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Abstract

This thesis attempts a combination of three important areas of mathematics,
namely universal algebra, residuation theory and fuzzy set theory. A fuzzy
subalgebra of a universal algebra A := (A; FA) of type F under a residuated
lattice L := (L; ∧, ∨, 	, �, (; 0, 1), called an L-fuzzy subalgebra of A,
is a map from A to L which is ∧-compatible with the fundamental operations
of A. This notion was introduced by V. Murali [29] in 1991, under the unit
interval [0, 1] of real numbers, and generalized by B. Šešelja [35] in 1996,
under partially ordered sets.

Given a residuated lattice L and a universal algebra A of type F with
a residuated lattice Sub(A) :=

(
Sub(A); ∩, t, �, →,  ; Sg(∅), A

)
on

the set of its subuniverses, the set Fu(A,L) of L-fuzzy subsets of A forms
a residuated lattice Fu(A,L) :=

(
Fu(A,L); ∧, ∨, 	, �, (; 0, 1

)
that

extends both L and the Boolean algebra P(A) of subsets of A. The set
Fs(A, L) of L-fuzzy subalgebras of A forms a bounded lattice Fs(A, L) :=(
Fs(A, L); ∧, t; χSg(∅), 1

)
, but not necessarily a residuated lattice, which

extends both the bounded lattices of L and Sub(A). When L is a finite linearly
ordered Brouwerian algebra, Fs(A, L) forms an algebraic residuated lattice
Fs(A, L) :=

(
Fs(A, L); ∧, t, ⊗, ↪→, #; χSg(∅), 1

)
that extends both L and

Sub(A).

The condition on the residuated lattice L of the preceding result being
rather restrictive, it is natural to look for some classes of algebras for which
the latter is more general. In this thesis, two solutions to this problem are
proposed, in the classes of mono-unary algebras and rings, and some of their
properties are investigated.

Key Words: Universal algebra, Lattice, Residuated lattice, Brouwerian
algebra,MV -algebra, Boolean algebra, Mono-unary algebra, Ring, Łukasiewicz
ring, Subuniverse, Ideal, L-fuzzy subalgebra, L-fuzzy ideal, Category, Functor.
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Résumé

Cette thèse tente une combinaison de trois domaines importants des mathé-
matiques, à savoir l’algèbre universelle, la théorie des résidus et la théorie des
ensembles flous. Une sous-algèbre floue d’une algèbre universelleA := (A; FA)

de type F sous un treillis résidué L := (L; ∧, ∨, 	, �, (; 0, 1), appelée une
L-sous-algèbre floue de A, est une application de A vers L qui est ∧-compatible
avec les opérations fondamentales de A. Cette notion a été introduite par V.
Murali [29] en 1991, sous l’intervalle unité [0, 1] des nombres réels, et général-
isée par B. Šešelja [35] en 1996, sous les ensembles partiellement ordonnés.

Étant donnés un treillis résidué L et une algèbre universelle A de type F
avec un treillis résidué Sub(A) :=

(
Sub(A); ∩, t, �, →,  ; Sg(∅), A

)
sur

l’ensemble de ses sous-univers, l’ensemble Fu(A,L) des L-sous-ensembles flous
de A forme un treillis résidué Fu(A,L) :=

(
Fu(A,L); ∧, ∨, 	, �, (; 0, 1

)
qui prolonge à la fois L et l’algèbre de Boole P(A) des sous-ensembles de A.
L’ensemble Fs(A, L) des L-sous-algèbres floues de A forme un treillis borné
Fs(A, L) :=

(
Fs(A, L); ∧, t; χSg(∅), 1

)
, mais pas nécessairement un treillis

résidué, qui prolonge à la fois les treillis bornés de L et Sub(A). Lorsque L
est une algèbre de Brouwer finie et linéairement ordonnée, Fs(A, L) forme un
treillis résidué algébrique Fs(A, L) :=

(
Fs(A, L); ∧, t, ⊗, ↪→, #; χSg(∅), 1

)
qui prolonge à la fois L et Sub(A).

La condition sur le treillis résidué L du résultat précédent étant plutôt
restrictive, il est naturel de chercher des classes d’algèbres pour lesquelles cette
dernière est plus générale. Dans cette thèse, deux solutions à ce problème
sont proposées, dans les classes des algèbres mono-unaires et des anneaux, et
certaines de leurs propriétés sont étudiées.

Mots clés:Algèbre universelle, Treillis, Treillis résidué, Algèbre de Brouwer,
MV -algèbre, Algèbre de Boole, Algèbre mono-unaire, Anneau, Anneau de
Łukasiewicz, Sous-univers, Idéal, L-sous-algèbre floue, L-idéal flou, Catégorie,
Foncteur.
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INTRODUCTION

It is well known that life is uncertain, knowledge is limited, measures are impre-
cise, and future events can only be predicted with some confidence. Because of
this, traditional mathematics, supported by Boolean logic, is unable to model
complex systems. In 1965, L.A. Zadeh [41] introduced fuzzy set theory, which
led to a revision of mathematics, to formalize the concept of set membership
under uncertainty. In order to satisfy the needs of fuzzy reasoning, several
kinds of algebraic structures were then considered.

Since the introduction of the idea of residuation by R. Dedekind [11] in
1894, several researchers have approached it in a general way. In 1939, M.
Ward and R.P. Dilworth [40] introduced the notion of residuated lattice, as the
lattices on which a multiplication or residuation operation is defined. During
the same year, R.P. Dilworth [12] introduced the notion of non-commutative
residuated lattice and investigated some of its properties among which decom-
positions into primary and semi-primary elements. In 1990, V. Novák [31, 32]
introduced first-order fuzzy logic and proved that the algebra of this logic is
a residuated lattice. Since then, there has been substantial research regard-
ing some specific classes of residuated lattices as RL-monoids, MTL-algebras,
BL-algebras, MV -algebras,... (See, [10, 16, 20, 34]).

In 1967, J.A. Goguen [18] generalized the Zadeh’s concept of fuzzy subset
to L-fuzzy subset, replacing the unit interval [0, 1] of real numbers by the
underlying set L of an appropriate structure of truth values. He described one
of his motivating examples as follows:

«A housewife faces a fairly typical optimization problem in her grocery
shopping. She must select among all possible grocery bundles one that meets
as well as several criteria of optimality such as coast, nutritional value, quality
and variety. The partial ordering of the bundles is an intrinsic quality of this
problem. It seems to be unnatural to describe the criteria of optimality by
a linear ordering as the unit interval. Why should the nutritional value of a
given product be described by 0.6 (instead of 0.65, or any other value from
[0, 1]), and why should a product with a high nutritional value be better than

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures 1
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a product with a high quality since those criteria are usually incomparable?».

In 1988, U.M. Swamy and K.L.N. Swamy [37] used the Goguen’s concept
to introduce the concept of L-fuzzy ideals of a ring, where L is the underlying
set of a complete meet-distributive lattice. In 1996, B. Šešelja [35] general-
ized the Murali’s concept, of fuzzy subalgebra of a universal algebra [29], to
L-fuzzy subalgebra, where L is the underlying set of a partially ordered set
L, by considering compatibility rather on levels sets. He also characterized
classes of algebras for which the partially ordered set of L-fuzzy subalgebras
is a lattice, and pointed out the fact that its definition coincides with that of
V. Murali when L is a bounded lattice.

Given a residuated lattice L := (L; ∧, ∨, 	, �, (; 0, 1) and a uni-
versal algebra A := (A; FA) of type F with a residuated lattice structure
Sub(A) :=

(
Sub(A); ∩, t, �, →,  ; Sg(∅), A

)
on the set of its sub-

universes, this thesis investigates possibilities to define a residuated lattice
structure on the set Fs(A, L) of L-fuzzy subalgebras of A which extends both
L and Sub(A). The dissertation contains four chapters and a conclusion in
which the main results of the research are summarized, indications for future
work are given and open problems are suggested.

In Chapter 1, we give the mathematical background on universal algebra,
residuation theory and fuzzy sets theory, and collect some results that will be
used later.

In Chapter 2, given a complete meet-distributive residuated lattice L and
a universal algebra A, we set up a mimetic construction of the L-fuzzy subal-
gebra of A generated by an L-fuzzy subset of A, and characterize atoms and
co-atoms of the lattice Fs(A, L). When L is algebraic, we characterize compact
elements of Fs(A, L) and show that the latter is algebraic. Furthermore, when
L is a finite linearly ordered Brouwerian algebra and Sub(A) supports a quan-
tale structure Sub(A), we show that Fs(A, L) supports an algebraic quantale
which is both an extension of L and Sub(A). Finally, given a complete resid-
uated lattice L and a mono-unary algebra A, we define a residuated lattice
structure Fs(A, L) on the set of L-fuzzy subalgebras of A which is both an
extension of L and the Heyting algebra Sub(A) on the set of subuniverses of
A. Also, we show that Fs(A, L) is an MV -algebra (resp., a Boolean algebra)
if and only if L is an MV -algebra (resp., a Boolean algebra) and Sub(A) is a
Boolean algebra.

In Chapter 3, given a complete meet-distributive residuated lattice L and

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures S.V. Tchoffo Foka
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a unital ring A, we define a residuated lattice structure Fid(A, L) on the set
of L-fuzzy ideals of A which is both an extension of L and the residuated lat-
tice Id(A) on the set of ideals of A. Furthermore, we show that Fid(A, L) is
commutative (a Brouwerian algebra, a Boolean algebra) if and only if so are L
and Id(A). Also, we characterize prime elements of Fid(A, L) and investigate
some embedding properties of the lattice of its filters. Finally, we introduce
the concept of Łukasiewicz rings under L and establish its connection with
rings whose L-fuzzy ideals form an MV -algebra.

In Chapter 4, given a complete meet-distributive residuated lattice L, we
characterize L-fuzzy ideals of a quotient ring, and investigate some of their
properties. Finally, we define some functors from the category of unital rings
to the category of po-monoids, and study some of their properties.

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures S.V. Tchoffo Foka



Chapter One

Mathematical background

In this thesis, we assume familiarity with the most basic concepts from math-
ematical logic, set theory, order theory, lattice theory (as found in [6]), ring
theory (as found in [25]) and category theory (as found in [36]).

1.1 Universal algebra

We recall here some basic concepts from universal algebra (See, [6] for a de-
tailed exposition). Recall that the notion of universal algebra, sometimes called
general algebra or algebra for short, was introduced to extract, whenever pos-
sible, the common elements of several seemingly different types of algebraic
structures.

Definition 1.1.1. A type (or language) of algebras is a pair F := 〈F ; σ〉,
where F is a set of function symbols and σ a map from F to the set N of
nonnegative integers.

For any f in F , σ(f) is called the arity (or rank) of f , and f is said to be
an σ(f)-ary function symbol. Furthermore, F =

⋃
n∈N

Fn, where each Fn is the

set of n-ary function symbols in F .

Definition 1.1.2. An algebra of type F is a pair A := (A; FA); where, A
is a nonempty set (called the universe of A), FA := {fA : f ∈ F} and each
fA : Aσ(f) → A is an σ(f)-ary operation on A, called a fundamental operation
of A.

If F = {f1, f2, . . . , fn} with σ(f1) ≥ σ(f2) ≥ . . . ≥ σ(fn), then we also write(
A; fA1 , f

A
2 , . . . , f

A
n

)
and 〈σ(f1), σ(f2), . . . , σ(fn)〉 for A and F , respectively.

Example 1.1.3. (a) A Heyting algebra is an algebra (A; ∧, ∨, �; 0, 1) of
type 〈2, 2, 2, 0, 0〉 such that (A; ∧, ∨; 0, 1) is a distributive bounded lattice
and which satisfies for any x, y, z ∈ A: (x� y) ∧ x = x ∧ y, (x� y) ∧ y = y,
x � (y ∧ z) = (x � y) ∧ (x � z), (x ∨ y) � z = (x � z) ∧ (y � z) and
x� x = 1.

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures 4



1.1 Universal algebra 5

(b) A Boolean algebra is an algebra (A; ∧, ∨; ′; 0, 1) of type 〈2, 2, 1, 0, 0〉
such that (A; ∧, ∨, �; 0, 1), where x � y = x

′ ∨ y for all x, y ∈ A, is a
Heyting algebra; x′ is then called the complement of x.
In particular, the set P (E) of subsets of a set E, called the power set of E,
forms a Boolean algebra P(E) :=

(
P (E); ∩, ∪; ( ); ∅, E

)
; where, B = E \B

for all B ∈ P (E).

The class of Boolean lattices is precisely the class of reducts of Boolean
algebras to {∧, ∨; 0, 1}.

Definition 1.1.4. Let A and B be two algebras of the same type F .
(i) B is called a subalgebra of A if B ⊆ A and for any n-ary f in F , fB is the
restriction of fA to Bn.
(ii) A mapping h : A → B is called a homomorphism from A to B if for
any n-ary f in F , we have h

(
fA(a1, . . . , an)

)
= fB

(
h(a1), . . . , h(an)

)
for all

a1, . . . , an ∈ A. If in addition:
• h is one-to-one, then it is called an embedding of A into B, and A is said to
be embedded into B;
• h is onto, then it is called an epimorphism from A to B, and B is said to be
a homomorphic image of A;
• h is bijective, then it is called an isomorphism from A to B, and A is said
to be isomorphic to B.

Remark 1.1.5. Let A = (A; ∧A, ∨A) and B = (B; ∧B, ∨B) be two complete
lattices. A mapping h : A→ B is a:
• complete lattice morphism if and only if

h(
∧
L) =

∧
a∈L

h(a) and h(
∨
L) =

∨
a∈L

h(a) for all L ⊆ A;

• complete lattice embedding if and only if it is a one-to-one complete lattice
morphism.

Definition 1.1.6. Let A be an algebra of type F . A subset B of A is called a
subuniverse of A if for any n-ary f in F , we have fA(a1, . . . , an) ∈ B for all
a1, . . . , an ∈ B.

Remark 1.1.7. (a) The ideals of a lattice L = (L; u, t) are just subuniverses
of the algebra L = (L; t; (ma)a∈L), where ma(x) = a u x for all a, x ∈ L.
(b) The normal subgroups of a group G = (G; ·, −1, e) are just subuniverses of
the algebra G = (G; ·; −1, (ma)a∈G; e), where ma(x) = axa−1 for all a, x ∈ G.
(c) The ideals of a ring R = (R; +, ·; −; 0) are just subuniverses of the
algebra R = (R; +; −, (la)a∈R, (ra)a∈R; 0), where la(x) = ax and ra(x) = xa

for all a, x ∈ R.
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1.1 Universal algebra 6

Definition 1.1.8. Let Sub(A) be the set of subuniverses of A.
(i) The subuniverse of A generated by a subset X of A, denoted by SgA(X)

or simply Sg(X), is
⋂
{B ∈ Sub(A) : X ⊆ B}; i.e., the smallest subuniverse

of A containing X.
(ii) A is called F-trivial if F0 6= ∅ and A = Sg(∅).

Example 1.1.9. If A is a semigroup (resp., a group), then SgA(∅) = ∅ (resp.,
SgA(∅) = {e}).

Note that our definition of a F -trivial algebra does not always coincide
with the definition of trivial algebra; that is, an algebra with a single element
(See, [6]).

Proposition 1.1.10. (See, [6], Corollary 3.3.) The set of subuniverses of A
forms an algebraic lattice Sub(A) :=

(
Sub(A); ∩, t; Sg(∅), A

)
; where, ∩

is the intersection of sets and t is defined by: B t C := Sg(B ∪ C) for all
B,C ∈ Sub(A). Furthermore, compact elements of Sub(A) are exactly of the
form Sg(X); where, X is a finite subset of A.

Theorem 1.1.11. (See, [6], Theorem 3.5.) Every algebraic lattice is isomor-
phic to the lattice of subuniverses of an algebra.

Definition 1.1.12. Let X be a set of variables and F a type of algebras.
The set T (X,F) of terms of type F over X is the smallest set satisfying the
following conditions:
• X ∪ F0 ⊆ T (X,F).
• If t1, . . . , tn ∈ T (X,F) and f ∈ Fn, then f(t1, . . . , tn) ∈ T (X,F).

Usually, the set X of variables is omitted if it is understood or of no par-
ticular importance.

Definition 1.1.13. Given an algebra A of type F and a term t(x1, . . . , xn) of
type F , the evaluation (or term function) tA of t(x1, . . . , xn) on A is the n-ary
operation on A defined as follows:
• if t(x1, . . . , xn) is a variable xi, then tA(a1, . . . , an) = ai for all a1, . . . , an ∈ A
(tA is the i-th projection on An);
• if t(x1, . . . , xn) is of the form f

(
t1(x1, . . . , xn), . . . , tk(x1, . . . , xn)

)
, where f ∈

Fk, then

tA(a1, . . . , an) = fA
(
tA1 (a1, . . . , an), . . . , tAk (a1, . . . , an)

)
for all a1, . . . , an ∈ A.

Definition 1.1.14. (i) An identity of type F is an expression of the form
t ≈ s, where t and s are terms of type F .
(ii) A class K of algebras of type F is called equational if there is a set of
identities Σ such that K = ModF(Σ), that is the set of algebras of type F
satisfying Σ; in this case we say that K is axiomatized by Σ.

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures S.V. Tchoffo Foka



1.2 Residuation theory 7

Theorem 1.1.15. (See, [6], Theorem 11.9. (Birkhoff)) A class of algebras
of the same type is equational if and only if it is a variety (closed under the
operator H, S and P).

1.2 Residuation theory

1.2.1 Residuated lattices

We gather here some definitions and results on residuated lattices, most of
them being well known (See, [10, 12, 16, 20, 22]).

Definition 1.2.1. [20] An algebra (L; ∧, ∨, 	, �, (; e) of type 〈2, 2, 2, 2, 2, 0〉
is called a residuated lattice-ordered monoid (or residuated lattice for short) if
it satisfies the following conditions:
(RL1) (L; ∧, ∨) is a lattice;
(RL2) (L; 	, e) is a monoid;
(RL3) for any x, y, z ∈ L,

(a) x	 y ≤ z if and only if x ≤ y � z,
(b) x	 y ≤ z if and only if y ≤ x( z;
where, ≤ is the partial order of the lattice.

Definition 1.2.2. A residuated lattice (L; ∧, ∨, 	, �, (; e) is said to be
complete if its lattice (L; ∧, ∨) is complete.

Let us now adopt the notion of quantale, which is not usual, but which is
equivalent to that of complete residuated lattices.

Definition 1.2.3. A quantale is an algebra (L; ∧, ∨, 	, �, (; e) of type
〈2, 2, 2, 2, 2, 0〉 satisfying the following conditions:
(Q1) (L; ∧, ∨) is a complete lattice;
(Q2) (L; 	, e) is a monoid;
(Q3) a 	 (

∨
X) =

∨
x∈X

a 	 x and (
∨
X) 	 a =

∨
x∈X

x 	 a for all a ∈ L and

X ⊆ L;
(Q4) x� y =

∨
{z ∈ L : z	 x ≤ y} and x( y =

∨
{z ∈ L : x	 z ≤ y} for

all x, y ∈ L.

The usual definition of quantale [33] is simply the {�, (}-reduct (reduct
to {∧, ∨, 	, �, (; e}) of the above definition. In practice, we will very
often confuse the signatures of the two definitions.

Remark 1.2.4. [20] An algebra (L; ∧, ∨, 	, �, (; e) of type 〈2, 2, 2, 2, 2, 0〉
is a residuated lattice if and only if (L; ∧, ∨) is a lattice, (L; 	, e) is a monoid,
	 is order-preserving in each argument and the inequality x 	 y ≤ z has a
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1.2 Residuation theory 8

largest solution for x (namely y � z) and for y (namely x( z). Intuitively,
the residual operations � and( serve as generalized division operations, and
are called left residue and right residue of 	, respectively.

Example 1.2.5. [2] A lattice-ordered group (called l-group for short) is an
algebra (G; ∧, ∨, ·; −1; e) of type 〈2, 2, 2, 1, 0〉 such that (G; ∧, ∨) is a
lattice and (G; ·, −1, e) is a group compatible with the lattice order. It induces
a residuated lattice (G; ∧, ∨, ·, �, (; e); where, x � y = y · x−1 and
x( y = x−1 · y for all x, y ∈ G.

Proposition 1.2.6. [20] In a residuated lattice, the following hold (whenever∧
and

∨
exist) for any a ∈ L, B,C ⊆ L and 99K∈ {�, (}:

(1) (
∨
B)	 (

∨
C) =

∨
b∈B, c∈C

b	 c.

(2) a 99K (
∧
B) =

∧
b∈B

(a 99K b) and (
∨
B) 99K a =

∧
b∈B

(b 99K a).

Furthermore, the following identities or quasi-identities and their mirror im-
ages (obtained by replacing x	y by y	x and interchanging x� y with x( y)
also hold:
(3)

(
(x� y)	 x

)
∨ y = y.

(4) If x ∧ y = x, then x	 z = (x	 z) ∧ (y 	 z), y � z = (y � z) ∧ (x� z)

and z � x = (z � x) ∧ (z � y).
(5) e� x = x.
(6) e = e ∧ (x� x).

Proposition 1.2.7. [20] The class of residuated lattices is a finitely based
equational class RL := Mod(Σ), where Σ consists of the defining equations for
lattices and monoids together with the identities x = x ∧

[
y �

(
(x	 y) ∨ z

)]
,

x	 (y∨ z) = (x	 y)∨ (x	 z),
[
(y � x)	 y

]
∨x = x and their mirror images.

Definition 1.2.8. [20] A residuated lattice (L; ∧, ∨, 	, �, (; e) is called:
• commutative if x 	 y = y 	 x for all x, y ∈ L, in this case �=( and it is
simply written (L; ∧, ∨, 	, �; e);
• a Brouwerian algebra if x	 y = x ∧ y for all x, y ∈ L;
• integral if x ≤ e for all x ∈ L (e is the top element of L).

Definition 1.2.9. In the rest of this work, by a residuated lattice we will
designate an algebra L := (L; ∧, ∨, 	, �, (; 0, 1) of type 〈2, 2, 2, 2, 2, 0, 0〉
such that (L; ∧, ∨, 	, �, (; 1) is an integral residuated lattice and 0 is
the bottom element of L.

Residuated lattices are sometimes called non-commutative residuated lat-
tices, pseudo-residuated lattices or bounded integral residuated lattices (See,
[10, 22, 34]).
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1.2 Residuation theory 9

Example 1.2.10. (a) The Gödel structure is the residuated lattice
L = (L; ∧, ∨, ∧, �; 0, 1) given by L = [0, 1], x ∧ y = min(x, y), x ∨ y =

max(x, y) and

x� y =

{
1 if x ≤ y,
y otherwise.

for all x, y ∈ L.

(b) The product (or Gaines) structure is the residuated lattice
L = (L; ∧, ∨, 	, �; 0, 1) given by L = [0, 1], x ∧ y = min(x, y), x ∨ y =

max(x, y), x	 y = xy (the usual multiplication of real numbers) and

x� y =

{
1 if x ≤ y,
y/x otherwise.

for all x, y ∈ L.

(c) The Łukasiewicz structure of order p ∈ N? is the residuated lattice
L = (L; ∧, ∨, 	, �; 0, 1) given by L = [0, 1], x ∧ y = min(x, y), x ∨ y =

max(x, y),

x	 y = p
√

max(0, xp + yp − 1) and x� y = min
(
1, p
√

1− xp + yp
)
for all

x, y ∈ L.

If p = 1, we obtain the Łukasiewicz structure.

Proposition 1.2.11. (See, [22]) In a residuated lattice L, for any x ∈ L,

x := x� 0 and x̃ := x( 0 (mirror image of x)

are called left annihilator and right annihilator of x, respectively. Furthermore,
the following identities and quasi-identities and their mirror images hold for
any x, y in L:
(7) x	 0 = 0 and 0 = 1.
(8) x = x ∧ y if and only if x� y = 1.
(9) x = x ∧ y implies y = y ∧ x.
(10) x	 x = 0, x = x ∧ x̃ and x̃ = x.
(11) x	 y = (x	 y) ∧ (x ∧ y) and

(
(x� y)	 x

)
∨ (x ∧ y) = x ∧ y.

For any x ∈ L and a non negative integer n, xn is defined inductively by
x0 = e and xn+1 = xn 	 x.

Definition 1.2.12. A residuated lattice L is called:
• an RL-monoid if (x� y)	 x = x ∧ y = x	 (x( y) for all x, y ∈ L;
• a MTL-algebra if (x � y) ∨ (y � x) = 1 = (x ( y) ∨ (y ( x) for all
x, y ∈ L;
• a BL-algebra if it is both an RL-monoid and a MTL-algebra;
• a Gödel algebra if it is both a MTL-algebra and a Brouwerian algebra;
• an MV -algebra if it is a BL-algebra satisfying x̃ = x = x̃ for all x ∈ L;
• an n-fold Boolean algebra if x ∨ xn = 1 = x ∨ x̃n for all x ∈ L;
• trivial if L = {0, 1}.
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1.2 Residuation theory 10

Definition 1.2.13. A residuated lattice L is called:
• meet-distributive if so is its lattice, that is r ∧

(∨
B
)

=
∨
b∈B

(r ∧ b) for all

r ∈ L and B ⊆ L, whenever both
∨

exist;
• join-distributive if so is its lattice, that is r∨

(∧
B
)

=
∧
b∈B

(r∨b) for all r ∈ L

and B ⊆ L, whenever both
∧

exist.

Remark 1.2.14.
• Gödel and Gaines structures are BL-algebras, and Łukasiewicz structures
are MV -algebras (See, [7]).
• A Heyting algebra (A; ∧, ∨, �; 0, 1) may be viewed as a Brouwerian
algebra (A; ∧, ∨, ∧, �, �; 0, 1), and conversely.
• A residuated lattice is a Boolean algebra if and only if it is both a Heyting
algebra and an MV -algebra, if and only if it is both a BL-algebra and an 1-fold
Boolean algebra (See, [4]).
• The identities x ∧ y = x ∨ y and x̃ ∧ y = x̃ ∨ ỹ hold in every MTL-algebra
(See, [10], Proposition 4.1).
• The lattice of an RL-monoid (resp., a complete RL-monoid) is distributive
(resp., meet-distributive) (See, [10], Proposition 4.7).

Definition 1.2.15. A residuated lattice L is said to be:
(i) 	-distributive (or product-distributive) if x 	 (y ∧ z) = (x 	 y) ∧ (x 	 z)

and (y ∧ z)	 x = (y 	 x) ∧ (z 	 x) for all x, y, z ∈ L;
(ii) completely 	-distributive (or product-distributive) if r	(

∧
B) =

∧
b∈B

(r	b)

and (
∧
B)	 r =

∧
b∈B

(b	 r) for all r ∈ L and B ⊆ L whenever both
∧

exist.

Definition 1.2.16. A residuated lattice L is said to be:
(i) join-implicative if for any x, y, z ∈ L, x � (y ∨ z) = (x � y) ∨ (x � z)

and x( (y ∨ z) = (x( y) ∨ (x( z);
(ii) completely join-implicative if for any x ∈ L and B ⊆ L, x �

(∨
B
)

=∨
b∈B

x� b and x(
(∨

B
)

=
∨
b∈B

x( b whenever both
∨

exist.

Note that Brouwerian algebras and linearly ordered residuated lattices are
product-distributive, and Boolean algebras are join-implicative.

Example 1.2.17. Let L = {0, n, a, b, c, d, e, f, m, 1} be a lattice such
that 0 < n < a < c < e < m < 1, 0 < n < b < d < f < m < 1, b < c and
d < e; where, a, b, c, d and e, f are incomparable, respectively. Define the
binary operations 	 and � by the two tables below:
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1.2 Residuation theory 11

	 0 n a b c d e f m 1

0 0 0 0 0 0 0 0 0 0 0

n 0 0 0 0 0 0 0 0 0 n

a 0 0 a 0 a 0 a 0 a a

b 0 0 0 0 0 0 0 b b b

c 0 0 a 0 a 0 a b c c

d 0 0 0 0 0 b b d d d

e 0 0 a 0 a b c d e e

f 0 0 0 b b d d f f f

m 0 0 a b c d e f m m

1 0 n a b c d e f m 1

� 0 n a b c d e f m 1

0 1 1 1 1 1 1 1 1 1 1

n m 1 1 1 1 1 1 1 1 1

a f f 1 f 1 f 1 f 1 1

b e e e 1 1 1 1 1 1 1

c d d e f 1 f 1 f 1 1

d c c c e e 1 1 1 1 1

e b b c d e f 1 f 1 1

f a a a c c e e 1 1 1

m n n a b c d e f 1 1

1 0 n a b c d e f m 1

.

As Example 3.7. in [27] shows, L = (L; ∧, ∨, 	, �; 0, 1) is a distributive
residuated lattice which is not:
• product-distributive, since m	 (a∧ b) = m	 n = 0 6= n = a∧ b = (m	 a)∧
(m	 b);
• join-implicative, since c� (a ∨ b) = 1 6= m = e ∨ f = (c� a) ∨ (c� b).

Some researchers have found some logics that have some subclasses of the
variety of residuated lattices as models (See, [23, 31, 32]). For example, MV -
algebras (resp., BL-algebras, MTL-algebras) are the algebraic counterpart of
Łukasiewicz logic (resp., Basic Logic, Monoidal T-norm Logic).

1.2.2 Prime elements and filters of a residuated lattice

In this subsection, L = (L; ∧, ∨, 	, �, (; 0, 1) is a residuated lattice.

Prime elements

Definition 1.2.18. A 	-prime (or prime) element of L is a proper element
p of L (p 6= 1) such that: for any x, y ∈ L, x	 y ≤ p implies x ≤ p or y ≤ p.
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A 	-prime element of L is ∧-prime (that is a prime element of the lattice
of L), but the converse is not necessarily true as the following example shows.

Example 1.2.19. Let L be the Gaines structure (See, Example 1.2.10). Since
L is linearly ordered, each of its proper elements are ∧-prime. For any x ∈
]0, 1[, we have

√
x 	
√
x = x and

√
x � x. Thus, 0 is the only 	-prime

element of L.

Proposition 1.2.20. A maximal element (co-atom) of L is a prime element
of L.

Proof. Let p be a maximal element of L. For any x, y ∈ L such that x	y ≤ p,
x � p and y � p, we have 1 = 1	 1 = (x ∨ p)	 (y ∨ p) = (x	 y) ∨ (x	 p) ∨
(p	 y)∨ (p	 p) ≤ p and, p = 1; which is a contradiction. Hence, p is a prime
element of L.

Definition 1.2.21. Let Spec(L) be the set of prime elements of L. The radical
of an element x of L, denoted by

√
x, is defined by:

√
x =

∧
{p ∈ Spec(L) : x ≤ p}, whenever

∧
exists.

Definition 1.2.22. A 	-primary (or primary) element of L is a proper ele-
ment p of L such that: for any x, y ∈ L, x	 y ≤ p implies x ≤ p or y ≤ √p.

A primary element of L is also called a right primary element of L. If L is
commutative, then right primary and left primary elements of L are confused;
furthermore, any prime element of L is a primary element of L.

Definition 1.2.23. (i) An element x of L is said to have a primary decompo-
sition (or to be decomposable into primary elements, or primary decomposable)
if there exist primary elements p1, . . . , pn of L such that x =

∧
1≤i≤n

pi.

(ii) If any proper element of L has a primary decomposition, then L is said
to be primary decomposable.

Example 1.2.24. (a) Let L be the Gödel structure. Since Spec(L) = [0, 1[

is also the set of all primary elements of L, L is primary decomposable.
(b) Let L be the Gaines structure. Since Spec(L) = {0}, we have

√
0 = 0 and√

x =
∧
∅ = 1 for all x ∈]0, 1]; thus, [0, 1[ is the set of all primary elements

of L. So, L is primary decomposable.
(c) Let L be the Łukasiewicz structure. We have Spec(L) = ∅; indeed,
• 0 is not a prime element of L, since 1

2
	 1

2
= max

(
0, 1

2
+ 1

2
−1
)

= max(0, 0) =

0 and 1
2
� 0;

• any p ∈]0, 1[ is not a prime element of L, since √p	√p = max
(
0,
√
p +

√
p− 1

)
= max

(
0, 2
√
p− 1

)
≤ p and √p � p.

It follows that
∧
∅ = 1 is the only radical of L. Consequently, [0, 1[ is the set
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1.2 Residuation theory 13

of all primary elements of L. Hence, L is primary decomposable.
(d) Let L be the Łukasiewicz structure of order 2. We have Spec(L) = ∅;
indeed,
• 0 is not a prime element of L, since

√
2

2
	
√

2
2

=
√
max

(
0, (

√
2

2
)2 + (

√
2

2
)2 − 1

)
= 0 and

√
2

2
� 0;

• any p ∈]0, 1[ is not a prime element of L, since
√
p	√p =

√
max

(
0, 2p− 1

)
≤ p and √p � p.

It follows that
∧
∅ = 1 is the only radical of L. Consequently, [0, 1[ is the set

of all primary elements of L. Hence, L is primary decomposable.

Proposition 1.2.25. (See, [30]) Let p and q be two primary elements of L
such that √p =

√
q. Then the following hold:

(1)
√
p =
√
p ∧ q =

√
q.

(2) p ∧ q is a primary element of L.

Definition 1.2.26. A primary decomposition of an element is called normal
(or short [30]) when superfluous are removed and the primary components with
the same radical are combined.

Filters

Definition 1.2.27. (See, [10, 22]) A nonempty subset F of L is called a 	-
filter (or filter) of L if it satisfies the following conditions for any x, y ∈ L:
(F1) x ∈ F and y ∈ F imply x	 y ∈ F .
(F2) x ≤ y and x ∈ F imply y ∈ F .

A 	-filter of L is a ∧-filter of L (that is a filter of the lattice of L), but
the converse is not necessarily true (See, [10], Remark 3.5). For any nonempty
subset F of L, the following are equivalent (See, [10, 22]):
(1) F is a filter of L.
(2) 1 ∈ F and for any x, y ∈ L, (x ∈ F and x� y ∈ F ) imply y ∈ F .
(3) 1 ∈ F and for any x, y ∈ L, (x ∈ F and x( y ∈ F ) imply y ∈ F .
The filter of L generated by a subset X of L is given by

[X) := {y ∈ L : x1 	 x2 	 . . .	 xn ≤ y for some x1, . . . , xn ∈ X, n ∈ N?};

in particular, the principal filter generated by an element x of L is given by
[x) = {a ∈ L : xn ≤ a for some n ≥ 1}. The set Fil(L) of filters of L forms
a Heyting algebra Fil(L) :=

(
Fil(L); ∩, t, ⇒; {1}, L

)
; where, ∩ is the

intersection of sets, F1tF2 := [F1∪F2) and F1 ⇒ F2 := {x ∈ L : [x)∩F1 ⊆ F2}.
The lattice of Fil(L) is algebraic and its compact elements are exactly the
principal filters of L (See, [10, 22]).
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1.2 Residuation theory 14

1.2.3 Łukasiewicz semi-rings and MV -algebras

The following approach to MV -algebras was initiated by G. Georgescu and
A. Iorgulescu in [17] to generalize the commutative one introduced by C.C.
Chang in [9].

Definition 1.2.28. AnMV -algebra is an algebraM := (M ; ⊕, �; −, ∼; 0, 1)

of type 〈2, 2, 1, 1, 0, 0〉 satisfying the following conditions:
(MV1) (M ; ⊕, 0) is a monoid and 1− = 0 = 1∼.
(MV2) For any x ∈M , x⊕ 1 = 1 = 1⊕ x and (x−)∼ = x.
(MV3) For any x, y ∈M , (y∼⊕ x∼)− = x� y = (y−⊕ x−)∼, x� (x−⊕ y) =

(x⊕ y∼)� y and x⊕ (x∼ � y) = y ⊕ (y∼ � x) = (x� y−)⊕ y = (y � x−)⊕ x.

Remark 1.2.29. (See, Definition 1.2.12) The two definitions of MV -algebras
are equivalent through the following transfer:
• If (M ; ⊕, �; −, ∼; 0, 1) is an MV -algebra, then (M ; ∧, ∨, �, (, �

; 0, 1) is a distributive MV -algebra; where, the operations ∧, ∨,( and � on
M are given by x∧y = x�(x−⊕y) = y�(y−⊕x) = (x⊕y∼)�y = (y⊕x∼)�x,
x ∨ y = (x � y−) ⊕ y = x ⊕ (x∼ � y), x( y = y ⊕ x∼ and x � y = x− ⊕ y
and the order ≤ on M is given by x ≤ y iff x− ⊕ y = 1 iff y ⊕ x∼ = 1.
• If (L; ∧, ∨, 	, �, (; 0, 1) is anMV -algebra, then (L; ⊕, 	; ∼, −; 0, 1)

is an MV -algebra; where the binary operation ⊕ on L is given by x ⊕ y =

ỹ 	 x = ỹ 	 x̃ = ỹ � x = x( y.

Example 1.2.30. (a) The MV -algebra
(
[0, 1]; ⊕, �; −, −; 0, 1

)
, where

x ⊕ y = min{1, x + y}, x � y = max{0, x + y − 1} and x− = 1 − x, is the
Łukasiewicz structure. It is also called the Łukasiewicz chain.
(b) Let G = (G; ∧, ∨, +; −; 0) be an arbitrary l-group, u a strong unit of G
(u is a positive element of G and for any g ∈ G there exists an integer n ≥ 1

such that −nu ≤ g ≤ nu) and Γ(G, u) the lattice interval [0, u] of G. Then(
Γ(G, u); ⊕, �; −, ∼; 0, u

)
is an MV -algebra, where x ⊕ y = (x + y) ∧ u,

x� y = (x− u+ y) ∨ 0, x− = u− x and x∼ = −x+ u.

Every MV -algebra is meet-distributive and join-distributive (See, [34],
psmv − c22 and psmv − c23 of Theorem 4.6.), completely product-distributive
(See, [34], psmv − c26 and psmv − c27 of Theorem 4.6.) and isomorphic to an
MV -algebra of the form(

Γ(G, u); ⊕, �; −, ∼; 0, u
)
(See, [13], Theorem 3.9.).

Every complete MV -algebra is commutative (that is ⊕ is commutative) (See,
[13], Theorem 4.2. and [14], Proposition 6.4.14).

Proposition 1.2.31. (See, [21], Proposition 2.1.) From anMV -algebraM =

(M ; ⊕, �; −, ∼; 0, 1), one can extract the algebra (M ; ∨, �; −, ∼; 0, 1)
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1.3 L-fuzzy subsets of a set 15

of type 〈2, 2, 1, 1, 0, 0〉, which is called a Łukasiewicz semi-ring since it satisfies
the following conditions:
(LS1) (M ; ∨, �) is an additively idempotent semi-ring with an additive iden-
tity 0 and a multiplicative identity 1.
(LS2) − and ∼ satisfy the following conditions for any x, y ∈M :

(i) x� y = 0 iff x ≤ y∼ iff y ≤ x−; where, x ≤ y iff x ∨ y = y.
(ii) ((x∼ � y)∼ � x∼)− = x ∨ y = (x∼ � (y � x−)∼)−.
(iii) (x∼ � y∼)− = (x− � y−)∼.

Remark 1.2.32. Let (M ; ∨, �; −, ∼; 0, 1) be a Łukasiewicz semi-ring with
the relation ≤ defined for any x, y ∈ M by: x ≤ y if and only if x ∨ y = y.
Then the following are satisfied (See, [21], Lemma 2.2.):
• The relation ≤ is an order on M that is compatible with ∨ and �.
• 0− = 1 = 0∼ and 1− = 0 = 1∼.
• For any x ∈M , x∼ � x = 0 = x� x− and (x−)∼ = (x∼)−.
• For any x, y ∈M , x ≤ y implies y− ≤ x− and y∼ ≤ x∼.
• (M ; ∧, ∨, �; 0, 1) is a bounded lattice-ordered semi-ring; where, for any
x, y ∈M , (x− ∨ y−)∼ = x ∧ y = (x∼ ∨ y∼)−.

Proposition 1.2.33. (See, [21], Proposition 2.3. and Proposition 2.5.)
(1) A Łukasiewicz semi-ring (M ; ∨, �; −, ∼; 0, 1) induces an MV -algebra
(M ; ⊕, �; −, ∼; 0, 1); where, x⊕ y = (y∼ � x∼)− for all x, y ∈M .
(2) There is a duality between MV -algebras and Łukasiewicz semi-rings.

1.3 L-fuzzy subsets of a set

In this section, L := (L; ∧, ∨, 	, �, (; 0, 1) is a complete residuated
lattice, unless otherwise specified.

1.3.1 Residuated lattice of L-fuzzy subsets

Definition 1.3.1. Let A be a nonempty set. A fuzzy subset of A under L, or
an L-fuzzy subset of A, is a map from A to L.

For any B ⊆ A, a ∈ A and r, s ∈ L, the following functions from A to L
are L-fuzzy subsets of A:

Bs
r(x) :=

{
s if x ∈ B,
r if not.

for all x ∈ A,

Br := Br
0, Bs := B1

s , asr := {a}sr, ar := ar0 (L-fuzzy point of A), B1 =: χB := B0

(characteristic function of B), χa := χ{a} and Ar =: r := ∅r (constant L-fuzzy
subset of A with value r). For any L-fuzzy subset µ of A and r ∈ L, the sets
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Supp(µ) := {x ∈ A : µ(x) 6= 0}
Im(µ) := {µ(x) : x ∈ A}
U(µ, r) := {x ∈ A : µ(x) ≥ r}

are called the support, the image and the r-level set (or r-cut) of µ, respectively.
The partial order relation ≤ on the set Fu(A,L) of L-fuzzy subsets of A is
defined as follows: for any µ, ν ∈ Fu(A,L),

µ ≤ ν if and only if µ(x) ≤ ν(x) for all x ∈ A.

The relation < on Fu(A,L) is defined as follows: for any µ, ν ∈ Fu(A,L),

µ < ν if and only if µ ≤ ν and there is x ∈ A such that µ(x) < ν(x).

The set Fu(A,L) forms a complete lattice Fu(A,L) :=
(
Fu(A,L); ∧, ∨; 0, 1

)
and a residuated lattice Fu(A,L) :=

(
Fu(A,L); ∧, ∨, 	, �, (; 0, 1

)
;

where, the binary operations ∧, ∨, 	, �, ( are defined componentwise.
Since the class of residuated lattices is a variety, L and Fu(A,L) satisfy the
same residuated lattice identities.

Remark 1.3.2. • The map φ : L→ Fu(A,L), given by φ(r) = r for all r ∈ L,
is a complete residuated lattice embedding of L into Fu(A,L).
• The map ψ : P (A) → Fu(A,L), given by ψ(B) = B1 for all B ∈ P (A),
is a complete residuated lattice embedding of the Boolean algebra P(A) into
Fu(A,L).

1.3.2 L-fuzzy subalgebras of an algebra

In the rest of this section, unless otherwise specified, A := (A; FA) is an
algebra of type F .

Let f be an n-ary operation on A. The n-ary operation f+ on P (A) is
defined by: for any B1, . . . , Bn ∈ P (A),

f+(B1, . . . , Bn) := {f(x1, . . . , xn) : x1 ∈ B1, . . . , xn ∈ Bn}.

By the Zadeh’s extension principle [41], f induces on Fu(A,L) an n-ary oper-
ation f̂ defined by: for any µ1, . . . , µn ∈ Fu(A,L),

f̂
(
µ1, . . . , µn

)
(y) :=

∨
{
∧

1≤i≤n
µi(xi) : (x1, . . . , xn) ∈ f−1(y)} for all y ∈ A.

