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One of the best way nowadays of protecting and assure the safety of a building

subjected to stochastic external excitations (Earthquake, strong wind, large waves, etc) is

to use structural control strategy. This technic was really improved during the time and

is without any doubt reliable and efficient. Unfortunately it is almost used without a high

knowledge or any specific parametrizing because a deep and solid background work was

not really done. So in this thesis, we have built some self control systems in order to quench

vibration in specific physical systems particularly mechanical structures. It is done firstly

by using outrigger systems (a structural control system) attached on cantilever beam

and secondly by the association of pendulums. The excitations responsible of vibration

in the system are from two main natures: earthquake and wind loads. And it results

that for outriggers and added branches, a damping effect is observed and the damping

ratio is increased with the number of added devices. While for a set of pendulums, the

design system behaves like trees and vibration is controlled due to the exchange of energy

between the main trunk and the branches.

Keywords: Mechanical structure, Cantilever beam, Pendulums, Trees vi-

bration, Outrigger system, Vibration control, Structural control, Self-control,

Earthquake loads, Wind load.
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Résumé xxi

Une des techniques les plus prisées de nos jours concernant la protection et la sécu-

rité des structures soumises à des excitations aléatoires (séisme, vent violent, raz de marée

etc) est l’utilisation des systèmes de contrôle structurels. Cette technique a fait ses preuves

pendant déjà quelques années et sans aucun doute, elle est fiable et efficace. Malheureuse-

ment des études analytiques poussées n’ont presque pas encore été faites la concernant.

C’est pourquoi, dans cette thèse, nous avons conçu quelques stratégies d’auto-contrôle

ayant pour but de réduire les vibrations pour certains types de systèmes physiques en par-

ticulier les structures mécaniques. Ceci a été fait premièrement en utilisant les systèmes

de balancier (qui est un système de contrôle structurel) attachés à une poutre cantilever

et deuxièmement par l’association des pendules. Les facteurs responsables des vibrations

dans le système sont de deux ordres: le séisme et le vent. Nous établissons que pour le

dispositif de balancier attaché et les branches ajoutées, le phénomène d’amortissement est

observé et le cœfficient d’amortissement croît avec le nombre de niveaux ajoutés. Tandis

que pour l’assemblage de pendules, le système se comportant comme les arbres voit ses

vibrations réduire grâce à un échange d’énergie entre le tronc principal et les branches.

Mots-clés: Structure mécanique, Poutre Cantilever, Pendules, Vibrations

des arbres, Système de balancier, Contrôle des vibrations, Contrôle structurel,

Auto-contrôle, Séisme, Mouvement des vents.
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The development of the countries nowadays passes by an industrial revolution marked

by the construction of significant infrastructures. Thus civil and mechanical engineering

are main disciplines which should be well mastered in order to achieve this goal. So one can

see in order to show their growing, highest buildings in the most of powerful nations and

even developping countries. But after they have been built, tall and slender structures

require permanent monitoring of the deformations that take place with the time. The

causes of the deformations include external factors such as strong winds, earthquakes and

floods, accompanied by the natural process of ageing [1–3]. Let us mention that Cameroon

is not aside of that phenomena because it is till in mind what happened in December 2019.

The 19th December 2019, the regions of Centre and South Cameroon were subjected to

a brief earthquake in the beginning of the afternoon. In a communiqué read during the

1PM News of the CRTV Radio, the Monday 23 December 2019, the Minister of scientific

research and Innovation of Cameroon Madeleine TCHUINTÉ declares that “according to

the result from the recording of the sismologic station of IRGM of Édea, a local earthquake

took place and primary waves were obtained at 4.26 PM and secondary waves at 4.27 PM”.

It was a 5.7 magnitude (Mω) earthquake on the Richter scale and the epicenter is located

in a radius of 240 km from Édea [4]. Fortunately, no damage was recorded.

Two main consequences of the monitoring are the reparation of the damages suffered

by the material structures and the use of control methodes [5, 6], some of which require

external devices and energy [7–11]. Considerable efforts have been devoted to the study

of nonlinear vibrating structures firstly to predict the behavior of structures facing an

external excitation and determine the conditions of appearence of chaos or unwanted

phenomena [2] and secondly to propose adapted control. This is generally achieved with

passive techniques, such as the classical addition of dampers [12], tuned mass-damper

systems [13] or with active or semi-active means such as piezoelectric materials [14], mag-
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netorheological device [10] , shape memory alloys [15] or even simple hydraulic actuators in

feedback or feedforward systems [16]. A new method catches our eyes because since 1980s

when it was proposed for the first time, it is recognized as one of the best of semi-active

control for high-rise buildings : Outrigger system.

Outrigger system is a revolutional method to increase the intrinsic damping of the

building for giving its the way to reduce more vibrations when it is subjected to different

disturbances. The intrinsic damping here refers to the capability of the structure to dis-

sipate the mechanical energy, whatever the physical mechanism involved (viscoelasticity,

friction ...). Outrigger system is constitued by a stiff beam that connects the shear walls

to exterior columns. This system is quite efficient and more used because the outrigger

and the columns resist the rotation of the core [17] and thus significantly reduce the lat-

eral deflection and base moment when the structure is subjected to lateral forces [18].

Compared to a cantilever beam whithout a controller, a tall building structure which in-

corporates an outrigger system can face a reduction in core overturning moment up to 40

%. To develop a controllable outrigger damping system, the semi-active control devices,

magnetorheological (MR) dampers are adopted by Wang [19].

Many works in this domain have been done by engineers and some aspects as the

influence of the cantilever beam geometrical non linearity have not been taken into account

even the damping modes effects. It is why, our first main goal in this thesis is firstly to

propose a simplify model of an Euler Bernouilli cantilever beam where we

locate outrigger system and observe the effect of the location and the number

of outriggers on the central column; and secondly by adding a controllable

Magneto-rheologic damper on a model of Timochensko beam and pointing

out its perfomance.

Conventional Structures can be earthquake safe, but they are not configured for earth-
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quakes and therefore, too many are lost. A multitude of small details in columns, corners or

connections decide whether a building will survive or not. Quality control is overwhelmed

by this requirement. It is like a game of chance, even for the same type of building in the

same location

∗ Therefore, we need new structural concepts adapted to earthquakes

∗ A feasible approach is “Structural Control” to control the response of a structure

to dynamic loading by introducing special mechanisms into the structural system with

suitable control devices. So recently, number of structural concepts [20] which allow rigid

body control have been identified and four concepts (Base Isolation, Hysteretic Device

System, Tendon system and Pagoda system) have been suggested for seismic control

[21,22]. Our second major aim is to construct a structure design which incorporate

a set of pendulums and bring out their abilities to resist to earthquakes and

strong winds.

Pagoda system, inspired by high seismic performance of old built Pagoda structures,

is one of the most powerful design structure which react positively when they face earth-

quakes [23–26]. With many experiments, some assumptions were proposed to explain the

resistance of five story pagoda [27]; it was indicated that the good resistance is due to

the combined actions of different mechanisms: base isolation, slip joint, friction damper,

snake dance, Shin-bashira and tuned mass damper, which makes that structures so re-

sistant to earthquakes. Omori [28] proposed that the compound pendulum system , the

center column and the main structure, gives tuned mass damper effect after investigations

on pagodas in Senso-ji Temple and Nikko-ji Temple. And the friction damping effect of

the wooden joints (pieces of wood are assembled using tenons, mortises) was an important

factor in making them earthquake resistant [29]. According to the analyses conducted by

Tanabashi [30], the factors increasing the resistance of the structure were the scale effect
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of the five-story structure, a characteristic of flexible structure and the wood joint capac-

ity for allowing plastic deformations through slipping or gaps in them. Some years after,

it was proposed that, the center column acts as a bolt fastening the whole structure and

adding a restraint effect of shearing deformations among individual stories [31]. Ueda [26]

considered that each structurally independent stories mounted on top of the other was

able to allow each one to act like a balancing toy, cancelling the inertia force of each story

out among them.

Because more investigations and theoretical analysis are still required to clarify the

five story pagoda behavior [32], an attention was carried on the damping mechanism by

branching (to take into account aspects of base isolation, slip joint, snake dance and Shin-

bashira) studied by Theckes et al. [33] where they found that significant levels of damping

achieved via branching with typically 30% of the energy being dissipated in one oscillation

for two bioinspired architectures.

In order to propose the best modelling that fit the behavior of pagoda’s dynamic,

to mechanical and to civil engineering, we attempt to solve in this thesis the following

problem :

− The modelling of an elastic structure where outriggers systems are located along its

length.

− The modelling of a rigid body structure where masses are attached at different

levels.

− The dynamic of such structures, the effect of outriggers and masses on the vibration

of that structure in the autonomous case (an inpulsion move the structure from its initial

position) and also when they are subjected to earthquakes or wind flows.

So, the thesis is structured as follow :

• In the first chapter, a summary of the state of the art, on structural control systems
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leading to self-vibration control of structures; the dynamics of elastic beam and rigid beam

are presented.

• The second chapter consists on the presentation of some technics used to analysis

and solve the problematic of the thesis.

• It follows with the third chapter. The presentation of the results which are helpful

for mechanical and civil engineering for making stronger structure is done. Discussions

and stretching to applications of the work are presented here.

• It ends by a general conclusion which gives the main results obtained and perspectives

for future investigations.
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1.1 Introduction

Vibrations in man-made structures are a central problem in mechanical engineering [13];

this results from external or internal excitations that they face during their live. Since

many years, scientists have been proposing a number of methods to reduce the effects of

vibrations due to external excitations. Considerable efforts have been devoted to the study

of nonlinear vibrating structures [2]. This is generally achieved with many techniques and

methods of which some will be presented in this part of the work.

The chapter is organized as follows: Section 1.2 presents the generalities on the dy-

namics of structures (elastic and rigid), while Section 1.3 is devoted to the definition of

structural control systems with some examples. Section 1.4 presents the concept of damp-

ing by branching. Section 1.5 will give an overview on the concept of Self vibration control

applied in the case of structure. Section 1.6 deals with the presentation of the problems

to be solved in the thesis. Finally in Section 1.7, a brief conclusion will mark the end of

this chapter.

1.2 The dynamics of structures

According to the modelling of buildings, in particular tall buildings in the litterature,

there are two majors ways to model: as Cantilever elastic beams or rigid body beams.

This part of work is devoted to the generalities on dynamics of beams.

1.2.1 Models of elastic beams

The used of materials of high resistance for modern buildings and in particular for bridges,

ships/boats, planes and tall buildings/skycrapers make their analysis more interesting

according to their great capacities. They are four main theories about beams modelling
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[34], in the Table 1.1, we present these different beam theories:

Table 1.1: Four beam theories

Beam models Bending Lateral Shear Rotary

moment displacement deformation inertia

Euler - Bernoulli
√ √

× ×

Rayleigh
√ √

×
√

Shear
√ √ √

×

Timoshenko
√ √ √ √

To summarize that table, the Timoshenko model is an extension of the Euler-Bernoulli

model taking into account rotary inertia and shear deformation of the beam [35,36].

1.2.1.1 Euler-Bernoulli beam model

The study of beam vibration is a well known subject [37, 38]. The energetic approach

refers to the Hamilton principle which is based on the knowledge of the elastic potential

and the kenetic energy of the system under consideration. Thus for a beam of section S,

with the density ρ and a Young modulus E submitted to a transversal charge q, we have

to write first for this method [39] the kinetic and potential energy of the system written

as follows,

T =
ρS

2

∫ (
∂y

∂t

)2

dx (1.1)

U =

∫
EI

2

(
∂2y

∂x2

)
dx− 2

∫
qydx (1.2)

where y and I refer respectively to the transversal displacement and the moment of

inertia.
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The density of the Lagrange function obtained is written as :

Λ =
ρA

2

(
∂y

∂t

)2

− EI

2

(
∂2y

∂x2

)2

+ qy (1.3)

This leads to obtain according to the variationnal principle to the following Euler-

Ostrograsky equation :

∂Λ

∂y
− ∂

∂t

(
∂Λ

∂y′t

)
+

∂2

∂x2

(
∂Λ

∂y′′xx

)
= 0 (1.4)

where ′, ′′ represent respectively the first and second derevaties with repect to the

variable put in indication.

Thus we can derive the dynamic equation of the defined system.

ρS
∂2y

∂t2
+ EI

∂4y

∂x4
= q (1.5)

And by taking m = ρS the mass per unit of length, the mathematical formulation of

motion of beam describing the classical Euler-Bernoulli model without a charge is given

by:

m
∂2y (x, t)

∂t2
+ EI

∂4y (x, t)

∂x4
= 0 (1.6)

The tranverse displacement of the beam y = y(x, t) is described by two variables: x

the axial coordinate along the length of the beam and t the time.

1.2.1.2 Rayleigh beam model

The presence of rotary inertia effects adds another term to the Euler-Bernoulli coming

from the kinetic energy due to the rotation of the cross-section. The motion of beam is:
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m
∂2y (x, t)

∂t2
+ EI

∂4y (x, t)

∂x4
− ρI ∂

4y (x, t)

∂x2∂t2
= 0 (1.7)

with ρ the mass density of the beam material.

1.2.1.3 Shear beam model

Here the tranverse vibration considers the effect of shear distortion (but not rotary inertia).

We introduce new variables α, the angle of rotation of the cross-section due to the bending

moment, and β, the angle of distortion due to shear. The total angle of rotation is the

sum of α and β and is approximately the first derivative of the defection,

α (x, t) + β (x, t) =
∂y (x, t)

∂x
(1.8)

The equations of motion, using Hamilton’s principle, are given by:

m
∂2y (x, t)

∂t2
− ksGA

(
∂2y (x, t)

∂x2
− ∂α (x, t)

∂x

)
= 0 (1.9a)

EI
∂2α (x, t)

∂x2
+ ksGA

(
∂y (x, t)

∂x
− α (x, t)

)
= 0 (1.9b)

where G is the shear modulus of elasticity and G = E
2(1+ν)

, ks is the shape factor

depends on the geometric of the cross section of the beam (for exemple, for circular cross

section ks = 6(1+ν)
7+6ν

) and S is the cross-section area of the beam.

1.2.1.4 Timoshenko beam model

Timoshenko proposed a beam theory which adds the effects of shear distortion and rotary

inertia to the Euler-Bernoulli model. Therefore, the Lagrangian includes the effects of

bending moment, lateral displacement, rotary inertia and shear distortion. We assume

that there is no rotational kinetic energy associated with shear distortion, but only with
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the rotation due to bending. Therefore, the kinetic energy term used in the Rayleigh beam

is modified to include only the angle of rotation due to bending by replacing ∂y/∂x with

α. This beam model is suitable for the two following cases:

• The beam is short in length relative to its thickness,

• The long beam vibrating in a higher mode so that the nodal points are close together.

The following set of coupled differential equations in terms of the beam displacement

y(x, t) and rotation α(x, t) of the cross-section is thus expressed as follows

m
∂2y (x, t)

∂t2
= ksGA

(
∂2y (x, t)

∂x2
− ∂α (x, t)

∂x

)
(1.10a)

ρI
∂2α (x, t)

∂t2
= ksGA

(
∂y (x, t)

∂x
− α (x, t)

)
+ EI

∂2α (x, t)

∂x2
(1.10b)

Eliminating α, we obtain the uncoupled equations of motion given by

EI
∂4y (x, t)

∂x4
+m

∂2y (x, t)

∂t2
− ρI

(
1 +

E

ksG

)
∂4y (x, t)

∂x2∂t2
+
ρ2I

ksG

∂4y (x, t)

∂t4
= 0 (1.11)

Firstly, the Euler-Bernoulli beam theory which is the simplest one, is used to have a

good assessment on how the structure react when it is excited and the behavior of the

outriggers. Secondly, to describ more the real situation, the choice of the Timoshenko

beam model is justified in the following work.

1.2.2 Boundary conditions

Many systems with flexible beam are encountered in different branches of science (bi-

ology, environmental science, and engineering). Depending on the use for which these

systems are designed to, beam ends take diverse configurations which lead to a particu-

lar dynamics. Ten cases are identified [34]: free-free, hinged-hinged, clamped-clamped,

Ph.D in Fundamental Mechanics and Complex Systems by FANKEM Eliane Raïssa ?UY1/FS?



Chapter I: Litterature review 13

clamped-free, sliding-sliding, free-hinged, free-sliding, clamped-hinged, clamped-sliding

and hinged-sliding supports. As previously said, as this work concern residential and

tall buildings and skycrapers, it is rigth to choose the instance of clamped-free ends: at

the ground level, the structure is clamped and at the top level it is free.

1.2.2.1 clamped-free ends for Euler-Bernoulli beam model

In this configuration:

− At the clamped end, there is no displacement and the angular coefficient of the

tangent to the elastic line is zero. Indeed, if the angular coefficient is not zero, then there

is a breaking of the beam. The boundary conditions are thus specified by

y(0, t) = 0 and
∂y(0, t)

∂x
= 0 (1.12)

− Let L be the total length of the building. The moment of bending and the shearing

force are nulls at the free end. The mathematical formulation is

∂2y(L, t)

∂x2 = 0 and
∂3y(L, t)

∂x3 = 0 (1.13)

1.2.2.2 clamped-free ends for Timoshenko beam model

Here, The mathematical formulation for the clamped end is the same as Euler-Bernoulli

one while at the free end, it is

∂y(L, t)

∂x
− α(L, t) = 0 and

∂α(L, t)

∂x
= 0 (1.14)

These previous boundary conditions will be used in the next chapter to carry out the

modal analysis.
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1.2.3 Models of rigid beams

To model the structure as a rigid body, an inverted pendulum is considered, attached

to the soil by a rotary spring and dashpot (viscous damper) as shown in figure 1.1. The

forces acting on this system are: the weight and the reaction of the soil. This reaction is

related to the mechanical properties of the soil. The coefficients of the reaction (damping

and elastic coefficients) of each structure can be deduced from a free vibration test. The

inclination of the rod must be less than the critical amplitude, if not the structure will

break [40].

Figure 1.1: An inverted pendulum

This type of structure is in various domains: in civil engineering, one can assimilate

tall buildings to its, in biomechanics the prosthetic limb for physically disabled persons

can also be described by such a model, in agriculture, it represents rigid plants such as

trees.

Under the action of the external excitation, the motion of the inverted pendulum is

obtained using the fundamental equation governing the dynamics of the system in rotation

and it is given by
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J
d2θ

dt2
+ C

dθ

dt
+ kθ − 1

2
MgL sin θ = M ′ (t) (1.15)

where J is the moment of inertia , M the rod mass and L the height at length of the

rod. g, C and k are respectively the gravitational acceleration, the damping coefficient

and the spring constant. Θ is the angle that the rod makes with the equilibrium position

and M ′(t) stands for the external forces. M ′(t) can be the effects of earthquake, wind,

strong waves or the action of machine used to uproot the mechanical structure.

Very often, these forces are stochastic and when the amplitude is small, one can assim-

ilate it to a gaussian white noise. They can also be approximated by periodic functions

whose amplitude and frequency are deduced by using averaging procedures (statistics

analysis, Fourier analysis, noise analysis, etc...).

1.2.4 General formalism of vibration control

Innovative methods of control became, in recent years, of great relevance, they allow to

project structures to resist, without appreciable damage, dynamic actions, for example

storms, strong waves, a great seismic action, etc. At the same time, during the construc-

tion or after, structures are to be protected by protective systems, by reducing response,

effective and at the same time reliable. Between these innovative methods of control, three

different approaches can be distinguished: passive, active and semi-active; to these can be

added a fourth which is the hybrid control.

1.2.4.1 Passive control

Passive control consists in superposing on the structure a device which modifies the rigidity

or the damping of the structural system without requiring an external energy source and

without introducing energy for its operation [41]. Some examples of these kind devices
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are: tuned mass dampers, base isolator systems, friction dampers, viscous fluid dampers,

etc.

1.2.4.2 Active control

The active control aims at imposing a force or a displacement at certain points of the

system to be checked, depending in particular on the measured state or the history of

the latter [42, 43]. This type of control requires an external power source to operate the

actuators which provide the control forces whose magnitudes are determined by using the

measurements from the sensors, excitation and/or response of the structure. These forces

can be used to add or dissipate the energy of the structure to be controlled. In order to

build such a system, there are two approaches that are radically different: the first method

is to identify the disturbance that creates the vibrations to cancel it by superposing a

reverse excitation; it is feedforward control. The second method is to identify the response

of the structure rather than the excitation that makes it vibrate. It therefore requires the

modeling of the dynamic behavior of the structure; it is feedback control. As example:

active variable stiffness, active bracing systems, active tendon systems, etc.

1.2.4.3 Semi-active control

Semi-active control combines the main features of active and passive systems. These

systems require a low power source to alter the mechanical property of the control device.

One of particularities of this kind of devices is its capacity to adapt its dynamics related

to the effects of environmental or external loadings [44]. It consists in changing ,in real

time, the characteristics of passive energy dissipation devices and this change induces a

low energy requirement. Therefore, as for active control, the system needs sensors, pro-

cessors, actuators. Semi-active systems represent an evolution of passive systems and thus
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preserve fundamental charateristics of reliability, security and simplicity, in addition to

that adjustment to increase perfomances. There is a strong conceptual link between semi-

active systems and passive systems; indeed the various terminologies used in literature to

identify the semi-active control are: Variable passive control, Variable structure system

(VSS), Parametric control to say that we play on one of the system parameters to pro-

vide dynamic control over the structure. As Semi-active control, we can cite: Continuous

variable stiffness, electrorheological dampers, magnetorheological dampers, etc.

1.2.4.4 Hybrid control

A control system is hybrid if it uses a combination of passive and active control system.

Here, the control system is both passive and active; and each of its parts contribute to

increase the performance of the controler. It comes with the need for reliable and robust

control systems, such as passive, efficient and controllable control such as active control.

The hybrid active-passive control system therefore uses viscoelastic (passive) and piezo-

electic (active) materials. The first ensures the reliability and robustness of the system

since in case of malfunction of the active control, the system remains damped. The second

improves the performance of the system for very low frequencies. The both passive and

active controls therefore act in complementarity [45]. As some hybrid control systems, we

can have: hybrid damper actuator bracing control, hybrid mass damper, etc.

1.3 Structural control systems

For several years, always with the aim of improving the performance of controllers and

having stronger structures, Structural control system has emerged and is now more and

more widespread in the word. It can be passive, active, semi-active or hybrid; it depends
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on how it is modeled.

1.3.1 Structural control system

Structural control is the control of selected response variable of a structure subjected to

dynamics loading [46].

• Such variables may be displacements or their time derivatives (velocities, accelera-

tions) and/or forces

• Full controllability can be achieved in mode control and the control of rigid body

mechanism

• For mode control, a structural system is needed that has clearly defined modes

• For rigid body control, a structural system must consist of an assemblage of rigid

bodies

Therefore, Structural Control is NOT:

− Added damping

− Added damping and stiffness

− Or any conventional structural system with additional devices: No system vari-

able is controlled in such structures!

