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Part A

THE EVOLUTION OFF VORTICITY IN A FREE
SHEAR LAYER WITH COMPRESSIBLE
TURBULENCE

Abstract

A supersonic Ludwieg tube is used to produce a free shear with
compressible turbulence. Resonance radiation from Laser Induced Fluorescence
provides a calibrated density diagnostic. A new experimental procedure affords
the implementation of a Direct Velocity Estimation technique based on a large
scale one-dimensional approximation to the Navier-Stokes equations. Strong
velocity fluctuation bursts have been observed in the free shear layer. They
suggest an important role for velocity gradients in this flow regime.

When V.U # 0, free shear layers with compressible turbulence can show a
sensitivity of second viscosity to Reynolds number. Using a dominant mode

approach, a resonance-like behavior for vorticity fluctuations is calculated.
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I. Introduction

Recently it is found (Brown & Roshko)[1] that a mixing layer is dominated
by large scale coherent vortical structures. Brown and Roshko have studied the
cffect of density fluctuations on the growth rate of mixing layers. They found
that density effects alone cannot explain the slow growth rate of the supersonic
shear layer. The effect of flow Compressibility on turbulence is of interest in
many applications including high-spced external flow and supersonic
combustion. In astrophysics, chemical reactions, drag and. noise reduction there
is an intense interest in effect of -ComprCssiblity;

Another study [2] of the compressible shear layer showed that the
compressibility effects indeed play a dominant role in the slow growth rate of
the layer. In high Mach number fluid flows, compressibility is also apparently
important in the formation of cohecrent structures; their interaction with
surrounding environment scems to be the cause of a subsequent generation of
transient shock waves known as shocklets. It is speculated that these structures
in compressible flow are associated with the generation of the vorticity in the
fully developed turbulent flow. Other studies have linked the decreased growth
rate at supersonic convective Mach numbers to the existence of shocks and
shocklets [3]. Therefore the shocklets were assumed to hinder the growth rale
by both the production of counter vorticity, and by reducing the turbulence
scales. The turbulent motion is therefore to be composed of various sized
eddies (and their associated frequencies) which have a certain kinetic energy
determined by their vorticity or by the intensity of the velocity fluctuation of

the corresponding frequency.



However, none of these speculations have been reported. Specially, there
is the question of the distribution of kinctic energy of turbu'lence among the
various frequencies. [t is possible on the average, to allocate a certain amount
of the total energy to a distinct frequency. Turbulent motion can be assumed to
consist of the superposition of eddies of various sizes and vorticities with
distinguishable upper and lower limits. From this perspective, the upper size
limit of the eddies should be determined mainly by the size of the apparatus in
which the flow is taking place whereas the lower limit is determined by
viscosity effects and decreases with increasing velocity of the average tlow.
Thus, at high Reynolds number, the role of the viscosity cffects might couple
directly into the turbulent energy deiposition mechanisms, therefore, one can
see how the vorticity measurement in compressible flow can lead to the
understanding of turbulence phenomenon in regimes with strong spectral
modes; one also sees an important role which rotational effects in
nonequilibrium turbulent environment might play on the evolution of
viscosity.

This dissertation research is intended to address this need. There will be a
general focus on phenomena driven by velocity gradients and velocity
fluctuations, A determination has been made, first of all, of the relationship
between the influence of nonequilibrium relaxation on the evolution of second
viscosity. A relationship has been established between the second viscosity,
turbulence and the relaxation time for a nonequilibrium process. In addition, a
new well calibrated technique using laser induced fluorescence for direct
velocity estimates from density time histories has been proven so as to allow
the evolution of vorticity on the axis of a supersonic free shear layer to be
measured. Dominant modes secem to play an important role in certain regimes

of supersonic turbulent flow where shocklets are observed. Therefore, a new



theoretical approach to vorticity transport using implications from these results
will also be given which focuses on flow regimes where dominant modes exist.
Specifically, an experimental and theoretical study aimed at measuring and
modeling the vorticity by using the laser induced fluorescence technique (1.1F)
is initiated. By using the energy balance equation and assuming that the process

is isentropic the gas flow still can be considered as an ideal gas (The sample rate

will be 500ns and the Reynolds number is as high as 10° ), the percentage of the
nitrogen dioxide, which is the target fér the laser becam and provides the
fluorescence signal, is low enough so that reactive processes can be neglected.
The density is measured by the calibration of the fluorescence against known
densities. One can obtain the velocity and, with' a time history the velocity

fluctuations from the following

—_ N Y

_ u
where M = ; is the Mach number

l | oP
C o, +| CT, ——(l’) — |u, op_1aP
e po y p ‘Ox. p ot

2)
The velocity profile across the shear layer provides a shear flow picture which
will be used to understand the turbulent structure of the free shear layer. I'rom
the isentropy relation the pressure P, and the temperature T can be calculated
when the density  is measured. Therefore, all the data needed to investigate the
behavior of the free shear layer are available and, consequently the vorticity

signature can eventually be identified.



11 . Background

To calculate the flowfield properties we need to use equations algebraic,
differential, or integral which relate the pressure, the density, the temperature,
the volume etc with boundary conditions connected to the problem of interest.
The basic principles of mass conservation, Newton's law and encrgy
conservation are applied to a small neighborhood surrounding a point in the
flow resulting in differential equations which describe the flow propertics at

that point.

Basic equations in compressible flow

Continuity equation
This equation states that the net mass flow into the control volume must
cqual the rate of the increase of mass inside the control volume. It is the

conservation of mass. The differential representation of this statement is
0 .
P+ div(pV)=0

and the integral form of the same continuity equation is

—fip\/. ds = %fpdv (4)

The momentum equation
The time rate of change of momentum of the fluid that is flowing through

the control volume at any instant is cqual to the net force exerted on the fluid

O



inside the volume. The differential representations of  the momentum

equation in the x, y ,and 7z directions respectively are

dpV)
ot

ApV)
ot

d(pV) op . .
a5 + div (pwV) = 3, + pf, o

0
+ div (puV) = - ap + pf,

+ div (pvV) = - % + pty

where fis the body forces and u, v, w are the three components of the

velocity Vina rectangular system of coordinates.

The integral form of that statement is

%(DV-dS)V + @dv = ffpfdv —fﬁ\pds

v (6)
The energy equation

The differential form of the first law of thermodynamic is applied to an

immviscid fluid flow and the result can be expressed as follows

2 9]
S

s

%(p(e S+ divp(e + SV == divpV) + pd + p(E V)

(7)



Where e is the internal energy of the element of fluid of interest and q is the
heat added per unit mass. This equation is called the energy equation. The
equations (4), (5), (6), (7) are the general cquation which apply at any point in
an unsteady three dimensional flow of compressible inviscid fluid. One can

notice they are nonlinear partial differential equations.

The Reynolds equations of motion for incompressible flow

The above equations of motion are valid for the analysis of fluid flow

turbulent .or laminar. Let us consider an instantancous velocity component at

point as the follows|4], (5]

u() = u + u'(t) ®
where
. l te1/2
u=— f u(t)dt
T /t-2 ©)

and T is the period of averaging and should include a large number of

fluctuations.
For a quasi-incompressible flow , the mean values do not vary with time.

The equation of continuity of the instantaneous fluctuations is

ou' , dv' oW =0
Ox Oy 0z | (10)

The Navier-Gtockes equation for quasi-steady incompressible flows can be

written as

4
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(6) Oy 0z  Ox Oy 0z

(1)
This equation is the equation of the mean flow for the x-direction. In the same

way, equations can be written for the other directions. The quantities such as

- pu'u’ are the Reynolds stress components. Because of the presence of the
unknown Reynolds stresses the solutions  for the equation of the motion can
not be found unless additional information about these stresses is available.
Such information can be found using the mixing-length hypothesis for
exa.mplve. | | '

Vofticity correlation and vorticity spectrum

The vorticity is the curl of the velocity with the components

Ou(x
Q%) = &y G

aXj (12)

Where E’ijk is the alternating tenseur.
The vorticity vector is perpendicular to the velocity vector.
Let us consider the field shown in Fig.1

The vorticity correlations at points M and M' are given by the following

expression

du m(r l) Ou ()('.2)
Paox,  Ox'

QrpQr; +1)> =g €
| p (13)

where

X'=rp+r =rp

Hence



Ou(r) Ouyry R0
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Therefore the vorticity correlations at points M and M’ become
2
2 OR () _2
NS — Il
<Qi(r)Qj(r )? = 6ijv Ry(r) + Bror + V Ry(r)
) (15)
From the continuity equation onec obtains
R; (N =R;i(r)=0 (16)
Therefore
» 2
(17)
[f we take the Fourier transform of the vorticity correlations, we obtain
~ 2 ~ 9) ~
wij(k) = (Bijk - kikj)(bu(k) -k iji(k) : (18)

where d)ij(k) is called the vorticity spectrum tensor.
~ o i~ .
(k) =k k) (19)
This last particular vorticity spectrum tensor is identical with the spectrum of

viscous dissipation of kinetic energy.

Boundary approximations for the free turbulent shear flows

Free turbulent flows arc bounded on at least one side by ambient fluid of
nearly the same density which is not turbulent and is usually in irrotational
flow[6]. From observation, it is found that the gradients of mean values in the
direction of the main flow which is the ox direction are considerably less than

in the transverse direction.

Y.