For any f ∈ F0, we have (fA)+ = {fA} and f̂A = χfA .

Lemma 1.3.3. Let {Bi}1≤i≤n ⊆ P (A), {ri}1≤i≤n ⊆ L and f be an n-ary
operation on A. Then f̂

(
(B1)r1 , . . . , (Bn)rn

)
=
(
f+(B1, . . . , Bn)

) ∧
1≤i≤n

ri
.
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1.3 L-fuzzy subsets of a set 17

Proof. If there is 1 ≤ i0 ≤ n such that Bi0 = ∅, then (Bi0)ri0 = 0 and
f+(B1, . . . , Bn) = ∅; thus, f̂

(
(B1)r1 , . . . , (Bn)rn

)
= 0 =

(
f+(B1, . . . , Bn)

) ∧
1≤i≤n

ri
.

Now, suppose that Bi 6= ∅ for all 1 ≤ i ≤ n. For any y ∈ f+(B1, . . . , Bn),
there are a1 ∈ B1, . . . , an ∈ Bn such that (a1, . . . , an) ∈ f−1(y); thus,∧

1≤i≤n
ri ≥ f̂

(
(B1)r1 , . . . , (Bn)rn

)
(y) ≥

∧
1≤i≤n

(Bi)ri(ai) =
∧

1≤i≤n
ri

and, f̂
(
(B1)r1 , . . . , (Bn)rn

)
(y) =

∧
1≤i≤n

ri. Now, let y 6∈ f+(B1, . . . , Bn). For

any (x1, . . . , xn) ∈ f−1(y), there is 1 ≤ i0 ≤ n such that xi0 6∈ Bi0 ; thus,
(Bi0)ri0 (xi0) = 0 and,

∧
1≤i≤n

(Bi)ri(xi) = 0. So,

f̂
(
(B1)r1 , . . . , (Bn)rn

)
(y) =

∨
{0} = 0.

Hence, f̂
(
(B1)r1 , . . . , (Bn)rn

)
=
(
f+(B1, . . . , Bn)

) ∧
1≤i≤n

ri
.

Definition 1.3.4. The universal algebras A+ :=
(
P (A); {(fA)+ : f ∈ F}

)
and Â :=

(
Fu(A,L); {f̂A : f ∈ F}

)
are respectively called the power (com-

plex) algebra and the L-fuzzy algebra induced by A.

Proposition 1.3.5. The function φ : P (A)→ Fu(A,L), given by φ(B) = B1

for all B ∈ P (A), is an embedding of A+ into Â.

Proof. For any f ∈ F0, we have φ
(
(fA)+

)
= φ({fA}) = {fA}1 = χfA = f̂A.

For any f ∈ Fn and X1, . . . , Xn ∈ P (A), from Lemma 1.3.3, we have

φ
(
(fA)+(X1, . . . , Xn)

)
=
(
(fA)+(X1, . . . , Xn)

) ∧
1≤i≤n

1
= f̂A

(
φ(X1), . . . , φ(Xn)

)
.

Since φ is clearly one-to-one, it is an embedding of A+ into Â.

Definition 1.3.6. An L-fuzzy subset µ of A is called an L-fuzzy subalgebra of
A if it satisfies the following conditions:
(FS1) For any f ∈ F0, µ(fA) = 1.
(FS2) For any f ∈ Fn and a1, . . . , an ∈ A, µ

(
fA(a1, . . . , an)

)
≥

∧
1≤i≤n

µ(ai).

Proposition 1.3.7. Let µ be an L-fuzzy subset of A. Then µ is an L-fuzzy
subalgebra of A if and only if the following conditions are satisfied:
(1) For any f ∈ F0, f̂A ≤ µ.
(2) For any f ∈ Fn, f̂A(µ1, . . . , µn) ≤ µ; where, µ1 = . . . = µn = µ.

Proof. (⇒) Assume that µ is an L-fuzzy subalgebra of A. For any f ∈ F0, we
have f̂A(fA) = 1 = µ(fA) and f̂A(y) = 0 ≤ µ(y) for all y 6= fA in A; thus,
f̂A ≤ µ. Now, let f ∈ Fn. For any y ∈ A such that (fA)−1(y) 6= ∅, we have∧
1≤i≤n

µ(ai) ≤ µ
(
fA(a1, . . . , an)

)
= µ(y) for all (a1, . . . , an) ∈ (fA)−1(y); thus,
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1.3 L-fuzzy subsets of a set 18

f̂A(µ, . . . , µ)(y) ≤ µ(y). For any y ∈ A such that (fA)−1(y) = ∅, we have
f̂A(µ, . . . , µ)(y) =

∨
∅ = 0 ≤ µ(y). Hence, f̂A(µ, . . . , µ) ≤ µ.

(⇐) Assume conditions (1) and (2) are satisfied. For any f ∈ F0, we have
µ(fA) ≥ f̂A(fA) = 1 and, µ(fA) = 1. For any f ∈ Fn and a1, . . . , an ∈ A, we
have (a1, . . . , an) ∈ (fA)−1

(
fA(a1, . . . , an)

)
; thus,

µ
(
fA(a1, . . . , an)

)
≥ f̂A(µ, . . . , µ)

(
fA(a1, . . . , an)

)
≥

∧
1≤i≤n

µ(ai).

Hence, µ is an L-fuzzy subalgebra of A.

Proposition 1.3.8. Let µ be an L-fuzzy subset of A.
(1) If µ is an L-fuzzy subalgebra of A, then all its cuts are empty or subuni-
verses of A.
(2) If U(µ, 1) 6= ∅, then µ is an L-fuzzy subalgebra of A if and only if all its
cuts are subuniverses.

Proof. (1) Assume that µ is an L-fuzzy subalgebra of A. Let r ∈ L such that
U(µ, r) 6= ∅. For any f ∈ F0, we have µ(fA) = 1 ≥ r and, fA ∈ U(µ, r). For
any f ∈ Fn and a1, . . . , an ∈ U(µ, r), we have µ

(
fA(a1, . . . , an)

)
≥

∧
1≤i≤n

µ(ai) ≥∧
1≤i≤n

r = r and, fA(a1, . . . , an) ∈ U(µ, r). Hence, U(µ, r) is a subuniverse of

A.
(2) Assume that U(µ, 1) 6= ∅. By (1), it suffices to show the second impli-
cation. So, assume that cuts of µ are subuniverses of A. For any f ∈ F0,
we have fA ∈ U(µ, 1) and, µ(fA) = 1. For any f ∈ Fn and a1, . . . , an ∈ A,
we have a1, . . . , an ∈ U

(
µ,

∧
1≤i≤n

µ(ai)
)
; thus, fA(a1, . . . , an) ∈ U

(
µ,

∧
1≤i≤n

µ(ai)
)

and, µ
(
fA(a1, . . . , an)

)
≥

∧
1≤i≤n

µ(ai). Hence, µ is an L-fuzzy subalgebra of

A.

Lemma 1.3.9. Let µ be an L-fuzzy subalgebra of A. For any n-ary term
t(x1, . . . , xn) of type F , µ

(
tA(a1, . . . , an)

)
≥

∧
1≤i≤n

µ(ai) for all a1, . . . , an ∈ A.

Proof. We use induction on the n-ary term t(x1, . . . , xn) of type F .
If t(x1, . . . , xn) is a nullary function symbol, then for any a1, . . . , an ∈ A,
tA(a1, . . . , an) is a nullary fundamental operation; thus, µ

(
tA(a1, . . . , an)

)
=

1 ≥
∧

1≤i≤n
µ(ai).

If t(x1, . . . , xn) is a variable xj (1 ≤ j ≤ n), then µ
(
tA(a1, . . . , an)

)
= µ(aj) ≥∧

1≤i≤n
µ(ai) for all a1, . . . , an ∈ A.

Now, suppose that t(x1, . . . , xn) = f
(
t1(x1, . . . , xn), . . . , tm(x1, . . . , xn)

)
, where

f ∈ Fm and for any 1 ≤ j ≤ m, µ
(
tAj (b1, . . . , bn)

)
≥

∧
1≤i≤n

µ(bi) for all

b1, . . . , bn ∈ A. For any a1, . . . , an ∈ A, we have
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1.3 L-fuzzy subsets of a set 19

µ
(
tA(a1, . . . , an)

)
= µ

[
fA
(
tA1 (a1, . . . , an), . . . , tAm(a1, . . . , an)

)]
≥

∧
1≤j≤m

µ
(
tAj (a1, . . . , an)

)
≥

∧
1≤j≤m

∧
1≤i≤n

µ(ai)

=
∧

1≤i≤n
µ(ai).

Hence, the desired result follows.

Proposition 1.3.10. Let µ be an L-fuzzy subalgebra of A.
(1) For any a ∈ Sg(∅), we have µ(a) = 1.
(2) For any a, b ∈ A such that Sg(a) = Sg(b), we have µ(a) = µ(b).

Proof. (1) For any a ∈ Sg(∅) \FA
0 , we have a = tA(fA, . . . , fA) for some term

t(x1, . . . , xn) and f ∈ F0; thus, µ(a) ≥
∧

1≤i≤n
µ(fA) = µ(fA) = 1 and, µ(a) = 1.

(2) Let a, b ∈ A such that Sg(a) = Sg(b). If a ∈ Sg(∅), then b ∈ Sg(∅) and,
µ(a) = 1 = µ(b). Now, suppose that a 6∈ Sg(∅). Since a ∈ Sg(b), we have
a = tA(b, . . . , b) for some term t(x1, . . . , xn); thus, µ(a) ≥

∧
1≤i≤n

µ(b) = µ(b). A

similar reasoning shows that µ(b) ≥ µ(a). Hence, µ(a) = µ(b).

For any µ ∈ Fu(A,L), µ∗ is the L-fuzzy subset of A given by

µ∗ := µ ∨ χSg(∅);

furthermore, µ∗ = µ if and only if Sg(∅) ⊆ U(µ, 1).

Proposition 1.3.11. Let B be a subuniverse of A and r, s ∈ L such that
r ≤ s. Then (Bs

r)∗ is an L-fuzzy subalgebra of A.

Proof. For any f ∈ F0, we have

(Bs
r)∗(f

A) ≥ χSg(∅)(f
A) = 1 and, (Bs

r)∗(f
A) = 1.

Now, let f ∈ Fn and a1, . . . , an ∈ A.
• If fA(a1, . . . , an) ∈ Sg(∅), then (Bs

r)∗
(
fA(a1, . . . , an)

)
= 1, since

(Bs
r)∗
(
fA(a1, . . . , an)

)
≥ χSg(∅)

(
fA(a1, . . . , an)

)
= 1.

• If fA(a1, . . . , an) ∈ B \ Sg(∅), then ai0 6∈ Sg(∅) for some 1 ≤ i0 ≤ n; thus,

(Bs
r)∗
(
fA(a1, . . . , an)

)
= s ≥ (Bs

r)∗(ai0) ≥
∧

1≤i≤n
(Bs

r)∗(ai).

• If fA(a1, . . . , an) 6∈ B, then ai0 6∈ B for some 1 ≤ i0 ≤ n; thus,

(Bs
r)∗
(
fA(a1, . . . , an)

)
= r = (Bs

r)∗(ai0) ≥
∧

1≤i≤n
(Bs

r)∗(ai).

Hence, (Bs
r)∗ is an L-fuzzy subalgebra of A.
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Chapter Two

Residuated lattice of L-fuzzy
subalgebras of an algebra

In this chapter, unless otherwise specified, L := (L; ∧, ∨, 	, �, (; 0, 1)

is a complete residuated lattice and A := (A; FA) is an algebra of type F .
In Section 2.1, given a complete meet-distributive residuated lattice L and an
algebra A, we set up a mimetic construction of the L-fuzzy subalgebra of A
generated by an L-fuzzy subset of A. We also characterize atoms, co-atoms
(when L is distributive) and compact elements of the lattice Fs(A, L), and
show that the latter is algebraic (when L is algebraic). When L is a finite
linearly ordered Brouwerian algebra and Sub(A) supports a quantale structure
Sub(A), we show that Fs(A, L) supports an algebraic quantale structure which
is both an extension of L and Sub(A). In Section 2.3, given a mono-unary
algebra A, we define a residuated lattice structure Fs(A, L) on the set of L-
fuzzy subalgebras of A which is both an extension of L and the Heyting algebra
Sub(A) on the set of subuniverses of A. Furthermore, we show that Fs(A, L)

is an MV -algebra (resp., a Boolean algebra) if and only if L is an MV -algebra
(resp., a Boolean algebra) and Sub(A) is a Boolean algebra.

2.1 Lattice of L-fuzzy subalgebras of an alge-
bra

2.1.1 Lattice of L-fuzzy subalgebras

Proposition 2.1.1. The set Fs(A, L) of L-fuzzy subalgebras of A is closed
under the infimum of Fu(A,L).

Proof. Let {µλ}λ∈Λ ⊆ Fs(A, L). For any f ∈ F0, we have( ∧
λ∈Λ

µλ
)
(fA) =

∧
λ∈Λ

µλ(f
A) =

∧
λ∈Λ

1 = 1.

For any f ∈ Fn and a1, . . . , an ∈ A, we have
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( ∧
λ∈Λ

µλ
)(
fA(a1, . . . , an)

)
=
∧
λ∈Λ

µλ
(
fA(a1, . . . , an)

)
≥
∧
λ∈Λ

∧
1≤i≤n

µλ(ai)

≥
∧
λ∈Λ

∧
1≤i≤n

( ∧
λ∈Λ

µλ(ai)
)

=
∧

1≤i≤n

( ∧
λ∈Λ

µλ(ai)
)

=
∧

1≤i≤n

( ∧
λ∈Λ

µλ
)
(ai).

Hence,
∧
λ∈Λ

µλ is an L-fuzzy subalgebra of A.

For any L-fuzzy subset µ of A, the L-fuzzy subset of A given by∧
{ν ∈ Fs(A, L) : µ ≤ ν}, and denoted by Fsg(µ), is according to Prop-

position 2.1.1 the smallest L-fuzzy subalgebra of A containing µ. Fs(A, L)

forms the complete lattice Fs(A, L) :=
(
Fs(A, L); ∧, t; χSg(∅), 1

)
, where the

binary operation t is defined by: µ t ν = Fsg(µ ∨ ν) for all µ, ν ∈ Fs(A, L).
Furthermore, for any L-fuzzy subsets µ and ν of A, we have µ ≤ Fsg(µ),
Fsg

(
Fsg(µ)

)
= Fsg(µ), and Fsg(µ) ≤ Fsg(ν) whenever µ ≤ ν.

Proposition 2.1.2. Let B be a subset of A and r, s ∈ L such that r ≤ s.
Then Fsg(Bs

r) =
(
Sg(B)sr

)
∗.

Proof. By Proposition 1.3.11,
(
Sg(B)sr

)
∗ is an L-fuzzy subalgebra of A con-

taining Bs
r . Finally, let µ be an L-fuzzy subalgebra of A containing Bs

r .
• For any a ∈ Sg(∅), we have

(
Sg(B)sr

)
∗(a) = s ∨ 1 = 1 = µ(a).

• For any a ∈ Sg(B)\Sg(∅), there are a term t(x1, . . . , xn) and a1, . . . , an ∈ B
such that a = tA(a1, . . . , an); thus,(

Sg(B)sr
)
∗(a) = s =

∧
1≤i≤n

Bs
r(ai) ≤

∧
1≤i≤n

µ(ai) ≤ µ
(
tA(a1, . . . , an)

)
= µ(a).

• For any a 6∈ Sg(B), we have a 6∈ B; thus,(
Sg(B)sr

)
∗(a) = r = Bs

r(a) ≤ µ(a).

So,
(
Sg(B)sr

)
∗ ≤ µ. Hence, Fsg(Bs

r) =
(
Sg(B)sr

)
∗.

Proposition 2.1.3. The map φ : Sub(A) → Fs(A, L), given by φ(B) = B1

for all B ∈ Sub(A), is a complete lattice embedding (See, Remark 1.1.5) of
Sub(A) into Fs(A, L).

Proof. Let {Bλ}λ∈Λ ⊆ Sub(A).
We have

∨
λ∈Λ

(Bλ)1 ≤
∨
λ∈Λ

(
⊔
λ∈Λ

Bλ)1 = (
⊔
λ∈Λ

Bλ)1. Now, let µ be an L-fuzzy

subalgebra of A containing
∨
λ∈Λ

(Bλ)1. For any a ∈
⊔
λ∈Λ

Bλ, there are a term

t(x1, . . . , xn) of type F , λ1, . . . , λn ∈ Λ and aλ1 ∈ Bλ1 , . . . , aλn ∈ Bλn such that
a = tA(aλ1 , . . . , aλn); thus,
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µ(a) ≥
∧

1≤i≤n
µ(aλi) ≥

∧
1≤i≤n

(Bλi)1(aλi) =
∧

1≤i≤n
1 = 1

and, µ(a) = 1. So, (
⊔
λ∈Λ

Bλ)1 ≤ µ. Hence,

φ
( ⊔
λ∈Λ

Bλ

)
=
⊔
λ∈Λ

(Bλ)1 = (
⊔
λ∈Λ

Bλ)1 =
⊔
λ∈Λ

φ(Bλ).

Furthermore,

φ
( ⋂
λ∈Λ

Bλ

)
= (

⋂
λ∈Λ

Bλ)1 =
∧
λ∈Λ

(Bλ)1 =
∧
λ∈Λ

φ(Bλ).

Since φ is clearly one-to-one, the result follows from the above.

Proposition 2.1.4. Suppose that A is not F-trivial. The map ψ : L →
Fs(A, L), given by ψ(r) = (r)∗ for all r ∈ L, is a complete lattice embedding
(See, Remark 1.1.5) of the lattice of L into Fs(A, L).

Proof. Let {rλ}λ∈Λ ⊆ L.
• For any a ∈ Sg(∅), we have( ∧

λ∈Λ

(rλ)∗
)
(a) =

∧
λ∈Λ

(rλ)∗(a) =
∧
λ∈Λ

1 = 1 =
( ∧
λ∈Λ

rλ
)
∗(a).

• For any a 6∈ Sg(∅), we have( ∧
λ∈Λ

(rλ)∗
)
(a) =

∧
λ∈Λ

(rλ)∗(a) =
∧
λ∈Λ

rλ =
( ∧
λ∈Λ

rλ
)
∗(a).

Thus, ψ
( ∧
λ∈Λ

rλ
)

=
( ∧
λ∈Λ

rλ
)
∗ =

∧
λ∈Λ

(rλ)∗ =
∧
λ∈Λ

ψ(rλ); and, ψ
( ∨
λ∈Λ

rλ
)

=
∨
λ∈Λ

ψ(rλ)

by similar arguments. Since A is not F -trivial, ψ is one-to-one. Hence, ψ is a
complete lattice embedding.

Note: If A is F -trivial, then Fs(A, L) = {1} and ψ is a constant map with
value 1.

Theorem 2.1.5. Suppose that F0 = ∅. Then Fs(A, L) is linearly ordered if
and only if one of the following conditions is satisfied:
(1) L is linearly ordered and Sub(A) is trivial.
(2) Sub(A) is linearly ordered and L is trivial.

Proof. (⇒) Assume that Fs(A, L) is linearly ordered. Suppose condition (1)
does not hold. Sub(A) is linearly ordered by Proposition 2.1.3. Since L is lin-
early ordered by the hypothesis, Sub(A) is nontrivial by the fact that condition
(1) does not hold; thus, there is B ∈ Sub(A) such that B 6= ∅ and B 6= A. For
any r ∈ L, we have r ≤ B1 or B1 ≤ r; thus, r = r(a) ≤ B1(a) = 0 for some
a 6∈ B or 1 = B1(b) ≤ r(b) = r for some b ∈ B; so, r = 0 or r = 1; that is
r ∈ {0, 1}. Hence, L = {0, 1} and, L is trivial. Therefore, one of conditions
(1) and (2) is satisfied.
(⇐) Suppose condition (1) holds. Let µ ∈ Fs(A, L). For any x, y ∈ A such
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that µ(x) ≤ µ(y), we have x ∈ A = U(µ, µ(y)) and, µ(x) = µ(y). Thus, µ = r

for some r ∈ L. Hence, Fs(A, L) = {r : r ∈ L}. Therefore, Fs(A, L) is
linearly ordered, since L is linearly ordered.
Now, suppose condition (2) holds. Let µ ∈ Fs(A, L). For any x 6∈ U(µ, 1),
we have µ(x) 6= 1 and, µ(x) = 0. Thus, µ = B1 for some B ∈ Sub(A). So,
Fs(A, L) = {B1 : B ∈ Sub(A)}. Hence, Fs(A, L) is linearly ordered, since
Sub(A) is linearly ordered.

2.1.2 Atoms, co-atoms and compact elements

Theorem 2.1.6. Atoms of Fs(A, L) are exactly of the form
(
Sg(a)r

)
∗, where

r and Sg(a) are atoms of L and Sub(A), respectively.

Proof. (⇒) Let µ be an atom of Fs(A, L). Since there is a ∈ A \ Sg(∅) such
that µ(a) 6= 0, we have χSg(∅) <

(
Sg(a)µ(a)

)
∗ ≤ µ and, µ =

(
Sg(a)µ(a)

)
∗. Since

µ 6= χSg(∅), we have µ(a) 6= 0 and Sg(a) 6= Sg(∅).
• For any r ∈ L such that 0 < r ≤ µ(a), we have χSg(∅) <

(
Sg(a)r

)
∗ ≤(

Sg(a)µ(a)

)
∗; thus,

(
Sg(a)r

)
∗ =

(
Sg(a)µ(a)

)
∗ and, r = µ(a). Hence, µ(a) is an

atom of L.
• For any B ∈ Sub(A) such that Sg(∅) ⊂ B ⊆ Sg(a), we have χSg(∅) <(
Bµ(a)

)
∗ ≤

(
Sg(a)µ(a)

)
∗; thus,

(
Bµ(a)

)
∗ =

(
Sg(a)µ(a)

)
∗ and, B = Sg(a). Hence,

Sg(a) is an atom of Sub(A).
(⇐) Let s be an atom of L and a ∈ A such that Sg(a) is an atom of Sub(A).
We have

(
Sg(a)s

)
∗ 6= χSg(∅), since s 6= 0 and Sg(a) 6= Sg(∅). Now, let µ ∈

Fs(A, L) such that χSg(∅) < µ ≤
(
Sg(a)s

)
∗. Since there is b ∈ Sg(a) \ Sg(∅)

such that 0 < µ(b) ≤ s, we have Sg(a) = Sg(b) and, µ(a) = µ(b) = s.
• For any x ∈ Sg(a) \ Sg(∅), we have µ(x) ≥ µ(a) = s =

(
Sg(a)s

)
∗(x) ≥ µ(x)

and, µ(x) = s.
• For any x 6∈ Sg(a), we have 0 ≤ µ(x) ≤

(
Sg(a)s

)
∗(x) = 0 and, µ(x) = 0.

It follows that µ =
(
Sg(a)s

)
∗. Hence,

(
Sg(a)s

)
∗ is an atom of Fs(A, L).

Lemma 2.1.7. Suppose that L is distributive and let µ ∈ Fs(A, L) and r ∈ L.
Then r ∨ µ is an L-fuzzy subalgebra of A.

Proof. For any f ∈ F0, we have(
r ∨ µ

)
(fA) = r ∨ µ(fA) = r ∨ 1 = 1.

For any f ∈ Fn and a1, . . . , an ∈ A, we have
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(
r ∨ µ

)(
fA(a1, . . . , an)

)
= r ∨ µ

(
fA(a1, . . . , an)

)
≥ r ∨

( ∧
1≤i≤n

µ(ai)
)

=
∧

1≤i≤n

(
r ∨ µ(ai)

)
=

∧
1≤i≤n

(
r ∨ µ

)
(ai).

Hence, r ∨ µ is an L-fuzzy subalgebra of A.

Theorem 2.1.8. Suppose that L is distributive and A is not F-trivial. Then
co-atoms of Fs(A, L) are exactly of the form Bs, where s and B are co-atoms
of L and Sub(A), respectively.

Proof. (⇒) Let µ be a co-atom of Fs(A, L). For any a, b 6∈ U(µ, 1), we have
µ ≤ µ(a) ∨ µ < 1 and µ ≤ µ(b) ∨ µ < 1; thus, µ(a) ∨ µ = µ = µ(b) ∨ µ and,
µ(a) = µ(b). It follows that µ =

(
U(µ, 1)

)s for some s ∈ L.
Since µ 6= 1, we have s 6= 1 and U(µ, 1) 6= A.
• For any r ∈ L such that s < r ≤ 1, we have µ < r ∨ µ ≤ 1 and, r ∨ µ = 1;
thus, r = r ∨ s = 1. Hence, s is a co-atom of L.
• For any D ∈ Sub(A) such that U(µ, 1) ⊂ D ⊆ A, we have µ < Ds ≤ 1 and,
Ds = 1; thus, D = A. Hence, U(µ, 1) is a co-atom of Sub(A).
(⇐) Let s and B be co-atoms of L and Sub(A), respectively. We have Bs 6= 1,
since s 6= 1 and B 6= A. For any µ ∈ Fs(A, L) such that Bs < µ ≤ 1, we
have B = U(Bs, 1) ⊆ U(µ, 1) ⊆ A and a 6∈ B such that s < µ(a) ≤ 1; thus,
B ⊆ U(µ, 1) ⊆ A and a ∈ U(µ, 1) \B; so, B ⊂ U(µ, 1) ⊆ A and, U(µ, 1) = A;
i.e., µ = 1. Hence, Bs is a co-atom of Fs(A, L).

Theorem 2.1.9. Suppose that L is meet-distributive, and let µ ∈ Fu(A,L)

and µ? ∈ Fu(A,L) defined by: µ?(x) =
∨
{r ∈ L : x ∈ Sg

(
U(µ, r)

)
} for all

x ∈ A. Then µ? is the smallest L-fuzzy subalgebra of A containing µ.

Proof. For any a ∈ A, we have a ∈ U
(
µ, µ(a)

)
⊆ Sg

(
U
(
µ, µ(a)

))
and,

µ(a) ≤ µ?(a). Thus, µ ≤ µ?. We next show that µ? is an L-fuzzy subal-
gebra of A.
For any f ∈ F0, we have µ?(fA) =

∨
L = 1. Now, let f ∈ Fn and a1, . . . , an ∈

A. For any r1, . . . , rn ∈ L such that a1 ∈ Sg
(
U(µ, r1)

)
, . . . , an ∈ Sg

(
U(µ, rn)

)
,

we have a1, . . . , an ∈ Sg
(
U(µ,

∧
1≤i≤n

ri)
)
and, fA(a1, . . . , an) ∈ Sg

(
U(µ,

∧
1≤i≤n

ri)
)
;

thus, µ?
(
fA(a1, . . . , an)

)
≥

∧
1≤i≤n

ri. So, µ?
(
fA(a1, . . . , an)

)
≥

∧
1≤i≤n

µ?(ai).

Hence, µ? is an L-fuzzy subalgebra of A.
Finally, let ν be an L-fuzzy subalgebra of A containing µ. Let u ∈ A \ Sg(∅).
For any r ∈ L such that u ∈ Sg

(
U(ν, r)

)
, there are a term t(x1, . . . , xn) of

type F and u1, . . . , un ∈ U(ν, r) such that u = tA(u1, . . . , un); thus,
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r ≤
∧

1≤i≤n
ν(ui) ≤ ν

(
tA(u1, . . . , un)

)
= ν(u).

So,

µ?(u) ≤
∨
{r ∈ L : u ∈ Sg

(
U(ν, r)

)
} ≤ ν(u).

Hence, µ? ≤ ν. Therefore, µ? is the smallest L-fuzzy subalgebra of A contain-
ing µ.

The above result generalizes that obtained by M. Tonga in [38].

Proposition 2.1.10. Suppose that L is meet-distibutive, and let a ∈ A\Sg(∅)
and c ∈ L. Then Fsg

(
ac
)
is a compact element of Fs(A, L) if and only if c is

a compact element of L.

Proof. (⇒) Assume that Fsg
(
ac
)
is a compact element of Fs(A, L). Let

{ri}i∈I ⊆ L such that c ≤
∨
i∈I
ri. Since

Fsg(ac) ≤ Fsg(a ∨
i∈I

ri) = Fsg(
∨
i∈I
ari) =

⊔
i∈I
Fsg(ari),

there is {i1, . . . , ip} ⊆ I such that Fsg(ac) ≤
⊔

1≤j≤p
Fsg(arij ) = Fsg(a ∨

1≤j≤p
rij

);

thus, c = Fsg(ac)(a) ≤ Fsg(a ∨
1≤j≤p

rij
)(a) =

∨
1≤j≤p

rij . Hence, c is a compact

element of L.
(⇐) Assume that c is a compact element of L. Let {µλ}λ∈Λ ⊆ Fs(A, L) such
that Fsg(ac) ≤

⊔
λ∈Λ

µλ. Since c ≤
( ∨
λ∈Λ

µλ
)
?
(a) and c is a compact element

of L, there are r1, . . . , rn ∈ L such that a ∈
⋂

1≤i≤n
Sg
(
U(
∨
λ∈Λ

µλ, ri)
)
and c ≤∨

1≤i≤n
ri. For any 1 ≤ i ≤ n, there are a term ti(xi1, . . . , xiki) of type F and

ui1, . . . , uiki ∈ A such that a = tAi (ui1, . . . , uiki) and ri ≤
∨
λ∈Λ

µλ(uij) for all

1 ≤ j ≤ ki; thus, ri ≤
∧

1≤j≤ki

( ∨
λ∈Λ

µλ(uij)
)

=
∨

(λi1,...,λiki )∈Λki

∧
1≤j≤ki

µλij(uij). So,

c ≤
∨

1≤i≤n

∨
(λi1,...,λiki )∈Λki

∧
1≤j≤ki

µλij(uij);

i.e., c ≤
∨(

(λi1,...,λiki )
)

1≤i≤n
∈

∏
1≤i≤n

Λki

∨
1≤i≤n

∧
1≤j≤ki

µλij(uij). Since c is a compact

element of L, there is a finite subset Ω of Λ such that

c ≤
∨(

(λi1,...,λiki )
)

1≤i≤n
∈

∏
1≤i≤n

Ωki

∨
1≤i≤n

∧
1≤j≤ki

µλij(uij);

thus,
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c ≤
∨

1≤i≤n

∨
(λi1,...,λiki )∈Ωki

∧
1≤j≤ki

µλij(uij)

=
∨

1≤i≤n

∧
1≤j≤ki

( ∨
λ∈Ω

µλ
)
(uij)

≤
∨

1≤i≤n

∧
1≤j≤ki

( ∨
λ∈Ω

µλ
)
?
(uij)

≤
∨

1≤i≤n

( ∨
λ∈Ω

µλ
)
?

(
tA(ui1, . . . , uiki)

)
=

∨
1≤i≤n

( ∨
λ∈Ω

µλ
)
?
(a)

=
( ∨
λ∈Ω

µλ
)
?
(a)

=
( ⊔
λ∈Ω

µλ
)
(a).

For any u ∈ Sg(a) \ Sg(∅), we have

Fsg(ac)(u) = c ≤
( ⊔
λ∈Ω

µλ
)
(a) ≤

( ⊔
λ∈Ω

µλ
)
(u).

For any u 6∈ Sg(a), we have

Fsg(ac)(u) = 0 ≤
( ⊔
λ∈Ω

µλ
)
(u).

Thus, Fsg(ac)(u) ≤
( ⊔
λ∈Ω

µλ
)
(u) for all u ∈ A; i.e., Fsg(ac) ≤

⊔
λ∈Ω

µλ.

Hence, Fsg(ac) is a compact element of Fs(A, L).

Note: For any a ∈ Sg(∅) and c ∈ L, Fsg(ac) = χSg(∅) is a compact element
of Fs(A, L).

Definition 2.1.11. For any compact element c of L and a ∈ A, Fsg(ac) will
be called a compact principal L-fuzzy subalgebra of A.

Theorem 2.1.12. Suppose that L is distributive and algebraic.
(1) Compact elements of Fs(A, L) are exactly finite suprema of compact prin-
cipal L-fuzzy subalgebras of A.
(2) Fs(A, L) is an algebraic lattice.

Proof. (1) A finite supremum of compact principal L-fuzzy subalgebras of A
is a finite supremum of compact elements of Fs(A, L) by Proposition 2.1.10;
thus, it is a compact element of Fs(A, L).
Conversely, let µ be a compact element of Fs(A, L). Since µ =

⊔
a∈A

Fsg
(
aµ(a)

)
,

there are a1, . . . , an ∈ A such that µ =
⊔

1≤i≤n
Fsg

(
(ai)µ(ai)

)
. Since L is algebraic,

for any 1 ≤ i ≤ n, there is a family {cj}j∈Ii of compact elements of L such
that µ(ai) =

∨
j∈Ii

cj. It follows that
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µ =
⊔

1≤i≤n
Fsg

(
(ai) ∨

j∈Ii
cj

)
=

⊔
1≤i≤n

Fsg
( ∨
j∈Ii

(ai)cj
)

=
⊔

1≤i≤n

⊔
j∈Ii

Fsg
(
(ai)cj

)
=

⊔
(j1,...,jn)∈

∏
1≤i≤n

Ii

⊔
1≤i≤n

Fsg
(
(ai)cji

)
.

Since µ is compact, there is a family {Ki}1≤i≤n of finite sets such that Ki ⊆ Ii
for all 1 ≤ i ≤ n and µ =

⊔
(j1,...,jn)∈

∏
1≤i≤n

Ki

⊔
1≤i≤n

Fsg
(
(ai)cji

)
. Hence, by Propo-

sition 2.1.10, µ is a finite supremum of compact principal L-fuzzy subalgebras
of A.
(2) Since Fs(A, L) is complete, it suffices to show that it is compactly gen-
erated. So, let µ ∈ Fs(A, L). Since L is algebraic, for any a ∈ A, there
is a family {ci,a}i∈Ia of compact elements of L such that µ(a) =

∨
i∈Ia

ci,a.

Hence, µ =
⊔
a∈A

Fsg
(
a ∨
i∈Ia

ci,a

)
=
⊔
a∈A

⊔
i∈Ia

Fsg
(
aci,a

)
, and for each a ∈ A and

i ∈ Ia, Fsg
(
aci,a

)
is compact by Proposition 2.1.10. Therefore, Fs(A, L) is

algebraic.

2.2 Quantale of L-fuzzy subalgebras of an al-
gebra

In this section, L is a finite linearly ordered Brouwerian algebra and the lattice
Sub(A), of subuniverses of A, supports a quantale structure whose product is
denoted by �.

2.2.1 Quantale structure

Proposition 2.2.1. Let {µλ}λ∈Λ be a family of L-fuzzy subalgebras of A and
r ∈ L. Then U

( ⊔
λ∈Λ

µλ, r
)

=
⊔
λ∈Λ

U(µλ, r).

Proof. Let a ∈ U
( ⊔
λ∈Λ

µλ, r
)
. Since r ≤ Fsg

( ∨
λ∈Λ

µλ
)
(a), there is s ∈ L such

that a ∈ Sg
(
U(
∨
λ∈Λ

µλ, s)
)
and r ≤ s; thus, there are a term t(x1, . . . , xn)

of type F and a1, . . . , an ∈ U
( ∨
λ∈Λ

µλ, s
)
such that a = tA(a1, . . . , an). For

any 1 ≤ i ≤ n, there is λi ∈ Λ such that s ≤ µλi(ai) and, r ≤ µλi(ai);
thus, ai ∈ U(µλi , r) ⊆

⊔
λ∈Λ

U(µλ, r). So, a = tA(a1, . . . , an) ∈
⊔
λ∈Λ

U(µλ, r).

Consequently,
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U
( ⊔
λ∈Λ

µλ, r
)
⊆
⊔
λ∈Λ

U(µλ, r); and, U
( ⊔
λ∈Λ

µλ, r) =
⊔
λ∈Λ

U(µλ, r);

since,
⊔
λ∈Λ

U(µλ, r) ⊆
⊔
λ∈Λ

U
( ⊔
λ∈Λ

µλ, r
)

= U
( ⊔
λ∈Λ

µλ, r
)
.

Proposition 2.2.2. Let µ, ν ∈ Fs(A, L). The L-fuzzy subset µ⊗ν of A, given
by
(
µ⊗ ν

)
(x) =

∨
{r ∈ L : x ∈ U(µ, r)�U(ν, r)} for all x ∈ A, is an L-fuzzy

subalgebra of A.

Proof. For any f ∈ F0, we have
(
µ⊗ ν

)
(fA) =

∨
L = 1. Now, let f ∈ Fn and

a1, . . . , an ∈ A. For any r1, . . . , rn ∈ L and a1 ∈ U(µ, r1) � U(ν, r1), . . . , an ∈
U(µ, rn) � U(ν, rn), we have a1, . . . , an ∈ U

(
µ,

∧
1≤i≤n

ri
)
� U

(
ν,
∧

1≤i≤n
ri
)
and,

fA(a1, . . . , an) ∈ U
(
µ,

∧
1≤i≤n

ri
)
�U

(
ν,
∧

1≤i≤n
ri
)
; thus,

(
µ⊗ν

)(
fA(a1, . . . , an)

)
≥∧

1≤i≤n
ri. So,

(
µ ⊗ ν

)(
fA(a1, . . . , an)

)
≥

∧
1≤i≤n

(
µ ⊗ ν

)
(ai). Hence, µ ⊗ ν is an

L-fuzzy subalgebra of A.

Lemma 2.2.3. Let µ and ν be two L-fuzzy subalgebras of A and r ∈ L. Then
U(µ⊗ ν, r) = U(µ, r)� U(ν, r).

Proof. For any a ∈ U(µ, r)� U(ν, r), we have

r ≤
(
µ⊗ ν

)
(a) and, a ∈ U(µ⊗ ν, r).

Thus, U(µ, r)� U(ν, r) ⊆ U(µ⊗ ν, r).
Now, let a ∈ U(µ⊗ ν, r). Since r ≤ (µ⊗ ν)(a), there is s ∈ L such that

r ≤ s and a ∈ U(µ, s)� U(ν, s);

thus, a ∈ U(µ, r) � U(ν, r). So, U(µ ⊗ ν, r) ⊆ U(µ, r) � U(ν, r). Hence,
U(µ⊗ ν, r) = U(µ, r)� U(ν, r).

Theorem 2.2.4. Fs(A, L) :=
(
Fs(A, L); ∧, t, ⊗; 1

)
is a quantale.

Proof. We have already proved that Fs(A, L) is a complete lattice. Now, let
µ, ν, δ ∈ Fs(A, L). For any a ∈ A, we have(

(µ⊗ ν)⊗ δ
)
(a) =

∨
{r ∈ L : a ∈ U(µ⊗ ν, r)� U(δ, r)}

=
∨
{r ∈ L : a ∈

(
U(µ, r)� U(ν, r)

)
� U(δ, r)}

=
∨
{r ∈ L : a ∈ U(µ, r)�

(
U(ν, r)� U(δ, r)

)
}

=
∨
{r ∈ L : a ∈ U(µ, r)� U(ν ⊗ δ, r)}

=
(
µ⊗ (ν ⊗ δ)

)
(a).

Thus, (µ⊗ ν)⊗ δ = µ⊗ (ν ⊗ δ). For any µ ∈ Fs(A, L), we have(
µ⊗ 1

)
(a) =

∨
{r ∈ L : a ∈ U(µ, r)� A} =

∨
{r ∈ L : a ∈ U(µ, r)} = µ(a)
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for all a ∈ A; thus, µ ⊗ 1 = µ; and, 1 ⊗ µ = µ by similar arguments. Hence,(
Fs(A, L); ⊗, 1

)
is a monoid.

For any {µλ}λ∈Λ ⊆ Fs(A, L) and µ ∈ Fs(A, L), we have(
µ⊗

⊔
λ∈Λ

µλ
)
(a) =

∨
{r ∈ L : a ∈ U(µ, r)� U

( ⊔
λ∈Λ

µλ, r
)
}

=
∨
{r ∈ L : a ∈ U(µ, r)�

⊔
λ∈Λ

U(µλ, r)}

=
∨
{r ∈ L : a ∈

⊔
λ∈Λ

U(µ, r)� U(µλ, r)}

=
∨
{r ∈ L : a ∈

⊔
λ∈Λ

U(µ⊗ µλ, r)}

=
∨
{r ∈ L : a ∈ U

( ⊔
λ∈Λ

µ⊗ µλ, r
)
}

=
( ⊔
λ∈Λ

µ⊗ µλ
)
(a) for all a ∈ A;

thus, µ ⊗
( ⊔
λ∈Λ

µλ
)

=
⊔
λ∈Λ

µ ⊗ µλ; and,
( ⊔
λ∈Λ

µλ
)
⊗ µ =

⊔
λ∈Λ

µλ ⊗ µ by similar

arguments. Hence, Fs(A, L) is a quantale.

Remark 2.2.5.
(1) The map φ : Sub(A)→ Fs(A, L), given by φ(B) = B1 for all B ∈ Sub(A),
is a quantale embedding of Sub(A) into Fs(A, L).
(2) If A is not F-trivial, then the map ψ : L→ Fs(A, L), given by ψ(r) = (r)∗
for all r ∈ L, is a quantale embedding of L into Fs(A, L).

In the rest of this work the results of the preceding remark will be general-
ized in mono-unary algebras and rings. Furthermore, in each case the residual
operations will be explixed.

2.3 Residual transfer in fuzzy mono-unary al-
gebras

Note that by «Residual transfer in a fuzzy algebra» we mean the embedding of
a residuated lattice (through all its operations, residual operations included)
on the subuniverses of an algebra into a residuated lattice on the set of fuzzy
subalgebras of the same algebra.

2.3.1 Lattice of L-fuzzy subalgebras

Definition 2.3.1. (See, [5])
(i) A mono-unary algebra, also called a unar, is an algebra of type 〈1〉; that is
an algebra with one unary operation and no other operation.
(ii) An element x of a mono-unary algebra (A; f) is said to be cyclic if there
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is some integer p ≥ 1 such that fp(x) = x; where, for any nonnegative integer
n, fn is defined inductively by: f 0(a) = a and fn+1(a) = f

(
fn(a)

)
for all

a ∈ A.

Let A := (A; f) be a mono-unary algebra. The Heyting algebra of sub-
universes of A is given by Sub(A) :=

(
Sub(A); ∩, ∪, ⇒; ∅, A

)
; where, the

binary operation ⇒ is defined for any B,C ∈ Sub(A) by:

B ⇒ C :=
⋃
{D ∈ Sub(A) : D ∩B ⊆ C}.

Remark 2.3.2. An L-fuzzy subset µ of A is an L-fuzzy subalgebra of A if
and only if µ

(
f(x)

)
≥ µ(x) for all x ∈ A, if and only if all its levels sets are

subuniverses of A.

The set of L-fuzzy subalgebras of A forms a complete lattice Fs(A, L) :=(
Fs(A, L); ∧, ∨; 0, 1

)
. The subuniverse of A generated by an element x of A

is given by Sg(x) = {fk(x) : k ∈ N}. Now, define Ck
x := {a ∈ A : fk(a) = x}

for all x ∈ A and k ∈ N.

Theorem 2.3.3. Let µ be an L-fuzzy subset of A. The L-fuzzy subalgebra of
A generated by µ is defined by: µ?(x) =

∨
k∈N

∨
a∈Ckx

µ(a) for all x ∈ A.