The first step in structural control is to select a structural concept that is

controllable! [47]

1.3.2 Some structural control for earthquake excitation

On the way of structural control systems, one can have as Rigid body mechanisms:
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1.3.2.1 Base isolator systems or seismic base isolation

These systems consist of placing, between the foundations and the superstructure, devices

that have a very high horizontal deformability and a very high vertical stiffness. These

devices make the decouple of the movement of the ground from the structure possible in

order to reduce the forces transmitted to it. The isolator captures deformations (inelastic)

and filters the accelerations (high frequencies) so that the isolated superstructure moves

essentially in a rigid mode undergoing low accelerations and almost no deformation. As a

result, the inertial forces transmitted to the foundation elements are limited and remain

below the elastic capacity of such elements. Base isolation is based on the principle that

if the vibration period is increased sufficiently to move away from the predominant earth-

quake excitation period, the accelerations transmitted to the structure (and consequently

the inertial forces) are considerably reduced. On the other hand, the increase of the period

generates larger displacements concentrated at the level of the isolator [48] (Figure 1.2).
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(a) The Gates of Hell Auguste Rodin (b) Base isolated Structure

(c) (d)

Figure 1.2: Base Isolation [47]
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1.3.2.2 Hysteretic device (Hyde) system

HYsteretic-DEvice- or HYDE-systems are a kind of structural control system that in-

troduces a stiff-ductile mechanism into the structure [49, 50]. By doing so, the structure

becomes an assembly of rigid bodies moving in a defined pattern with internal forces

limited by the yield level of the devices that are placed in the joints between the rigid

bodies. Such an assembly dissipates almost all the input energy due to an earthquake in

these devices through plastic yielding or friction. This characteristic leads to very small

stresses in the structure and at the same time limits the motion of the mechanism. It is

a system that can be applied to new structures but is most suitable for retrofitting, espe-

cially when it comes to the so-called soft storey structures. Such structures are abundant

in modern cities due to the presence of open spaces in the ground floor and apartment

floors above stiffened by “non-structural” partition walls usually made of bricks. The up-

per storeys thus form a rigid block on top of a horizontal seismic joint: The natural place

for stiff-ductile devices to make it a HYDE-system (as seen in Figure 1.3).

The beneficial performance of HYDE-systems has been shown in many studies and an

early application has been the 7 storey constructed building in Shkup, Macedonia [51].

Here, simple shear panels have been used as HYDEs and the retrofit was 60% cheaper

than any conventional approach.
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(a) 7 storey constructed building in Shkup, Mace-

donia, 2009

(b) 3D mathematical models representative for the 7 storey building

constructed in Shkup, Macedonia

Figure 1.3: Hyde system [51]
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1.3.2.3 Tendon system

Tendon Systems are one of the structural control systems for earthquake protection. In

this system, rigid bodies are connected through single cables or through a cable network as

shown in Figure 1.4 below [52]. Systems of this type generally consist of a set of prestressed

tendons connected to a structure with their tensions being controlled by servomechanisms.

One of the reasons for favoring such a control mechanism has to do with the fact that

tendons are already existing members of many structures. This is attractive, for example

in the case of retrofitting or strengthening an existing structure [22]. The pre-stressing

forces of the cables are regulated strategically at given locations. Therefore, a suitable

dynamic mechanism can be established (Figure 1.5). Suitable devices are spring-dashpot

combinations or shape memory alloy devices like those in the Tendon System for the

seismic retrofit of a historic bell tower in Trignano, Italy [53].

Figure 1.4: Principle of Tendon System [52]
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(a)

(b) Preliminary proposal for Position of Tendon System

Figure 1.5: Tendon-Spring System Model [52]
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1.3.2.4 Outrigger system

Outrigger system is a revolutional method to increase the intrinsic damping of the building

for giving its the way to reduce more vibrations when it is subjected to different distur-

bances (Figure 1.6). The intrinsic damping here refers to the capability of the structure

to dissipate the mechanical energy, whatever the physical mechanism involved (viscoelas-

ticity, friction ...). Outrigger system is constitued by a stiff beam that connects the shear

walls to exterior columns (see Figure 1.7). This system is quite efficient and more used

because the outrigger and the columns resist the rotation of the core [17] and thus signif-

icantly reduce the lateral deflection and base moment when the structure is subjected to

lateral forces [18, 57].

Figure 1.6: Damped outrigger concept [58]
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Figure 1.7: Conceptual detail at outrigger level [58]

1.3.2.5 Pagoda system

Pagoda system, inspired by high seismic performance of old built Pagoda structures (Fig-

ure 1.8), is one of the most powerful design structure which react positively when they

face earthquake [26,54,55]. The traditional Pagoda already was built by a highly flexible

kit system allowing the building to move and shake in a controlled way thus absorbing the

vibrations. The Pagoda performs a so-called “snake dance” during an earthquake, which

has protected it from failure for over 1300 years. Therefore, the beams and columns of

such a house were only plugged together (interlocking technology) and not joined in a

fixed way or nailed. These joints allowed the joined elements to move within a certain

scope [56]. Figure 1.9 shows a building with the construction particularly based on pagoda

structure. In the literature, according to dear configuration, it is two differents kinds of

Pagoda structures:

• The fisrt one is most build with wood, we usually see that kind of building in China

and all the pieces of wood are assembled without the least nail! All is indeed fitted one in

another thanks to sets of tenons, mortises.

• The second one is characterized by his central mast called ”Shimbashira” which
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can be useful for repositioning of one story if it is deviated, we can also notice that Load

at different levels can help to stabilize the building after a disturbance.

Figure 1.8: Pagoda structures [56]

In this thesis the outrigger system will be investiged. A modeling of single

and multi-outrigger will be shown; the way it appears on the structure and

reduces the vibrations will be exposed by numerical simulation
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(a) The Tokyo Sky Tree (b) Multi-segment of the structure

Figure 1.9: Adaptation of the pagoda’s “shimbashira” principle to the needs of the Sky

Tree project [56]

1.4 The damping by branching

For many of engineering problems, the nature can be a source of innovative inspiration,

[59–61]. Trees are a source of severals bio-inspired applications for example on the creation

of autorepairing materials [62], or on the optimisation of mechanical links.

Unfortunately, just few bio-inspiried works were done on the damping notion. One

can enumerate for example, works of Yoon and Park [63] who recently developped a

damped device using electronic microcomponents undergoing shocks, inspired by the green

woodpecker. As fruit of evolution, trees, which are regularly suggested to aerodynamic

loads, are likely to possess mechanisms for specific defences.

In front of the different time scales of the loadings under the trees, several adapta-

tive mechanisms have recently been discovered. Over long periods, thigmomorphogenesis

allows trees, and plants in general, to adapt their growth to better withstand the usual
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loadings of their environment [64, 65]. For example, a tree in a windy environment will

grow its trunk and branches more in diameter than in length [66]. In short time and from

a static point of view, the work of Gosselin et al. [67] showed that the flexibility of the

plants, in comparison with the rigid case, allows a reduction of the aerodynamic drag

force. This mechanism of reconfiguration thus increase the resistance of plants, especially

trees, to aerodynamic loading. [68, 69]

1.4.1 A dynamic behavior

First of all, remember that, there are three sources of damping in the trees, namely: [70–76]

−Wood, known for its viscoelastic properties, which has been the source of bio-inspired

materials;

− The interactions between the shaft and the air cause forces in the opposite direction

to the local speed in the shaft, bringing a dissipation highly dependent on the amplitude

of the movement of the shaft;

− Considering the global motion of the tree by bending the trunk, another mechanism

is often described in the literature as “Structural damping”.

Figure 1.10: Linear model of the dynamic of a three proposed by James et al. [77]

This third mechanism is interpret as the possible transfer of mechanical energy of
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the trunk to branches; where that energy will be dissipate by the two viscoelastic and

aeroelastic mechanisms. James et al. proposed a first model of energy transfer presented

in figure 1.10 which model the structure of three branches as multitude of TMD coupled

oscillators.

1.4.2 Damping due to geometrical non-linearities

In order to develop strategies for bioinspired designs of slender structures including an

efficient damping effect specific to large amplitudes, it is crucial to clarify the nonlinear

mechanism involved in the energy transfer that many authors invoke. For this purpose,

Theckes et al consider the simplest model of a branched dynamical system in figure 1.11,

a spring-mass model of a Y-shape [33]. The model consists of three massless rigid bars

linked by rotational springs and supporting three masses. The first bar, representing a

trunk of length l1, is linked to the ground by a rotational spring k1 and supports a mass

m1. The branches are two symmetrical bars of length l2, each forming an angle φb with

respect to the trunk axis. Each branch is linked to the tip of the trunk by a rotational

spring k2 and supports a mass m2.

The dimensionless equations of motion of the trunk (Θ) and his branches (Φ) are:


Θ̈ + Θ = 2Γ

[
Θ̇Φ̇ sin (φb + Φ)− Θ̈Jφ (φ)

]
Φ̈ + 2ΩξbΦ̇ + Ω2Φ = −Θ̇2 sin (φb + Φ)

(1.16)

And the dimensionless total mechanical energy is given by

E (τ) =
1

2

[
(2ΓJφ (φ) + 1) Θ̇2 + Θ2 + Γ

(
Φ̇2 + Ω2Φ2

)]
(1.17)

The initial energy is E0 = 1, i.e Θ0 = π/2, in the trunk mode only. The total energy

decreases as a consequence of the energy nonlinearly transferred to the damped branch
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Figure 1.11: Branched geometries, (a) The walnut tree architecture analyzed by Rodriguez

et al [78], (b) and (c) Y-shaped spring-mass model of an elementary branched tree-like

structure by Theckes et al [33].

Figure 1.12: Typical evolution of the total energy, E(—), and modal energies, EΘ(- - -)

and EΦ(· · · ), with the respective evolution of the trunk angle, Θ(- - -), and branch angle,

Φ(· · · ), of the spring-mass model of a Y-shape, as a function of time over three periods of

the trunk mode. The design parameters are set to φb = π
2
, ξb = 0.2, Ω = 2 and Γ = 0.2. [33]
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mode. Since the two modes are coupled by nonlinear terms, energy is exchanged between

them. The dissipation in the branch mode damps the energy received from the trunk

mode, resulting in an effective damping of the whole structure.

1.5 The Self-vibration control

1.5.1 Self-vibration control system

• A self-controlled system is a system which has the ability to maintain or turn back

itself in a suitable stage whatever what disturb it and put it away from that stage

• Self-controlled is also known as maintained self-oscillation, self-excited, self-induced,

spontaneous, autonomous.

• These structures do not need any external help (added after the building of structure)

or internal system (structural control system, etc) to be controlled

• This new system is suitable for high-rise buildings because there generally have

flexible and low damping characteristics

This fact is already scientifically explained, but no modern structure has been built

with this robust structural system, which belongs to a class of seismic control concepts.

These concepts rely on the control of rigid body motions allowing for a drastic reduction in

kinetic and potential energy in the structure, thus leading to a very robust behaviour. In

this field, two first models were already proposed and is shown in the following paragraphs.
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1.5.2 A set of pendulum with multi-branched view as mechanical

system with self-control of vibration

Inspired by both Pagoda system and branch on tree architectures, and called “Modern

pagoda system”, this new structure consists of an inverted pendulum of finite length and

mass as a rigid rod attached to the soil by a rotary spring and dashpot (viscous damper),

with massless rigid bars or inextensible cables linked on that central column. Masses are

attached at different length of the central column on that bars or cables. Each level is

one bar or cable or two symmetrical bars or cables, forming an angle with imaginary

horizontale line. These bars or cables are linked to the central column by a rotational

spring and viscous damper. That attaches masses here are different floors.

1.6 Importance and reasons of the thesis

Chinese traditional timber structure is one of the oldest structural forms of China and

has also been widely adopted in other Southeast Asian countries, such as Japan and

Korea. Many great timber palaces, temples and pagodas that were built through history

have been preserved and stand as an invaluable legacy to human civilization [32, 56, 79].

In Japan no pagodas have ever suffered serious damage from earthquakes. Even in the

Great Hanshin-Awaji Earthquake, there were no reports of serious damage to wooden

pagodas in Hyogo, Kyoto and Nara. This fact must be scientifically explained. Since the

end of the Meiji era, many researches have studied the earthquake resistance of five-story

pagodas. And several factors of earthquake resistance of them has been pointed out, such

as friction damping and sliding effect of the wooden joints, base isolation effects, balancing

toy effects of deep eaves, bolt fastening effect of the center column and so on [80]. Because

more investigations and theoretical analysis are still required to clarify the five story
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pagoda behavior, it is imperative to investigate their structural performance, especially

their dynamic performance, to provide a fundamental basis for structural appraisal and

strengthening. Base isolation effects, balancing toy effects, bolt fastening effect of the

center column are the firsts taking into account in this scientific labour which consists

of setting up a mathematical model of a mechanical structure mimicking the behavior

of pagoda system. Thus the attention of this thesis work is to carry on the damping

mechanism of such structures; starting from the mathematical modelling, analytical and

numerical study of the behavior of outrigger systems as a high damping performance

system to a proposition of a model of self-vibration control and its simulation results

while passing by analysis of damping coefficient of N-damped outriggers systems and the

effect of the multibranches (damping by branching) on a pendulum.

1.7 Conclusion

In this chapter, we have provided a state of art with as much detail as possible about the

four main groups of classification of mechanisms for control of structural response. The

structural control systems with some examples, the concept of Self-control of vibration

applied in the case of structure and generalities on beam models (elastic, rigid and bound-

ary conditions) are too presented. The detail on the problems solved in this thesis work

in chapter III have been settled. Therefore, in the following chapter a general background

of the methods used to deal with the problem will be presented.
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2.1 Introduction

The present chapter is devoted to the presentation of the principles of each methods

used along the thesis. Earthquake load and Wind flow are chosen here as the external

force/excitation that induce vibrations to structures. They are generated numerically

following some principles that will be shown in Sections 2.2 and 2.3. In Section 2.4, the

computational techniques used to solve the structure equations under control and plot

the results are briefly presented. To end this chapter, a conclusion is given in section 2.5.

2.2 Earthquake modelling

2.2.1 The earthquake

An earthquake is the shaking of the surface of the earth. It result of a sudden release

of energy in the earth’s crust that creates seismic waves. It is also defined as a natural

phenomenon that usually starts at a depth of less than 100km below the ground [81]. The

main cause is when tectonic plates ride one over the other, causing orogeny (mountain

building), and severe earthquakes. Mainly cause by slip along faults, the energy from an

earthquake propagate as body waves and surface waves.

• Seismic waves generated by an earthquake travel through Earth.

• Ground moves forward and backward (horizontal Earth motion), up and down (ver-

tical Earth motion), and shifts from side to side.

• Ground ripples like waves do in water.

Magnitude of earthquake measures the energy of an earthquake. So, each earthquake

is characterized by a unique release of strain energy. This is calculated from Richter

scale. Intensity of earthquake is based on observation of damaged engineering structures
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(a) (b)

Figure 2.1: Seismology [82,83]

as well as reactions of people. The point of origin or the point where an earthquake or

underground explosion originates, called the seismic focus or hypocenter, is located with

the help of seismograph. The point on Earth’s surface directly above the hypocenter is

called the epicentre [84] (as seen in Figure 2.1(b)). The epicentral distance is the distance

from the epicenter or epicentre to the point of interest on the surface of the earth.

Figure 2.2: Ground motion

Thus, to have other information from earthquake, such as

− peak ground acceleration (PGA) is the maximum amplitude of ground acceleration.

− peak ground velocity(PGV) is the maximum amplitude of velocity.

− peak ground displacement (PGD) is the maximum respective amplitude of displace-
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ment.

The recording of seismic waves cause by that earth-shaking phenomenon is assured by

a seismograph. It is an instrument that records the shaking of the earth’s surface caused

by seismic waves, and is to accurately record the motion of the ground during a quake.

At 18:58 ECT on April 16, 2016 a 7.8 magnitude (Mw) earthquake struck the coast

of Ecuador approximately 27km (17mi) south-souteast of Muisne, in the province of

Esmeraldas, at a depth of 20.6km (12.8mi). This catastrophic caused heavy destruction

as shown in the following Figure 2.3, as balance 668 killed, 8 missing and 6274 severely

injured, An estimaed 35000 houses were destroyed or badly damaged leaving more than

100000 people in need of shelter [85].

(a) (b)

Figure 2.3: Earthquake effects in Ecuador

By seeing the impacts of earthquake on Lifes, Man-made structures etc, studies were

focus on the recording of earthquake signals, prediction of that disaster and the ways

to avoid the maximum of damage. According to that last idea, recent earthquakes have

demonstrated the vulnerability of buildings. And researchers and engineers direct their

researchs on the way of having stronger buildings for earthquake by testing that resistance

on generated ground motion.

There are two methods used to estimate ground motion in engineering practice [86].
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− Deterministic seismic hazard analysis defined as the first method

− probabilistic seismic hazard analysis, referred to as the second method.

2.2.2 The probabilist ground motions

Various mathematical models in the literature for estimating the acceleration ground

motion, include the soil characteristics at a side. The modelling of the earthquake exci-

tation require to take into account many aspects such as the peak ground acceleration,

magnitude, intensity, epicentre distance and frequency content [87]. Advantage with the

mathematical approach is that, we can generate many forms of recorded ground motion

at different sites by adjusting on the intensity and frequency content varies with time.

Since the nonstationary earthquakes are focused on these two mentioned parameters.

The following flow diagram presents different steps to generate of the numerical way

a nonstationary earthquake.

White noise → {−Kanai−Tajimi−Clough−Penzei → Enveloppe function → Nonstationary earthquake

2.2.2.1 White-noise

Let ξ(t) be defined as white noise. It is a random process and described as Gaussian

whether checked the following properties: a zero mean value and has an auto-correlation

function

≺ ξ (t) �= 0, and ≺ ξ (t) ξ (t′) �= δ (t− t′) (2.1)

where δ() is the Dirac delta function.

Ph.D in Fundamental Mechanics and Complex Systems by FANKEM Eliane Raïssa ?UY1/FS?



Chapter II: Numerical models of earthquake and wind - Methods and materials 40

2.2.2.2 Kanai-Tajimi

The analyse of recorded data from strong ground motion demonstrates that earthquake

power spectra are not independent of frequency [88]. The KanaiTajimi (Kanai 1957; Tajimi

1960) model is well-known and used very widely in the analysis of engineering structures

under earthquake excitation [89]. Thus, the power spectral intensity of the ground accel-

eration is given by

Sẅ(ω) = s0

ω4
g + (2ζgωgω)2

(ω2
g − ω2)2 + (2ζgωgω)2 (2.2)

where S0 is the intensity of the white noise process at the rock level, ωg is the dominant

frequency of the soil site and ζg is the associated damping ratio of the soil strata.

Figure 2.4 illustrates different forms of Kanai-Tajimi model for ζg = 0.4, ωg = 3πrad/s

(a)S0 = 0.02m2/s3, (b)S0 = 0.015m2/s3.

The site soil is considered as the place where a white noise disturbance is applied at

bedrock and the motion is transmitted to the ground surface through a soil layer.

Figure 2.4: Kanai-Tajimi model

This Kanai-Tajimi model has the attractive feature because it is the ability to simulate
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Table 2.1: Parameters of the filter soil of Clough-Penzien [91]

Soil ωg(rad/s) ζg ωf (rad/s) ζf

Hard

Medium

Soft

15.0

10.0

5.0

0.6

0.4

0.2

1.5

1.0

0.5

0.6

0.6

0.6

ground acceleration in a very simple way. The most serious shortcoming of the original

Kanai-Tajimi model is its treatment of earthquakes as stationary random processes [90].

2.2.2.3 Clough-Penzien

Despite of the fact that the Kanai-tajimi shows advantage of the simple way for the

simulation of the stationary ground motion but presents a drawback specially, in low

frequency in which the variances of ground velocity and ground displacement become

infinite (ω− > ∞). These can be seen from the relationships between power spectra for

ground acceleration, velocity and displacement.

To solve this noticed problem therefore the concept consists to remove the singularity

at ω = 0, Clough and Penzien modified the Kanai-Tajimi formulation by adding an

another term.

Hence, the mathematical expression has been rewritten and given as follows

S (ω) = S0

[
ω4
g + 4ζ2

gω
2
gω

2(
ω2
g − ω2

)2
+ 4ζ2

gω
2
gω

2

][
ω4(

ω2
f − ω2

)2
+ 4ζ2

fω
2
fω

2

]
(2.3)

where ωf and ζf are high-pass filter parameters with some examples in the table 2.1.

Figure 2.5 displays the different forms of Clough-Penzei model for ζg = 0.4, ωg =

3πrad/s S0 = 0.02m2/s3.
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Figure 2.5: Clough-Penzei model

2.2.2.4 Envelope Functions

The envelope function En(t) describes the variation of ground motion intensity with time.

Various models have extensively been suggested in the literature to illustrate time-varying

intensities and among them, three will be given in this work:

− The Shinozuka and Sato model is based on the difference between two expo-

nential function given as follows [88] (Figure 2.6)

En(t) = e0(e−β1t − e−β2t) (2.4)

with e0 = 1

(αβ )
α

β−α−(αβ )
β

β−α

The time duration depends on the choice of parameters α and β; the time at which

the envelope function reaches the maximum value,En(t) = 1 is :

tmax =
ln
(
β
α

)
β − α

(2.5)

So by changing the values of these ones we have of different time-modulating functions.

Figure 2.6 shows the envelope function of Shinozuka and Sato model, the short duration

(α = 0.10, β = 0.20), and the long duration (α = 0.25, β = 0.75).

− The mathematical expression of Amin and Ang model is generalised by Jennings
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Figure 2.6: Envelope function of Shinozuka and Sato model

et al. [92], therefore the equation is

En(t) =


t2/4, 0 ≤ t ≤ 2

1.0, 2 ≤ t ≤ 4

exp (−0.268 (t− 4)) , 4 ≤ t ≤ 12

(2.6)

This form give in Figure 2.7 the illustration of the envelope function of Amin and Ang.

Figure 2.7: Envelope function of Amin and Ang model

− The mathematical model described by Boore [93] is expressed as follows

En (t) = atbe−ctH (t) (2.7)

where H(t) is the unit-step function. a is the normalizing factor, and b and c are the

shape parameters.
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The Envelope function of Boore model with the values of parameters a = 0.117;

b = 1.825; c = 0.277 obtained by Saragoni and Hart [94] is

Figure 2.8: Envelope function of Boore model

2.2.3 Some examples of excitation Earthquake models

2.2.3.1 Kanai-Tajimi ground motion model+Envelope function Shinozuka and

Sato model

The Kanai-Tajimi model for the earthquake ground motion is based on the observation

that the absolute acceleration of the ground may be sought as a white noise process

filtered through superimposed soil deposit modelled as a single degree of freedom (DOF)

oscillator [95]. By modulating that model of ground motion by the envelope function of

Shimozuka and Sato with the parameters ce = 0.2445, α = 0.0075 and β = 0.015, One

obain for a single sequence the figure 2.9:

2.2.3.2 Abbas and Takewaki

The nonstationary ground acceleration Ẍg of n sequences is presented by Abbas and

Takewaki [96]. Authors pointed up, ground acceleration of multiple sequences could result

in more damage to the structure than a single ordinary event. Because the structure
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Figure 2.9: Generated earthquake

gets damaged in the first sequence, and additional damage accumulates form secondary

sequences before any repair is possible.

The acceleration expression proposed to take the form of a filtered Gaussian stationary

white noise modulated by a deterministic envelope function of time, as defined

Ẍg =



e1 (t) ẅ1 (t) 0 ≤ t ≤ T1

0 T1 ≤ t ≤
2∑
i=1

Ti

e2

(
t−

2∑
i=1

Ti

)
ẅ2 (t)

2∑
i=1

Ti ≤ t ≤
3∑
i=1

Ti

0
3∑
i=1

Ti ≤ t ≤
4∑
i=1

Ti

... ...

en

(
t−

n+1∑
i=1

Ti

)
ẅn (t)

n+1∑
i=1

Ti ≤ t ≤
n+2∑
i=1

Ti

(2.8)

where e1(t), e2(t), ..., en(t) are the envelope functions associated with the acceleration

sequences 1, 2, ... , n,

ẅ1 (t), ẅ2 (t), ..., ẅn (t) are stationary random processes,

T1, T2, T3, ..., Tn+2 are the time durations of the acceleration sequences.

