different transi-
tion distribution in the deformable potential, for three values of the shape parameter r:
r=-0.5, 0, and 0.5 for kBT = 0.15. We can see that the distribution probability exhibits two
peaks for all of the three values of the shape parameter r. We used f = 1, for r = −0.5,
f = 0.72, for r = 0, and f = 0.72, for r = 0.5. The dissipation coefficient used is γ = 0.4.
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(a) (b)

(c)

Figure 39: Plot of transitions of Brownian particles, associated with the different tran-
sition distribution in the deformable potential, for three values of the shape parameter
r: r=-0.5, 0, and 0.5 for f = 0.5. We can see that the distribution probability exhibits
a single-peaked Maxwell distribution, because this value of the external force does not
allow particles to make transition from a well to another one, for the three values of the
shape parameter r. We used kBT = 0.06, for r = −0.5, kBT = 0.04, for r = 0, and
kBT = 0.09, for r = 0.5. The dissipation coefficient used is γ = 0.4.
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(a) (b)

(c)

Figure 40: Plot of transitions of Brownian particles, associated with the different transi-
tion distribution in the deformable potential, for three values of the shape parameter r:
r=-0.5, 0, and 0.5 for f = 1.5. We can see that upon increase of the external force, there
are more running solution that locked solutions. We used kBT = 0.06, for r = −0.5,
kBT = 0.04, for r = 0, and kBT = 0.09, for r = 0.5. The dissipation coefficient used is
γ = 0.4.
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sojourn with zero velocity, and the running state, where Brownian particles jump away

because of large forces. In general, under the action of an external load, the total periodic

potential tilts. Thus, for large forces f , the potential has no minima, and in this case, the

average velocity of particles saturates to the free particle value v0 = f/γ. With regard to

Fig. 37, different curves exhibit transitions from one bottom to another. These transitions

depend on the shape parameter r of the deformable potential. It should be noted that al-

though the three curves exhibit the phenomenon of bistability, this occurs with different

mean thermal energies and external forces for the three values of the shape parameter

r. For r = 0.5, kBT = 0.09, and f = 0.72, for r = −0.5, kBT = 0.04, and f = 1, one can

remark that the mean thermal energy, whose the Brownian particle needs to cross the

potential barrier, is high in the case of r = 0.5 than that of r = −0.5 and r = 0. Therefore,

for r = 0.5, Brownian particles are easily pinned at the one-site of the lattice and require

an extra thermal energy to perform transitions between the two discrete states, namely

the locked and running states. This is because, under the action of the inertia effect,

the potential with broad barriers and narrow wells exhibit large radiations coming from

the phonon bath. Consequently, Brownian particles do not acquire necessary transfer

momentum to overcome the potential barrier, hence require additional thermal energy.

Always in Fig. 37, by analyzing the probability distributions of the long-time veloc-

ity, we observe a fine asymmetry of the probability distribution for the three cases of

the shape parameter. It is also relevant to note that for the three values of the shape

parameter r, the distribution are nearly Maxwellian around v ≃ 0 [184, 208, 209]. For

r = 0.5 and r = −0.5, for a vanishingly small damping value, the transition threshold

is characterized by a bimodal distribution of the velocity with peak at v ≃ 0, describing

the locked state which indicates that the particles are mainly trapped in potential wells

for the deformed system, and v = f/γ ≃ 1.698 and v = f/γ ≃ 2.629, corresponding

to the free running Brownian particles pulled by the external force, respectively. How-

ever, for r = 0, the distribution probability P (v) exhibits three peaks. One should note

that this multi-modal form of the distribution probability was not expected. Indeed, we

connected, at the beginning, this result to the ”running” solutions. We therefore thought
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that by varying the parameters of interest of the system, the same behaviour could occur

for r = −0.5 and r = 0.5. It turned out that this conjecture is incorrect since, as we can see

in Figs. 38 and 40, by increasing the mean thermal energy of the system, we recover two

peaks for the three values of the shape parameter r, see Fig. 38. In Fig. 40, by increasing

the external force, there are more running solutions. We further checked the outcome

for the velocity distribution when reflecting barriers were placed at the maxima of the

potential. Under such constraint, we recovered as well the three-peaks structure. We

can assimilate this characteristic behaviour of the three peaks in the case r = 0 to the

nonlinear, anharmonic character of the corresponding well of the periodic asymmetric

sinusoidal potential.

III.5.2 Average velocity of Brownian particles

Figure 41: Average velocity of Brownian particles in deformable potential for some
values of the shape parameter: r = −0.5, r = 0, r = 0.5. Other parameter values:
kBT = 0.094, ω0 = 1.0, γ = 0.4.

The asymptotic average velocity of the particles, as a function of f , is illustrated in

Fig. 41, at fixed mean thermal energy kBT , for some values of the shape parameter r,

namely r=-0.5, 0, and 0.5. Qualitatively, the behaviour of particles does not change no

matter what the shape parameter r. Thus, in the three cases representing the different
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Figure 42: Contour plot of velocity showing how the force varies vs the shape parameter
with the same parameters previously used.

values of the shape parameter, the average velocity rises quickly as particles emerge

from wells, and settles to its steady state value in time. However, it should be noted

that the critical forces inducing transitions depend on the shape parameter r namely, all

velocities do not intersect at the same value of the external force. The critical force, which

is the force from which the particles cross the potential barriers for the different shape

parameters r, are given by fc ≃ 0.72, 0.74 and 0.98, for r = 0, 0.5 and -0.5, respectively. So,

the more the wells are flat, the critical force is high as it is illustrated in Fig. 42, showing

the different critical forces as a function of the shape parameter. Indeed, the external

force f determines the degree of tilt (asymmetry) of the effective deformable potential

U(x, r), and therefore, dominates the direction of movement of Brownian particles. The

dynamics of the average velocity can be understood also by considering the magnitude

of the slope of the potential. Thus, beneath the action of f , the slope of the potential with

broad wells and narrow barriers is higher compared to the potential with narrow wells

and broad barriers. Therefore, the Broad wells activate the inertia effects, which gives

impetus for particles to cross the barrier. The higher average velocities indicate also

that the energy of the system grows monotonically as the system deforms away from a

specified shape and often includes terms that constrain the smoothness or symmetry of

the model.
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Figure 43: Average velocity of Brownian particles in the deformable potential as a func-
tion of the shape parameter for some values of the external load: f = 0.72, f = 0.74,
f = 0.98. Other parameter values: kBT = 0.094, ω0 = 1.0, γ = 0.4.

For a fixed value of the dissipative friction coefficient, we have plotted, in Fig. 43, the

average velocity of Brownian particles as a function of the shape parameter r, for some

values of the external force, namely f = 0.72, 0.74, and 0.98. Globally, the average ve-

locity of Brownian particles is an increasing function of the negative values of the shape

parameter corresponding to the potential with broad wells and narrow barriers, while it

is the decreasing function of the positive values of the shape parameter corresponding to

the potential with narrow wells and broad barriers for different external forces. In fact,

for values 0.72 and 0.74 of the external force, the average velocity of Brownian particles

behaves like an exponential law as a function of the shape parameter r. This shows that

the average velocity of Brownian particles increases when increasing the shape param-

eter r, reaches a maximum corresponding to an optimal value of the shape parameter

ropt ≃ 0.2, and then, decreases back to zero at the large values of the shape parameter r

corresponding to the shrinking of the potential wells. While for f = 0.98, the average

velocity of Brownian particles increases until a value of the shape parameter r ≃ −0.45

and saturates until a value of the shape parameter r ∼ 0.6. From this value of the shape

parameter, the external force combined to the thermal energy no longer allows the parti-

cles to cross the potential barrier. ropt ≃ 0.2 is the value of the shape parameter for which
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the forces 0.72 and 0.74 easily induce a transition, allowing the particles to perform the

directional motion towards the right.

When the particles cross the wide potential wells to the narrow potential wells, there is

a decrease of the energy of the system due to the radiation at an on-site potential of the

lattice associated with the dissipative force. This favors the slow down of the average

velocity of Brownian particles, so that they oscillate at the bottom of the potential wells,

which are quite narrow, being damped by the radiation and the friction coefficient. Un-

der such effects, particles require additional thermal energy and/or an increase of the

external force, which will allow them to jump the potential barrier such as after each

jump. The system is allowed to relax before the next jump takes place. The potential

with broad wells and narrow barriers facilitates sliding of the Brownian particles, be-

cause the particle acquires easily the necessary momentum to cross the potential barrier.

This potential, whose the shape changes, could appear useful for optimization of the

directed transport, controlling the motion of Brownian particles in order to improve the

conductivity in some artificial devices according to the shape parameter.

III.5.3 Effective diffusion coefficient of Brownian particles

(a) (b)

Figure 44: (a) The effective diffusion coefficient of Brownian particles as a function of the
external force for r = 0. (b) The effective diffusion coefficient of Brownian particles as a
function of the external force for r = 0.5 and r = −0.5. The effective diffusion coefficient
for three values of the shape parameter grows many order of magnitude when the shape
of the potential varies. Other parameter values: kBT = 0.094, ω0 = 1.0, γ = 0.4.
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(a) (b)

Figure 45: Three dimensional representation of the effective diffusion coefficient as a
function of thermal energy and the external force, for r = 0, 0.5 and −0.5. The effective
diffusion coefficient decreases with the temperature of the system. Other parameter
values: ω0 = 1.0, γ = 0.4.

In Fig. 44, the effective diffusion coefficient of Brownian particles is plotted as a

function of the external force for some values of the shape parameter r. In Fig. 44a, the

effective diffusion coefficient is plotted for r = 0, while in Fig. 44b, the effective diffu-

sion coefficient is plotted for r = 0.5 and r = −0.5, respectively. Indeed, in the periodic

system [29, 205, 207, 210, 211], the effective diffusion coefficient in the underdamped

limit grows several orders of magnitude in a particular domain of the external force f

and meanwhile, becomes larger at smaller values of the temperature of the system. This

is due to the locked-to-running transition that takes place in the system when the Brow-

nian particle diffuses on a 1D periodic substrate potential and is subject to a macroscopic

gradient of the potential and/or temperature. As is shown in Fig. 44, for the three cases

of the shape parameter r, the geometry of the system induces an enhancement diffusion,

albeit the value of the temperature of the system and the peaks in the effective diffusion

coefficient Deff versus the force f which is detectable in the vicinity of the transition

force fc, and which is a function of the shape parameter r. For r = 0, the critical force is
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(a) (b)

(c)

Figure 46: Plot of the transition of Brownian particles, associated with the different tran-
sition distribution in the deformable potential, for three values of the shape parameter
r: r=-0.5, 0, and 0.5. For r = −0.5, f = 0.98, for r = 0, f = 0.72, and for r = 0.5, f = 0.74.
As we can see, for their critical force, there are more transitions between locked and run-
ning states for r = 0 and r = −0.5 than r = 0.5. This moderate amount of occurrence of
transitions in the case r = 0.5 promotes an excess diffusion peak.
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given by fc = 0.72, for r = 0.5, the critical force is given by fc = 0.74 and for r = −0.5,

the critical force is given by fc = 0.98. We observe that the value of the external force

is higher for the deformable potential with broad wells and narrow barriers compared

to the sine-Gordon shape potential (r = 0), and the deformable potential with narrow

wells and broad barriers. However, the effective diffusion coefficient is rather more pro-

nounced for the deformable potential with narrow wells and broad barrier compared to

the two other cases, i.e. r = 0 and r = −0.5. For r = −0.5, r = 0 and r = 0.5 the values

of the threshold diffusion or the maximum diffusion are given by Dth = 1.2181 × 103,

Dth = 80.4582, and Dth = 4.154× 103, respectively. These threshold values do not occur

at the same critical forces. In order to explain the origin of the excess peak diffusion of

r = 0.5, we have plotted the Fig. 46. In fact, the presence of peak in the effective dif-

fusion results from equiprobability between the locked and running states. In this case,

the excess diffusion peak may stem from the number of transitions locked-to-running

state. So, the diffusion will be higher if and only if the number of transition between the

locked and running states is low, see Fig. 46.