Proof. Since µ?(x) ≥
∨
a∈C0

x

µ(a) =
∨
{µ(x)} = µ(x) for all x ∈ A, we have

µ ≤ µ?. We next show that µ? is an L-fuzzy subalgebra of A.
For any x ∈ A, we have

µ?
(
f(x)

)
=
∨
k∈N

∨
a∈Ck

f(x)

µ(a) =
[ ∨
a∈C0

f(x)

µ(a)
]
∨
[ ∨
k∈N

∨
a∈Ck+1

f(x)

µ(a)
]
;

since, Ck
x ⊆ Ck+1

f(x), we have µ?
(
f(x)

)
≥
∨
k∈N

∨
a∈Ck+1

f(x)

µ(a) ≥
∨
k∈N

∨
a∈Ckx

µ(a) = µ?(x).

Hence, µ? is an L-fuzzy subalgebra of A.
Finally, let ν be an L-fuzzy subalgebra of A which contains µ. Let x ∈ A.
For any k ∈ N and a ∈ Ck

x , we have ν(x) = ν
(
fk(a)

)
≥ ν(a) ≥ µ(a). Thus,

ν(x) ≥
∨

a∈Ckx
µ(a) for all k ∈ N; i.e., ν(x) ≥

∨
k∈N

∨
a∈Ckx

µ(a); i.e., ν(x) ≥ µ?(x).

So, µ ≤ ν. Hence, µ? = Fsg(µ).

Lemma 2.3.4. Let x ∈ A. Then Sg(x) is an atom of Sub(A) if and only if x
is cyclic.

Proof. Assume that Sg(x) is an atom of Sub(A). Since ∅ ⊂ Sg
(
f(x)

)
⊆ Sg(x),

we have Sg
(
f(x)

)
= Sg(x); thus, there is n ∈ N such that fn

(
f(x)

)
= x; so,

fn+1(x) = x. Hence, x is cyclic.
Conversely, assume that x is cyclic of order n. Let B be a subuniverse of A
such that ∅ ⊂ B ⊆ Sg(x). Since there is m ≤ n such that fm(x) ∈ B, we have
x = fn(x) = fn−m

(
fm(x)

)
∈ B; thus, Sg(x) ⊆ B and, Sg(x) = B. Hence,

Sg(x) is an atom of Sub(A).
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Theorem 2.3.5. Atoms of Fs(A, L) are exactly the L-fuzzy subalgebras Sg(x)r,
where r is an atom of L and x is a cyclic element of A.

Proof. Immediate consequence of Theorem 2.1.6 and Lemma 2.3.4.

Theorem 2.3.6. Co-atoms of Fs(A, L) are exactly the L-fuzzy subalgebras Bs,
where s and B are co-atoms of L and Sub(A), respectively.

Proof. Immediate consequence of Theorem 2.1.8 and the fact that without dis-
tributivity of L the following holds: for any r in L and any L-fuzzy subalgebra
µ of A, r ∨ µ is also an L-fuzzy subalgebra of A.

Lemma 2.3.7. Let c be a compact element of L and a ∈ A. Then Sg(a)c is a
compact element of Fs(A, L).

Proof. Let {µi}i∈I ⊆ Fs(A, L) such that Sg(a)c ≤
∨
i∈I
µi. Since c ≤

∨
i∈I
µi(a),

there is a finite subset I0 of I such that c ≤
∨
i∈I0

µi(a). For any x ∈ Sg(a), we

have Sg(a)c(x) = c ≤
∨
i∈I0

µi(a) ≤
∨
i∈I0

µi(x) =
( ∨
i∈I0

µi
)
(x); thus, Sg(a)c ≤

∨
i∈I0

µi.

Hence, Sg(a)c is a compact element of Fs(A, L).

Theorem 2.3.8. If L is algebraic, then Fs(A, L) is algebraic and its compact
elements are exactly finite suprema of compact principal L-fuzzy subalgebras of
A.

Proof. Similar to the proof of Theorem 2.1.12.

2.3.2 Residuated lattice of L-fuzzy subalgebras

Let A := (A; f) be a mono-unary algebra. Fs(A, L) is closed under the binary
operation 	 of the residuated lattice Fu(A,L) of L-fuzzy subsets of A, but
the binary operations � and ( are not necessarily well defined on Fs(A, L)

as the following example shows.

Example 2.3.9. Let L = {0, α, β, γ, 1} be a lattice such that 0 < α < β, γ <

1; where, β, γ are incomparable. Consider the binary operations 	,�,( given
by the following Cayley tables:

	 0 α β γ 1

0 0 0 0 0 0

α 0 0 0 α α

β 0 α β α β

γ 0 0 0 γ γ

1 0 α β γ 1

� 0 α β γ 1

0 1 1 1 1 1

α γ 1 1 1 1

β γ γ 1 γ 1

γ 0 β β 1 1

1 0 α β γ 1

( 0 α β γ 1

0 1 1 1 1 1

α β 1 1 1 1

β 0 γ 1 γ 1

γ β β β 1 1

1 0 α β γ 1

.
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Then L = (L; ∧, ∨, 	, �, (; 0, 1) is a residuated lattice. Consider the
Peano algebra N = (N; σ), given by σ(x) = x + 1 for all x ∈ N, and the
L-fuzzy subalgebras µ and ν of N defined for any x ∈ N by:

µ(x) =

{
0 if x = 0,
β if not.

and ν(x) =

{
0 if x = 0,
γ if not.

.

The L-fuzzy subset µ� ν of N is not an L-fuzzy subalgebra of N , since(
µ� ν

)(
σ(0)

)
=
(
µ� ν

)
(1) = β � γ = γ � 1 = 0� 0 =

(
µ� ν

)
(0).

Theorem 2.3.10. Let µ be an L-fuzzy subset of A. The L-fuzzy subset µ? of
A, given by

µ?(x) =
∧
k∈N

µ
(
fk(x)

)
for all x ∈ A,

is the biggest L-fuzzy subalgebra of A contained in µ.

Proof. We have µ? ≤ µ, since µ?(x) ≤ µ
(
f 0(x)

)
= µ(x) for all x ∈ A. We next

show that µ? is an L-fuzzy subalgebra of A.
For any x ∈ A, we have

µ?
(
f(x)

)
=
∧
k∈N

µ
(
fk+1(x)

)
≥ µ

(
f 0(x)

)
∧
∧
k∈N

µ
(
fk+1(x)

)
= µ?(x).

Hence, µ? is an L-fuzzy subalgebra of A.
Finally, let ν be an L-fuzzy subalgebra of A contained in µ. For any x ∈ A,
we have ν(x) ≤ ν

(
fk(x)

)
≤ µ

(
fk(x)

)
for all k ∈ N; thus,

ν(x) ≤
∧
k∈N

µ
(
fk(x)

)
= µ?(x).

Hence, ν ≤ µ?. Therefore, µ? is the biggest L-fuzzy subalgebra of A contained
in µ.

Theorem 2.3.11. For any µ, ν ∈ Fs(A, L), set µ ↪→ ν := (µ � ν)? and
µ # ν := (µ( ν)?. Then Fs(A, L) :=

(
Fs(A, L); ∧, ∨, 	, ↪→, #; 0, 1

)
is a complete residuated lattice.

Proof. We only have to show that µ ↪→ ν = max{δ ∈ Fs(A, L) : δ 	 µ ≤ ν}
and µ# ν = max{δ ∈ Fs(A, L) : µ	 δ ≤ ν} for all µ, ν ∈ Fs(A, L). So, let
µ, ν ∈ Fs(A, L). We have

(µ ↪→ ν)	 µ = (µ� ν)? 	 µ ≤ (µ� ν)	 µ ≤ ν.

Moreover, for any δ ∈ Fs(A, L) such that δ	µ ≤ ν, we have δ ≤ µ� ν; thus,
δ ≤ (µ� ν)? = µ ↪→ ν. Hence, µ ↪→ ν = max{δ ∈ Fs(A, L) : δ	µ ≤ ν} and,
µ # ν = max{δ ∈ Fs(A, L) : µ 	 δ ≤ ν} by similar arguments. Therefore,
Fs(A, L) is a complete residuated lattice.
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Theorem 2.3.12. The map φ : Sub(A)→ Fs(A, L), given by φ(B) = B1 for
all B ∈ Sub(A), is a complete residuated lattice embedding.

Proof. By Proposition 2.1.3, φ is a complete lattice embedding of Sub(A) into
Fs(A, L). Since we have φ(B∩C) = (B∩C)1 = B1	C1 = φ(B)	φ(C) for all
B,C ∈ Sub(A), it suffices to show that φ(B) ↪→ φ(C) = φ(B ⇒ C) = φ(B)#

φ(C). So, let B,C ∈ Sub(A). For any x 6∈ B ⇒ C, we have Sg(x) ∩ B * C;
thus, fk0(x) ∈ B and fk0(x) 6∈ C for some k0 ∈ N; so,(
φ(B) ↪→ φ(C)

)
(x) =

(
B1 ↪→ C1

)
(x)

=
[
B1

(
fk0(x)

)
� C1

(
fk0(x)

)]
∧[ ∧

k∈N
B1

(
fk+1(x)

)
� C1

(
fk+1(x)

)]
= (1� 0) ∧

[ ∧
k∈N

B1

(
fk+1(x)

)
� C1

(
fk+1(x)

)]
= 0

= (B ⇒ C)1(x)

= φ(B ⇒ C)(x).

Now, let x ∈ B ⇒ C and D ∈ Sub(A) such that D ∩B ⊆ C and x ∈ D.
• For any n ∈ Ω(B) := {k ∈ N : fk(x) ∈ B}, we have fn(x) ∈ D ∩ B ⊆ C;
thus, fn(x) ∈ B and fn(x) ∈ C; so,

B1

(
fn(x)

)
� C1

(
fn(x)

)
= 1� 1 = 1.

• For any n 6∈ Ω(B), we have

B1

(
fn(x)

)
� C1

(
fn(x)

)
= 0� C1

(
fn(x)

)
= 1.

Thus,(
φ(B) ↪→ φ(C)

)
(x) =

(
B1 ↪→ C1

)
(x)

=
[ ∧
k∈Ω(B)

B1

(
fk(x)

)
� C1

(
fk(x)

)]
∧[ ∧

k 6∈Ω(B)

B1

(
fk(x)

)
� C1

(
fk(x)

)]
=
( ∧
k∈Ω(B)

1
)
∧
( ∧
k 6∈Ω(B)

1
)

= 1 ∧ 1

= 1

= (B ⇒ C)1(x)

= φ(B ⇒ C)(x).
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Hence, φ(B ⇒ C) = φ(B) ↪→ φ(C) and, φ(B ⇒ C) = φ(B)# φ(C) by similar
arguments. Therefore, φ is a complete residuated lattice embedding of Sub(A)

into Fs(A, L).

Theorem 2.3.13. The map ψ : L → Fs(A, L), given by ψ(r) = r for all
r ∈ L, is a complete residuated lattice embedding.

Proof. By Proposition 2.1.4, ψ is a complete lattice embedding of the lattice
of L into Fs(A, L). Now, let r, s ∈ L. For any x ∈ A, we have

ψ(r 	 s)(x) = r 	 s

= r(x)	 s(x)

= ψ(r)(x)	 ψ(s)(x)

=
(
ψ(r)	 ψ(s)

)
(x).

Thus, ψ(r 	 s) = ψ(r)	 ψ(s).
For any x ∈ A, we have

ψ(r � s)(x) = r � s

=
∧
k∈N

r
(
fk(x)

)
� s

(
fk(x)

)
=
∧
k∈N

ψ(r)
(
fk(x)

)
� ψ(s)

(
fk(x)

)
=
(
ψ(r) ↪→ ψ(s)

)
(x).

Thus, ψ(r � s) = ψ(r) ↪→ ψ(s) and, ψ(r ( s) = ψ(r) # ψ(s) by similar
arguments.
Hence, ψ is a complete residuated lattice embedding of L into Fs(A, L).

2.3.3 Mono-unary algebras and MV -algebras

Let A := (A; f) be a mono-unary algebra. Since ∧, ∨ and 	 are defined
componentwise on Fs(A, L), L and Fs(A, L) satisfy the same bounded lattice-
ordered monoid identities.

Proposition 2.3.14. (See, [5]) Let Sym(A) be the permutation group of A.
The following hold:
(1) If Sub(A) is a Boolean lattice, then f ∈ Sym(A).
(2) If f is of finite order in Sym(A), then Sub(A) is a Boolean lattice.
(3) If A is finite, then Sub(A) is a Boolean lattice if and only if f ∈ Sym(A).
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Lemma 2.3.15. The following statements are equivalent:
(a) For any µ ∈ Fu(A,L), µ ∈ Fs(A, L) iff µ

(
f(x)

)
= µ(x) for all x ∈ A.

(b) Sub(A) is a Boolean lattice.

Proof. Suppose that (a) is satisfied. Let B ∈ Sub(A). For any x ∈ B, we have
B1

(
f(x)

)
= B1(x) = 0 and, f(x) ∈ B. Thus, B ∈ Sub(A). Hence, Sub(A) is

a Boolean lattice.
Conversely, suppose that (b) is satisfied. Let µ ∈ Fs(A, L). For any x ∈ A,
we have f(x) ∈ U

[
µ, µ

(
f(x)

)]
∈ Sub(A); thus, x ∈ U

[
µ, µ

(
f(x)

)]
; so,

µ(x) ≥ µ
(
f(x)

)
and, µ

(
f(x)

)
= µ(x).

Whence the result.

Theorem 2.3.16. Fs(A, L) is a subresiduated lattice of Fu(A,L) if and only
if Sub(A) is a Boolean lattice.

Proof. Assume that Fs(A, L) is a subresiduated lattice of Fu(A,L). Let B
be a subuniverse of A. For any x ∈ B, we have

B1

(
f(x)

)
� 0 = B1

(
f(x)

)
� 0

(
f(x)

)
≥ (B1 ↪→ 0)(x)

= (B1 � 0)(x)

= B1(x)� 0(x)

= 0� 0

= 1;

thus, B1

(
f(x)

)
� 0 = 1 and, B1

(
f(x)

)
= 0; i.e., f(x) 6∈ B and, f(x) ∈ B. So,

B is a subuniverse of A. Hence, Sub(A) is a Boolean lattice.
Conversely, assume that Sub(A) is a Boolean lattice. Let µ and ν be two
L-fuzzy subalgebras of A. For any x ∈ A, we have

(µ ↪→ ν)(x) =
∧
k∈N

µ
(
fk(x)

)
� ν

(
fk(x)

)
=
∧
k∈N

µ(x)� ν(x)

= µ(x)� ν(x)

= (µ� ν)(x).

Thus, µ ↪→ ν = µ � ν. Hence, ↪→ is the restriction of � to Fs(A, L). A
similar reasoning shows that# is the restriction of( to Fs(A, L). Therefore,
Fs(A, L) is a subresiduated lattice of Fu(A,L).
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Let K be a class of residuated lattices such that

Mod
(
Id(K) ∪ {x⊗ y = x ∧ y}

)
is included in the class of Boolean algebras; for example, the class of MV -
algebras.

Theorem 2.3.17. Fs(A, L) |= Id(K) if and only if L |= Id(K) and Sub(A)

is a Boolean algebra.

Proof. If Fs(A, L) |= Id(K), then Sub(A) |= Id(K) and L |= Id(K) by Theo-
rem 2.3.12 and Theorem 2.3.13, respectively; thus, Sub(A) is a Boolean algebra
and L |= Id(K).
Conversely, assume that L |= Id(K) and Sub(A) is a Boolean algebra. Then
Fs(A, L) is a subresiduated lattice of Fu(A,L) by Theorem 2.3.16. Conse-
quently, Fs(A, L) |= Id(K), since L |= Id(K).

If Fs(A, L) is an RL-monoid, then L is an RL-monoid by Theorem 2.3.13;
but the converse is not necessarily true as the following example shows.

Example 2.3.18. Let L = {0, α, β, 1} be a lattice such that 0 < α < β < 1.
Define the binary operations 	 and � on L as follows:

	 0 α β 1

0 0 0 0 0

α 0 0 α α

β 0 α β β

1 0 α β 1

� 0 α β 1

0 1 1 1 1

α α 1 1 1

β 0 α 1 1

1 0 α β 1

.

Then L = (L; ∧, ∨, 	, �, �; 0, 1) is an RL-monoid. Consider the mono-

unary algebra A given by the table

f
y

0 0

a a

b a

c b

, and the L-fuzzy subalgebras σ and

τ of A defined for any x ∈ A by:

σ(x) =


1 if x = 0,

β if x ∈ {a, b},
α if x = c.

and τ(x) =

{
1 if x = 0,

α if x ∈ {a, b, c}.
.

Since σ ↪→ τ = τ , we have
(
(σ ↪→ τ) 	 σ

)
(c) =

(
τ 	 σ

)
(c) = α 	 α = 0 6=

α =
(
σ ∧ τ

)
(c); thus, (σ ↪→ τ)	 σ 6= σ ∧ τ . It follows that Fs(A, L) is not an

RL-monoid.
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Proposition 2.3.19. If Fs(A, L) is an RL-monoid, then for any x ∈ A and
B ∈ Sub(A), we have x ∈ B if and only if Sg(x) ∩B 6= ∅.

Proof. Assume that Fs(A, L) is an RL-monoid. Let x ∈ A and B ∈ Sub(A).
It is clear that Sg(x) ∩B 6= ∅ for all x ∈ B.
Conversely, assume that Sg(x) ∩ B 6= ∅. Since there is k0 ∈ N such that
fk0(x) ∈ B, we have

B1(x) =
(
1 ∧B1

)
(x)

=
(
(1 ↪→ B1)	 1

)
(x)

=
(
1 ↪→ B1

)
(x)

≤ 1
(
fk0(x)

)
� B1

(
fk0(x)

)
= 1� 0

= 0;

thus, B1(x) = 0 and, x ∈ B.

If Fs(A, L) is a MTL-algebra, then Sub(A) and L are MTL-algebras by
Theorem 2.3.12 and Theorem 2.3.13, respectively; but the converse is not
necessarily true as the following example shows.

Example 2.3.20. Let L = {0, α, β, γ, 1} be a lattice such that 0 < α <

β, γ < 1; where, β, γ are incomparable. Define the binary operations 	, �
and ( on L as follows:

	 0 α β γ 1

0 0 0 0 0 0

α 0 0 α 0 α

β 0 0 β 0 β

γ 0 α α γ γ

1 0 α β γ 1

� 0 α β γ 1

0 1 1 1 1 1

α β 1 1 1 1

β 0 γ 1 γ 1

γ β β β 1 1

1 0 α β γ 1

( 0 α β γ 1

0 1 1 1 1 1

α γ 1 1 1 1

β γ γ 1 γ 1

γ 0 β β 1 1

1 0 α β γ 1

.

Then L = (L; ∧, ∨, 	, �, (; 0, 1) is a MTL-algebra. Consider the unar
A given in Example 2.3.18. The subuniverses of A are B1 = ∅, B2 = {a},
B3 = {a, b}, B4 = {a, b, c}, B5 = {0}, B6 = {0, a}, B7 = {0, a, b} and
B8 = A. The binary operation ⇒ of Sub(A) is given by
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⇒ ∅ B2 B3 B4 B5 B6 B7 A

∅ A A A A A A A A

B2 B5 A A A B5 A A A

B3 B5 B6 A A B5 A A A

B4 B5 B6 B7 A B5 B6 B7 A

B5 B4 B4 B4 B4 A A A A

B6 ∅ B4 B4 B4 B5 A A A

B7 ∅ B2 B3 B4 B5 B6 A A

A ∅ B2 B3 B4 B5 B6 B7 A

.

It is easy to check that Sub(A) is a MTL-algebra. Consider the L-fuzzy sub-
algebras σ and τ of A defined for any x ∈ A by:

σ(x) =


1 if x = 0,

β if x ∈ {a, b},
α if x = c.

and τ(x) =


1 if x = 0,

γ if x ∈ {a, b, c},
0 if x = c.

.

Then σ ↪→ τ = 01 ∨ {a, b}γ ∨ cα and τ ↪→ σ = 01 ∨ {a, b, c}β; thus,(
(σ ↪→ τ) ∨ (τ ↪→ σ)

)
(c) = β 6= 1. So, (σ ↪→ τ) ∨ (τ ↪→ σ) 6= 1. Hence,

Fs(A, L) is not a MTL-algebra.

Proposition 2.3.21. If Fs(A, L) is a MTL-algebra, then for any x ∈ A and
B,D ∈ Sub(A), we have Sg(x) ⊆ B ∪D or Sg(x) ⊆ B ∪D.

Proof. Assume that Fs(A, L) is a MTL-algebra. Let x ∈ A and B,D ∈
Sub(A). Suppose that Sg(x) * B ∪ D. Since there is k0 ∈ N such that
fk0(x) 6∈ B ∪D, we have(

B1 ↪→ D1

)
(x) ≤ B1

(
fk0(x)

)
� D1

(
fk0(x)

)
= 1� 0 = 0

and,
(
B1 ↪→ D1

)
(x) = 0. Since(

D1 ↪→ B1

)
(x) = 0 ∨

(
D1 ↪→ B1

)
(x) =

(
B1 ↪→ D1

)
(x) ∨

(
D1 ↪→ B1

)
(x) = 1,

we have

D1

(
fk(x)

)
� B1

(
fk(x)

)
= 1 for all k ∈ N;

thus,

fk(x) 6∈ D ∩B for all k ∈ N;

i.e., fk(x) ∈ D ∪B for all k ∈ N and, Sg(x) ⊆ D ∪B.
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Chapter Three

Residual transfer in fuzzy
rings

In this chapter, unless otherwise specified, L := (L; ∧, ∨, 	, �, (; 0, 1)

is a complete meet-distributive residuated lattice (See, Definition 1.2.13) and
A := (A; +, ·; −; 0) is a unital ring with unity 1. The binary operation · will
be denoted by juxtaposition.

In Section 3.1, we define a residuated lattice structure Fid(A, L) on the set
of L-fuzzy ideals of A which is both an extension of L and the residuated lat-
tice Id(A) on the set of ideals of A. Furthermore, we show that Fid(A, L) is
commutative (resp., a Brouwerian algebra) if and only if so are L and Id(A).
In Section 3.2, we characterize prime elements of Fid(A, L) and investigate
some embedding properties of the lattice of its filters. In Section 3.3, we show
that Fid(A, L) is a Boolean algebra if and only if so are L and Id(A). Fur-
thermore, we introduce the concept of Łukasiewicz rings under L and establish
its connection with rings whose L-fuzzy ideals form an MV -algebra.

3.1 Residuated lattice of L-fuzzy ideals of a
ring

3.1.1 Lattice of L-fuzzy ideals

Remark 3.1.1. The complete residuated lattice of ideals of A is defined by:

Id(A) :=
(
Id(A); ∩, +, �, →,  ; {0}, A

)
;

where, for any I, J ∈ Id(A), I + J = {x+ y : x ∈ I and y ∈ J},

I � J := IJ = {
n∑
i=1

xiyi : x1, . . . , xn ∈ I and y1, . . . , yn ∈ J},

I → J = {x ∈ A : xI ⊆ J} and I  J = {x ∈ A : Ix ⊆ J}.

Recall that for any {Iλ}λ∈Λ ⊆ Id(A), we have
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⊔
λ∈Λ

Iλ = {
∑
λ∈Ω

aλ : Ω is a finite subset of Λ and aλ ∈ Iλ for all λ ∈ Ω}.

Remark 3.1.2. According to Definition 1.3.6 and (c) of Remark 1.1.7, an L-
fuzzy subset µ of A is an L-fuzzy ideal of A if and only if µ(0) = 1, µ(x−y) ≥
µ(x) ∧ µ(y) and µ(xy) ≥ µ(x) ∨ µ(y) for all x, y ∈ A.

The set Fid(A, L) of L-fuzzy ideals ofA forms a lattice Fid(A, L) :=
(
Fid(A, L);

∧, +; χ0, 1
)
; where, for any µ, ν ∈ Fid(A, L), µ + ν := Fidg(µ ∨ ν) is the

L-fuzzy ideal of A generated by µ∨ν. U.M. Swamy and K.L.N. Swamy showed
in [37] that: for any µ, ν ∈ Fid(A, L), {µλ}λ∈Λ ⊆ Fid(A, L) and x ∈ A,(

µ+ ν
)
(x) =

∨
{µ(a) ∧ ν(b) : x = a+ b}( ⊔

λ∈Λ

µλ
)
(x) =

∨
{
∧
λ∈Ω

µλ(aλ) : Ω is a finite subset of Λ and x =
∑
λ∈Ω

aλ}.

According to Subsection 2.1.2, atoms of Fid(A, L) are exactly of the form
(Idg(a)r)∗; where, r and Idg(a) are atoms of L and Id(A), respectively. Co-
atoms of Fid(A, L) are exactly of the form M r; where, r and M are co-atoms
of L and Id(A), respectively. If L is algebraic, then Fid(A, L) is algebraic;
moreover, its compact elements are exactly finite suprema of compact principal
L-fuzzy ideals of A. I. Jahan showed that Fid(A, L) is modular (See, [19],
Theorem 3.5.).

3.1.2 Residuated lattice of L-fuzzy ideals

This subsection outlines the construction of the residuated lattice Fid(A, L)

of L-fuzzy ideals of A.

Definition 3.1.3. For any µ, ν ∈ Fu(A,L), µ ◦ ν denotes the L-fuzzy subset
of A defined by:

(
µ ◦ ν

)
(x) =

∨
{µ(a)	 ν(b) : x = ab} for all x ∈ A.

Lemma 3.1.4. The binary operation ◦ on Fu(A,L) is associative.

Proof. Let µ, ν, δ ∈ Fu(A,L) and x ∈ A. Let a, b ∈ A such that x = ab. For
any ub, vb ∈ A such that b = ubvb, we have x = a(ubvb) = (aub)vb and,

µ(a)	
(
ν(ub)	 δ(vb)

)
=
(
µ(a)	 ν(ub)

)
	 δ(vb)

≤
(
µ ◦ ν

)
(aub)	 δ(vb)

≤
(
(µ ◦ ν) ◦ δ

)
(x).

Thus, µ(a)	
(
ν ◦ δ

)
(b) ≤

(
(µ ◦ ν) ◦ δ

)
(x). So,

(
µ ◦ (ν ◦ δ)

)
(x) ≤

(
(µ ◦ ν) ◦ δ

)
(x)

and,
(
(µ ◦ ν) ◦ δ

)
(x) ≤

(
µ ◦ (ν ◦ δ)

)
(x) by similar arguments. It follows that(

µ ◦ (ν ◦ δ)
)
(x) =

(
(µ ◦ ν) ◦ δ

)
(x). Hence, µ ◦ (ν ◦ δ) = (µ ◦ ν) ◦ δ. Therefore,

◦ is associative.

Proposition 3.1.5. For any n ≥ 2, µ1, µ2, . . . , µn ∈ Fu(A,L) and x ∈ A,
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(
µ1 ◦ µ2 ◦ . . . ◦ µn

)
(x) =

∨
{µ1(a1)	 µ2(a2)	 . . .	 µn(an) : x = a1a2 . . . an}.

Proof. We proceed by induction on the number of L-fuzzy subsets of A.
If n = 2, then the result follows from Definition 3.1.3.
Now, let n ≥ 2 such that for any µ1, . . . , µn ∈ Fu(A,L) and x ∈ A, we have(
µ1 ◦ µ2 ◦ . . . ◦ µn

)
(x) =

∨
{µ1(a1)	 µ2(a2)	 . . .	 µn(an) : x = a1a2 . . . an}.

Let µ1, . . . , µn+1 ∈ Fu(A,L) and x ∈ A. Let a, b ∈ A such that x = ab.
For any a1, . . . , an ∈ A such that a = a1 . . . an, we have x = a1 . . . anb and(
µ1(a1) 	 . . . 	 µn(an)

)
	 µn+1(b) = µ1(a1) 	 . . . 	 µn(an) 	 µn+1(b); thus,(

µ1(a1) 	 . . . 	 µn(an)
)
	 µn+1(b) ≤

∨
x=a1...an+1

µ1(a1) 	 . . . 	 µn+1(an+1). So,(
µ1 ◦ . . . ◦ µn

)
(a)	 µn+1(b) ≤

∨
x=a1...an+1

µ1(a1)	 . . .	 µn+1(an+1) and,

(
µ1 ◦ . . . ◦ µn+1

)
(x) =

[(
µ1 ◦ . . . ◦ µn

)
◦ µn+1

]
(x)

≤
∨

x=a1...an+1

µ1(a1)	 . . .	 µn+1(an+1).

For any a1, . . . , an+1 ∈ A such that x = a1 . . . an+1, we have x = (a1 . . . an)an+1;
thus,

µ1(a1)	 . . .	 µn+1(an+1) =
(
µ1(a1)	 . . .	 µn(an)

)
	 µn+1(an+1)

≤
[(
µ1 ◦ . . . ◦ µn

)
◦ µn+1

]
(x)

=
(
µ1 ◦ . . . ◦ µn+1

)
(x).

So,
∨

x=a1a2...an+1

µ1(a1)	 . . .	 µn+1(an+1) ≤
(
µ1 ◦ . . . ◦ µn+1

)
(x). It follows that(

µ1 ◦ . . . ◦ µn+1

)
(x) =

∨
x=a1a2...an+1

µ1(a1)	 . . .	 µn+1(an+1).

Hence, the desired result follows.

Proposition 3.1.6. Let r, s ∈ L, x ∈ A, I ∈ Id(A) and µ, ν ∈ Fid(A, L).
(1) µ ◦ ν ≤ µ	 ν.
(2) xr ◦ µ ≤ ν if and only if (xr)∗ ◦ µ ≤ ν.
(3) xr ◦ (Is)∗ = (xI)r	s ∨ 0r.

Proof. (1) Let y ∈ A. For any a, b ∈ A such that y = ab, we have

µ(a)	 ν(b) ≤ µ(ab)	 ν(ab) = µ(y)	 ν(y) =
(
µ	 ν

)
(y).

Thus,
(
µ ◦ ν

)
(y) ≤

(
µ	 ν

)
(y). So, µ ◦ ν ≤ µ	 ν.

(2) Assume that xr ◦ µ ≤ ν. Let a 6= 0 in A. For any u, v ∈ A such that
a = uv, we have u 6= 0; thus,

(xr)∗(u)	 µ(v) = xr(u)	 µ(v) ≤
(
xr ◦ µ

)
(a) ≤ ν(a).

So,
(
(xr)∗ ◦ µ

)
(a) ≤ ν(a). Hence, (xr)∗ ◦ µ ≤ ν. The converse is obvious, since

◦ is order-preserving.
(3)

(
xr ◦ (Is)∗

)
(0) = r, since
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r = r 	 1 = xr(x)	 (Is)∗(0) ≤
(
xr ◦ (Is)∗

)
(0) ≤ r.

Let a ∈ xI \ {0}. For any v ∈ A such that a = xv, we have

r 	 (Is)∗(v) =

{
r 	 s if v ∈ I,
r 	 0 = 0 if v 6∈ I.

.

Thus,
(
xr ◦ (Is)∗

)
(a) ≤ r 	 s = xr(x) 	 (Is)∗(u) ≤

(
xr ◦ (Is)∗

)
(a) for some

u 6= 0 in I such that a = xu. So,
(
xr ◦ (Is)∗

)
(a) = r 	 s.

Now, let a 6∈ xI. For any v ∈ A such that a = xv, we have v 6∈ I; thus,
r 	 (Is)∗(v) = r 	 0 = 0. So,

(
xr ◦ (Is)∗

)
(a) =

∨
{0} = 0.

Hence, xr ◦ (Is)∗ = (xI)r	s ∨ 0r.

For any L-fuzzy ideal µ of A, x ∈ A and r ∈ L, one can easily verify that
x0 ◦ µ = 0 = µ ◦ x0 and 0r ◦ µ = 0r = µ ◦ 0r.

Proposition 3.1.7. Let µ, ν ∈ Fid(A, L). Then the L-fuzzy subset µ ⊗ ν of
A, given for any x ∈ A by(

µ⊗ ν
)
(x) =

∨
{
∧

1≤i≤n
µ(ai)	 ν(bi) : x =

n∑
i=1

aibi and a1, . . . , an ∈ A},

is the smallest L-fuzzy ideal of A containing µ ◦ ν; i.e., Fidg(µ ◦ ν) = µ⊗ ν.

Proof. It is clear that µ ⊗ ν contains µ ◦ ν. Next we show that µ ⊗ ν is an
L-fuzzy ideal of A.
We have (µ⊗ ν)(0) = 1, since (µ⊗ ν)(0) ≥ µ(0)	 ν(0) = 1	 1 = 1.

Now, let x, y ∈ A. Set X := {(ai, bi)1≤i≤m+n : x =
m∑
i=1

aibi and − y =

m+n∑
i=m+1

aibi} and Y := {(uj, vj)1≤j≤p : x − y =

p∑
j=1

ujvj}. Then X ⊆ Y .

Furthermore, for any (ai, bi)1≤i≤m+n ∈ X, we have( ∧
1≤i≤m

µ(ai)	 ν(bi)
)
∧
( ∧
m+1≤i≤m+n

µ(ai)	 ν(bi)
)

=
∧

1≤i≤m+n

µ(ai)	 ν(bi)

≤
(
µ⊗ ν

)
(x− y).

Thus,
(
µ⊗ ν

)
(x)∧

(
µ⊗ ν

)
(y) ≤

(
µ⊗ ν

)
(x− y). For any a1, b1, . . . , an, bn ∈ A

such that x =
m∑
i=1

aibi, we have xy =
m∑
i=1

ai(biy) and,

∧
1≤i≤m

µ(ai)	 ν(bi) ≤
∧

1≤i≤m
µ(ai)	 ν(biy) ≤

(
µ⊗ ν

)
(xy).

Thus,
(
µ⊗ν

)
(x) ≤

(
µ⊗ν

)
(xy). Similarly, we obtain

(
µ⊗ν

)
(y) ≤

(
µ⊗ν

)
(xy).

So,
(
µ⊗ν

)
(xy) ≥

(
µ⊗ν

)
(x)∨

(
µ⊗ν

)
(y). Hence, µ⊗ν is an L-fuzzy ideal of A.

Finally, let δ be an L-fuzzy ideal ofA containing µ◦ν. For any a1, b1, . . . , an, bn ∈

A such that x =
n∑
i=1

aibi, we have
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∧
1≤i≤n

µ(ai)	 ν(bi) ≤
∧

1≤i≤n

(
µ ◦ ν

)
(aibi) ≤

∧
1≤i≤n

δ(aibi) ≤ δ
( n∑
i=1

aibi
)

= δ(x).

Thus,
(
µ ⊗ ν

)
(x) ≤ δ(x). Hence, µ ⊗ ν ≤ δ. Therefore, µ ⊗ ν is the smallest

L-fuzzy ideal of A containing µ ◦ ν.

Remark 3.1.8. For any µ1, . . . , µn ∈ Fid(A, L) and x ∈ A, we have

Fidg(µ1 ◦ . . . ◦ µn)(x) =
∨
{
∧

1≤j≤p
µ1(a1

j)	 . . .	 µn(anj ) : x =

p∑
j=1

a1
j . . . a

n
j }.

Proposition 3.1.9. The binary operation ⊗ on Fid(A, L) is associative.

Proof. Let µ, ν, δ ∈ Fid(A, L). Let x ∈ A. Let a1, b1, . . . , an, bn ∈ A such

that x =
n∑
i=1

aibi. Let 1 ≤ i ≤ n. For any ci1 , di1 , . . . , cip , dip ∈ A such that

bi =

p∑
j=1

cijdij , we have for each 1 ≤ k ≤ p,

µ(ai)	
( ∧

1≤j≤p
ν(cij)	 δ(dij)

)
≤ µ(ai)	

(
ν(cik)	 δ(dik)

)
=
(
µ(ai)	 ν(cik)

)
	 δ(dik)

≤
(
µ⊗ ν

)
(aicik)	 δ(dik)

≤
(
(µ⊗ ν)⊗ δ

)(
(aicik)dik

)
=
(
(µ⊗ ν)⊗ δ

)(
ai(cikdik)

)
;

thus,

µ(ai)	
( ∧

1≤j≤p
ν(cij)	 δ(dij)

)
≤

∧
1≤j≤p

(
(µ⊗ ν)⊗ δ

)(
ai(cijdij)

)
≤
(
(µ⊗ ν)⊗ δ

)( p∑
j=1

ai(cijdij)
)

=
(
(µ⊗ ν)⊗ δ

)(
ai

p∑
j=1

cijdij
)

=
(
(µ⊗ ν)⊗ δ

)
(aibi).

So, µ(ai)	
(
ν ⊗ δ

)
(bi) ≤

(
(µ⊗ ν)⊗ δ

)
(aibi). It follows that∧

1≤i≤n
µ(ai)	

(
ν ⊗ δ

)
(bi) ≤

∧
1≤i≤n

(
(µ⊗ ν)⊗ δ

)
(aibi) ≤

(
(µ⊗ ν)⊗ δ

)
(x).

Hence,
(
µ⊗(ν⊗δ)

)
(x) ≤

(
(µ⊗ν)⊗δ

)
(x) and,

(
(µ⊗ν)⊗δ

)
(x) ≤

(
µ⊗(ν⊗δ)

)
(x)

by similar arguments. Therefore, µ⊗ (ν ⊗ δ) = (µ⊗ ν)⊗ δ.

Corollary 3.1.10. Fid(A, L) :=
(
Fid(A, L); ⊗, 1

)
is a monoid.
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Proof. Since ⊗ is associative by Proposition 3.1.9, it suffices to show that 1 is
the unity of Fid(A, L). So, let µ be an L-fuzzy ideal of A. Let x ∈ A. For

any a1, b1, . . . , an, bn ∈ A such that x =
n∑
i=1

aibi, we have∧
1≤i≤n

µ(ai)	 1(bi) =
∧

1≤i≤n
µ(ai)	 1 =

∧
1≤i≤n

µ(ai) ≤
∧

1≤i≤n
µ(aibi) ≤ µ(x).

Thus,
(
µ⊗1

)
(x) ≤ µ(x). Furthermore,

(
µ⊗1

)
(x) ≥ µ(x)	1(1) = µ(x)	1 =

µ(x). So,
(
µ ⊗ 1

)
(x) = µ(x). Hence, µ ⊗ 1 = µ; and, 1 ⊗ µ = µ by similar

arguments. Therefore, 1 is the unity of Fid(A, L).

Proposition 3.1.11. For any n ≥ 2, we have µ1⊗. . .⊗µn = Fidg(µ1◦. . .◦µn)

for all µ1, . . . , µn ∈ Fid(A, L).

Proof. We proceed by induction on the number of L-fuzzy ideals of A.
If n = 2, then the result follows from Proposition 3.1.7.
Now, let n ≥ 2 such that µ1⊗ . . .⊗µn = Fidg(µ1 ◦ . . .◦µn) for all µ1, . . . , µn ∈
Fid(A, L). Let µ1, . . . , µn+1 ∈ Fid(A, L). Since ◦ is order-preserving, we have

µ1 ⊗ . . .⊗ µn+1 = Fidg
[
(µ1 ⊗ . . .⊗ µn) ◦ µn+1

]
= Fidg

[
Fidg(µ1 ◦ . . . ◦ µn) ◦ µn+1

]
≥ Fidg(µ1 ◦ . . . ◦ µn+1).

Finally, we show that µ1 ⊗ . . . ⊗ µn+1 ≤ Fidg(µ1 ◦ . . . ◦ µn+1). So, let x ∈
A. Let r ∈ L such that x ∈ Idg

[
U
(
(µ1 ⊗ . . . ⊗ µn) ◦ µn+1, r

)]
. There are

a1, b1, . . . , ap, bp ∈ A and u1, . . . , up ∈ U
(
(µ1 ⊗ . . . ⊗ µn) ◦ µn+1, r

)
such that

x =

p∑
k=1

akukbk. Since r ≤
[
(µ1 ⊗ . . . ⊗ µn) ◦ µn+1

]
(uk) for all 1 ≤ k ≤ p, we

have r ≤
∧

1≤k≤p

[
(µ1 ⊗ . . .⊗ µn) ◦ µn+1

]
(uk).

Let v1, w1, . . . , vp, wp ∈ A such that u1 = v1w1, . . . , up = vpwp. Let 1 ≤ k ≤ p.

For any z1
k1, . . . , z

n
k1, . . . , z

1
kq, . . . , z

n
kq ∈ A such that vk =

q∑
j=1

z1
kj . . . z

n
kj, we have

( ∧
1≤j≤q

µ1(z1
kj)	 . . .	 µn(znkj)

)
	 µn+1(wk)

≤
∧

1≤j≤q
µ1(z1

kj)	 . . .	 µn(znkj)	 µn+1(wk)

≤ Fidg(µ1 ◦ . . . ◦ µn+1)
[ q∑
j=1

z1
kj . . . z

n
kjwk

]
= Fidg(µ1 ◦ . . . ◦ µn+1)

[( q∑
j=1

z1
kj . . . z

n
kj

)
wk
]

= Fidg(µ1 ◦ . . . ◦ µn+1)(vkwk)

= Fidg(µ1 ◦ . . . ◦ µn+1)(uk).
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Thus,
(
µ1 ⊗ . . .⊗ µn

)
(vk)	 µn+1(wk) ≤ Fidg(µ1 ◦ . . . ◦ µn+1)(uk). So,∧

1≤k≤p

(
µ1 ⊗ . . .⊗ µn

)
(vk)	 µn+1(wk) ≤

∧
1≤k≤p

Fidg(µ1 ◦ . . . ◦ µn+1)(uk)

≤
∧

1≤k≤p
Fidg(µ1 ◦ . . . ◦ µn+1)(akukbk)

≤ Fidg(µ1 ◦ . . . ◦ µn+1)(

p∑
k=1

akukbk)

= Fidg(µ1 ◦ . . . ◦ µn+1)(x).

Consequently,
∧

1≤k≤p

[
(µ1⊗ . . .⊗µn)◦µn+1

]
(uk) ≤ Fidg(µ1 ◦ . . .◦µn+1)(x) and,

r ≤ Fidg(µ1 ◦ . . . ◦ µn+1)(x). Thus,(
µ1 ⊗ . . .⊗ µn+1

)
(x) = Fidg

[
(µ1 ⊗ . . .⊗ µn) ◦ µn+1

]
(x)

≤ Fidg(µ1 ◦ . . . ◦ µn+1)(x).

So, µ1 ⊗ . . .⊗ µn+1 ≤ Fidg(µ1 ◦ . . . ◦ µn+1) and,

µ1 ⊗ . . .⊗ µn+1 = Fidg(µ1 ◦ . . . ◦ µn+1).

Hence, the desired result follows.

Definition 3.1.12. For any L-fuzzy subsets µ and ν of A, µ ↪→ ν and µ# ν

denote the L-fuzzy subsets of A defined for any x ∈ A by:(
µ ↪→ ν

)
(x) =

∨
{r ∈ L : xr ◦ µ ≤ ν}(

µ# ν
)
(x) =

∨
{r ∈ L : µ ◦ xr ≤ ν}.

Proposition 3.1.13. Let µ and ν be two L-fuzzy ideals of A. Then µ ↪→ ν

and µ# ν are L-fuzzy ideals of A.

Proof. Since 01 ◦ µ = χ0 ≤ ν, we have 1 ≤
(
µ ↪→ ν

)
(0) and,

(
µ ↪→ ν

)
(0) = 1.