In addition to the boundary approximation in free turbulent shear flows
the assumption of similarity or self-preservation will be made because the free
turbulent shear layer region is extremely clongated in the main-flow direction.,
Self-preservation is used to indicate that the turbulence maintains its structure
during the development of the turbulent region in the downstream direction
of the main flow. The assumption of self-preservation allows one to reduce the
number of independent variables and by this way the governing differential
equations may be considerably simplified}.

In free turbulent shear flow the production of turbulence is determined by
the gradient of the mean-velocity distribution which depends on  the
turbulence generatevd upstream and transported downstream by‘ turbulence
diffusion by convection. Let us introduce L the length scale for variation of
mean quantities which is the length scale in ox direction and I the transverse
length scale that is in oy direction. The continuity equation for the mean flow

can be written as

ou JdvV adWwW
+ + =()
ox dy 0Oz (20)
where U, V, W are the mean velocities in the three directions in the cartesian

coordinates and U, V, W are the corresponding fluctuating velocities.

U =U__—U,_. is the total variation of mean velocity over a transverse
section of constant x. It follows that the transverse mean velocities are of order
dUu, 1
(LJ‘ + [J I)_
dx L (1)

where U, is the flow velocity just outside the turbulent flow.



. ; ) . . /
[he momentum equation in the ox direction when the terms of order — are
L

omitted is

U—+V—+W—+ + = U,

ou 0U _ oU ouv ouw dU,+v[03U+62UJ
Ox oy oz Oy 07 dx : (22)

Correspondingly, for the y direction one has

— — _
oV VOV W6V+6uv+6v +va: aP+vVV

Uax 0x Oy 0z Ox 0Oy 0z Oy

(23)
For turbulent flow the Reynelds number is necessarily large and unless
»d'U,
(U, + 12 —=H(U, + U))
dx’ (24)
is comparable with q:')lJ2 /1, the equation is approximately
) —
ov N ovw _ 0P
dy 0z dy (25)

where o is the scale velocity for the fluctuations and P, is the pressure just
outside the free shear layer.

The ambient flow is irrotational and thus the equation of the motion for this

part of the fluid is
dp + U, dau, _ 0
dx dx (26)



If oy is in the direction of maximum transverse gradient where the crror in

3

this approximation is smallest and P +v :P], then the  better

approximation would be

uoU , yoU .y OU | duv  duw a(u ) @

0 oy 0z Oy 0z (?x ' ox
(27)

In this equation , the terms which are small when compared to the order =

4

have been neglected.

For flow homogencous in the y direction with mean flow in the xoz plane the

cquation in the x component bécomes

_’r
oy | OU Ouw O(U ) _U %
Ox 62 0z Ox ' Ox (28)

U—

The equation of the energy is [7]

6 or
DE _ atpE T i (U, pE) = K —+o,l;

Dt 0 ox, ox
| (29)
where E s the total energy and
2
-Pd, 1 D~ 203,
1 n 3 1)
(30)

Let us introduce the square of the velocity

13



UU =UU +2U.u, +u.u,

=UU +2U0u +q°

The rate of change of the kinetic energy is

0 U.U.J 0 P UU 0 ou. OU.
. b | = - U — + I N ISRV U [ J
oty 2 ox; \p 2 S 0x; [ Ox; Ok
ou, U, |au,
_v + .
ox; O0x; |Ox,
. i . (31
Then the total rate of change of the turbulent kinetic energy reads
Dq 0 P | —_oU,
—(I—=——ui _+i —uiu___i
Dt 2 ox, \p 2 ! ox,
0 du, Ou, ou, Qu; |0u,
ox; | 0x; 0x, Ox; Ox; )Ox, )

In our experiment, the Reynolds number is to be high enough so that the
viscous terms can be neglected compared to the others terms of this expression.

Thus the total rate of change of the turbulent Kinetic energy becomes

D q’ 0 P q ,—(ﬂ—Ji

——— ="——u| —t—|-uu —

Dt 2 ox, \(p 2 R 39

Equation for the vorticity
The balance equation for mass, momentum and cnergy and the

constitutive equation are the basic equations describing compressible flows.
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The equation of continuity is
op 0
oo
Y ()

The momentum cquation is

DU, oP 0’ U,

p—Lt=-—+

u o
Dt Ox, 0x,0x, 3 0x,

(35)

where € s the dilatation (the divergence of the velocity).
The equation for the momentum balance can be transformed to the one for the

vorticity balance by taking the curl of equation (35)

| oU.
This yields for the vorticity defined as ‘Q‘k = eijk a— (36)
X -
J
the equation
Do, _ G'Qk DU D0 e Mg
Dt ox0x, Dt Ox. 0x, an
ou, _1}ou;, U1 1oy, ot
ox, 2{0x; o0x; ) 2{0x; O0x \
‘ ~ ' ~ ' (38)
1 I
= ED"+EQk€i‘ik

where €. . is the alternating third-order tensor .

ijk



Dij determines the deformation of the fluid and is called the deformation
tensor. The antisvmmetrical part leijk determines a rotation  without
detormation; it detines the vorticity of the motion.

Qk is called the vector of the antisymetrical tensor. It is identified with the
vorticity and an equivalent relation is

ou,

1

Q= g5 —

Oxj

The significance of the first term on the right-hand side of equation (37) is
- readly seen through its mathematical similarity to the corresponding term in
the Navier-Stokes eqdation. The action of ‘vis_cosity produces diffusion of
vorticity down a vorticity gradient, just as it produces diffusion of momentum
down a momentum gradient.

The third term of th right -imnd side of equation is the action of the variation
of the velocity on the vorticity. In three dimensional flow there are vorticity-
changing processes associated with that term.

The second and fourth terms on the right - hand side of equation (37) are due
to the compressibility of the fluid, they are zero when the fluid is

incompressible.
Shocks waves

The existence of shocks wave is one of the most distinguishing feature of
compressible fluid motion. When both viscous and thermal diffusion are
negligible for an ideal fluid (high Reynolds number and short mecasuring
times) a shock wave is a discontinuity surface of flow field quantitics such as

the density, the pressure and the velocity component normal to the shock. For




the normal shock wave, the flow is supersonic on one side of the shock and
subsonic on the other side. Tt is known that there is  a strong relationship
between vorticity and shock waves. The vorticity is created inside a curved
shock wave through the interaction of fluid elements and the intensification of
the compression in fluid elements.

In a situation where the pressure field is strong, the velocity difference
between a local flow speed and a coherent  structure's convective speed, will
form a transient shock wave called a shocklet. The pressure field will always
counter the initial structure circulation over a portion of the structure's
contour and the formation of counter vorticity and CQnsequent structure
splitting  will occur. The shocklets will affect the turbulence scale and
production of counter fluctuating vorticity.

The flow parameters across the shock wave will be different. The jump
conditions depend on the direction and the curvature of the shock wave.

The jump conditions relations are as follows [8], [9], [10], [11]

2
(y + DM,
P~ — P
(y - 1) M +2
20M: - (g - |
(g + 1) (39)
(y - DM +2
“nz = unl

2
(v + DM
U|2: lI”

1y
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where

2 |
M, = P c0s0)”
vp

is the Mach number , and D5, P2, Wy, Uy are the density, the pressure

the normal and parallel unit vectors to the shock wave respectively. With
this, the spatial derivatives of the jump conditions can be obtained by taking

the normal and tangential derivatives respectively

0p,  4(y + 1)M'tand
Ny - DM, +2)’

0P, _ 4yMtand
o ry+1)

oup  |(v - DM, - 2Jtan

) Un
61 r(y + I)I\/Ig (40)
Oup  uy,
o
ou,, 2{(— Y+3)M§ - (y+5)]tans
= U,
S ) ((RNVET)

The normal derivatives are
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|
2 2
op, [ 2M (1I-M)+(y+1)

on

3(y-1HM f—(y—B)MZ + 2(y+2)}tan %

P

(M, - Dj(y-1 >Mf+2}:

(41)

The same manipulations will be done to derive the other normal derivatives.

du.» WM. - (y-1) 3M. + |
um. —_ 2 Y S (Y ) _ 25 tan26 llnl

on ry+)| +OM M-

where the radius of the curvature is
_ I
Ol
and 0 is the angle of attack.

Thus, the vorticity generated behind the shock wave can be computed from

the jump conditions and the spatial derivatives of the velocity as follows

Jup up Oup
wl = + -

that is
4(M? - 1)’sin0

W, = . . : |ul
r(y + DM ((y - DM + 2) (43)
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Eddy shocklets

The existence of eddy shocklets in compressible turbulence has important
consequences leading for example to conversion of turbulent kinetic energy to
internal energy via the pressure-dilatation correlation and additional kinetic
energy decay through dilatational dissipation produced by shocklets [12]. Most
of the studies of turbulent structures have been done on low Mach number
flows where the compressibility does not play an important role and in this case
it is impossible to form weak shock wave.
In both 2D and 3D simulations, at sufficient high Mach numbers, eddy
shocklefs are found and are confirmed to display the cha’fa_cteristic of an oblique
shock wave[13]. I-Idwever, in the 3D simulations these shocks are weak. |
Shocklets and vorticity generation

For supersonic flows, regions of strong compression can be formed
resulting in the formation of shock wave in the flow. The propagation of such
shock wave or eddy shocklet will interact with the flow field and other
structures [14] in supersonic shear flow. The shocklets affect the structure’s
size and transfer turbulent energy in the flow field and produce vorticity
behind the shocklets. The turbulent shocklets are associated with bursting
phenomenon in the supersonic free shear layer. The bursts are in turn
associated with the evolution of structure and the transfer of turbulent energy
in the flow field. First evidence of this bursting phenomena was provided by
Zhang et al. as shown in lig. 2 where the free shear layer shows concentrated
collections of strong density signals.
Lee et al [15] have found that shocklets can be formed in three dimensional
homogeneous turbulence simulations. They concluded that the presence of
shocklets is important due to the conversion of turbulent kinetic energy to

internal energy via the pressure dilatation correlation.