The envelope function for the ith sequence is expressed as
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ei (t) = e0i

(
t−

n∑
i=1

Ti

)
exp

[
−αi

(
t−

n∑
i=1

Ti

)]
;

n+1∑
i=1

Ti ≤ t ≤
n+2∑
i=1

Ti; (2.9)

where e0i and αi are 2n positive constants that control the intensity and the nonsta-

tionarity trend of the ith acceleration sequence.

The parameters of envelope function are α1 = 0.3, and α2 = 0.35, A1 = 0.8155,

A2 = 0.9514, ωg = 3πrad/s, ηg = 0.4,(the time duration of the sequences is about 25 s,

and 20 s respectively) and the separating time interval between the sequences is 40 s.

The dimensionless nonstationary ground acceleration for two sequences with the sep-

arating time interval both of them, is shown in Figure 2.10.

Figure 2.10: Sample simulated acceleration sequences

2.3 Wind flow models

2.3.1 The wind excitation

Wind is the flow of gases on a large scale. On the surface of the Earth, wind consists of

the bulk movement of air. It is essentially the large scale horizontal movement of free air.

Winds are commonly classified by their spatial scale, their speed, the regions in which

they occur, and their effect (See Figures 2.11 and 2.12).
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In meteorology, winds are often referred to according to their strength, and the di-

rection from which the wind is blowing. Strong winds of intermediate duration (around

one minute) are termed squalls. Long-duration winds have various names associated with

their average strength, such as breeze, gale, storm and hurricane.

(a) (b)

Figure 2.11: Cherry tree moving with wind blowing [97]

(a) (b)

Figure 2.12: Collapse due to Wind load [102,103]

Wind direction is usually expressed in terms of the direction from which it originates.

For example, a northerly wind blows from th north to the south [98]. Weather vanes

pivot to indicate the direction of the wind [99]. Wind speed is measured by anemometers,
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most commonly using rotating cups or propellers. When a high measurement frequency

is needed (such as in research applications), wind can be measured by the propagation

speed of ultrasound signals or by the effect of ventilation on the resistance of a heated

wire [100].

(a) (b)

Figure 2.13: (a) Cup-type anemometer with vertical axis, a sensor on a remote meteoro-

logical station, (b) An occluded mesocyclone tornado (Oklahoma, May 1999) [97]

2.3.2 Computational fluid dynamics simulations of wind

Wind plays an important role in the designing of tall structures because it exerts loads

on building. It is a phenomenon of great complexity because of the many flow situations

arising from the interaction of wind with structures.

In order to model the impact of the wind flow on the structure, a numerical description

of the average turbulent wind flow is required to express the fluid force which is applied

to the structure. A turbulent wind flow can be modelled by a drag wind force and a lift

wind force [126].

FD̄ =
1

2
ρbU2

rel (CD cos θ + CL sin θ) (2.10)
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FL̄ = −1

2
ρbU2

rel (CL cos θ + CD sin θ) (2.11)

where CD and CL are respectively the drift and lift coefficients, ρ is the air mass

density and b is the projected area of the structure, and

U2
rel =

(
Ū + u (x, t)− Ẇ

)2

+ (ẏ + v̇)2, tan θ =
ẏ + v̇

Ū + u (x, t)− Ẇ
(2.12)

with W the displacement of the cantilever beam in along wind direction, Ū the steady

part of the wind flow, u the unsteady part of the wind flow along W direction and v the

unsteady part of the wind flow along y direction.

Since in our topic we are focus on the vibration of the structure in the across wind

direction, we will set W = 0 and we will consider only the lift wind force, this implies

that :

tan θ =
ẏ + v̇

Ū + u (x, t)
(2.13)

We suppose that u is just time dependent, and we set:

U (t) = Ū + u (t) (2.14)

Equation (2.13) becomes, assuming that the speed of the structure along y direction

is greater than the unsteady part of the wind flow in the same direction

tan θ =
ẏ

U (t)
(2.15)

with all the above informations, we can write equation (2.11) as:

FL̄ =
1

2
ρbU2(t)Cy(θ), (2.16)
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with Cy(θ) = −[CD(θ)tan(θ) + CL(θ)]sec(θ),

It is showed that Cy(θ) can be expressed as polynomials of tan(θ) and FL can be

expressed by:

FL =
1

2
ρbU2 (t)

∑
i

Ditaniθ (2.17)

The wind force (lift wind force) which blows orthogonally to the structure with time-

depending velocity U(t). The general form of the most used fluid force is, taking into

account the direction [127]:

~F =
1

2
bCyρ |U | ~U (2.18)

Where, Cy is the aerodynamic coefficients relevant to square sections and can be writ-

ten as Cy = [D0 +D1

(
ẏ
U

)
+D2

(
ẏ
U

)2
+D3

(
ẏ
U

)3
], y is the longitudinal velocity fluctuations.

And it can be rewritten according to it intensity as

F =
1

2
ρU2b

[
D0 +D1

(
ẏ

U

)
+D2

(
ẏ

U

)2

+D3

(
ẏ

U

)3
]

(2.19)

Figure 2.14: Schematic diagram of the computational setup with a dune as structuren x

and z are axis, H the height and L the width of the dune [101].
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Figure 2.15: Time histories of aerodynamic forces on a towers and tension leg platforms

(TLP) [104].

2.4 Approximate response method - numerical tech-

niques

For all the differential equations obtained in the second part of this chapter, analysis of or-

dinary differential equations (ODEs), partial differential equations (PDEs) and Stochastic

differential equations (SDEs) of a physical system will be done by using modal approxi-

mation and Runge-Kutta methods in this work.

2.4.1 Modal approximation

Galerkin modal method is used for modal approximation to reduce the system of PDEs

to the system of ODEs [105]. In this procedure, the solution of the partial derivative

equations is assumed to be separable into amplitude and mode shapes (the mode shapes

must satisfy the geometry and natural boundary conditions). The transverse displacement

and the flexibility of the beam can thus be written as

Y (X, τ) =
N∑
n=1

Un (X)Qn (τ) (2.20)
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where N represent the number of modes retained in the solution along x .

Substituting Equation (2.20) into the equation governing the dynamics of the system,

multiplying by Un(X) and integrating over the length of the beam, we obtain the modal

equation (nonlinear ODE).

2.4.2 Fourth-order Runge-Kutta method for ordinary differential

equations

Runge-Kutta methods are among the most popular ODEs solver. It has been elaborated

for the first time in 1894 by Carle Runge and has been improved by Martin W. Kutta

in 1901. Their modern developments are mostly due to John Butcher in the 1960s, it is

widely used since it is most stable [106]. Generally, we distinguish 04 important families

of Runge-Kutta methods: Second-order, Fourth-order, Five-order and Six-order Runge-

Kutta Methods. But the most used method is the Fourth-order one since that it is easy

to use and no equations need to be solved at each stage, highly accurate for moderate

values of the normalization integration time step and easy to code. Let us consider the

ordinary first order differential equation:

dX(t)

dt
= F (t,X(t)) (2.21)

With X (t0) = X0; this equation can also be under a vectorial form (X and F being

vectors). One define h as the time step size and ti = t0 + ih. The aim of the RK4 method

is to find solutions after each time step, the next solution as a function of the previous

one. The classical RK4 flow for this problem is given by:
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x0,j = X0

L1,j = hfj (ti, xi,j)

L2,j = hfj

(
ti + h

2
, xi,j +

L1,j

2

)
L3,j = hfj

(
ti + h

2
, xi,j +

L2,j

2

)
L4,j = hfj (ti + h, xi,j + L3,j)

xi+1,j = xi,j + 1
6

(L1,j + 2L2,j + 2L3,j + L4,j)

(2.22)

where i runs for time incrementation and j labels the variables related to xj. L1,j, L2,j,

L3,j and L4,j are intermediate coefficients. This procedure needs in its iteration only the

initial value X0, to calculate all the other values taken by the function X at other times

separated by the time step h.

In the case m-order differential equation


dmX
dtm

= Fm

(
t, y, dX

dt
, d

2X
dt2
, ..., d

m−1X
dtm−1

)
dkX(t0)
dtk

= X
(k)
0

(2.23)

with successive variables change, the equation (2.23) can be written under the form
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d0X
dt0

= B0 = X = F0 (t, B0, B1, ...Bm−1)

dX
dt

= dB0

dt
= B1 = F1 (t, B0, B1, ...Bm−1)

d2X
dt2

= dB1

dt
= B2 = F2 (t, B0, B1, ...Bm−1)

.

.

.

dm−1X
dtm−1 = dBm−2

dt
= Bm−1 = Fm−1 (t, B0, B1, ...Bm−1)

dmX
dtm

= dBm−1

dt
= Fm (t, B0, B1, ...Bm−1)

dkX(t0)
dtk

= Bk (t0) = X
(k)
0

k ∈ {1; 2; ...;m− 1}

(2.24)

With this general vectorial and form, iterations can be performed to determine all the

values of X and its derivative at different time separated by the time step h using:

Bk (t+ h) = Bk (t) +
1

6

(
Lk

1
+ 2Lk

2
+ 2Lk

3
+ Lk

4

)
(2.25)

where

Lk1 = hFk (t, B0 (t) , B1 (t) , ...Bm−1 (t)) ;

Lk2 = hFk

(
t+ h

2
, B0 (t) +

L0
1

2
, B1 (t) +

L1
1

2
, ...Bm−1 (t) +

Lm−1
1

2

)
;

Lk3 = hFk

(
t+ h

2
, B0 (t) +

L0
2

2
, B1 (t) +

L1
2

2
, ...Bm−1 (t) +

Lm−1
2

2

)
;

Lk4 = hFk
(
t+ h,B0 (t) + L0

3, B1 (t) + L1
3, ...Bm−1 (t) + Lm−1

3

This generalized form will serve to solve numerically first-order coupled ODEs.
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2.4.3 Stochastic Fourth-order Runge-Kutta method for the stochas-

tic differential equations: Kasdin’s RK4

SDEs are the differential equations which contain a stochastic process. These type of

equations play an important role in physics but existing numerical methods for solving

it are of low accuracy and poor stability. The efficient SRK4 scheme [107] developed by

Jeremy N. Kasdin is used in this thesis to numerically treat the random process of the

systems models.

Consider for simulation the following Itô stochastic differential equation:


dX(t)
dt

= F (t,X (t)) +G (t,X (t)) ξ (t)

X (t0) = X0

(2.26)

where X(t) = (x1(t), x2(t), ..., xn(t)) is a vectorial variable with n−dimensional, F =

(f1, f2, ..., fn) and G = (g1, g2, ..., gn) the vectorial flows. ξ(t) is a random (stochastic)

processes. This excitation is parametric (multiplicative) if its accompanying coefficient

G(t,X(t)) is a function of X. Otherwise, it is external (additive). ξ(t) can be:

− a white noise defines as [108]:

≺ ξ (t) �= 0, and ≺ ξ (t) ξ (t′) �= δ (t− t′) (2.27)

− a colored (Ornstein-Uhlenbeck) noise defines as [108]:

≺ ξ (t) �= 0, and ≺ ξ (t) ξ (t′) �=
1

2τ
e−
|t−t′|
τ (2.28)

− a bounded noise which is a harmonic function with constant amplitude and random

phase defines as [108]:
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≺ ξ (t) �= 0, ≺ ξ (t) ξ (t′) �= σ2

2
exp

(
−γ2|t−t′|

2

)
cos Ω (t− t′) ,

ξ (t) = σ cos (Ωt+ γB (t) + Γ)

(2.29)

where σ and γ are positive constants, B(t) is a standard Wiener process, Γ is a random

variable uniformly distribution in [0, 2π]. The brackets ≺ ... � denote the time average.

Let us consider the SDE gives by Equation (2.26) and assuming that ξ(t) is a Gaussian

white noise (since that it is the type of noise used in our work) defined as shown in (2.27).

Thus, the Kasdin’s scheme is described as follows

xi+1,j = xi,j +
1

6
(L1,j + 2L2,j + 2L3,j + L4,j) (2.30)

in which

K1,j = hfj (ti, xi,j) + hgj (ti, xi,j) ξ1

K2,j = hfj (ti + c2h, xi,j + a21K1) + hgj (ti + c2h, xi,j + a21K1) ξ2

K3,j = hfj (ti + c3h, xi,j + a31K1 + a32K2) + hgj (ti + c3h, xi,j + a31K1 + a32K2) ξ3

K4,j = hfj (ti + c4h, xi,j + a41K1 + a42K2 + a43K3)+hgj (ti + c4h, xi,j + a41K1 + a42K2 + a43K3) ξ4

c is a constant that can be obtained by

c2 = a21 (2.31)

c3 = a31 + a32 (2.32)

c4 = a41 + a42 + a43 (2.33)

The Mean is given
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Table 2.2: Coefficients of the SRK4 method . [109]

Coefficients Value Coefficients Value

a21

a31

a32

a41

a42

a43

a51

0.66667754298442

0.63493935027993

0.00342761715422

−2.32428921184321

2.69723745129487

0.29093673271592

0.25001351164789

a52

a53

a54

q1

q2

q3

q4

0.67428574806272

−0.00831795169360

0.08401868181222

3.99956364361748

1.64524970733585

1.59330355118722

0.26330006501868

X̄ =
1

n

n∑
m=1

xm (t) (2.34)

2.4.4 Lyapunov stability theory

With a view to obtain the optimal input voltage corresponding to the desired damper

force of the MR damper controller use in the system to control vibration; and to assess

the performance of control system, the control algorithm as an effective mean used in

semiactive control based on the Lyapunov stability theory [110] is employed. Thus, the

Lyapunov function denoted Ly(W) must be a positive function of the state of the sys-

tem,W. According to the Lyapunov stability theory, if the rate of change of lyapunov

function,L̇y(W), is negative semidefinite, the origin is stable.

Lyapunov function is chosen of the form

LY =
1

2
‖W‖2

p , (2.35)
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where ‖Σ‖=P-norm of the states defined by

‖Σ‖p = |Σ′PLΣ|1/2, (2.36)

where PL is real, symmetric, positive definite matrix. PL is found using Lyapunov

equation.

Σ′PL + PLΣ = −Qp (2.37)

Qp is a positive definite matrix. The derivative of the Lyapunov function for a solution

of the state-space equation is

L̇Y = −1

2
W ′QpW +W ′PLB1Fd +W ′PLBŸg

. (2.38)

The above parameters are defined as follows:

W =

 χj

χ̇j

 ,Σ =

 0 1

−ςj −ςj

 , B =

 0

−σj

 , B1 =

 0

−ζaηj

 .
The control law which will minimize Ly

VC = VmaxH (−W ′PLB1Fd) , (2.39)

where Vmax is the maximum voltage and H(.) is Heaviside step function. When this

function is greater than zero, the voltage (Vc) applied to the damper should be maximum

(Vmax), otherwise, the command voltage is set to zero.

2.4.5 Hardware and software

As machine support during this thesis work, we used a Laptop computer running Windows

10 Pro operating system and three major software’s: Fortran for differential equations,
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Matlab for data analysis and Maple for integral calculus.

2.5 Mathematical modelling

This section is devoted to the details of all the modelling used during this work.

2.5.1 Outrigger system applied on a tall building

The dynamics of the Cantilever beam is described by the Euler-Bernoulli theory as pre-

sented in subsection 1.2.1. When the beam has an internal damping coefficient, taking

into account the moment generated by the damped outriggerM(x, t), the general equation

describing the structure of Figure 2.16 is:

m
∂2y (x, t)

∂t2
+ λ

∂y (x, t)

∂t
+ EI

∂4y (x, t)

∂x4
= −∂M (x, t)

∂x
(2.40)

Figure 2.16: Cantilever beam with one level of symetric attached outriggers

I Derivation of the expression of M(x, t)

Let us consider Figure 2.17 which shows the behavior of the damper of each side of

outrigger.
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Figure 2.17: The damper

When the system of the cantilever beam is subjected to an external excitation, the

damped outrigger moves following x-direction. The distributed moment incited by the

damper is given by:

M (x, t) = 2fr (2.41)

where f is the viscous force brought by the damped outrigger. It can be expressed by:

f = −Cd
dx

dt
(2.42)

with Cd the damping coefficient, dx
dt

the speed of displacement of the cantilever beam.

According the damper lateral displacement, an angle is defined θ and sinθ ' θ = dx
r
,

which implies that equation (2.42) can also be written as follows

f = −Cdr
dθ

dt
(2.43)

For small displacements, tanθ ' θ = ∂y
∂x
, so equation (2.43) become:
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f = −Cdr
∂2y

∂x∂t
(2.44)

Then the moment distributed is equal to

M = −2Cdr
2∂

2y (x, t)

∂x∂t
(2.45)

I Dynamic equation with the explicit expression of M(x, t)

Since the distributed moment is localized at position x = x0 from the ground (the

fixed end of the beam), as figure 2.16 shows, it is written as:

M = −2Cdr
2∂

2y (x, t)

∂x∂t
δ(x− x0) (2.46)

where δ(x− x0) represents the Dirac delta function define as follows:

δ (x− x0) =


1 if x = x0

0 Otherwise,

(2.47)

Inserting equation (2.46) into equation (2.40), the equation of the dynamics of can-

tilever beam with Damper outriggers becomes:

m
∂2y (x, t)

∂t2
+λ

∂y (x, t)

∂t
+EI

∂4y (x, t)

∂x4
= 2Cdr

2

[
∂3y (x, t)

∂x2∂t
δ (x− a) +

∂2y (x, t)

∂x∂t

∂δ (x− x0)

∂x

]
(2.48)

In the case of continuous differentiable function ψ(x), the Dirac distribution satisfies

the equation [111]:

ψ (x)
d

dx
δ (x− x0) = ψ (x0)

d

dx
δ (x− x0)− δ (x− x0)

d

dx
ψ (x) (2.49)

Using relation (2.49), we can write equation (2.48) as follows:
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m
∂2y (x, t)

∂t2
+ λ

∂y (x, t)

∂t
+ EI

∂4y (x, t)

∂x4
= 2Cdr

2 ∂
2y (x, t)

∂x∂t

∣∣∣∣
x=x0

∂δ (x− x0)

∂x
(2.50)

And for many attached level of outriggers, one obtains:

m∂2y(x,t)
∂t2

+ λ∂y(x,t)
∂t

+ EI ∂
4y(x,t)
∂x4 − ES

[
1

2L

L∫
0

(
∂y
∂x

)2
dx

]
∂2y(x,t)
∂x2

−2Cdr
2
N∑
i=1

∂2y(x,t)
∂x∂t

∣∣∣
x=xi

∂δ(x−xi)
∂x

= −mẍe

(2.51)

with xi the distance between the fixed end of the beam on the ground and the point

where the outrigger is hanged on the centre core.

2.5.2 Added branches on a pendulum

The inverted pendulum is considered as a rigid rod on which a level of symmetrical

branches is fixed (see Figure 2.18). Those branches are made of massless rigid bars with

masses at their free end linked on that central column.

(a) (b)

Figure 2.18: An inverted pendulum with one level of symmetrical masses

Equation (1.15) gives the dynamic of the central column only, modelled as an inverted

pendulum. With attached masses, the new model is given by Figure 2.19.
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Figure 2.19: Position and distance measurement

O is the origin of the principal system with (i, j) the axes; it is also the fixed end (the

base) of the central column of the structure. O1 is the origin of the moving system with

(er, eθ) the axes of polar system and the free end (the top) of the structure where masses

are joined for one level of attached branches. A1 and A2 are positions at any time of the

right and the left masses respectively; while i1 and i2 are unit vectors of lines (O1A1) and

(O1A2) respectively. The angle φ0 is the one make by the bar of length l2 with imaginary

horizontale line at rest.

I Determination of potential and kinetic energies of the system

The system is divided in three: the main rigid rod, the left mass and the right mass.

Potential and kinetic energies are:

Epf = Ep (M) + Ep (m1) + E ′P (m1) (2.52)

and

Ecf = Ec (M) + Ec (m1) + E ′c (m1) (2.53)

with
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Ep (M) =
1

2
k1θ

2+
1

2
MgL cos θ ; Ep (m1) = −m1gz1+

1

2
k2φ

2
1 ; E ′P (m1) = −m1gz2+

1

2
k2φ

2
1

(2.54)

and

Ec (M) =
1

8
ML2θ̇2 ; Ec (m1) =

1

2
m1

(
d
−−→
OA1

dt

)2

; E ′c (m1) =
1

2
m1

(
d
−−→
OA2

dt

)2

(2.55)

z1 and z2 are vertical components of positions of A1 and A2. Let us determine
(
d
−−→
OA1

dt

)2

and
(
d
−−→
OA2

dt

)2

.

−−→
OA1 =

−−→
OO1 +

−−−→
O1A1 = l1

−→er + l2
−→
i1 (2.56)

and

−−→
OA2 =

−−→
OO1 +

−−−→
O1A2 = l1

−→er + l2
−→
i2 (2.57)

while


−→er = sin θ

−→
i + cos θ

−→
j

−→eθ = − cos θ
−→
i + sin θ

−→
j

and


−→
i1 = − cos (φ0 + φ1)−→eθ − sin (φ0 + φ1)−→er
−→
i2 = cos (φ0 − φ1)−→eθ − sin (φ0 − φ1)−→er

(2.58)

so


(
d
−−→
OA1

dt

)2

= l21θ̇
2 − 2l1l2θ̇

(
θ̇ + φ̇1

)
sin (φ0 + φ1) + l22

(
θ̇ + φ̇1

)2

(
d
−−→
OA2

dt

)2

= l21θ̇
2 − 2l1l2θ̇

(
θ̇ + φ̇1

)
sin (φ0 − φ1) + l22

(
θ̇ + φ̇1

)2
(2.59)

Potential and kinetic energies become:

Ph.D in Fundamental Mechanics and Complex Systems by FANKEM Eliane Raïssa ?UY1/FS?



Chapter II: Numerical models of earthquake and wind - Methods and materials 65

Ecf =
1

8
ML2θ̇2 +m1

[
l21θ̇

2 + l22

(
θ̇ + φ̇1

)2

− 2l1l2θ̇
2 sinφ0 cosφ1 − 2l1l2θ̇φ̇1 sinφ0 cosφ1

]
(2.60)

and

Epf =
1

2
k1θ

2 +
1

2
MgL cos θ + 2m1g [l2 sinφ0 cos (θ + φ1)− l1 cos θ] + k2φ

2
1 (2.61)

I Lagrangian and equations of the system

The Lagrangian of the system is given by:

La = 1
8
ML2θ̇2 +m1

[
l21θ̇

2 + l22

(
θ̇ + φ̇1

)2

− 2l1l2θ̇
2 sinφ0 cosφ1 − 2l1l2θ̇φ̇1 sinφ0 cosφ1

]
−1

2
k1θ

2 − 1
2
MgL cos θ − 2m1g [l2 sinφ0 cos (θ + φ1)− l1 cos θ]− k2φ

2
1

(2.62)

And the system of equations which describe the motion of the central column and his

branches is:



(
1
4
Ml21 + 2m1l

2
1 − 2m1l

2
1cos2φ0sin2φ1

)
θ̈ +

(
C1 − 4m1l1l2φ̇1 cosφ0 cosφ1

)
θ̇

+ (2m1l
2
1cos2φ0 cosφ1 sinφ1 − 2m1l1l2 cosφ0 cosφ1) θ̇2 + k1θ +

(
2m1 − 1

2
M
)
gl1 sin θ

+
(
l1
l2

cosφ0 sinφ1 − 1
)
C2φ̇1 + 2

(
l1
l2

cosφ0 sinφ1 − 1
)
k2φ1 − 2m1l1l2φ̇

2
1 cosφ0 cosφ1

−m1gl1 sin (2φ0) sinφ1 sin (θ + φ1) = 0

2m1l
2
2φ̈1 + C2φ̇1 + 2k2φ1 − 2m1gl2 sinφ0 sin (θ + φ1) + 2m1l1l2θ̇

2 cosφ0 cosφ1 =

(2m1l1l2 cosφ0 sinφ1 − 2m1l
2
2) θ̈

(2.63)
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2.6 Conclusion

The present chapter consists of the modelling of earthquake load; mathematical and nu-

merical techniques used for the analysis of the problem of this thesis and the support

materials used in this work.