Now, let x, y ∈ A. Let r, s ∈ L such that xr ◦µ ≤ ν and ys ◦µ ≤ ν. Let a ∈ A.
Let b, c ∈ A such that a = bc.
• If b 6= x− y, then (x− y)r∧s(b)	 µ(c) = 0	 µ(c) = 0 ≤ ν(a).
• If b = x− y, then

(x− y)r∧s(b)	 µ(c) = (r ∧ s)	 µ(c)

≤
(
r 	 µ(c)

)
∧
(
s	 µ(c)

)
=
(
xr(x)	 µ(c)

)
∧
(
ys(y)	 µ(c)

)
≤
(
xr ◦ µ

)
(xc) ∧

(
ys ◦ µ

)
(yc)

≤ ν(xc) ∧ ν(yc)

≤ ν(xc− yc) = ν(a).
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Thus,
(
(x− y)r∧s ◦ µ

)
(a) ≤ ν(a). So,

(x− y)r∧s ◦ µ ≤ ν and, r ∧ s ≤ (µ ↪→ ν)(x− y).

It follows that (µ ↪→ ν)(x) ∧ (µ ↪→ ν)(y) ≤ (µ ↪→ ν)(x − y). Now, let r ∈ L
such that xr ◦ µ ≤ ν. Let a ∈ A. Let b, c ∈ A such that a = bc.
• If b 6= xy, then (xy)r(b)	 µ(c) = 0	 µ(c) = 0 ≤ ν(a).
• If b = xy, then

(xy)r(b)	 µ(c) = r 	 µ(c)

= xr(x)	 µ(c)

≤ xr(x)	 µ(yc)

≤ (xr ◦ µ)
(
x(yc)

)
≤ ν

(
x(yc)

)
= ν(a).

Thus,
(
(xy)r ◦ µ

)
(a) ≤ ν(a). So, (xy)r ◦ µ ≤ ν and, r ≤

(
µ ↪→ ν

)
(xy). It

follows that
(
µ ↪→ ν

)
(x) ≤

(
µ ↪→ ν

)
(xy).

Now, let r ∈ L such that yr ◦ µ ≤ ν. Let a ∈ A. Let b, c ∈ A such that a = bc.
• If b 6= xy, then (xy)r(b)	 µ(c) = 0	 µ(c) = 0 ≤ ν(a).
• Suppose that b = xy. For any z ∈ U

(
µ, µ(c)

)
, we have

ν(yz) ≥
(
yr ◦ µ

)
(yz)

≥ yr(y)	 µ(z)

= r 	 µ(z)

≥ r 	 µ(c)

and, yz ∈ U
(
ν, r 	 µ(c)

)
. Thus,

yU
(
µ, µ(c)

)
⊆ U

(
ν, r 	 µ(c)

)
and, y ∈ U

(
µ, µ(c)

)
→ U

(
ν, r 	 µ(c)

)
.

So, xy ∈ U
(
µ, µ(c)

)
→ U

(
ν, r 	 µ(c)

)
and, xyU

(
µ, µ(c)

)
⊆ U

(
ν, r 	 µ(c)

)
.

Since a = xyc ∈ U
(
ν, r 	 µ(c)

)
, we have (xy)r(b) 	 µ(c) = r 	 µ(c) ≤ ν(a).

Thus,
(
(xy)r ◦ µ

)
(a) ≤ ν(a). So, (xy)r ◦ µ ≤ ν and, r ≤

(
µ ↪→ ν

)
(xy). It

follows that
(
µ ↪→ ν

)
(y) ≤

(
µ ↪→ ν

)
(xy).

Consequently,
(
µ ↪→ ν

)
(x) ∨

(
µ ↪→ ν

)
(y) ≤

(
µ ↪→ ν

)
(xy).

Hence, µ ↪→ ν is an L-fuzzy ideal of A. A similar reasoning shows that µ# ν

is an L-fuzzy ideal of A.

Theorem 3.1.14. Fid(A, L) :=
(
Fid(A, L); ∧, +, ⊗, ↪→, #; χ0, 1

)
is a

complete residuated lattice.

Proof. Since Fid(A, L) is a complete lattice and Fid(A, L) is a monoid, it
suffices to show that: for any µ, ν, δ ∈ Fid(A, L), µ ⊗ ν ≤ δ iff µ ≤ ν ↪→ δ iff
ν ≤ µ# δ. So, let µ, ν, δ ∈ Fid(A, L).

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures S.V. Tchoffo Foka



3.1 Residuated lattice of L-fuzzy ideals of a ring 47

Assume that µ ⊗ ν ≤ δ. Let x ∈ A. Let a ∈ A. For any v ∈ A such that
a = xv, we have

xµ(x)(x)	 ν(v) = µ(x)	 ν(v) ≤
(
µ⊗ ν

)
(a) ≤ δ(a).

Thus,
(
xµ(x) ◦ ν

)
(a) ≤ δ(a). So, xµ(x) ◦ ν ≤ δ and, µ(x) ≤

(
ν ↪→ δ

)
(x). Hence,

µ ≤ ν ↪→ δ.
Conversely, assume that µ ≤ ν ↪→ δ. Let x ∈ A. Let a1, b1, . . . , an, bn ∈ A such

that x =
n∑
i=1

aibi. Let 1 ≤ i ≤ n. For any ri ∈ L such that (ai)ri◦ν ≤ δ, we have(
µ(ai)∧ri

)
	ν(bi) ≤ ri	ν(bi) = (ai)ri(ai)	ν(bi) ≤

(
(ai)ri ◦ν

)
(aibi) ≤ δ(aibi).

Since L is meet-distributive, we have

µ(ai)	 ν(bi) =
(
µ(ai) ∧

(
ν ↪→ δ

)
(ai)
)
	 ν(bi) ≤ δ(aibi).

Thus, ∧
1≤i≤n

µ(ai)	 ν(bi) ≤
∧

1≤i≤n
δ(aibi) ≤ δ(x).

So, (µ⊗ ν)(x) ≤ δ(x). It follows that µ⊗ ν ≤ δ.
Hence, µ⊗ ν ≤ δ iff µ ≤ ν ↪→ δ. A similar reasoning shows that: µ⊗ ν ≤ δ iff
ν ≤ µ# δ.

3.1.3 Embeddings

In this subsection, we embed L and Id(A) into Fid(A, L).

Proposition 3.1.15. Let I, J ∈ Id(A) and r, s ∈ L. Then the following hold:
(1) (Ir)∗ ⊗ (Js)∗ =

(
(I � J)r	s

)
∗.

(2) Ir ⊗ Js = (I � J)r	s + (Is)∗ + (Jr)∗.
(3) (Ir)∗ + (Js)∗ =

[
(I + J \ I ∪ J)r∧s ∨ (I \ J)r ∨ (J \ I)s ∨ (I ∩ J \ {0})r∨s

]
∗.

Proof. (1) Let x ∈ I � J \ {0}. For any a1, b1, . . . , an, bn ∈ A such that

x =
n∑
i=1

aibi, there is 1 ≤ i0 ≤ n such that ai0 6= 0 and bi0 6= 0; thus,∧
1≤i≤n

(Ir)∗(ai)	(Js)∗(bi) ≤ (Ir)∗(ai0)	(Js)∗(bi0) ≤ r	s. So,
(
(Ir)∗⊗(Js)∗

)
(x) ≤

r 	 s. Since there are a1, . . . , an ∈ I \ {0} and b1, . . . , bn ∈ J \ {0} such that

x =
n∑
i=1

aibi, we have r 	 s =
∧

1≤i≤n
(Ir)∗(ai) 	 (Js)∗(bi) ≤

(
(Ir)∗ ⊗ (Js)∗

)
(x)

and,
(
(Ir)∗ ⊗ (Js)∗

)
(x) = r 	 s.

Now, let x 6∈ I � J . For any a1, b1, . . . , an, bn ∈ A such that x =
n∑
i=1

aibi,

there is 1 ≤ i0 ≤ n such that ai0 6∈ I or bi0 6∈ J ; i.e., (Ir)∗(ai0) = 0 or
(Js)∗(bi0) = 0; thus,

∧
1≤i≤n

(Ir)∗(ai)	 (Js)∗(bi) ≤ (Ir)∗(ai0)	 (Js)∗(bi0) = 0 and,
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∧
1≤i≤n

(Ir)∗(ai)	 (Js)∗(bi) = 0. So,
(
(Ir)∗ ⊗ (Js)∗

)
(x) =

∨
{0} = 0.

Hence, (Ir)∗ ⊗ (Js)∗ =
(
(I � J)r	s

)
∗.

(2)We first show that Ir = I1+(Ar)∗. For any x ∈ I, we have
(
I1+(Ar)∗

)
(x) ≥

I1(x) = 1 and,
(
I1 + (Ar)∗

)
(x) = 1. Now, let x 6∈ I. Let a, b ∈ A such that

x = a+ b. If b = 0, then a 6∈ I and, I1(a)∧ (Ar)∗(b) = 0∧ 1 = 0. If b 6= 0, then
I1(a) ∧ (Ar)∗(b) ≤ (Ar)∗(b) = r. Thus, r = (Ar)∗(x) ≤

(
I1 + (Ar)∗

)
(x) ≤ r

and,
(
I1 + (Ar)∗

)
(x) = r. So, Ir = I1 + (Ar)∗. A similar reasoning shows that

Js = J1 + (As)∗. Finally, we have

Ir ⊗ Js =
(
I1 + (Ar)∗

)
⊗
(
J1 + (As)∗

)
= (I � J)1	1 +

(
(I � A)1	s

)
∗ +

(
(A� J)r	1

)
∗ +

(
(A� A)r	s

)
∗

= (I � J)1 + (Is)∗ + (Jr)∗ + (Ar	s)∗

= (I � J)r	s + (Is)∗ + (Jr)∗.

(3) • Let x 6∈ I + J . For any a, b ∈ A such that x = a + b, we have a 6∈ I

or b 6∈ J ; i.e., (Ir)∗(a) = 0 or (Js)∗(b) = 0; thus, (Ir)∗(a) ∧ (Js)∗(b) = 0. So,(
(Ir)∗ + (Js)∗

)
(x) =

∨
{0} = 0.

• Let x ∈ I + J \ I ∪ J . For any a, b ∈ A such that x = a+ b, we have

(Ir)∗(a) ∧ (Js)∗(b) =

{
r ∧ s if a ∈ I and b ∈ J ,

0 if a 6∈ I or b 6∈ J .
.

Thus, r∧s = (Ir)∗(u)∧(Js)∗(v) ≤
(
(Ir)∗+(Js)∗

)
(x) ≤ r∧s for some u ∈ I\{0}

and v ∈ J \ {0} such that x = u+ v; so,
(
(Ir)∗ + (Js)∗

)
(x) = r ∧ s.

• Let x ∈ I \ J . For any a, b ∈ A such that x = a+ b, we have

(Ir)∗(a) ∧ (Js)∗(b) =

{
r ∧ (Js)∗(b) if a ∈ I and b ∈ J ,

0 if a 6∈ I or b 6∈ J .
.

Thus, r = (Ir)∗(x)∧ (Js)∗(0) ≤
(
(Ir)∗+(Js)∗

)
(x) ≤ r and,

(
(Ir)∗+(Js)∗

)
(x) =

r. A similar reasoning shows that
(
(Ir)∗ + (Js)∗

)
(x) = s for all x ∈ J \ I.

• Let x ∈ (I ∩ J) \ {0}. For any a, b ∈ A such that x = a + b, we have a 6= 0

or b 6= 0; thus, (Ir)∗(a) ∧ (Js)∗(b) ≤ r ∨ s. So, r ∨ s =
(
(Ir)∗ ∨ (Js)∗

)
(x) ≤(

(Ir)∗ + (Js)∗
)
(x) ≤ r ∨ s and,

(
(Ir)∗ + (Js)∗

)
(x) = r ∨ s.

Hence, (Ir)∗+(Js)∗ =
[
(I+J\I∪J)r∧s∨(I\J)r∨(J\I)s∨(I∩J\{0})r∨s

]
∗.

For any I, J ∈ Id(A) and r ∈ L, one can easily verify that:
• (Ir)∗ + (Jr)∗ =

(
(I + J)r

)
∗ and I1 + (Jr)∗ =

(
I1 ∨ (I + J)r

)
∗.

• If r2 = r, then Ir ⊗ Jr = (I � J)r.

Proposition 3.1.16. Let r, s ∈ L and I, J ∈ Id(A). Then(
(I → J)r�s

)
∗ ≤ (Ir)∗ ↪→ (Js)∗ and

(
(I  J)r(s

)
∗ ≤ (Ir)∗ # (Js)∗.
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Proof. Since
(
(I → J)r�s

)
∗ ⊗ (Ir)∗ =

[(
(I → J) � I

)
(r�s)	r

]
∗ ≤ (Js)∗, we

have
(
(I → J)r�s

)
∗ ≤ (Ir)∗ ↪→ (Js)∗. Similarly,

(
(I  J)r(s

)
∗ ≤ (Ir)∗ #

(Js)∗.

As the following example shows, the previous inequalities are not necessar-
ily equalities.

Example 3.1.17. Consider the ring Z6. Let L = {0, a, b, c, d, 1} be a
lattice such that 0 < a, b < c < 1 and 0 < b < d < 1; where, a, b and c, d are
incomparable, respectively. Define the binary operations 	 and � by the two
tables below:

	 0 a b c d 1

0 0 0 0 0 0 0

a 0 a 0 a 0 a

b 0 0 0 0 b b

c 0 a 0 a b c

d 0 0 b b d d

1 0 a b c d 1

� 0 a b c d 1

0 1 1 1 1 1 1

a d 1 d 1 d 1

b c c 1 1 1 1

c b c d 1 d 1

d a a c c 1 1

1 0 a b c d 1

.

Then L = (L; ∧, ∨, 	, �; 0, 1) is an MV -algebra (See, [34], Example 1.9.).
For any r ∈ {a, c, 1}, we have 1r ◦

(
(2Z

6Z)a
)
∗ �

(
(3Z

6Z)b
)
∗, since[

1r ◦
(
(2Z

6Z)a
)
∗

]
(2) = r 	

(
(2Z

6Z)a
)
∗(2) = r 	 a = a � 0 =

(
(3Z

6Z)b
)
∗(2).

For any r ∈ {b, d}, we have for each x ∈ Z6 \ {0},[
1r ◦

(
(2Z

6Z)a
)
∗

]
(x) = r 	

(
(2Z

6Z)a
)
∗(x) =

{
r 	 a if x ∈ {2, 4},
r 	 0 if x ∈ {1, 3, 5}.

= 0;

thus, 1r◦
(
(2Z

6Z)a
)
∗ ≤

(
(3Z

6Z)b
)
∗. So,

[(
(2Z

6Z)a
)
∗ ↪→

(
(3Z

6Z)b
)
∗

]
(1) =

∨
{0, b, d} = d.

Since
(
(2Z

6Z →
3Z
6Z)a�b

)
∗(1) =

(
(3Z

6Z)d
)
∗(1) = 0, we have

(
(2Z

6Z →
3Z
6Z)a�b

)
∗ <(

(2Z
6Z)a

)
∗ ↪→

(
(3Z

6Z)b
)
∗.

Theorem 3.1.18. The function φ : Id(A) → Fid(A, L), given by φ(I) = I1

for all I ∈ Id(A), is a complete residuated lattice embedding.

Proof. By Proposition 2.1.3 and the fact that

φ(I � J) = (I � J)1 = (I � J)1	1 = I1⊗ J1 = φ(I)⊗φ(J) for all I, J ∈ Id(A),

we only have to prove that φ preserves the residues. So, let I, J ∈ Id(A).
Let x 6∈ I → J . There is a ∈ I such that xa 6∈ J . For any r ∈ L such that
xr ◦ I1 ≤ J1, we have r = r 	 1 = xr(x) 	 I1(a) ≤ (xr ◦ I1)(xa) ≤ J1(xa) = 0

and, r = 0. Thus, (I1 ↪→ J1)(x) =
∨
{0} = 0. So, I1 ↪→ J1 ≤ (I → J)1 and,

(I → J)1 = I1 ↪→ J1. Hence, φ(I → J) = (I → J)1 = I1 ↪→ J1 = φ(I) ↪→
φ(J). A similar reasoning shows that φ(I  J) = φ(I)# φ(J). Therefore, φ
is a complete residuated lattice embedding of Id(A) into Fid(A, L).
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Theorem 3.1.19. The function ψ : L→ Fid(A, L), given by ψ(r) = (r)∗ for
all r ∈ L, is a complete residuated lattice embedding.

Proof. By Proposition 2.1.4 and the fact that for any r, s ∈ L, we have

ψ(r	s) =
(
Ar	s

)
∗ =

(
(A�A)r	s

)
∗ = (Ar)∗⊗(As)∗ = (r)∗⊗(s)∗ = ψ(r)⊗ψ(s),

we only have to prove that ψ preserves the residues. So, let r, s ∈ L. Let x 6= 0

in A. For any t ∈ L such that xt ◦ (r)∗ ≤ (s)∗, we have

t	 r = xt(x)	 (r)∗(1) ≤
(
xt ◦ (r)∗

)
(x) ≤ (s)∗(x) = s and, t ≤ r � s.

Thus,
(
(r)∗ ↪→ (s)∗

)
(x) ≤ r � s = (r � s)∗(x). So, (r)∗ ↪→ (s)∗ ≤ (r � s)∗

and, (r � s)∗ = (r)∗ ↪→ (s)∗. Hence,

ψ(r � s) = (r � s)∗ = (r)∗ ↪→ (s)∗ = ψ(r) ↪→ ψ(s).

A similar reasoning shows that ψ(r ( s) = ψ(r) # ψ(s). Therefore, ψ is a
complete residuated lattice embedding of L into Fid(A, L).

Corollary 3.1.20. 1. Fid(A, L) is commutative iff so are L and Id(A).
2. Fid(A, L) is a Brouwerian algebra iff so are L and Id(A).

Proof. 1. Since L and Id(A) can be embedded into Fid(A, L), it is clear that
they are commutative when Fid(A, L) is commutative.
Conversely, assume that L and Id(A) are commutative. Let µ, ν ∈ Fid(A, L).

Let x ∈ A. Let a1, b1, . . . , an, bn ∈ A such that x =
n∑
i=1

aibi. For any 1 ≤ i ≤ n,

we have

aibi ∈ U
(
µ, µ(ai)

)
� U

(
ν, ν(bi)

)
= U

(
ν, ν(bi)

)
� U

(
µ, µ(ai)

)
;

thus, there are vi1, . . . , vimi ∈ U
(
ν, ν(bi)

)
and ui1, . . . , uimi ∈ U

(
µ, µ(ai)

)
such

that aibi =

mi∑
ki=1

vikiuiki . Since x =
n∑
i=1

mi∑
ki=1

vikiuiki , we have

(
ν ⊗ µ

)
(x) ≥

∧
1≤i≤n

∧
1≤ki≤mi

ν(viki)	 µ(uiki)

≥
∧

1≤i≤n

∧
1≤ki≤mi

ν(bi)	 µ(ai)

=
∧

1≤i≤n
ν(bi)	 µ(ai)

=
∧

1≤i≤n
µ(ai)	 ν(bi).

So,
(
ν⊗µ

)
(x) ≥

(
µ⊗ν

)
(x). It follows that µ⊗ν ≤ ν⊗µ. A similar reasoning

shows that ν ⊗ µ ≤ µ ⊗ ν. Hence, µ ⊗ ν = ν ⊗ µ. Therefore, Fid(A, L) is
commutative.
2. Since L and Id(A) can be embedded into Fid(A, L), it is clear that they
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are Brouwerian algebras when Fid(A, L) is a Brouwerian algebra.
Conversely, assume that L and Id(A) are Brouwerian algebras. Let x ∈ A.
Since x ∈ U

(
µ, µ(x)

)
= U

(
µ, µ(x)

)
� U

(
µ, µ(x)

)
, there are a1, b1, . . . , an, bn ∈

U
(
µ, µ(x)

)
such that x =

n∑
i=1

aibi; thus,

µ2(x) ≥
∧

1≤i≤n
µ(ai)	 µ(bi) ≥

∧
1≤i≤n

µ(x)	 µ(x) =
(
µ(x)

)2
= µ(x)

and, µ2(x) = µ(x). So, µ2 = µ. Hence, Fid(A, L) is a Brouwerian algebra.

Definition 3.1.21. (See, [39]) A ring A is called a Von Neumann Regular
ring (or V NR-ring for short) if for any x ∈ A, there is a ∈ A such that
x = xax.

Proposition 3.1.22. Suppose that A is a V NR-ring. If L is a Brouwerian
algebra, then Fid(A, L) is a Brouwerian algebra.

Proof. Assume that L is a Brouwerian algebra. Let µ, ν ∈ Fid(A, L). For any
x ∈ A, there is a ∈ A such that x = xax; thus,(

µ ∧ ν
)
(x) = µ(x) ∧ ν(x) ≤ µ(xa) ∧ ν(x) ≤

(
µ⊗ ν

)
(xax) =

(
µ⊗ ν

)
(x).

So, µ ∧ ν ≤ µ ⊗ ν and, µ ⊗ ν = µ ∧ ν. Hence, Fid(A, L) is a Brouwerian
algebra.

Theorem 3.1.23. Suppose that A is a commutative ring. Then Fid(A, L) is
a Brouwerian algebra if and only if A is a V NR-ring and L is a Brouwerian
algebra.

Proof. If Fid(A, L) is a Brouwerian algebra, then L and Id(A) are Brouwerian
algebras; thusA is a V NR-ring by Proposition 3.2. in [3] and L is a Brouwerian
algebra. The other direction follows immediately from Proposition 3.1.22.

3.2 Prime elements and filters of the set of L-
fuzzy ideals of a ring

3.2.1 Prime elements

Theorem 3.2.1. Prime elements (See, Definition 1.2.18) of Fid(A, L) are
exactly of the form P r, where r and P are prime elements of L and Id(A),
respectively.

Proof. (⇒) Let µ be a prime element of Fid(A, L). For any a, b 6∈ U(µ, 1), we
have
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Idg(a)0 ⊗ U(µ, 1)µ(a) ≤ Fidg
[
Idg(a)0 	 U(µ, 1)µ(a)

]
≤ Fidg(µ) = µ

Idg(b)0 ⊗ U(µ, 1)µ(b) ≤ Fidg
[
Idg(b)0 	 U(µ, 1)µ(b)

]
≤ Fidg(µ) = µ;

thus,

U(µ, 1)µ(a) ≤ µ and U(µ, 1)µ(b) ≤ µ;

so,

µ(a) = U(µ, 1)µ(a)(b) ≤ µ(b) and µ(b) = U(µ, 1)µ(b)(a) ≤ µ(a);

consequently, µ(a) = µ(b). Hence, µ = U(µ, 1)r for some r ∈ L.
Since µ 6= 1, we have r 6= 1 and U(µ, 1) 6= A.
For any t, s ∈ L such that t	 s ≤ r, we have

U(µ, 1)t ⊗ U(µ, 1)s ≤ Fidg
[
U(µ, 1)t 	 U(µ, 1)s

]
= Fidg

(
U(µ, 1)t	s

)
≤ Fidg

(
U(µ, 1)r

)
= U(µ, 1)r;

thus, U(µ, 1)t ≤ U(µ, 1)r or U(µ, 1)s ≤ U(µ, 1)r; i.e., t ≤ r or s ≤ r. Hence, r
is a prime element of L.
For any I, J ∈ Id(A) such that I � J ⊆ U(µ, 1), we have

I0 ⊗ J0 = (I � J)0 ≤ U(µ, 1)r = µ;

thus, I0 ≤ µ or J0 ≤ µ; so, I = U(I0, 1) ⊆ U(µ, 1) or J = U(J0, 1) ⊆ U(µ, 1).
Hence, U(µ, 1) is a prime element of Id(A).
(⇐) Let r and P be prime elements of L and Id(A), respectively. We have
P r 6= 1, since P 6= A and r 6= 1. Now, let ν and δ be two L-fuzzy ideals of A
such that ν ⊗ δ ≤ P r and ν � P r. Let y 6∈ P . Since there is x 6∈ P such that
ν(x) � r, we have Idg(x) * P and Idg(y) * P ; thus, Idg(x) � Idg(y) * P ;
so, there is u ∈ Idg(x)� Idg(y) such that u 6∈ P . Since there are a1, . . . , an ∈

Idg(x) and b1, . . . , bn ∈ Idg(y) such that u =
n∑
i=1

aibi, we have

ν(x)	 δ(y) ≤ ν(ai)	 δ(bi) for all 1 ≤ i ≤ n;

thus,

ν(x)	 δ(y) ≤
∧

1≤i≤n
ν(ai)	 δ(bi) ≤

(
ν ⊗ δ

)
(u) ≤ P r(u) = r

and, δ(y) ≤ r. So, δ ≤ P r. Hence, P r is a prime element of Fid(A, L).

Lemma 3.2.2. Let r ∈ L and P ∈ Id(A). Then
√
P r =

√
P
√
r
.
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Proof. If r = 1 or P = A, then
√
r = 1 or

√
P = A; thus,

√
P r = 1 =

√
P
√
r
.

Now, suppose that r 6= 1 and P 6= A.
Let x ∈

√
P . For any Qs ∈ Spec

(
Fid(A, L)

)
such that P r ≤ Qs, we have

x ∈ Q, since P = U(P r, 1) ⊆ U(Qs, 1) = Q and Q ∈ Spec
(
Id(A)

)
; thus,

Qs(x) = 1. So,
√
P r(x) =

∧
{1} = 1.

Let x 6∈
√
P . There is R ∈ Spec

(
Id(A)

)
such that P ⊆ R and x 6∈ R.

• For any t ∈ Spec(L) such that r ≤ t, we have Rt ∈ Spec
(
Fid(A, L)

)
and

P r ≤ Rt; thus,
√
P r(x) ≤ Rt(x) = t. So,

√
P r(x) ≤

√
r.

• For any Qs ∈ Spec
(
Fid(A, L)

)
such that P r ≤ Qs, we have

√
r ≤ s ≤ Qs(x),

since r ≤ s and s ∈ Spec(L). Thus,
√
r ≤
√
P r(x).

So,
√
P r(x) =

√
r. Hence,

√
P r =

√
P
√
r
.

Proposition 3.2.3. Let r ∈ L and P ∈ Id(A) such that
√
P r 6= 1. Then P r

is a primary element of Fid(A, L) if and only if r and P are primary elements
of L and Id(A), respectively.

Proof. (⇒) Assume that P r is a primary element of Fid(A, L). Since P r 6= 1,
we have r 6= 1 and P 6= A.
For any s, t ∈ L such that s 	 t ≤ r, we have P s ⊗ P t ≤ Fidg(P s 	 P t) =

Fidg(P s	t) = P s	t ≤ P r; thus, P s ≤ P r or P t ≤
√
P r =

√
P
√
r
; so, s ≤ r or

t ≤
√
r. Hence, r is a primary element of L.

For any I, J ∈ Id(A) such that I � J ⊆ P , we have I0 ⊗ J0 = (I � J)0 ≤ P r;
thus, I0 ≤ P r or J0 ≤

√
P r =

√
P
√
r
; so, I = U(I0, 1) ⊆ U(P r, 1) = P or

J = U(J0, 1) ⊆ U(
√
P
√
r
, 1) =

√
P .

Hence, P is a primary element of Id(A).
(⇐) Assume that r and P are primary elements of L and Id(A), respectively.
Let ν, δ ∈ Fid(A, L) such that ν ⊗ δ ≤ P r and ν � P r. Let y 6∈

√
P . Since

there is x 6∈ P such that ν(x) � r, we have Idg(x) * P and Idg(y) *
√
P ; thus,

Idg(x)� Idg(y) * P ; so, there is u ∈ Idg(x)� Idg(y) such that u 6∈ P . Since

there are a1, . . . , an ∈ Idg(x) and b1, . . . , bn ∈ Idg(y) such that u =
n∑
i=1

aibi,

we have ν(x) 	 δ(y) ≤
∧

1≤i≤n
ν(ai) 	 δ(bi) ≤

(
ν ⊗ δ

)
(u) ≤ P r(u) = r; thus,

δ(y) ≤
√
r =

√
P
√
r
(y). So, δ ≤

√
P
√
r

=
√
P r. Hence, P r is a primary

element of Fid(A, L).

Even though the elements of the form P r, where r and P are primary
elements of L and Id(A), are primary, they do not necessarily constitute the
complete list of primary elements of Fid(A, L) as the following example shows.

Example 3.2.4. Let L be the Łukasiewicz structure (See, Example 1.2.10).
Since Spec(L) = ∅, we have Spec

(
Fid(A, L)

)
= ∅ and, 1 is the only radical of

Fid(A, L). Hence, every proper element of Fid(A, L) is primary.
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3.2.2 Filters

Lemma 3.2.5. Let µ, ν ∈ Fid(A, L). Then U(µ, 1)� U(ν, 1) ⊆ U(µ⊗ ν, 1).

Proof. For any x ∈ U(µ, 1) � U(ν, 1), we have x =
n∑
i=1

aibi with ai ∈ U(µ, 1)

and bi ∈ U(ν, 1) for all 1 ≤ i ≤ n; thus,
(
µ ⊗ ν

)
(x) ≥

∧
1≤i≤n

µ(ai) 	 ν(bi) =∧
1≤i≤n

1	1 = 1 and, x ∈ U(µ⊗ν, 1). Hence, U(µ, 1)�U(ν, 1) ⊆ U(µ⊗ν, 1).

Proposition 3.2.6. Let ∅ 6= F ⊆ Id(A). Then F is a filter (See, Definition
1.2.27) of Id(A) if and only if Ḟ := {µ ∈ Fid(A, L) : U(µ, 1) ∈ F} is a filter
of Fid(A, L).

Proof. Assume that F is a filter of Id(A).
• For any µ, ν ∈ Ḟ , we have U(µ, 1) � U(ν, 1) ∈ F and U(µ, 1) � U(ν, 1) ⊆
U(µ⊗ ν, 1); thus, U(µ⊗ ν, 1) ∈ F and, µ⊗ ν ∈ Ḟ .
• For any µ, ν ∈ Fid(A, L) such that µ ∈ Ḟ and µ ≤ ν, we have U(µ, 1) ∈ F
and U(µ, 1) ⊆ U(ν, 1); thus, U(ν, 1) ∈ F and, µ ∈ Ḟ . Hence, Ḟ is a filter of
Fid(A, L).
Conversely, assume that Ḟ is a filter of Fid(A, L). For any I, J ∈ F , we have
I1, J1 ∈ Ḟ ; thus, (I � J)1 = I1 ⊗ J1 ∈ Ḟ ; so, I � J = U

(
(I � J)1, 1

)
∈ F . For

any I, J ∈ Id(A) such that I ∈ F and I ⊆ J , we have I1 ∈ Ḟ and I1 ≤ J1;
thus, J1 ∈ Ḟ ; so, J = U(J1, 1) ∈ F . Hence, F is a filter of Id(A).

Theorem 3.2.7. The function φ : Fil
(
Id(A)

)
→ Fil

(
Fid(A, L)

)
, given by

φ(F ) = Ḟ for all F ∈ Fil
(
Id(A)

)
, is a complete lattice embedding.

Proof. For any F,G ∈ Fil
(
Id(A)

)
such that φ(F ) = φ(G), we have I ∈ F

iff I1 ∈ Ḟ iff I1 ∈ Ġ iff I ∈ G, for all I ∈ Id(A); thus, F = G. Hence, φ is
one-to-one. Now, let {Fλ}λ∈Λ ⊆ Fil

(
Id(A)

)
. Clearly, φ(

⋂
λ∈Λ

Fλ) =
⋂
λ∈Λ

φ(Fλ).

We next show that φ(
⊔
λ∈Λ

Fλ) =
⊔
λ∈Λ

φ(Fλ).

Let µ ∈ φ(
⊔
λ∈Λ

Fλ). Since U(µ, 1) ∈
⊔
λ∈Λ

Fλ, there are I1, . . . , In ∈
⋃
λ∈Λ

Fλ such

that I1 � I2 � . . .� In ⊆ U(µ, 1); thus,

(I1)1⊗. . .⊗(In)1 = (I1�I2�. . .�In)1	...	1 = (I1�I2�. . .�In)1 ≤ U(µ, 1)1 ≤ µ.

Since U
(
(Ii)1, 1

)
= Ii for all 1 ≤ i ≤ n, we have (I1)1, . . . , (In)1 ∈

⋃
λ∈Λ

φ(Fλ);

thus, µ ∈
⊔
λ∈Λ

φ(Fλ). So, φ(
⊔
λ∈Λ

Fλ) ⊆
⊔
λ∈Λ

φ(Fλ) and, φ(
⊔
λ∈Λ

Fλ) =
⊔
λ∈Λ

φ(Fλ), since

φ is order-preserving. Hence, φ is a complete lattice embedding of the lattice
of Fil

(
Id(A)

)
into the lattice of Fil

(
Fid(A, L)

)
.

Corollary 3.2.8.
1. For any F,G ∈ Fil

(
Id(A)

)
, we have φ(F ⇒ G) ⊆ φ(F )⇒ φ(G).
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2. If L \ {1} has a maximum, then φ is an embedding of Fil
(
Id(A)

)
into

Fil
(
Fid(A, L)

)
.

Proof. 1. Let F,G ∈ Fil
(
Id(A)

)
. Since φ is order-preserving, we have

φ(F ⇒ G) ∩ φ(F ) = φ
(
(F ⇒ G) ∩ F

)
⊆ φ(G);

thus, φ(F ⇒ G) ⊆ φ(F )⇒ φ(G).
2. Assume that L \ {1} has a maximum p. Let F,G ∈ Fil

(
Id(A)

)
. Let

µ ∈ φ(F ) ⇒ φ(G). Let I ∈
[
U(µ, 1)

)
∩ F . Since U(Ip, 1) = I ∈ F , we have

Ip ∈ φ(F ). We next show that Ip ∈ [µ).
Since I ∈

[
U(µ, 1)

)
, there is n ≥ 1 such that U(µ, 1)n ⊆ I. Now, let x 6∈ I.

For any a1, . . . , an ∈ A such that x = a1 . . . an, there is 1 ≤ i0 ≤ n such that
ai0 6∈ U(µ, 1); thus, µ(a1)	 . . .	 µ(an) ≤ µ(ai0) ≤ p. So,

(
µ ◦ . . . ◦ µ︸ ︷︷ ︸
n times

)
(x) ≤ p.

It follows that µ ◦ . . . ◦ µ︸ ︷︷ ︸
n times

≤ Ip; i.e., µn ≤ Ip. Consequently, Ip ∈ [µ).

Since Ip ∈ [µ) ∩ φ(F ), we have Ip ∈ φ(G); thus, U(Ip, 1) ∈ G; i.e., I ∈ G. So,[
U(µ, 1)

)
∩ F ⊆ G; i.e., U(µ, 1) ∈ F ⇒ G; i.e., µ ∈ φ(F ⇒ G). Hence,

φ(F )⇒ φ(G) ⊆ φ(F ⇒ G) and, φ(F ⇒ G) = φ(F )⇒ φ(G).

Therefore, φ is an embedding of Fil
(
Id(A)

)
into Fil

(
Fid(A, L)

)
.

Proposition 3.2.9. Let ∅ 6= F ⊆ L. Then F is a filter of L if and only if
F ′ := {µ ∈ Fid(A, L) : Im(µ) ⊆ F} is a filter of Fid(A, L).

Proof. Assume that F is a filter of L.
• Let µ, ν ∈ F ′. Let x ∈ A. Since µ(x) ∈ Im(µ) ⊆ F and ν(1) ∈ Im(ν) ⊆ F ,
we have µ(x)	ν(1) ∈ F ; thus,

(
µ⊗ν

)
(x) ∈ F , since µ(x)	ν(1) ≤

(
µ⊗ν

)
(x).

So, Im(µ⊗ ν) ⊆ F and, µ⊗ ν ∈ F ′.
• Let µ, ν ∈ Fid(A, L) such that µ ∈ F ′ and µ ≤ ν. For any x ∈ A, we have
µ(x) ≤ ν(x) and µ(x) ∈ F ; thus, ν(x) ∈ F . So, Im(ν) ⊆ F and, ν ∈ F ′.
Hence, F ′ is a filter of Fid(A, L).
Conversely, assume that F ′ is a filter of Fid(A, L). For any r, s ∈ F , we have
(r)∗, (s)∗ ∈ F ′; thus, (r 	 s)∗ = (r)∗ ⊗ (s)∗ ∈ F ′; so, Im

(
(r 	 s)∗

)
⊆ F and,

r 	 s ∈ F . For any r, s ∈ L such that r ∈ F and r ≤ s, we have (r)∗ ≤ (s)∗
and (r)∗ ∈ F ′; thus, (s)∗ ∈ F ′; so, Im

(
(s)∗

)
⊆ F and, s ∈ F . Hence, F is a

filter of L.

Theorem 3.2.10. Suppose that A or L is finite. Then the function
ψ : Fil(L) → Fil

(
Fid(A, L)

)
, given by ψ(F ) = F ′ for all F ∈ Fil(L), is a

complete lattice embedding.

Proof. For any F,G ∈ Fil(L) such that ψ(F ) = ψ(G), we have r ∈ F iff
(r)∗ ∈ F ′ iff (r)∗ ∈ G′ iff r ∈ G, for all r ∈ L; thus, F = G. Hence, ψ is
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one-to-one. Now, let {Fλ}λ∈Λ ⊆ Fil(L). Clearly, ψ(
⋂
λ∈Λ

Fλ) =
⋂
λ∈Λ

ψ(Fλ). We

next show that ψ(
⊔
λ∈Λ

Fλ) =
⊔
λ∈Λ

ψ(Fλ).

Let µ ∈ ψ(
⊔
λ∈Λ

Fλ). Let r1, . . . , rp ∈ L such that Im(µ) = {r1, . . . , rp}.

Since r1, . . . , rp ∈
⊔
λ∈Λ

Fλ, there are r1
1, . . . , r

n1
1 , . . . , r1

p, . . . , r
np
p ∈

⋃
λ∈Λ

Fλ such

that r1
1 	 . . .	 r

n1
1 ≤ r1, . . . , r

1
p 	 . . .	 r

np
p ≤ rp; thus,⊗

1≤i≤p
(r1
i )∗ ⊗ . . .⊗ (rnii )∗ = (r1

1 	 . . .	 r
n1
1 	 . . .	 r1

p 	 . . .	 r
np
p )∗ ≤ µ.

Since (r1
1)∗, . . . , (r

n1
1 )∗, . . . , (r

1
p)∗, . . . , (r

np
p )∗ ∈

⋃
λ∈Λ

ψ(Fλ), we have µ ∈
⊔
λ∈Λ

ψ(Fλ).

So, ψ(
⊔
λ∈Λ

Fλ) ⊆
⊔
λ∈Λ

ψ(Fλ) and, ψ(
⊔
λ∈Λ

Fλ) =
⊔
λ∈Λ

ψ(Fλ), since ψ is order-preserving.

Hence, ψ is a complete lattice embedding of the lattice of Fil(L) into the lattice
of Fil

(
Fid(A, L)

)
.

3.3 Rings and MV -algebras

3.3.1 Rings and Boolean algebras

The left and right annihilators in Fid(A, L) of an L-fuzzy ideal µ of A will be
denoted by µ− and µ∼, respectively; i.e., µ− = µ ↪→ χ0 and µ∼ = µ# χ0.

Proposition 3.3.1. Let I be a proper ideal of A and r, s ∈ L such that r ≤ s.
Then

(
(Isr )∗

)−
=
(
(I−)rs

)
∗ and

(
(Isr )∗

)∼
=
(
(I∼)r̃s̃

)
∗; where, I

− and I∼ denote
the left and right annihilator of I in Id(A), respectively.

Proof. We first show that
(
(Isr )∗

)−
=
(
(I−)rs

)
∗.

• Let x ∈ I− \ {0}. For any t ∈ L such that xt ◦ (Isr )∗ ≤ χ0, we have

t	 r = xt(x)	 (Isr )∗(1) ≤
(
xt ◦ (Isr )∗

)
(x) ≤ χ0(x) = 0;

thus, t ≤ r. So,
(
(Isr )∗

)−
(x) ≤ r. Now, let a 6= 0 in A. For any v ∈ A such

that a = xv, we have v 6∈ I; thus, r 	 (Isr )∗(v) = r 	 r = 0. So,(
xr ◦ (Isr )∗

)
(a) =

∨
{0} = 0.

It follows that

xr ◦ (Isr )∗ ≤ χ0 and, r ≤
(
(Isr )∗

)−
(x).

Consequently,
(
(Isr )∗

)−
(x) = r.

• Let x 6∈ I−. For any t ∈ L such that xt ◦ (Isr )∗ ≤ χ0, we have

t	 s = xt(x)	 (Isr )∗(v) ≤
(
xt ◦ (Isr )∗

)
(xv) ≤ χ0(xv) = 0

for some v ∈ I such that xv 6= 0; thus, t ≤ s. So,
(
(Isr )∗

)−
(x) ≤ s. Now, let

a 6= 0 in A. For any v ∈ A such that a = xv, we have
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s	 (Isr )∗(v) =

{
s	 s if v ∈ I
s	 r if v 6∈ I

≤ s	 s = 0;

thus, s	 (Isr )∗(v) = 0. So,(
xs ◦ (Isr )∗

)
(a) =

∨
{0} = 0.

It follows that

xs ◦ (Isr )∗ ≤ χ0 and, s ≤
(
(Isr )∗

)−
(x).

Consequently,
(
(Isr )∗

)−
(x) = s.

Hence,
(
(Isr )∗

)−
=
(
(I−)rs

)
∗ and,

(
(Isr )∗

)∼
=
(
(I∼)r̃s̃

)
∗ by similar arguments.

Lemma 3.3.2. Suppose that L and Id(A) are Boolean algebras. Then for any
r ∈ L and I ∈ Id(A), we have (Ir)∗ +

(
(Ir)∗

)−
= 1.

Proof. Let r ∈ L and I ∈ Id(A). For any x ∈ I−, we have[
(Ir)∗ +

(
(Ir)∗

)−]
(x) ≥

(
(Ir)∗

)−
(x) = (I−)r(x) = 1

and, [
(Ir)∗ +

(
(Ir)∗

)−]
(x) = 1.

Now, let x 6∈ I−.
• If x ∈ I, then[

(Ir)∗ +
(
(Ir)∗

)−]
(x) ≥ (Ir)∗(x) ∨

(
(Ir)∗

)−
(x)

= (Ir)∗(x) ∨ (I−)r(x)

= r ∨ r

= 1;

thus,
[
(Ir)∗ +

(
(Ir)∗

)−]
(x) = 1.

• If x 6∈ I, then x = a+ b for some a ∈ I \ {0} and b ∈ I− \ {0}; thus,[
(Ir)∗ +

(
(Ir)∗

)−]
(x) ≥ (Ir)∗(a) ∧

(
(Ir)∗

)−
(b)

= (Ir)∗(a) ∧ (I−)r(b)

= r ∧ 1

= r

and [
(Ir)∗ +

(
(Ir)∗

)−]
(x) ≥

(
(Ir)∗

)−
(x) = (I−)r(x) = r;
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so, [
(Ir)∗ +

(
(Ir)∗

)−]
(x) ≥ r ∨ r = 1 and,

[
(Ir)∗ +

(
(Ir)∗

)−]
(x) = 1.

Hence, (Ir)∗ +
(
(Ir)∗

)−
= 1.

Theorem 3.3.3. Fid(A, L) is a Boolean algebra if and only if so are L and
Id(A).