In Fig. 45, the effective diffusion coefficient as a function of the mean thermal energy

and the external force is plotted. It is clearly seen that the effective diffusion coeffi-

cient decreases and goes to 0 when the temperature of the system increases. Indeed, for

|f | < fc, for the three cases of the shape parameter, the effective diffusion coefficient

enhances when the temperature T → 0 [29, 207, 210, 211, 205]. So, the interplay between

the shape of the potential and the temperature of the system contributes either to lower

or enhance the effective diffusion coefficient according to the shape parameter. Com-

ing back to Fig. 44, for f outside the range |f | < fc, the effective diffusion coefficient

decreases to 0 and we single out two cases: (i) the case of strong diffusion indicating

the incoherent transport (strongly diffusive); (ii) the case of coherent transport (reliable

directed) [7, 29, 210]. For r = -0.5, since the critical force is higher, compared to both

other cases, this case exhibits a reliable transport for an enough long-range of the exter-

nal force. The deformable potential with the narrow wells and broad barrier requires

from Brownian particles a large quantity of thermal energy to cross the potential bar-
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rier, indicating that the thermal energy of the system is quickly dissipated. However,

the interaction between the external force, the inertia term and the damping, lead to an

enhancement of the effective diffusion.

To fully characterize the role of the shape parameter of the system on the effective

diffusion coefficient of Brownian particles, we focus our attention on the dependence

of the peak values of the effective diffusion coefficient and the corresponding threshold

fc on the shape parameter. To achieve this, Fig. 47 has been plotted. In Fig. 47a, the

maximum effective diffusion coefficient of Brownian particles Dth, as a function of the

shape parameter r, is plotted, while the corresponding threshold fc, as a function of the

shape parameter r, is presented in Fig. 47b. By looking at the Fig. 47a, we remark that

in the deformable potential, the threshold values of the effective diffusion as a function

of the shape parameter have an almost parabolic behaviour. Thus, we can write

Dth ∝| r |α, (166)

with α ≃ 2. For r > 0, corresponding to the potential with broad barriers and narrow

wells, the maximum effective diffusion coefficient increases. The more the deformable

potential wells get shrink, the more the thermal energy of the system dissipates, which

reduces the transition leading a giant enhancement diffusion. However, for r < 0, the

maximum effective diffusion coefficient increases when the potential wells get large,

showing that the trays effect also favors the diffusion of Brownian particles. In general,

the critical force fc is a decreasing function of the negative values of the shape parame-

ter, as illustrated in Fig. 47b. For the positive values of the shape parameter r, the critical

force is an increasing function of the shape parameter r. This indicates that the increase

of the effective diffusion is accompanied of the increase of the critical force. Finally, in

Fig. 48, we plot the effective diffusion coefficient as a function of the shape parameter

r, for some values of the external force f. We observe that regardless the value of the

external force, the effective diffusion coefficient grows for several orders of magnitude

for r > 0. We also notice that for each value of the external force f, the effective diffusion
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(a)

(b)

Figure 47: (a) Maximum values of the effective diffusion coefficient vs the shape pa-
rameter r. (b) Critical force of the system as a function of the shape parameter. Other
parameter values: kBT = 0.094 ω0 = 1.0, γ = 0.4.

Figure 48: The effective diffusion coefficient as a function of the shape parameter r for
some values of the external force: f = 0.72, 0.74 and 0.98. Other parameter values:
kBT = 0.094, ω0 = 1.0, γ = 0.4.
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coefficient grows, and is centered at some specific values of the shape parameter, corre-

sponding to the values for which the giant enhancement diffusion occurs. Hence, for f

= 0.72, Dth = 6.635× 103, rc≃ 0.6, for f = 0.74, Dth = 1.3862 ×104, rc ≃ 0.64. However, for

f = 0.98, there are two values of the shape parameter r for which the effective diffusion

gets its maximums i.e., rc1 = −0.5 and rc2 = 0.75. The threshold diffusion for these two

values of the shape parameter are given by Dth = 1.2181 ×103 and Dth = 3.922 ×104 for

rc1 = −0.5 and rc2 = 0.75, respectively. f = 0.98 represents the critical force for r = −0.5

and 0.75. The result obtained in Fig. 48 further agrees with what has been said before,

namely the geometry of the system induces a giant enhancement diffusion no matter the

temperature of the system.

III.6 Conclusion

In this chapter, we have presented the numerical results obtained from the theoretical

treatment of Brownian particles presented in chapter two. First of all, the dynamics of

Brownian particles in the travelling-wave deformable potential has been discussed. We

have found that the shape parameter of the system plays a significant role on the dy-

namics. So, the average velocity of Brownian particles in the overdamped limit is an

increasing function of the shape parameter. We have shown analytically and numeri-

cally that the efficiency of a generating force and the transport are linked to the shape of

the system.

In the underdamped limit, despite the complex behavior of Brownian particles due

to the presence of mass associated with friction, the transport properties of particles are

more controlled. Also, the underdamped Brownian motion of particles in a deformable

potential in response to a constant external force has been commented. Thus, we have

shown that, for the negative values of the shape parameter (r < 0), the average velocity

versus the external tilting of Brownian particles is optimized, while for the positive val-

ues (r > 0), the average velocity of Brownian particles collapses. We have found as well

the effective diffusion coefficient of Brownian particles evolves according to a power law
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in terms of the shape parameter r.
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General Conclusion and Perspectives

In this thesis, we have studied the dynamics of Brownian particles both in the travelling-

wave deformable medium, taking into account a white-noise source. Two aspects of the

dynamics have been examined: the case without inertia (the overdamped case), and

the case with inertia (the underdamped case). We have also studied the underdamped

Brownian motion in a tilted deformable potential, which is obviously more realistic and

flexible for possible applications in condensed matter physics, in the presence of white

thermal noise source.

The deformable model goes a modest step towards the real modelization of systems

in the directed transport of the overdamped Brownian motor and provides useful trends

and general understanding. In particular, it has been shown that in the absence of an

external load, the critical value of the travelling potential speed ω for which the aver-

age velocity of the Brownian particle is maximal and where unpinning occurs does not

only depend on the intensity of the noise as previously stated, but is also a function of

the shape of the system. In fact, in the presence of the travelling-wave potential, the

average velocity of the Brownian motor takes its maximum for each value of the shape

parameter of the system in its range of variation. We have focused our attention on the

statistical properties of Brownian particle motion (average velocity, Monte Carlo error

bars, effective diffusion, and distribution) in the deformable travelling-wave medium.

It was revealed that in the presence of the deformable travelling-wave potential, in the

overdamped as well underdamped Brownian motions, each maximum value of the av-

erage velocity of Brownian particles is a function of the shape parameter r. In the over-

damped limit, focusing mainly on the role of the geometry of the system on the ability

of Brownian motor to transform the energy received into useful work for its function-
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ing in the presence of the travelling wave speed, numerical results of the efficiency of

generating force and the efficiency of transport of the directed Brownian motor were

presented. It has been found out that these dynamical quantities are directly linked to

the shape of the system. Especially, systems with broad wells and sharp barriers (r < 0)

are more efficient than those with the shape parameter r > 0. Even though the efficiency

in the presence of external load is lower in the case where r > 0 than in the case with

r = 0, it is always advantageous to choose the deformed shape since in both r > 0 and

r < 0 cases, the system can support an external load higher than in the situation where

r = 0. Thus, the whole range of variations of the shape parameter must be taken into

account in the modelization and the study of such stochastic systems in the presence of

the travelling wave potential. In the absence of any external load force, systems with

deformable shape are more efficient even at high travelling potential speeds compared

to the case of the sinusoidal potential. The width of the velocity range where the effi-

ciency remains equal to 1 becomes larger with increasing absolute value of the shape

parameter r. We find that, in the underdamped limit, even in the presence of the de-

formable travelling-wave potential, the average velocity needed for the Brownian parti-

cle to cross the potential barrier, for each value of the shape parameter, is always smaller

in the underdamped case. The Brownian particles are increasingly affected by inertia

and also by damping. Comparing the behavior of the Brownian particle in both cases,

the maximum average velocity values increase with the shape parameter r in the over-

damped case, while in the underdamped case, the transport properties are controlled

by the shape parameter r, i.e., the average velocity of Brownian particles increases when

the potential wells broaden. When the deformable travelling potential speed increases,

the Brownian particle experiences significant reverse motion, and it is almost at rest very

quickly compared to the overdamped case. Moreover, we have observed that the inter-

play between the mass, the noise, and the force generated by the potential can lead to

complex behavior of Brownian particles. Monte Carlo error bars have confirmed the

directed motion of the Brownian particle in the overdamped and underdamped cases.

It has also been shown that in the absence of any external load, the system in both the
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overdamped and underdamped cases undergoes an enhancement diffusion. Indeed, in

both cases, the effective diffusion is always greater than that of Einstein, regardless of

the shape parameter r. Moreover, in the underdamped case, we have observed a “gi-

ant” enhancement diffusion induced by the geometry of the system. Then, the particle

diffuses more freely in the deformable potential with r < 0 compared to r > 0, due to

the presence of the mass of the Brownian particle. However, in the overdamped case,

the effective diffusion exhibits a peak for different values of the shape parameter r, and

these peaks are less pronounced compare to the underdamped case.