Using all these methods and materials, we are now able to follow this study and obtain

different results that give us informations about the different states of the studied systems.

The results are presented in Chapter 3.
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3.1 Introduction

This third chapter is devoted to the results and discussions on the work carried out in

this thesis. In the second and the third sections of this chapter, the effect of N-damped

outriggers on a high-rise structure subjected to earthquake loads is discribed, modelled

and its dynamical study perfomed and an application of one outrigger MR damped on a

Timoshenko beam is studied. The fourth and fifth sections focuss on an inverted pendulum

with multi-branching view as self-controlled system: Modelling and vibration absorber

capacity for single attached mass and symmetrical attached masses. The behavior of self-

control vibration system and the performance prediction of an inverted pendulum are also

highlighted. The last section concludes the chapter.

3.2 Effect of N-damped outriggers on a high-rise struc-

ture subjected to earthquake loads

3.2.1 From one outrigger to N-outrigger systems

3.2.1.1 Mathematical model

The system is constituted by a uniform cantilever beam equipped N symetrical damped

outriggers (See figure 3.1). The length of the beam is L the mass per unit length m = ρS

where S is the cross-sectional area and ρ the density ; δ is the internal damping of the

beam. By ignoring the axial deformations of the perimeter columns, the dampers between

the ends of the outriggers and the perimeter columns are regarded as external dampers.

Outriggers, which are located at xi with i = 0...5 from the fixed end of the beam, behave

as a rigid body and the exterior columns have commonly a high stiffness, which are

assumed to be infinitely rigid and written E0I0 [112]. The bending stiffness of the beam is
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characterized by EI, where E is the Young’s modulus and I, the area moment of inertia of

the cross section about the neutral axis. The distance from the central core to the damper

is written r, and for this system the damper is a viscious damper with the damping

coefficient Cd. All the device is under the earthquake loads modeled , in this work, as

a nonstationary ground acceleration with a random function which take the form of a

filtered Gaussian stationary white noise modulated by a deterministic envelope function.

Figure 3.1: Cantilever beam with N damped outriggers

m∂2w(x,t)
∂t2

+ δ ∂w(x,t)
∂t

+ EI ∂
4w(x,t)
∂x4 − ES

[
1

2L

L∫
0

(
∂w
∂x

)2
dx

]
∂2w(x,t)
∂x2

−2Cdr
2
N∑
i=1

∂2w(x,t)
∂x∂t

∣∣∣
x=xi

∂δ(x−xi)
∂x

= −mẍe

(3.1)

Where w(x, t) is the transversal displacement of the beam and ẍe the excitation force.

To reduce the number of compatible equations, the Dirac function is introduced into the

differential function by locating the coordinate at the outrigger position [113] : δ(x− xi).

Thus xi is the distance between the fixed end of the beam on the ground and the point

where the outrigger is hanged on the centre core.
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With Σ to take into account each of the N levels of outriggers and xi their locations.

By having a regard on the Eq. (3.1), the first three terms are those of the classical Euler-

Bernoulli beam model ; but the fourth and the fifth ones are respectively the geometrical

non linearity term and the outriggers impact on the centre core. That cubic term represents

the restoring force due to stretching of the neutral axis. In fact, that geometrical non

linearity comes from high displacements and the deformation of the average line. The

axial deformations in the beam are due to the movements of traction/compression and

flexion of the core tube [37,114].

By using the Kanai Tajimi model, the ground acceleration ẍe is assumed to be repre-

sented by

ẍe = e0(e−β1t − e−β2t)ẅ(t) (3.2)

with the spectral density given by :

Sẅ(ω) = s0

ω4
g + (2ζgωgω)2

(ω2
g − ω2)2 + (2ζgωgω)2 (3.3)

where S0 is the intensity of the white noise process at the rock level, ωg is the dominant

frequency of the soil site and ζg is the associated damping ratio of the soil strata.

Boundary conditions corresponding to the beam, are:

w(x, t)|x=0 = 0, ∂w
∂x

∣∣
x=0

= 0 for the fixed end

And ∂2w(x,t)
∂x2

∣∣∣
x=L

= 0, ∂
3w(x,t)
∂x3

∣∣∣
x=L

= 0 for the free end

(3.4)

These conditons means that for the fixed end, the part of the structure which is

clamped into the ground, there is no displacement and the angular coefficient of the

tangent to the elastic line is null; and for the free end, the top of the structure, the flexion

moment and the sharp effort are constantly nulls.
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The initial conditions are supposed to be zero when the external force appears on

beam:

w(x, t)|t=0 = 0 ,
∂w(x, t)

∂t

∣∣∣∣
t=0

= 0 (3.5)

3.2.1.2 Modal equations

For the analytical purpose, the equation of a single mode dynamic leads us to express w

in the form:

w (x, t) = Xn (x) .Qn(t) (3.6)

where Qn(t) is the amplitude of the nth mode, and Xn(x) is the solution of the eigen-

value problem which depends on the boundary conditions of the free oscillations of the

beam :

Xn (x) = − sin(λn)+sinh(λn)
cos(λn)+cosh(λn)

[
cos
(
λn

x
L

)
− cosh

(
λn

x
L

)]
+
[
sin
(
λn

x
L

)
− sinh(λn

x
L

)
] (3.7)

After substituting Eq.(3.7) into Eq.(3.1), multiplying both sides of the resultant equa-

tion by the spatial part Xn, then integrating with respect to the beam axis x over the

length L, and considering the dimensionless variables

θn =
qn
L
, τ = w0t (3.8)

The dimensionless modal equation, for the each modes (with n = 1, 2, ...,∞), is given

by :

d2θn
dτ 2

+ [γ +H (Cd, xN)]
dθn
dτ

+ θn − βθn3 = −V ẍe (3.9)

With the coefficients :
γ = δL2

λn
2
√
mEI

, H (Cd, xN) = 2Cdr
2

5∑
N=1

[
∂Xn
∂x

∣∣
x=xN

]2

, k = SL5

2Iλn
4 ,

β = k.

[
L

∫
0

(
∂Xn
∂x

)2
dx

]
.
L

∫
0
Xn.

∂2Xn
∂x2 dx, z = mL3

EIλn
4 , V = z.

[
L

∫
0
Xndx

]
In the following, the analysis will be done until the fifth modes of vibration joinly

because of the cubic term, the modes cannot be independently studied.
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Table 3.1: Properties of the beam

Item Notation Value

Length

Mass

Young modulus (steel)

Cross-sectional area

Mass density

Moment of inertia

Stiffness

L

m

E

S

ρ

I

δ

20.78 m

760 Kg

12 MPa

2.9 m2

262.06897 Kg/m2

0.667 m4

180.723 N/m2

3.2.2 Numerical analysis of the base equations

For numerical purpose, the physical and geometrical properties of the beam, which is

here the central column, are for a wooden structure. And the length, the mass, the mass

density in the following Table 3.1 are those of Fujita [115].

Thus, except γ = 0.009, the dimensionless parameters of Eq.(3.9):H(c, xN) = f(λn, xi),

β = g(λn) et V = h(λn) take into account either the position or the mode, or the both.

g(λn) and h(λn) are two functions with the only variable parameter λ which pointed out

the mode of vibration. And f(λn, xi) is a function of λ due to the mode of vibration and

xi the location of the outrigger: for one outrigger i = 1 and for N outriggers i = 1, ..., N .

Because earthquake is a stochastic force, it was generated by a Gaussian white noise

which is essentialy made from random numbers. To obtain our following results, we used

stochastic four-order Runge-Kutta algorithm with the coefficients of Table 3.2:

For one outrigger located on the cantilever beam, we find the right position by observ-

ing the response of the structure to an earthquake generate numericaly with the taken
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Table 3.2: Fourth Order, Time Varying Stochastic Runge-Kutta Coefficients. [109]

Coefficients Value Coefficients Value

a21

a31

a32

a41

a42

a43

a51

0.66667754298442

0.63493935027993

0.00342761715422

−2.32428921184321

2.69723745129487

0.29093673271592

0.25001351164789

a52

a53

a54

q1

q2

q3

q4

0.67428574806272

−0.00831795169360

0.08401868181222

3.99956364361748

1.64524970733585

1.59330355118722

0.26330006501868

spectral density defined by the Kanai Tajimi model, because it is one of the best model

which fitted most the earthquake [116,117]. The dimensionless ground acceleration earth-

quake is shown on the following Fig. 3.2:

Figure 3.2: Dimensionless ground acceleration earthquake.

By applying that earthquake on our structure of outrigger system, for the first five

modes of vibrations, the following histograms of the mean’s peak of values of displacement

responses is obtained (Fig. 3.3):
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(a) Fisrt mode (b) Second mode

(c) Third mode (d) Fourth mode

(e) Fifth mode

Figure 3.3: Optimal position of the damped outrigger
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Figure 3.3 presents at the first mode, after the position 0.1, a tiny variation between the

amplitude at the different positions of outriggers on the core tube. From that histogram,

we can notice that 0.8 and 0.9 are the most suitable positions to locate an outrigger

because the displacement of the structural system is lower than others positions. The

second mode shows only one best position of outriggers on the core tube which is 0.4. The

third mode exhibits two positions where the displacement is more reduiced, which are 0.3

and 0.7. For the fourth mode, we can easily see that the rigth locations of outriggers on

the core tube are 0.2 and 0.5. It is sure that at these points the amplitude of vibration is

reduced considerably. As to the fifth mode, the optimal position is 0.6 and 0.4 is the next.

At these points the peak amplitude of vibration of the structure are lower than other

positions. At the end of these observations, it is not possible to make a global analysis

of different results of Figure 3.3 by giving one optimal attachment point of outriggers

benefits for the five modes of vibration as it is the case in the article of Ndemanou [8].

And this could be explained by the consideration of the geometrical non lirearity in the

modelling of the system.

To do more analysis as mentioned in the introduction, the modelling of five outriggers

systems give us the motion of the building. And a comparison of displacements of the

structure under earthquake, between the 0.9 position of one outrigger and a five outriggers

system with same parameters, has been done and the result is without question.

As regards the figure 3.4, one can realize that for each of the first five modes of

vibrations, five outriggers drastically reduce the amplitude of vibrations and comparing

to one outrigger, it is like there is no vibration of our structure when the earthquake

appears because the amplitude is extremely tiny.

To know the best configuration of a five outrigger system, firstly we dispose the differ-

ent levels of outriggers at same distance one to another (0.166, 0.333, 0.5, 0.667 and 0.833)
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(a) Fisrt mode (b) Second mode

(c) Third mode (d) Fourth mode

(e) Fifth mode

Figure 3.4: Comparison between one outrigger at the 0.9 position and five outriggers at

positions 0.277, 0.379, 0.477, 0.567 and 0.65
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and we obtain an equidistance five outriggers ; and for the five first modes we collect the

simulated displacement. And secondly, the five outriggers were randomly disposed on the

structure (0.277, 0.379, 0.477, 0.567 and 0.65), here outriggers are mainly located near

the base and the mid length of the structure and the comparison is giving in figure 3.5.

Unlike the figure 3.4 which has the same results for all the first five modes of vibration,

the figure 3.5 has some particularities. The first mode show exactly the same motion of

the two configurations of five outriggers systems. But after that for the next modes, we

observe some differences. At the second, the fourth and the fifth mode, the highest peak of

the amplitude of vibration of the building is more observed for the equidistance positions

of outriggers, the third mode is the only one that stands out because here we see a

better reduction of amplitude of the equidistance configuration than the non-equidistance

configuration of five outriggers.
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(a) Fisrt mode (b) Second mode

(c) Third mode (d) Fourth mode

(e) Fifth mode

Figure 3.5: Comparison between five outriggers at equidistance and at non-equidistance

positions
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3.3 Reduction of vibration on a cantilever Timoshenko

beam subjected to repeated sequence of excitation

with magnetorheological outriggers

This section presents an outrigger system on a cantilever Timoshenko beam under seismic

excitation. The central column is the frame-core tube linked at a point of its length by

two vertical magneto-rheological (MR) damped outriggers.

3.3.1 Description of physical system

The physical model represented in Figure 3.6 is a structural system that is constituted of

an uniform cantilever beam and one outrigger truss. The set of the system is subjected

to the same environmental dynamic force in the horizontal direction denoted ground

excitation, which is considered to simulate a seismic motion. The outriggers and the

exterior columns have commonly a high stiffness. In this context, they are assumed to

be infinitely rigid. As a result, the outrigger behaves as a rigid body and is located at a

point a from the end of the core tube. In view of increasing the capacity of the dynamic

response of the structural system to resist of the better way against the nonstationary

excitation, two semiactive devices dubbed MR dampers (D) are installed vertically and

symmetrically; therefore, the generated forces are applied to the core tube through the

outriggers.

3.3.1.1 Dynamic model formulation

The mass per unit length is m1; I is the moment of inertia of the cross-section about

the neutral axis, E is the Young’s modulus; G is the shear modulus of elasticity; ra is
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Figure 3.6: Cantilever beam with magnetorheological (MR) outriggers

Figure 3.7: Cross-section of the core tube
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the radius of gyration. These geometrical characteristics are assumed constant. Thus, the

lateral displacement is defined by y(x, t) = y, which varies with the coordinate along the

beam x and with time t. The control device fd is generated by a MR damper. The influence

of the perimeter columns on the dynamics of the core is not taken into consideration. As

a result, the governing equations describing the dynamics of the cantilever Timoshenko

beam with one damped outrigger under the earthquake loadings can be written as

m1
∂2y

∂t2
+ EI

∂4y

∂x4
−m1r

2
a

(
1 +

E

ksG

)
∂4y

∂x2∂t2
= −m1ẍg (t) +

∂Ma

∂x
(3.10)

where the distributed moment generated by the MR dampers is

Ma = 2δ (x− a) rfd (t) . (3.11)

in which δ(x−a) denotes the Dirac function. This one indicates that the point a is the

place where the damped outriggers is installed. The distance from the control devices to

the centre of the core is denoted r. The dimensionless quantity ks is the shear coefficient

depending on the geometric of the cross section of the beam and depend on as well as of

the Poisson’s ratio. It is assumed in this paper that the dimensional ratio of the width

on the area to the thickness is very small, reason why the core tube is considered like a

beam being the cross section at the small thickness. This analysis leads us to adopt that,

the expression of this mentioned coefficient associated with the cross-section of the core

tube is given by Cowper [118]:

ks =
20 (1 + ν)

48 + 39ν
. (3.12)

ν is the Poisson’s ratio coefficient, it is clearly seen that ks is connected with that

coefficient, which its value depends solely on the material property.
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In what follows, the moment of inertia and area of the cross-section can be formulated as

(Figure 3.7)

A = (b+ 2h)2 − b2; I =
(b+ 2h)4

12
− b4

12
.

In this formulation in Equation 3.10, the first two terms correspond to the classical

Bernoulli-Euler beam model. The third term represents the correction for rotary inertia,

and the fourth term represents the shear deformation effect [119]. For convenience in the

present study, the joint action of rotary inertia and shear deformation effects is neglected.

Thereafter, the bending stiffness for the outriggers is assumed to be infinite [113].

The mathematical model of the nonstationary ground acceleration ẍg (t) of n sequences

proposed by Abbas and Takewakib [96] is adopted in this paper. According to the authors,

ground acceleration of multiplied sequences could result in more damage to the structure

than a single ordinary event. This is because the structure gets damaged in the first

sequence, and additional damage accumulates from secondary sequence before any repair

is possible. As a result, this random function is assumed to take the form of a filtered

Gaussian stationary white noise modulated by a deterministic envelope function under

the sequence form. Expression of this term is defined in Equation 3.13 as follows:

üg =



e1 (t) ẅ1 (t) 0 ≤ t ≤ T1

0 T1 ≤ t ≤
2∑
i=1

Ti

e2

(
t−

2∑
i=1

Ti

)
ẅ2 (t)

2∑
i=1

Ti ≤ t ≤
3∑
i=1

Ti

0
3∑
i=1

Ti ≤ t ≤
4∑
i=1

Ti

... ...

en

(
t−

n+1∑
i=1

Ti

)
ẅn (t)

n+1∑
i=1

Ti ≤ t ≤
n+2∑
i=1

Ti

(3.13)

where e1(t), e2(t), ..., en(t) are the envelope functions associated with the acceleration
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sequences 1, 2, ... , n, ẅ1 (t), ẅ2 (t), ..., ẅn (t) are stationary random processes, T1, T3, ...,

Tn+2 are the time durations of the acceleration sequences, and T2, T4, ..., Tn+1 are the time

intervals separating these sequences. Thus, the envelope function for the ith sequence is

expressed as

ei (t) = e0i

(
t−

n∑
i=1

Ti

)
exp

[
−αi

(
t−

n∑
i=1

Ti

)]
;

n+1∑
i=1

Ti ≤ t ≤
n+2∑
i=1

Ti; (3.14)

where e0i and αi are 2n positive constants that control the intensity and the nonsta-

tionarity trend of the ith acceleration sequence.

The phenomenological model, which is based on Bouc-Wen modified version, proposed

by Spencer et al. [120] is adopted here to describe the dynamic of the control device in order

to predict its response. This model can exhibit a wide variety of hysteretic behaviours. To

valid their mathematical model, authors have done a comparative approach between these

analytical data and those obtained experimental results. The analysis of that study on the

basis of their results have pointed out the approach numerically tractable and effectively

portrays the behaviour of the MR damper. In other words, the proposed mathematical

model describes the dynamic behaviour of the MR damper very well. As a result, the

equation governing force fd generated by the control device:

fd (t) = c1ẏ1 + k1 (y (a, t)− y0) . (3.15)

The internal displacement y1 is illustrated:

ẏ1 =
1

(c0 + c1)
(αz + c0ẏ (a, t) + k0 (y (a, t)− y1)) , (3.16)

and z is an evolutionary variable given by
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ż = −γ|ẏ (a, t)− ẏ1 |z| z|n+1 + (δ1 − β|z|n) (ẏ (a, t)− ẏ1) , (3.17)

where c0 and c1 are the viscous damping at larger and low velocities, respectively; k1

is the accumulator stiffness; k0 represents the stiffness at large velocity; γ, δ1 and β are

the shape parameters of the hysteresis loops. Moreover some of these parameters depend

on the command voltage u1, which are given by

c0 = c0a + c0bu1, c1 = c1a + c1bu1, α = αa + αbu1, (3.18)

where the command voltage u1 is accounted for through the first order filter:

u̇1 = ηp (u1 − vc) . (3.19)

vc is the maximum applied voltage that is associated with the saturation of the mag-

netic field in the MR damper, and ηp is a positive number that reflects the delay time of

the MR damper.

Introducing the new parameters, one has the expressions defined as follows:

Y = y
L
, τ = t

T
, δa = δ1L, γL = γL, ÿg (τ) = T 2

L
ẍg (t) ; a1 = EIT 2

mL4 , a2 = r2
a

L2

(
1 + E

ksG

)
,

C0 = c0
c0+c1

, K0 = k0T
c0+c1

, αb = αT
(c0+c1)L

, C1 = c1T
mL
, T = L

√
ρ
ksG

, Y0 = y0

L
.

The relationship between the parameters leads to new reformulation, which is de-

scribed by the below equation:

∂2Y

∂τ 2
+ a1

∂4Y

∂X4
+ a2

∂4Y

∂X2∂τ 2
= −ÿg (τ) + ζaFd (τ)

∂

∂X
δ (X −X0) . (3.20)

The dimensionless equation of the MR damper force is rewritten as

Fd (τ) = C1Ẏ1 +K1 (Y (X0, τ)− Y0) . (3.21)
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Y1 and Z are governed by the below equations:

Ẏ1 = αbZ + C0Ẏ (X0, τ) +K0 (Y (X0, τ)− Y1) , (3.22)

ż = −γ1

∣∣∣Ẏ (X0, τ)− Ẏ1 |Z|Z
∣∣∣n−1

+ (δl − βl|Z|n)
(
Ẏ (X0, τ)− Ẏ1

)
, (3.23)

where X0 is the location of the damped outriggers. By observing closely the Equations

3.21, 3.22, and 3.23, one can notice that these depend on the quoted location point. This

shows that the outrigger position is an important issue in terms of ensuring the efficiency

of lateral displacement control [121]. For the sake of simplicity, it is necessary to assess

the dynamic responses of the structural system through the modal properties.

3.3.1.2 Modal equations

To reduce the partial differential equations to a set of ordinary differential equations, in

order to assess the dynamic behaviour response of the structural system. Thus, the general

solution of the Equation 3.20 can be written as separation variables of χ (τ), which is the

time dependent function and the shape function Φ (χ):

Y =
nm∑
j=1

Φj (X)χj (τ). (3.24)

nm is the total of modes with

Φ (X) =
(
dj1 sin

(
δj1X

)
+ cos

(
δj1X

)
− dj3 sinh

(
εj1X

)
− cosh

(
εj1X

))
. (3.25)

The spatial function is obtained from Equation 3.20 without the right member. The

superscript j represents the jth mode.
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The coefficients dj1 and dj3 are obtained by using the boundary conditions of the can-

tilever Timoshenko beam [19, 20]:

dj1 =
cos
(
δj1
)

+
(εj21 +µ1δ

j2
1 )

(δj21 +µ1ε
j2
1 )

cosh
(
εj1
)

−
(

sin
(
δj1
)

+
εj1
δj1

sinh
(
εj1
)) , dj3 = −

δj1 + µ1
εj21

δj1

εj1 + µ1
δj21

εj1

 dj1.

In which δj1 and ε
j
1 are eingenvalues defined at the jth mode of the vibration. Impossible

to adopt an analytical consideration, these quoted eigenvalues are obtained from Equation

3.26, by using an numerical appropriate algorithm:



[(
δj21 + Γ1ε

j2
1

)2
+
(
εj21 + Γ1δ

j2
1

)2
]

cos
(
δj1
)

cosh
(
εj1
)
−
(
δj21 + Γ1ε

j2
1

) (
εj21 + Γ1δ

j2
1

)
×(

−2 +
(δj21 −ε

j2
1 )

δj1ε
j
1

sin
(
δj1
)

sinh
(
εj1
))

= 0(
δj21 − ε

j2
1

)
Γ2

2 −
(

1 + 1
Γ1

)
δj21 ε

j2
1 = 0

(3.26)

with Γ1 = E
ksG

, Γ2 = LksGA
EI

.

In what follows, by using the mode decomposition of the illustrated expression in

Equation 3.24 and substituting them into Equation 3.20, multiplying by the different

spatial expression and performing the integration from 0 to 1, by adding the damping

coefficient. One gets the modal forms of above equations that can be expressed as follows:

χ̈j (τ) + ζjχ̇j (τ) + ςjχj (τ) = −σjŸg (τ)− ζaηjFd (τ) . (3.27)

The dimensionless equation of the force generated by the MR device is satisfied by the

illustrated expressions as follows:

Fd (τ) = C1Ẏ1 +K1 (χj (τ) Φj (X0)− Y0) , (3.28)

where Y1 and Z can be rewritten as

Ph.D in Fundamental Mechanics and Complex Systems by FANKEM Eliane Raïssa ?UY1/FS?