Proof. Since L and Id(A) can be embedded into Fid(A, L), it is clear that
they are Boolean algebras when Fid(A, L) is a Boolean algebra.
Conversely, assume that L and Id(A) are Boolean algebras. Let µ ∈ Fid(A, L).
Since Id(A) is finite (See, [21], Proposition 4.7.), there is a finite subset A of
A such that

µ− + µ =
[ ⊔
a∈A

(
Idg(a)µ(a)

)
∗

]−
+ µ

=
[ ⊔
a∈A

(
Idg(a)µ(a)

)
∗

]−
+ µ

=
[ ∧
a∈A

(
Idg(a)µ(a)

)−
∗

]
+ µ

=
∧
a∈A

[(
Idg(a)µ(a)

)−
∗ + µ

]
≥
∧
a∈A

[(
Idg(a)µ(a)

)−
∗ +

(
Idg(a)µ(a)

)
∗

]
=
∧
a∈A

1

= 1

and, µ− + µ = 1. Hence, Fid(A, L) is a Boolean algebra.

3.3.2 Łukasiewicz rings under an MV -algebra

Definition 3.3.4. A is called a Łukasiewicz ring under L if it satisfies the
following conditions for any µ, ν ∈ Fid(A, L):
(i)

(
(µ− ⊗ ν)− ⊗ µ−

)∼
= µ+ ν =

(
µ− ⊗ (ν ⊗ µ∼)−

)∼.
(ii) (µ− ⊗ ν−)∼ = (µ∼ ⊗ ν∼)−.

Theorem 3.3.5. The following are equivalent:
(1) A is a Łukasiewicz ring under L.
(2)M(A, L) :=

(
Fid(A, L); ⊕, ⊗; ∼, −; χ0, 1

)
, where µ⊕ ν = (ν−⊗ µ−)∼

for all µ, ν ∈ Fid(A, L), is an MV -algebra.

Proof. (1) ⇒ (2) Assume that A is a Łukasiewicz ring under L. By Propo-
sition 1.2.33, it suffices to show that

(
Fid(A, L); +, ⊗; ∼, −; χ0, 1

)
is a
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Łukasiewicz semi-ring. Since Fid(A, L) is a residuated lattice, it is clear that(
Fid(A, L); +, ⊗

)
is an additively idempotent semi-ring with χ0 as additive

identity and 1 as multiplicative identity. Furthermore, we have µ⊗ ν = χ0 iff
µ ≤ ν ↪→ χ0 = ν− iff ν ≤ µ # χ0 = µ∼ (for all µ, ν ∈ Fid(A, L)). Thus,
conditions (LS1) and (LS2)(i) of Proposition 1.2.31 are satisfied. Conditions
(LS2)(ii) and (LS2)(iii) are immediate consequences of Definition 3.3.4.
(2)⇒ (1) IfM(A, L) is anMV -algebra, then

(
Fid(A, L); +, ⊗; ∼, −; χ0, 1

)
is a Łukasiewicz semi-ring by Proposition 1.2.31; thus, A is a Łukasiewicz ring
under L by (LS2)(ii) and (LS2)(iii).

Proposition 3.3.6. Suppose that A is a Łukasiewicz ring under L. Then the
associated lattice ofM(A, L) is the complete lattice Fid(A, L).

Proof. Since
(
Fid(A, L); +, ⊗; ∼, −; χ0, 1

)
is a Łukasiewicz semi-ring, Re-

mark 1.2.32 shows that
(
Fid(A, L); u, +; χ0, 1

)
is a bounded lattice; where,

µuν = (µ−+ν−)∼ for all µ, ν ∈ Fid(A, L). Since Fid(A, L) is a residuated lat-
tice, for any µ, ν ∈ Fid(A, L), we have µuν = (µ−+ν−)∼ = µ−∼∧ν−∼ = µ∧ν.
Thus, u = ∧. Hence, the associated lattice ofM(A, L) is Fid(A, L).

Corollary 3.3.7. If A is a Łukasiewicz ring under L, then M(A, L) is a
commutative MV -algebra.

Proof. Straightforward, sinceM(A, L) is a complete MV -algebra.

Theorem 3.3.8. A is a Łukasiewicz ring under L if and only if the following
conditions are satisfied:
(CO) Fid(A, L) is a commutative residuated lattice.
(LR) For any µ, ν ∈ Fid(A, L), µ+ ν =

(
µ− ⊗ (ν ⊗ µ−)−

)−.
Proof. (⇒) If A is a Łukasiewicz ring under L, then ⊕ is commutative by
Corollary 3.3.7; thus, ⊗ is commutative; so, Fid(A, L) is commutative. Con-
dition (LR) is an immediate consequence of Definition 3.3.4.
(⇐) Assume that conditions (CO) and (LR) are satisfied. Since Fid(A, L) is
commutative, the unary operations − and ∼ are confused. Hence, conditions
(i) and (ii) of Definition 3.3.4 are satisfied.

If A is a Łukasiewicz ring under L, then L is an MV -algebra and A is
a usual Łukasiewicz ring (See, [21], Definition 3.2.), but the converse is not
necessarily true as the following example shows.

Example 3.3.9. Consider the MV -algebra L of Example 3.1.17 and the L-
fuzzy ideals µ and ν of the Łukasiewicz ring Z4 defined for any x ∈ Z

4Z by:

µ(x) =


1 if x = 0,
c if x = 2,

a if x ∈ {1, 3}.
and ν(x) =


1 if x = 0,
c if x = 2,

b if x ∈ {1, 3}.
. We have
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[
µ− ⊗ (ν ⊗ µ−)−

]−
=
[(

(2Z
4Z)ca

)−
∗ ⊗

[(
(2Z

4Z)cb
)
∗ ⊗

(
(2Z

4Z)ca
)−
∗

]−]−
=
[(

(2Z
4Z)db

)
∗ ⊗

[(
(2Z

4Z)cb
)
∗ ⊗

(
(2Z

4Z)db
)
∗

]−]−
=
[(

(2Z
4Z)db

)
∗ ⊗

[
[
(
(2Z

4Z)c
)
∗ + (b)∗]⊗ [

(
(2Z

4Z)d
)
∗ + (b)∗]

]−]−
=
[(

(2Z
4Z)db

)
∗ ⊗

[
χ0 +

(
(2Z

4Z)c	b
)
∗ +

(
(2Z

4Z)b	d
)
∗ + (b	 b)∗

]−]−
=
[(

(2Z
4Z)db

)
∗ ⊗

[
χ0 + χ0 +

(
(2Z

4Z)b
)
∗ + χ0

]−]−
=
[(

(2Z
4Z)db

)
∗ ⊗

(
(2Z

4Z)b
)−
∗

]−
=
[(

(2Z
4Z)db

)
∗ ⊗ (2Z

4Z)c
]−

=
[
[
(
(2Z

4Z)d
)
∗ + (b)∗]⊗ [(2Z

4Z)1 + (c)∗]
]−

=
[
χ0 +

(
(2Z

4Z)d	c
)
∗ +

(
(2Z

4Z)b	1

)
∗ + (b	 c)∗

]−
=
[
χ0 +

(
(2Z

4Z)b
)
∗ +

(
(2Z

4Z)b
)
∗ + χ0

]−
=
(
(2Z

4Z)b
)−
∗

= (2Z
4Z)c

> (c)∗

= µ+ ν.

Hence, Z4 is not a Łukasiewicz ring under L.

Proposition 3.3.10. If A is a field and L is an MV -algebra, then A is a
Łukasiewicz ring under L.

Proof. Let µ be an L-fuzzy ideal of A. For any x, y ∈ A \ {0}, we have

µ(x) = µ(yy−1x) ≥ µ(y) = µ(xx−1y) ≥ µ(x);

thus, µ(x) = µ(y). Hence, L-fuzzy ideals of A are only of the form (r)∗, where
r ∈ L.
Now, assume that A is a field and L is an MV -algebra.
(CO) Since Id(A) and L are commutative residuated lattices, Fid(A, L) is a
commutative residuated lattice.
(LR) For any r, s ∈ L, we have
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[
(r)−∗ ⊗

(
(s)∗ ⊗ (r)−∗

)−]−
=
[
(Ar)

−
∗ ⊗

(
(As)∗ ⊗ (Ar)

−
∗
)−]−

=
[
(Ar)∗ ⊗

(
(As)∗ ⊗ (Ar)∗

)−]−
=
[
(Ar)∗ ⊗

(
(As	r)∗

)−]−
=
[
(Ar)∗ ⊗ (As	r)∗

]−
=
[
(Ar	s	r)∗

]−
= (A

r	s	r)∗

= (Ar∨s)∗

= (Ar)∗ + (As)∗

= (r)∗ + (s)∗.

Hence, A is a Łukasiewicz ring under L.

Lemma 3.3.11. (See, [21], Proposition 4.7.) If A is a Łukasiewicz ring, then
Id(A) is finite.

Proposition 3.3.12. If A is a Łukasiewicz ring under L, then Fid(A, L) is
finite if and only if L is finite.

Proof. Assume that A is a Łukasiewicz ring under L. If Fid(A, L) is finite,
then L is finite, since L can be embedded into Fid(A, L). Conversely, assume
that L is finite. Let ρ be the map from Fid(A, L) to Id(A)L defined by:

ρ(µ)(r) = U(µ, r) for all µ ∈ Fid(A, L) and r ∈ L.

Let µ, ν ∈ Fid(A, L) such that ρ(µ) = ρ(ν). For any x ∈ A, we have

x ∈ U
(
µ, µ(x)

)
= ρ(µ)

(
µ(x)

)
= ρ(ν)

(
µ(x)

)
= U

(
ν, µ(x)

)
;

thus, ν(x) ≥ µ(x) and, µ(x) ≥ ν(x) by similar arguments; so, µ(x) = ν(x). It
follows that µ = ν. Consequently, ρ is one-to-one. Hence, Fid(A, L) is finite,
since Id(A)L is finite.

Definition 3.3.13. A is said to be special primary if it has a unique maximal
ideal M , and every proper ideal of A is a power of M .

Proposition 3.3.14. (See, [21], Proposition 4.1.) Every special primary ring
is a Łukasiewicz ring.

Theorem 3.3.15. (See, [21], Theorem 4.10.) A ring is a Łukasiewicz ring if
and only if it is isomorphic to a direct sum of special primary rings.

Corollary 3.3.16. A Łukasiewicz ring under L is isomorphic to a direct sum
of special primary rings.
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Chapter Four

Some properties of quotients
and images

In this chapter, unless otherwise specified, L := (L; ∧, ∨, 	, �, (; 0, 1)

is a complete meet-distributive residuated lattice (See, Definition 1.2.13), and
A is a unital ring with unity 1 (sometimes simply called ring).

In Section 4.1, L-fuzzy ideals of a quotient ring are characterized, and some
of their properties are investigated. In Sections 4.2 and 4.3, some functors from
the category of unital rings to the category of po-monoids are studied.

4.1 L-fuzzy ideals of quotients

Lemma 4.1.1. Let I ∈ Id(A) and µ ∈ Fid(A, L). The L-fuzzy subset µ
I
of

A
I
, given by

(
µ
I

)
(a
I
) =

∨
{µ(x) : x ∈ a

I
} for all a ∈ A, is an L-fuzzy ideal of A

I
.

Proof. Since 0 ∈ I, we have
(
µ
I

)
(I) =

(
µ
I

)
(0
I
) ≥ µ(0) = 1 and,

(
µ
I

)
(I) = 1.

Furthermore, for any a, b ∈ A, we have(
µ
I

)
(a
I
− b

I
) =

∨
{µ(u) : u ∈ a−b

I
}

≥
∨
{µ(x− y) : x ∈ a

I
and y ∈ b

I
}

≥
∨
{µ(x) ∧ µ(y) : x ∈ a

I
and y ∈ b

I
}

=
(
µ
I

)
(a
I
) ∧
(
µ
I

)
( b
I
)

and (
µ
I

)
(a
I
b
I
) =

∨
{µ(u) : u ∈ ab

I
}

≥
(∨
{µ(vb) : v ∈ a

I
}
)
∨
(∨
{µ(aw) : w ∈ b

I
}
)

≥
(∨
{µ(v) : v ∈ a

I
}
)
∨
(∨
{µ(w) : w ∈ b

I
}
)

=
(
µ
I

)
(a
I
) ∨
(
µ
I

)
( b
I
).
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Hence, µ
I
is an L-fuzzy ideal of A

I
.

For any r ∈ L and J ∈ Id(A) such that I ⊆ J , we have (Jr)∗
I

=
(
(J
I
)r
)
∗;

indeed,
• for any a

I
∈ J

I
\ {I}, we have a ∈ J \ I and,

( (Jr)∗
I

)
(a
I
) =

∨
{r} = r;

• for any a
I
6∈ J

I
, we have a 6∈ J and,

( (Jr)∗
I

)
(a
I
) =

∨
{0} = 0.

In particular, we have χJ
I

= χJ
I
for all J ∈ Id(A) such that I ⊆ J .

Lemma 4.1.2. Let I be an ideal of A and ν an L-fuzzy ideal of A
I
. Then the

L-fuzzy subset νI of A, given by νI(a) = ν(a
I
) for all a ∈ A, is an L-fuzzy ideal

of A.

Proof. We have νI(0) = ν(0
I
) = ν(I) = 1. For any a, b ∈ A, we have

νI(a− b) = ν(a−b
I

) = ν(a
I
− b

I
) ≥ ν(a

I
) ∧ ν( b

I
) = νI(a) ∧ νI(b)

and

νI(ab) = ν(ab
I

) = ν(a
I
b
I
) ≥ ν(a

I
) ∨ ν( b

I
) = νI(a) ∨ νI(b).

Hence, νI is an L-fuzzy ideal of A.

For any ideal I of A, define Fid(A, L, I) := {µ ∈ Fid(A, L) : I ⊆ U(µ, 1)}.

Lemma 4.1.3. Let a ∈ A, I ∈ Id(A) and µ ∈ Fid(A, L, I). Then the follow-
ing hold:
(a) For any x ∈ a

I
, we have µ(x) = µ(a).

(b)
(
µ
I

)
(a
I
) = µ(a).

Proof. (a) For any x ∈ a
I
, we have µ(x) = µ(x − a + a) ≥ µ(x − a) ∧ µ(a) =

1∧µ(a) ≥ µ(a−x+x) ≥ µ(a−x)∧µ(x) = 1∧µ(x) = µ(x) and, µ(x) = µ(a).
(b) We have

(
µ
I

)
(a
I
) =

∨
{µ(x) : x ∈ a

I
} =

∨
{µ(a)} = µ(a).

Theorem 4.1.4. Let I be an ideal of A. Then L-fuzzy ideals of A
I
are of the

form µ
I
, where µ ∈ Fid(A, L, I).

Proof. Consider the maps π : Fid(A, L, I) → Fid(A
I
, L) and τ : Fid(A

I
, L) →

Fid(A, L, I) defined by:

π(µ) = µ
I
for all µ ∈ Fid(A, L, I) and τ(ν) = νI for all ν ∈ Fid(A

I
, L).

• For any ν ∈ Fid(A
I
, L), we have νI(x) = ν(x

I
) = ν(I) = 1 for all x ∈ I; thus,

I ⊆ U(νI , 1); i.e., νI ∈ Fid(A, L, I). So, π and τ are well-defined.
• For any ν ∈ Fid(A

I
, L) and a ∈ A, we have(

π ◦ τ
)
(ν)(a

I
) =

∨
{νI(x) : x ∈ a

I
} =

∨
{ν(x

I
) : x ∈ a

I
} =

∨
{ν(a

I
)} = ν(a

I
).

Thus, π ◦ τ = IdFid(A
I
,L).

• For any µ ∈ Fid(A, L, I) and a ∈ A, we have
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(
τ ◦ π

)
(µ)(a) = τ

[
π(µ)

]
(a) = τ

(
µ
I

)
(a) =

(
µ
I

)
I
(a) =

(
µ
I

)
(a
I
) = µ(a).

Thus, τ ◦ π = IdFid(A,L,I).
Hence, the desired result follows.

Proposition 4.1.5. Let I ∈ Id(A) and {µλ}λ∈Λ ⊆ Fid(A, L, I). Then

(1)
∧
λ∈Λ

µλ ∈ Fid(A, L, I) and
∧
λ∈Λ

µλ
I

=

∧
λ∈Λ

µλ

I
.

(2)
⊔
λ∈Λ

µλ ∈ Fid(A, L, I) and
⊔
λ∈Λ

µλ
I

=

⊔
λ∈Λ

µλ

I
.

Proof. (1) Since I ⊆ U(µλ, 1) for all λ ∈ Λ, we have I ⊆
⋂
λ∈Λ

U(µλ, 1); i.e.,

I ⊆ U(
∧
λ∈Λ

µλ, 1); i.e.,
∧
λ∈Λ

µλ ∈ Fid(A, L, I).

For any a ∈ A, we have( ∧
λ∈Λ

µλ
I

)
(a
I
) =

∧
λ∈Λ

(
µλ
I

)
(a
I
) =

∧
λ∈Λ

µλ(a) =
( ∧
λ∈Λ

µλ
)
(a) =

( ∧
λ∈Λ

µλ

I

)
(a
I
).

Hence,
∧
λ∈Λ

µλ
I

=

∧
λ∈Λ

µλ

I
.

(2) Since I ⊆ U(µλ0 , 1) ⊆ U(
⊔
λ∈Λ

µλ, 1) for some λ0 ∈ Λ, we have
⊔
λ∈Λ

µλ ∈

Fid(A, L, I).

Since µλ ≤
⊔
λ∈Λ

µλ for all λ ∈ Λ, we have µλ
I
≤

⊔
λ∈Λ

µλ

I
for all λ ∈ Λ; i.e.,

⊔
λ∈Λ

µλ
I
≤

⊔
λ∈Λ

µλ

I
. Now, let x ∈ A. For any finite subset Ω of Λ and {aλ}λ∈Ω ⊆ A

such that x =
∑
λ∈Ω

aλ, we have

∧
λ∈Ω

µλ(aλ) =
∧
λ∈Ω

(
µλ
I

)
(aλ
I

) ≤
( ⊔
λ∈Λ

µλ
I

)
(
∑
λ∈Ω

aλ
I

) =
( ⊔
λ∈Λ

µλ
I

)
(

∑
λ∈Ω

aλ

I
) =

( ⊔
λ∈Λ

µλ
I

)
(x
I
).

Thus,
( ⊔
λ∈Λ

µλ

I

)
(x
I
) =

( ⊔
λ∈Λ

µλ
)
(x) ≤

( ⊔
λ∈Λ

µλ
I

)
(x
I
). So,

⊔
λ∈Λ

µλ

I
≤
⊔
λ∈Λ

µλ
I
. Hence,

⊔
λ∈Λ

µλ
I

=

⊔
λ∈Λ

µλ

I
.

Example 4.1.6. Let L = {0, a, b, c, d, 1} be a lattice such that 0 < a <

b, c < d < 1 and b, c are incomparable. Define the binary operations 	, �
and ( by the three tables below:

	 0 a b c d 1

0 0 0 0 0 0 0

a 0 0 a 0 a a

b 0 0 b 0 b b

c 0 a a c c c

d 0 a b c d d

1 0 a b c d 1

� 0 a b c d 1

0 1 1 1 1 1 1

a b 1 1 1 1 1

b 0 c 1 c 1 1

c b b b 1 1 1

d 0 a b c 1 1

1 0 a b c d 1
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( 0 a b c d 1

0 1 1 1 1 1 1

a c 1 1 1 1 1

b c c 1 c 1 1

c 0 b b 1 1 1

d 0 a b c 1 1

1 0 a b c d 1

.

Then L = (L; ∧, ∨, 	, �, (; 0, 1) is a complete meet-distributive residu-
ated lattice (See, [22], Example 9). Consider the L-fuzzy ideal µ of Z6 defined

by: µ(x) =


1 if x = 0,
c if x = 3,
a elsewhere.

for all x ∈ Z
6Z . We have

µ
2Z
6Z

=

(
(3Z

6Z)c
)
∗ +

(
( Z

6Z)a
)
∗

2Z
6Z

=

(
(3Z

6Z)c
)
∗

2Z
6Z

+

(
( Z

6Z)a
)
∗

2Z
6Z

=
(
(

3Z
6Z + 2Z

6Z
2Z
6Z

)c
)
∗ +

(
(
Z
6Z + 2Z

6Z
2Z
6Z

)a
)
∗

=
(
(
Z
2Z

)c
)
∗ +

(
(
Z
2Z

)a
)
∗

=
(
(
Z
2Z

)c
)
∗.

Proposition 4.1.7. Let I ∈ Id(A) and µ, ν ∈ Fid(A, L, I). Then
µ
I
⊗ ν

I
= µ⊗ν

I
.

Proof. Let x ∈ A. Let a ∈ x
I
. For any u1, v1, . . . , un, vn ∈ A such that

a =
n∑
i=1

uivi, we have

∧
1≤i≤n

µ(ui)	 ν(vi) =
∧

1≤i≤n

(
µ
I

)
(ui
I

)	
(
ν
I

)
(vi
I

)

≤
(
µ
I
⊗ ν

I

)( n∑
i=1

ui
I

vi
I

)
=
(
µ
I
⊗ ν

I

)
(a
I
)

=
(
µ
I
⊗ ν

I

)
(x
I
).

Thus,
(
µ⊗ ν

)
(a) ≤

(
µ
I
⊗ ν

I

)
(x
I
). So,

(
µ⊗ν
I

)
(x
I
) ≤

(
µ
I
⊗ ν

I

)
(x
I
).

Now, let a1, b1, . . . , an, bn ∈ A such that x
I

=
n∑
i=1

ai
I

bi
I
. For any u1 ∈ a1

I
, v1 ∈

b1
I
, . . . , un ∈ an

I
, vn ∈ bn

I
, we have
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n∑
i=1

uivi

I
=

n∑
i=1

ui
I

vi
I

=
n∑
i=1

ai
I

bi
I

=
x

I
and,

n∑
i=1

uivi ∈
x

I
;

thus, ∧
1≤i≤n

µ(ui)	 ν(vi) ≤
(
µ⊗ ν

)
(
n∑
i=1

uivi) ≤
(µ⊗ ν

I

)
(
x

I
).

So, ∧
1≤i≤n

(
µ
I

)
(ai
I

)	
(
ν
I

)
( bi
I

) ≤
(
µ⊗ν
I

)
(x
I
).

Consequently,
(
µ
I
⊗ ν

I

)
(x
I
) ≤

(
µ⊗ν
I

)
(x
I
) and,

(
µ
I
⊗ ν

I

)
(x
I
) =

(
µ⊗ν
I

)
(x
I
).

Hence, µ
I
⊗ ν

I
= µ⊗ν

I
.

Proposition 4.1.8. Let I ∈ Id(A) and µ, ν ∈ Fid(A, L, I). Then the follow-
ing hold:
(1) µ ↪→ ν, µ# ν ∈ Fid(A, L, I).
(2) µ

I
↪→ ν

I
= µ↪→ν

I
and µ

I
# ν

I
= µ#ν

I
.

(3) (µ
I
)− = µ↪→χI

I
and (µ

I
)∼ = µ#χI

I
.

Proof. (1) Since ν ≤ µ ↪→ ν, we have I ⊆ U(ν, 1) ⊆ U(µ ↪→ ν, 1) and,
µ ↪→ ν ∈ Fid(A, L, I). A similar reasoning shows that µ# ν ∈ Fid(A, L, I).
(2) Since µ↪→ν

I
⊗ µ

I
= (µ↪→ν)⊗µ

I
≤ ν

I
, we have µ↪→ν

I
≤ µ

I
↪→ ν

I
. Now, let a ∈ A.

Let r ∈ L such that (a
I
)r ◦ (µ

I
) ≤ ν

I
. Let x ∈ A. For any v ∈ A such that

x = av, we have

r 	 µ(v) = (a
I
)r(

a
I
)	 (µ

I
)(v
I
)

≤
(
(a
I
)r ◦ µI

)
(a
I
v
I
)

=
(
(a
I
)r ◦ µI

)
(x
I
)

≤
(
ν
I

)
(x
I
)

= ν(x).

Thus,
(
ar ◦ µ

)
(x) ≤ ν(x). So, ar ◦ µ ≤ ν and, r ≤

(
µ ↪→ ν

)
(a) =

(
µ↪→ν
I

)
(a
I
). It

follows that
(
µ
I
↪→ ν

I

)
(a
I
) ≤

(
µ↪→ν
I

)
(a
I
).

Hence, µ
I
↪→ ν

I
≤ µ↪→ν

I
and, µ↪→ν

I
= µ

I
↪→ ν

I
. A similar reasoning shows that

µ#ν
I

= µ
I
# ν

I
.

(3) We have (µ
I
)− = µ

I
↪→ χ{I} = µ

I
↪→ χ I

I
= µ

I
↪→ χI

I
= µ↪→χI

I
and, (µ

I
)∼ =

µ#χI
I

by similar arguments.
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Theorem 4.1.9. Id(A, I) := {J ∈ Id(A) : I ⊆ J} is a subresiduated lattice-
ordered monoid of I(A) if and only if Fid(A, L, I) is a subresiduated lattice-
ordered monoid of Fid(A, L).

Proof. It suffices to show that Id(A, I) is closed under � iff Fid(A, L, I) is
closed under ⊗.
Assume that Id(A, I) is closed under �. For any µ, ν ∈ Fid(A, L, I), we have
U(µ, 1), U(ν, 1) ∈ Id(A, I); thus, U(µ, 1)� U(ν, 1) ∈ Id(A, I); so,

I ⊆ U(µ, 1)� U(ν, 1) ⊆ U(µ⊗ ν, 1) and, µ⊗ ν ∈ Fid(A, L, I).

Conversely, assume that Fid(A, L, I) is closed under ⊗. For any J,K ∈
Id(A, I), we have χJ , χK ∈ Fid(A, L, I); thus, χJ ⊗ χK ∈ Fid(A, L, I); so,
I ⊆ U(χJ ⊗ χK , 1) = U(χJ�K , 1) = J �K and, J �K ∈ Id(A, I).

Lemma 4.1.10. Let r ∈ L, a ∈ A, I ∈ Id(A) and µ ∈ Fid(A, L). Then
(a) (a

I
)r ◦ µI ≤ χ{I} if and only if ar ◦ µ ≤ χI .

(b) (µ
I
) ◦ (a

I
)r ≤ χ{I} if and only if µ ◦ ar ≤ χI .

Proof. (a) Assume that (a
I
)r ◦ µ

I
≤ χ{I}. Let x 6∈ I. For any v ∈ A such that

x = av, we have r 	 µ(v) ≤ (a
I
)r(

a
I
)	 (µ

I
)(v
I
) ≤

(
(a
I
)r ◦ (µ

I
)
)
(x
I
) ≤ χ{I}(

x
I
) = 0

and, r 	 µ(v) = 0. Thus, (
ar ◦ µ

)
(x) =

∨
{0} = 0.

Hence, ar ◦ µ ≤ χI .
Conversely, assume that ar ◦ µ ≤ χI . We have(

(a
I
)r ◦ (µ

I
)
)
(I) ≤ 1 = χ{I}(I).

Now, let x 6∈ I. Let v ∈ A such that x
I

= a
I
v
I
. For any w ∈ v

I
, we have aw 6∈ I;

thus, r	µ(w) = ar(a)	µ(w) ≤
(
ar ◦µ

)
(aw) ≤ χI(aw) = 0 and, r	µ(w) = 0.

So,

r 	 (µ
I
)(v
I
) =

∨
{0} = 0.

It follows that (
(a
I
)r ◦ (µ

I
)
)
(x
I
) =

∨
{0} = 0 = χ{I}(

x
I
).

Hence, (a
I
)r ◦ (µ

I
) ≤ χ{I}.

(b) Similar to (a).

Lemma 4.1.11. Suppose that L is product-distributive (See, Definition 1.2.15)
and xJ ∈ Id(A) for all x ∈ A and J ∈ Id(A). Let r ∈ L, a ∈ A, I ∈ Id(A)

and µ, ν ∈ Fid(A, L). Then the following hold:
(a) (ar)∗ ◦ µ and µ ◦ (ar)∗ are L-fuzzy ideals of A.
(b) (ar)∗ ◦ (µ⊗ ν) =

(
(ar)∗ ◦ µ

)
⊗ ν and (µ⊗ ν) ◦ (ar)∗ = µ⊗

(
ν ◦ (ar)∗

)
.

(c) If I∼− = I (resp., I−∼ = I), then
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(µ
I
)−(a

I
) = (µ⊗ χI∼)−(a) (resp., (µ

I
)∼(a

I
) = (χI− ⊗ µ)∼(a)).

Proof. (a)
(
(ar)∗ ◦µ

)
(0) ≥ (ar)∗(0)	µ(0) = 1	1 = 1 and,

(
(ar)∗ ◦µ

)
(0) = 1.

Now, let x, y ∈ A.
Let u1, v1, u2, v2 ∈ A such that x = u1v1 and y = u2v2. Set

Γ(u, v) :=
(
(ar)∗(u1)	 µ(v1)

)
∧
(
(ar)∗(u2)	 µ(v2)

)
.

• If u1 6∈ {0, a} or u2 6∈ {0, a}, then (ar)∗(u1) = 0 or (ar)∗(u2) = 0; thus,

Γ(u, v) = 0 ≤
(
(ar)∗ ◦ µ

)
(x− y).

• If u1 = 0 and u2 = 0, then

Γ(u, v) ≤ 1 =
(
(ar)∗ ◦ µ

)
(0) =

(
(ar)∗ ◦ µ

)
(x− y).

• If u1 = a and u2 = 0, then

Γ(u, v) ≤ (ar)∗(a)	 µ(v1) ≤
(
(ar)∗ ◦ µ

)
(av1) =

(
(ar)∗ ◦ µ

)
(x− y).

• If u1 = a and u2 = a, then

Γ(u, v) =
(
r 	 µ(v1)

)
∧
(
r 	 µ(v2)

)
= r 	

(
µ(v1) ∧ µ(v2)

)
≤ r 	 µ(v1 − v2)

= (ar)∗(a)	 µ(v1 − v2)

≤
(
(ar)∗ ◦ µ

)(
a(v1 − v2)

)
=
(
(ar)∗ ◦ µ

)
(x− y).

• If u1 = 0 and u2 = a, then

Γ(u, v) ≤ (ar)∗(a)	 µ(−v2) ≤
(
(ar)∗ ◦ µ

)(
− av2

)
=
(
(ar)∗ ◦ µ

)
(x− y).

It follows that
(
(ar)∗ ◦ µ

)
(x− y) ≥

(
(ar)∗ ◦ µ

)
(x) ∧

(
(ar)∗ ◦ µ

)
(y).

• For any u, v ∈ A such that x = uv, we have

(ar)∗(u)	 µ(v) ≤ (ar)∗(u)	 µ(vy) ≤
(
(ar)∗ ◦ µ

)(
u(vy)

)
=
(
(ar)∗ ◦ µ

)
(xy).

Thus, (
(ar)∗ ◦ µ

)
(x) ≤

(
(ar)∗ ◦ µ

)
(xy).

• For any u, v ∈ A such that y = uv, we have

xy = xuv ∈ x
[
uU
(
µ, µ(v)

)]
⊆ uU

(
µ, µ(v)

)
and, xy = uc for some c ∈ U

(
µ, µ(v)

)
; thus,

(ar)∗(u)	 µ(v) ≤ (ar)∗(u)	 µ(c) ≤
(
(ar)∗ ◦ µ

)
(uc) =

(
(ar)∗ ◦ µ

)
(xy).
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Thus, (
(ar)∗ ◦ µ

)
(y) ≤

(
(ar)∗ ◦ µ

)
(xy).

So,
(
(ar)∗ ◦ µ

)
(xy) ≥

(
(ar)∗ ◦ µ

)
(x) ∨

(
(ar)∗ ◦ µ

)
(y).

Hence, (ar)∗ ◦ µ is an L-fuzzy ideal of A. A similar reasoning shows that
µ ◦ (ar)∗ is an L-fuzzy ideal of A.
(b) Let x ∈ A. Let u, v ∈ A such that x = uv. For any b1, c1, . . . , bn, cn ∈ A

such that v =
n∑
i=1

bici, we have
n∑
i=1

(ubi)ci = u

n∑
i=1

bici = uv = x and,

(ar)∗(u)	
∧

1≤i≤n
µ(bi)	 ν(ci) =

∧
1≤i≤n

(
(ar)∗(u)	 µ(bi)

)
	 ν(ci)

≤
∧

1≤i≤n

(
(ar)∗ ◦ µ

)
(ubi)	 ν(ci)

≤
[(

(ar)∗ ◦ µ
)
⊗ ν
]
(x).

Thus, (ar)∗(u)	
(
µ⊗ ν

)
(v) ≤

[(
(ar)∗ ◦ µ

)
⊗ ν
]
(x). So,

[
(ar)∗ ◦ (µ⊗ ν)

]
(x) ≤[(

(ar)∗ ◦µ
)
⊗ν
]
(x). Now, let u1, v1, . . . , un, vn ∈ A such that x =

n∑
i=1

uivi. Let

w1, z1, . . . , wn, zn ∈ A such that u1 = w1z1, . . . , un = wnzn.
• If there is 1 ≤ i0 ≤ n such that wi0 6∈ {0, a}, then (ar)∗(wi0) = 0 and,∧

1≤i≤n

(
(ar)∗(wi)	 µ(zi)

)
	 ν(vi) = 0 ≤

[
(ar)∗ ◦ (µ⊗ ν)

]
(x).

• If there are i1, . . . , ip ∈ {1, . . . , n} such that wik = a for all 1 ≤ k ≤ p and

wj = 0 for all j ∈ {1, . . . , n} \ {i1, . . . , ip}, then x = a
( p∑
k=1

zikvik
)
and,

∧
1≤i≤n

(
(ar)∗(wi)	 µ(zi)

)
	 ν(vi) ≤

∧
1≤k≤p

(
(ar)∗(wik)	 µ(zik)

)
	 ν(vik)

=
∧

1≤k≤p

(
(ar)∗(a)	 µ(zik)

)
	 ν(vik)

= (ar)∗(a)	
( ∧

1≤k≤p
µ(zik)	 ν(vik)

)
≤ (ar)∗(a)	

(
µ⊗ ν

)( p∑
k=1

zikvik
)

≤
[
(ar)∗ ◦ (µ⊗ ν)

]
(x).

It follows that
∧

1≤i≤n

(
(ar)∗ ◦µ

)
(ui)	ν(vi) ≤

[
(ar)∗ ◦ (µ⊗ν)

]
(x). Consequently,[(

(ar)∗ ◦ µ
)
⊗ ν
]
(x) ≤

[
(ar)∗ ◦ (µ⊗ ν)

]
(x) and,[

(ar)∗ ◦ (µ⊗ ν)
]
(x) =

[(
(ar)∗ ◦ µ

)
⊗ ν
]
(x).
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Hence, (ar)∗ ◦ (µ ⊗ ν) =
(
(ar)∗ ◦ µ

)
⊗ ν. A similar reasoning shows that

(µ⊗ ν) ◦ (ar)∗ = µ⊗
(
ν ◦ (ar)∗

)
.

(c) Assume that I∼− = I. Since χI ⊗ (χI)
∼ = χ0 and

(
(χI)

∼)− = χI , we have(
µ
I

)−
(a
I
) =

∨
{r ∈ L : (a

I
)r ◦ (µ

I
) ≤ χ{I}}

=
∨
{r ∈ L : ar ◦ µ ≤ χI}

=
∨
{r ∈ L : (ar)∗ ◦ µ ≤ χI}

=
∨
{r ∈ L :

(
(ar)∗ ◦ µ

)
⊗ (χI)

∼ ≤ χ0}

=
∨
{r ∈ L : (ar)∗ ◦

(
µ⊗ (χI)

∼) ≤ χ0}

=
∨
{r ∈ L : ar ◦

(
µ⊗ (χI)

∼) ≤ χ0}

=
(
µ⊗ (χI)

∼)−(a)

=
(
µ⊗ χI∼

)−
(a).

A similar reasoning shows the second implication.

As the following example shows, the result (a) of the previous Lemma is
not true in general.

Example 4.1.12. Let L be the residuated lattice of Example 1.2.17 and µ the

L-fuzzy ideal of Z12 defined by: µ(x) =



1 if x = 0,
a if x = 6,

b if x ∈ {4, 8},
n if x ∈ {2, 10},

0 if not.

for all x ∈ Z12.

(7m)∗ ◦ µ is not an L-fuzzy ideal of Z12, since(
(7m)∗ ◦ µ

)
(6− 4) =

(
(7m)∗ ◦ µ

)
(2) =

∨
{m	 µ(2)} = m	 n

= 0

� n

= a ∧ b

= (m	 a) ∧ (m	 b)

=
(∨
{m	 µ(6)}

)
∧
(∨
{m	 µ(4)}

)
=
(
(7m)∗ ◦ µ

)
(6) ∧

(
(7m)∗ ◦ µ

)
(4).

Proposition 4.1.13. Suppose that L is product-distributive and xJ ∈ Id(A)

for all x ∈ A and J ∈ Id(A). Let I ∈ Id(A) and µ ∈ Fid(A, L, I). Then the
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following hold:
(1) (µ⊗ χI∼)−, (χI− ⊗ µ)∼ ∈ Fid(A, L, I).
(2) If I∼− = I (resp., I−∼ = I), then

(µ
I
)− = (µ⊗χI∼ )−

I
(resp., (µ

I
)∼ =

(χI−⊗µ)∼

I
).

Proof. (1) Since µ⊗ χI∼ ≤ χI∼ = (χI)
∼, we have χI ≤ (χI)

∼− ≤ (µ⊗ χI∼)−;
thus, I = U(χI , 1) ⊆ U

(
(µ ⊗ χI∼)−, 1

)
and, (µ ⊗ χI∼)− ∈ Fid(A, L, I). A

similar reasoning shows that (χI− ⊗ µ)∼ ∈ Fid(A, L, I).
(2) Assume that I∼− = I. For any a ∈ A, we have(

(µ⊗χI∼ )−

I

)
(a
I
) = (µ⊗ χI∼)−(a) = (µ

I
)−(a

I
).

Hence, (µ
I
)− = (µ⊗χI∼ )−

I
. A similar reasoning shows the second implication.

4.2 L-preimage functor

Let Ring be the subcategory of the category of rings, with unital rings as
objects and homomorphisms of unital rings as arrows.

Lemma 4.2.1. Let A f−→ B in Ring. The arrow Fid(B, L)
Fid−1

L (f)
−→ Fid(A, L),

given by Fid−1
L (f)(µ) = µ ◦ f for all µ ∈ Fid(B, L), is well-defined.

Proof. Let µ ∈ Fid(B, L). We have

Fid−1
L (f)(µ)(0A) = µ

(
f(0A)

)
= µ(0B) = 1.

For any a, b ∈ A, we have

Fid−1
L (f)(µ)(a− b) = µ

(
f(a− b)

)
= µ

(
f(a)− f(b)

)
≥ µ

(
f(a)

)
∧ µ
(
f(b)

)
= Fid−1

L (f)(µ)(a) ∧ Fid−1
L (f)(µ)(b)

Fid−1
L (f)(µ)(ab) = µ

(
f(ab)

)
= µ

(
f(a)f(b)

)
≥ µ

(
f(a)

)
∨ µ
(
f(b)

)
= Fid−1

L (f)(µ)(a) ∨ Fid−1
L (f)(µ)(b).

Hence, Fid−1
L (f)(µ) is an L-fuzzy ideal of A.
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Lemma 4.2.2. (a) For any A in Ring, Fid−1
L (IdA) = IdFid(A,L).

(b) For any A f−→ B and B g−→ C in Ring, Fid−1
L (g◦f) = Fid−1

L (f)◦Fid−1
L (g).

Proof. (a) Let A in Ring. For any µ ∈ Fid(A, L), we have

Fid−1
L (IdA)(µ)(x) = µ

(
IdA(x)

)
= µ(x) for all x ∈ A;

thus, Fid−1
L (IdA)(µ) = µ. So, Fid−1

L (IdA) = IdFid(A,L).
(b) Let A f−→ B and B g−→ C in Ring. For any µ ∈ Fid(C, L), we have[

Fid−1
L (f) ◦ Fid−1

L (g)
]
(µ) = Fid−1

L (g)(µ) ◦ f

= (µ ◦ g) ◦ f

= µ ◦ (g ◦ f)

= Fid−1
L (g ◦ f)(µ).

Hence, Fid−1
L (g ◦ f) = Fid−1

L (f) ◦ Fid−1
L (g).

Definition 4.2.3. [26] A function σ : L1 → L2 from a lattice-ordered monoid
to a lattice-ordered monoid is said to be submultiplicative if σ(e1) = e2 and
σ(x)	 σ(y) ≤ σ(x	 y) for all x, y ∈ L1.

Theorem 4.2.4. Fid−1
L is a contravariant functor, called L-preimage functor,

from Ring to the category PoMod, whose objects are partially ordered monoids
and arrows are submultiplicative order-preserving functions.

Proof. From the above lemmas, it suffices to show that Fid−1
L is well-defined.

So, let A f−→ B in Ring. It is easy to check that Fid−1
L (f) is order-preserving.

Since Fid−1
L (f)(1)(x) = 1

(
f(x)

)
= 1 for all x ∈ A, we have Fid−1

L (f)(1) = 1.
Now, let µ, ν ∈ Fid(B, L). Let x ∈ A. For any a1, b1, . . . , an, bn ∈ A such that

x =
n∑
i=1

aibi, we have f(x) = f(
n∑
i=1

aibi) =
n∑
i=1

f(ai)f(bi); thus,

∧
1≤i≤n

Fid−1
L (f)(µ)(ai)	 Fid−1

L (f)(ν)(bi) =
∧

1≤i≤n
µ
(
f(ai)

)
	 ν
(
f(bi)

)
≤
(
µ⊗ ν

)(
f(x)

)
= Fid−1

L (f)(µ⊗ ν)(x).

So,
[
Fid−1

L (f)(µ) ⊗ Fid−1
L (f)(ν)

]
(x) ≤ Fid−1

L (f)(µ ⊗ ν)(x). It follows that
Fid−1

L (f)(µ)⊗Fid−1
L (f)(ν) ≤ Fid−1

L (f)(µ⊗ν). Hence, Fid−1
L is a functor.
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Proposition 4.2.5. Let A f−→ B in Ring. Then the following hold:
(1) For any I ∈ Id(B), we have Fid−1

L (f)(χI) = χf−1(I).
(2) Fid−1

L (f)(χ0B) = χ0A if and only if f is one-to-one.
(3) For any µ ∈ Fid(B, L), we have Fid−1

L (f)(µ) ∈ [χf−1({0B}), 1].
(4)

(
[χf−1({0B}), 1]; ∧, +, ⊗, ↪→, #; 1

)
is a subresiduated lattice ordered

monoid of Fid(A, L) if and only if
(
[f−1({0B}), A]; ∩, +, �, →,  ; A

)
is

a subresiduated lattice ordered monoid of Id(A).
(5)

(
[χf−1({0B}), 1]; ∧, +, ⊗, ↪→, #; χf−1({0B}), 1

)
is a residuated lattice if

and only if
(
[f−1({0B}), A]; ∩, +, �, →,  ; f−1({0B}), A

)
is a residuated

lattice.

Proof. (1) Let I ∈ Id(B). For any x ∈ f−1(I), we have Fid−1
L (f)(χI)(x) =

χI
(
f(x)

)
= 1. For any x 6∈ f−1(I), we have Fid−1

L (f)(χI)(x) = χI
(
f(x)

)
= 0.

Hence, Fid−1
L (f)(χI) = χf−1(I).

(2) Straightforward, since Fid−1
L (f)(χ0B) = χf−1({0B}) by (1).

(3) Let µ ∈ Fid(B, L). For any x ∈ f−1({0B}), we have

Fid−1
L (f)(µ)(x) = µ

(
f(x)

)
= µ(0B) = 1.