We have also shown numerically and by the semi-analytical method, through the

Fokker-Planck equation in the free underdamped case (absence of any external load),

that the distribution can present several modes for positive values of the shape parame-

ter. This comes from the fact the metastable states can take place in the system, while for

the negative value of the shape parameter and the sine-Gordon case (r = 0), the birth

of each mode obviously corresponds to a minimum of the potential, although for r < 0,

the distribution is very large. Generally, dynamical properties of the Brownian motor in

the symmetric deformable potential, in the presence of the travelling-wave, are dictated

by the deformed shape of the potential.

In the tilted deformable potential, i.e., in the presence of an external load, based on

the dynamics of the system described by the Fokker-Planck equation, we have numeri-

cally computed the effective diffusion coefficient via the dynamic structure factor of the

system using the matrix-continued-fraction method. It has been proven that due to the

geometry of the system, many new effects occur in the transport process of the geom-

etry of the system and is enhanced in a finite range of forces, that is also well within

the region of bistability of the deterministic velocity dynamics, independently from the

temperature. For r > 0, the diffusion coefficient intensifies and is more pronounced than

when r = 0 and r < 0, which indicates a strong concentration of particles at a one site of

the potential.

Many theoretical and practical studies of Brownian particles are modelled in the si-

nusoidal shape potential. As we said earlier, the deformable potential brings systems
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close to realistic situations. So, the experimental work aiming at verification of different

theories exhibited in this thesis are among our future objectives. These experimental

studies on the deformable potential could help to improve the conduction in superi-

onic conductors, giving that the average velocity of Brownian particles in this type of

potential is higher than the sinusoidal one.

In this thesis, we have analyzed the dynamics of Brownian particles when they are

exposed to white noise source. Despite significant results that we have found, it would

be relevant to study the dynamics of these particles in the presence of many other exter-

nal noises source such as the color noise, the non-Gaussian noise source. It is important

to recall that the color noise is a generalization of the Gaussian noise, which is contrary

to white noise, is correlated in time and tends to the white noise when its relaxation time

goes to zero.

It would be relevant to study the fractional dynamics, as well on the time as on the

noise in the presence of the deformable potential. Generally, it is assumed that the frac-

tional order derivation is useful for a better description of real phenomena. Similarly,

the fractional Brownian motion is a popular model for both short-range dependent and

long-range dependent phenomena in various fields, including physics, biology, hydrol-

ogy, network research.

Using large deviation theory, it would be relevant to explore current fluctuations of

underdamped Brownian motion for the paradigmatic example of a single particle in a

deformable periodic potential. On long time scales, the fluctuating particle current is

directly connected to the entropy production and its fluctuations, which plays a central

role in stochastic thermodynamics. The arguably best framework for studying fluctua-

tions on large time scales is provided by the theory of large deviations, which defines

the so-called large deviation function that characterizes the exponential decay in the

probability of atypical fluctuations.
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[141] Jind-Dong Bao, Yan Zhan, and Kun Lü, ”Anomalous diffusion in periodic potentials un-

der self-similar colored noise”, Phys. Rev. E 74 , 041125 (2006).

[142] R. Hegadi, A. Kop, and M. Hangarge, ”A Survey on Deformable Model and its Applica-

tions to Medical Imaging”, Special Issue on RTIPPR (Recent Trends in Image Processing and

Pattern Recognition (IJCA, 2010), p. 64.

[143] D. Terzopoulos and K. Fleischer, ”Deformable models”, Visual Comput. 4, 306 (1988).
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[174] M. V. Smoluchowski,”Über Brownsche Molekularbewegung unter Einwirkung äuerer
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[180] M. Büttiker, E. P. Harris, and R. Landauer, ”Thermal activation in extremely underdamped

Josephson-junction circuits”, Phys. Rev. B 28, 1268 (1983).

[181] J. H. Weiner and R. E. Forman, ”Rate theory for solids. IV. Classical Brownian-motion

model”, Phys. Rev. B 10, 315 (1977).

[182] B. Cartling, ”Kinetics of activated processes from nonstationary solution of the Fokker-

Planck equation for bistable potential”, J. Chem. Phys. 87, 2638 (1987).

[183] P. Moore, J. Flaherty, Adaptive local overlapping in two space dimensions, J. Comp. Phys.

98, 54 (1992).

[184] H. D. Vollmer, H. Risken, ”Distribution Functions for the Brownian Motion of Particles in

a Periodic Potential Driven by an External Force”, Z. Physik B 34, 313 (1979).

[185] P. Jung, ”Periodically driven stochastic systems”, Phys. Rep. 234, 175 (1993).

Ph.D. Thesis of Kepnang Pebeu Laboratory of Mechanics, Materials and Structures



Bibliography 132

[186] T. Chen, Ms. Sci., ”A theoretical and numerical study for the Fokker-Planck equation,

Simon Fraser University”, 1992.

[187] T. Tang, S. Mckee, M. W. Reeks, ”A spectral method for the numerical solution of a kinetic

equation describing the dispersion of small particles in a turbulent flow”, J. Comput. Phys.

103, 2 (1992).

[188] R. Ferrando , R. Spadacini, G. E. Tommei, G. Caratti, ”Time scales and diffusion mecha-

nisms in the Kramers equation with periodic potentials”, Physica A 195, 506 (1993).

[189] R. Ferrando, R. Spadacini, G. E. Tommei and A. C. Levi, ”Diffusion in classical periodic

systems: The Smoluchowski equation approach”, Physica A 173, 141 (1991).

[190] R. Ferrando, R. Spadacini and G. E. Tommei, ”Theory of classical diffusion in two dimen-

sional periodic systems”, Surf. Sci. 251 773 (1991).

[191] J. Wilemski, ”On the derivation of Smoluchowski equations with corrections in the classi-

cal theory of Brownian motion”, J. Stat. Phys. 14, 153 (1976).
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h i g h l i g h t s

• Directed transport of Brownian motors in deformable potential.
• Influence of the travelling wave speed on the dynamics of the system.
• The efficiency of generating the force is affected by the geometry.
• The travelling wave speed favours the transport in deformed systems.
• It is always advantageous to consider the whole range of the shape.
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a b s t r a c t

The directed transport in a one-dimensional overdamped, Brownian motor subjected to a
travelling wave potential with variable shape and exposed to an external bias is studied
numerically. We focus our attention on the class of Remoissenet–Peyrard parametrized
on-site potentials with slight modification, whose shape can be varied as a function of a
parameter s, recovering the sine–Gordon shape as the special case. We demonstrate that
in the presence of the travelling wave potential the observed dynamical properties of the
Brownianmotor which crucially depends on the travelling wave speed, the intensity of the
noise and the external load is significantly influenced also by the geometry of the system. In
particular, we notice that systemswith sharp wells and broad barriers favour the transport
under the influence of an applied load. The efficiency of transport of Brownian motors in
deformable systems remains equal to 1 (in the absence of an applied load) up to a critical
value of the travelling wave speed greater than that of the pure sine–Gordon shape.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the studies on Brownian motion, the perpetual irregular motions exhibited by small grains or colloidal particles of
micrometric size maintained by the collisions with the molecules of the surrounding fluid can be probed. Examples of such
Brownian particles are molecular motors such as kinesins whose importance is known in living biological cells and which
have led to a great number of theoretical and experimental works in recent years [1–5]. Particularly, many experimental
studies have been performed recently in the domain of living cells and showed the emergence of the anomalous diffusion;
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the relevant behaviour in these works is that although the mean displacement of the tracking particle is not linear, but
random, its resulting motion is directed [4, and Refs therein]. The transport of Brownian particles along periodic structures
in the apparent absence of any external driving forces, generally termed Brownianmotor has been extensively studied [6–9].
Specifically, noise induced transport by Brownian motors or ‘‘rachets’’ has attracted the attention of an increasing number
of researchers due to possible applications in many different contexts of physics, chemistry and biology [10–12].

The vast majority of works on Brownian motors is done in systems based on the standard sinusoidal potential and,
concentrates on the behaviour and the selective control of the emerging directed transport as a function of parameters
of the system such as temperature, energy barrier, or some other control variable. It is well known that under variation
of some physical parameters such as temperature and pressure, certain physical systems may undergo changes which are
either shape distortions, variation of crystalline structure or conformation changes. Thus, the standard sinusoidal potential
used for modelling soft systems is interesting, but appears as a severe approximation because of the rigidity of its shape.
In solid state physics deformable shape potential, which retrieves sine–Gordon shape as a special case has been employed
widely and successfully to model the dynamics of systems in several realistic situations [13–17]. For example, recently, it
has been revealed through the study of synchronization and information transmission in spatio-temporal networks that
the final state of Frenkel–Kontorova oscillators was highly dependent on the initial conditions due to the shape of the
system [18]. Similarly, it has been shown that the variations of the shape parameter affect significantly and not trivially
the existence and the robustness of the velocity ‘‘quantization’’ phenomena [17]. Although the role of the shape parameter
of the on-site potential is known in solid state physics, there exist only few information on its behaviour in soft condensed
matter and biological systems [19–21]. Particularly in Refs. [20,21], the authors studied, the directed transport in asymmetric
deformable systems and showed that there exists a value of the shape parameter at which the current takes its maximum.
In those works, the only interest was the dependence of the current on the shape parameter of the system. In addition to
the average drift velocity and/or current, each motor is characterized by the efficiency of converting the energy introduced
by perturbations into useful work [2,22–24]. Moreover, the notion ‘‘travelling wave’’ introduced by Borromeo et al. [25] in
their study of Brownian surfers where they showed its influence on the dynamics of an underdamped Brownian particle
and used later by Li et al. [22] may also be considered.

In the present paper, the directed transport of Brownian particles in a travelling wave symmetric potential subjected to
static bias is studiednumerically. The generalization of the results [22]where the study of the influence of the travellingwave
potential on the dynamical properties of Brownian particles for the shape parameter s = 0 is done bymodelling the system,
rather than with a standard sinusoid potential, but with the Remoissenet-Peyrard (RP) potential (with slight modification),
whose shape can be varied continuously as a function of a shape parameter, and which acquires the sinusoidal shape as a
special case [26,27]. Particular emphasis is laid on finding how the shape parameter of the system influences the directed
transport in the case of symmetric travelling wave potential.

2. The model

Consider a one-dimensional Brownian particle with spatial position x(t), γ the viscous friction constant which takes into
account various sources of dissipation in the substrate (electronic excitations, phonons, etc.) and fluid (viscosity), subjected
to an external static force or load F , plus a random thermal noise ξ(t). In extremely small systems, particles dynamics and
fluctuations occurring in biological and liquid environment are well described by the overdamped Langevin equation

γ
dx
dt

= −
dV (x − vt, s)

dx
− F + ξ(t), (1)

where the coupling between Brownian particles and the thermal bath is represented by ξ(t), a standard Gaussian white
noise of zero average and correlation


ξ(t)ξ(t ′)


= 2Dδ(t − t ′), with D = kBT/γ the noise intensity. Throughout this work,

γ is set equal to one. The travelling wave potential V (x − vt, s) is assumed to be the RP potential with slight modification
[26,27] written as

V (x − vt, s) = U


(1 + s)2 [1 − cos (x − vt)]
1 + s2 − 2s cos (x − vt)

− 1


, |s| < 1. (2)

The quantity U and v are respectively the amplitude and the driving speed of the deformed travelling wave potential. In the
absence of the driving speed (v = 0), Fig. 1 represents the deformable substrate potential V (x, s) for a few values of the
shape parameter s. For s = 0, the potential V (x, s) yields a sinusoidal shape, for s < 0, a shape of broad wells separated by
narrow barriers, and for s > 0, a shape of deep narrow wells separated by broad gently sloping barriers (see Fig. 1).