Chapter III: Results and discussion 87

Ẏ1 = αbZ + C0χ̇j (τ) Φj (X0) +K0 (χj (τ) Φj (X0)− Y1) , (3.29)

Ż = −γL
∣∣∣χ̇j (τ) Φj (X0)− Ẏ1 |Z|Z

∣∣∣n−1

+ (δL − βL|Z|n)
(
χ̇j (τ) Φj (X0)− Ẏ1

)
. (3.30)

The applied voltage to the control device is defined by the dimensionless expression

which is given by

U = ηT (U − VC) , (3.31)

with

ςj =
a1b3

b1 + a2b2

, ηj =
Φ
′
j (X0)

b1 + a2b2

, σj =
b4

b1 + a2b2

,

in which

b1 =

∫ 1

0

Φj(X)2dX, b2 =

∫ 1

0

Φ
′′

j (X) Φj (X) dX, b3 =

∫ 1

0

Φ
′′′′

j (X) Φj (X) dX, b4 =

∫ 1

0

Φj (X) dX.

Equations 3.27-3.31 describe the time evolution of the concrete core tube which is fixed

at the point X0 by the damped outriggers. It is useful to observe that the parameter of the

Equation 3.27 varied at each vibration mode and that the force generated by MR device

depends on the attachment point of the damped outriggers on core tube. All these results

indicate that outrigger locations could modify the structural response at the different

vibration mode and can provide a better understanding of the outrigger design.

3.3.1.3 Semiactive controller

With a view to obtain the optimal input voltage corresponding to the desired damper

force and to assess the performance of control system, the control algorithm as an ef-
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fective mean used in semiactive control based on the Lyapunov stability theory [110] is

employed. Because the control device is not directly controllable and that only applied

voltage can be adjusted. Also the mentioned control algorithm is developed for charac-

terizing adequately the damper’s intrinsic nonlinear behaviour [120]. Thus, the Lyapunov

function denoted Ly(W) must be a positive function of the state of the system,W. Accord-

ing to the Lyapunov stability theory, if the rate of change of lyapunov function,L̇y(W), is

negative semidefinite, the origin is stable.

Lyapunov function is chosen of the form

LY =
1

2
‖W‖2

p , (3.32)

where ‖Σ‖=P-norm of the states defined by

‖Σ‖p = |Σ′PLΣ|1/2, (3.33)

where PL is real, symmetric, positive definite matrix. PL is found using Lyapunov

equation.

Σ′PL + PLΣ = −Qp (3.34)

Qp is a positive definite matrix. The derivative of the Lyapunov function for a solution

of the state-space equation is

L̇Y = −1

2
W ′QpW +W ′PLB1Fd +W ′PLBŸg

. (3.35)

The above parameters are defined as follows:

W =

 χj

χ̇j

 ,Σ =

 0 1

−ςj −ςj

 , B =

 0

−σj

 , B1 =

 0

−ζaηj

 .
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The control law which will minimize Ly

VC = VmaxH (−W ′PLB1Fd) , (3.36)

where Vmax is the maximum voltage and H(.) is Heaviside step function. When this

function is greater than zero, the voltage (Vc) applied to the damper should be maximum

(Vmax), otherwise, the command voltage is set to zero.

3.3.2 Observation of reduction of vibration

To investigate efficiency of the simplified model, the concrete core is assumed to be 12m×

12m with a 0.5m thickness, and with the height of 210m [112]. The mass per unit length is

m1 = 62500Kg/m. The eigenvalues are obtained from Equation 3.26 through the Newton-

Raphson numerical. These results obtained through this method are illustrated in Table

3.3.

The listed parameter values in Table 3.4 when MF = 1.0 are those obtained from the

analysis of experimental data and theoretical results by Jung et al [122]. As it is difficult

to have an MR damper with the obtained parameters experimentally that will lead to

the optimal minimization of excessive vibration of mechanical structures. To avoid this

drawback, it is observed from this Table 3.4 that some parameters depend on MF, named,

the modification factor that allows of multiplying the damping; stiffness and hysteretic

constants of the model magnify the damper force. In this regard, the objective here is to

modify the properties of the damper, in view of having the parameter values for a large

scale MR damper, enable to control the mechanical structure [123].

To assess the optimal position of outriggers on the core tube, the passive-on strategy

of the controller is employed. Thus,
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Table 3.3: Parameters of the structural system

Parameter First Second Third

δj1

εj1

dj1

dj3

ςj1

1.873

1.860

−0.743

−0.731

0.039

4.649

4.465

−1.127

−1.023

1.579

7.752

6.979

−1.283

−0.998

13.918

Table 3.4: Model parameters of the magnetorheological damper

Parameter Value Parameter Value

δa

γ(m−2)

β(m−2)

K0(N/m)

αa(N/m)

C0a(Ns/m)

C1a(Ns/m)

1107.2

164.0 × 104

164.0 × 104

2 MF

46.2 × 103 MF

11 × 104 MF

8359.2 × 103 MF

n1

np(s
−1)

K1(N/m)

Y0(m)

αb(N/mV )

C0b(Ns/mV )

C1b(Ns/mV )

2

190

9.7 MF

0.0

41.2 × 103 MF

114.3 × 103 MF

7482.9 × 103 MF
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Figure 3.8: Optimal position of damped outriggers, ζa = 0.762 and MF= 1.0

Figure 3.9: Optimal position of damped outriggers, ζa = 0.095 and MF= 1.0
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Figures 3.8 and 3.9 display the peak RMS versus locations of outriggers on the struc-

ture.

Figure 3.8 presents at the first mode, a slight variation between the amplitude at the

different position of outriggers on the core tube. For that, one can realize that the positions

0.7, 0.8, and 0.9 at this quoted mode are the location points of damped outriggers where

the displacement of the structural system is reduced slightly in relation to other positions.

The second mode exhibits only one best position of outriggers on the core tube which

is 0.9. It is well-seen that at this point the vibration amplitude is reduced dramatically.

As regards the third mode, the optimal positions are 0.6 and 0.9. In these points, the

peak amplitude of the structure are reduced than other positions. The global analysis

of different observations from Figure 3 leads us to mention that the optimal attachment

point of outriggers benefits for the three vibration modes is 0.9.

The same observation from Figure 3.8 is illustrated in Figure 3.9, that is to say that the

point 0.9 stays only the best position of outriggers on the frame core tube. Analysing these

figures, as can be seen, the point 0.9 is better attachment point of damped outriggers on

the frame-core tube favourable for the three first vibration mode. Moreover, the variation

of the length of each outrigger does not affect the value of its optimal attachment point

on the beam.

As mentioned before, it is difficult to have the best parameters from experimental re-

sults of the MR damper, which incorporated into the structure leading to efficient control.

For that, Figure 3.10 displays the peak RMS versus the scale coefficient MF at the first

three vibration modes. It is observed from this figure that the increasing of this quoted

coefficient affects the performance of damped outrigger in reducing the seismic response

of the structure. It is important to note that the choice of MF is done such as the control

device cannot increase the mechanical energy in the structural system. In other words,
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the control device should reinforce the stability of the structure in order to avoid their

premature destruction.

Figure 3.10: Optimal scale coefficient MF

(a) Displacement and acceleration of

the outrigger system

(b) Control force and applied voltage

to MR damper

Figure 3.11: Time histories at the first vibration mode

By taking into account of optimal position of damped outriggers and scale coefficient,

one displays in Figures 3.11, 3.12, and 3.13, the time histories of traversal displacement,

acceleration, control force, and applied voltage to MR damper at the first, second, and

third vibration modes for MF= 9000. The structural response of the outrigger system at

the three first vibration modes is shows in Figures 3.11(a), 3.12(a) and 3.13(a). One can

see the structural response show two sequences of the vibration.
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(a) Displacement and acceleration of

the outrigger system

(b) Control force and applied voltage

to MR damper

Figure 3.12: Time histories at the second vibration mode

(a) Displacement and acceleration of

the outrigger system

(b) Control force and applied voltage

to MR damper

Figure 3.13: Time histories at the third vibration mode
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The command signal Vc is selected through the control algorithm based on Lyapunov

stability illustrated in Equation 3.36. The numerical result of this adopted strategy allows

of having Figures 3.11b, 3.12b, and 3.13b at the first, second, and third vibration modes.

The observed separating time interval between τ = 170 and τ = 460 indicates that the

controller is in passive-off mode. Since in this relaxation time, the structure did not receive

the input produced by earthquake, as a result, the system cease to exhibit the vibration.

All the same, this explains the dynamic behaviour of the control device because this is

depended on the structural response.

3.4 On the mechanical system with self-control of vi-

bration

3.4.1 Modelling of the dynamics of self-controlled mechanical sys-

tem

3.4.1.1 Description of the model

The system study here is modelled as an inverted pendulum rigid bar with branches whose

are responsible of the dissipation of the energy receive from load apply to the entire

structure. Each branches are linked to the rigid bar by rotational springs and viscous

dampers, supported masses to their ends. By appreciating the performance of our system

to reduce amplitude, we will study first our system without any branch and the next step

with one branch, two and three branches. In each step we will compare the time-history

response of our system with the last one. The mechanism found here is based similarly to

the tuned-mass damper mechanism described by [124]
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Figure 3.14: System without any branch and with one branch

Figure 3.15: System with two branches
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Figure 3.16: System with three branches

3.4.1.2 Mathematical formalism

In this part, we focused on the system with one branch and by using the same analysis,

we can obtain the other equations of motion for system with two and three branches.

The positions of the center column (x,y) and the branch (x1,y1) is obtained easily [125]:
x = l sin(ϕ), y = l cos(ϕ)

x1 = l1 sin(θ − ϕ) + d sin(ϕ)

y1 = d cos(ϕ) − l1 cos(θ − ϕ)

(3.37)

The kinetic energy T, the potential energy V and the dissipative energy DE are

expressed as follow:
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T = 1
2
m(ẋ2 + ẏ2) + 1

2
m1(ẋ2

1 + ẏ2
1)

= 1
2
ml2ϕ̇2 + 1

2
m1l1

2(θ̇ − ϕ̇)2+

1
2
m1d

2
1ϕ̇

2 + m1l1dϕ̇(θ̇ − ϕ̇) cos(θ)

V = mgy +m1gy1

= mgl cos(ϕ) + m1g[d sin(ϕ) + l1 sin(θ − ϕ)] +

1
2
k0ϕ

2 + 1
2
k1θ

2

DE = c0ϕ̇
2 + c1θ̇

2

(3.38)

When the structure is excited by external load F (t), the equations of motion are

derived using Lagrange equations:


[ml2 +m1(l21 + d2)− 2m1l1d cos(θ)]ϕ̈+ (m1l1d cos(θ)−m1l

2
1)θ̈ =

F (t)− c0ϕ̇− k0ϕ+mgl sin(ϕ) +m1g[d sin(ϕ) + l1 sin(θ − ϕ)] +m1l1dθ̇
2 sin(θ)− 2m1l1dϕ̇θ̇ sin(θ)

m1l
2
1θ̈ + [m1l1d cos(θ)−m1l

2
1]ϕ̈ = −c1θ̇ − k1θ −m1gl1 sin(θ − ϕ) +m1l1dϕ̇θ̇ sin(θ)

(3.39)

After some rearrangements, we obtain



kaϕ̈+ c0ϕ̇+ k0ϕ−mgl sin(ϕ) = F (t)− kbθ̈+

m1g [d sin(ϕ) + l1 sin(θ − ϕ)] +

m1l1dθ̇
2 sin(θ)− 2m1l1dθ̇ϕ̇ sin(θ)

mbθ̈ + c1θ̇ + k1θ = −maϕ̈−

m1gl1 sin(θ − ϕ)−m1l1dθ̇ϕ̇ sin(θ)

with : ka = ml2 +m1(l21 + d2)− 2m1l1d cos(θ);

kb = m1l1d cos(θ)−m1l
2
1;

ma = m1l1d cos(θ)−m1l
2
1; mb = m1l

2
1

(3.40)
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Introducing the dimensionless coefficients

τ = ωt; Φ(τ) = ϕ(t)

√
l

l1
; Θ(τ) = θ(t)

The dimensionless system is given by:



Φ̈(τ) + γ1Φ̇(τ) + γ2Φ(τ) = F (τ)− γ3Θ̈(τ)+

γ4 [d sin(Φ(τ)) + l1 sin(Θ− Φ)] + γ5Θ̇2(τ)−

γ6Φ̇(τ)Θ̇(τ) + γ7

Θ̈(τ) + λ1Θ̇(τ) + λ2Θ(τ) = −λ3Φ̈(τ)−

λ4Φ̇(τ)Θ̇(τ)− λ5

(3.41)

Where the dimensionless parameters are:

γ1 = c0
kaω

, γ2 = k0

kaω2 , F (τ) = F (t)
kaω2

√
l
l1
,

γ3 = kb
ka

√
l
l1
, γ4 = m1g

kaω2

√
l
l1
, γ5 = m1l1d

ka

√
l
l1

γ6 = m1l1d sin(Θ(τ))
ka

, γ7 = mgl sin(Φ(τ))
kaω2

√
l
l1

λ1 = c1
mbω

, λ2 = k1

mbω2 , λ3 = ma
mb

√
l
l1
,

λ4 = m1l1d sin(Θ(τ))
mb

√
l
l1
,

λ5 = m1l1g sin(Θ(τ)−Φ(τ))
mbω2

3.4.2 Dynamics explanations

In this section, we study the robustness of our system driven firstly by wind load and

secondly by earthquake excitation.

3.4.2.1 System subjected to wind excitation

When the turbulent wind flow acts on a system, it brings three kinds of forces, namely

self, parametric and external excitations. The steady part of the wind flow causes self-

excitation while the parametric and external excitation are caused by the unsteady part
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of wind flow. A turbulent wind flow can be modelled by a drag wind force and a lift wind

force [126].

For this study, we focus our attention to the wind force (lift wind force) which blows

orthogonally to the structure with time-depending velocity U(t). It express as [127]:

FL =
1

2
ρU2b

[
A0 + A1

(
ẏ

U

)
+ A2

(
ẏ

U

)2

+ A3

(
ẏ

U

)3
]

(3.42)

Where, Aj(j=1,2,3) are the aerodynamic coefficients relevant to square sections, ρ

is the air mass density, b is the diameter of the cross-sectional area of the beam. The

wind velocity can be decomposed as U(t)=Ū+u(t) , where Ū is a constant (average)

part, representing the steady component and u(t) is a periodically time-dependent part

representing the turbulence. Considering that the turbulent part are small compared to

the steady component, u(t)

Ū
� 1 and using the Taylor’s expansion, the lift wind force in

(3.42) will become:



FL = 1
2
ρb [c0 + c1ẏ + c2ẏ

2 + c3ẏ
3]

with : c0 = A0

(
U

2
+ 2Uu(t)

)
c1 = A1

(
U + u(t)

)
c2 = A2

c3 = A3

(
1
U
− u(t)

U
2

)
(3.43)

Applying lift wind load as external excitation in our system in Figures 3.14, 3.15 and

3.16, we obtained after some rearrangements, the equations of motion which will be used

for numerical simulation using RK4 algorithm and Matlab.

It can be seen in Fig. 3.17 that amplitude of vibration of the system is a little bit

reduced when we added one branch at the top of the initial structure. Let us remember

that, the branches are responsible of the dissipation of energy. So from the response of the
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Figure 3.17: Time-histories response of the structure without and with one branch.

system, one added branch help our structure to reduce his ampliture of vibration even if

this reduction is not to considerable.

The goal is to better control the vibration amplitude of the made structure, the idea

of increase the damping ratio by adding others masses come out. By doing so, Fig. 3.18

and Fig. 3.19 give the behavior of the system for applied lift wind load as external force.

In Fig. 3.18, we observe on the response of the system that the amplitude of vibration

when two branches (curve in blue) are added is well reduced compared to amplitude of

system with one branch (red curve) and without branch (curve in black). One obtain an

amplitude reduction of about 75% compare to the structure without any attached mass.

The numerical simulation of the equation of motion for the system in Fig. 3.16 is given

by Fig. 3.19. The effect of three added branches is here shown, and after two branches,

a reduction of amplitude is too denote. We observe that the displacement of the system

with three branches represent by green curve is well-reduced.

One can by this test of vibration, make a great observation : for a pendulum system,

added masses operate as factor of damping fluctuation for the system vibration. And

by having a look on Fig. 3.17, Fig. 3.18 and Fig. 3.19, it is not only the amplitude of

vibration that has change; the period of oscillations tends towards larger values. Which is
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Figure 3.18: Time-histories response of the structure without and with one branch and

two branches

too a control because structures are less exposed to damage when the period of oscillations

around it equilibrium is large [128,129].

Figure 3.19: Time-histories response of the structure without and with one branch, two

branches and three branches

3.4.2.2 System subjected to earthquake excitation

One of the biggest natural disasters, earthquake causes big destruction. Earthquakes are

the movement of the earth’s crust, which are characterized by three-dimensional vibrations

and caused by tectonic movements. So control of earthquakes is impossible and prediction
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of them is quite difficult. However we can resist to destructive effects of earthquakes.

The earthquake signal can be modelled as filtered white noise process while the filter

design is based on a prescribed spectrum of ground motion [130]. Here, the Kanai-Tajimi

spectral description of the ground motion is used:

S(ω) = S0

ω4
g + 4ω2

gζ
2
gω

2

(ω2 − ω2
g)

2 + 4ω2
gζ

2
gω

2
(3.44)

Where ωg, ζg and S0 are parameters which depend on the soil characteristics and

seismic intensity. An equivalent expression for the evolutionary of earthquake excitation

for elastic plastic single-degree-of-freedom structures has been presented by [8, 131–133].

That generated earthquake is applied on the structure, for the same systems as in

the last section; the simple pendulum without any tie, the system with one branch, two

branches and three branches. One obtain numerical results shown in Fig. 3.20.

Figure 3.20: Time-histories response of the structure without and with one branch, two

branches and three branches

The observation of Fig. 3.20 shows that by adding branches, the amplitude of vibration

of the system is reduced compared to amplitude without branch. And the reduction of

amplitude is function of the number of attached branch. For one branch, the amplitude

reduce but not considerably; and for two branches and three branches, the time-history
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response of the system is well-reduced and one can notice that the period of oscillations

changes too and expand.

3.4.2.3 Effect of design parameter of the system

This section is devoted to the analysis of the effect of the length of branch on the reduction

of the amplitude of vibration of the proposed system in Figs. 3.14 to 3.16 subjected to

wind load. The Fig. 3.21 repesent the vibration of the system for the inverted pendulum

with one added branch at his top for different value of the length of fixed mass. l1 where

varies from dimensionless values of 0.0 to 0.2. A remark can directly be done; to collect

the lowest value of the amplitude of vibration at every time of the simulation, l1 should

varie with time and follow the green part of the figure.

For the system with 3 added masses in Fig. 3.16, l1 and l2 are fixed, and a variation of

the value of length l3 is done from dimensionless values of 0.0 to 0.2. The result are shown

in Fig. 3.22, one observe that, the amplitude of vibration is reduced for small values of

the length l3 and increase when l3 increase too.

Figure 3.21: Effect of length l1
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Figure 3.22: Effect of length l3

3.5 An inverted pendulum with multi-branching view

as self-controlled system: modelling and vibration

absorber capacity

3.5.1 General mathematical formalism of an inverted pendulum

with multi-branching

The model shown in Figure 3.23 consists of an inverted pendulum of finite length lnmax

(nmax is the maximum value of n according to the structure configuration : from one level

up to five level) and mass M as a rigid rod is connected to the soil by a spring K1 and

dashpot (viscous damper) C1 according to the reaction of the soil related to its mechanical

properties, with massless rigid bars linked on that central column. Those masses are

attached at different length ln of the central column, with n = 1, 3, .., 9. Each level is

two symmetrical bars of length li with i = 2, 4, .., 10, forming an angle φ0 with imaginary

horizontale line. These bars are linked to the central column by a rotational spring Kj

and viscous damper Cj with j = 2, 3, .., 6, and support masses mk with k = 1, .., 5 the

indicator of the level . The motion of the rod is defined by the angle θ , and we consider
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only the symmetrical motion of the levels defined by the angle φk with k = 1, .., 5. The

inclination of the main rod must be less than the critical amplitude, if not the structure

will break.

(a) (b)

Figure 3.23: (a) Physical model of pendulum with multi-branched at rest, (b) Disturbed

system.

To deal with this system of a central column and five levels attached branches, it is

divided in 6 subsystems of one degree of freedom (DOF) each one. Kinetic and potential

energies of the whole system give the system (3.45) of equations of motion which is derived

using Lagrangian formalism:
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A(φk)θ̈ +B(φ̇k, φk)θ̇ +D(φk)θ̇
2 +K1θ + gE sin θ + C2

(
l1
l2

cosφ0 sinφ1 − 1
)
φ̇1

+C3

(
l3
l4

cosφ0 sinφ2 − 1
)
φ̇2 + C4

(
l5
l6

cosφ0 sinφ3 − 1
)
φ̇3 + C5

(
l7
l8

cosφ0 sinφ4 − 1
)
φ̇4

+C6

(
l9
l10

cosφ0 sinφ5 − 1
)
φ̇5 + 2K2

(
l1
l2

cosφ0 sinφ1 − 1
)
φ1 + 2K3

(
l3
l4

cosφ0 sinφ2 − 1
)
φ2

+2K4

(
l5
l6

cosφ0 sinφ3 − 1
)
φ3 + 2K5

(
l7
l8

cosφ0 sinφ4 − 1
)
φ4 + 2K6

(
l9
l10

cosφ0 sinφ5 − 1
)
φ5

−2m1l1l2φ̇
2
1 cosφ0 cosφ1 − 2m2l3l4φ̇

2
2 cosφ0 cosφ2 − 2m3l5l6φ̇

2
3 cosφ0 cosφ3

−2m4l7l8φ̇
2
4 cosφ0 cosφ4 − 2m5l9l10φ̇

2
5 cosφ0 cosφ5 −m1l1g sin 2φ0 sinφ1 sin (θ + φ1)

−m2l3g sin 2φ0 sinφ2 sin (θ + φ2)−m3l5g sin 2φ0 sinφ3 sin (θ + φ3)

−m4l7g sin 2φ0 sinφ4 sin (θ + φ4)−m5l9g sin 2φ0 sinφ5 sin (θ + φ5) = 0

2m1l
2
2φ̈1 + C2φ̇1 + 2K2φ1 −

(
2m1gl2 sinφ0

)
sin (θ + φ1) +

(
2m1l1l2θ̇

2 cosφ0

)
cosφ1

=

(
2m1l1l2 cosφ0 sinφ1 − 2m1l

2
2

)
θ̈

2m2l
2
4φ̈2 + C3φ̇2 + 2K3φ2 −

(
2m2gl4 sinφ0

)
sin (θ + φ2) +

(
2m2l3l4θ̇

2 cosφ0

)
cosφ2

=

(
2m2l3l4 cosφ0 sinφ2 − 2m2l

2
4

)
θ̈

2m3l
2
6φ̈3 + C4φ̇3 + 2K4φ3 −

(
2m3gl6 sinφ0

)
sin (θ + φ3) +

(
2m3l5l6θ̇

2 cosφ0

)
cosφ3

=

(
2m3l5l6 cosφ0 sinφ3 − 2m3l

2
6

)
θ̈

2m4l
2
8φ̈4 + C5φ̇4 + 2K5φ4 −

(
2m4gl8 sinφ0

)
sin (θ + φ4) +

(
2m4l7l8θ̇

2 cosφ0

)
cosφ4

=

(
2m4l7l8 cosφ0 sinφ4 − 2m4l

2
8

)
θ̈

2m5l
2
10φ̈5 + C6φ̇5 + 2K6φ5 −

(
2m5gl10 sinφ0

)
sin (θ + φ5) +

(
2m5l9l10θ̇

2 cosφ0

)
cosφ5

=

(
2m5l9l10 cosφ0 sinφ5 − 2m5l

2
10

)
θ̈

(3.45)

With A(φk) = 1
4
Ml29 + 2m1l

2
1 + 2m2l

2
3 + 2m3l

2
5

+2m4l
2
7+2m5l

2
9−2m1l

2
1cos2φ0sin2φ1−2m2l

2
3cos2φ0sin2φ2−2m3l

2
5cos2φ0sin2φ3−2m4l

2
7cos2φ0sin2φ4−

2m5l
2
9cos2φ0sin2φ5
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B(φ̇k, φk) = C1−4m1l1l2φ̇1 cosφ0 cosφ1−4m2l3l4φ̇2 cosφ0 cosφ2−4m3l5l6φ̇3 cosφ0 cosφ3−

4m4l7l8φ̇4 cosφ0 cosφ4 − 4m5l9l10φ̇5 cosφ0 cosφ5

D(φk) = 2m1l
2
1cos2φ0 cosφ1 sinφ1+2m2l

2
3cos2φ0 cosφ2 sinφ2+2m3l

2
5cos2φ0 cosφ3 sinφ3+

2m4l
2
7cos2φ0 cosφ4 sinφ4+2m5l

2
9cos2φ0 cosφ5 sinφ5−2m1l1l2 cosφ0 cosφ1−2m2l3l4 cosφ0 cosφ2−

2m3l5l6 cosφ0 cosφ3 − 2m4l7l8 cosφ0 cosφ4 − 2m5l9l10 cosφ0 cosφ5

E = 2m1l1 + 2m2l3 + 2m3l5 + 2m4l7 + 2m5l9 − 1
2
Ml9

with g the acceleration of terrestrial gravity.