Thus, χf−1({0B}) ≤ Fid−1
L (f)(µ) ≤ 1; i.e., Fid−1

L (f)(µ) ∈ [χf−1({0B}), 1].
(4) Since Id(A) can be embedded into Fid(A, L), it suffices to show the
second implication. So, assume that

(
[f−1({0B}), A]; ∩, +, �, →,  ; A

)
is a subresiduated lattice ordered monoid of Id(A). Let µ, ν ∈ [χf−1({0B}), 1].
• Since f−1({0B}) = f−1({0B})�f−1({0B}) ⊆ U(µ, 1)�U(ν, 1) ⊆ U(µ⊗ν, 1),
we have

(
µ ⊗ ν

)
(x) = 1 for all x ∈ f−1({0B}); thus, χf−1({0B}) ≤ µ ⊗ ν ≤ 1;

i.e., µ⊗ ν ∈ [χf−1({0B}), 1].
• Since f−1({0B}) ⊆ U(ν, 1) ⊆ U(µ ↪→ ν, 1), we have

(
µ ↪→ ν

)
(x) = 1 for all

x ∈ f−1({0B}); thus, χf−1({0B}) ≤ µ ↪→ ν ≤ 1; i.e., µ ↪→ ν ∈ [χf−1({0B}), 1]. A
similar reasoning shows that µ# ν ∈ [χf−1({0B}), 1].
Hence,

(
[χf−1({0B}), 1]; ∧, +, ⊗, ↪→, #; 1

)
is a subresiduated lattice ordered

monoid of Fid(A, L).
(5) Immediate consequence of (4).

Proposition 4.2.6. Let A f−→ B in Ring. For any {µλ}λ∈Λ ⊆ Fid(B, L), we
have

∧
λ∈Λ

Fid−1
L (f)(µλ) = Fid−1

L (f)(
∧
λ∈Λ

µλ).

Proof. Let {µλ}λ∈Λ ⊆ Fid(B, L). For any x ∈ A, we have Fid−1
L (f)(

∧
λ∈Λ

µλ)(x) =( ∧
λ∈Λ

µλ
)(
f(x)

)
=
∧
λ∈Λ

µλ
(
f(x)

)
=
∧
λ∈Λ

Fid−1
L (f)(µλ)(x) =

[ ∧
λ∈Λ

Fid−1
L (f)(µλ)

]
(x).

Hence,
∧
λ∈Λ

Fid−1
L (f)(µλ) = Fid−1

L (f)(
∧
λ∈Λ

µλ).

Proposition 4.2.7. Let A f−→ B in Ring. Then the following are equivalent:
(1) For any {µλ}λ∈Λ ⊆ Fid(B, L),

⊔
λ∈Λ

Fid−1
L (f)(µλ) = Fid−1

L (f)(
⊔
λ∈Λ

µλ).
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(2) For any {Iλ}λ∈Λ ⊆ Id(B),
⊔
λ∈Λ

f−1(Iλ) = f−1(
⊔
λ∈Λ

Iλ).

Proof. Since Id(B) can be embedded into Fid(B, L), it suffices to show that
(2) implies (1). So, assume that (2) is satisfied. Let {µλ}λ∈Λ ⊆ Fid(B, L).
For any x ∈ A such that f(x) = 0B, we have

Fid−1
L (f)(

⊔
λ∈Λ

µλ)(x) = 1 = Fid−1
L (f)(µλ0)(x) ≤

[ ⊔
λ∈Λ

Fid−1
L (f)(µλ)

]
(x)

for some λ0 ∈ Λ. Now, let x ∈ A such that f(x) 6= 0B. For any finite subset Ω

of Λ such that f(x) =
∑
λ∈Ω

aλ, we have

x ∈ f−1
[ ⊔
λ∈Ω

U
(
µλ, µλ(aλ)

)]
=
⊔
λ∈Ω

f−1
[
U
(
µλ, µλ(aλ)

)]
;

thus, x =
∑
λ∈Ω

uλ for some uλ ∈ f−1
[
U
(
µλ, µλ(aλ)

)]
(λ ∈ Ω); so,∧

λ∈Ω

µλ(aλ) ≤
∧
λ∈Ω

µλ
(
f(uλ)

)
=
∧
λ∈Ω

Fid−1
L (f)(µλ)(uλ) ≤

[ ⊔
λ∈Λ

Fid−1
L (f)(µλ)

]
(x).

Hence, Fid−1
L (f)(

⊔
λ∈Λ

µλ)(x) =
( ⊔
λ∈Λ

µλ
)(
f(x)

)
≤
[ ⊔
λ∈Λ

Fid−1
L (f)(µλ)

]
(x). There-

fore, Fid−1
L (f)(

⊔
λ∈Λ

µλ) ≤
⊔
λ∈Λ

Fid−1
L (f)(µλ). Since Fid−1

L (f) is order-preserving,

we have
⊔
λ∈Λ

Fid−1
L (f)(µλ) = Fid−1

L (f)(
⊔
λ∈Λ

µλ).

One can remark that f−1 preserves
⊔

if and only if f−1 preserves + if and
only if Fid−1

L (f) preserves
⊔

if and only if Fid−1
L (f) preserves +. Furthermore,

the L-preimage of any projection (resp., natural) homomorphism preserves
⊔
.

Lemma 4.2.8. Let A f−→ B in Ring. Then the following are equivalent:
(a) For any I, J ∈ Id(B) and r, s ∈ L,

Fid−1
L (f)

(
(Ir)∗

)
⊗ Fid−1

L (f)
(
(Js)∗

)
= Fid−1

L (f)
[(

(I � J)r	s
)
∗

]
.

(b) For any I, J ∈ Id(B), f−1(I)� f−1(J) = f−1(I � J).

Proof. Since Id(B) can be embedded into Fid(B, L), it suffices to show that
(b) implies (a). So, assume that (b) is satisfied. Let I, J ∈ Id(B) and r, s ∈ L.
For any x ∈ A such that f(x) 6∈ I � J , we have

Fid−1
L (f)

[(
(I � J)r	s

)
∗

]
(x) =

(
(I � J)r	s

)
∗

(
f(x)

)
= 0

≤
[
Fid−1

L (f)
(
(Ir)∗

)
⊗ Fid−1

L (f)
(
(Js)∗

)]
(x).

For any x ∈ A such that f(x) = 0B, we have

x ∈ f−1({0B} � {0B}) = f−1({0B})� f−1({0B});
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thus, x =
n∑
i=1

aibi for some a1, b1, . . . , an, bn ∈ f−1({0B}); so,

Fid−1
L (f)

[(
(I � J)r	s

)
∗

]
(x) = 1

=
∧

1≤i≤n
1	 1

=
∧

1≤i≤n
(Ir)∗

(
f(ai)

)
	 (Js)∗

(
f(bi)

)
=

∧
1≤i≤n

Fid−1
L (f)

(
(Ir)∗

)
(ai)	 Fid−1

L (f)
(
(Js)∗

)
(bi)

≤
[
Fid−1

L (f)
(
(Ir)∗

)
⊗ Fid−1

L (f)
(
(Js)∗

)]
(x).

For any x ∈ A such that f(x) ∈ (I � J) \ {0B}, we have

x ∈ f−1(I � J) = f−1(I)� f−1(J);

thus, x =
n∑
i=1

aibi for some a1, . . . , an ∈ f−1(I) and b1, . . . , bn ∈ f−1(J); so,

r ≤ (Ir)∗
(
f(ai)

)
= Fid−1

L (f)
(
(Ir)∗

)
(ai) and s ≤ Fid−1

L (f)
(
(Js)∗

)
(bi)

for all 1 ≤ i ≤ n and, r 	 s ≤ Fid−1
L (f)

(
(Ir)∗

)
(ai) 	 Fid−1

L (f)
(
(Js)∗

)
(bi) for

all 1 ≤ i ≤ n; consequently,

Fid−1
L (f)

[(
(I � J)r	s

)
∗

]
(x) = r 	 s

≤
∧

1≤i≤n
Fid−1

L (f)
(
(Ir)∗

)
(ai)	 Fid−1

L (f)
(
(Js)∗

)
(bi)

≤
[
Fid−1

L (f)
(
(Ir)∗

)
⊗ Fid−1

L (f)
(
(Js)∗

)]
(x).

Hence, Fid−1
L (f)

[(
(I � J)r	s

)
∗

]
≤ Fid−1

L (f)
(
(Ir)∗

)
⊗ Fid−1

L (f)
(
(Js)∗

)
and,

Fid−1
L (f)

(
(Ir)∗

)
⊗ Fid−1

L (f)
(
(Js)∗

)
= Fid−1

L (f)
[(

(I � J)r	s
)
∗

]
.

Proposition 4.2.9. Let A f−→ B in Ring such that f−1 preserves +. Then
the following are equivalent:
(1) For any µ, ν ∈ Fid(B, L), Fid−1

L (f)(µ)⊗Fid−1
L (f)(ν) = Fid−1

L (f)(µ⊗ ν).
(2) For any I, J ∈ Id(B), f−1(I)� f−1(J) = f−1(I � J).

Proof. Since Id(B) can be embedded into Fid(B, L), it suffices to show that
(2) implies (1). So, assume that (2) is satisfied. For any µ, ν ∈ Fid(B, L),
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Fid−1
L (f)(µ⊗ ν) = Fid−1

L (f)
[( ⊔
a∈B

(
Idg(a)µ(a)

)
∗

)
⊗
( ⊔
b∈B

(
Idg(b)ν(b)

)
∗

)]
= Fid−1

L (f)
[ ⊔
a∈B

⊔
b∈B

(
Idg(a)µ(a)

)
∗ ⊗

(
Idg(b)ν(b)

)
∗

]
=
⊔
a∈B

⊔
b∈B

Fid−1
L (f)

[(
Idg(a)µ(a)

)
∗ ⊗

(
Idg(b)ν(b)

)
∗

]
=
⊔
a∈B

⊔
b∈B

Fid−1
L (f)

[(
Idg(a)µ(a)

)
∗

]
⊗ Fid−1

L (f)
[(
Idg(b)ν(b)

)
∗

]
=
( ⊔
a∈B

Fid−1
L (f)

[(
Idg(a)µ(a)

)
∗

])
⊗

( ⊔
b∈B

Fid−1
L (f)

[(
Idg(b)ν(b)

)
∗

])
= Fid−1

L (f)
[ ⊔
a∈B

(
Idg(a)µ(a)

)
∗

]
⊗ Fid−1

L (f)
[ ⊔
b∈B

(
Idg(b)ν(b)

)
∗

]
= Fid−1

L (f)(µ)⊗ Fid−1
L (f)(ν).

Proposition 4.2.10. Let A f−→ B in Ring. If L is a Brouwerian algebra,
then the following are equivalent:
(1) For any µ, ν ∈ Fid(B, L), Fid−1

L (f)(µ⊗ ν) = Fid−1
L (f)(µ)⊗Fid−1

L (f)(ν).
(2) For any I, J ∈ Id(B), f−1(I � J) = f−1(I)� f−1(J).

Proof. Assume that L is a Brouwerian algebra. Since Id(B) can be embedded
into Fid(B, L), it suffices to show that (2) implies (1). So, assume that (2) is
satisfied. Let µ, ν ∈ Fid(B, L). For any x ∈ A such that f(x) = 0B, we have

x ∈ f−1({0B} � {0B}) = f−1({0B}) � f−1({0B}); thus, x =
n∑
i=1

aibi for some

a1, b1, . . . , an, bn ∈ f−1({0B}); so,

Fid−1
L (f)(µ⊗ ν)(x) =

(
µ⊗ ν

)(
f(x)

)
= 1

=
∧

1≤i≤n
1	 1

=
∧

1≤i≤n
µ
(
f(ai)

)
	 ν
(
f(bi)

)
=

∧
1≤i≤n

Fid−1
L (f)(µ)(ai)	 Fid−1

L (f)(ν)(bi)

≤
[
Fid−1

L (f)(µ)⊗ Fid−1
L (f)(ν)

]
(x).
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Now, let x ∈ A such that f(x) 6= 0B. Let a1, b1, . . . , an, bn ∈ B such that

f(x) =
n∑
i=1

aibi. Since x ∈ f−1
[
U
(
µ,

∧
1≤i≤n

µ(ai)
)
� U

(
ν,
∧

1≤i≤n
ν(bi)

)]
, we have

x ∈ f−1
[
U
(
µ,

∧
1≤i≤n

µ(ai)
)]
�f−1

[
U
(
ν,
∧

1≤i≤n
ν(bi)

)]
; thus, there are u1, . . . , um ∈

f−1
[
U
(
µ,

∧
1≤i≤n

µ(ai)
)]

and v1, . . . , vm ∈ f−1
[
U
(
ν,
∧

1≤i≤n
ν(bi)

)]
such that x =

m∑
j=1

ujvj; so,

∧
1≤i≤n

µ(ai)	 ν(bi) =
( ∧

1≤i≤n
µ(ai)

)
	
( ∧

1≤i≤n
ν(bi)

)
≤
[ ∧

1≤j≤m
µ
(
f(uj)

)]
	
[ ∧

1≤j≤m
ν
(
f(vj)

)]
=

∧
1≤j≤m

µ
(
f(uj)

)
	 ν
(
f(vj)

)
=

∧
1≤j≤m

Fid−1
L (f)(µ)(uj)	 Fid−1

L (f)(ν)(vj)

≤
[
Fid−1

L (f)(µ)⊗ Fid−1
L (f)(ν)

]
(x).

It follows that Fid−1
L (f)(µ⊗ ν)(x) ≤

[
Fid−1

L (f)(µ)⊗Fid−1
L (f)(ν)

]
(x). Hence,

Fid−1
L (f)(µ⊗ ν) ≤ Fid−1

L (f)(µ)⊗Fid−1
L (f)(ν). Therefore, Fid−1

L (f)(µ⊗ ν) =

Fid−1
L (f)(µ)⊗ Fid−1

L (f)(ν).

One can verify that the L-preimage of any projection homomorphism pre-
serves ⊗; but, the L-preimage of a natural homomorphism does not necessarily
preserve ⊗. Indeed, considering the natural homomorphism φ : Z → Z

4Z from
Z to Z4, given by φ(x) = x+ 4Z for all x ∈ Z, we have

φ−1({0})� φ−1(2Z
4Z) = 4Z� 2Z = 8Z ⊂ 4Z = φ−1({0}) = φ−1

(
{0} � 2Z

4Z

)
.

Lemma 4.2.11. Let A f−→ B in Ring and µ, ν ∈ Fid(B, L). Then
Fid−1

L (f)(µ ↪→ ν) ≤ Fid−1
L (f)(µ) ↪→ Fid−1

L (f)(ν) and Fid−1
L (f)(µ # ν) ≤

Fid−1
L (f)(µ)# Fid−1

L (f)(ν).

Proof. Since Fid−1
L (f)(µ ↪→ ν) ⊗ Fid−1

L (f)(µ) ≤ Fid−1
L (f)

(
(µ ↪→ ν) ⊗ µ

)
≤

Fid−1
L (f)(ν), we have Fid−1

L (f)(µ ↪→ ν) ≤ Fid−1
L (f)(µ) ↪→ Fid−1

L (f)(ν). Sim-
ilarly, we have Fid−1

L (f)(µ# ν) ≤ Fid−1
L (f)(µ)# Fid−1

L (f)(ν).

Proposition 4.2.12. Let A f−→ B in Ring. Then the following (and their
mirror images) are equivalent:
(1) For any µ ∈ Fid(B, L), Fid−1

L (f)(µ) ↪→ χf−1({0B}) = Fid−1
L (f)(µ−).

(2) For any I ∈ Id(B), f−1(I)→ f−1({0B}) = f−1(I−).
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Proof. Since Id(B) can be embedded into Fid(B, L), it suffices to show that
(2) implies (1). So, assume that (2) is satisfied. Let µ ∈ Fid(B, L). Let
x ∈ A. Let r ∈ L such that xr ◦ Fid−1

L (f)(µ) ≤ χf−1({0B}). Let y 6= 0B in
B. Let b ∈ B such that y = f(x)b. Since f(x)U

(
µ, µ(b)

)
* {0B}, we have

f(x) 6∈ U
(
µ, µ(b)

)− and,

x 6∈ f−1
[
U
(
µ, µ(b)

)−]
= f−1

[
U
(
µ, µ(b)

)]
→ f−1({0B});

thus, xf−1
[
U
(
µ, µ(b)

)]
* f−1({0B}); so, f(a) ∈ U

(
µ, µ(b)

)
for some a ∈ A

such that f(xa) 6= 0B. It follows that

r 	 µ(b) ≤ r 	 µ
(
f(a)

)
= xr(x)	 Fid−1

L (f)(µ)(a)

≤
(
xr ◦ Fid−1

L (f)(µ)
)
(xa)

≤ χf−1({0B})(xa)

= 0

and, r 	 µ(b) = 0. Consequently,
(
f(x)r ◦ µ

)
(y) =

∨
{0} = 0. Thus,

f(x)r ◦ µ ≤ χ0B and, r ≤ µ−
(
f(x)

)
= Fid−1

L (f)(µ−)(x).

So,
(
Fid−1

L (f)(µ) ↪→ χf−1({0B})
)
(x) ≤ Fid−1

L (f)(µ−)(x). Hence,

Fid−1
L (f)(µ) ↪→ χf−1({0B}) ≤ Fid−1

L (f)(µ−)

and, Fid−1
L (f)(µ) ↪→ χf−1({0B}) = Fid−1

L (f)(µ−).
A similar reasoning shows the mirror equivalence.

Lemma 4.2.13. Let A f→ B in Ring. Then the following (and their mirror
images) are equivalent:
(a) For any I, J ∈ Id(B) and r, s ∈ L,

Fid−1
L (f)

(
(Ir)∗

)
↪→ Fid−1

L (f)
(
(Js)∗

)
= Fid−1

L (f)
(
(Ir)∗ ↪→ (Js)∗

)
.

(b) For any I, J ∈ Id(B), f−1(I)→ f−1(J) = f−1(I → J).

Proof. Since Id(B) can be embedded into Fid(B, L), it suffices to show that
(b) implies (a). So, assume that (b) is satisfied. Let I, J ∈ Id(B) and r, s ∈ L.
Let x 6= 0A in A. Let t ∈ L such that xt ◦ Fid−1

L (f)
(
(Ir)∗

)
≤ Fid−1

L (f)
(
(Js)∗

)
.

If t	 r = 0, then(
f(x)t ◦ (Ir)∗

)
(b) =

∨
{0} = 0 ≤ (Js)∗(b) for all b 6= 0B in B;

thus, f(x)t ◦ (Ir)∗ ≤ (Js)∗ and,

t ≤
(
(Ir)∗ ↪→ (Js)∗

)(
f(x)

)
= Fid−1

L (f)
(
(Ir)∗ ↪→ (Js)∗

)
(x).
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Now, suppose that t	 r 6= 0. For any a ∈ f−1(I), we have

(Js)∗
(
f(xa)

)
= Fid−1

L (f)
(
(Js)∗

)
(xa)

≥
[
xt ◦ Fid−1

L (f)
(
(Ir)∗

)]
(xa)

≥ xt(x)	 Fid−1
L (f)

(
(Ir)∗

)
(a)

= t	 (Ir)∗
(
f(a)

)
=

 t if f(a) = 0B,

t	 r if f(a) ∈ I \ {0B}.

≥ t	 r;

thus, f(xa) ∈ J and, xa ∈ f−1(J). So,

xf−1(I) ⊆ f−1(J) and, x ∈ f−1(I)→ f−1(J) = f−1(I → J).

It follows that f(x) ∈ I → J . We now wish to show that f(x)t ◦ (Ir)∗ ≤ (Js)∗.
So, let y 6= 0B in B. For any v 6∈ I such that y = f(x)v, we have

t	 (Ir)∗(v) = t	 0 = 0 ≤ (Js)∗(y).

Now, let v ∈ I such that y = f(x)v. Since f(x)U
(
(Ir)∗, (Ir)∗(v)

)
* {0B}, we

have f(x) 6∈ U
(
(Ir)∗, (Ir)∗(v)

)− and,

x 6∈ f−1
[
U
(
(Ir)∗, (Ir)∗(v)

)−]
= f−1

[
U
(
(Ir)∗, (Ir)∗(v)

)]
→ f−1({0B});

thus, xf−1
[
U
(
(Ir)∗, (Ir)∗(v)

)]
* f−1({0B}); so, f(b) ∈ U

(
(Ir)∗, (Ir)∗(v)

)
for

some b ∈ A such that f(xb) 6= 0B. Since y ∈ f(x)I ⊆ J , we have y ∈ J \ {0B};
thus,

t	 (Ir)∗(v) ≤ t	 (Ir)∗
(
f(b)

)
= xt(x)	 Fid−1

L (f)
(
(Ir)∗

)
(b)

≤
[
xt ◦ Fid−1

L (f)
(
(Ir)∗

)]
(xb)

≤ Fid−1
L (f)

(
(Js)∗

)
(xb)

= (Js)∗
(
f(xb)

)
≤ s

= (Js)∗(y).

So,
(
f(x)t ◦ (Ir)∗

)
(y) ≤ (Js)∗(y). It follows that f(x)t ◦ (Ir)∗ ≤ (Js)∗. Conse-

quently, t ≤
(
(Ir)∗ ↪→ (Js)∗

)(
f(x)

)
= Fid−1

L (f)
(
(Ir)∗ ↪→ (Js)∗

)
(x). Hence,[

Fid−1
L (f)

(
(Ir)∗

)
↪→ Fid−1

L (f)
(
(Js)∗

)]
(x) ≤ Fid−1

L (f)
(
(Ir)∗ ↪→ (Js)∗

)
(x).
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Therefore, Fid−1
L (f)

(
(Ir)∗

)
↪→ Fid−1

L (f)
(
(Js)∗

)
≤ Fid−1

L (f)
(
(Ir)∗ ↪→ (Js)∗

)
and, Fid−1

L (f)
(
(Ir)∗

)
↪→ Fid−1

L (f)
(
(Js)∗

)
= Fid−1

L (f)
(
(Ir)∗ ↪→ (Js)∗

)
.

A similar reasoning shows the mirror equivalence.

Proposition 4.2.14. Let A f→ B in Ring such that f−1 preserves +. If
Fid(B, L) is completely join-implicative (See, Definition 1.2.16), then the fol-
lowing (and their mirror images) are equivalent:
(1) For any µ, ν ∈ Fid(B, L),

Fid−1
L (f)(µ) ↪→ Fid−1

L (f)(ν) = Fid−1
L (f)(µ ↪→ ν).

(2) For any I, J ∈ Id(B), f−1(I)→ f−1(J) = f−1(I → J).

Proof. Assume that Fid(B, L) is completely join-implicative. Since Id(B) can
be embedded into Fid(B, L), it suffices to show that (2) implies (1). So,
assume that (2) is satisfied. For any µ, ν ∈ Fid(B, L), we have

Fid−1
L (f)(µ ↪→ ν) = Fid−1

L (f)
[( ⊔
a∈B

(
Idg(a)µ(a)

)
∗

)
↪→
( ⊔
b∈B

(
Idg(b)ν(b)

)
∗

)]
= Fid−1

L (f)
[ ∧
a∈B

⊔
b∈B

[
(
Idg(a)µ(a)

)
∗ ↪→

(
Idg(b)ν(b)

)
∗]
]

=
∧
a∈B

⊔
b∈B

Fid−1
L (f)

[(
Idg(a)µ(a)

)
∗ ↪→

(
Idg(b)ν(b)

)
∗

]
=
∧
a∈B

⊔
b∈B

(
Fid−1

L (f)
[(
Idg(a)µ(a)

)
∗

]
↪→

Fid−1
L (f)

[(
Idg(b)ν(b)

)
∗

])
by the above lemma;

=
∧
a∈B

(
Fid−1

L (f)
[(
Idg(a)µ(a)

)
∗

]
↪→

( ⊔
b∈B

Fid−1
L (f)

[(
Idg(b)ν(b)

)
∗

]))
=
( ⊔
a∈B

Fid−1
L (f)

[(
Idg(a)µ(a)

)
∗

])
↪→

( ⊔
b∈B

Fid−1
L (f)

[(
Idg(b)ν(b)

)
∗

])
= Fid−1

L (f)
[ ⊔
a∈B

(
Idg(a)µ(a)

)
∗

]
↪→

Fid−1
L (f)

[ ⊔
b∈B

(
Idg(b)ν(b)

)
∗

]
= Fid−1

L (f)(µ) ↪→ Fid−1
L (f)(ν).

A similar reasoning shows the mirror equivalence.
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4.3 L-image functor

Let Ring be the subcategory of the category of rings, with unital rings as
objects, and onto homomorphisms of unital rings as arrows.

Lemma 4.3.1. Let A f−→ B in Ring. The arrow Fid(A, L)
FidL(f)−→ Fid(B, L),

given by FidL(f)(µ)(y) =
∨

f(a)=y

µ(a) for all µ ∈ Fid(A, L) and y ∈ B, is well-

defined.

Proof. Let µ ∈ Fid(A, L). Since f(0A) = 0B, we have FidL(f)(µ)(0B) ≥
µ(0A) = 1 and, FidL(f)(µ)(0B) = 1. Now, let y, z ∈ B. For any b, c ∈ A

such that f(b) = y and f(c) = z, we have f(b− c) = f(b)− f(c) = y − z and
µ(b) ∧ µ(c) ≤ µ(b− c); thus, µ(b) ∧ µ(c) ≤ FidL(f)(µ)(y − z). So,

FidL(f)(µ)(y) ∧ FidL(f)(µ)(z) ≤ FidL(f)(µ)(y − z).

For any a ∈ A such that y = f(a), we have yz = f(a)f(b) = f(ab) and µ(a) ≤
µ(ab) for some b ∈ A; thus, µ(a) ≤ FidL(f)(µ)(yz). So, FidL(f)(µ)(y) ≤
FidL(f)(µ)(yz) and, FidL(f)(µ)(z) ≤ FidL(f)(µ)(yz) by similar arguments.
It follows that FidL(f)(µ)(y) ∨ FidL(f)(µ)(z) ≤ FidL(f)(µ)(yz). Hence,
FidL(f)(µ) is an L-fuzzy ideal of B.

Lemma 4.3.2. (a) For any A in Ring, FidL(IdA) = IdFid(A,L).

(b) For any A f−→ B and B g−→ C in Ring, FidL(g ◦ f) = FidL(g) ◦FidL(f).

Proof. (a) Let A in Ring. For any µ ∈ Fid(A, L), we have

FidL(IdA)(µ)(y) =
∨

IdA(a)=y

µ(a) =
∨
{µ(y)} = µ(y) for all y ∈ A;

thus, FidL(IdA)(µ) = µ. So, FidL(IdA) = IdFid(A,L).
(b) Let A f−→ B and B g−→ C in Ring. Let µ ∈ Fid(A, L) and y ∈ C. For
any a ∈ A such that

(
g ◦ f

)
(a) = y, we have g

(
f(a)

)
= y; thus,

µ(a) ≤ FidL(f)(µ)
(
f(a)

)
≤ FidL(g)

[
FidL(f)(µ)

]
(y)

=
[
FidL(g) ◦ FidL(f)

]
(µ)(y).

So, FidL
(
g ◦ f

)
(µ)(y) ≤

[
FidL(g) ◦FidL(f)

]
(µ)(y). Now, let x ∈ B such that

y = g(x). For any a ∈ A such that x = f(a), we have y = g
(
f(a)

)
=
(
g◦f

)
(a);

thus, µ(a) ≤ FidL(g◦f)(µ)(y). So, FidL(f)(µ)(x) ≤ FidL(g◦f)(µ)(y). Hence,[
FidL(g) ◦ FidL(f)

]
(µ)(y) = FidL(g)

[
FidL(f)(µ)

]
(y) ≤ FidL(g ◦ f)(µ)(y)

and, FidL
(
g ◦f

)
(µ)(y) =

[
FidL(g)◦FidL(f)

]
(µ)(y). Therefore, FidL(g ◦f) =

FidL(g) ◦ FidL(f).
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Theorem 4.3.3. FidL is a covariant functor, called L-image functor, from
Ring to the category PoMod of partially ordered monoids.

Proof. From the above lemmas, it suffices to show that FidL is well-defined.
So, let A f−→ B in Ring.
Let µ, ν ∈ Fid(A, L) such that µ ≤ ν. For any y ∈ B and a ∈ A such that
f(a) = y, we have µ(a) ≤ ν(a) ≤ FidL(f)(ν)(y); thus, FidL(f)(µ)(y) ≤
FidL(f)(ν)(y). So, FidL(f)(µ) ≤ FidL(f)(ν). Hence, FidL(f) is order-
preserving.
For any y ∈ B, we have FidL(f)(1)(y) ≥ 1(a) = 1 for some a ∈ A such that
f(a) = y; thus, FidL(f)(1)(y) = 1. So, FidL(f)(1) = 1. We finally show that
FidL(f)(µ⊗ ν) = FidL(f)(µ)⊗ FidL(f)(ν) for all µ, ν ∈ Fid(A, L).
So, let µ, ν ∈ Fid(A, L). Let y ∈ B. Let x ∈ A such that y = f(x). For any

a1, b1, . . . , an, bn ∈ A such that x =
n∑
i=1

aibi, we have

∧
1≤i≤n

µ(ai)	 ν(bi) ≤
∧

1≤i≤n
FidL(f)(µ)

(
f(ai)

)
	 FidL(f)(ν)

(
f(bi)

)
≤
[
FidL(f)(µ)⊗ FidL(f)(ν)

]( n∑
i=1

f(ai)f(bi)
)

=
[
FidL(f)(µ)⊗ FidL(f)(ν)

]
(y).

It follows that (µ ⊗ ν)(x) ≤
[
FidL(f)(µ) ⊗ FidL(f)(ν)

]
(y). Consequently,

FidL(f)(µ ⊗ ν)(y) ≤
[
FidL(f)(µ) ⊗ FidL(f)(ν)

]
(y). Let u1, v1, . . . , un, vn ∈

B such that y =
n∑
i=1

uivi. For any w1, t1, . . . , wn, tn ∈ A such that u1 =

f(w1), v1 = f(t1), . . . , un = f(wn), vn = f(tn), we have y = f(
n∑
i=1

witi); thus,

∧
1≤i≤n

µ(wi)	 ν(ti) ≤
(
µ⊗ ν

)
(
n∑
i=1

witi) ≤ FidL(f)(µ⊗ ν)(y).

So,
∧

1≤i≤n
FidL(f)(µ)(ui)	FidL(f)(ν)(vi) ≤ FidL(f)(µ⊗ν)(y). It follows that[

FidL(f)(µ)⊗ FidL(f)(ν)
]
(y) ≤ FidL(f)(µ⊗ ν)(y). Consequently,

FidL(f)(µ ⊗ ν) = FidL(f)(µ) ⊗ FidL(f)(ν). Hence, FidL(f) is a monoid
homomorphism. Therefore, FidL is a functor.

Proposition 4.3.4. Let A f→ B in Ring. For any I ∈ Id(A) and r, s ∈ L

such that r ≤ s, we have FidL(f)
(
(Isr )∗

)
=
(
f(I)sr

)
∗. In particular, we have

FidL(f)(χ0A) = χ0B .

Proof. Let I ∈ Id(A) and r, s ∈ L such that r ≤ s. Let y 6= 0B in f(I).
For any x ∈ A such that y = f(x), we have x 6= 0A; thus,

(
Isr
)
∗(x) ≤ s.

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures S.V. Tchoffo Foka



4.3 L-image functor 83

So, FidL(f)
(
(Isr )∗

)
(y) ≤ s. Since FidL(f)

(
(Isr )∗

)
(y) ≥ (Isr )∗(x) = s for some

x 6= 0A in I such that y = f(x), we have FidL(f)
(
(Isr )∗

)
(y) = s. Now, let

y 6∈ f(I). For any x ∈ A such that y = f(x), we have x 6∈ I; thus, (Isr )∗(x) = r.
So, FidL(f)

(
(Isr )∗

)
(y) =

∨
{r} = r. Hence, FidL(f)

(
(Isr )∗

)
=
(
f(I)sr

)
∗.

Proposition 4.3.5. Let A f→ B in Ring. For any {µλ}λ∈Λ ⊆ Fid(A, L), we
have

⊔
λ∈Λ

FidL(f)(µλ) = FidL(f)
( ⊔
λ∈Λ

µλ
)
.

Proof. Let {µλ}λ∈Λ ⊆ Fid(A, L). Let y ∈ B. Let x ∈ A such that y = f(x).
For any finite subset Ω of Λ such that x =

∑
λ∈Ω

aλ, we have y = f
(∑
λ∈Ω

aλ
)

=∑
λ∈Ω

f(aλ); thus,
∧
λ∈Ω

µλ(aλ) ≤
∧
λ∈Ω

FidL(f)(µλ)
(
f(aλ)

)
≤
[ ⊔
λ∈Λ

FidL(f)(µλ)
]
(y).

So,
( ⊔
λ∈Λ

µλ
)
(x) ≤

[ ⊔
λ∈Λ

FidL(f)(µλ)
]
(y). It follows that FidL(f)

( ⊔
λ∈Λ

µλ
)
(y) ≤[ ⊔

λ∈Λ

FidL(f)(µλ)
]
(y). Hence, FidL(f)

( ⊔
λ∈Λ

µλ
)
≤
⊔
λ∈Λ

FidL(f)(µλ). Therefore,⊔
λ∈Λ

FidL(f)(µλ) = FidL(f)
( ⊔
λ∈Λ

µλ
)
, since FidL(f) is order-preserving.

Proposition 4.3.6. Let A f→ B in Ring. Then the following are equivalent:
(1) For any µ, ν ∈ Fid(A, L), FidL(f)(µ) ∧ FidL(f)(ν) = FidL(f)(µ ∧ ν).
(2) For any I, J ∈ Id(A), f(I) ∩ f(J) = f(I ∩ J).

Proof. Since Id(A) can be embedded into Fid(A, L), it suffices to show that
(2) implies (1). So, assume that (2) is satisfied. Let µ, ν ∈ Fid(A, L). Let
y ∈ B. For any a, b ∈ A such that f(a) = y and f(b) = y, we have

y ∈ f
[
U
(
µ, µ(a)

)]
∩ f
[
U
(
ν, ν(b)

)]
⊆ f

[
U
(
µ, µ(a)

)
∩ U

(
ν, ν(b)

)]
;

thus, y = f(c) for some c ∈ U
(
µ, µ(a)

)
∩ U

(
ν, ν(b)

)
; so,

µ(a) ∧ ν(b) ≤ µ(c) ∧ ν(c) =
(
µ ∧ ν

)
(c) ≤ FidL(f)(µ ∧ ν)(y).

Consequently,
[
FidL(f)(µ) ∧ FidL(f)(ν)

]
(y) ≤ FidL(f)(µ ∧ ν)(y). Hence,

FidL(f)(µ) ∧ FidL(f)(ν) ≤ FidL(f)(µ ∧ ν) and, FidL(f)(µ) ∧ FidL(f)(ν) =

FidL(f)(µ ∧ ν), since FidL(f) is order-preserving.

Lemma 4.3.7. Let A f→ B in Ring and µ, ν ∈ Fid(A, L). Then
FidL(f)(µ ↪→ ν) ≤ FidL(f)(µ) ↪→ FidL(f)(ν) and FidL(f)(µ # ν) ≤
FidL(f)(µ)# FidL(f)(ν).

Proof. Since FidL(f)(µ ↪→ ν) ⊗ FidL(f)(µ) = FidL(f)
(
(µ ↪→ ν) ⊗ µ

)
≤

FidL(f)(ν), we have FidL(f)(µ ↪→ ν) ≤ FidL(f)(µ) ↪→ FidL(f)(ν). A similar
reasoning shows that FidL(f)(µ# ν) ≤ FidL(f)(µ)# FidL(f)(ν).

Proposition 4.3.8. Let A f→ B in Ring such that FidL(f) preserves
∧
. Then

the following (and their mirror images) are equivalent:
(1) For any µ ∈ Fid(A, L), FidL(f)(µ)− = FidL(f)(µ−).
(2) For any I ∈ Id(A), f(I)− = f(I−).
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Proof. Since Id(A) can be embedded into Fid(A, L), it suffices to show that
(2) implies (1). So, assume that (2) is satisfied. For any µ ∈ Fid(A, L), we
have

FidL(f)(µ−) = FidL(f)
[( ⊔
a∈A

(
Idg(a)µ(a)

)
∗

)−]
= FidL(f)

[ ∧
a∈A

((
Idg(a)µ(a)

)
∗

)−]
=
∧
a∈A

FidL(f)
[(
Idg(a)−

)µ(a)]
=
∧
a∈A

[
f
(
Idg(a)−

)]µ(a)

=
∧
a∈A

[
f
(
Idg(a)

)−]µ(a)

=
∧
a∈A

[(
f
(
Idg(a)

)
µ(a)

)
∗

]−
=
[ ⊔
a∈A

(
f
(
Idg(a)

)
µ(a)

)
∗

]−
=
[ ⊔
a∈A

FidL(f)
((
Idg(a)µ(a)

)
∗

)]−
=
[
FidL(f)

( ⊔
a∈A

(
Idg(a)µ(a)

)
∗

)]−
= FidL(f)(µ)−.

A similar reasoning shows the mirror equivalence.

Lemma 4.3.9. Let A f→ B in Ring. Then the following (and their mirror
images) are equivalent:
(a) For any r, s ∈ L and I, J ∈ Id(A),

FidL(f)
(
(Ir)∗

)
↪→ FidL(f)

(
(Js)∗

)
= FidL(f)

(
(Ir)∗ ↪→ (Js)∗

)
.

(b) For any I, J ∈ Id(A), f(I)→ f(J) = f(I → J).

Proof. It suffices to show that (b) implies (a). So, assume that (b) is satisfied.
Let r, s ∈ L and I, J ∈ Id(A). Let y 6= 0B in B. Let t ∈ L such that
yt ◦ FidL(f)

(
(Ir)∗

)
≤ FidL(f)

(
(Js)∗

)
.

If t	 r = 0, then for some x ∈ A such that y = f(x), we have(
xt ◦ (Ir)∗

)
(a) ≤ t	 r = 0 ≤ (Js)∗(a) for all a 6= 0A in A;

thus, xt ◦ (Ir)∗ ≤ (Js)∗ and, t ≤
(
(Ir)∗ ↪→ (Js)∗

)
(x); so,

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures S.V. Tchoffo Foka



4.3 L-image functor 85

t ≤ FidL(f)
(
(Ir)∗ ↪→ (Js)∗

)
(y).

Now, suppose that t	 r 6= 0.
• If y ∈ f(I)−, then y ∈ f(I)→ f(J), since f(I)− ⊆ f(I)→ f(J).
• If y 6∈ f(I)−, then for any a ∈ I such that yf(a) 6= 0B, we have

(
f(J)s

)
∗

(
yf(a)

)
= FidL(f)

(
(Js)∗

)(
yf(a)

)
≥
[
yt ◦ FidL(f)

(
(Ir)∗

)](
yf(a)

)
≥ yt(y)	 FidL(f)

(
(Ir)∗

)(
f(a)

)
= yt(y)	

(
f(I)r

)
∗

(
f(a)

)
= t	 r

and, yf(a) ∈ f(J); thus, yf(I) ⊆ f(J) and, y ∈ f(I)→ f(J).
It follows that y = f(x) for some x ∈ I → J . Since

xt ◦ (Ir)∗ = (xI)t	r ∨ 0t ≤ Jt	r ∨ 0t ≤ Js ∨ 0t ≤ (Js)∗,

we have t ≤
(
(Ir)∗ ↪→ (Js)∗

)
(x) ≤ FidL(f)

(
(Ir)∗ ↪→ (Js)∗

)
(y).

Hence,[
FidL(f)

(
(Ir)∗

)
↪→ FidL(f)

(
(Js)∗

)]
(y) ≤ FidL(f)

(
(Ir)∗ ↪→ (Js)∗

)
(y).

It follows that

FidL(f)
(
(Ir)∗

)
↪→ FidL(f)

(
(Js)∗

)
≤ FidL(f)

(
(Ir)∗ ↪→ (Js)∗

)
and,

FidL(f)
(
(Ir)∗

)
↪→ FidL(f)

(
(Js)∗

)
= FidL(f)

(
(Ir)∗ ↪→ (Js)∗

)
.

A similar reasoning shows the mirror equivalence.

Proposition 4.3.10. Let A f→ B in Ring such that FidL(f) preserves
∧
. If

Fid(A, L) is completely join-implicative, then the following (and their mirror
images) are equivalent:
(1) For any µ, ν ∈ Fid(A, L), FidL(f)(µ) ↪→ FidL(f)(ν) = FidL(f)(µ ↪→ ν).
(2) For any I, J ∈ Id(A), f(I)→ f(J) = f(I → J).

Proof. Assume that Fid(A, L) is completely join-implicative. It suffices to
show that (2) implies (1). So, assume that (2) is satisfied. For any µ, ν ∈
Fid(A, L), we have
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FidL(f)(µ ↪→ ν) = FidL(f)
[( ⊔
a∈A

(
Idg(a)µ(a)

)
∗

)
↪→
( ⊔
b∈A

(
Idg(b)ν(b)

)
∗

)]
= FidL(f)

[ ∧
a∈A

⊔
b∈A

((
Idg(a)µ(a)

)
∗ ↪→

(
Idg(b)ν(b)

)
∗

)]
=
∧
a∈A

⊔
b∈A

(
FidL(f)

[(
Idg(a)µ(a)

)
∗

]
↪→

FidL(f)
[(
Idg(b)ν(b)

)
∗

])
=
( ⊔
a∈A

FidL(f)
[(
Idg(a)µ(a)

)
∗

])
↪→

( ⊔
b∈A

FidL(f)
[(
Idg(b)ν(b)

)
∗

])
= FidL(f)

[ ⊔
a∈A

(
Idg(a)µ(a)

)
∗

]
↪→ FidL(f)

[ ⊔
b∈A

(
Idg(b)ν(b)

)
∗

]
= FidL(f)(µ) ↪→ FidL(f)(ν).

A similar reasoning shows the mirror equivalence.

Proposition 4.3.11. Let I be an ideal of A, and πI : A → A
I
the natural

homomorphism from A to A
I
. Then the following hold:

(1) For any µ ∈ Fid(A, L), FidL(πI)(µ) = µ
I
.

(2) The restriction of FidL(πI) to Fid(A, L, I) preserves
∧
.

(3) The restriction of FidL(πI) to Fid(A, L, I) preserves ↪→ and #.

Proof. (1) Let µ ∈ Fid(A, L). For any y ∈ A, we have

FidL(πI)(µ)(y
I
) =

∨
{µ(x) : πI(x) = y

I
}

=
∨
{µ(x) : x

I
= y

I
}

=
∨
{µ(x) : x ∈ y

I
}

=
(
µ
I

)
(y
I
).

Hence, FidL(πI)(µ) = µ
I
.

(2) For any {µλ}λ∈Λ ⊆ Fid(A, L, I), we have

FidL(πI)
( ∧
λ∈Λ

µλ
)

=

∧
λ∈Λ

µλ

I
=
∧
λ∈Λ

µλ
I

=
∧
λ∈Λ

FidL(πI)(µλ).