It is well known that this stochastic process can be recast in terms of the probability density p(x, t) which satisfies the
Fokker–Planck equation [10]

∂p(x, t)
∂t

= −
∂

∂x


−

∂V (x − vt, s)
∂x

− F − D
∂

∂x


p(x, t). (3)
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Fig. 1. The schema of the travelling wave potential, illustrated below for v = 0 and for three values of the shape parameter s = −0.5, 0, s = 0.5.

Assuming that the x motion is restricted to a periodically repeated segment length 2π , we apply the following periodic
boundary condition and normalization condition,

p (x + 2π, t) = p (x, t) , (4) 2π

0
dxp (x, t) = 1. (5)

In the study of small micro- or even nano-machines operating far from thermal equilibrium by extracting the energy
from both thermal and non-equilibrium fluctuations in order to generate work against external loads, one usually refers to
quantities such as the average directed velocity, the efficiency. Here, our aim is to obtain the analytical link between themost
important transport quantity, which is the average directed velocity ⟨v⟩ of the Brownian particle, where v = v(t) denotes
the stochastic process dx

dt in Eq. (1), and other parameters of the system. By setting p (x, t) = p (x − vt) following the form of
the travelling wave potential, the Fokker–Planck equation (3) can be solved using the periodic boundary condition equation
(4) and normalization condition equation (5). Using the same procedure as in Ref. [22], the probability density of Brownian
particles reads

p (x − vt) =
1
Z

 2π

0
dα exp


1
D

 
V (α + x − vt, s) − V (x − vt, s) + (F + v)α


, (6)

with the normalization constant Z given by

Z =

 2π

0
dα

 2π

0
dx exp


1
D

 
V (x + α, s) − V (x, s) + (F + v)α


. (7)

This probability density (Eq. (5)) allows to obtain the average directed velocity of the Brownian particle written as follows
[11,22]

⟨v⟩ = v + 2πC, (8)

where C is a constant depending on the parameters of the system and is given by

C =
D (1 − exp ((2π/D)(F + v))) 2π

0 dα
 2π
0 exp

 1
D


(V (x + α, s) − V (x, s) + (F + v)α) dx

. (9)

It is clearly seen that the average directed velocity of the Brownian motor is directly related to the travelling potential
speed v but also depends on the shape of the system, the intensity of the noise and the external load through the
constant C .

To optimize the effectiveness of the Brownian motor motion, we must introduce a measure for the efficiency η that
account for velocity fluctuations. Assume that the Brownian motor works against an external force F not yet defined. The
efficiency of a machine η is defined as the ratio of work E = F ⟨v⟩ τ against this external force and the input energy Ein,
that is, η = E/Ein, where τ is the period of time of observation. For a Brownian motor working against a constant external
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load force F , the same definition of efficiency can be used to define the efficiency of generating force or energy conversion
[11,22,28,29]; that is

ηF =
F ⟨v⟩ τ

Ein
. (10)

This characterization leads to a vanishingmeasure of efficiency in the absence of the external force F . Inmany cases, such
as protein transport within a cell, the Brownian motor works at zero force regime (F = 0) in a viscous environment. In fact,
in the presence of the dissipation γ , the force needed to displace a particle over a distance is proportional to its velocity. In
this case, for a defined period of time τ , the transport is accomplished at an average motor velocity ⟨v⟩ and the necessary
energy given is finite. Thus, by putting for F the average viscous force γ ⟨v⟩, we can then define the efficiency for transport
as follows

ηT =
γ ⟨v⟩

2 τ

Ein
. (11)

The average input energy for a Brownianmotor in a period of time τ(τ = 2π/v) can be evaluated as in Ref. [22] and is given
by

Ein = 2π (F + ⟨v⟩) . (12)

Using Eq. (12), the efficiencies for generating force ηF and for transport ηT can be deduced accordingly.
For convenience, to take into account the effects of the full noisy environment of the Brownian motors on its dynamical

properties, we perform a direct numerical simulation of Eq. (1). For numerical simulations, the stochastic Runge–Kutta
algorithm of order 4 [30,31]. The initial position x(t = 0) = 0 is used. At time t = 0, the Brownian particle is considered
at rest at the bottom of the potential well. To improve accuracy and minimize statistical errors 105 to 106 realizations are
considered. In order to provide the requested accuracy of the system dynamics time step is chosen to be between 10−3 and
10−5. The average particle velocity is done over time.

3. Results

3.1. Velocity-driving speed behaviour

Fig. 2 depicts the driving speed–velocity characteristics of the non-equilibrium Brownian motor defined by Eq. (1). This
average velocity of the Brownianmotor is obtained by direct numerical integration of Eq. (1). In this figure, it is noted that the
general evolution of the average velocity is the same for different shapes of the travelling potential. Indeed, in the absence of
an external applied load (F = 0), the average velocity of the particle ⟨v⟩ increases in speed v up to a critical value vun named
the unlocking speed of the system, depending on the shape parameter s and then decreases monotonically to a nonzero
value as the driving speed increases. In general, in the system, the potential advances with the travelling speed v when the
particle motion due to the force generated by the potential barrier lags behind.When v is less than or equal to the unlocking
speed of the system vun, the particle is pinned in one potential well and moves along at the full speed of the travelling wave
potential. As the travelling potential speed increases (v > vun), the driving force generated by the potential energy becomes
large enough and the particle jumps in the next potential well. Continuously increasing the travelling potential speed v leads
to a backward and forward movement of the Brownian particle, leading to a decrease of the average velocity to a nonzero
value due to very few back-turns. It is important tomention that themaximumvalue of the average velocity of the Brownian
particle that can be generated by the potential barrier has an intrinsic link to the shape parameter of the travelling potential.
In fact, when the absolute value of the shape parameter of the system increases, the unlocked value of the driving force due
to the potential energy increases too. This increase matches with an increase of the unlocking speed vun and consequently
to an increase of the corresponding average velocity of the particle as shown in Fig. 2.

3.2. Differences vun − ⟨v⟩max and ⟨v⟩max(s) − ⟨v⟩max(−s) versus shape parameter

To fully characterize the role of the shape parameter of the system on the dynamics of Brownianmotor in the presence of
the travellingwave potential, our attention is focused on themost important feature of Fig. 2 which is the dependence of the
peak values of the average velocity ⟨v⟩max and the corresponding unlocking speed of the travelling wave potential vun on the
shape parameter of the system. For this purpose, Fig. 3 represents two plots. In the upper panel of this figure, the difference
between the unlocking speed of the travelling wave potential vun and the corresponding maximum value of the average
velocity of the Brownian motor ⟨v⟩max as a function of the shape parameter s is plotted. In the lower panel, the difference
between the maximum values of the average velocity of the Brownian motor ⟨v⟩max for each symmetrical couple (s, −s) as
a function of the absolute value of s is presented. It can be seen in the upper panel of this figure that the difference between
the unlocking speed of the travelling potential and the corresponding maximum of the average velocity (vun − ⟨v⟩max) is
a decreasing function of the shape s of the system. In fact, for each couple of symmetric values of the shape parameter s,
the unlocking speed of the travelling wave potential is the same, while the corresponding values of the average velocity
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Fig. 2. Average velocity ⟨v⟩ of the Brownian motor as a function of the driving speed v of the travelling potential, for three values of s, s = −0.5, 0.0, 0.5.
Other system parameters are: D = 0.5, F = 0, and U = 10.

Fig. 3. Differences between maximum values of the speed of the travelling wave potential and the corresponding maximum of the average velocity of
Brownian motor, and maximum values of the average velocity of the Brownian motor for symmetric values of the shape parameter s as a function of the
shape parameter for D = 0.5, F = 0,U = 10 and γ = 1.

of the Brownian motor are different. For example, vun ≃ 20.3 for s = ±0.5 and ⟨v⟩max is equal to 18.7910 and 19.9589
for s = −0.5 and s = 0.5 respectively. This means that the unlocking speed of the travelling wave potential is always
greater than the corresponding maximum value of the average velocity of the Brownian motor. Consequently, differences
vun − ⟨v⟩max decrease when s increases (according to data given here for s = ±0.5, vun − ⟨v⟩max is equal to 1.50900, for
s = −0.5 and 0.34110 for s = 0.5). It is obviously seen that for each couple of symmetric values of the shape parameter
s, the maximum value of the average velocity of the Brownian particle that can be generated by the potential barrier in
the presence of the travelling speed is higher for positive values of s (deep narrow wells and broad barriers). As shown in
the lower panel of Fig. 3, the difference between ⟨v⟩max(s) − ⟨v⟩max(−s) is an increasing function of the absolute value of s.
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Fig. 4. Mean velocity of the Brownian motor as a function of the intensity of noise D for few values of shape parameter of the travelling wave potential,
s = −0.5, 0.0, 0.5. Where F = 0,U = 20 and v = 20.

This behaviour of the Brownianmotor in the presence of the travelling wave potential may be due to the fact that the energy
gains through thermal fluctuations is less dissipated in potentialswith deep narrowwells and broad barriers. These observed
changes of the dynamical quantities indicate that the shape parameter plays an important role in systems with travelling
wave potential.

The behaviour of the average velocity of the Brownian motor ⟨v⟩ as a function of the intensity of noise D for different
values of the shape parameter s (see Fig. 4) is investigated. When the shape parameter s = 0, the unlocking speed and
the corresponding maximum value of the average velocity of the Brownian particle are equal to the height of the potential
barrier U (i.e ⟨v⟩max ≃ v ≃ U , here U = 20) at zero temperature or intensity of the noise D as stated by Li et al. [22] and
shown in Fig. 4. This behaviour of the average velocity is also verified when the shape parameter of the system is different
from zero (s < 0 and s > 0). Each curve in this figure (Fig. 4) is characterized by a particular shape of the system, but in
general the average velocity is a decreasing function of the intensity of the noise.