Because the equations of motion of the central column and each branch are coupled

by nonlinear terms, energy can be exchanged between them [33]. As one can see, the

movement of branches are independent each other but all induced by the motion of the

main rod. Therefore, the dissipation in the branches may damp the energy received from

the central column, resulting in an effective damping of the whole structure.

3.5.2 Effects of branches on the damping of the central column

vibration

3.5.2.1 Free vibration case

The central column is moved from its equilibrum point (θ = 0) with an intitial value of

1.57 rad for θ0 and 1.047 rad for φi0 for branches. And for vibration test and behavior

observation, the amplitude of vibration of the central column is plotted for five different

cases: one level branches, two, three, four and five level branches at different positions.

Figure 3.24 (a) shows that the angular displacement of the central column is surely a

damped oscillated motion around its equilibrum position which is here 0. While Figure
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(a) (b)

Figure 3.24: Angular displacement (a) θ for the central column, (b) φ1 for the first level

branches

3.24 (b) exhibits in addition to vibration an appearance of one pack of peaks of bursting

oscillation which consequently reduce with a high effect the amplitude of vibration of the

central column. It is well observed around the dimensionless time of [1250, 1500]. As main

results here, it is important to mention that as the central column give its motion to

attached branches, this denote to the energy exchange between the two subsystem [33].

In Figure 3.25, the effect of the number of attached branches is pointed out by a

gradual reduction of the amplitude of vibration of the central column which is plotted

here. Figure 3.25 (a) is the comparison between one attached level branches and two,

Figure 3.17 (b) between two and three, Figure 3.25 (c) three and four and finally Figure

3.25 (d) four and five levels of attached branches. The observation is not debatable, the

more the branches are added, the amplitude the central rod is reduced, and one can see

a reduction of up to 50% during the time going of the simulation.
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(a) (b)

(c) (d)

Figure 3.25: Angular displacement of Central column with (a)One-Two, (b)Two-Three,

(c)Three-Four, (d)Four-Five levels of attached branches
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3.5.2.2 Under earthquake excitation

In this section, an external force (here the earthquake) appears on the base of the central

rod. That earthquake loads is numerically generated according to Kanai Tajimi model

[116, 117]: a nonstationary ground acceleration with a random function which takes the

form of a filtered Gaussian stationary white noise modulated by a deterministic envelope

function. The physical and geometrical properties of the central column, are those of a

wooden structure [40]. And we aim to determine if the previous results are the same.

The ground acceleration üg is assumed to be represented by

üg = e0(e−β1t − e−β2t)ẅ(t) (3.46)

with the spectral density given by :

Sẅ(ω) = S0

ω4
g + (2ζgωgω)2

(ω2
g − ω2)2 + (2ζgωgω)2 (3.47)

where S0 is the intensity of the white noise process at the rock level, ωg is the dominant

frequency of the soil site and ζg is the associated damping ratio of the soil strata.

The system submitted to earthquake load is shown in figure 3.26:

Figure 3.26: The model of a set of pendulums under earthquake loads

Figure 3.27 is the generated acceleration of the ground üg.
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Figure 3.27: Dimensionless ground acceleration

From the system of equations 3.45, the central column is directly affected by the

appearance of earthquake as it is the only part of the structure which is attached to the

soil. And its equation of motion become:

A(φk)(θ̈ + üg) +B(φ̇k, φk)θ̇ +D(φk)θ̇
2 +K1θ

+gE sin θ + C2

(
l1
l2

cosφ0 sinφ1 − 1
)
φ̇1

+C3

(
l3
l4

cosφ0 sinφ2 − 1
)
φ̇2 + C4

(
l5
l6

cosφ0 sinφ3 − 1
)
φ̇3

+C5

(
l7
l8

cosφ0 sinφ4 − 1
)
φ̇4 + C6

(
l9
l10

cosφ0 sinφ5 − 1
)
φ̇5

+2K2

(
l1
l2

cosφ0 sinφ1 − 1
)
φ1 + 2K3

(
l3
l4

cosφ0 sinφ2 − 1
)
φ2

+2K4

(
l5
l6

cosφ0 sinφ3 − 1
)
φ3 + 2K5

(
l7
l8

cosφ0 sinφ4 − 1
)
φ4

+2K6

(
l9
l10

cosφ0 sinφ5 − 1
)
φ5 − 2m1l1l2φ̇

2
1 cosφ0 cosφ1

−2m2l3l4φ̇
2
2 cosφ0 cosφ2 − 2m3l5l6φ̇

2
3 cosφ0 cosφ30

−2m4l7l8φ̇
2
4 cosφ0 cosφ4 − 2m5l9l10φ̇

2
5 cosφ0 cosφ5

−m1l1g sin 2φ0 sinφ1 sin (θ + φ1)−m2l3g sin 2φ0 sinφ2 sin (θ + φ2)

−m3l5g sin 2φ0 sinφ3 sin (θ + φ3)−m4l7g sin 2φ0 sinφ4 sin (θ + φ4)

−m5l9g sin 2φ0 sinφ5 sin (θ + φ5) = 0

(3.48)

By adding the earthquake, the central column exhibit a behavior which follows the

earthquake displacement and by so doing induced vibrations of each of branches as it
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appears in Figure 3.28.

Each level of attached branches vibrates exactly as the central column Figure 3.28 (b),

(c), (d), (e) and (f) for the five floors and the amplitude of vibration is according to the

intensity of earthquake that is transmitted to its through the rigid main rod.

To point out the influence of branches on the vibration of the central column which

is the main supported branch of the system, the amplitude of vibration of the system

is drawn taking into account the number of attached branches levels, from one attached

branches level up to five. The results are those of Figure 3.29.

For one floor, the attached masses are at the top of the main rigid rod, while for more

than two floors which is more than two different positions of attached masses, one pair

of masses is attached at the top of the central column and others are somewhere between

the base and the top of that central column.

After the appearance of earthquake, one can notice that the vibration of each floor

affect considerabily the vibration of the central column, and it is by so doing that the

system reduce the amplitude of vibration during the earthquake excitation.

A deep observation of Figures 3.28 (a) and 3.29 do not shows an appearance of peaks

of bursting oscillation firstly because as it was shown in the first part Section 3.4.2, it

cannot be visible for more than two levels of attached branches; secondly, the earthquake

behave particularly as a disorder and by that it is not possible to observe such kind of

phenomenun. Furthermore, the results of Figure 3.29 come to confirm those of Figure

3.25, and a report of a damping of up to 33% of vibration is highlighted. And by adding

branches from one to five levels, one can obtain a total damping of around 50% and more

comparative to the amplitude of vibration when the structure is just a central column

with only one level of attached branches. To resume this part, one can say that, up to Five

levels in an inverted pendulum with multi-branching, the damping phenomenun increase
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(a) (b)

(c) (d)

(e) (f)

Figure 3.28: Angular displacement of (a)Central column θ, (b)First floor φ1, (c)Second

floor φ2, (d)Third floor φ3, (e)Fourth floor φ4, (f)Fifth floor φ5
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(a) (b)

(c) (d)

Figure 3.29: Angular displacement of Central Column according to the number of floors

(a)1 and 2, (b)2 and 3, (c)3 and 4, (d)4 and 5
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with the number of added branches.

3.5.3 Energy tranfer leading to damping effect of branches

Let us come back to the autonomous case. Many others consideration have been made

as: lnmax = l9 = 5l1 because a five story is chosen. In addition to that, l3 = 2l1, l5 = 3l1,

l7 = 4l1, l2 = l4 = l6 = l8 = l10, m1 = m2 = m3 = m4 = m5, C2 = C3 = C4 = C5 = C6,

K2 = K3 = K4 = K5 = K6 so that the structure have at different levels the same masses

values added.

With φk , k = 1, .., 5 for each floors up to 5, and by taking as coefficients :

Γ =
2m1l21cos2φ0

J∆
; J∆ = 25

4
Ml21 + 110m1l

2
1; Jφ1 = sin2φ1;

Jφ2 = 4sin2φ2; Jφ3 = 9sin2φ3; Jφ4 = 16sin2φ4;

Jφ5 = 25sin2φ5; Ω2
1 = K1

J∆
; Ω2

2 = K2

m1l22

β2
1 =

(30m1− 5
2
M)gl1

J∆
; β2

2 = g
l2

sinφ0; Kφ1 = m1gl1 sin(2φ0) sinφ1

J∆

Kφ2 = 2m1gl1 sin(2φ0) sinφ2

J∆
; Kφ3 = 3m1gl1 sin(2φ0) sinφ3

J∆

Kφ4 = 4m1gl1 sin(2φ0) sinφ4

J∆
; Kφ5 = 5m1gl1 sin(2φ0) sinφ5

J∆

The system of equations 3.45 lead to the new system of motion which is given by

equations 3.49.

Ph.D in Fundamental Mechanics and Complex Systems by FANKEM Eliane Raïssa ?UY1/FS?



Chapter III: Results and discussion 117



A′(φk)θ̈ +B′(φ̇k, φk)θ̇ +D′(φk)θ̇
2

+K1θ +
(
30m1 − 5

2
M
)
gl1 sin θ +

(
l1
l2

cosφ0 sinφ1 − 1
)
C2φ̇1

+
(

2 l1
l2

cosφ0 sinφ2 − 1
)
C2φ̇2 +

(
3 l1
l2

cosφ0 sinφ3 − 1
)
C2φ̇3

+
(

4 l1
l2

cosφ0 sinφ4 − 1
)
C2φ̇4 +

(
5 l1
l2

cosφ0 sinφ5 − 1
)
C2φ̇5

+
(
l1
l2

cosφ0 sinφ1 − 1
)

2K2φ1 +
(

2 l1
l2

cosφ0 sinφ2 − 1
)

2K2φ2

+
(

3 l1
l2

cosφ0 sinφ3 − 1
)

2K2φ3 +
(

4 l1
l2

cosφ0 sinφ4 − 1
)

2K2φ4

+
(

5 l1
l2

cosφ0 sinφ5 − 1
)

2K2φ5

−2m1l1l2 cosφ0


φ̇2

1 cosφ1 + 2φ̇2
2 cosφ2

+3φ̇2
3 cosφ3 + 4φ̇2

4 cosφ4

+5φ̇2
5 cosφ5



−m1gl1 sin (2φ0)


sinφ1 sin (θ + φ1) + 2 sinφ2 sin (θ + φ2) +

3 sinφ3 sin (θ + φ3) + 4 sinφ4 sin (θ + φ4)

+5 sinφ5 sin (θ + φ5)

 = 0

2m1l
2
2φ̈k + C2φ̇k + 2K2φk −

 2m1gl2

sinφ0

 sin (θ + φk)

+

 2 (k)m1l1l2

θ̇2 cosφ0

 cosφk = 2

 (k)m1l1l2 cosφ0 sinφk

−m1l
2
2

 θ̈

(3.49)

With news coefficients: A′(φk) = 25
4
Ml21 + 110m1l

2
1

− 2m1l
2
1cos2φ0(sin2φ1 + sin2φ2 + sin2φ3 + sin2φ4 + sin2φ5)

B′(φ̇k, φk) = C1 − 4m1l1l2 cosφ0(φ̇1 cosφ1

+ 2φ̇2 cosφ2 + 3φ̇3 cosφ3

+ 4φ̇4 cosφ4 + 5φ̇5 cosφ5)
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D′(φk) = 2m1l
2
1cos2φ0(cosφ1 sinφ1 + 4 cosφ2 sinφ2

+ 9 cosφ3 sinφ3 + 16 cosφ4 sinφ4

+ 25 cosφ5 sinφ5)− 2m1l1l2 sinφ0(sinφ1 + 2 sinφ2

+ 3 sinφ3 + 4 sinφ4 + 5 sinφ5)

The total mechanical energy is given by:

Em = [1− 2Γ (Jφ1 + Jφ2 + Jφ3 + Jφ4 + Jφ5)] θ̇2 + Ω2
1θ

2 − 2β2
1 cos θ

+2Kφ1 cos (θ + φ1) + 2Kφ2 cos (θ + φ2) + 2Kφ3 cos (θ + φ3)

+2Kφ4 cos (θ + φ4) + 2Kφ5 cos (θ + φ5)

+Γ

 φ̇2
1 + φ̇2

2 + φ̇2
3 + φ̇2

4 + φ̇2
5 + Ω2

2 (φ2
1 + φ2

2 + φ2
3 + φ2

4 + φ2
5)

+2β2
2 [cos (θ + φ1) + cos (θ + φ2) + cos (θ + φ3) + cos (θ + φ4) + cos (θ + φ5)]


(3.50)

In Figures 3.30 (a) and (b) , we display the energy of the whole system after a brief

displacement (autonomous case), in function of the time for one level of attached branches

and two, this to have an idea on the dissipation phenomenun inside the system. There is

a good agreement with the previous observation, because one can notice that the energy

of the system rapidly reduce with the number of added branches. When the number of

branches increase, one observes that reduction of energy is more important [8, 134].

As observation, we notice that the pack of peaks of bursting oscillation (red circle)

that was pointed out during the vibration test is too expose by a pack of peaks of bursting

oscillation too on energy time history. Figures 3.30 (a) and (b) illustrate well the fact that

bursting oscillation see its amplitude reduce and move near the started time of simulation

until that phenomenun disappear when the number of attached branches increase.

To confirm the results of rapid dissipation due to branches, the comparison of the

energy of the system in four cases was shown in Figure 3.31. The initial energy of the
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(a) (b)

Figure 3.30: Energy of the system for (a)One and (b)Two levels branches

system was normalized at 1, to have a well appreciation on the control of vibration involved

in the system. Gradually, from (a) to (d), the comparison between One and two levels, two

and three levels, three and four levls and finally four and five levels are drawn. To return

to its initial position, the structure need to dissipate all the received energy from external

exitation; and one can clearly says that the point zero of energy is quickly reached for a

larger number of branches.

Figure 3.32 (a) presents the energy of system during the vibration phenomenon as

fonction of the weight m1 of the central column and the time. One can bring out one

main point : when the central column weight is high, the energy of the system at the

beginning at the inverse is reduce. It is the same observation on Figures 3.32 (b), (c) and

(d) which show the influence of main rod length l1, the attached mass weight m2 and

the distance between that attached mass and the central column l2. The main results to

retain is that for each parameters of the system, up to the plotted taken value, when they

increase, the total energy of the system decrease and this has not effect on time history

of the energy. Only for the length l2, when its high value is realy welpful for the structure

because the most it increase then the structure dissipate quicly the energy and even the
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(a) (b)

(c) (d)

Figure 3.31: Energy of the system for (a)One-Two, (b)Two-Three, (c)Three-Four, (d)Four-

Five levels branches
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(a) (b)

(c) (d)

Figure 3.32: Effects of the design parameters on the energy of the system : (a)mass of

central rod, (b)length of central rod, (c)level masses, (d)level length
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time history is quiet affected by its value. A nullification of the energy of the system is

rapidly denoted. Therefore, the system return quickly to its initial position by dissipating

its energy when the length of its branches are considerable. Particularly for the length of

location of the mass (l2), the highest value is fonction of the length of the central column

to avoid the fact that, masses will touch the ground or touch each others. And to make

sure that, this condition will be taken into account, the length should satisfy : l2 < l1
sin(φ0)

.

(a) Design model (b) Pagode-Arc-2D-Model

Figure 3.33: Model of a building view as a set of pendulum with multi-branched

3.6 Conclusion

The present chapter has presented the results obtained in this thesis work. Firstly, The

effect of the disposition of many damped outriggers attached on a high-rise structure

is investigated. A partial differential equation governing the vibration is proposed and

deduced from a Bernoulli-Euler beam where the geometrical non-linearity is taken into
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account. The analysis shows that, the right position to locate an outrigger on a cantilever

beam is near the top level only for the first mode. When the number of outrigger increase,

the damping ratio of the system increase too and the vibrations are reduced. The dis-

position of the outrigger affect considerably the amplitude of vibration according to the

considered mode. Secondly, The nonstationary random approach is employed to simulate

seismic events. The Timoshenko beam approach is used to model the frame-core tube

linked at a point of its length by the damped outriggers, therefore are connected verti-

cally two magnetorheological damper devices. To evaluate the performance of the control

system, the control algorithm based on Lyapunov stability theory is adopted to seek the

input voltage leading to the reduction of vibration. Finally, two models of self-controlled

of vibration systems were proposed and their dynamic evaluations were given leading to

the conclusion that there are good candidates for earthquake protection of mechanical

structures.
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The present thesis has treated the problem of modelling of an elastic structure where

outriggers systems are located along its length, modelling of a rigid body structure where

masses are attached at different levels as a structural control system, dynamic of such

structures with the effect of outriggers and masses on their vibrations in the autonomous

case (an impulsion move the structure from its initial position) and also when they are

subjected to earthquake loads or wind flows.

Inspired by pagoda system which is among the best technics of earthquake protection,

this work had as aim to give a mathematical modeling of a system that can fit the dynamics

of pagoda’s system with its damping factors.

The first chapter presented the state of art on the modelling and the generalities on

the dynamics of Euler-Bernoulli and Timoshenko beam using the dynamics fundamental

relationship approach. Then the generalities on vibration control systems are presented,

by a review on some structural control methods before the problematic of the thesis.

In the second chapter, externals excitations which induce vibration in the system are

generated and, methods and techniques used to solve the problematic of the thesis has

been described. Such as the modal approximation, the fourth order Runge-Kutta method

and the stochastic fourth order Runge-Kutta method are used, for solving equations.

Earthquake and wind loads are defined here in details.

The third chapter is devoted to the results obtained in the thesis. We proposed models,

by using the specificities of their ways of building, firstly for structures with more than

one outrigger systems attached, secondly for sets of pendulums view as self-controlled

systems inspired by trees vibration and pagoda system. Those models in this work were

studied, and with a view on the dynamic shows off:

− One can assert that they fit the real dynamic of those mechanical structures,
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− A located outrigger near the top of a Cantilever beam is the best position for the

damped outrigger only for the first mode of vibraion, and we could not have a suitable

position of one outrigger for the five first modes where the amplitude of vibration will

be the smallest one. A comparison of displacements of the structure under earthquake,

between the 0.9 position of an outrigger and a five outriggers system with same parame-

ters, denote that the addition of the number of outriggers (until five outriggers) is quiet

benefict for the structure to reduce the amplitude of vibration of all the first five modes.

We realise also that for the second, the fourth and the fifth modes for a defined length

the non equidistance positions of the five levels is the best configuration but for the third

mode of vibration the equidistance positions of levels reduce more significantly the vibra-

tions. Not only the number of moving loads, but thier disposition affects too the mean

amplitude of the beam,

− And in the third part, it appears that all position of outriggers cannot lead to

optimal minimization of the seismic vibration of the structural system. On top of that,

the best scale coefficient MF of the parameter of the MR device leading to the maximum

force by maintaining the efficient control has been determined. Lyapunov stability theory

based on semi active control has been used to select the suitable voltage that operate MR

damper. The repeated sequence of the input voltage response reveals that this strategy

has been adequate for the control devices.

− For the second mechanical proposed system with self-control of vibration, the results

obtained in a numerical simulation show that by adding only one branch, that branch

increase the damping ratio of the system but the vibration is just a little bit reduced. For

more than one branch, the amplitude of vibration is well reduced. The influence of design

parameter of the system is analyzed,
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− It was shown after dynamics evaluation in the fourth part that, when a set of

pendulum view as self-controlled system inspired by trees vibration and pagoda system is

moved from its initial and equilibrium position, the energy received by the central column

is distributed to the different branches of the structure leading to a self vibration control

of the system; branches have a damping effect on the structure. All that results were

confirmed even when the structure faces an external force like earthquake loads. It was

also found that one can increase or decrease the damping ratio according to the length

and the weight of the central rod and even the length and the mass of branches. One also

deduct that to keep that configuration of the structure, the limit value acceptable of l2

is fonction of the length of the central column l1 and the angle φ0 of its position. A real

representation of this structure is proposed in this work called “Modern pagoda system”.

A structure which is robust, reliable and fit most our environement.

This work leads to some prospective works which could be the improvement of the

proposed model of this work by the adding of friction damper and tuned mass damper

to the modelling. This investigation will be helpful to analyse the evolution and/or the

proportionality of the considered devices of control in beam structures. And this result will

be more interesting in term of design and technologies in industry, mechanical, aerospace

and civil engineering.
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Summary

This paper deals with the statistical effects of an outrigger system on a cantilever beam under

seismic excitation. The nonstationary random approach is employed to simulate seismic events.

The Timoshenko beam approach is used to model the frame-core tube linked at a point of its

length by the damped outriggers, therefore are connected vertically two magnetorheological

damper devices. The peak root-mean-square values of displacement responses is employed as a

best measure effective to specify the optimal locations of outriggers according to different vibra-

tion modes. To evaluate the performance of the control system, the control algorithm based on

Lyapunov stability theory is adopted to seek the input voltage leading to the reduction of vibration.