’1

Kolmogorov length

An essential characteristic of fully turbulent fluid is the presence of vorticity in
large amounts and the development of vorticity in irrotational fluid depends,
in the first place on viscous diffusion of vorticity across the bounding surface.

A qualitative description of the transfer of vorticity to the irrotational fluid
may b given by considering the influence on the viscous diffusion of eddies in
groups of increasing size[16]. The smallest eddies would produce ripples on an
initially sharp interface with wavelengths comparable with the Kolmogorov
length

3

=)
€

/;

(44)

and induce rates of strain of order 3 = (—)2  which compress the diffused
A%

layer at the wave crests and strectch it in the throughs.
After a time t, the average advance of vorticity into the ambient fluid will be

roughly

o) |
(% (1) ="

(45)

where ﬁ is the entrainment parameter defined as

I
U+§— u dl,

lu| dx (46)
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which is a constant for any kind of self-preserving flow but varies considerably
from one kind to another.
The areca Mach number relation at the outlet of the nozzle in the

Ludwieg tube during the measuring time

One can find in the litterature the way to derive the Reynolds number at the

outlet of the nozzle. The higher pressure is P4 and PO the stagnation pressure

and T :TO :’1‘4 the stagnation temperature where T4 is the temperature of the
a

room. Let us first of all derive the normal shock wave relation

The basic normal shock wave relations (respectively the continuity, the

momentum and the energy equations ) are
PUr =pU;

prtpUi=pa*pU, “7)
2

2
U U3
hi+ 5 =hy v

All the parameters ahead of the shock wave have subscript 1 and those behind

the shock wave have 2.
By combining the continuity equation , the momentum cequation ,the equation

of energy and the speed of sound in  a calorically perfect gas we obtain the

following relation|9], [18]
o)

a4 = UIUQ (48)

*

.

This relation is called the Prandtl relation where d is the speed of sound when
we suppose that the Mach number is 1 .
A relation between the Mach number ahead and behind the shock wave can

also be derived from the Prandtl equation
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A relation between the Mach number ahead and behind the shock wave can

also be derived from the Prandtl equation

U Uw =
l — *l : = M IMZ
a d (49)
or
* I
Mz - ”
MJ (50)
‘The Mach number behind the shock wave is
2
2 | + - DH2M
M, = [2(}’ ) l l
VM- (v - 12 o

The flow ahead the shock wave must be supersonic hence this last relation
shows that the flow behind the shock wave must be subsonic.
The shock relations for the other parameters are

For the pressure

2
P, | +yM,
P, 2
| [ + yM2 52
For the temperature
172
T2 _ | + YMI (M2)2
T +yMs| My
- (53)
And for the density one obtains
P> | +yM; (M, >
= e
P | + YM] 2
(54)

Finally the stagnation magnitude of the parameters can also be obtained.
If the arca at the throat of the the nozzle is A* and that at the outlet is



Anullol, hten the continuity equation between the two locations is

o UA =pUA

outlet (

J
T
~—

. X .
| lence the ratio of A to Amxllvt 1S

AouLlct — P U

* pU
A | (56)

A M
A

v+l
, — 2 |2(yv-1)
2 1+ m)

outlet

(57)

is the ratio of the arcas of the throat and the outlet. This equation shows us that
the Mach number at any location in the Ludwieg tube is a function of the ratio
of the local tube area to the sonic throat arca. From this, the Reynolds number
at the outlet of the nozzle of the Ludwicg tube during the measuring time can

be found since generally the following relation holds

Rc
== (P, ToM)
and M = M(A */Aoutlct)

Distinguishing the three states of flow at the nozzle's exit

When the diaphragm breaks, one can deal with three types of flow states.
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1- There can exist a wake and an expansion wave from the nozzle. This means
that the back pressure around the outlet of the nozzle is less than the pressure
of the flow at the outlet section. Then the Mach number of the flow behind the
expansion wave will be more than the Mach number of the initial flow at the
outlet. The directions of the axis of the wake and the flow behind the
expansion wave are different from the direction of the initial flow.

2- There may be a wake and an oblique shock wave from the outlet of the
nozzle. This means that the back pressure is more than the pressure of the flow
at the outlet. In this case ,the Mach number behind the shock wave will be less
than the Mach mumber of the initial flow. The direction of the axis of the wake
and the flow behind tl{e shock wave are inward more or less aimed torward the
center of the test section.

3- There may be neither expansion waves nor shock  waves from the outlet of
the nozzle, just a wake in the form of a free shear layer. This state means that
the back pressure around the oultet of the nozzle is the same as the pressure of
the flow at the outlet. In this case, the Mach mumber,Reynolds number and the
direction of the initial flow are unchanged and the direction of the axis of the
wake will be the same as that of the initial flow. This is the state that we nced
and have created in our experiment on the turbulent compressible flow. The

pressure conditions (that is, a determination of I’ and the ratio I’4/P])f0r this

4
are determined by studies of shadographs photographs at the test section and

are confirmed by the density measurements during the Ludwieg tube firings.

The velocity calculation
In our experiment a supersonic flow is generated by the Ludwieg tube in
which velocities and velocity gradients can be determined. The previous

discussions make clear the important role which such determinations play in



2¢

our ability to understand turbulent flow. The sample rate is 500 ns and the
Revnolds number is as high as 108 . In this case the process can be considered

isentropic. In addition, the gas of the flow (27 of NO2 and 98 % of N, mixture )

2
can be considered as an ideal gas since the percentage of NO2 is small. Then the

following energy balance equation holds

hy+ ful=h+ Fu,
Al et L )
2 2

(60)

In our case this equation can be written as

C,T +-l—112 =C, T,

2 (61)

The index 0 stands for frozen value. The speed of the sound is

2 0
a :(—p—s=yRT
op

(62)
and it enables us to write the energy equation as follows
2 2
2 : d
% ut =0
y- ooy~ (63)

[his last equation can be written in a way such that the Mach number and the

density are involved that is

J
— ) -
Po_pe Y22 By )y- |

§ (69
The free stream velocity can be calculated when the density is obtained from

the measurement using the calibration curves.
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Another assumption can be made if the Reynolds number is high enough
and the measuring time is short. In this event the flow can be considered

inviscid and non conducting. The encrgy equation is

: 0 0 0 :
ptu, + pq - 3 (Pu) = 5 (W) + gx—l (Wuy

(65)
Where
2
W =pe+ 2L pu
(66)
and fi is an external force per unit mass.
Therefore |
2 .
pg—(%u ) =—uig—P+ pfu;
t X; (67)
and
l
be ,p1P° /) =
The total enthalpy is
D | 2 . | OP
—(h+—-u )=q+tu + ——
And for an ideal gas
h+—u =C.T+ | u
=C, .i

(70)
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When there is no external force the first term on the left sice in equation (65)
is vero. The first term in the right-hand side of equation (69) is  also vero
when the flow is nonconducting .

I'rom the well known relation

y T ——
===

y — 1
Py Po Ty

(71)
one can obtain the following equation
yo!
T Yoy - ol P P
C)a_+ CT, il V__I(p)y _I_uia__zla_
P ot ", Y pl{'ox, pot
(72)

Irom the isentropy relation the pressure  and the temperature can be
calculated when the density is measured. The local density histories are
obtained and also the time and space derivatives of the density, the pressure
and temperature can be calculated from the quantitics which have been
measured. Therefore the x component of the Navier-Stokes equation in

inviscid and nonconducting flow is

ou ou _,0U
+ U +V =
Ot 0x Oy 0z o OX

(73)
I'rom the three equations (71, 72, 73) the three components of the velocity can
be obtained. The flow in the free shear layer is predominantly two-
dimensional. The streamwise and transverse components of the velocity are

then caleulated.



From our experiment results, the derivatives of the velocity can be obtained.
We will use the technique  similar to the finite - difference grid as follows

The computational fluid dynamic techniques are predicated on the ability to
expand the flow field proprieties in terms of a Taylor's series [19].

If U jis the x component of the velocity at point (i, j ) then the velocity Wiy ;

at point (i+ 1, j) can be obtained from

du
Ui i B Ut [— Ax
1+1,] L] aXij

(74)
The higher order terms have been neglected. The same thing can be done in the

y direction between U; j+1 and Uj ; to obtain

+

Ay
0y )i, (75)

The approximation used to get the derivative of the velocity in x and y

ui.j+l ~ ui,j

Ou)

direction is good if AX and Ay are small enough. In our experiment

Ax =Ay =0.5 mm.

That is a good resolution which ensures us of a good approximation. It has been
possible to have that resolution because the optical set up (system II) is resting
on an optical table which has hydraulic legs so that the vibrations in the room
are absorbed.