3.3. Efficiency of generating force versus the external load

As stated before, the efficiency measures the capacity of a system to transform the input energy into useful work.
The efficiency of generating force is obtained through numerical simulation of Eqs. (1), (10) and (12). The result of these
simulations is plotted in Fig. 5 for some values of the shape parameter of the travelling wave potential. It can be seen in this
figure that the efficiency of generating the force ηF is generally an increasing function of the external load F . Specifically, this
increase of the efficiency in the travelling wave potential is not only due to the external load and/or the low temperature
regime, but is largely affected by the shape parameter of the system. For example, the maximum value of the efficiency ηF
tends to 0.85, 0.87, 0.94 for s = −0.5, 0, 0.5, respectively, as shown in Fig. 5. If the load increases continuously, the systems
with positive shape parameter (s > 0)work efficiently even for large values of the load F before dropping rapidly at a critical
value FMax. This value FMax of the force represents, for each value of the shape parameter, the maximum value of the load
that can be supported by the system and beyond or above, no useful work can be performed in the system any more.

To gather insight on the influence of the shape parameter on the capacity of the Brownianmotor to convert energy against
an external load in the travelling wave potential, the upper panel of Fig. 6 reports the maximum efficiency of generating
force ηF (Max) as a function of s, for the same set of parameters used in Fig. 5. In the lower panel of Fig. 6, the corresponding
maximum values of the external load FMax are depicted. It can be seen that ηF (Max) is an increasing function of the shape
parameter s and tends to 0.98 as s tends to 0.9. The corresponding applied forces are nearly symmetric values of the shape
parameter s. In general, for a fixed value of the speed of the travelling wave potential and under the influence of the external
load, the displacement of a Brownian particle in the system with sharp wells and broad barriers namely s > 0 is done with
a smaller loss of energy within the potential well. This implies a high efficiency of generating the force for an applied load
less than or equal to the critical value FMax, depending on the value of the shape parameter s. Thus, in the travelling wave
potential, sharp wells potentials favour the transport of Brownian particles in the presence of an external applied load.

3.4. Efficiency of transport versus driving speed

In the absence of the external load, Brownian motor works in a viscous environment. The efficiency of transport ηT of
the Brownian motor is obtained from simulations of Eqs. (1), (11) and (12) and is represented in Fig. 7 as a function of the
travelling potential speed v for a few values of the shape parameter of the system (s = −0.5, 0.0, 0.5), and for the following
chosen set of parameters:U = 20,D = 0.5 and F = 0. This figure shows that ηT iswidely influenced by the shape parameter
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Fig. 5. Efficiency of generating force as a function of F for a few values of the shape parameter s, with D = 1,U = 60 and v = 5.

Fig. 6. Maximum efficiency of generating force andMaximum load F to apply to the system to generate force as a function of s. The simulation parameters
are the same as for Fig. 5.

s in the presence of the travelling speed of the potential. Indeed, for s ≠ 0, the unloaded transport efficiency of the Brownian
motor remains equal to 1 up to a larger value of the travelling potential speed. Up to a critical value of this travelling potential
speed, any increase of the speed leads to amonotonically decrease of the efficiency of transport to a nonzero constant value.
This critical value of the travelling potential speed increases with the absolute value of the shape parameter s. In contrast to
the case of the transport of Brownianmotor in the presence of an external applied load, where the efficiency is an increasing
function of the shape parameter s, the efficiency of transport evolves more or less the same for both positive and negative
values of s. But, the relevant point here is that even in the absence of any external load the Brownian motor transport is
more efficient in systems with a deformed potential for large speed of the travelling wave potential.

4. Discussion and conclusion

This paper reports a simulation study of the effect of a travelling wave potential with variable shape on the dynamical
behaviour of an overdamped Brownian motor. This deformable model goes a modest step towards the real modelization of
systems in the directed transport of the overdamped Brownianmotor and provides useful trends and general understanding.
In particular, it has been shown that in the absence of an external load, the critical value of the travelling potential speed
v for which the average velocity of the Brownian motor is maximal and where unpinning occurs does not only depend on
the intensity of the noise as previously stated [22] but is also a function of the shape of the system. In fact, in the presence
of the travelling wave potential the average velocity of the Brownian motor takes its maximum for each value of the shape
parameter of the system in its range of variation.
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Fig. 7. The efficiency of transport as a function of the travelling potential speed for three values of the shape parameter s, with U = 20,D = 0.5 and
F = 0.

Focusing mainly on the role of the geometry of the system on the ability of Brownian motor to transform the energy
received into useful work for its functioning in the presence of the travelling wave speed, numerical results of the efficiency
of generating force and the efficiency of transport of the directed Brownian motor were presented. It has been found out
that these dynamical quantities are directly linked to the shape of the system. Especially, systems with sharp wells and
broad barriers (s > 0) are more efficient than those with the shape parameter s ≤ 0. Even though the efficiency in the
presence of external load is lower in the case where s < 0 than in the case with s = 0, it is always advantageous to
choose the deformed shape since in both s > 0 and s < 0 cases the system can support an external load higher than in
the situation where s = 0. Thus, the whole range of variations of the shape parameter must be taken into account in the
modelization and the study of such stochastic systems in the presence of the travelling wave potential. In the absence of any
external load force, systems with deformable shape are more efficient even at high travelling potential speeds compared to
the case of the sinusoidal potential. The width of the velocity range where the efficiency remains equal to 1 becomes larger
with increasing absolute value of the shape parameter s. Generally, dynamical properties of the Brownian motor in the
symmetric deformable potential in the presence of the travelling wave are dictated by the deformed shape of the potential.
This influence of the travelling potential shape in the dynamics of the system might also be due to the presence of noise. In
fact, in the presence of noise in the system, Brownian particle instead of diffusing freely undergoes a constrained motion,
thus feels the shape of the well and revealing the effect of the potential shape.

Globally biological systems are softmatters and their shapemay change due to some external effects. So, whenmodelling
such systems it should be necessary to take into account their geometry. A systematic study of the effect of inertia on these
dynamical properties of the Brownian motor in the presence of the travelling wave potential with variable shape may lead
to qualitatively different results.
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In this paper, we investigate the statistical behavior of Brownian particles in a deformable traveling-wave
potential in the absence of external load. We model the deformation of the system by the modified Remoissenet-
Peyrard on-site potential, which is distinguished by its sine-Gordon shape. We examine numerically the effect
of the deformed on-site potential with traveling speeds on the transport properties in overdamped as well
as underdamped Brownian particles. Using the Langevin Monte Carlo method, we show that the average
velocity of Brownian particles is an increasing function of the shape parameter in the overdamped case, and
a decreasing function of the shape parameter in the underdamped case. It is found that, in the overdamped
case, the numerical behavior of the average velocity of Brownian particles validates its analytical results. In
the presence of the deformable traveling-wave potential, for negative as well as positive values of the shape
parameter, the underdamped case favors the transport properties in the medium. The average velocity needed to
cross the potential barriers is lowest in the underdamped case. Moreover, the effective diffusion coefficient in both
cases exhibits peaks, and the diffusion process enhancement is discussed for some values of the shape parameter.
Finally, in the underdamped case, by using the Smoluchowski equation and the finite-element methods, we
analyze the distribution of Brownian particles in the deformed system.

DOI: 10.1103/PhysRevE.98.052107

I. INTRODUCTION

Brownian particles in periodic structures have attracted the
attention of many researchers due to their multidisciplinary
applications [1–10]. For instance, in biology, overdamped
Brownian particles are molecular motors moving along a
periodic structure performing basic tasks in living organisms,
and they do not necessarily need an external applied load to
accomplish their task, that is, carrying a load across a viscous
environment [11,12]. Importantly, with modern microscopic
techniques, superresolution has led to the discovery of a
multitude of anomalous diffusion processes in living cells and
complex fluids [13–16].

Likewise, Brownian particles have also been studied in
detail in connection with superionic conductors, Josephson
junctions, the dynamics of phase-locked loops [3,17–21], to
mention but a few. The common feature of these latter cases is
that they consist of species of high mobile particles considered
to be Brownian particles moving on a periodic structure with
diffusion coefficients comparable to those found in liquids
[22–24]. In either case, Brownian particles are nanomachines
that operate far from thermal equilibrium, using the thermal
energy imbalance to perform mechanical work so as to gen-
erate the directed transport, with noise playing an important
role in the process [25,26]. Thus, the drift of particles is
generated when conditions such as the presence of thermal
noise, the anisotropy of the medium, and the time dependence

*Author to whom all correspondence should be addressed:
kepemafa@gmail.com

are supplied by external variations of the constraints on the
system [27]. Moreover, the interactions of the Brownian parti-
cles with the surrounding bath may be considered statistically
rather than treating each Brownian particle individually due
to the fluctuating forces described only by their statistical
properties [28].

Indeed, most of the studies in the field of Brownian parti-
cles are modeled by physical systems having a rigid-shape on-
site substrate potential. However, these systems with periodic
structure, although interesting, describe realistic systems only
with certain approximations. To obtain a physically more re-
alistic periodic substrate for Brownian particles, the effects of
physical parameters such as temperature and pressure should
be considered. Under such constraints, some physical systems
may undergo changes such as shape distortion, variation of
crystalline structures, or conformational changes. Hence, it
appears necessary to take into account the deformable charac-
ter of the medium in Brownian particles. Indeed, deformable
models have been considered both from mathematical and
physical points of view. From a mathematical point of view,
the foundations of deformable models represent a confluence
of geometry, physics, and approximation theory. Geometry
serves to represent object shape, physics imposes constraints
on how the shape may vary over space and time, and optimal
approximation theory provides the formal underpinnings of
mechanisms for fitting the models to measured data. From
a physical point of view, deformable models are viewed as
elastic bodies that respond naturally to applied forces and con-
straints [29,30]. In fact, the term “deformable models” stems
primarily from the use of elasticity theory at the physical level,
generally with a Lagrangian dynamics setting. Furthermore,
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in an overdamped case, aiming at a more realistic description
on the molecular level, some authors [9] have added an in-
ternal variable, which becomes necessary if the time required
to achieve, for instance, a conformational change is not small
compared with other time scales.

In the present work, we study the transport properties of
Brownian particles in a deformable traveling-wave potential
both in overdamped and underdamped limits. Note, however,
that the traveling-wave potential has been introduced by Bor-
romeo et al. [31] to study Brownian surfers. They have shown
that the traveling wave has the capability of dragging Brown-
ian particles along. Moreover, the traveling-wave potential has
been used by Li et al. [32] to characterize the orientation of a
molecular motor’s internal electric dipole in order to describe
the nature of the interaction between the motors and the
filaments, as well as the interplay of the interaction and ATP
hydrolysis, in order to understand the physical mechanism of
molecular motors. However, some works have been done on
the dynamics of Brownian particles using the variable shape
potential [33,34]. For example, in the overdamped case an
optimal transport may be obtained by changing the shape of
the system [33]. Moreover, in the presence of the deformable
traveling-wave potential, systems with sharp wells and broad
barriers may favor the transport under the influence of an
applied load [34].