KEYWORDS

Lyapunov stability, MR dampers, nonstationary random, outriggers, peak RMS, Timoshenko beam

1 INTRODUCTION

Since several decades, researchers and engineers do not cease to multiply the intensive research efforts, in view of reinforcing the degree of energy

dissipation of tall buildings to further resist to the energy from the external disturbances. Due to the vulnerability of those structures to environ-

mental dynamic loads, various alternatives in this sense carried out, with a view to increase structural safety in minimizing the damage effects that

could lead to a premature collapse. The configuration of these ones is done such as the dynamic forces are transferred upon one another in such

manner that they work as a group.[1] As the further element, the passive, active, and semiactive devices are inserted into those structures to enhance

control performance by providing energy dissipation. In the same view, another designed way to improve efficiency of tall buildings such as the out-

rigger system, which is consisted of a core wall, external columns, and outriggers, was developed and implemented. Smith and Willford[2] described

that structural system like a new concept for the structural design of high-rise buildings. The authors mentioned that the performance of this type of

system depends on the flexural and shear stiffness of various core or wall and also of the axial stiffness of the perimeter columns and their distance

from the core. In this regard, Tan et al.[3] presented the experimental work on the outrigger damping system. They showed that the damped outrigger

system can achieve a better performance than the outrigger structure in reducing the seismic response of the structure. Asai et al.[4] defined that

new structural concept like a novel energy dissipation system, which can mostly be used to protect high rise and tall buildings against the hazard

loads, such as severe earthquakes and strong winds. Chang et al. [5] has indicated that outrigger system provides additional damping that can reduce

structural response, and that the bending deformation of the building is transformed into shear deformation across dampers placed between the

outrigger and the perimeter column. Park et al.[6] studied an optimal design method for minimizing the volume of the primary structural members.

According to authors, the flexural rigidity of the core wall and the axial rigidity of the external column vary linearly with respect to height. Some

investigations about outrigger damping systems employing the magnetorheological (MR) dampers, which are inserted vertically between the out-

riggers, and the perimeter columns studied by previous studies.[5, 7, 8] The particularities of MR devices are due to its semiactive nature, inherent

stability, mechanical simplicity, large temperature operating range, and require a low voltage to achieve high control performance.[9] In the present

paper, outrigger system will be constituted of a core and outriggers equipped of the two MR dampers installed vertically at the ends, This signifies,

in other words, that the influence of the perimeter columns is neglected. All these illustrated assumptions lead us to have the signifies model.[10, 11]

Struct Design Tall Spec Build. 2017;e1393. wileyonlinelibrary.com/journal/tal Copyright © 2017 John Wiley & Sons, Ltd. 1 of 10
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To investigate the dynamic responses, the different approaches were employed by the authors to model the outrigger system such as the elastic

flexural deformation beam,[4, 10 – 12] known on the name of the Euler–Bernouilli beam, the shear-flexural cantilever.[13] Thus, it is important to mention

that up to now, there is a lack of research work in the literature that takes into account the combination of shear-type deformation and rotary inertia

effects in the dynamic behaviours in investigating transverse vibration of the structure. As a result, the core tube adopted here is a cantilever beam

in which the influence of the shear deformation and rotary inertia is taken into account in the modelling. Timoshenko[14] was the first to demonstrate

the importance of shear deformation and rotational inertia effect in the dynamics of elastic beams. That model is a mathematical expansion of the

Euler–Bernoulli theory associated with the quoted effects.

In this work, the frame-core tube is considered as a continuum cantilever Timoshenko beam theory characterized by a set of partial differential

equations. As damped element, two MR dampers are installed vertically at the ends of each outrigger, which are fixed at one point of the mentioned

core structure. The whole structure is adopted to mitigate the earthquake sequence response. The main objective is to find the suitable location of

outriggers at the first three modes by varying the distance of these ones from the core, in order to evaluate the effective response of the structural

system. These results are obtained through the passive-on strategy. It is important to note that the employed optimisation principle is very necessary

to minimize the earthquake-induced structural vibration.

2 DESCRIPTION OF PHYSICAL SYSTEM

The physical model represented in Figure 1 is a structural system that is constituted of an uniform cantilever beam and one outrigger truss. The set

of the system is subjected to the same environmental dynamic force in the horizontal direction denoted ground excitation, which is considered to

FIGURE 1 Cantilever beam with magnetorheological (MR) outriggers

FIGURE 2 Cross-section of the core tube
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simulate a seismic motion. The outriggers and the exterior columns have commonly a high stiffness. In this context, they are assumed to be infinitely

rigid. As a result, the outrigger behaves as a rigid body and is located at a point a from the end of the core tube. In view of increasing the capacity of

the dynamic response of the structural system to resist of the better way against the nonstationary excitation, two semiactive devices dubbed MR

dampers (D) are installed vertically and symmetrically; therefore, the generated forces are applied to the core tube through the outriggers.

2.1 Dynamic model formulation

The mass per unit length is m1; I is the moment of inertia of the cross-section about the neutral axis, E is the Young’s modulus; G is the shear modulus of

elasticity; ra is the radius of gyration. These geometrical characteristics are assumed constant. Thus, the lateral displacement is defined by y(x, t) = y,

which varies with the coordinate along the beam x and with time t. The control device fd is generated by a MR damper. The influence of the perimeter

columns on the dynamics of the core is not taken into consideration. As a result, the governing equations describing the dynamics of the cantilever

Timoshenko beam with one damped outrigger under the earthquake loadings can be written as

m1
𝜕2y
𝜕t2

+ EI
𝜕4y
𝜕x4

− m1r2
a

(
1 + E

ksG

)
𝜕4y

𝜕x2𝜕t2
= −m1ẍg(t) +

𝜕Ma

𝜕x
, (1)

where the distributed moment generated by the MR dampers is

Ma = 2𝛿(x − a)rfd(t), (2)

in which 𝛿(x − a) denotes the Dirac function. This one indicates that the point a is the place where the damped outriggers is installed. The distance

from the control devices to the centre of the core is denoted r. The dimensionless quantity ks is the shear coefficient depending on the geometric of

the cross section of the beam and depend on as well as of the Poisson’s ratio. It is assumed in this paper that the dimensional ratio of the width on the

area to the thickness is very small, reason why the core tube is considered like a beam being the cross section at the small thickness. This analysis

leads us to adopt that, the expression of this mentioned coefficient associated with the cross-section of the core tube is given by Cowper[15]:

ks =
20(1 + 𝜈)
48 + 39𝜈

. (3)

𝜈 is the Poisson’s ratio coefficient, it is clearly seen that ks is connected with that coefficient, which its value depends solely on the material property.

In what follows, the moment of inertia and area of the cross-section can be formulated as (Figure 2)

A = (b + 2h)2 − b2; I = (b + 2h)4

12
− b4

12
.

In this formulation in Equation 1, the first two terms correspond to the classical Bernoulli–Euler beam model. The third term represents the cor-

rection for rotary inertia, and the fourth term represents the shear deformation effect.[16] For convenience in the present study, the joint action of

rotary inertia and shear deformation effects is neglected. Thereafter, the bending stiffness for the outriggers is assumed to be infinite.[10]

The mathematical model of the nonstationary ground acceleration ẍg(t) of n sequences proposed by Abbas and Takewakib[17] is adopted in this

paper. According to the authors, ground acceleration of multiplied sequences could result in more damage to the structure than a single ordi-

nary event. This is because the structure gets damaged in the first sequence, and additional damage accumulates from secondary sequence before

any repair is possible. As a result, this random function is assumed to take the form of a filtered Gaussian stationary white noise modulated by a

deterministic envelope function under the sequence form. Expression of this term is defined in Equation 4 as follows:

üg(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e1(t)ẅ1(t) 0 ≤ t ≤ T1

0 T1 ≤ t ≤ 2∑
i=1

Ti

e2(t −
2∑

i=1
Ti)ẅ2(t)

2∑
i=1

Ti ≤ t ≤ 3∑
i=1

Ti

0
3∑

i=1
Ti ≤ t ≤ 4∑

i=1
Ti

… …

en

(
t −

n+1∑
i=1

Ti

)
ẅn(t)

n+1∑
i=1

Ti ≤ t ≤ n+2∑
i=1

Ti

, (4)

where e1(t), e2(t), … , en(t) are the envelope functions associated with the acceleration sequences 1,2, … , n, ẅ1(t), ẅ2(t), … ẅn(t) are stationary

random processes, T1, T3, … , Tn+2 are the time durations of the acceleration sequences, and T2, T4, … , Tn+1 are the time intervals separating these

sequences. Thus, the envelope function for the ith sequence is expressed as

ei(t) = e0i

(
t −

n∑
i=1

Ti

)
exp

[
−𝛼i

(
t −

n∑
i=1

Ti

)]
;

n+1∑
i=1

Ti ≤ t ≤
n+2∑
i=1

Ti, (5)

where e0i and 𝛼i are 2n positive constants that control the intensity and the nonstationarity trend of the ith acceleration sequence.
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The phenomenological model, which is based on Bouc-Wen modified version, proposed by Spencer et al.[18] is adopted here to describe the

dynamic of the control device in order to predict its response. This model can exhibit a wide variety of hysteretic behaviours. To valid their mathe-

matical model, authors have done a comparative approach between these analytical data and those obtained experimental results. The analysis of

that study on the basis of their results have pointed out the approach numerically tractable and effectively portrays the behaviour of the MR damper.

In other words, the proposed mathematical model describes the dynamic behaviour of the MR damper very well. As a result, the equation governing

force fd generated by the control device:

fd(t) = c1ẏ1 + k1(y(a, t) − y0). (6)

The internal displacement y1 is illustrated:

ẏ1 = 1
(c0 + c1)

(𝛼z + c0ẏ(a, t) + k0(y(a, t) − y1)) , (7)

and z is an evolutionary variable given by

ż = −𝛾|ẏ(a, t) − ẏ1|z|z|n−1 + (𝛿1 − 𝛽|z|n)(ẏ(a, t) − ẏ1), (8)

where c0 and c1 are the viscous damping at larger and low velocities, respectively; k1 is the accumulator stiffness; k0 represents the stiffness at large

velocity; 𝛾, 𝛿1 and𝛽 are the shape parameters of the hysteresis loops. Moreover some of these parameters depend on the command voltage u1, which

are given by

c0 = c0a + c0bu1, c1 = c1a + c1bu1, 𝛼 = 𝛼a + 𝛼bu1, (9)

where the command voltage u1 is accounted for through the first order filter:

u̇1 = 𝜂p(u1 − vc). (10)

vc is the maximum applied voltage that is associated with the saturation of the magnetic field in the MR damper, and 𝜂p is a positive number that

reflects the delay time of the MR damper.

Introducing the new parameters, one has the expressions defined as follows:

Y = y
L
, 𝜏 = t

T
, 𝛿a = 𝛿1L, 𝛾L = 𝛾L, 𝜁a = 2r

L
, ÿg(𝜏) =

T2

L
ẍg(t); a1 = EIT2

mL4
, a2 =

r2
a

L2

(
1 + E

ksG

)
,

C0 = c0

c0 + c1
, K0 = k0T

c0 + c1
, 𝛼b = 𝛼T

(c0 + c1)L
,C1 = c1T

mL
,K1 = k1T2

mL
, T = L

√
𝜌

ksG
, Y0 = y0

L
.

The relationship between the parameters leads to new reformulation, which is described by the below equation:

𝜕2Y
𝜕𝜏2

+ a1
𝜕4Y
𝜕X4

+ a2
𝜕4Y

𝜕X2𝜕𝜏2
= −ÿg(𝜏) + 𝜁aFd(𝜏)

𝜕

𝜕X
𝛿(X − X0). (11)

The dimensionless equation of the MR damper force is rewritten as

Fd(𝜏) = C1Ẏ1 + K1(Y(X0, 𝜏) − Y0). (12)

Y1 and Z are governed by the below equations:

Ẏ1 = 𝛼bZ + C0Ẏ(X0, 𝜏) + K0(Y(X0, 𝜏) − Y1), (13)

ż = −𝛾l|Ẏ(X0, 𝜏) − Ẏ1|Z|Z|n−1 + (𝛿l − 𝛽l|Z|n)(Ẏ(X0, 𝜏) − Ẏ1), (14)

where X0 is the location of the damped outriggers. By observing closely the Equations 12, 13, and 14, one can notice that these depend on the quoted

location point. This shows that the outrigger position is an important issue in terms of ensuring the efficiency of lateral displacement control.[6] For

the sake of simplicity, it is necessary to assess the dynamic responses of the structural system through the modal properties.

2.2 Modal equations

To reduce the partial differential equations to a set of ordinary differential equations, in order to assess the dynamic behaviour response of the

structural system. Thus, the general solution of the Equation 11 can be written as separation variables of𝜒(𝜏), which is the time dependent function

and the shape function Φ(X):

Y =
nm∑
j=1

Φj(X)𝜒j(𝜏). (15)
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nm is the total of modes with

Φ(X) =
(

dj
1

sin
(
𝛿

j
1

X
)
+ cos

(
𝛿

j
1

X
)
− dj

3
sinh

(
𝜖

j
1

X
)
− cosh

(
𝜖

j
1

X
))

. (16)

The spatial function is obtained from Equation 11 without the right member. The superscript j represents the jth mode.

The coefficients dj
1

and dj
3

are obtained by using the boundary conditions of the cantilever Timoshenko beam[19, 20]:

dj
1
=

cos
(
𝛿

j
1

)
+

(
𝜖

j2
1
+𝜇1𝛿

j2
1

)
(
𝛿

j2
1
+𝜇1𝜖

j2
1

) cosh
(
𝜖

j
1

)
−
(

sin
(
𝛿

j
1

)
+ 𝜖

j
1

𝛿
j
1

sinh
(
𝜖

j
1

)) , dj
3
= −

⎛⎜⎜⎜⎝
𝛿

j
1
+ 𝜇1

𝜖
j2
1

𝛿
j
1

𝜖
j
1
+ 𝜇1

𝛿
j2
1

𝜖
j
1

⎞⎟⎟⎟⎠ dj
1
.

In which 𝛿
j
1

and 𝜖
j
1

are eigenvalues defined at the jth mode of the vibration. Impossible to adopt an analytical consideration, these quoted eigenvalues

are obtained from Equation 17, by using an numerical appropriate algorithm:

⎧⎪⎪⎨⎪⎪⎩

[(
𝛿

j2
1
+ Γ1𝜖

j2
1

)2

+
(
𝜖

j2
1
+ Γ1𝛿

j2
1

)2
]

cos
(
𝛿

j
1

)
cosh(𝜖j

1
) −

(
𝛿

j2
1
+ Γ1𝜖

j2
1

)(
𝜖

j2
1
+ Γ1𝛿

j2
1

)
×(

−2 +
(
𝛿

j2
1
−𝜖j2

1

)
𝛿

j
1
𝜖

j
1

sin(𝛿j
1
) sinh(𝜖j

1
)
)

= 0(
𝛿

j2
1
− 𝜖

j2
1

)
Γ2

2
−
(

1 + 1

Γ1

)
𝛿

j2
1
𝜖

j2
1
= 0,

(17)

with Γ1 = E
ks G

, Γ2 = L ks GA

EI
.

In what follows, by using the mode decomposition of the illustrated expression in Equation 15 and substituting them into Equation 11, multiplying

by the different spatial expression and performing the integration from 0 to 1, by adding the damping coefficient. One gets the modal forms of above

equations that can be expressed as follows:

�̈�j(𝜏) + 𝜁j�̇�j(𝜏) + ςj𝜒j(𝜏) = −𝜎j ÿg(𝜏) − 𝜁a𝜂jFd(𝜏). (18)

The dimensionless equation of the force generated by the MR device is satisfied by the illustrated expressions as follows:

Fd(𝜏) = C1Ẏ1 + K1(𝜒j(𝜏)Φj(X0) − Y0), (19)

where Yh and Z can be rewritten as

Ẏ1 = 𝛼bZ + C0�̇�j(𝜏)Φj(X0) + K0(𝜒j(𝜏)Φj(X0) − Y1), (20)

ż = −𝛾L|�̇�j(𝜏)Φj(X0) − Ẏ1|Z|Z|n−1 + (𝛿L − 𝛽L|Z|n)(�̇�j(𝜏)Φj(X0) − Ẏ1). (21)

The applied voltage to the control device is defined by the dimensionless expression which is given by

U = 𝜂T(U − Vc), (22)

with

ςj =
a1b3

b1 + a2b2
, 𝜂j =

Φ′
j
(X0)

b1 + a2b2
, 𝜎j =

b4

b1 + a2b2
,

in which

b1 = ∫
1

0
Φj(X)2dX, b2 = ∫

1

0
Φ′′

j (X)Φj(X)dX, b3 = ∫
1

0
Φ′′′′

j (X)Φj(X)dX, b4 = ∫
1

0
Φj(X)dX.

Equations 18- 22 describe the time evolution of the concrete core tube which is fixed at the point X0 by the damped outriggers. It is useful to observe

that the parameter of the Equation 18 varied at each vibration mode and that the force generated by MR device depends on the attachment point of

the damped outriggers on core tube. All these results indicate that outrigger locations could modify the structural response at the different vibration

mode and can provide a better understanding of the outrigger design.

2.3 Semiactive controller

With a view to obtain the optimal input voltage corresponding to the desired damper force and to assess the performance of control system, the

control algorithm as an effective mean used in semiactive control based on the Lyapunov stability theory [9] is employed. Because the control device

is not directly controllable and that only applied voltage can be adjusted. Also the mentioned control algorithm is developed for characterizing

adequately the damper’s intrinsic nonlinear behaviour.[18] Thus, the Lyapunov function denoted Ly(W) must be a positive function of the state of the

system,W. According to the Lyapunov stability theory, if the rate of change of lyapunov function, L̇y(W), is negative semidefinite, the origin is stable.
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Lyapunov function is chosen of the form

Ly = 1
2
||W||2

p , (23)

where ||𝛴||p=P-norm of the states defined by

||Σ||p =
[
Σ′PLΣ

]1∕2
, (24)

where PL is real, symmetric, positive definite matrix.PL is found using Lyapunov equation.

Σ′PL + PLΣ = −Qp (25)

Qp is a positive definite matrix. The derivative of the Lyapunov function for a solution of the state-space equation is

L̇y = −1
2

W′QpW + W′PLB1Fd + W′PLBÿg . (26)

The above parameters are defined as follows:

W =
[
𝜒j

�̇�j

]
,Σ =

[
0 1
−ςj −𝜁j

]
, B =

[
0
−𝜎j

]
, B1 =

[
0

−𝜁a𝜂j

]
.

The control law which will minimize L̇y

Vc = VmaxH(−W′PLB1Fd), (27)

where Vmax is the maximum voltage and H(·) is Heaviside step function. When this function is greater than zero, the voltage (Vc) applied to the damper

should be maximum (Vmax), otherwise, the command voltage is set to zero.

3 RESULTS AND DISCUSSIONS

To investigate efficiency of the simplified model, the concrete core is assumed to be 12m×12m with a 0.5m thickness, and with the height of 210m.[5]

The mass per unit length is m1 = 62500Kg∕m. The eigenvalues are obtained from Equation 17 through the Newton–Raphson numerical. These

results obtained through this method are illustrated in Table 1.

The listed parameter values in Table 2 when MF= 1.0 are those obtained from the analysis of experimental data and theoretical results by Jung

et al.[21] As it is difficult to have an MR damper with the obtained parameters experimentally that will lead to the optimal minimization of excessive

vibration of mechanical structures. To avoid this drawback, it is observed from this Table 2 that some parameters depend on MF, named, the modi-

fication factor that allows of multiplying the damping; stiffness and hysteretic constants of the model magnify the damper force. In this regard, the

objective here is to modify the properties of the damper, in view of having the parameter values for a large scale MR damper, enable to control the

mechanical structure.[22]

TABLE 1 Parameters of the structural
system

Parameter First Second Third

𝛿
j
1

1.873 4.649 7.752

𝜖
j
1

1.860 4.465 6.979

dj
1

−0.743 −1.127 −1.283

dj
3

−0.731 −1.023 −0.998

ςj
1

0.039 1.579 13.918

TABLE 2 Model parameters of the magnetorheological damper

Parameter Value Parameter Value

𝛿a 1107.2 n1 2

𝛾(m−2) 164.0 × 104 𝜂p(s−1) 190

𝛽(m−2) 164.0 × 104 k1(N∕m) 9.7 MF

k0(N∕m) 2 MF y0(m) 0.0

𝛼a(N∕m) 46.2 × 103 MF 𝛼b(N∕mV) 41.2 × 103 MF

c0a(Ns∕m) 11 × 104 MF c0b(Ns∕mV) 114.3 × 103 MF

c1a(Ns∕m) 8359.2 × 103 MF c1b(Ns∕mV) 7482.9 × 103 MF
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FIGURE 3 Optimal position of damped outriggers, 𝜁a = 0.762 and MF=1.0

FIGURE 4 Optimal position of damped outriggers, 𝜁a = 0.095 and MF=1.0

To assess the optimal position of outriggers on the core tube, the passive-on strategy of the controller is employed. Thus,

Figures 3 and 4 display the peak RMS versus locations of outriggers on the structure.

Figure 3 presents at the first mode, a slight variation between the amplitude at the different position of outriggers on the core tube. For that,

one can realize that the positions 0.7, 0.8, and 0.9 at this quoted mode are the location points of damped outriggers where the displacement of the

structural system is reduced slightly in relation to other positions. The second mode exhibits only one best position of outriggers on the core tube

which is 0.9. It is well-seen that at this point the vibration amplitude is reduced dramatically. As regards the third mode, the optimal positions are

0.6 and 0.9. In these points, the peak amplitude of the structure are reduced than other positions. The global analysis of different observations from

Figure 3 leads us to mention that the optimal attachment point of outriggers benefits for the three vibration modes is 0.9.

The same observation from Figure 3 is illustrated in Figure 4, that is to say that the point 0.9 stays only the best position of outriggers on the frame

core tube. Analysing these figures, as can be seen, the point 0.9 is better attachment point of damped outriggers on the frame-core tube favourable

for the three first vibration mode. Moreover, the variation of the length of each outrigger does not affect the value of its optimal attachment point

on the beam.

As mentioned before, it is difficult to have the best parameters from experimental results of the MR damper, which incorporated into the structure

leading to efficient control. For that, Figure 5 displays the peak RMS versus the scale coefficient MF at the first three vibration modes. It is observed

from this figure that the increasing of this quoted coefficient affects the performance of damped outrigger in reducing the seismic response of the

structure. It is important to note that the choice of MF is done such as the control device cannot increase the mechanical energy in the structural

system. In other words, the control device should reinforce the stability of the structure in order to avoid their premature destruction.
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FIGURE 5 Optimal scale coefficient MF

FIGURE 6 Time histories at the first vibration mode

FIGURE 7 Time histories at the second vibration mode

By taking into account of optimal position of damped outriggers and scale coefficient, one displays in Figures 6, 7, and 8, the time histories of

traversal displacement, acceleration, control force, and applied voltage to MR damper at the first, second, and third vibration modes for MF= 9,000.

The structural response of the outrigger system at the three first vibration modes is shows in Figures 6(a), 7(a) and 8(a). One can see the structural

response show two sequences of the vibration.

The command signal Vc is selected through the control algorithm based on Lyapunov stability illustrated in Equation 27. The numerical result of

this adopted strategy allows of having Figures 6b, 7b, and 8b at the first, second, and third vibration modes. The observed separating time interval

between 𝜏 = 170 and 𝜏 = 460 indicates that the controller is in passive-off mode. Since in this relaxation time, the structure did not receive the
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FIGURE 8 Time histories at the third vibration mode

input produced by earthquake, as a result, the system cease to exhibit the vibration. All the same, this explains the dynamic behaviour of the control

device because this is depended on the structural response.