The flow in the free shear layer is predominantly two-dimensional. The

streamwise and transverse components of the velocity are then calculated.
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[1I. Experimental set-up

The Ludwieg tube

The type of wind tunnel in which the experiments have been performed
is the TLudwieg tube. It is a conventional shock tube modified by the insertion of
a layer-spilling asymetric supersonic nozzle into the section upstream from the
diaphragm. When the diaphragm breaks, an expansion wave moves upstream
into the high-pressure section through the nozzle causing the local pressure,
density, and gas velocity to change with time and as a function of distance from
the location of the diaphragm. At a time determined by the ratio of the nozzle's
throat area to its exit area, the nozzle is choked, that is, the mass flow rate is
frozen, and stable steady supersonic flow is established in the exit region. The
duration of this steady period is determined by the round trip time for the head
of the expansion wave to travel from the throat of the nozzle to the upstream
termination of the high-pressure section. When the diaphragm breaks, other
wave phenomena are also produced; viz, a shock wave and a contact surface
travel downstream into the low pressure section. One can find derivation of
the formulas relating the nozzle's parameters to the initial conditions of  the
tube. By this way, high Reynolds numbers can be maintained in the exit region
under conditions of steady supersonic flow|17]. The x-t diagram and a schematic
of the Ludwieg tube are shown in Fig.3. A photograph of the Ludwieg tube is
shown in Fig. 4.

Thé Ludwieg tube has two parts : a 6-in. diameter, 5-ft long cylindrical end
picce and a 3-ft long transition piece that changes from 6-in diameter circular

cross section to a 3.6 -x 3.6-in. square at the diaphragm. The transition piece has
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a plunger for rupturing the diaphragm. The high pressure section has five
parts: a 6-ft -long ,3.6-x3.6-in. square test section with five optical ports on each
face and corresponding pressure ports; a 3-ft -long transition piece for the
change from a 3.6-x 3.6-in. cross section to the 6-in.-diameter circle; a 5-ft-long,6-
in.- diameter cylindrical piece; and two pieces that are each quarter-circle arcs of
2-ft radius with 6-in. diameter cross sections. The curved sections conveniently
extend the overall length of the period of steady supersonic flow. The wall
thickness is roughly of order of 0.3 inch. |

A diaphragm is placed into the tube to separate the low pressure side from
the high pressure side and a vaccum pump will pump down the low pressure
section down to 110 torr. On the high pressure side, a pure Nitrogen dioxide is
loaded up to 33.5 torr slowly to prevent N02 condensation. Next we add pure
nitrogen to N02 up to about 1675 torr (absolue). One must run several times in
order to control the flatness of the free shear layer which is very sensitive to the
ratio of the high pressure P4 to the low pressure PO.
Once the pressures read the right magnitude and there is no leak in the system,
we make sure the trigger system is armed properly and also the anolog-digital
converters are armed properly  (with the required sweep time and delay time).
Then the diaphragm is ruptured and the data are collected. Since the nitrogen
dioxide is poisonous and heavier than the air, extreme care must be taken in
manipulating it. After firing the tube, it must be purged carefully for a long
period of time before another run. The system is purged by pumping down the
tube and by loading pure nitrogen in it for a while.
The anolog-digital converters are triggered by a piezo-electric transducer located
upstream of the diaphragm. Ina piczo-electric transducer, the application of a
directed compression to a quartz or similar cristal causes an electric charge to

appear accros its faces. This effect is called the piezo-electric effect [10]. Actually



in our system there are two transducers , they enable us to monitor the
expansion fan, to determine the delay time for the trigger system and to
compute the drop in the pressure in the high pressure side and consequently
the drop in the temperature can be calculated. In our experiment the delay time

was 14 ms.

Optical set-up
An optical system is used to collect the fluorescence signals from the test

section. (Sce Fig. 5) An argon laser provides a beam which is split in three

beams such that the cross section -of the set of the beams is in triangular form. -

The beams are sent thvrough the free shear layer. The intern‘sity V(V)f the
fluorescence emitted by NO2 molecules depends on the density of the NO2
molecules in the flow and the intensity of incident laser beam. When the
diaphragm which separates the high pressure side from the low pressure side is
ruptured, an expansion wave moves upstream into the high pressure section.
The expansion wave causes the local pressure, density, and velocity to change
wvith time. The intensity signals collected by the photomultiplier tubes
represent the local density of NO, molecules which is mixed with N, as the
flow gas. Therefore , the density or density fluctuation of N02 represent the
flow density or density fluctuation. After the diaphragm is ruptured , there is a
time at which flow through the nozzle is chocked, as a result of conservation
of mass‘, the flow rate is frozen and stable, and steady supersonic flow is
established in the exit region of the nozzle. A free shear layer is created on the
nondiverging side of the nozzle as suggested by Fig. 6 where the typical
measuring stations are also indicated. By design, as a result of the dimensions
of the system, tube wall does not affect the shear layer since the step of the

nozzle is large compared to the size of the shear layer. The Mach number is 2.02
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for all of the measurements reported here. (This is a consequence of the specific
nozzle chosen; it can be changed for future experiments by a different choice of
nozzles.)

The optical set-up consists of two systems which are labeled as system [ and
svstem 1L A laser beam from an argon ion laser 488.0 nm wave length is used
as the overall light source.

System I provides as output three beams in triangular form. Mirrors and
lenses are aligned in a way such that a large beam is produced and a mask with
three holes is placed in the path of the beam. The three beams formed in this
way have the same size and the same intensity. They are 0.8 ¢cm apart in the
first phase and another set of lenses translates the three beams so thét they are
much closer to each other, 1.0 mm apart. This distance provides good spatial
resolution so that an approximation can be made which allows the calculation
of velocities from the density measurements.

Since the points where the measurements will be made are so close, it is
not possible to collect data using optical data using optical fibers unless a
magnified image is produced. This is the function of system IL It consists of
lenses and mirrors which magnify  the distance between the beams from
0.5mm to T cm. At the image plane of the magnified free shear layer, fiber optic
light pipes are arranged to collect the fluorescent signals which are carried to
the individual photomultipliers. These outputs are subsequently transmitted to
the anolog to digital converters for ultimate storage, through software and
hardware interfaces on  computer disks. The spatial resolution of the
measurement mainly depends on the separation between the measuring
points. The measuring points are arranged such that the velocity components

can be obtained and therefore one component of the vorticity can be computed.



Density calibration

In this experiment the NO, molecules which are mixed with pure NZ

2

molecules (2% of N, in 98% of NO2 ) provide a good target for resonance

2
radiation after excitation with the incident laser beam at 488.0 nm wave length.
The N(')2 molecules are pumped up to vibrational excitation states by the argon
ion laser.  Although the N02 spectrum extends from 800 nm to near 400 nm
with o very high density of lines, the fluorescence induced by the chosen laser
line (which is in the blue) is in the yellow and quite distinguishable for the
excitation with simple filtering. The intensity of the fluorescence emitted by
NO2 molecules is related to the density of the NOzmolecules in the flow and to
the intensity of the incident laser beam. This signal represents the local density
of NO2 molecules and therefore the density and the density fluctuation of N02
represent the density fluctuation of the flow.

The relation between the density and the intensity of the fluorescence is
called the calibration relation. For the chosen mixture mentioned carlier, the
intensity of the fluorescence is a function of the density and decays
exponentially as the density of NO2 increases. This can be explained by the
interaction between the NO2 molecules when an excited molecule of N02
interacts with another N02 before falling back to a lower energy level radiates
fluorescence light can transfer energy to another molecule. Therefore the
higher concentration of NO,molecules the larger the number of interactions of
NO2 molecules which results in a decreasing fluorescence. For a different
percentage of NO, the calibration is shifted but the functional relation between
the intensity and the density is unchanged.

The effect of temperature on the calibration has been determined. The set-
up is shown in Fig. 7; a controlled concentration of N02 in mixture with N2 is
temperature controlled by a bath of dry ice (COZ)' The relation between density

gl



and fluorescence is determined over a range of temperatures. [rom these
measurements, the temperature calibration factor is calculated using a least
squarcec. fit to the appropriate density of states multiplicative factor. A sample of
these results is shown in Fig. 8. In Fig. 9 the correctness of the use of a
multiplicative factor is tested for a sample of data collected for a range of
temperatures;  the overall  exponential  behavior for the temperature-
independent part of the density-fluorescence calibration is confirmed. Since the
actual flow speed in the free stream is known as well as the flow speed at the
axis (from previous measurements), the calibration factor is easily checked. The
temperature reached in the free streém_ is computed from the expansion wave
measurements of pressure at the Ludwieg tube's walls by the two transducers
located upstrecam of the lip of the nozzle. The temperature is found to be
roughly T= 274 °K for the temperature rcached when the supersonic flow is

constant in the Ludwieg tube.
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1V- Analytical procedure, results, and dis:ussions

Second viscosity

It is well known that the second (or bulk) viscosity and the chemical
relaxation time are implicitly connected. However it is only relevant in
processes where there is a compression or an expansion and it is usually
regarded as small even when it is relevant. Nonetheless, it now seems
appropriate to determine in general whether or not there can be circumstances
where the influence of second viscosity might be important. This is the
situation wvhere the velocity gradient is important. In the appendix, one can
find an apprroach that uses the macroscopic entropy production rate equation
in a reactive flow in order to explore the possibility of an explicit connection

between the second viscosity and the relaxation time.