Most of the above-mentioned works deal with overdamped
deformable Brownian systems in which the inertial term due
to the finite mass of the particles is neglected. To the best
of our knowledge, underdamped Brownian particles in the
presence of a traveling variable shape potential have yet to
be investigated.

Therefore, underdamped Brownian particles in the de-
formable traveling potential could model driven laser plasma
waves, known to accelerate classical charged particles trapped
by perpendicular propagating electrostatic waves [35], and
where the deformed on-site potential can represent a substrate
that has abnormalities and defects. This deformable substrate
potential could also model ionic solids, whose species, consid-
ered to be noninteracting Brownian particles, occupy vacant
sites of the rigid framework diffusing through a lattice [2].

This paper examines the dynamic properties of free Brow-
nian particles under the influence of the deformable traveling-
wave potential in the overdamped and underdamped cases,
using the Langevin Monte Carlo method [36,37]. Since the
traveling-wave potential speed can induce a nonzero current
in the absence of any external force, we subsequently an-
alyze, in both cases, the effective diffusion coefficient of
particles moving in a periodic deformable traveling-wave
potential.

The paper is organized as follows. In Sec. II we introduce
the global model of free Brownian particles moving in a
deformable traveling-wave potential, and the quantities of
interest, such as the average velocity, the effective diffusion
coefficient, and the Monte Carlo error. Analytical results of
the transport properties of the overdamped Brownian particles
are presented in Sec. III A along with a validation of the
method using direct numerical simulations. The transport
properties of the underdamped Brownian particles based on
the Fokker-Planck equation are addressed in Sec. III B. Fi-
nally, our results are summarized in Sec. IV.

FIG. 1. Schematic representation of V (x; r ) as a function of x

for a few values of the shape parameter r , with ω = 0.

II. MODEL

We consider a Brownian particle of mass m free from
any external load moving in a periodic traveling-wave po-
tential with shape deformation. In this work, we choose the
Remoissenet-Peyrard (RP) potential [38], modified according
to [39]

V (x, t ; r ) = U

[
(1 + r )2[1 − cos(x − ωt )]

(1 − r )2 + 2r[1 − cos(x − ωt )]
− 1

]
, (1)

where |r| < 1 represents the deformation parameter. We rep-
resent the RP potential for the traveling potential speed ω = 0
(see Fig. 1). The RP potential reduces to a sinusoidal shape
for r = 0; it provides broad wells separated by narrow bar-
riers and deep narrow wells separated by broad flat barriers,
respectively, for r < 0 and r > 0, with U the potential height.

The dynamical behavior of the Brownian particles can be
modeled by a stochastic differential equation of Langevin type
written as [3]

mẍ + γ ẋ = −dV (x, t ; r )

dx
+

√
2γKBT ε(t ), (2)

which depicts the Markov process of Brownian particles. In
Eq. (2), the overdot indicates differentiation with respect to
time t . γ represents the friction coefficient of the medium,
D = KBT/γ is the diffusion coefficient of the Brownian
particle, KB is the Boltzmann constant, and T is the tem-
perature of the bath. Assuming the environment to be an
equilibrium heat bath with independent collisions, ε(t ) is
the Gaussian white noise of zero mean [〈ε(t )〉 = 0], and
it satisfies the fluctuation-dissipation relation 〈ε(t )ε(t ′)〉 =
2Dδ(t − t ′), where δ(t ) denotes the Dirac delta function, and
t and t ′ are different times. The Dirac δ function is a very
convenient “function.” More exactly, it is the limiting case of
a family of functions [40]. It has the property of singling out
a particular value of a function f (t ) at a value t = t0. The
function is characterized by the following properties:

δ(t − t0) =
{

0 if t �= t0,

∞ if t = t0,
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in such a way that for any ε > 0,
∫ t0+ε

t0−ε

δ(t − t0)dt = 1, (3)

which means that the function δ(t − t0) has a very sharp peak
at t = t0, but the area under the peak is unity.

Since Eq. (2) is a stochastic differential equation, we con-
sider a statistical ensemble of stochastic processes belonging
to independent realizations of the random fluctuations ε(t ).
The equivalent of the Langevin equation (2) is the Fokker-
Planck or Smoluchowski equation for the distribution function
P (x, v, t ) in phase space (x, v), written as

∂

∂t
P (x, v, t ) = LF P (x, v, t ), (4)

with the Fokker-Planck operator LF ,

LF = −v
∂

∂x
+

(
∂

∂v

)(
∂V (x, t ; r )

∂x
+ γ v

)
+ D

∂2

∂v2
. (5)

To understand the behavior of the Brownian particles in
our system, we focus on the average velocity of Brownian
particles. In fact, the average velocity of Brownian particles
is perfectly sufficient to describe its dynamics in a system as
well as its transport properties. In the overdamped case, an an-
alytical expression of the average velocity for a Fokker-Planck
equation was obtained earlier in previous works [34]. Here,
we recall its expression (for more details of computation, see
Ref. [34]),

〈v〉 = ω + 2πC, (6)

with

C = D
[
1 − exp

(
2πω
D

)]
∫ 2π

0 dα
∫ 2π

0 dx exp
(

V (x+α;r )−V (x;r )+ωα

D

) . (7)

Due to the nonlinearity of the RP potential, no analytical
solution of Eq. (2) is available in the underdamped case. Thus,
only its numerical solution is presented in this work. For
the numerical treatment in both cases, we define the average
velocity of Brownian particles in the long-time limit as

〈v〉 = lim
t→∞

〈x(t )〉
t

, (8)

where 〈· · · 〉 means the ensemble average, which is the statis-
tical average of the quantity inside the angular brackets at a
given time over all systems of the ensemble. Other important
quantities taken into account are the fluctuations around the
average velocity of Brownian particles, Vav = 〈v2〉 − 〈v〉2,
and the effective diffusion coefficient given by

Deff = lim
t→∞

〈x(t )2〉 − 〈x(t )〉2

2t
, (9)

while the Monte Carlo error is

σ = 1√
L

√
〈v2〉 − 〈v〉2, (10)

with L the number of realizations of the fluctuating forces.
The Brownian particles thus move with a velocity in the

range 〈v〉 ≡ [〈v〉 − σ, 〈v〉 + σ ]. As previously mentioned by
Machura et al. [41], if σ is greater than 〈v〉, the Brownian
particles may move in the opposite direction, making the
displacement of the particles less effective and complex.

III. NUMERICAL RESULTS AND DISCUSSION

Focusing on the transport properties of the deformable sys-
tem, the long-time limit of statistical quantities of interest is
determined in terms of the statistical average over different re-
alizations of the process in Eq. (2). We perform our numerical
studies with the Euler algorithm. The time step is h = 10−2.
For initial conditions, x = 0 at t = 0, the Brownian particle
is at rest at the bottom of the deformable traveling-wave
potential (ẋ = 0). All quantities are averaged over 500–1000
different realizations, each of which evolves over tmax = 103

for an overdamped case and tmax = 104 for an underdamped
case.

A. Overdamped Brownian motion

1. The average velocity in the overdamped Brownian motion

We represent first the average velocity of the Brownian
particles as a function of the traveling speed obtained through
a numerical integration of Eq. (2), and second some analytical
results [see Eq. (6)] for r = −0.5, 0.0, and 0.5 (see Fig. 2). In
fact, the average velocity increases approximatively from 3%
to 86% when r increases from 0 to ±0.5 [34]. We note that
our numerical solution is in good agreement with the analytic
solution. However, this behavior requires a comment. Indeed,
referring to Fig. 2, which depicts the average velocity of the
Brownian particle as a function of the traveling-wave potential
speed ω, there exists a slight discrepancy with Fig. 2 of
[34]. Moreover, as illustrated in these numerical simulations,
the deformed system dissipated less thermal energy than the
nondeformed system. In Ref. [34], the maximum average

FIG. 2. Numerical solution of the average velocity obtained from
Eq. (2) as a function of the traveling speed ω for r = −0.5 (black
line), r = 0 (blue line), and r = 0.5 (green line). Also represented is
its analytical solution [Eq. (5)] for r = −0.5 (black open circle), r =
0 (blue closed circle), and r = 0.5 (green square). Other parameters
used are U = 20, γ = 1, and D = 0.5.
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velocity of Brownian particles obtained from numerical simu-
lation was greater for r = 0.5 than that of r = −0.5, given
by 18.7910 and 19.9589, respectively, whereas in Fig. 2,
by using Eq. (8), the average velocities are greater for the
shape parameter r = −0.5 than r = 0.5, which are given by
32.1434 and 31.4817, respectively. Consequently, this last
case exhibits a good enough agreement with the analytical
result that we have derived [see Eq. (6)] [34]. In fact, in [34]
the Kasdin algorithm was used to numerically simulate the
stochastic differential equation, and then the formula

〈v〉 = 1

L

L∑
i=1

1

tmax

∫ tmax

0
v(t )dt (11)

was used to computed the average velocity of Brownian
particles. Thus, in this context, it turns out that the use of
Eq. (8) seems to be more reliable to address the stochastic
differential equation since it matches well effectively with the
theory proposed in [34]. Nevertheless, from a phenomenolog-
ical point of view, the average velocity of Brownian particles
in both cases presents the same shape. However, by varying
the shape parameter with both formulas, some discrepancies
related to numerical methods take place. This suggests that
Eq. (11) is more appropriate when the system is subjected to
an external periodic excitation [41–43], while Eq. (8) is more
appropriate for systems that are not externally perturbed by a
periodic excitation [21,44].

To understand the displacement of the Brownian particles
in the traveling deformable system, we compute Eq. (10)
together with Eq. (2) using the numerical method outlined
above. It turns out that the Monte Carlo error σ as a function of
the driving speed presents the same evolution as the average
velocity for each value of the shape parameter. These fluc-
tuations are always smaller than the corresponding average
velocity (see Fig. 3). Also presented is the average velocity
of Brownian particles given by Eq. (8) as a function of r

(Fig. 4). The general behavior of 〈v〉 is almost the same
when the absolute value of r increases for a fixed value of

FIG. 3. Monte Carlo error σ vs ω for different values of the
shape parameter r , with U = 20.0, D = 0.5, and γ = 1. Note that
σ follows the same shape as the average velocity when |r| increases.

FIG. 4. Schematic representation of the average velocity of the
Brownian particle in the overdamped case as a function of r for
U = 20.0, D = 0.5, and ω = 20.0. This curve has nearly symmetric
variations as the shape parameter evolves.

the traveling speed. Although the effect of each collision
between the particle and its surrounding is important in the
overdamped regime, the Monte Carlo errors prove that the
transport properties of Brownian particles are performed with
less turn-back. In the deformed system, and in the overdamped
regime, the transport properties of Brownian particles are
shown in the directed direction. Moreover, thermal energy is
less dissipated in the deformable potential compared to the
sinusoidal shape (r = 0).