(3) For any µ, ν ∈ Fid(A, L, I), we have

FidL(πI)(µ ↪→ ν) = µ↪→ν
I

= µ
I
↪→ ν

I
= FidL(πI)(µ) ↪→ FidL(πI)(ν)

and, FidL(πI)(µ # ν) = FidL(πI)(µ) # FidL(πI)(ν) by similar arguments.
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Conclusion

In this thesis, given a residuated lattice L and a universal algebra A of type F
with a residuated lattice Sub(A) on the set of its subuniverses, we investigated
possibilities of building a residuated lattice Fs(A, L), on the set of L-fuzzy
subalgebras of A, which extends both L and Sub(A). It appeared that this
construction is always possible when L is a finite linearly ordered Brouwerian
algebra.

We have generalized the preceding result in the classes of mono-unary alge-
bras and rings. We have also established that the residuated lattice Fs(A, L)

of L-fuzzy subalgebras of a mono-unary algebra A is an MV -algebra (resp.,
a Boolean algebra) if and only if L is an MV -algebra (resp., a Boolean alge-
bra) and Sub(A) is a Boolean algebra, and the residuated lattice Fid(A, L) of
L-fuzzy ideals of a ring A is commutative (a Brouwerian algebra, a Boolean
algebra) if and only if so are L and Id(A). Furthermore, we have introduced
the concept of Łukasiewicz rings under L and established its connection with
rings whose L-fuzzy ideals form an MV -algebra.

As future work on this research line, we are going to look for other classes
of residuated lattices (or residuated multilattices [8]) and algebras (or hyper-
algebras [1]) for which the previous generalizations remain possible. Since it
appeared that mono-unary algebras (resp., rings) do not necessarily transfer
some specific classes of residuated lattices, it would be interesting to study
the classes of mono-unary algebras (resp., rings) for which some transfers are
satisfied.

This dissertation has shown the importance of two varieties of residuated
lattices, called product-distributive and join-implicative, that would be inter-
esting to study in detail. Since in the literature the arithmetic study of resid-
uated lattices is still superficial, it would be also interesting to deepen it latter.

We mention below a number of open problems that have come up from this
work. We believe that some of them need a serious study.
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1. Is there a mimetic description of primary elements of Fid(A, L)?

2. Is Fid(A, L) primary decomposable if and only if so are L and Id(A)?

3. Is there a nice embedding of Fil
(
Id(A)

) (
resp., Fil(L)

)
into Fil

(
Fid(A, L)

)
?

4. Does the L-preimage of a ring homomorphism preserve L-fuzzy ideals prod-
ucts (resp., residues) if and only if the ring homorphism preserves ideals prod-
ucts (resp., residues)?

5. Does the L-image of a ring epimorphism preserve L-fuzzy ideals residues if
and only if the ring epimorphism preserves ideals residues?

6. Is Fid(A, L) product-distributive (resp., join-implicative) if and only if so
are L and Id(A)?
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Symbols

F , A, FA 4
P (A) 5
Sg(X) 6
Sub(A) 6
Bs
r , Br, Br, ar, χB, r 15

Supp(µ), Im(µ), U(µ, r) 16
Fu(A,L) 16
f+, f̂ , a+, â 16
µ∗ 19
Fs(A, L) 20
Fsg(µ) 21
µ? 24
Id(A) 39
Fid(A, L) 40
Fidg(µ) 42
µ
I

62
Fid−1

L (f)(µ) 71
FidL(f)(µ) 81

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures 90



Bibliography

[1] R. Ameri and T. Nozari: Fuzzy hyperalgebras, Computers and Mathe-
matics with Applications, 61 (2) (2011) 149-154.

[2] M. Anderson and T. Feil: Lattice-ordered groups, An introduction, D.
Reidel Texts in the Mathematical Sciences, 1988.

[3] L.P. Belluce, A. Di Nola and E. Marchioni: Rings and Gödel algebras,
Algebra Universalis, 64 (1-2) (2010) 103-116.

[4] R. Bělohlávek: Some properties of residuated lattices, Czechoslovak Math-
ematical Journal, 53 (1) (2003) 161-171.

[5] M. Bianchi, A. Gillio and L. Verardi: Monounary simple algebras, Con-
temporary Mathematics, 402 (2006) 119-132.

[6] S. Burris and H.P. Sankappanavar: A course in universal algebra,
Springer-Verlag, 1981.

[7] D. Buşneag, D. Piciu and A. Jeflea: Archimedean residuated lattices,
Annals of the Alexandru Ioan Cuza University - Mathematics, 56 (1)
(2010) 227-252.

[8] I.P. Cabrera, P. Cordero, G. Gutiérrez, J. Martinez and M. Ojega-Aciego:
On residuation in multilattices: Filters, congruences and homomorphisms,
Fuzzy Sets and Systems, 234 (2014) 1-21.

[9] C.C. Chang: Algebraic analysis of many valued logics, Transactions of
the American Mathematical Society, 88 (2) (1958) 467-490.

[10] L.C. Ciungu: Non-commutative multiple-valued logic algebras, Springer,
Cham, Heidelberg, New York, Dordrecht, 2014.

[11] R. Dedekind: Supplement XI of Dirichlet’s Vorlesungen, 4th edition
(1894),

∮
170, Collected Works, Vol. III, p. 71.

[12] R.P. Dilworth: Non-commutative residuated lattices, Transactions of the
American Mathematical Society, 46 (3) (1939) 426-444.

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures 91



BIBLIOGRAPHY 92

[13] A. Dvurec̆enskij: Pseudo MV -algebras are intervals in l-groups, Journal
of the Australian Mathematical Society, 72 (2002) 427-445.

[14] A. Dvurec̆enskij and S. Pulmannová: New trends in quantum structures,
kluwer Academic Publishers, Mathematics and its applications, Vol. 516,
2000.

[15] F. Esteva and L. Godo: Monoidal t-norm based logic: towards a logic for
left-continuous t-norms, Fuzzy Sets and Systems, 124 (3) (2001) 271-288.

[16] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono: Residuated Lattices:
An algebraic glimpse at substructural logics, Studies in Logic and the
Foundations of Mathematics, Volume 151, Elsevier, Amsterdam, 2007.

[17] G. Georgescu and A. Iorgulescu: Pseudo-MV algebras, Multiple Valued
Logic, 6 (1-2) (2001) 95-135.

[18] J.A. Goguen: L-fuzzy sets, Journal of Mathematical Analysis and Appli-
cations, 18 (1) (1967) 145-174.

[19] I. Jahan: The lattice of L-ideals of a ring is modular, Fuzzy Sets and
Systems, 199 (2012) 121-129.

[20] P. Jipsen and C. Tsinakis: A survey of residuated lattices, Ordered alge-
braic structures (J. Martinez, ed.), Kluwer academic publisher, Dordrecht,
(2002) 19-56.

[21] A. Kadji, C. Lele and J.B. Nganou: A non-commutative generalization of
Łukasiewicz rings, Journal of Applied Logic, 16 (2016) 1-13.

[22] A. Kadji, C. Lele and M. Tonga: Some classes of pseudo-residuated lat-
tices, Afrika Matematika, 27 (2016) 1147-1178.

[23] A. Kadji and M. Tonga: Some new axiomatic extensions of residuated
logics, Journal of Intelligent and Fuzzy Systems, 31 (2016) 1-12.

[24] T. Kuraoka and N.Y. Suzuki: Lattice of fuzzy subalgebras in universal
algebra, Algebra Universalis, 47 (2002) 223-237.

[25] T.Y. Lam: A first course in noncommutative rings, Springer-Verlag, Vol-
ume 131, Berlin/Heidelberg, New York, 1991.

[26] J. Lambek, M. Barr, J.F. Kennison and R. Raphael: Injective hulls of
partially ordered monoids, Theory and Applications of Categories, 26 (13)
(2012) 338-348.

Ph.D. Dissertation: Residual Transfer in Fuzzy Algebraic Structures S.V. Tchoffo Foka



BIBLIOGRAPHY 93

[27] H. Liviu-Constantin, N. Luisa-Maria and C. Gilena: Distributive residu-
ated lattices, Annals of University of Craiova, 39 (1) (2012) 100-109.

[28] E.G. Manes: A class of fuzzy theories, Journal of Mathematical Analysis
and Applications, 85 (2) (1982) 409-451.

[29] V. Murali: Lattice of fuzzy subalgebras and closure systems in IX , Fuzzy
Sets and Systems, 41 (1) (1991) 101-111.

[30] K. Murata: Primary decomposition of elements in compactly gener-
ated integral multiplicative lattices, Osaka Journal of Mathematics, 7 (1)
(1970) 97-115.

[31] V. Novák: On the syntactico-semantical completeness of first-order fuzzy
logic I, Kybernetika, 26 (1) (1990) 47-66.

[32] V. Novák: On the syntactico-semantical completeness of first-order fuzzy
logic II, Kybernetika, 26 (1) (1990) 134-154.

[33] H. Ono: Substructural logics and residuated lattices - an introduction,
Trends in Logic, Kluwer, Dordrecht, 21 (2003) 177-212.

[34] D. Piciu: Algebras of fuzzy logic, Ed. Universitaria, Craiova, 2007.
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A Residuated Lattice of L-Fuzzy Subalgebras

of a Mono-Unary Algebra
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Given a complete residuated lattice L :¼ ðL;^;_;�;³;(; 0; 1Þ and a mono-unary algebra

A :¼ ðA; fÞ, it is well known that L and the residuated lattice FuðA;LÞ :¼ ðFuðA;LÞ;^;_;�;
³;(; 0; 1Þ of L-fuzzy subsets of A satisfy the same residuated lattice identities. In this paper,
we show that L and the residuated lattice FsðA;LÞ :¼ ðFsðA;LÞ;^;_;�; ,!;#; 0; 1Þ of

L-fuzzy subalgebras of A satisfy the same residuated lattice identities if and only if the

Heyting algebra SubðAÞ :¼ ðSubðAÞ;\;[;); ;;AÞ of subuniverses of A is a Boolean

algebra. We also show that FsðA;LÞ is a Boolean algebra (respectively, an MV -algebra) if

and only if L is a Boolean algebra (respectively, an MV -algebra) and SubðAÞ is a Boolean

algebra.

Keywords: Residuated lattice; MV -algebra; Boolean algebra; mono-unary algebra; subuniverse;
L-fuzzy subset; L-fuzzy subalgebra.

1. Introduction

In 1965, Zadeh1 de¯ned the notion of fuzzy subset of a set, which led to a revision of

mathematics, to formalize the concept of set membership under uncertainty. In

order to satisfy the needs of fuzzy reasoning, several kinds of algebraic structures

were then considered. In 1967, Goguen2 generalized the Zadeh's concept of fuzzy

subset to L-fuzzy subset, replacing the unit interval ½0; 1� of real numbers by the

underlying set L of an appropriate structure of truth values. In 1996, �Sešelja3

introduced the concept of L-fuzzy subalgebra of a universal algebra, where L is

the underlying set of a partially ordered set L, by considering compatibility on

levels sets.

In 1894, Dedekind4 introduced the idea of residuation. Since then, many appli-

cations appeared in various algebraic theories (see, Refs. 5–7). In 1939, Ward and

Dilworth8 developed a systematic theory of lattices over which an auxiliary oper-

ation of multiplication or residuation is de¯ned, called residuated lattices. In 1990,

*Corresponding author.

New Mathematics and Natural Computation
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Nov�ak9,10 introduced ¯rst-order fuzzy logic and proved that the algebra of this logic

is a residuated lattice. In 2002, Blount and Tsinakis11 established for the ¯rst time a

general structural theory of the class of residuated lattices.

In this paper, given a complete residuated lattice L and a mono-unary algebra A,

we set up a construction of the L-fuzzy subalgebra of A generated by an L-fuzzy

subset of A, characterize atoms and co-atoms of the lattice FsðA;LÞ of L-fuzzy

subalgebras of A and show that the latter is algebraic, when L is algebraic. We also

de¯ne a residuated lattice FsðA;LÞ on the set of L-fuzzy subalgebras of A which is

both an extension of L and the Heyting algebra SubðAÞ on the set of subuniverses of

A. Furthermore, we show that FsðA;LÞ is an MV -algebra (respectively, a Boolean

algebra) if and only if L is an MV -algebra (respectively, a Boolean algebra) and

SubðAÞ is a Boolean algebra.

2. Preliminaries

2.1. Residuated lattices

De¯nition 2.1. An algebra ðL;^;_;�;³;(; 0; 1Þ of type h2; 2; 2; 2; 2; 0; 0i is called
a residuated lattice if it satis¯es the following conditions:

ðRL1Þ ðL;^;_Þ is a bounded lattice with a partial order �;

ðRL2Þ ðL;�; 1Þ is a monoid;

ðRL3Þ for any x; y; z 2 L, x� y � z i® x � y³z i® y � x(z.

An algebra ðL;^;_;�;³;(; 0; 1Þ of type h2; 2; 2; 2; 2; 0; 0i is a residuated lattice if

and only if ðL;^;_; 0; 1Þ is a bounded lattice, ðL;�; 1Þ is a monoid, � is order-

preserving in each argument and the inequality x� y � z has a largest solution for x

(namely y³z) and for y (namely x(z). For any x 2 L and a nonnegative integer n,

xn is de¯ned inductively by x0 ¼ 1 and xnþ1 ¼ xn � x.

Proposition 2.1 (Refs. 11–13). In a residuated lattice, the following hold

(whenever ^ and _ exist) for any z 2 L, X;Y � L and - -K 2 f³;(g:
ð1Þ ð_XÞ � ð_Y Þ ¼ _

x2X;y2Y
x� y,

ð2Þ z - -K ð^XÞ ¼ ^
x2X

ðz - -KxÞ and ð_XÞ - -K z ¼ ^
x2X

ðx - -K zÞ,
Furthermore, the following (quasi-)identities and their mirror images (obtained

by replacing x� y by y� x and interchanging x³y with x(y) also hold:

ð3Þ If x � y, then x� z � y� z, y³z � x³z and z³x � z³y,

ð4Þ x� y � x ^ y,

ð5Þ x� 0 ¼ 0 ¼ 0� x,

ð6Þ 1³x ¼ x,

ð7Þ If x � y, then x³y ¼ 1.

Proposition 2.2 (Refs. 11 and 12). The class of residuated lattices is a variety.
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A residuated lattice is called complete (respectively, algebraic, distributive,

modular,. . .) if so is its lattice. In a residuated lattice L, for any x 2 L,

x :¼ x³0 and ~x :¼ x(0 ðmirror image of xÞ
are called left annihilator and right annihilator of x, respectively.

De¯nition 2.2. A residuated lattice L is called

. a Heyting algebra if x� y ¼ x ^ y for all x; y 2 L;

. an RL-monoid if ðx³yÞ � x ¼ x ^ y ¼ x� ðx(yÞ for all x; y 2 L;

. a MTL-algebra if ðx³yÞ _ ðy³xÞ ¼ 1 ¼ ðx(yÞ _ ðy(xÞ for all x; y 2 L;

. a BL-algebra if it is both an RL-monoid and a MTL-algebra;

. an MV -algebra if it is a BL-algebra satisfying ~x ¼ x ¼ ex for all x 2 L;

. a Boolean algebra if it is both an MV -algebra and a Heyting algebra.

2.2. L-fuzzy subsets of a set

De¯nition 2.3. Let A be a nonempty set. A fuzzy subset of A under L, or an

L-fuzzy subset of A, is a map from A to L.

For any B � A, a 2 A and r; s 2 L, the following functions from A to L are L-fuzzy

subsets of A:

Bs
rðxÞ :¼

s if x 2 B;

r if not:

�
for all x 2 A;

Br :¼ Br
0, Br :¼ B1

r , as
r :¼ fag s

r, ar :¼ ar
0 (L-fuzzy point of A), B1 ¼: �B :¼ B0

(characteristic function of B), �a :¼ �fag and Ar ¼: r :¼ ;r (constant L-fuzzy subset

of A with value r). For any L-fuzzy subset � of A and r 2 L, the sets

Suppð�Þ :¼ fx 2 A : �ðxÞ 6¼ 0g;
Imð�Þ :¼ f�ðxÞ : x 2 Ag;
Uð�; rÞ :¼ fa 2 A : �ðaÞ � rg;

are called the support, the image and the r-level set (or r-cut) of �, respectively. The

order relation � on the set FuðA;LÞ of L-fuzzy subsets of A is de¯ned as follows: for

any �; � 2 FuðA;LÞ,

� � � if and only if �ðxÞ � �ðxÞ for all x 2 A:

The relation < on FuðA;LÞ is de¯ned as follows: for any �; � 2 FuðA;LÞ,
� < � if and only if � � � and there is a 2 A such that �ðaÞ < �ðaÞ:

The set FuðA;LÞ forms a bounded lattice FuðA;LÞ :¼ ðFuðA;LÞ;^;_; 0; 1Þ and a

residuated lattice FuðA;LÞ :¼ ðFuðA;LÞ;^;_;�;³;(; 0; 1Þ; where the binary

operations ^;_;�;³;( are de¯ned componentwise. Since the class of residuated
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lattices is a variety, L and FuðA;LÞ satisfy the same residuated lattice identities.

Furthermore, L is a complete Brouwerian residuated lattice if and only if so is

FuðA;LÞ.

2.3. Mono-unary algebras

De¯nition 2.4 (see, Refs. 14 and 15). A mono-unary algebra or a unary is an

algebra with a single unary operation, that is an algebra of type h1i.
Let A :¼ ðA; fÞ be a mono-unary. A subset B of A is a subuniverse of A if and only if

fðxÞ 2 B for all x 2 B.

Remark 2.1. The set of subuniverses of A forms a Heyting algebra

SubðAÞ :¼ ðSubðAÞ;\;[;); ;;AÞ;

where the binary operation) is de¯ned by: B ) C :¼ SfD 2 SubðAÞ : D \ B � Cg
for all B;C 2 SubðAÞ.

For any nonnegative integer n, f n is de¯ned inductively by: f 0ðxÞ ¼ x and

f nþ1ðxÞ ¼ fðf nðxÞÞ for all x 2 A.

De¯nition 2.5. An element x of A is said to be cyclic if there is some integer p � 1

such that f pðxÞ ¼ x.

Remark 2.2. The subuniverse of A generated by an element x of A is given by

SgðxÞ ¼ ff kðxÞ : k 2 Ng.
In the rest of this paper, unless otherwise speci¯ed, A ¼ ðA; fÞ is a mono-unary

algebra and L ¼ ðL;^;_;�;³;(; 0; 1Þ is a complete residuated lattice.

3. Lattice of L-Fuzzy Subalgebras

De¯nition 3.1. An L-fuzzy subset � of A is an L-fuzzy subalgebra of A if �ðfðxÞÞ �
�ðxÞ for all x 2 A.

Note that an L-fuzzy subset of A is an L-fuzzy subalgebra of A if and only if all its

levels sets are subuniverses of A. Furthermore, for any B 2 SubðAÞ, the L-fuzzy

subsets Br and Br are L-fuzzy subalgebras of A.

Remark 3.1. The set of L-fuzzy subalgebras of A forms a complete lattice

FsðA;LÞ :¼ ðFsðA;LÞ;^;_; 0; 1Þ.
Now, set Ck

x :¼ fa 2 A : f kðaÞ ¼ xg for all x 2 A and k 2 N.

Theorem 3.1. Let � be an L-fuzzy subset of A. The L-fuzzy subalgebra of A
generated by � is de¯ned by: �?ðxÞ ¼ _k2N _a2C k

x
�ðaÞ for all x 2 A.
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Proof. Since �?ðxÞ � _a2C 0
x
�ðaÞ ¼ _f�ðxÞg ¼ �ðxÞ for all x 2 A, we have � � �?.

We next show that �? is an L-fuzzy subalgebra of A. For any x 2 A, we have

�?ðfðxÞÞ ¼
W

k2N

W

a2C k
fðxÞ

�ðaÞ ¼
W

a2C 0
fðxÞ

�ðaÞ� �
_

W

k2N

W

a2C kþ1
fðxÞ

�ðaÞ� �
;

since, Ck
x � Ckþ1

fðxÞ, we have �?ðfðxÞÞ � _
k2N

_
a2C kþ1

fðxÞ

�ðaÞ � _
k2N

_
a2C k

x

�ðaÞ ¼ �?ðxÞ.

Hence, �? is an L-fuzzy subalgebra of A.

Finally, let � be an L-fuzzy subalgebra of A which contains �. Let x 2 A. For any

k 2 N and a 2 Ck
x, we have �ðxÞ ¼ �ðf kðaÞÞ � �ðaÞ � �ðaÞ. Thus, �ðxÞ � _a2C k

x
�ðaÞ

for all k 2 N; i.e. �ðxÞ � _k2N _a2C k
x
�ðaÞ; i.e. �ðxÞ � �?ðxÞ. So, � � �. Hence, �? ¼

Fsgð�Þ.
Lemma 3.1. Let x 2 A. Then SgðxÞ is an atom of SubðAÞ if and only if x is cyclic.

Proof. Assume that SgðxÞ is an atom of SubðAÞ. Since ; � SgðfðxÞÞ � SgðxÞ, we
have SgðfðxÞÞ ¼ SgðxÞ; thus, there is n 2 N such that f nðfðxÞÞ ¼ x; so, f nþ1ðxÞ ¼ x.

Hence, x is cyclic.

Conversely, assume that x is cyclic of order n. Let B be a subuniverse of A such

that ; � B � SgðxÞ. Since there is m � n such that fmðxÞ 2 B, we have

x ¼ f nðxÞ ¼ f n�mðfmðxÞÞ 2 B; thus, SgðxÞ � B and, SgðxÞ ¼ B. Hence, SgðxÞ is an
atom of SubðAÞ.
Theorem 3.2. Atoms of FsðA;LÞ are only the L-fuzzy subalgebras SgðaÞr, where
r is an atom of L and a is a cyclic element of A.

Proof. ð)Þ Let � be an atom of FsðA;LÞ. Since there is a 2 A such that �ðaÞ 6¼ 0,

we have 0 < SgðaÞ�ðaÞ � �; thus, � ¼ SgðaÞ�ðaÞ. We next show that SgðaÞ is an atom

of SubðAÞ. So, for any subuniverse B of A such that ; � B � SgðaÞ, we have

0 < B�ðaÞ � �; thus, � ¼ B�ðaÞ; i.e. B ¼ SgðaÞ. Hence, SgðaÞ is an atom of SubðAÞ.
Finally, for any s 2 L such that 0 < s � �ðaÞ, we have 0 < SgðaÞs � �; thus,

SgðaÞs ¼ �; i.e. s ¼ �ðaÞ. Hence, �ðaÞ is an atom of L.
ð(Þ Let r be an atom of L and a 2 A such that SgðaÞ is an atom of SubðAÞ. It is

clear that SgðaÞr 6¼ 0. Now, let � 2 FsðA;LÞ such that 0 < � � SgðaÞr. Since there is
b 2 SgðaÞ such that 0 � �ðbÞ < r, we have �ðbÞ ¼ 0 and ; � SgðbÞ � SgðaÞ; thus,
�ðbÞ ¼ 0 and SgðaÞ ¼ SgðbÞ; so, �ðaÞ ¼ 0. Hence, �ðxÞ ¼ 0 for all x 2 SgðaÞ; i.e.

� ¼ 0. Therefore, SgðaÞr is an atom of FsðA;LÞ.
Theorem 3.3. Co-atoms of FsðA;LÞ are only the L-fuzzy subalgebras Bs, where s

and B are co-atoms of L and SubðAÞ, respectively.
Proof. ð)Þ Let � be a co-atom of FsðA;LÞ. For any a; b 62 Uð�; 1Þ, we have � �
�ðaÞ _ � < 1 and � � �ðbÞ _ � < 1; thus, �ðaÞ _ � ¼ � ¼ �ðbÞ _ � and, �ðaÞ ¼ �ðbÞ.
It follows that � ¼ ðUð�; 1ÞÞs for some s 2 L. Since � 6¼ 1, we have s 6¼ 1 and
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Uð�; 1Þ 6¼ A.

. For any r 2 L such that s < r � 1, we have � < r _ � � 1 and, r _ � ¼ 1; thus,

r ¼ r _ s ¼ 1. Hence, s is a co-atom of L.
. For any D 2 SubðAÞ such that Uð�; 1Þ � D � A, we have � < Ds � 1 and,

Ds ¼ 1; thus, D ¼ A. Hence, Uð�; 1Þ is a co-atom of SubðAÞ.
ð(Þ Let s and B be co-atoms of L and SubðAÞ, respectively. We have Bs 6¼ 1, since

s 6¼ 1 and B 6¼ A. For any � 2 FsðA;LÞ such that Bs < � � 1, we have B ¼
UðBs; 1Þ � Uð�; 1Þ � A and a 62 B such that s < �ðaÞ � 1; thus, B � Uð�; 1Þ � A

and a 2 Uð�; 1ÞnB; so, B � Uð�; 1Þ � A and, Uð�; 1Þ ¼ A; i.e. � ¼ 1. Hence, Bs is a

co-atom of FsðA;LÞ.
Lemma 3.2. Let c be a compact element of L and a 2 A. Then SgðaÞc is a compact

element of FsðA;LÞ.
Proof. Let f�igi2I � FsðA;LÞ such that SgðaÞc � _ i2I�i. Since c � _ i2I�iðaÞ,
there is a ¯nite subset I0 of I such that c � _ i2I0�iðaÞ. For any x 2 SgðaÞ, we

have SgðaÞcðxÞ ¼ c � _ i2I0�iðaÞ � _ i2I0�iðxÞ ¼ ð_ i2I0�iÞðxÞ; thus, SgðaÞc � _ i2I0�i.
Hence, SgðaÞc is a compact element of FsðA;LÞ.

For any compact element c of L and a 2 A, SgðaÞc will be called a compact

principal L-fuzzy subalgebra of A.

Theorem 3.4. Suppose that L is algebraic. Then the following hold:

ð1Þ Compact elements of FsðA;LÞ are only ¯nite suprema of compact principal

L-fuzzy subalgebras of A.

ð2Þ FsðA;LÞ is an algebraic lattice.

Proof. (1) A ¯nite supremum of compact principal L-fuzzy subalgebras of A is a

¯nite supremum of compact elements of FsðA;LÞ by Lemma 3.2; so, it is a compact

element of FsðA;LÞ.
Conversely, let � be a compact element of FsðA;LÞ. Since � ¼ _a2ASgðaÞ�ðaÞ, there

are a1; . . . ; an 2 A such that � ¼ _1�i�nSgðaiÞ�ðaiÞ. Since L is algebraic, for any

1 � i � n, there is a family fcjgj2Ii of compact elements of L such that

�ðaiÞ ¼ _ j2Ii cj. It follows that

� ¼ W

1�i�n

SgðaiÞ W

j2Ii
cj

¼ W

1�i�n

W

j2Ii
SgðaiÞcj

¼ W

ðj1;...;jnÞ2
Q

1�i�n

Ii

W

1�i�n

SgðaiÞcji :
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Since � is compact, there is a family fKig1�i�n of ¯nite sets such that Ki � Ii for all

1 � i � n and � ¼ _ðj1;...;jnÞ2 �
1�i�n

Ki
_1�i�n SgðaiÞcji . Hence, by Proposition 3.2, � is a

¯nite supremum of compact principal L-fuzzy subalgebras of A.

(2) Since FsðA;LÞ is complete, it su±ces to show that it is compactly generated.

So, let � 2 FsðA;LÞ. Since L is algebraic, for any a 2 A, there is a family fci;agi2Ia of
compact elements of L such that �ðaÞ ¼ _ i2Iaci;a. Hence, � ¼ _a2A _ i2Ia Fsgðaci;aÞ,
and for each a 2 A and i 2 Ia, Fsgðaci;aÞ is compact by Proposition 3.2. Therefore,

FsðA;LÞ is algebraic.

4. Residuated Lattice of L-Fuzzy Subalgebras

FsðA;LÞ is closed under the binary operation � of the residuated lattice FuðA;LÞ of
L-fuzzy subsets of A, but the binary operations ³ and ( are not necessarily well

de¯ned on FsðA;LÞ as the following example shows.

Example 4.1. Let's take L ¼ f0; �; �; �; 1g, where 0 < � < �; � < 1 and �; � are

incomparable. Consider the binary operations�;³;( given by the following Cayley

tables:

Then L ¼ ðL;^;_;�;³;(; 0; 1Þ is a residuated lattice. Consider the Peano algebra
N ¼ ðN;�Þ, given by �ðxÞ ¼ xþ 1 for all x 2 N, and the L-fuzzy subalgebras � and �
of N de¯ned by

�ðxÞ ¼ 0 if x ¼ 0;

� if not:

�
and �ðxÞ ¼ 0 if x ¼ 0;

� if not:

�
for all x 2 N;

The L-fuzzy subset �³� of N is not an L-fuzzy subalgebra of N , since

ð�³�Þð�ð0ÞÞ ¼ ð�³�Þð1Þ ¼ �³� ¼ � < 1 ¼ 0³0 ¼ ð�³�Þð0Þ:

Theorem 4.1. Let � be an L-fuzzy subset of A. The L-fuzzy subset �? of A, given by

�?ðxÞ ¼ ^k2N�ðf kðxÞÞ for all x 2 A, is the biggest L-fuzzy subalgebra of A contained

in �.

Proof. We have �? � �, since for any x 2 A, �?ðxÞ � �ðf 0ðxÞÞ ¼ �ðxÞ. We next

show that �? is an L-fuzzy subalgebra of A.
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For any x 2 A, we have

�?ðfðxÞÞ ¼ V

k2N
�ðf kþ1ðxÞÞ � �ðf 0ðxÞÞ ^ V

k2N
�ðf kþ1ðxÞÞ ¼ �?ðxÞ:

Hence, �? is an L-fuzzy subalgebra of A.

Finally, let � be an L-fuzzy subalgebra of A contained in �. For any x 2 A,

we have �ðxÞ � �ðf kðxÞÞ � �ðf kðxÞÞ for all k 2 N; thus, �ðxÞ � ^k2N�ðf kðxÞÞ ¼
�?ðxÞ. Hence, � � �?. Therefore, �? is the biggest L-fuzzy subalgebra of A contained

in �.

Theorem 4.2. For any �; � 2 FsðA;LÞ, set �,!� :¼ ð�³�Þ? and �#� :¼ ð�(�Þ?.
Then FsðA;LÞ :¼ ðFsðA;LÞ;^;_;�; ,!;#; 0; 1Þ is a complete residuated lattice.

Proof. We only have to show that �,!� ¼ maxf� 2 FsðA;LÞ : � � � � �g and �#
� ¼ maxf� 2 FsðA;LÞ : �� � � �g for all �; � 2 FsðA;LÞ. So, let �; � 2 FsðA;LÞ.
We have ð�,!�Þ � � ¼ ð�³�Þ? � � � ð�³�Þ � � � �. Moreover, for any � 2
FsðA;LÞ such that � � � � �, we have � � �³�; thus, � � ð�³�Þ? ¼ �,!�.

Hence, �,!� ¼ maxf� 2 FsðA;LÞ : � � � � �g and, �#� ¼ maxf� 2 FsðA;LÞ : ��
� � �g by similar arguments. Therefore, FsðA;LÞ is a complete residuated lattice.

Theorem 4.3. The map 	 : SubðAÞ ! FsðA;LÞ, given by 	ðBÞ ¼ B1 for all

B 2 SubðAÞ, is a complete residuated lattice embedding.

Proof. It is clear that 	 is a complete lattice embedding of SubðAÞ into FsðA;LÞ.
Since we have 	ðB \ CÞ ¼ ðB \ CÞ1 ¼ B1 � C1 ¼ 	ðBÞ � 	ðCÞ for all B;C 2
SubðAÞ, it su±ces to show that 	ðBÞ,!	ðCÞ ¼ 	ðB ) CÞ ¼ 	ðBÞ#	ðCÞ. So, let
B;C 2 SubðAÞ. For any x 62 B ) C, we have SgðxÞ \ B*C; thus, f k0ðxÞ 2 B and

f k0ðxÞ 62 C for some k0 2 N; so,

ð	ðBÞ,!	ðCÞÞðxÞ ¼ ðB1,!C1ÞðxÞ
¼ B1ðf k0ðxÞÞ³C1ðf k0ðxÞÞ� �
^ V

k2N
B1ðf kþ1ðxÞÞ³C1ðf kþ1ðxÞÞ

� �
¼ð1³0Þ ^ V

k2N
B1ðf kþ1ðxÞÞ³C1ðf kþ1ðxÞÞ

� �
¼ 0

¼ðB ) CÞ1ðxÞ
¼	ðB ) CÞðxÞ:

Now, let x 2 B ) C and D 2 SubðAÞ such that D \ B � C and x 2 D.

. For any n 2 �ðBÞ :¼ fk 2 N : f kðxÞ 2 Bg, we have f nðxÞ 2 D \ B � C; thus,

f nðxÞ 2 B and f nðxÞ 2 C; so, B1ðf nðxÞÞ³C1ðf nðxÞÞ ¼ 1³1 ¼ 1.

. For any n 62 �ðBÞ, we have B1ðf nðxÞÞ³C1ðf nðxÞÞ ¼ 0³C1ðf nðxÞÞ ¼ 1.
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Thus,

ð	ðBÞ,!	ðCÞÞðxÞ ¼ ðB1,!C1ÞðxÞ

¼ V

k2�ðBÞ
B1ðf kðxÞÞ³C1ðf kðxÞÞ

" #

^ V

k 62�ðBÞ
B1ðf kðxÞÞ³C1ðf kðxÞÞ

" #

¼ V

k2�ðBÞ
1

 !
^ V

k 62�ðBÞ
1

 !
¼ 1 ^ 1

¼ 1

¼ðB ) CÞ1ðxÞ
¼	ðB ) CÞðxÞ:

Hence, 	ðB ) CÞ ¼ 	ðBÞ,!	ðCÞ and, 	ðB ) CÞ ¼ 	ðBÞ#	ðCÞ by similar argu-

ments. Therefore, 	 is a complete residuated lattice embedding of SubðAÞ into

FsðA;LÞ.
Theorem 4.4. The map  : L ! FsðA;LÞ, given by  ðrÞ ¼ r for all r 2 L, is a

complete residuated lattice embedding.

Proof. It is clear that  is a complete lattice embedding of the lattice of L into

FsðA;LÞ. Now, let r; s 2 L. For any x 2 A, we have

 ðr� sÞðxÞ ¼ r� s

¼ rðxÞ � sðxÞ
¼ ðrÞðxÞ �  ðsÞðxÞ
¼ ð ðrÞ �  ðsÞÞðxÞ:

Thus,  ðr� sÞ ¼  ðrÞ �  ðsÞ. For any x 2 A, we have

 ðr³sÞðxÞ ¼ r³s

¼ V

k2N
rðf kðxÞÞ³sðf kðxÞÞ

¼ V

k2N
 ðrÞðf kðxÞÞ³ ðsÞðf kðxÞÞ

¼ ð ðrÞ,! ðsÞÞðxÞ:
Thus,  ðr³sÞ ¼  ðrÞ,! ðsÞ and,  ðr(sÞ ¼  ðrÞ# ðsÞ by similar arguments.

Hence,  is a complete residuated lattice embedding of L into FsðA;LÞ.

5. Residuated Lattice Theoretic Properties of Fs(A,L)

Since ^, _ and � are de¯ned componentwise on FsðA;LÞ, L and FsðA;LÞ satisfy the

same bounded lattice-ordered monoid identities.

A Residuated Lattice of L-Fuzzy Subalgebras of a Mono-Unary Algebra 547

N
ew

 M
at

h.
 a

nd
 N

at
. C

om
pu

ta
tio

n 
20

19
.1

5:
53

9-
55

1.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

am
ue

l V
ed

ri
c 

T
C

H
O

FF
O

 F
O

K
A

 o
n 

12
/1

2/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



Lemma 5.1. The following statements are equivalent:

ðaÞ For any � 2 FuðA;LÞ, � 2 FsðA;LÞ i® �ðfðxÞÞ ¼ �ðxÞ for all x 2 A.

ðbÞ SubðAÞ is a Boolean lattice.

Proof. Suppose that (a) is satis¯ed. Let B 2 SubðAÞ. For any x 2 B, we have

B1ðfðxÞÞ ¼ B1ðxÞ ¼ 0 and, fðxÞ 2 B. So, B 2 SubðAÞ. Hence, SubðAÞ is a Boolean

lattice.

Conversely, suppose that (b) is satis¯ed. Let � 2 FsðA;LÞ. For any x 2 A,

fðxÞ 2 U ½�; �ðfðxÞÞ� 2 SubðAÞ; thus, x 2 U ½�; �ðfðxÞÞ]; so, �ðxÞ � �ðfðxÞÞ and,

�ðfðxÞÞ ¼ �ðxÞ. Whence the result.

Theorem 5.1. FsðA;LÞ is a subresiduated lattice of FuðA;LÞ if and only if

SubðAÞ is a Boolean lattice.

Proof. Assume that FsðA;LÞ is a subresiduated lattice of FuðA;LÞ. Let B be a

subuniverse of A. For any x 2 B, we have

B1ðfðxÞÞ³0 ¼B1ðfðxÞÞ³0ðfðxÞÞ
� ðB1,!0ÞðxÞ
¼ ðB1³0ÞðxÞ
¼B1ðxÞ³0ðxÞ
¼ 0³0

¼ 1;

thus, B1ðfðxÞÞ³0 ¼ 1 and, B1ðfðxÞÞ ¼ 0; i.e. fðxÞ 62 B and, fðxÞ 2 B. So, B is a

subuniverse of A. Hence SubðAÞ is a Boolean lattice.

Conversely, assume that SubðAÞ is a Boolean lattice. Let � and � be two L-fuzzy

subalgebras of A. For any x 2 A, we have

ð�,!�ÞðxÞ ¼ V

k2N
�ðf kðxÞÞ³�ðf kðxÞÞ

¼ V

k2N
�ðxÞ³�ðxÞ

¼�ðxÞ³�ðxÞ ¼ ð�³�ÞðxÞ;
thus, �,!� ¼ �³�. Hence, ,! is the restriction of³ to FsðA;LÞ. A similar reasoning

shows that # is the restriction of ( to FsðA;LÞ. Therefore, FsðA;LÞ is a sub-

residuated lattice of FuðA;LÞ.
Let K be a class of residuated lattices such that ModðIdðKÞ [ fx� y ¼ x ^ ygÞ is

included in the class of Boolean algebras (for example, the class of MV -algebras).

Theorem 5.2. FsðA;LÞ 	 IdðKÞ if and only if L 	 IdðKÞ and SubðAÞ is a Boolean

algebra.

Proof. If FsðA;LÞ 	 IdðKÞ, then SubðAÞ 	 IdðK) and L 	 IdðKÞ by Theorems 4.3

and 4.4, respectively; thus, SubðAÞ is a Boolean algebra and L 	 IdðKÞ.
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Conversely, assume that L 	 IdðKÞ and SubðAÞ is a Boolean algebra. Then

FsðA;LÞ is a subresiduated lattice of FuðA;LÞ by Theorem 5.1. Consequently,

FsðA;LÞ 	 IdðKÞ, since L 	 IdðKÞ.
If FsðA;LÞ is an RL-monoid, then L is an RL-monoid by Theorem 4.4; but the

converse is not necessarily true as the following example shows.

Example 5.1. Let L ¼ f0; �; �; 1g, where 0 < � < � < 1, and de¯ne the binary

operations � and ³ on L as follows:

Then L ¼ ðL;^;_;�;³;³; 0; 1Þ is an RL-monoid. Consider the mono-unary

algebra A given by the table and the L-fuzzy subalgebras � and 
 of A

de¯ned for any x 2 A by

�ðxÞ ¼
1 if x ¼ 0;

� if x 2 fa; bg;
� if x ¼ c:

8<: and 
ðxÞ ¼ 1 if x ¼ 0;

� if x 2 fa; b; cg:
�

Since � ,! 
 ¼ 
 , we have ðð� ,! 
Þ � �ÞðcÞ ¼ ð
 � �ÞðcÞ ¼ � � � ¼ 0 6¼ � ¼
ð� ^ 
ÞðcÞ; thus, ð�,!
Þ � � 6¼ � ^ 
 . It follows that FsðA;LÞ is not an RL-monoid.

If FsðA;LÞ is a MTL-algebra, then SubðAÞ and L are MTL-algebra by Theo-

rems 4.3 and 4.4, respectively; but the converse is not necessarily true as the following

example shows.

Example 5.2. Let L ¼ f0; �; �; �; 1g, where 0 < � < �; � < 1, and �; � are not

comparable; de¯ne the binary operations �, ³ and ( on L as follows:

A Residuated Lattice of L-Fuzzy Subalgebras of a Mono-Unary Algebra 549
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Then L ¼ ðL;^;_;�;³;(; 0; 1Þ is a MTL-algebra. Consider the unar A given in
Example 5.1. The subuniverses of A are B1 ¼ ;, B2 ¼ fag, B3 ¼ fa; bg,
B4 ¼ fa; b; cg, B5 ¼ f0g, B6 ¼ f0; ag, B7 ¼ f0; a; bg and B8 ¼ A. The binary
operation ) of SubðAÞ is given by

It is easy to check that SubðAÞ is aMTL-algebra. Consider the L-fuzzy subalgebras �
and 
 of A de¯ned for any x 2 A by

�ðxÞ ¼
1 if x ¼ 0;

� if x 2 fa; bg;
� if x ¼ c:

8<: and 
ðxÞ ¼
1 if x ¼ 0;

� if x 2 fa; b; cg;
0 if x ¼ c:

8<:
Then �,!
 ¼ 01 _ fa; bg� _ c� and 
,!� ¼ 01 _ fa; b; cg�; thus,

ðð�,!
Þ _ ð
,!�ÞÞðcÞ ¼ � 6¼ 1:

So, ð�,!
Þ _ ð
,!�Þ 6¼ 1. Hence, FsðA;LÞ is not a MTL-algebra.

6. Conclusion

In this paper, given a complete residuated lattice L and a mono-unary algebra A, we

have de¯ned a residuated lattice FsðA;LÞ on the set of L-fuzzy subalgebras of A and

showed that the latter is an MV -algebra (respectively, a Boolean algebra) if and only

if L is an MV -algebra (respectively, a Boolean algebra) and SubðAÞ is a Boolean

algebra. Since it appeared that this transfer is not necessarily possible in the class of

BL-algebras (MTL-algebras, RL-monoids), it would be interesting to investigate the

class of mono-unary algebras for which the transfer remains possible.
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Abstract
Given a universal algebraA := (A; F A) of type F , it is well known that the lattice Sub(A) of subuniverses ofA is algebraic
and its compact elements are exactly finitely generated subuniverses of A. In this paper, under a distributive algebraic lattice
L := (L; ∧, ∨; 0, 1), we characterize the compact elements of the lattice Fs(A, L) of L-fuzzy subalgebras of A, which is
an extension of Sub(A) and show that the latter is algebraic.

Keywords Universal algebra · Algebraic lattice · Compact element · L-fuzzy subalgebra

1 Introduction

In 1965, Zadeh (1965) introduced the concept of fuzzy sub-
set, as a function from a nonempty set to the unit interval
[0, 1] of real numbers, to formalize the concept of set
membership under uncertainty. In 1967, Goguen (1967) gen-
eralized it to L-fuzzy subset, replacing the unit interval [0, 1]
of real numbers by the underlying set of an appropriate struc-
ture of truth values. In 1988, Swamy and Swamy (1988) used
the Goguen’s concept to introduce the concept of L-fuzzy
ideal of a ring, where L is the underlying set of a complete
Brouwerian lattice.