Vorticity calculation

In a given flow field, it is possible that some parts of the flow field are
irrotational, while other parts are not. The rotation of a fluid element shall be
denoted by the rotation vector which is defined as the average angular velocity

of two originally perpendicular lines conceptually attached to the fluid clement
of interest [20]. Tt is customary to deal with the vorticity vector () which is
defined as

Q=2 w (76)

The kinematic properties of the vorticity are similar to those of the velocity
vector. The components of the vorticity vector in the cartesian coordinates are

as follows
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y
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Where u, v and w are the velocity components in the x, y and z directions
respectively .
In any coordinates system, the vorticity vector satisfies the corresponding

incompressible vorticity continuity equation

[naydas=0
' (78)

s is the closed surface enclosing an arbitrary volume of fluid of interest and n
the unit outward normal to the surface element ds. The kinematic property of

the vorticity is referred to as the conservation of vorticity.

Let us introduce the circulation I of the vorticity

L= [(n.0)ds
s (79)

For a given vortex tube in an incompressible flow, the circulation of the
vorticity is constant and is essentially the product of the mean vorticity and the
cross-sectional arca. Therefore when the cross-sectional area is smaller, the
vorticity is stronger. That is why in a tornado which is a giant vortex tube the
air particules in the center rotate with a much higher angular velocity near the

ground where the funnel is narrowest [4]. The vorticity ficld of a compressible



3¢

flow satisfies d1vQ) = Q even though the divergence of the velocity is no

fonger zero.

let us also consider, for example, a finite thin flat wing which is
undergoing  lift. The fluid beneath the wing near the wing tips will tend to
spill over the tip, then the circulation of the vorticity will be non-zero.
Therefore there must be vorticity in the fluid . The vortex tube cannot end in
the fluid, but must attach itself to the solid body ( as a tornado attached to the
ground ) or extend to infinity. Consequently, when the lift is present ,the flow
field cannot be completely free from vorticity. Then a drag force must be
experienced by the wing. A non zero drag force called induced drag must always
be present when there is lift. Conversely in the absence of the vorticity the netv
lift experienced by a finite body in steady flow is also zero. The vorticity is then

an important topic in fluid mechanics.
The compressibility is expressed mathematically through the divergence of

the fluid velocity and it is responsible for the effects such as sound waves and
shock waves. The vorticity on the other hand, is expressed mathematically
through the curl or rotation of the fluid velocity and it is primarly responsible
for convective mixing and turbulence[21]. By making use of the isentropic
relation the pressure, and the temperature can be calculated. In our experiment
we are interested in measuring one component of the vorticity. Since the
mullipoint  measurements are sct such that 3- dimensional local — density
histories are obtained in our data, the time and space derivatives of the
density, pressure and temperature can be calculated.
Data and results

The technique consists of measuring the density fluctuation by using the

fluorescence emitted by a mixture of 2% of NO and 98% of N, targeted by a



laser beam split in three beams of the same size. Seven measurihg points are
selected in a certain way such that a velocity calculation can be made in the
frec shear layer at the exit of the supersonic nozzle in the Ludwieg tube. The
calibration curves (fluorescence vs density plots) have been used to obtain the
density fluctuation. The analog-digital converters used are the NICOLET 400
series and the photomultipliers are  HAMAMATSU phototubes. The pressure
has been controlled by a digital MKS Baratron which provides the reading of
the low and high pressures. A sample of on-axis fluorescence voltage signatures |
is given in fig. 10. The raw data measurements show the appropriate qualitative
trend with increasing distance from the nozzle's edge.

Similarly for fully calibrated results, the trends along the axis and
tranSvcrse to the axis are correct. This concluéion is based on surveys
throughout the free shear layer, below as well as above the axis. A sample of

these measurements is given in fig.11. As described below, the density
measurements obtained from the calibrated fluorescence signals provide the

input for the velocity computations which give us the vorticity data we require.

The density fluctuations we have obtained in our facilities are in good
agreement with the behavior of the gradient of the density which must
decrease from the lower edge to the upper edge of the free shear layer. In this
techuique of LIF, more than the seven probes (a large number of points from
which the fluorescence will be collected) would have been required in order to
mcasure all three components of the vorticity; that is why we have limited
ourselves to preparing for the measurement of one component of the

vorticity.
If the measurements are not made in the free shear layer when it is flat,

this expected relationship between the gradient of the density and the location
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of the point from where the fluorescence is being collecting  will  not be
obscrved. This test enables us to make certain that the measurements are good.

In free turbulent shear flow , there is production of turbulence. But this
production is determined by the gradient of the mean velocity distribution,
which depends in turn on the turbulence diffusion and by convection. This
close connection between the turbulence and the mean- velocity distribution at
any section and those upstream makes it reasonable to expact similarity of the
total pattern even though turbulence is continuously being produced by the
main motion through the turbulence shear stresses. [lowever the flow requires
some distance downstream before the self preserving condition is reached.
From previous measureménts, we are able to focus on the region in thre'ﬂow

where the self preserving status has been acquired.

Since the relationships are known with which velocities can be
determined from density [11], it remains to show that evidence of sharp
velocity gradients can be found in the velocity histories. Such gradients are
clearly present if signatures of velocity driven bursts in time are found
analogous to density bursts already observed in the free shear layer and
associated with the production of turbulent shocklets (Johnson et al . 1994). The
results from such studies are illustrated in Figs. 12, 13, and 14.

A sample of an axial velocity history is given in Fig. 12 with the
corresponding transverse velocity history given in Fig. 13. These are Ux and Uy,
two components of the local flow velocity U. Although our set-up affords an
estimte of Uz, the third component, the spectral analysis of it shows a noise-like
behavior and the standard signatures of turbulence were not observed.
Nonetheless, with our set-up a reliable set of velocity calculations has been
produced which are adequate for one component of vorticity.

For Ux and Uy, velocity fluctuations are observed as follows :



N1

! - - .
u P Ui <U]> (80)

where <u:> is the average value of 1,
l'rom this, we determine the history of pu'xu'y as shown in fig. 15. The

evidence of bursts in pu'xu'y is quite clear. It provides a strong basis for an

expectation of dramatic influence from changes in U on the turbulent behavior.

A model for one component of the vorticity in the free shear layer

In our experiment, we have developed the ability to measure one
component of the vbrticity at the same location in the free shear layer of a
supersonic flow. By using the free shear layer approximations we have already
used to derive the equation of the motion, we can derive the equation for the

vorticity as follows
2
0Q,

O 0 (81)

p = U

Dt

This equation has been derived from  equation (37) in which all the terms are
zero or are assumed to be negligible compared to the first term on the right side

which is
2
00,

R
0x,0X, (82)
The second term in equation (37) is negligible because the derivative of the
velocity with respect to x which is small is involved, the third term is zero
because the divergence of the velocity multiplied by the vorticity components

is also negligible for the third component of the vorticity.
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By applying the boundary approximation to our case this term (82)
becomes
2
0 (2
H 2

Oy (83)
where () is the component of the vorticity in the z direction

Thus the vorticity equation becomes

DQ 0 Q

Dt - 2 .
Jy (84)

or il we take into account the following relation ( the culeurian derivative of

the vorticity )

DQ:OQ +U@_+V@_+W@
Dt ot Ox Oy 0z (85)

The last three terms in the left hand side in relation (85) are negligible using the
boundary layer-like approximations. Thus the equation for the vorticity can be

written as

P oy (86)

This equation is a partial differential equation of the type of one - dimensional

heat equation.



I'rom all of these derivations,we can now express the turbulent vorticity

Q)" in term of the derivative of the fluctuating part of the velocity with regard

to our approximations as

ou'
ay

(87)
We can at this stage write the relation which enables us to analyse the behavior
of the transverse component of the vorticity.
The equation for the vorticity becomes a differential equation of a special
type. Because we are dealing with one component of the vorticity which can be

expressed as a scalar , that component can in turn be treated as a scalar. The
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differential equation that governs the evolution of the vorticity in the free -

shear layer at a fixed point and in a region where there is no intermittency
(since the measurements have been made at a fixed point on the x axis in a
region which is far away from the boundary of the free shear layer) can be
expressed in term of the fluctuation part of the velocity.

For small disturbances the fluctuation part of the vorticity at a fixed point

along the x axis can be written as

Q"= Q' exp i(wt - ky)

(88)
where (0 is the angular velocity.
Equation (86) becomes for {2
. 2
iw+ vk =0
(89)

where
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Let us assume that (0 is constant, real and positive; then k viould be a complex

quantity with two values

(90)
ie
w .
k,= — (1-1)
or
W .
ky=- A/ — (1-0)
2v 92)
The vorticity fluctuation can be written as
—
W . W
Q) = Qexp(n /] < y) exp (ot + \/ © )
2v 2v ©3)

ar

()U==£)hexp(—/\/-fi—y)exp (Wt - A /-Ei-y)
) 2v 2V 04)

One of these solutions is not consistent with regard to the behavior of the
vorticity. [From the x axis to the upper edge of the free shear layer, the vorticity
which can be expressed as the derivative of the velocity with respect to the y
coordinate, decreases. Actually both solutions represent the evolution of the

vorticity in the negative y for (93) and in the positive y for (94).