2. Diffusion in the overdamped Brownian motion

The behavior of the effective diffusion coefficient of the
Brownian particle Deff as a function of the traveling speed
of the deformable potential for different values of the shape
parameter r is investigated in the overdamped case. It exhibits
a pronounced “resonance” peak at ω = ωopt for different
values of the shape parameter r (see Fig. 5). In fact, the
presence of thermal fluctuations and/or the difference between
the traveling speed of the potential and the velocity of the

FIG. 5. Schematic representation of the effective diffusion of the
Brownian particle in the overdamped regime as a function of the
traveling speed ω for a few values of r . The other parameters are
U = 20, D = 0.5, and γ = 1.
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FIG. 6. Representation of the average velocity as a function of
ω for different values of the shape parameter r in the underdamped
case. The transport properties are controlled by the shape parameter.
The average velocity is higher for the negative value of the shape
parameter, r = −0.5, than the positive values, r = 0 and 0.5. Note
also that due to the presence of inertia, the potential energy is
minimized. Other simulation parameters are KBT = 0.56, γ = 0.4,
and m = 1.

surrounding medium may induce the motion in the system,
thus inducing the diffusion of a Brownian particle. The effec-
tive diffusion is closely linked to the geometry of the system
since peaks change when the shape parameter varies from
sinusoidal to nonsinusoidal (see Fig. 5). For example, the peak
of the effective diffusion coefficient is approximatively equal
to 5, 14, and 18 times the Einstein diffusion (D = KBT/γ )
for r = 0, −0.5, and 0.5, respectively.

B. Underdamped Brownian motion

1. The average velocity in the underdamped Brownian motion

In this subsection, we use the same numerical method as
in the previous section to study the case in which the term
mẍ is not neglected. The results of numerical simulations of
the average velocity of Brownian particles 〈v〉 as a function of
the traveling speed ω of the deformable potential are plotted
in Fig. 6, while the corresponding Monte Carlo error σ as a
function of the traveling speed of the deformable potential ω

is plotted in Fig. 7.
It should be noted that in the underdamped case, the

weight of the Brownian particle plays an important role in
its displacement in the system. It contributes to reducing
the height of the potential barrier, as well as the time of
displacement of the Brownian particle in the system. We can
say that the dynamical behavior of the system, which is more
regular, is controlled by the shape parameter r , as can be seen
in Fig. 6. What is remarkable in this case is the behavior
of Brownian particles whose average velocity decreases as
the shape parameter r takes positive values. This behavior
is contrary to what we observed in Fig. 2 in the case of
overdamped Brownian motion. In fact, we notice that in the
overdamped case, more energy is needed for the Brownian
particle to cross the potential barrier. Thus, in the overdamped

FIG. 7. Monte Carlo error representation in the underdamped
case. Others simulation parameters are γ = 0.4, KBT = 0.56, and
m = 1.

and underdamped Brownian motions, this crossover energy
depends strongly on the shape parameter r . Once the particle
crosses the potential barrier, there is a smooth decreasing of
the energy provided by the potential as ω increases and the
Brownian particle slowly moves to a stable position where it
oscillates. This behavior is illustrated by the smooth decrease
seen in Fig. 2. Meanwhile, in the underdamped case the
influence of both inertia and damping contributes to lower the
potential barrier, so that when the particle crosses the barrier,
it jumps quickly to the equilibrium position (see Fig. 6).
The Monte Carlo error plotted in Fig. 7 follows the same
behavior as 〈v〉, but it always remains lower. Thus, in both
cases (overdamped and underdamped), the Brownian particle
moves in the directed direction.

To gain good insight into the motion of the Brownian
particle in the deformed traveling-wave potential in the under-
damped case, we have plotted in Fig. 8 the maximum average

FIG. 8. Schematic representation of the maximum average ve-
locity of the Brownian particle as a function of the shape parameter r

in the underdamped case. Note here that, contrary to the overdamped
case, the average velocity decreases as the shape parameter r evolves
from negative values to positive ones.
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FIG. 9. Numerical simulation of the average velocity as a func-
tion of the shape parameter r for different values of ω. We can
see the decrease of the average velocity as the shape parameter r

evolves from negative values to positive values for three values of
the traveling potential speed. We also remark that the form of these
curves follows the same shape as that of Fig. 8. This decrease comes
from the fact that the necessary thermal energy for the particle to
make a transition to the adjacent potential well is less dissipated in
the deformable potential with broad wells and narrow deep wells,
and the particle in this case has the necessary momentum to cross
the potential barrier. Other simulation parameters are KBT = 0.56,
γ = 0.4, and m = 1.

velocity of the Brownian particle as a function of the shape
parameter r for several values of m, and the evolution of
the average velocity obtained by direct simulation of Eq. (2)
for m = 1 (Fig. 9). It is shown in Figs. 8 and 9 that the
error bars are much pronounced in the underdamped case.
However, in all cases the maximum of 〈v〉 is a decreasing
function of the shape parameter r . So, we observe that the

FIG. 10. Plot of the effective diffusion Deff as a function of the
traveling potential speed ω for some values of the shape parameter r

(r = −0.5, 0, and −0.5) as indicated in the figure. Other parameters
of simulation are U = 5, KT = 0.56, γ = 0.4, and m = 1.

maximum average velocity of Brownian particles increases
when the mass of the system decreases, thus evolving into
the overdamped case, where the error bars are weak (see
Fig. 8). This behavior of the average velocity may be due
to the complex displacement of the Brownian particle in the
system in the presence of inertia and thermal noise. These
results are in good agreement with the theory of the chaotic
behavior in the system when inertia is taken into account
[45]. Moreover, we observe an abrupt decrease of the average
velocity of the Brownian particles as a function of r compared
to the overdamped case. One can say that the inertia has a
positive influence on the transport properties of the system
since it reduces the effect of fluctuations in the system and
controls the transport properties.

This behavior of the Brownian particle in the underdamped
case could be advantageous in the sense that even with lower
energy, the unpinning of the system may be possible, but due
to the inertia, the cargo may or may not reach the target.

2. Diffusion in the underdamped Brownian motion

In Fig. 10, we depict the effective diffusion as a function
of the traveling-wave potential speed ω, obtained numeri-
cally from Eqs. (2) and (9) for some values of the shape
parameter r . Indeed, recent investigations have shown that
under the effect of weak noise, and regardless of the value
of the friction coefficient, there can appear a giant enhanced
diffusion when the system undergoes an external constant load
[1,21,46]. This is due to the presence of the locked-to-running
transition that takes place when the Brownian particle diffuses
on a one-dimensional periodic substrate and is subjected to
a weak tilt. However, it has also been demonstrated through
a Fokker-Planck equation that, in the absence of external
constant load in the overdamped regime, a traveling-wave
potential could induce a nonzero current 〈ẋ(t )〉 �= 0 if the
total energy of the Brownian particle is higher than that of the
potential barrier [34]. Thus, when the particle drifts under the
force exerted by the potential, the random switches between
locked and running states also take place and cause an average
spreading R(t ) = 〈[x(t ) − 〈xCM(t )〉]2〉 of particles around its
average position. In our case (see Fig. 10 for m = 1), this
diffusion regime is very pronounced for negative values of
the shape parameter r , and thus the optimum values of the
traveling-wave potential speed that can be generated by the
shape parameter r are also higher for the negative values
of r (deep barriers and broad wells) than the positive ones.
Moreover, for each peak corresponding to each value of the
shape parameter r , there exists a value of ωopt for which the
effective diffusion takes its maximum, which is slightly higher
than that of the transition (ωopt, for average velocity). Indeed,
for r = −0.5, ωopt = 6.3, Deffmax = 2.3181 × 104; for r = 0,
ωopt = 5.3, Deffmax = 1.398 × 104; and finally for r = 0.5,
ωopt = 4.4, Deffmax = 1.3158 × 104.

Next, we focus our attention on the effects of the shape
parameter of the system on the peak values of the diffusion
of Brownian particles in the underdamped case and the corre-
sponding optimal deformable traveling-wave potential speed
ωopt for several values of m (m = 0.5, 1, 1.5). To achieve this
purpose, Fig. 11 represents two plots. In the upper panel of
this figure, the maximum value of the effective diffusion of
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FIG. 11. Maximum values of the effective diffusion for m = 1
of the Brownian particle and the corresponding traveling potential
speed ωopt as a function of the shape parameter r .

the Brownian particle as a function of the shape parameter
r is plotted for m = 0.5, 1, 1.5. In the lower panel, the cor-
responding deformable traveling-wave potential speed ωopt

as a function of the shape parameter r is depicted for the
same values of m. It can be seen in the upper panel of this
figure that the maximum value of the effective diffusion is
a decreasing function of the shape parameter r for m = 1
and 1.5. However, for m = 0.5 one notes an almost parabolic
behavior of the maximum diffusion. One should note that
this case obviously gets closer to the overdamped case. In
the lower panel, the corresponding traveling potential speed
ωopt is also a decreasing function of the shape parameter r

for all values of m. This behavior of the diffusion of the
Brownian particle in the presence of the deformable traveling-
wave potential may be due to the fact that, when the potential
wells get narrow, the particle does not acquire the necessary
space to cross the potential barrier, and then finds it difficult
to disperse in the system, involving also the decrease of ωopt

as the shape parameter evolves from negative to positive
values. To completely illustrate the behavior of the effective
diffusion in the deformable medium, we plot for m = 1 the
effective diffusion as a function of the shape parameter r

for some values of the traveling-wave potential speed ω = 5,

FIG. 12. Effective diffusion as a function of the shape parameter
r for a particle moving in the deformable traveling potential for some
values of potential speed ω = 5, 5.3, and 6, with the parameters
previously used.

5.3, and 6.3 (Fig. 12). When ω = 5 the red curve presents a
maximum at r = 0.2, for ω = 5.3 the blue curve presents a
maximum at r = 0, while for ω = 6.3 the green curve shows
a maximum at r = −0.5. As one might expect, the effective
diffusion in this last case is very pronounced compare to the
previous ones. This observation from numerical simulation
corroborates effectively the previous observation, that is, in
addition to the inertia term, the geometry of the potential,
particularly the flat bottom, enhances the effective diffusion.