4 CONCLUSION

In this present paper, the dynamic response of the outrigger system under the two sequences of the nonstationary stochastic ground motion has

been investigated. The adopted outrigger system is constituted of a core-tube and outriggers employing the MR dampers, which are inserted verti-

cally. Timoshenko beam theory, which takes into account the combination of shear type deformation and rotary inertia effects, has been considered

to model the dynamic behaviours of the outrigger system. The statistical analysis through the peak root mean square displacement of the structural

system has been employed, to evaluate the influence of optimal attachment points of outriggers on the core tube. The obtained results show that

the analytical investigation of other modes is really necessary to seek the optimal position of outriggers. By taking into account of this strategy, it

is observed all position of outriggers can not lead to optimal minimization of the seismic vibration of the structural system. On top of that, the best

scale coefficient MF of the parameter of the MR device leading to the maximum force by maintaining the efficient control has been determined. Lya-

punov stability theory based on semiactive control has been used to select the suitable voltage that operate MR damper. The repeated sequence of

the input voltage response reveals that this strategy has been adequated for the control devices.
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An inverted pendulum with
multibranching view as self-controlled
system: Modelling and vibration absorber
capacity
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Abstract
The design and performance evaluation of a self-controlled system are investigated. An autonomous set of pendulums with

different branches is considered. A mathematical model is derived, and the damping mechanism due to the transfer of

energy between the central column and its attached branches is pointed out. The case of earthquake loads has been tested.

Dynamics study shows that the energy received by the central column is distributed to the different branches, leading to

a self-vibration control of the system. It is also found that one can increase the damping ratio according to the physical

characteristics of the structure. This is a good candidate for earthquake protection of mechanical structures.

Keywords
Pendulums, trees vibration, bioinspiration, earthquake excitation, vibration control

1. Introduction

After they have been built, tall and slender structures require
permanent monitoring of the deformations that take place
with the time. The causes of the deformations include
external factors such as strong winds, earthquakes, and
floods, accompanied by the natural process of ageing
(Kujawski and Tang, 2009; Metsebo et al., 2016; Oumarou
et al., 2011). Two main consequences of the monitoring are
the reparation of the damages suffered by the material
structures and the utilization of control methods (Anh et al.,
2016), some of which require external devices (Avossa
et al., 2018) and energy (Djanan et al., 2015; Kim and
Kang, 2017; Kitio Kwuimy et al., 2006; Ndemanou et al.,
2016, 2017). Since many years, numbers of structural
concepts (Dorka, 2004) that allow rigid body control has
been identified, and four concepts (base isolation, hysteretic
device system, tendon system, and pagoda system) have been
suggested for seismic control (Dorka, 2014; Nana Nbendjo
and Dorka, 2016). Our aim was to construct a structure
design that incorporates a set of pendulums (a central rigid
column with branches at different levels) and to bring out
their proficiencies to resist earthquakes and strong winds.

The pagoda system, inspired by high seismic perfor-
mance of old-built pagoda structures, is one of the most
powerful design structures which reacts positively when
they face earthquake (Bock et al., 2011; Hanazato et al.,

2012; Ueda et al., 1996;Wu et al., 2018). Fujita et al. (2004)
discussed on the seismic performance of traditional timber
five-story pagoda based on the results of microtremor
measurement, free vibration test, and earthquake response
monitoring. The experiment was subjected to a newly built
five-story timber pagoda in Japan. They found that the
natural frequency of vibration was approximately 1.5 Hz
and the damping factor 5%, the results of which are con-
sistent with those of the preceding experimental research
studies. With the same idea, earthquake and strong wind
responses of Hokekyou-ji five-story wood pagoda were
monitored and recorded. The observations were that the
deformation is nearly 4 cm under strong wind of about
25 m/s, and by supposing the strong wind about 60 m/s, the
deformation of nearly 20 cm would be brought. Hokekyou-
ji five-story pagoda has good damping of 5%–10%

1Laboratory of Modelling and Simulation in Engineering, Biomimetics and

Prototypes, Faculty of Science, University of Yaoundé I, Cameroon
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(Minowa et al., 2010). And after many analyses, some
assumptions were proposed to explain that resistance
(Nakahara et al., 2000); it was indicated that the good re-
sistance is due to the combined actions of different
mechanisms: base isolation, slip joint, friction damper,
snake dance, Shinbashira, and tuned mass damper, which
makes that structures so resistant to earthquakes. Omori
(1921) proposed that the compound pendulum system, the
center column and the main structure, gives a tuned mass
damper effect after investigations on pagodas in Senso-ji
temple and Nikko-ji temple. And the friction damping
effect of the wooden joints (pieces of wood are assembled
using tenons and mortises) was an important factor in
making them earthquake resistant (Muto, 1949). According
to the analyses conducted by Tanabashi (1960), the factors
increasing the resistance of the structure were the scale
effect of the five-story structure, a characteristic of the
flexible structure and the wood joint capacity for allowing
plastic deformations through slipping or gaps in them.
Some years after, it was proposed that the center column
acts as a bolt fastening the whole structure and adding
a restraint effect of shearing deformations among in-
dividual stories (Ishida, 1993). Ueda et al. (1996) con-
sidered that each structurally independent stories mounted
on top of the other was able to allow each one to act like
a balancing toy, cancelling the inertia force of each story
out among them.

Because more investigations and theoretical analyses are
still required to clarify the five-story pagoda behavior
(Minowa et al., 2010), an attention was carried out on the
slip joint and Shinbashira from the pagoda system, and on
the damping mechanism by branching studied by Theckes
et al. (2011) where they found that significant levels
of damping achieved via branching with typically 30% of

the energy being dissipated in one oscillation for two bi-
oinspired architectures. From the combination of that
previous devices, one propose in this work a model of
structure that has good abilities.

The article is organized as follows. After the In-
troduction, the physical model of the system which takes
into account the balancing toy and central column is il-
lustrated in Section 2. There, the system of equations of
motion of each part of the system is also obtained. Section 3
is devoted to the behavior of the structure when it is moved
from its equilibrium point (Section 3.1) and when an
earthquake appears on it (Section 3.2); and the influence of
branches is pointed out. In Section 4, the results of the study
of the energy dissipation in the system are presented and
described. The self-controlled behavior of the system is
denoted here, and the effect of length and masses on the
damping ratio is investigated. Concluding remarks end this
work in Section 5.

2. General mathematical formalism of an
inverted pendulum with multibranching

The model shown in Figure 1 consists of an inverted
pendulum of finite length lnmax (nmax is the maximum value
of n according to the structure configuration: from one level
up to five levels) and mass M as a rigid rod is connected to
the soil by a spring K1 and dashpot (viscous damper) C1

according to the reaction of the soil related to its mechanical
properties, with massless rigid bars linked on that central
column. Those masses are attached at different length ln of
the central column, with n = 1, 3, …, 9. Each level is two
symmetrical bars of length liwith i = 2, 4,…, 10, forming an
angle f0 with imaginary horizontal line. These bars are
linked to the central column by a rotational spring Kj and

Figure 1. (a) Physical model of the pendulum with multibranched at rest and (b) disturbed system.

2 Journal of Vibration and Control 0(0)



viscous damper Cj with j = 2, 3,…, 6 and support masses
mk with k = 1,…, 5, the indicator of the level. The motion
of the rod is defined by the angle θ, and we consider only
the symmetrical motion of the levels defined by the angle
fk with k = 1,…, 5. The inclination of the main rod must
be less than the critical amplitude, if not the structure will
break.

To deal with this system of a central column and five
levels attached branches, it is divided into six subsystems of
one degree of freedom each. Kinetic and potential energies
of the whole system give the system (1) of equations of
motion which is derived using Lagrangian formalism.

with g the acceleration of terrestrial gravity.
Because the equations of motion of the central column

and each branch are coupled by nonlinear terms, energy can
be exchanged between them (Theckes et al., 2011). As one
can see, the movement of branches is independent of each
other but is induced by the motion of the main rod.
Therefore, the dissipation in the branches may damp the
energy received from the central column, resulting in an
effective damping of the whole structure.

3. Effects of branches on the damping of
the central column vibration

3.1. Free vibration case

The central column is moved from its equilibrium point (θ =
0) with an initial value of 1.57 rad for θ0 and 1.047 rad for
fi0 for branches. And for the vibration test and behavior
observation, the amplitude of vibration of the central col-
umn is plotted for five different cases: one, two, three, four,
and five levels of branches at different positions.

Figure 2(a) shows that the angular displacement of the
central column is surely a damped oscillated motion around
its equilibrium position which is here 0, while Figure 2(b)
exhibits in addition to vibration an appearance of one pack
of peaks of bursting oscillation which consequently reduces
with a high effect the amplitude of vibration of the central
column. It is well observed around the dimensionless time
of [1250, 1500]. As main results here, it is important to
mention that as the central column gives its motion to at-
tached branches, this denotes to the energy exchange be-
tween the two subsystems (Theckes et al., 2011).
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2
6
€f3 þ C4

_f3 þ 2K4f3 �
�
2m3gl6
sinf0

�
sinðθ þ f3Þ þ

�
2m3l5l6
_θ
2 cosf0

�
cosf3 ¼

�
2m3l5l6 cosf0 sinf3 � 2m3l

2
6

�
€θ

2m4l
2
8
€f4 þ C5

_f4 þ 2K5f4 �
�
2m4gl8
sinf0

�
sinðθ þ f4Þ þ

�
2m4l7l8
_θ
2 cosf0

�
cosf4 ¼

�
2m4l7l8 cosf0 sinf4 � 2m4l

2
8

�
€θ

2m5l
2
10
€f5 þ C6

_f5 þ 2K6f5 �
�
2m5gl10
sinf0

�
sinðθ þ f5Þ þ

�
2m5l9l10
_θ
2
cosf0

�
cosf5 ¼

�
2m5l9l10 cosf0 sinf5 � 2m5l

2
10

�
€θ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(1)
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with

In Figure 3, the effect of the number of attached branches
is pointed out by a gradual reduction in the amplitude of
vibration of the central column which is plotted here.
Figure 3(a) is the comparison between one attached level
branches and two, Figure 3(b) between two and three,
Figure 3(c) three and four, and finally Figure 3(d) four and
five levels of attached branches. The observation is not
debatable; the more the branches are added, the amplitude
of the central rod is reduced, and one can see a reduction of
up to 50% during the time going of the simulation.

3.2. Under earthquake excitation

In this section, an external force (here, the earthquake)
appears on the base of the central rod. That earthquake loads
are numerically generated according to the Kanai–Tajimi
model (Lin et al., 1987): a nonstationary ground acceler-
ation with a random function which takes the form of
a filtered Gaussian stationary white noise modulated by
a deterministic envelope function. The physical and geo-
metrical properties of the central column are those of

a wooden structure (Nana Nbendjo, 2004). And we aimed to
determine whether the previous results are the same.

The ground acceleration üg is assumed to be represented by

€ug ¼ e0
�
e�β1t � e�β2t

�
€wðtÞ (2)

with the spectral density given by

S €wðωÞ ¼ S0
ω4

g þ
�
2ζ gωgω

�2
�
ω2

g � ω2
�2

þ �
2ζ gωgω

�2 (3)

where S0 is the intensity of the white noise process at the
rock level, ωg is the dominant frequency of the soil site, and
ζ g is the associated damping ratio of the soil strata.

The system submitted to the earthquake load is shown in
Figure 4.

Figure 5 is the generated acceleration of the ground üg.
From the system of equation (1), the central column is

directly affected by the appearance of earthquake, as it is the
only part of the structure which is attached to the soil. And
its equation of motion become

AðfkÞ¼
1

4
Ml29 þ2m1l

2
1 þ2m2l

2
3 þ2m3l

2
5 þ2m4l

2
7 þ2m5l

2
9 �2m1l

2
1 cos

2f0 sin
2f1�2m2l

2
3 cos

2f0 sin
2f2

�2m3l
2
5 cos

2f0 sin
2f3�2m4l

2
7 cos

2f0 sin
2f4�2m5l

2
9 cos

2f0 sin
2f5

B
�
_fk ;fk

�¼C1�4m1l1l2 _f1 cosf0 cosf1�4m2l3l4 _f2 cosf0 cosf2�4m3l5l6 _f3 cosf0 cosf3

�4m4l7l8 _f4 cosf0 cosf4�4m5l9l10 _f5 cosf0 cosf5

DðfkÞ¼ 2m1l
2
1 cos

2f0 cosf1 sinf1þ2m2l
2
3 cos

2f0 cosf2 sinf2þ2m3l
2
5 cos

2f0 cosf3 sinf3þ2m4l
2
7 cos

2f0 cosf4 sinf4

þ2m5l
2
9 cos

2f0 cosf5 sinf5�2m1l1l2 cosf0 cosf1�2m2l3l4 cosf0 cosf2�2m3l5l6 cosf0 cosf3

�2m4l7l8 cosf0 cosf4�2m5l9l10 cosf0 cosf5

E¼ 2m1l1þ2m2l3þ2m3l5þ2m4l7þ2m5l9�1

2
Ml9

Figure 2. Angular displacement (a) θ for the central column and (b) f1 for the first level of branches.
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By adding earthquake, the central column exhibits a be-
havior which follows the earthquake displacement Figure
6(a), and by so doing, induced vibrations of each of branches
as it appears in Figure 6.

Each level of attached branches vibrates exactly as the
central column Figure 6(b)–(f) for the five floors, and the
amplitude of vibration is according to the intensity of
earthquake that is transmitted to it through the rigid main
rod. To point out the influence of branches on the vi-
bration of the central column which is the main supported

branch of the system, the amplitude of vibration of the
system is drawn, taking into account the number of at-
tached branch levels, from one attached branch level up
to five. The results are those of Figure 7: For one floor, the
attached masses are at the top of the main rigid rod, while
for more than two floors which is more than two different
positions of attached masses: one pair of masses is at-
tached at the top of the central column and others are
somewhere between the base and the top of that central
column.

AðfkÞ
�
€θþ €ug

�þB
�
_fk ;fk

�
_θþDðfkÞ _θ

2 þK1θþ gE sinθþC2

�
l1
l2
cosf0 sinf1� 1

�
_f1 þC3

�
l3
l4
cosf0 sinf2 � 1

�
_f2

þC4

�
l5
l6
cosf0 sinf3 � 1

�
_f3þC5

�
l7
l8
cosf0 sinf4� 1

�
_f4þC6

�
l9
l10

cosf0 sinf5 � 1

�
_f5

þ 2K2

�
l1
l2
cosf0 sinf1 � 1

�
f1þ 2K3

�
l3
l4
cosf0 sinf2� 1

�
f2þ 2K4

�
l5
l6
cosf0 sinf3� 1

�
f3

þ 2K5

�
l7
l8
cosf0 sinf4 � 1

�
f4þ 2K6

�
l9
l10

cosf0 sinf5� 1

�
f5� 2m1l1l2 _f

2

1 cosf0 cosf1� 2m2l3l4 _f
2

2 cosf0 cosf2

� 2m3l5l6 _f
2

3 cosf0 cosf3 0� 2m4l7l8 _f
2

4 cosf0 cosf4 � 2m5l9l10 _f
2

5 cosf0 cosf5�m1l1g sin2f0 sinf1 sinðθþf1Þ
�m2l3g sin2f0 sinf2 sinðθþf2Þ�m3l5g sin2f0 sinf3 sinðθþf3Þ�m4l7g sin2f0 sinf4 sinðθþf4Þ
�m5l9g sin2f0 sinf5 sinðθþf5Þ ¼ 0

(4)

Figure 3. Angular displacement of the central column with (a) one–two, (b) two–three, (c) three–four, and (d) four–five levels of

attached branches.
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After the appearance of earthquake, one can notice that the
vibration of each floor affects considerably the vibration of the
central column, and it is by so doing that the system reduces
the amplitude of vibration during the earthquake excitation.

A deep observation of Figures 6(a) and 7 does not show
an appearance of peaks of bursting oscillation first because,
as it was shown in Section 3.1, it cannot be visible for more
than two levels of attached branches; second, the earthquake
behaves particularly as a disorder, and by that, it is not
possible to observe such kind of phenomenon. Furthermore,
the results of Figure 7 come to confirm those of Figure 3,

and a report of a damping of up to 33% of vibration is
highlighted. And by adding branches from one to five
levels, one can obtain a total damping of around 50% and
more compared with the amplitude of vibration when the
structure is just a central column, with only one level of
attached branches. To resume this part, one can say that up
to five levels in an inverted pendulum with multibranching,
the damping phenomenon increases with the number of
added branches.

4. Energy transfer leading to damping
effect of branches

Let us come back to the autonomous case. Many other
considerations have been made as: lnmax ¼ l9 ¼ 5l1 because
a five story is chosen. In addition to that, l3 = 2l1, l5 = 3l1,
l7 = 4l1, l2 = l4 = l6 = l8 = l10, m1 = m2 = m3 = m4 = m5, C2 =
C3 = C4 = C5 = C6, K2 = K3 = K4 = K5 = K6, so that the
structure has at different levels the same mass values added.

With fk, k = 1,…, 5 for each floors up to five, and by
taking as coefficients

Γ ¼ 2m1l21 cos
2 f0

JΔ
; JΔ ¼ 25

4
Ml21 þ 110m1l

2
1 ;

Jf1
¼ sin2 f1; Jf2

¼ 4 sin2f2; Jf3
¼ 9 sin2f3;

Jf4
¼ 16 sin2f4; Jf5

¼ 25 sin2 f5;

V2
1 ¼

K1

JΔ
; V2

2 ¼
K2

m1l22

β21 ¼
ð30m1 � ð5=2ÞMÞgl1

JΔ
; β22 ¼

g

l2
sinf0;

Kf1
¼ m1gl1 sinð2f0Þsinf1

JΔ
;Kf2

¼ 2m1gl1 sinð2f0Þsinf2

JΔ
;

Kf3
¼ 3m1gl1 sinð2f0Þsinf3

JΔ
;Kf4

¼ 4m1gl1 sinð2f0Þsinf4

JΔ
;

Kf5
¼ 5m1gl1 sinð2f0Þsinf5

JΔ

The system of equation (1) leads to the new system
of motion which is given by equation (6).

The total mechanical energy is given by

Em ¼ �
1� 2Γ

�
Jf1

þ Jf2
þ Jf3

þ Jf4
þ Jf5

�	
_θ
2 þV2

1θ
2

� 2β21 cosθþ 2Kf1
cosðθþf1Þ þ 2Kf2

cosðθþf2Þ
þ 2Kf3

cosðθþf3Þ þ 2Kf4
cosðθþf4Þ

þ 2Kf5
cosðθþf5Þ

þ Γ

_f
2

1 þ _f
2

2 þ _f
2

3 þ _f
2

4 þ _f
2

5

þV2
2

�
f2

1 þf2
2 þf2

3 þf2
4 þf2

5

�

þ 2β22
cosðθþf1Þ þ cosðθþf2Þ
þ cosðθþf3Þ þ cosðθþf4Þ
þ cosðθþf5Þ

2
4

3
5

2
666664

3
777775

(5)

Figure 4. Model of a set of pendulums under earthquake loads.

Figure 5. Dimensionless ground acceleration.
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In Figure 8(a) and (b), we display the energy of the whole
system after a brief displacement (autonomous case), in
function of time for one level of attached branches and two,
to have an idea on the dissipation phenomenon inside the
system. There is a good agreement with the previous ob-
servation because one can notice that the energy of the
system rapidly reduces with the number of added branches.
When the number of branches increases, one can observe
that reduction in energy is more important (Iyengar and
Shinozuk, 1972; Ndemanou et al., 2017).

As an observation, we notice that the pack of peaks of
bursting oscillation (black circle) that was pointed out

during the vibration test is too expose by a pack of peaks of
bursting oscillation too on energy time history. Figure 8(a)
and (b) illustrate well the fact that in bursting oscillation,
amplitude reduces and moves near the starting time of
simulation until that phenomenon disappears when the
number of attached branches increases.

To confirm the results of rapid dissipation due to
branches, the comparison of the energy of the system in four
cases was shown in Figure 9. The initial energy of the
system was normalized at 1 to have a good appreciation on
the control of vibration involved in the system. Gradually,
from Figure 9(a) to (d), the comparison between one and

Figure 6. Angular displacement of (a) central column θ, (b) first floor f1, (c) second floor f2, (d) third floor f3, (e) fourth floor f4,

and (f) fifth floor f5.

Fankem et al. 7



two levels, two and three levels, three and four levels, and
finally four and five levels are drawn. To return to its initial
position, the structure needs to dissipate all the received
energy from external excitation; and one can clearly say that
the point zero of energy is quickly reached for a larger
number of branches.

Figure 10(a) presents the energy of the system during the
vibration phenomenon as the function of weight m1 of the

central column and time. One can bring out one main point:
when the central column weight is high, the energy of the
system at the beginning at the inverse reduces. It is the same
observation on Figure 10(b)–(d), which show the influence
of main rod length l1, attached mass weight m2, and the
distance between that attached mass and the central column
l2. Themain results to retain is that for each parameters of the
system, up to the plotted taken value, when they increase, the

Figure 7. Angular displacement of the central column according to the number of floors (a) 1 and 2, (b) 2 and 3, (c) 3 and 4, and (d) 4

and 5.

Figure 8. Energy of the system for (a) one and (b) two levels of branches.
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Figure 9. Energy of the system for (a) one–two, (b) two–three, (c) three–four, and (d) four–five levels branches.

Figure 10. Effects of the design parameters on the energy of the system: (a) mass of the central rod, (b) length of the central rod, (c) level

masses, and (d) level length.
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total energy of the system decreases, and this has no effect
on the time history of energy. Only for length l2, when its
high value is really helpful for the structure because the
most it increases the structure dissipates quickly the en-
ergy, and even the time history is quite affected by its
value. Nullification of the energy of the system is rapidly
denoted

With new coefficients

A0ðfkÞ ¼
25

4
Ml21 þ 110m1l

2
1 � 2m1l

2
1 cos

2 f0

�
sin2 f1

þ sin2 f2 þ sin2 f3 þ sin2 f4 þ sin2 f5

�

B0� _fk ;fk

� ¼ C1 � 4m1l1l2 cosf0

�
_f1 cosf1 þ 2 _f2 cosf2

þ 3 _f3 cosf3 þ 4 _f4 cosf4 þ 5 _f5 cosf5

�

D0ðfkÞ ¼ 2m1l
2
1 cos

2 f0ðcosf1 sinf1 þ 4 cosf2 sinf2

þ 9 cosf3 sinf3 þ 16 cosf4 sinf4

þ 25 cosf5 sinf5Þ � 2m1l1l2 sinf0ðsinf1

þ 2 sinf2 þ 3 sinf3 þ 4 sinf4 þ 5 sinf5Þ
Therefore, the system returns quickly to its initial position by

dissipating its energy when the length of its branches is con-
siderable. Particularly for the length of the location of the mass
(l2), the highest value is the function of the length of the central
column to avoid the fact that masses will touch the ground or
touch each other. And to make sure that, this condition will be
taken into account; the length should satisfy: l2 < l1=sinðf0Þ.

5. Conclusion

This study has analyzed the energy variation and the vi-
bration control of a set of pendulums. A mathematical
modeling of the damping mechanism due to the transfer of

energy between the central column as a pendulum and
branches as pendulums too was investigated. The equations
of the motion of the structure with all its branches were
given by using the Lagrangian of the system. It was shown
after dynamics evaluation that when the system is moved
from its initial and equilibrium position, the energy received
by the central column is distributed to the different branches
of the structure, leading to a self-vibration control of the

system; branches have a damping effect on the structure. All
that results were confirmed even when the structure faces an
external force such as earthquake loads. It was also found
that one can increase or decrease the damping ratio ac-
cording to the length and the weight of the central rod and
even those of branches. One can also deduct that to keep that
configuration of the structure, the limit value acceptable of
l2 is the function of the length of the central column l1 and
the angle f0 of its position. A real representation of this
structure is shown in Figure 11.

A0ðfkÞ€θ þ B0� _fk ;fk

�
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2m1l
2
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Figure 11. A modern pagoda structure.
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