Thus, the amplitude of the vorticity must decrease as'y increases otherwise

the main flow would not be irrotational as it should be. Tlence we must retain

the solution Q) since we are measuring the vorticity in the arca where 'y is
positive.
In addition to this, since the measurements are taken at the axis of the free

shear layer, y can be considered zero. Thus, we obtain for the fluctuating part of

the vorticity the following expression

Q'(t) = Q' exp 1wt
( ) 0 p (95)
This expression will be written for clarty as follows B

Q'(t) = Agexp iwt 96)

Let us take the Fourier transform of the above expression by writting first of all

the following Fourier series

Q)= ) A, expinwg

n=

(97)
I.et us now consider the Fourier transform[25]
Q) = [ A(w) exp (iwH)d(w) |
: (98)
where
I :
Aw) = — f Q'(t) exp (- iwt)dt
21 /- (99)
‘The power spectrum is
2
S() = |A(w)| (100)

In our case the process begins at a time t = 0 such that
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Q') = Q' exp (1wyl)  for 0<t<ee (101)
Q') =10 fort <0

Thus the calculation of A((,O) leads to

0

Alw) = —
2w = W) | (102)

And the power spectrum is
2

'
Q 0

S(w) = — -

4 (W ~ W) 103

‘I'his function is a Lorentzian and it is symmetric about the dominant natural

frequency . This power spectrum is very sharp with all the power

concentrated in the (U9 component .

One can conclude that in the free shear layer and for‘ small disturbances of
the vorticity , the component of the vorticity in the z direction is governed by a
partial differential equation of the type of the heat equation . For fluctuating
voticities, the z-component of the vorticity can exhibit one dominant mode in
the free shear layer, if the disturbances are assumed to be weak , which provides
a clear resonance signature at a frequency corresponding to the dominant
mode. This is a direct and incevitable consequence of the functional form of the
dependence of the fluctuations in vorticity which we have derived . Thus , the
measure of the evolution of vorticity in time can provide a clear test for the

existence and physical implications of dominant modes in turbulence .
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V. Conclusion

The use of laser induced fluorescence provides a new measure of density
in turbulent flow whose calibration can be made including temperature effects .
Such effects are multiplicative and take on a form which is proper from a
quantum mechanical point of view. The use of this technique is restricted in
spatial resolution only by the details of the optical set-up. It is restricted in time
resolution only by the bandwidth (and the sampling rate) of the analog to
digital conversion hardware.

With the densify measurements achieved above, direct velocity
estimations at a point are now possible for the local flow U. A three probes
array is required with which, by stereoscopic reconstruction and a backward
stepping approximation, all three components of U can be calculated.
Furthermore, by achieving U at two points separated in x and y, one
component w, of the vorticity can be calculated and its evolution in time at a
point determined. Preliminary results based on two components direct velocity
estimations, show strong signatures of Reynolds stress bursts consistent with a
pronounced presence of velocity gradients in the flow.

Since strong velocity gradients as observed afford anomalous viscosity and
vorticial structures, a set of a theoretical predictions for turbulent flows where
this gradients are found. When V.U # 0 and onc has high Reynolds number
reacting flow, enhanced second viscositics are possible in fully turbulent flow . |
Furthermore, for turbulence with dominant modes, the fluctuations in
vorticity will be peculiarly sensitive with a resonance-like signature to their

presence.
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Contour Plot: Streaky Structures at Different Transverse
Locations along the Streamwise Direction
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Schematic of the Free Shear Layer at the Outlet Region
of the Nozzle and the Center line of the Three Line
Laser Beam Probes

X (mm) 5 ]O, 15120 |25 30 35
SR 740 |.727|.714|.701 689 |.676(.663
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First Observations: Reynolds Stress Bursts in
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Second Viscosity Enhancement in Turbulent Nonequilibrium Flow

Jean Chabi Orou’ and Joseph A. Johnson ITIt

CeNN As, Florida A&M University, Tallahassee, FL 32310

Abstract

A physical model for entropy production associated with reactive flow is

i

presented. The general form X(f)e< (l—e_;)has the correct asymptotic be-
haviors for t->0, t->1 and t->eo for finite T where 7 is the relaxation time. From
this, a relationship between the second viscosity and the relaxation time for
A+B->P is modeled from the macroscopic. entropy rate equation. Finally, using
a first order approximation for reaction rate distortion from reduced molecular
chaos, enhanced second viscosities can be predicted for strongly turbulent fluid

systems with long relaxation timesand V e V0.

Nonmenclature

5 =entropy

S =specific entropy

Q =quantity of heat

T =absolute temperature

e =specific internal energy
A =area

P =density of the fluid

Vv =velocity

dv =volume element

b =dissipation function

o) =entropy generated per unit volume per unit time
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T =relaxation time
z =entropy generated by chemical reaction
U, =derivative of the component of the velocity vector in x direction

with respect to x
Re =Reynolds number
t =time (laboratory time)
11 =viscous stress tensor
n =dynamic viscosity
§

=second viscosity

| Introduction

[t is usually assumed that the second (or bulk) viscosity and the chemical
relaxation time are connected. However, the second viscosity is only relevant in
processes where there is a compression or an expansion and it is usually re-
garded as small even when it is relevant.! Nonetheless, it now seems
appropriate to determine in general whether or not there can be circumstances
where the influence of second viscosity might be important.2 This seems
especially interesting since, in some situations, effects due to turbulence are often
treated as cffects due to anomalous viscosity. The present paper uses the
macroscopic entropy production rate equation in a reactive flow in order to
approach the possibility of a connection between the second viscosity and the
relaxation time. In addition, by using the qualitative implications of recent
experimental results, we will speculate on a role for turbulence in these
phenomena. Generally stated, this model is proposed on intuitive arguments.

Entropy and a Relaxation Process

The total change of entropy in a system is
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2
. d
S-Sy =] QIFCV
1

where we have assumed the system is brought from state 1 to state 2 so that
S, —S1 = ASy + AS;,

The first term in the right is the entropy carried into the system over the
boundaries from outside and the second term is the entropv produced in the sys-
tem during the process. |

In wh‘at follows, we are going to deal with a system in which the entropy
carried into the system is zero and the last term in the above equation is gener-
ated by viscosity, thermal conduction and chemical reaction. Specifically, we
define ¢ to be the entropy per unit time and @ to be the dissipation function.
Specifically, ® can be interpreted as the irreversible dissipation of the mechanical
energy into heat caused by the viscosity perl unit time per unit volume.

With these definitions, the energy balance can be expressed as follows:3

(io{ Be-5-58 o= 10 -ty

where
O = div(Vu)— Vdivi
M o 31/

ooy Xy &+ =z
Ha e TH oy TR T Hs | 5 m o0 T

o), (2 2
\Z & 8_)} lL,\Z 8/(_ &

in which the velocity vector V has components (1,v,w), |t is the viscous stress

tensor and ¢ is the energy flow vector. The previous equation becomes:

M2{ B~ 528 Jav =11 %an+ 1) (- Z%T v
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Since

we now have:

HJP%VW%JHpsdv:—Uﬁ#dA+madv
where O':[-(R_ Q-VT).
T T2

When the entropy generated by a chemical reaction is taken into account,

an additional term is required in the éxpression of the entropy source. The new

expression for the entropy becomes

Tds = de - [iz]dp +Tdy
p

where I' = T(j—sJ vanishes if the gas attains an unconstrained equilibrium at
Xep

all time.
In order to derive a relationship between the additional term and the en-

tropy source, one notices that the expression for the entropy source becomes:
O _ gVT pl'dy
O=-— +
T /2 TTdr

We will limit ourselves to the case of a chemical reaction of the type A+B—>P
where A, B and P are assumed to be nonmonoatomic perfect gases4 and y is the
entropy generated by the chemical reaction during the process. Because the reac-
tion stops after a finite time, ¥ must reach a limit value which is its value at equi-
librium and, at that time, the derivative of x with respect to time becomes zero .
On the other hand, the process being irreversible, the entropy must in-
crease from zero to the limit value in a way which agrees with the active relax-
ation process. Assuming that x is only a function of time and that it satisfies the

above statements, the profile of i could be a function of the form:



¢
2D e(l-e )
The general behavior of x=x(t) during a relaxation process would be as is shown
in Fig. 1 where tis the relaxation time. We also assume that Boltzmann's
equation holds.>
Second Viscosity and Relaxation Time
Let's consider a chemical reaction which starts at t=0 with % =0.

Elaborating the approximation above, we assume that the value of ) becomes
t

proportional: to (1-(1/e)) at t=t and stops wjhen t is large enough so thate r is
almost zero. Whatever value t has, proyided it is a finite ohe‘, equilibrium will
eventually be reached. If the entropy at eci'uilibrium is indei)endent of 1, then Yeq
is independent of Tand the rate of change of y is fixed. The expression of the en-
tropy source becomes:

o= S;z - q.sz +%,};¢qe'§

The last term is the entropy generated per unit time per unit volume by the

chemical reaction .