3. The Fokker-Planck treatment

In this subsection, an analysis of the distribution for vari-
ous shape parameters r is presented. These distributions are

FIG. 13. Approximate solution of the Fokker-Planck equation
showing the distribution of the Brownian particle in a deformable
potential for r = 0 at t = 1. This case reduces to the sine-Gordon
case. The distribution exhibits two peaks corresponding to two
adjacent minima of the potential.
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FIG. 14. Numerical simulation of the Fokker-Planck equation in
a deformable potential for r = 0, obtained from the finite-element
method at t = 1.

plotted for r = −0.5, 0, and 0.5 at t = 1, 2 in the phase space
(x, v) and also as the traveling potential speed is switched off
(ω = 0). Thus, by using the semianalytic method developed
in the Appendix as well as the numerical method (the finite-
element method) for r = 0, we observe in Figs. 13 and 14 the
presence of two narrow peaks corresponding to the minimum
of the potential. For r = −0.5, we observe a large peak that
also corresponds to the minimum of the potential (see Figs. 15
and 16). However, for r = 0.5 we observe a splitting of the
number of peaks. Let us recall here that the Fokker-Planck
equation has been computed over two periods, characterized
by the presence of two peaks. Indeed, for r = −0.5 the
peaks are large compared to r = 0 and 0.5, respectively;
this corresponds to a large dispersion of particles inside the
potential well, indicating that the particles are spread out over
a wider range of values due to the flat potential well and
narrow barrier. However, for r = 0.5, which corresponds to
a narrow well and a flat barrier, we observe a splitting of the
number of peaks that pass from two peaks to four peaks (see

FIG. 15. Approximate solution of the Fokker-Planck equation
giving the distribution of the Brownian particle in a deformable
potential for r = −0.5 at t = 2. This case also exhibits two modes
corresponding to two adjacent minima of the potential.

FIG. 16. Numerical simulation of the Fokker-Planck equation
in a deformable potential for r = −0.5, obtained from the finite-
element method at t = 2.

Figs. 17 and 18). A similar behavior is observed by adopting
the semianalytic method, although the two other peaks are not
well visible. To explain all these behaviors, let us analyze
the different periods of oscillation of particles in different
forms of potential. The period of oscillation around the ground
states in the deformable potential is Tr = 2π/ωr , with ωr =
V ′′(x0) given by ωr = U (1+r )2

1+r2 . Thus, the oscillation periods
for r = −0.5, 0, and 0.5 are given by T1 = 10πU , T2 =
2πU , and T3 = 1.11πU , respectively. In fact, the time that
the particles take in shrinking the potential well to perform
oscillations is smaller with respect to r = 0 and −0.5. For
r = 0.5, as has been said before, the particles do not acquire
the necessary momentum to cross the potential barrier to the
adjacent well and consequently oscillate continuously around
several equilibria positions due to the thermal energy, so
that the metastable positions can take place leading to the
appearance of new extrema (multimodality) in the probability
distribution.

FIG. 17. Approximate solution of the Fokker-Planck equation
showing the distribution of the Brownian particle in a deformable
potential for r = 0.5 at t = 2. This case tends to split in several
modes.
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FIG. 18. Numerical simulation of the Fokker-Planck equation in
a deformable potential for r = 0.5 at t = 2, obtained from the finite-
element method. We observe a complete splitting of modes that pass
from two modes in the previous cases to four modes. This may be
due to the metastable states that take place in the system, which is
due to a deep-well potential and broad barriers.

IV. CONCLUSION

In this work, we have studied the behavior of Brown-
ian particles in a deformable traveling medium, taking into
account a white-noise source. Two aspects of the dynamics
have been examined: the case without inertia (the overdamped
case), and the case with inertia (the underdamped case).
We have focused our attention on the statistical properties
of Brownian particle motion (average velocity, Monte Carlo
error bars, effective diffusion, and distribution) in the de-
formable traveling-wave medium. It was revealed that in the
presence of the deformable traveling-wave potential, in the
overdamped as well as underdamped Brownian motions, each
maximum value of the average velocity of Brownian particles
is a function of the shape parameter r . However, the effective
diffusion in both cases (overdamped and underdamped cases)
and the distribution of Brownian particles depend strongly
on the shape parameter r . It is also shown that even in
the presence of the deformable traveling-wave potential, the
average velocity needed for the Brownian particle to cross
the potential barrier, for each value of the shape parameter,
is always smaller in the underdamped case. The Brownian
particles are increasingly affected by inertia and also by
damping. Comparing the behavior of the Brownian particle
in both cases, the maximum average velocity values increase
with the shape parameter r in the overdamped case, while
in the underdamped case the transport properties are con-
trolled by the shape parameter r , i.e., the average velocity
of Brownian particles increases when the potential wells
broaden. When the deformable traveling potential speed in-
creases, the Brownian particle experiences significant reverse
motion, and it is almost at rest very quickly compared with
the overdamped case. A comparative analysis between the
values of the maxima of the average velocity of Brownian
particles and the direct numerical simulation of the nonlinear
stochastic differential equation has shown that in the under-
damped case, the average velocity of the particle depends
on the deformable traveling potential speed ω. Moreover, we

have observed that the interplay between the mass, the noise,
and the force generated by the potential can lead to complex
behavior of Brownian particles. Monte Carlo error bars have
confirmed the directed motion of the Brownian particle in
the overdamped and underdamped cases. It has also been
shown that in the absence of any external load, the system
in both the overdamped and underdamped cases undergoes
an enhancement diffusion. Indeed, in both cases the effective
diffusion is always greater than that of Einstein, regardless
of the shape parameter r . Moreover, in the underdamped case
we have observed a “giant” enhancement diffusion induced by
the geometry of the system. Then, the particle diffuses more
freely in the potential with r < 0 compared with r > 0, due to
the presence of the mass of the Brownian particle. However,
in the overdamped case the effective diffusion exhibits a peak
for different values of the shape parameter r , and these peaks
are less pronounced compare with the underdamped case.

We have also shown numerically and by the semianalytical
method, through the Fokker-Planck equation in the under-
damped case, that the distribution can present several modes
for positive values of the shape parameter. This comes from
the fact that the metastable states can take place in the system,
while for the negative value of the shape parameter and the
sine-Gordon case (r = 0), the birth of each mode obviously
corresponds to a minimum of the potential, although for r < 0
the distribution is very large.
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APPENDIX: SEMIANALYTICAL TREATMENT OF THE
FOKKER-PLANCK EQUATION

In the case of r = 0, we have the particular case of the sine-
Gordon potential, which leads to the sinusoidal case. There-
fore, the analytical solution of the Fokker-Planck equation
can be easily approximated by the matrix continued fraction
(MCF) shown in Refs. [3,47,48] and more recently in [21].
Nevertheless, we are going to use the spectral method, or
again a “semianalytical” method, to approximate the solution
[49]. In fact, according to Refs. [3,21,48] we set

P (x, t, v) =
∞∑

n=0

Cn(x, t )ψn(v), (A1)

where Cn(x, t ) are the expansion coefficients. As was men-
tioned before, the coupled system of Cn(x, t ) may be solved
using matrix continued fraction methods, notably for the
cosine potential, parabolic, and so on. The ψn(v) is the
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nth-order Hermite polynomial, and its factorial factor is cho-
sen so that the coefficient matrix of the induced partial differ-
ential equation system for Cn is symmetric, which implies that
this partial differential equation is hyperbolic. The Hermite
functions obey the following recurrence relations:

dψn(v)

dv
= −α

√
2(n + 1)ψn+1(v), (A2)

d2ψn(v)

dv2
= −α2

√
4(n + 1)(n + 2)ψn+2(v), (A3)

v
dψn(v)

dv
=

√
(n + 1)(n + 2)ψn+2(v) − (n + 1)ψn(v)

(A4)

vψn(v) =
(

α√
2

)
(
√

n + 1ψn+1(v) + √
nψn−1(v)). (A5)

By inserting Eq. (A1) in the time-dependent Fokker-Planck
equation, Eq. (4), and applying Eqs. (A2)–(A5), we obtain the
following coupled system, which constitutes a partial differ-
ential equation system that obeys the expansion coefficients:

∂Cn(x, t )

∂t
= − α

√
n√

2

∂Cn−1(x, t )

∂x
− α

√
n + 1√

2

∂Cn+1(x, t )

∂x

−
√

2n

α
[V ′(x, t )]Cn−1 − γ nCn(x, t )

+
√

n(n − 1)

(
2γKT

α2
− γ

)
Cn−2(x, t ). (A6)

To solve Eq. (A6), we use the spectral method of or-
der N . This method consists of solving the first (N +
1) equation of (A6) for the N + 1 expansion coefficients
C0, C1, C2, . . . , CN . Thus, all the functions Cn(x, t ), n �
N + 1, are set to 0, i.e., take the approximate solution to
P (x, v, t ) as the following truncated series PN (x, v, t ).

C denotes an (N + 1)-dimensional column vector de-
fined by C = C(x, t) = [C0(x, t ), C1(x, t ), . . . , CN (x, t )]T .
The coupled system (A6) becomes

∂C
∂t

= −αR
∂C
∂x

+ SC, (A7)

where R and S are (N + 1) × (N + 1) matrices given by

R =

⎛
⎜⎜⎜⎜⎝

0 α1

α1 0 α2

. . .
. . .

. . .

αN αN

⎞
⎟⎟⎟⎟⎠ (A8)

and

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 · · ·
−

√
2

α
A −γ 0 · · ·

0 − 2
α
A −2γ 0 · · ·

0 0 −
√

6
α

A −3γ · · ·
...

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A9)

with A = ∂V (x,t )
∂x

and αn = √
n/2. R is a symmetric matrix,

so the set of its eigenvectors is also an orthogonal matrix;
let us define the eigenvectors as U = [u0, u1, . . . , uN ]. It is
easily verified that UT RU = � = diag[λ0, λ1, λ2, . . . , λN ].
If we multiply Eq. (A7) by UT , we obtain

∂C̃

∂t
= −α�

∂C̃

∂x
+ S̃C̃, (A10)

with C̃ = UT C and S̃ = UT SU . Since Eq. (A10) is a nonlin-
ear and coupled system, it is difficult to obtain an analytical
solution for all the different modes; thus, the finite-difference
method should be used to approximate the solution C̃(x, t ). It
is for this reason that we call it the “semianalytic method.” To
ensure the stability of the finite-difference method in our case,
the different schemes are used according to the sign of the
eigenvalue of the matrix R. So, for λi < 0, the forward space
difference scheme should be used, and for λi > 0, the back-
ward space difference scheme should be used. Combining all
this, we obtain the following different numerical schemes:

C̃i (x, t + dt ) = C̃i (x, t ) − αλidt

dx
[C̃i (x, t ) − C̃i (x − dx, t )]

+ dt (S̃C̃)i (x, t ) (A11)

for λi > 0,

C̃i (x, t + dt ) = C̃i (x, t ) − αλidt

dx
[C̃i (x + dx, t ) − C̃i (x, t )]

+ dt (S̃C̃)i (x, t ) (A12)

for λi < 0, and

C̃i (x, t + dt ) = C̃i (x, t ) + dt (S̃C̃ )i (x, t ) (A13)

for λi = 0. So, the Ci (x, t ) are substituted into Eq. (A1) to
approximate the solution of the Fokker-Planck equation. To
illustrate this, we chose N = 9, and some results displayed in
the text show the different approximation forms.
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