For t fixed and a small relaxation time, the equilibrium 1s, of course,
reached more quickly than when the relaxation time is large. For one-dimen-

sional flow, one now finds:

4 +§
3" 2_(7-VT+PF -

M T A e

Next we restrict the treatment to an isolated system at a constant temperature;

this restriction ignores heat released (or absorbed) by the process A + B ->P. The

entropy source then becomes:
4
§U+§
u: +
T T

PL e
T .

g =
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Thus the energy balance equation takes the form:

4
M6
De P Dp 3 . pr -
_— =T |dv = + — e 7 |dv
JHP[Dt PE Dr) vEI S e X

By restricting our treatment to a perfect and nonmonoatcmic gas at a constant
temperature in an isolated system, the integrands in the energy balance equation
cannot depend on time macroscopically. This means that the derivative of o with
respect to time must be zero and, consequently, the entropy generated by the
'mblecular process must be balanced by a change in the viscosity. Since the sec-
~ond viscosity alone is free to show a change with time, it is constraihe_d by the

energy balance equétion above as follows: -
| dt pr' 1 L
g e

X

These results are summarized in Figs. 2 and 3. Setting be=(pT"Xeq/ uy2), we

d R = - . :
- show i;f— vse—z- in Fig. 2. For the range in t and 1 indicated, a substantial sensi-
£

tivity in d§/dt is observed; this is particularly true, for example, at low velocities
ux and high densities p. The relative magnitudes are indicated in Fig. 3 which is
a slice through Fig. 2 at t=30 psec.

Notice that as the relaxation time decreases, the overall entropy change due
to the chemical reaction increases. For decreasing relaxation times, there corre-
spondingly (from the equations above) is a decreasing role for the evolution of
second viscosity to play in the entropy balance.

Second Viscosity, Relaxation Time, and Turbulence

It has been observed that fully developed, as well as transitional,

turbulence can be described by qualitatively predictable Orr-Sommerfeld like

behaviors in the form I=I(Re, Repeak) where 1 is the turbulent intensity and
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Repeak is the Reynolds number at maximum turbulent intensity.6 It is also
observed that the reaction rate decreases with increasing turbulent intensity.

For 1= t(Re) and [ = [(Re),we get 1 =1(Re(I)) 1mphc1tly where I is the tubulent
intensity. Notice 7 = cnst . Then the form

Re—0
(Re-Re,,, )ZJ
Re?, .

T=T1, cxp{l -

is a suitable intuitive first approximation.

This expression is now combined with the expression above for d§/dt to
achieve the behaviors shown in Figs. 4 and 5. In Fig. 4 one notices that the range
of non-zero turbulent intensities increases as .the value of Repeak increases. A
typical value for Repeak would be roughly-106; using this value and a value of
=30 psec, one obtains the range of values for d€/dt shown in Fig. 5. Here es in
Fig. 2 the most dramatic changes are seen at very low values of laboratory time.
Nonetheless, values for t (roughly 1 psec < t < 40 psec) are found during which a
signiﬁéant influence of relaxation time and turbulent intensity on the evolution
of second viscosity is possible.

Conclusions

By using a physical model for entropy production associated with reactive
flow, a relationship between the second viscosity and the relaxation time is de-
termined from the macroscopic entropy production rate equation. This relation-
ship enables us to predict the behavior of the second viscosity when turbulence
evolves in a nonequilibrium flow. Taking advantage of previous studies which
have concluded that the reaction rate decreases when turbulence increases, one
can argue that the second coefficient of viscosity increases when turbulence in-
‘creases..

It is difficult to normalize x=y(t); therefore the results obtained here for the

second viscosity as a function of the relaxation time and the Reynolds number

12



give only qualitative behaviors. Nonetheless, a relationship has been established

between the second viscosity and the relaxation time for a nonequilibrium

process. We have shown how this relationship can lead to a dependence of the

second viscosity on turbulence. For a flow where VeV 2 0, anomalous viscous
effects can therefore be expected, under some circumstances, for turbulent
nonequilibrium systems.
Acknowledgements
This work was supported in part by NASA Grant NAGW-2930.

73



References
* Research Assistant. Also Graduate Student, IMSP/Université Nationale du
Benin, Cotonou, Benin.
T Distinguished Professor of Science and Engineering, Professor of Physics and
Mechanical Engineering. Assoicate Fellow AIAA.
1Landau, L and Lifshitz, E., Fluid Mechanics. Pergamon Press, New York, 1987,
pp 44-94 and pp 308-312.
2Emanuel, G., "Effect of Bulk Viscosity on a Hypersonic Boundary Layer,"
Physics of Fluids A, Vol. 4, No. 3, 1992, pp. 491495 |
3Becker, E.. Gas | dynamics, Academic Press, New York, 1968, pp 1-70.

4Clarke, J. F. and McChesney, M. The Dynamics of Real Gases, Butterworths,
London, 1964, pp. 100-274.

SVincenti, W. and Kruger, C., Introduction to Gas Dynamics, John Wiley & Sons,
Inc., New York, 1965, pp. 328-333.

6Johnson, J, Lin | and Ramaiah, R., "Reduced Molecular Chaos and Flow‘

Instability, in "Stability in the Mechanics of Continua (F. H. Schroeder, ed.),

Springer-Verlag, Berlin, 1982 pp 318-329.
7]ohnson, J. A. I, Johnson, L. E.,, and Lu, X.-N., "Turbulence in a Reacting
Contact Surface,” Physics of Fluids A, Vol. 2, No. 11, 1990, pp. 2002-2010.

a



Figure Captions
Figure 1. A Model for the Entropy Generation Term Resulting from a Chemical
Process.
Figure 2. The Sensitivity of the Rate of Change in Second Viscosity (d§/dt) to
Changes in Laboratory Time (t) and Chemical Relaxation Time (7).
Figure 3. A Slice through the Contour Plot in Fig. 3 at T = 30 psec.
Figure 4. The Sensitivity of Turbulent Intensity to Changes in Reynolds Number.
Turbulent Intensity is indicated by Int and Repeak is the value of the Reynolds
number at peak turbulent intensity as discussed in Ref. 6.
Figure 5. The Sensitivity of the Rate of Change in Second Viscosity (d§/dt) to
Changes in Laboratory Time (tjap) and Reynolds Nﬁmber. A value of

Repeak =1.0x10% is used for this contour plot.
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Part B

A THEORY OF HOMOGENEOUS
CONDENSATION

Abstract

In this study of the theory‘ of homogeneous condensation , we have
proposed another approach beyond the classical theory of homogeneous
nucleation. A stochastic model has been proposed for the droplet growth. We
start from the Landau-Ginsburg theory , we have obtained a Langevin type
equation. The Langevin type equation for the radius of the nucleus is
transformed to a Fokker-Planck equation for the distribution function .We
calculate the number of simpl¢ water molecules that can be fixed by the
isolated liquid droplet from which the probability P(r) of finding water within
a given volume around the critical droplet is computed. P(r) is not strictly
zero inside the critical radius a ;it's the soft core model. In the hard core
model the rate of growth of the droplet has been found analytically whereas

in the soft core model the rate of growth can be found only numerically .

&1
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A THEORY Of HOMOGENEOUS CONDENSATION

I-Introduction

A great deal of experiments has been done on condensation of gases in
nonequilibrium flows especially in cloud chambers and with supersonic
nozzles [1] ,{2]. At the Center for Nonlinear and Nonequilibrium Aeroscience
(CeNNAs), a special interest has been focusing recently on the turbulence at
the contact surface in the shock tube [3], and evidences of condensation of water
at the contact surface have been found using the light scattering technique [4] .

On the theoretical side, there is a classical theory of homogeneous
nucleation of water vapor condensation but limits have been found for this
theory [5]. First of all, we present the background which allows us to describe
the classical theory. Then we will present a soft core stochastic model for the
droplet growth, followed by a hard core model. Finally we will discuss how this
theory can improve our knowledge about homogeneous condensation in
different phenomena such as dew formation, clouds, rains and thin film

growth.

[I- BACKGROUND

In absence of seeds (soot, dust ) let us consider a cloud of water vapor
containing supersaturated vapor. To understand the meaning of a
supersaturated vapor, let us look  at the P, T thermodynamic diagram (lI'ig. B1);

we find far from the critical region the following behavior
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The Clausius - Clapeyron equation gives the equation of the saturated line such

that

MPJDz-%+B

The Clausius -Clapeyron equation reads

dP(T) _ I(T)
dT AV T

A and B are constants .

L(T) is the heat of vaporisation

AV s the difference of volume between the liquid and the gas phases

P(T) the isentropic line (constant entropy and adiabatic process) crosses the

saturation line somewhere at S =1 where S is the saturation ratio.
P(T)
S = P
° (3)
AtS =1 the vapor is saturated with 100% humidity and when Sis greater

than 1 the vapor is supersaturated with no appearance of condensation. In

general , an adiabatic process follows Poisson law

P _ v P
dT _
v-L T +)
where
y == &
Cy o)

Cp is the specific heat at constant pressure

Cv is the specific heat at constant volume
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Then

Y

p_ T .
P, 1, " ©

HI - Classical theory of homogeous nucleation (Becker-Doring

theory

Now how come  water vapor becomes a liquid water droplet? We will
present now the classical theory of homogeneous nucleation[6].
We assume two main steps . Firstly there is the formation of a water droplet of
critical size , secondly the growth process of the water droplet . And the present
study will only deal with the second step, that is the growth of the water
droplet.
We will briefly describe tie first step. In a cloud volume of supersaturated
water vapor, the molecules of water are attracted together and may form

clusters of a number of individual molecules. These clusters are not stable
>k

until they reach a critical size whose critical radius is T .

If a cluster does not reach the critical size it eventually disappears and the

water molecules are scattered in the supersaturated bath. The critical radius T

is given by
* 20

r =
pC(E) TInS
M o %
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O is the surface tension

P is the critical density of water

R is the ideal gas constant

U is the molecular weight of water

When the critical size is reached, the droplet can grow.
There are two main approaches for the theory of the droplet growth: a

deterministic one and a stochastic one , but both lead to the same type of

results [6].

The growth rate d_r is constant (Thompson law ). It can be expressed as
t

follows

dr _ P(T) - P(T)
dt 1

Ry 1
K ®)

or as

*

() = (%) t+r

)
The nucleation rate 1 follows the Eyring law
Wx
3 (10)
where

kB Is the Boltzman constant

W *is the energy barrier

() is the statistical prefactor called the frequency factor
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The mechanisms of growth are evaporation and condensation of simple water
molecules on the surface of the droplet, diffusion of droplets and coalescence of
several droplets colliding together. There is W * an activation energy which is
a usual ingredient in these theories [7]. The Arrhenius exponential factor gives
the dominant contribution. 1 the nucleation rate represents the number of
critical size droplets formed per unit time and per unit volume. In 1939 Volmer

[5] showed that

12 * 2
1/2N (0].1) 4n(r ) o
1= (—) —(—) exp - o
0 3kpT
¢ (11)
where N4 is the Avogadro number.
We can immediatly see that the activation energy is given by
2
x 4 x<
W =—7r o
3 (12)

In nonequilibrium flows we have in general P(t) and p(t) The pressure and
the density of the gas involved are time independent therefore the nucleation
rate is time dependent: I(t) Finally the condensate mass fraction l(t) obeys to

the following rate equation

dl
= (P,
a0 (P.T,1)

3
dl I(t) r (1 I .
Et—: TP, (V) - 0) + (:I’ ——(T) r (’['O) + dr —do|dr
p(t) 3 e ' p(1) do

(12)
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We also have the case where P(X,t), p(x,t), | (X,t), l(X,t) are position and
time dependent functions.

We would like now to present some new approaches of the theory of droplet

dr
growth. The results are that a? is no more a constant but is time dependent.

IV-__Soft core _stochastic model for the droplet growth
(Chandrasekhar-Hertz [8] )

This model was used for the stellar distribution theory, a nearest
neighbour random distribution of stars. We assume a liquid droplet of critical
radius r*= a bathing in water vapor. Then consider the droplet of radius a
forming a core which cannot be penctrated by simple water molecules coming
close to the surface of the droplet. W(I') the distribution of simple molecules

around the isolated spherical droplet is given by

w(r) =[l - frw(r')dr' 47rr2
| ’ (14)
yielding
47rr3 2
w(r) = exp (- Ydnr
3 (15)

1f d N is the number of simple water molecules in the shell between r and

2
r+dr, anddv = 471 dr is the clementary volume of the shell



3
4nr 2
dN =k exp (- —— )4nr dr
; 3 (16)
Which leads to
o . .
ir 2
N =4nk]| exp (- 3 yrdr
a (17)
Thus
4 3
Ta
N =k exp (- )
3 18)
N is the total number of water molecules that can be fixed by the isolated
liquid droplet.
k being a proportionality constant between dN and dv
3
41r 2
dN k exp (- = Ydnr dr
— =df(r) = II(ndr =
N N (19)

is the probability of finding liquid water within a given volume element dv
around the critical droplet.

Then the distribution function is
2 3 3
[1(r) = 4nr exp(- 47/3(r - a)) 20)

The distribution function has the required form and one can see that H(I’)

tends to zero when r tends to zero , but inside the critical radius a, H(I') is

not strictly zero, that is the soft core model (Fig. B-2).

We will study now some useful properties of this distribution function.

feds
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ad—r [1(r) = [I -27rr3]87rr exp - %ﬂ— (r3— a3)
(21)
=0
The solutions are
r= —-—ll—ﬁ for IT ..
2m
r=0 forlIl ., @)

r — oo forll

nin

1 3 } 1
F TI(R)dr = (5) Pexp 412 f : U Bexp - UdU
4m 3 J4na /3

(23)
_ 1 3
r=(i) /36xp 47ra3I“ (i) 1- I(i, 4ma )
47 | 3 3
(24)
where
T'(m) =f et dt
0 (25)

m is real
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1 Z ¢ (m-1)
Ilmz)=—| ¢ 1T dr1

['(m) ) o6

F(Z) is the gamma function and I(m,z) , the incomplete gamma

function.

Letus putg = 0 to give an idea of the value of T

. |
. NG/A ;
r= f r [1(r)dr= 3 eXp 4ma

0 4 %
2y
3 @)

But the exact value of T is

- dma
r= exp 3 g(a)
l
iy
3 28)
where
4 4ma’
gla) =1 - I(g ) T)
“ (29)
dr -
Let us now extract —7— for I' ~ I' to characterize the droplet growth. I'rom

dt

expression (19) we can write

dr _ 1 df(r)
dt  11(r) dt




Now it remains to calculate independently
_ 4 23
df(r) _dv | _ d r
~ =L v =% |
dt v dt  dt (V)= ]( )
z .
df(r) _ 34 dr +3 d |
dt I(r) 4n dt dt n g(r)

—_— ek, - .
A =T s the critical radius

Let us write

If

Then

* ==

dr __r_il p

dt A dt

The calculation gives
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(31

(34)



t

* dr
r(t.ty) =r (tp + | — dO
do

_3 [ *P‘ "‘3(
" r (t
iy =1 (t) + %ﬁxp4r3rr T (t)z' 0)2
5r lngt_) | P(ty
P.. f P_
with
r .
- 3 4r *
r= exp ——=— g(r )
(47r)1/3 3
3

We might need to introduce as in the case of stellar distribution I the

number of vapor water in the medium , then

w(r) :{l - frw(r')dr' 4m'zn(,
Thus
drr’ 2
w(r) = (exp - ny4mrng

3

Then the results are changed only slightly and are then more general.
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(36)

@7

(38)

(39)

(40)
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V-HARD CORE MODEL

Now we assume that H(I’) =0 strictly inside the core, it is the hard
core model instead of the soft core model described earlier. Again we consider

dN the number of simple molecules of water in the shell between r and r+dr is

J
given by 1(_ (it makes sense because if the molecules is far from the core

r there

is practically no chance to stick to the liquid droplet), K'is a constant real. With

the same method we can write

dN = K iamrdydr
r

(41)
By integration, one obtains
K g2
N=| —(4nr)dr
r
a (42)

Thus the number of water molecules that can be fixed by the isolated liquid

droplet is
4k’ (3-n)
= a
(n-3) )
Also
d—;} = df(1) = I (1)dr

(44)
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With
an-3
(N = (03) %
f (45)
forr 2 a
and
F-—-f rI1 (Ndr = (n-3) ,
) (n-4) (46
which is valid for n>4
See Fig. B-3 for the distribution function
dr _ l dfn(;)
dt 11 (r) dt )
—_ — 3 *
dif0 _d | 4m@” 3 dr
dt dt 3 . dt 9
dr_ 3 @ dr _gdr 1 n3gee
dt n-3 ([.*)“'7- dt dt n-3 n-4
(49)
-(ll::— ——(r*)zil-ln P
dt A dt (50)
IThen
dr _ by
dt 1)

where h is the growth factor independent of time due to the proposed

e T T T



mechanism.

(n-—3)n_3
(n ) 4)n -2
and S(t) is the time evolution
__ () dp
s(t) A d n

h=3

We can, express the radius evolution as follows

g

(L) =1 (tg - ha | dUP®)
P
J v
. [ |-
r(t,ty) =r (tp + hA -
In —Pﬁ)— In —_P(t())
p°° 00
Where

P is given by the Clausius - Clapeyron law (1)

And one can write the evolution of the radius in the following form

(g =1 (tg) + h (r (1) - 1 (1)
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(52)

(53)

(54)

(55)

(56)
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Application for the non-equilibrium flows

The growth rate of the droplet is

A _ g |10 ar | 10D

dt 3p(t) dt p(T)
° (57)

[F(T, To]sz

where

r(r,ré) = r*(TO) +h (f*(T) - r*(To)) (58)

and l(t) is obtained by integration.
What is usually calculated is the variation with time for a given particle
path of

a) the nucleation rate I

b) the number density of critical clusters (droplets) which is

* 4 x}pC
N = 2e
3 ir

1t

¢) — is the condensation rate

dt

d) ] the condensate mass fraction

VI - Discussion

We have presented a theory of homogeneous nucleation of gases, which
can be applied to equilibrium and nonequilibrium conditions. The growth rate

is no more a constant as in the classical Becker-Doring theory [6]. In our theory
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the growth rate is time dependent according to two different models : the soft
core model and the hard core model.
In some phenomena related to droplet growth as dew formation[10], it has been

found successively after the critical size has been reached the following law
dr 13

~

dint

(for t small)

It was interpreted as isolated growth without coalescence, then
dr t1/2
dint

(for medium range of t )

It was interpreted as growth with coalescence in one dimension. Finally

dr _

dint (for t large)

This last case was interpreted as growth with coalescence in two dimensions
(the usual linear growth law of classical theory ). These successive laws were
found experimentally and through computer simulations. We can use our
theory to explain with one unified reasoning the peculiar behavior of dew
formation which is also encountered in thin film growth [11]. This is the object

of future research projects.
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Figure B30 The distribation function (hard core maodel)
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