In 1933, the notion of universal algebra (sometimes
called algebra for short) was introduced by G. Birkhoff [see
Birkhoff (1933, 1935, 1944)], to extract as much as possi-
ble the common elements of particular algebraic structures.
In 1982, Manes (1982) mentioned the idea of fuzzification
of universal algebra, and Murali (1991) in 1991 used it to
define a fuzzy subalgebra of a universal algebraA as a func-
tion, from the underlying set A ofA to the closed unit interval
[0, 1] of real numbers,which is∧-compatiblewith the funda-
mental operations of A. Further, he defined closure systems
in fuzzy sets and showed that the set of fuzzy subalgebras
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B S. V. Tchoffo Foka
tchoffofoka88@yahoo.fr

Marcel Tonga
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form an algebraic closure system. In 1996, Seselja (1996)
generalized the Murali’s concept to L-fuzzy subalgebras,
where L is the underlying set of a partially ordered set, by
considering compatibility rather on levels sets. He also char-
acterized classes of algebras for which the partially ordered
set of L-fuzzy subalgebras is a lattice and pointed out the fact
that its definition coincides with that of V. Murali when L is
a bounded lattice.

In thiswork,we consider the notion of L-fuzzy subalgebra
of a universal algebra, where L is the underlying set of a
distributive algebraic lattice. Given a universal algebraA :=
(A; F A) of typeF , we characterize the compact elements of
the lattice Fs(A, L) of L-fuzzy subalgebras of A and show
that the latter is algebraic. As Example 2.4 shows, this result
can also be applied to L-fuzzy ideals of a ring (or a lattice)
and fuzzy normal subgroups of a group. Its importance lies in
the fact that any algebraic lattice is isomorphic to the lattice
of the subuniverses of an algebra [see Theorem 3.5 in Burris
and Sankappanavar (1981)].

2 Preliminaries

The notion of algebraic lattice was introduced by Birkhoff
(1973) to describe the lattice of subuniverses of an algebra.

Definition 2.1 Let L = (L; ∧, ∨) be a lattice.

1. An element c in L is compact if: whenever
∨

B exists
and c ≤ ∨

B for a subset B of L , we have c ≤ ∨
B0 for

some finite subset B0 of B.
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2. L is algebraic if it is complete and compactly generated
(that is, each of its elements is a supremum of compact
elements of L).

It is well known that any finite lattice is algebraic and
the closed unit interval of real numbers is not algebraic.
Furthermore, a distributive algebraic lattice L is a complete
Brouwerian lattice; that is, a∧(

∨
X) = ∨

x∈X (a∧ x) for all
a ∈ L and X ⊆ L [see Burris and Sankappanavar (1981)].

Definition 2.2 1. A type (or language) of algebras is a pair
F := 〈F; σ 〉, where F is a set of function symbols and
σ a map from F to the set N of nonnegative integers.

2. An algebra of typeF is a pairA := (A; F A); where A is
a nonempty set (called universe ofA), F A := { f A : f ∈
F} and each f A : Aσ( f ) → A is an σ( f )-ary operation
on A, called a fundamental operation of A.

Note that F = ⋃
n∈NFn , where each Fn is the set of n-ary

function symbols in F .

Definition 2.3 A subset B of A is called a subuniverse of
A if f A(a1, . . . , an) ∈ B for all n-ary f in F and every
a1, . . . , an ∈ B.

Since a nullary operation can be seen as a constant oper-
ation of arity greater than or equal to 1, the empty set is a
subuniverse of A if and only if A does not contain a nullary
operation.

Example 2.4 a. The ideals of a lattice L = (L; 
, �) are
just subuniverses of the algebra L = (L; �; (ma)a∈L),
where ma(x) = a 
 x for all a, x ∈ L .

b. The normal subgroups of a group G = (G; ·, −1, e) are
just subuniverses of the algebraG=(G; ·; −1, (ma)a∈G;
e), where ma(x) = axa−1 for all a, x ∈ G.

c. The ideals of a ringR = (R; +, ·; −; 0) are just subuni-
verses of the algebraR = (R; +; −, (la)a∈R, (ra)a∈R;
0), where la(x) = ax and ra(x) = xa for all a, x ∈ R.

The subuniverse of A generated by a subset X of
A, denoted by SgA(X) or simply Sg(X), is the small-
est subuniverse of A containing X . The set Sub(A) of
subuniverses of A forms an algebraic lattice Sub(A) :=(
Sub(A); ∩, �; Sg(∅), A

)
; where ∩ is the intersection

of sets and � is given by B � C = Sg(B ∪ C) for all
B,C ∈ Sub(A). Moreover, compact elements of Sub(A)

are only of the form Sg(X); where X is a finite subset of A.
Throughout the work, unless otherwise specified, A :=

(A; F A) is a universal algebra of type F and L :=
(L; ∧, ∨; 0, 1) is a complete Brouwerian lattice.

Definition 2.5 A fuzzy subset of A under L, or an L-fuzzy
subset of A, is a map μ : A → L .

This notionwas introduced byGoguen (1967) in 1967 as a
generalization of the notion of fuzzy subset defined by Zadeh
(1965) in 1965 as a function from a set to [0, 1].

For any a ∈ A and r ∈ L , the L-fuzzy subset ar of A,

given by ar (x) =
{
r if x = a,

0 if not.
for all x ∈ A, is called an

L-fuzzy point of A. The characteristic functionχB of a subset
B of A is an L-fuzzy subset of A. For any L-fuzzy subset μ
of A and r ∈ L , U (μ, r) := {a ∈ A : μ(a) ≥ r} is called
the r -level set (or r -cut) of μ. The order relation≤ is defined
on the set Fu(A, L) of L-fuzzy subsets of A as follows: for
any μ, ν ∈ Fu(A, L), μ ≤ ν (ν contains μ) if and only
if μ(x) ≤ ν(x) for all x ∈ A. Fu(A, L) forms a complete
lattice Fu(A, L) := (

Fu(A, L); ∧, ∨; 0, 1
)
; where the

binary operations∧, ∨ are defined componentwise, and 0 =
χ∅ and 1 = χA are the constant L-fuzzy subsets of A with
values 0 and 1, respectively.

Definition 2.6 An L-fuzzy subset μ of A is called an L-
fuzzy subalgebra of A if μ( f A) = 1 for all f ∈ F0, and
μ

(
f A(a1, . . . , an)

) ≥ ∧
1≤i≤nμ(ai ) for all f ∈ Fn and

a1, . . . , an ∈ A.

Letμ be an L-fuzzy subset of A. Ifμ is an L-fuzzy subal-
gebra of A, then all its cuts are empty or subuniverses of A.
The converse is true whenU (μ, 1) �= ∅. A nonempty subset
B of A is a subuniverse of A if and only if χB is an L-fuzzy
subalgebra of A. For any L-fuzzy subalgebra μ of A and
a ∈ Sg(∅), we have a = t A( f A, . . . , f A) for some term
t(x1, . . . , xn) and f ∈ F0; thus, μ(a) ≥ ∧

1≤i≤nμ( f A) =
μ( f A) = 1 and, μ(a) = 1.

For any L-fuzzy subset μ of A, the L-fuzzy subalgebra
of A generated by μ, denoted by Fsg(μ), is the smallest
L-fuzzy subalgebra of A containing μ. Moreover, for any
μ, ν ∈ Fu(A, L), we have μ ≤ Fsg(μ), Fsg

(
Fsg(μ)

) =
Fsg(μ) and Fsg(μ) ≤ Fsg(ν) whenever μ ≤ ν. The set
Fs(A, L) of L-fuzzy subalgebras of A forms a complete
lattice Fs(A, L) := (

Fs(A, L); ∧, �; χSg(∅), 1
)
; where

the binary operation � is given by μ � ν = Fsg(μ ∨ ν) for
all μ, ν ∈ Fs(A, L). One can easily verify that the lattice
of subuniverses of A can be embedded into the lattice of
L-fuzzy subalgebras of A.

3 Results

In this section, first we will set up a mimetic construction of
the L-fuzzy subalgebra ofA generated by an L-fuzzy subset
of A, then characterize the compact elements of Fs(A, L)

and show that the latter is algebraic.

Lemma 3.1 Let μ be an L-fuzzy subset of A and μ� the L-
fuzzy subset of A defined by:
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μ�(x) =
∨

{r ∈ L : x ∈ Sg
(
U (μ, r)

)} f or all x ∈ A.

Then, μ� is the smallest L-fuzzy subalgebra ofA containing
μ; i .e., Fsg(μ) = μ�.

Proof For any a ∈ A, we have

a ∈ U
(
μ,μ(a)

) ⊆ Sg
(
U

(
μ,μ(a)

))
and, μ(a) ≤ μ�(a).

Thus, μ ≤ μ�. We next show that μ� is an L-fuzzy sub-
algebra of A.

• For any f ∈ F0, we have

μ�( f
A) =

∨
L = 1.

• Let f ∈ Fn and a1, . . . , an ∈ A. For any r1, . . . , rn ∈ L
such that ai ∈ Sg

(
U (μ, ri )

)
for all 1 ≤ i ≤ n, we have

a1, . . . , an ∈ Sg

⎛

⎝U (μ,
∧

1≤i≤n

ri )

⎞

⎠ and ,

f A(a1, . . . , an) ∈ Sg

⎛

⎝U (μ,
∧

1≤i≤n

ri )

⎞

⎠ ;

thus, μ�

(
f A(a1, . . . , an)

) ≥ ∧
1≤i≤nri . So, μ�

(
f A

(a1, . . . , an)
) ≥ ∧

1≤i≤nμ�(ai ).
Hence, μ� is an L-fuzzy subalgebra of A.
Now, let ν be an L-fuzzy subalgebra of A contain-
ing μ. Let u ∈ A\Sg(∅). For any r ∈ L such that
u ∈ Sg

(
U (ν, r)

)
, there are a term t(x1, . . . , xn) of typeF

and u1, . . . , un ∈ U (ν, r) such that u = t A(u1, . . . , un);
thus,

r ≤
∧

1≤i≤n

ν(ui ) ≤ ν
(
t A(u1, . . . , un)

) = ν(u).

So,

μ�(u) ≤
∨

{r ∈ L : u ∈ Sg
(
U (ν, r)

)} ≤ ν(u).

Consequently,μ� ≤ ν. Hence,μ� is the smallest L-fuzzy
subalgebra of A containing μ. 
�

Proposition 3.2 Let a ∈ A\Sg(∅) and c ∈ L. Then, Fsg
(
ac

)

is a compact element ofFs(A, L) if and only if c is a compact
element of L.
Proof (⇒) Assume that Fsg

(
ac

)
is a compact element of

Fs(A, L). Let {ri }i∈I ⊆ L such that c ≤ ∨
i∈I ri . Since

Fsg(ac) ≤ Fsg(a∨

i∈I
ri ) = Fsg(

∨

i∈I
ari ) =

⊔

i∈I
Fsg(ari ),

there are {i1, . . . , i p} ⊆ I such that

Fsg(ac) ≤
⊔

1≤ j≤p

Fsg(ari j ) = Fsg(a ∨

1≤ j≤p
ri j

);

thus, c = Fsg(ac)(a) ≤ Fsg(a∨
1≤ j≤pri j

)(a) = ∨
1≤ j≤pri j .

Hence, c is a compact element of L.
(⇐)Assume that c is a compact element ofL. Let {μλ}λ∈� ⊆
Fs(A, L) such that Fsg(ac) ≤ ⊔

λ∈�μλ. Since c ≤(∨
λ∈�μλ

)
�
(a) and c is a compact element of L, there are

r1, . . . , rn ∈ L such that

a ∈
⋂

1≤i≤n

Sg

(

U (
∨

λ∈�

μλ, ri )

)

and c ≤
∨

1≤i≤n

ri .

For any 1 ≤ i ≤ n, there are a term ti (xi1, . . . , xiki ) of type
F and ui1, . . . , uiki ∈ A such that

a = t Ai (ui1, . . . , uiki ) and

ri ≤
∨

λ∈�

μλ(ui j ) for all 1 ≤ j ≤ ki ;

thus,

ri ≤
∧

1≤ j≤ki

(
∨

λ∈�

μλ(ui j )

)

=
∨

(λi1,...,λiki )∈�ki

∧

1≤ j≤ki

μλi j (ui j ).

Hence, c ≤ ∨

1≤i≤n

∨

(λi1,...,λiki )∈�ki

∧

1≤ j≤ki

μλi j (ui j ); i .e.,

c ≤
∨

(
(λi1,...,λiki )

)
1≤i≤n

∈ ∏

1≤i≤n
�ki

∨

1≤i≤n

∧

1≤ j≤ki

μλi j (ui j ).

Since c is a compact element of L, there is a finite subset �
of � such that

c ≤
∨

(
(λi1,...,λiki )

)
1≤i≤n

∈ ∏

1≤i≤n
�ki

∨

1≤i≤n

∧

1≤ j≤ki

μλi j (ui j );

thus,

c ≤
∨

1≤i≤n

∨

(λi1,...,λiki )∈�ki

∧

1≤ j≤ki

μλi j (ui j )

=
∨

1≤i≤n

∧

1≤ j≤ki

(∨

λ∈�

μλ

)
(ui j )

≤
∨

1≤i≤n

∧

1≤ j≤ki

(∨

λ∈�

μλ

)
�
(ui j )

≤
∨

1≤i≤n

(∨

λ∈�

μλ

)
�

(
t A(ui1, . . . , uiki )

)
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=
∨

1≤i≤n

(∨

λ∈�

μλ

)
�
(a)

= (∨

λ∈�

μλ

)
�
(a)

= (⊔

λ∈�

μλ

)
(a).

• For any u ∈ Sg(a)\Sg(∅), we have

Fsg(ac)(u) = c ≤ (⊔

λ∈�

μλ

)
(a) ≤ (⊔

λ∈�

μλ

)
(u).

• For any u /∈ Sg(a), we have

Fsg(ac)(u) = 0 ≤ (⊔

λ∈�

μλ

)
(u).

It follows that Fsg(ac)(u) ≤ (⊔
λ∈�μλ

)
(u) for all u ∈ A;

i .e., Fsg(ac) ≤ ⊔
λ∈�μλ. Hence, Fsg(ac) is a compact

element of Fs(A, L). 
�
For any a ∈ Sg(∅) and c ∈ L , Fsg(ac) = χSg(∅) is a

compact element of Fs(A, L). For any compact element c
of L and a ∈ A, Fsg(ac) will be called a compact principal
L-fuzzy subalgebra of A.

Theorem 3.3 Suppose that L is a distributive algebraic lat-
tice.

(1) Compact elements of Fs(A, L) are only finite suprema
of compact principal L-fuzzy subalgebras of A.

(2) Fs(A, L) is an algebraic lattice.

Proof (1) A finite supremum of compact principal L-fuzzy
subalgebras of A is a finite supremum of compact elements
of Fs(A, L) by Proposition 3.2; so, it is a compact element
of Fs(A, L).
Conversely, let μ be a compact element of Fs(A, L). Since
μ = ⊔

a∈AFsg
(
aμ(a)

)
, there are a1, . . . , an ∈ A such that

μ = ⊔
1≤i≤n Fsg

(
(ai )μ(ai )

)
. Since L is algebraic, for any

1 ≤ i ≤ n, there is a family {c j } j∈Ii of compact elements of
L such that μ(ai ) = ∨

j∈Ii c j . It follows that

μ =
⊔

1≤i≤n

Fsg
(
(ai ) ∨

j∈Ii
c j

)

=
⊔

1≤i≤n

Fsg
(∨

j∈Ii
(ai )c j

)

=
⊔

1≤i≤n

⊔

j∈Ii
Fsg

(
(ai )c j

)

=
⊔

( j1,..., jn)∈ ∏

1≤i≤n
Ii

⊔

1≤i≤n

Fsg
(
(ai )c ji

)
.

Since μ is compact, there is a family {Ki }1≤i≤n of finite sets
such that Ki ⊆ Ii for all 1 ≤ i ≤ n and

μ =
⊔

( j1,..., jn)∈ ∏

1≤i≤n
Ki

⊔

1≤i≤n

Fsg
(
(ai )c ji

)
.

So, by Proposition 3.2, μ is a finite supremum of compact
principal L-fuzzy subalgebras of A.
(2) Since Fs(A, L) is complete, it suffices to show that it is
compactly generated. So, letμ ∈ Fs(A, L). SinceL is alge-
braic, for any a ∈ A, there is a family {ci,a}i∈Ia of compact
elements of L such that μ(a) = ∨

i∈Ia ci,a . Hence,

μ =
⊔

a∈A

Fsg
(
a ∨

i∈Ia
ci,a

) =
⊔

a∈A

⊔

i∈Ia
Fsg

(
aci,a

)
,

and for each a ∈ A and i ∈ Ia , Fsg
(
aci,a

)
is compact by

Proposition 3.2. Therefore, Fs(A, L) is algebraic. 
�

4 Conclusion

In the present paper, we investigated the algebraicity of the
lattice of fuzzy subalgebras of an algebra under a distributive
algebraic lattice. The distributivity of the algebraic lattice
having been used several times in our demonstrations, it
would be interesting to check if this data is essential. This
problem remains open since we have not yet found the solu-
tion.
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Abstract
In 1988, given a complete Brouwerian lattice L := (L; ∧, ∨; 0, 1) and a ringA := (A; +, ·; −; 0) with unity 1, Swamy
and Swamy (J Math Anal Appl 134:94–103, 1988) built a lattice structure, on the set of L-fuzzy ideals ofA, and investigated
some of its arithmetic properties. Since the residuation theory is richer than the lattice theory [see, Ciungu (Non-commutative
multiple-valued logic algebras, Springer monographs in mathematics, Springer, Berlin, 2014), Galatos et al. (An algebraic
glimpse at substructural logics, volume 151 of studies in logic and the foundations of mathematics, Elsevier, Amsterdam,
2007), Jipsen and Tsinakis (in: Martinez (ed) Ordered algebraic structures, Kluwer Academic Publisher, Dordrecht, 2002),
Piciu (Algebras of fuzzy logic, Editura Universitaria Craiova, Craiova, 2007)], in this paper, we consider the notion of fuzzy
ideals rather under a complete Brouwerian residuated lattice L := (L; ∧, ∨, �, �, �; 0, 1). A residuated lattice
F id(A, L) := (

Fid(A, L); ∧, +, ⊗, ↪→, �; χ0, 1
)
is built on the set Fid(A, L) of L-fuzzy ideals of A and it is

shown that the latter is both an extension of L and the residuated lattice Id(A) := (
I d(A); ∩, +, �, →, �; {0}, A

)

on the set I d(A) of ideals of A.

Keywords Ring · Ideal · L-fuzzy ideal · Residuated lattice

1 Introduction

Since the introduction of the idea of residuation by Dedekind
(1894), several researchers have approached it in a general
way. Ward and Dilworth (1939) introduced the notion of
residuated lattices, as the lattices on which a multiplication
or residuation operation is defined. During the same year,
Dilworth (1939) introduced the notion of non-commutative
residuated lattices and investigated some of its properties
amongwhich decompositions into primary and semi-primary
elements. Since then, there has been substantial research
regarding some specific classes of residuated lattices as
RL-monoids, MT L-algebras, BL-algebras, MV -algebras,
Boolean algebras,... (see, Ciungu 2014; Galatos et al. 2007;
Jipsen and Tsinakis 2002; Piciu 2007).
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Zadeh (1965) introduced the concept of fuzzy subset of
a set, as a function from a nonempty set to the closed unit
interval [0, 1] of real numbers, which led to a revision of
mathematics, to formalize the concept of set membership
under uncertainty. Because of the inability of the latter to
interpret certain situations of our daily life, Goguen (1967)
introduced in 1967 the concept of L-fuzzy subset of a set,
replacing the unit interval [0, 1]of real numbers by the under-
lying set L of some structures of truth values among which
complete Brouwerian lattices and residuated lattices.

Swamy and Swamy (1988) used the Goguen’s concept to
introduce the concept of L-fuzzy ideals of a ring, where L
is the underlying set of a complete Brouwerian lattice, and
describe maximal and prime elements of their lattice. Since
then, the lattice of L-fuzzy ideals of a ringhas been the subject
of several other studies (see, Martinez 1999; Yue 1988).

In this work, in order to enrich the structures of truth val-
ues, we consider the notion of L-fuzzy ideal of a ring, where
L is the underlying set of a complete Brouwerian residuated
lattice L. Given a ringAwith unity 1, we define a residuated
lattice structureF id(A, L) on the set of L-fuzzy ideals ofA
which extends both L and Id(A). The paper is organized as
follows.
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In Sect. 2, we recall some known facts about residuated
lattices and L-fuzzy ideals of rings. Section 3 outlines the
construction of the residuated lattice F id(A, L). In Sect. 4,
we embed L and Id(A) into F id(A, L).

2 Preliminaries

2.1 Residuated lattices

We collect here some definitions and results on residuated
lattices, most of them being well known (See, Ciungu 2014;
Galatos et al. 2007; Jipsen and Tsinakis 2002; Piciu 2007).

Definition 2.1 An algebra (L; ∧, ∨, �, �, �; 0, 1)
of type 〈2, 2, 2, 2, 2, 0, 0〉 is called a residuated lattice if it
satisfies the following conditions:

(RL1) (L; ∧, ∨; 0, 1) is a bounded lattice (with a partial
order ≤);
(RL2) (L; �, 1) is a monoid;
(RL3) for any x, y, z ∈ L , x � y ≤ z iff x ≤ y � z iff
y ≤ x � z.

An algebra (L; ∧, ∨, �, �, �; 0, 1) of type 〈2, 2, 2,
2, 2, 0, 0〉 is a residuated lattice if and only if (L; ∧, ∨; 0, 1)
is a bounded lattice, (L; �, 1) is a monoid, � is order-
preserving in each argument and the inequality x � y ≤ z
has a largest solution for x (namely y � z) and for y (namely
x � z). For any x ∈ L and a non negative integer n, xn is
defined inductively by x0 = 1 and xn+1 = xn � x .

Example 2.2 (a) The Gödel structure is the residuated lattice
L = (L; ∧, ∨, ∧, �, �; 0, 1) given by L = [0, 1],
x ∧ y = min(x, y), x ∨ y = max(x, y) and

x � y =
{
1 if x ≤ y,
y otherwise.

for all x, y ∈ L.

(b) The product (or Gaines) structure is the residuated lattice
L = (L; ∧, ∨, �, �, �; 0, 1) given by L = [0, 1],
x ∧ y = min(x, y), x ∨ y = max(x, y), x � y = xy (the
usual multiplication of real numbers) and

x � y =
{
1 if x ≤ y,
y/x otherwise.

for all x, y ∈ L.

(c) The Łukasiewicz structure of order p ∈ N
� is the resid-

uated lattice L = (L; ∧, ∨, �, �, �; 0, 1) given by
L = [0, 1], x ∧ y = min(x, y), x ∨ y = max(x, y),

x � y = p
√
max(0, x p + y p − 1) and

x � y = min
(
1, p

√
1 − x p + y p

)
for all x, y ∈ L.

If p = 1, we obtain the Łukasiewicz structure.

Example 2.3 (See, Kadji et al. 2016, Example 8) Let L =
{0, a, b, c, 1} be a lattice such that 0 < a < b < c < 1.
Define the binary operations�,� and� by the three tables
below:

� 0 a b c 1
0 0 0 0 0 0
a 0 0 0 a a
b 0 0 0 b b
c 0 a a c c
1 0 a b c 1

� 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b b c 1 1 1
c 0 a b 1 1
1 0 a b c 1

� 0 a b c 1
0 1 1 1 1 1
a b 1 1 1 1
b b b 1 1 1
c 0 b b 1 1
1 0 a b c 1

.

Then L = (L; ∧, ∨, �, �, �; 0, 1) is a residuated
lattice.

Proposition 2.4 (Ciungu 2014; Galatos et al. 2007; Jipsen
and Tsinakis 2002; Piciu 2007) In a residuated lattice, the
following hold (whenever

∧
and

∨
exist) for any z ∈ L,

X ,Y ⊆ L and ���∈ {�, �}:

(1) (
∨

X) � (
∨

Y ) = ∨

x∈X , y∈Y
x � y.

(2) z ��� (
∧

X) = ∧

x∈X
(z ��� x) and (

∨
X) ��� z =

∧

x∈X
(x ��� z).

Furthermore, the following (quasi-)identities and their mir-
ror images (obtained by replacing x � y by y � x and
interchanging x � y with x � y) also hold:

(3) If x ≤ y, then x � z ≤ y � z, y � z ≤ x � z and
z � x ≤ z � y.
(4) x � y ≤ x ∧ y.
(5) x � 0 = 0 = 0 � x.
(6) 1 � x = x.
(7) If x ≤ y, then x � y = 1.

Proposition 2.5 (Ciungu 2014; Galatos et al. 2007; Jipsen
and Tsinakis 2002; Piciu 2007) The class of residuated lat-
tices is a variety.

A residuated lattice L is called complete if so is its lat-
tice. A residuated lattice L is called Brouwerian or com-
pletely meet distributive if: for any a ∈ L and B ⊆ A,
a ∧ ∨

B = ∨

b∈B
(a ∧ b), whenever both

∨
exist.
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Example 2.6 Gödel, Gaines, Łukasiewicz structures and the
residuated lattice of Example 2.3 are complete Brouwerian
residuated lattices.

Proposition 2.7 (See, Ciungu 2014; Galatos et al. 2007;
Jipsen and Tsinakis 2002; Piciu 2007) In a residuated lat-
tice L, for any x ∈ L,

x := x � 0 and x̃ := x � 0(mirror image of x)

are called the negations of x. Furthermore, the following
(quasi-)identities and their mirror images hold for any x, y
in L:

(8) 0 = 1.
(9) x ≤ y implies y ≤ x.

(10) x � x = 0, x ≤ x̃ and x̃ = x.

2.2 L-fuzzy ideal of a ring

Throughout the work, L := (L; ∧,∨,�,�,�; 0, 1)
is a complete Brouwerian residuated lattice and A :=
(A; +, ·; −; 0) is a ring with unity 1. The binary oper-
ation · is denoted by juxtaposition.

Definition 2.8 A fuzzy subset of A under L, or an L-fuzzy
subset of A, is a map from A to L .

Recall that this notion was introduced by Goguen (1967) in
1967 as a generalization of the notion of fuzzy subset defined
by Zadeh (1965) in 1965 as a function from a set to [0, 1].
Example 2.9 (See, Tchoffo Foka and Tonga 2019) For any
B ⊆ A, a ∈ A and r , s ∈ L , the following functions from A
to L are fuzzy subsets of A:

Bs
r (x) :=

{
s if x ∈ B,

r if not.
for all x ∈ A,

Br := Br
0 , B

r := B1
r , a

s
r := {a}sr , ar := ar0 (fuzzy point of

A), B1 =: χB := B0 (characteristic function of B), χa :=
χ{a} and Ar =: r := ∅r (constant fuzzy subset of A).

Notation 2.10 (See, Tchoffo Foka and Tonga 2019) For any
L-fuzzy subset μ of A and r ∈ L,

U (μ, r) := {x ∈ A : μ(x) ≥ r}

is called the r-level set (or r-cut) of μ.

The order relation ≤ is defined on the set Fu(A, L) of L-
fuzzy subsets of A as follows: for any μ, ν ∈ Fu(A, L),
μ ≤ ν (ν contains μ) if and only if μ(x) ≤ ν(x) for all
x ∈ A.

Remark 2.11 Fu(A, L) forms a complete Brouwerian resid-
uated lattice Fu(A, L) := (

Fu(A, L); ∧,∨,�,�,�;
0, 1

)
, where the binary operations ∧, ∨, �,�,� are

defined componentwise.

Definition 2.12 An L-fuzzy subset μ of A is an L-fuzzy
ideal of A if and only if μ(0) = 1 and for any x, y ∈ A,
μ(x − y) ≥ μ(x) ∧ μ(y) and μ(xy) ≥ μ(x) ∨ μ(y).

Remark 2.13 • For any ideal I of A and r , s ∈ L such that
r ≤ s, the L-fuzzy subset (I sr )∗ := I sr ∨ χ0 of A, given by

(I sr )∗(x) =
⎧
⎨

⎩

1 if x = 0,
s if x ∈ I \ {0},
r elsewhere.

for all x ∈ A,

is an L-fuzzy ideal of A.
• If μ is an L-fuzzy ideal of A, then all its cuts are ideals

ofA; the converse holds for any L-fuzzy subset μ of A such
that 1 ∈ Im(μ).

Proposition 2.14 (See, Swamy and Swamy 1988) The set
Fid(A, L) of L-fuzzy ideals of A forms a complete
lattice Fid(A, L) := (

Fid(A, L); ∧, +; χ0, 1
)
, where

for any μ, ν ∈ Fid(A, L) and x ∈ A,(
μ + ν

)
(x) = ∨{μ(a) ∧ ν(b) : x = a + b}.

3 Residuated lattice of L-fuzzy ideals ofA
Remark 3.1 The residuated lattice of ideals of A is given by

Id(A) := (
I d(A); ∩, +, �, →, �; {0}, A

);

where, for any I , J ∈ I d(A),
I + J = {a + b : a ∈ I and b ∈ J },

I � J := I J =
{

n∑

i=1

ai bi : a1, . . . , an ∈ I and b1, . . . , bn ∈ J

}

,

I → J = {x ∈ A : x I ⊆ J } and
I � J = {x ∈ A : I x ⊆ J }.
Definition 3.2 For any L-fuzzy subsets μ and ν of A, the
L-fuzzy subset μ ◦ ν of A is defined by:

(
μ ◦ ν

)
(x) =

∨
{μ(a) � ν(b) : x = ab} for all x ∈ A.

Proposition 3.3 Let μ, ν ∈ Fid(A, L). Then the L-fuzzy
subset μ ⊗ ν of A, given by

(
μ ⊗ ν

)
(x) =

∨
⎧
⎨

⎩

∧

1≤i≤n

μ(ai ) � ν(bi ) : x =
n∑

i=1

ai bi

⎫
⎬

⎭
for all x ∈ A,
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is the smallest L-fuzzy ideal of A containing μ ◦ ν; i .e.,
Fidg(μ ◦ ν) = μ ⊗ ν (L-fuzzy ideal of A generated by
μ ◦ ν).

Proof It is clear thatμ⊗ν contains μ◦ν. Next we show that
μ ⊗ ν is an L-fuzzy ideal of A.

We have (μ ⊗ ν)(0) = 1, since

(μ ⊗ ν)(0) ≥ μ(0) � ν(0) = 1 � 1 = 1.

Now, let x, y ∈ A. Set X := {(ai , bi )1≤i≤m+n : x =∑m
i=1 aibi and−y= ∑m+n

i=m+1 aibi } andY := {(u j , v j )1≤ j≤p:
x − y = ∑p

j=1 u jv j }. Then X ⊆ Y . Furthermore, for any
(ai , bi )1≤i≤m+n ∈ X , we have

(
∧

1≤i≤m
μ(ai ) � ν(bi )

)

∧
(

∧

m+1≤i≤m+n
μ(ai ) � ν(bi )

)

= ∧

1≤i≤m+n
μ(ai ) � ν(bi )

≤ (
μ ⊗ ν

)
(x − y).

Thus,
(
μ ⊗ ν

)
(x) ∧ (

μ ⊗ ν
)
(y) ≤ (

μ ⊗ ν
)
(x − y). For any

a1, b1, . . . , an, bn ∈ A such that x = ∑m
i=1 aibi , we have

xy = ∑m
i=1 ai (bi y) and,

∧

1≤i≤m

μ(ai ) � ν(bi ) ≤
∧

1≤i≤m

μ(ai ) � ν(bi y) ≤ (
μ ⊗ ν

)
(xy).

Thus,
(
μ⊗ ν

)
(x) ≤ (

μ⊗ ν
)
(xy). Similarly, we obtain

(
μ⊗

ν
)
(y) ≤ (

μ⊗ν
)
(xy). So,

(
μ⊗ν

)
(xy) ≥ (

μ⊗ν
)
(x)∨(

μ⊗
ν
)
(y). Hence, μ ⊗ ν is an L-fuzzy ideal of A.
Finally, let δ be an L-fuzzy ideal of A containing μ ◦ ν.

For any a1, b1, . . . , an, bn ∈ A such that x = ∑n
i=1 aibi , we

have

∧

1≤i≤n

μ(ai ) � ν(bi ) ≤
∧

1≤i≤n

(μ ◦ ν) (aibi ) ≤
∧

1≤i≤n

δ(aibi )

≤ δ

(
n∑

i=1

aibi

)

= δ(x).

Thus,
(
μ ⊗ ν

)
(x) ≤ δ(x). Hence, μ ⊗ ν ≤ δ. Therefore,

μ ⊗ ν is the smallest L-fuzzy ideal of A containing μ ◦ ν.
��

Proposition 3.4 The binary operation ⊗ on Fid(A, L) is
associative.

Proof Let μ, ν, δ ∈ Fid(A, L). Let x ∈ A. Let a1, b1, . . . ,
an, bn ∈ A such that x = ∑n

i=1 aibi . Let 1 ≤ i ≤ n. For
any ci1 , di1 , . . . , ci p , dip ∈ A such that bi = ∑p

j=1 ci j di j ,
we have for each 1 ≤ k ≤ p,

μ(ai ) �
(

∧

1≤ j≤p
ν(ci j ) � δ(di j )

)

≤ μ(ai ) � (
ν(cik ) � δ(dik )

)

= (
μ(ai ) � ν(cik )

) � δ(dik )

≤ (
μ ⊗ ν

)
(ai cik ) � δ(dik )

≤ (
(μ ⊗ ν) ⊗ δ

)(
(ai cik )dik

)

= (
(μ ⊗ ν) ⊗ δ

)(
ai (cik dik )

)
;

thus,

μ(ai ) �
(

∧

1≤ j≤p
ν(ci j ) � δ(di j )

)

≤ ∧

1≤ j≤p

(
(μ ⊗ ν) ⊗ δ

)(
ai (ci j di j )

)

≤ (
(μ ⊗ ν) ⊗ δ

)
⎛

⎝
p∑

j=1

ai (ci j di j )

⎞

⎠

= (
(μ ⊗ ν) ⊗ δ

)
⎛

⎝ai

p∑

j=1

ci j di j

⎞

⎠

= (
(μ ⊗ ν) ⊗ δ

)
(ai bi ).

So, μ(ai ) � (
ν ⊗ δ

)
(bi ) ≤ (

(μ ⊗ ν) ⊗ δ
)
(aibi ). It follows

that
∧

1≤i≤n
μ(ai ) � (

ν ⊗ δ
)
(bi ) ≤ ∧

1≤i≤n

(
(μ ⊗ ν) ⊗ δ

)
(aibi ) ≤

(
(μ ⊗ ν) ⊗ δ

)
(x).

Thus,
(
μ ⊗ (ν ⊗ δ)

)
(x) ≤ (

(μ ⊗ ν) ⊗ δ
)
(x) and,

(
(μ ⊗

ν) ⊗ δ
)
(x) ≤ (

μ ⊗ (ν ⊗ δ)
)
(x) by similar arguments. So,(

μ⊗ (ν ⊗ δ)
)
(x) = (

(μ⊗ ν)⊗ δ
)
(x). Hence, μ⊗ (ν ⊗ δ) =

(μ ⊗ ν) ⊗ δ. Therefore, ⊗ is associative. ��
Corollary 3.5 Fid(A, L) := (

Fid(A, L); ⊗, 1
)

is a
monoid.

Proof Since⊗ is associative by Proposition 3.4, it suffices to
show that 1 is the unity of Fid(A, L). So, letμ be an L-fuzzy
ideal of A. Let x ∈ A. For any a1, b1, . . . , an, bn ∈ A such
that x = ∑n

i=1 aibi , we have

∧

1≤i≤n

μ(ai ) � 1(bi ) =
∧

1≤i≤n

μ(ai ) � 1 =
∧

1≤i≤n

μ(ai )

≤
∧

1≤i≤n

μ(aibi ) ≤ μ(x).

Thus,
(
μ⊗1

)
(x) ≤ μ(x). Furthermore,

(
μ⊗1

)
(x) ≥ μ(x)�

1(1) = μ(x) � 1 = μ(x). So,
(
μ ⊗ 1

)
(x) = μ(x). Hence,

μ⊗1 = μ and, 1⊗μ = μ by similar arguments. Therefore,
1 is the unity of Fid(A, L). ��
Definition 3.6 For any L-fuzzy subsetsμ and ν of A,μ ↪→ ν

and μ � ν denote the L-fuzzy subsets of A defined for any
x ∈ A by:

(
μ ↪→ ν

)
(x) =

∨
{r ∈ L : xr ◦ μ ≤ ν}

(
μ � ν

)
(x) =

∨
{r ∈ L : μ ◦ xr ≤ ν}.
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Proposition 3.7 Letμ and ν be two L-fuzzy ideals ofA. Then
μ ↪→ ν and μ � ν are L-fuzzy ideals of A.

Proof Since 01 ◦ μ = χ0 ≤ ν, we have 1 ≤ (
μ ↪→ ν

)
(0)

and,
(
μ ↪→ ν

)
(0) = 1. Now, let x, y ∈ A. Let r , s ∈ L such

that xr ◦μ ≤ ν and ys ◦μ ≤ ν. Let a ∈ A. Let b, c ∈ A such
that a = bc.

• If b �= x − y, then

(x − y)r∧s(b) � μ(c) = 0 � μ(c) = 0 ≤ ν(a).

• If b = x − y, then

(x − y)r∧s(b) � μ(c) = (r ∧ s) � μ(c)

≤ (
r � μ(c)

) ∧ (
s � μ(c)

)

= (
xr (x) � μ(c)

) ∧ (
ys(y) � μ(c)

)

≤ (
xr ◦ μ

)
(xc) ∧ (

ys ◦ μ
)
(yc)

≤ ν(xc) ∧ ν(yc)

≤ ν(xc − yc)

= ν(a).

Thus,
(
(x − y)r∧s ◦ μ

)
(a) ≤ ν(a). So,

(x − y)r∧s ◦ μ ≤ ν and, r ∧ s ≤ (μ ↪→ ν)(x − y).

It follows that (μ ↪→ ν)(x) ∧ (μ ↪→ ν)(y) ≤ (μ ↪→
ν)(x − y).
Now, let r ∈ L such that xr ◦ μ ≤ ν. Let a ∈ A. Let
b, c ∈ A such that a = bc.

• If b �= xy, then

(xy)r (b) � μ(c) = 0 � μ(c) = 0 ≤ ν(a).

• If b = xy, then

(xy)r (b) � μ(c) = r � μ(c)

= xr (x) � μ(c)

≤ xr (x) � μ(yc)

≤ (xr ◦ μ)
(
x(yc)

)

≤ ν
(
x(yc)

)

= ν(a).

Thus,
(
(xy)r ◦ μ

)
(a) ≤ ν(a). So, (xy)r ◦ μ ≤ ν and,

r ≤ (
μ ↪→ ν

)
(xy). It follows that

(
μ ↪→ ν

)
(x) ≤(

μ ↪→ ν
)
(xy).

Now, let r ∈ L such that yr ◦ μ ≤ ν. Let a ∈ A. Let
b, c ∈ A such that a = bc.

• If b �= xy, then

(xy)r (b) � μ(c) = 0 � μ(c) = 0 ≤ ν(a).

• Suppose that b = xy. For any z ∈ U
(
μ,μ(c)

)
, we have

ν(yz) ≥ (
yr ◦ μ

)
(yz)

≥ yr (y) � μ(z)
= r � μ(z)
≥ r � μ(c)

and, yz ∈ U
(
ν, r � μ(c)

)
. Thus,

yU
(
μ,μ(c)

) ⊆ U
(
ν, r � μ(c)

)
and,

y ∈ U
(
μ,μ(c)

) → U
(
ν, r � μ(c)

)
.

So,

xy ∈ U
(
μ,μ(c)

) → U
(
ν, r � μ(c)

)
and,

xyU
(
μ,μ(c)

) ⊆ U
(
ν, r � μ(c)

)
.

Since a = xyc ∈ U
(
ν, r � μ(c)

)
, we have

(xy)r (b) � μ(c) = r � μ(c) ≤ ν(a).

Thus,
(
(xy)r ◦μ

)
(a) ≤ ν(a). So, (xy)r ◦μ ≤ ν and, r ≤(

μ ↪→ ν
)
(xy). Thus,

(
μ ↪→ ν

)
(y) ≤ (

μ ↪→ ν
)
(xy).

Consequently,
(
μ ↪→ ν

)
(x) ∨ (

μ ↪→ ν
)
(y) ≤ (

μ ↪→ ν
)

(xy).
Hence, μ ↪→ ν is an L-fuzzy ideal of A. A similar rea-
soning shows that μ � ν is an L-fuzzy ideal of A. ��

Theorem 3.8 F id(A, L) := (
Fid(A, L); ∧, +, ⊗, ↪→,

�; χ0, 1
)
is a complete residuated lattice.

Proof Since Fid(A, L) is a complete lattice and Fid(A, L)

is a monoid, it suffices to show that: for any μ, ν, δ ∈
Fid(A, L), μ ⊗ ν ≤ δ iff μ ≤ ν ↪→ δ iff ν ≤ μ � δ.
So, let μ, ν, δ ∈ Fid(A, L).

Assume that μ ⊗ ν ≤ δ. Let x ∈ A. Let a ∈ A. For any
v ∈ A such that a = xv, we have

xμ(x)(x) � ν(v) = μ(x) � ν(v) ≤ (
μ ⊗ ν

)
(a) ≤ δ(a).

Thus,
(
xμ(x) ◦ ν

)
(a) ≤ δ(a). So, xμ(x) ◦ ν ≤ δ and, μ(x) ≤(

ν ↪→ δ
)
(x). Hence, μ ≤ ν ↪→ δ.

Conversely, assume that μ ≤ ν ↪→ δ. Let x ∈ A. Let
a1, b1, . . . , an, bn ∈ A such that x = ∑n

i=1 aibi . Let 1 ≤
i ≤ n. For any ri ∈ L such that (ai )ri ◦ ν ≤ δ, we have(
μ(ai ) ∧ ri

) � ν(bi ) ≤ ri � ν(bi ) = (ai )ri (ai ) � ν(bi ) ≤(
(ai )ri ◦ν

)
(aibi ) ≤ δ(aibi ). SinceL is Brouwerian, we have

μ(ai ) � ν(bi ) = (
μ(ai ) ∧ (

ν ↪→ δ
)
(ai )

) � ν(bi ) ≤ δ(aibi ).
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Thus,

∧

1≤i≤n

μ(ai ) � ν(bi ) ≤
∧

1≤i≤n

δ(aibi ) ≤ δ(x).

So, (μ ⊗ ν)(x) ≤ δ(x). It follows that μ ⊗ ν ≤ δ.
Hence, μ ⊗ ν ≤ δ iff μ ≤ ν ↪→ δ. A similar reasoning

shows that: μ ⊗ ν ≤ δ iff ν ≤ μ � δ. ��

4 Embeddings ofL and Id(A) into
F id(A, L)

Proposition 4.1 Let I , J ∈ I d(A) and r , s ∈ L. Then the
following hold:

(1) (Ir )∗ ⊗ (Js)∗ = (
(I � J )r�s

)
∗.

(2) I r ⊗ J s = (I � J )r�s + (Is)∗ + (Jr )∗.
(3) (Ir )∗ + (Js)∗ = [

(I + J \ I ∪ J )r∧s ∨ (I \ J )r ∨ (J \
I )s ∨ (I ∩ J \ {0})r∨s

]
∗.

Proof (1)Let x ∈ I� J \{0}. For any a1, b1, . . . , an, bn ∈ A
such that x = ∑n

i=1 aibi , there is 1 ≤ i0 ≤ n such that
ai0 �= 0 and bi0 �= 0; thus,

∧

1≤i≤n
(Ir )∗(ai ) � (Js)∗(bi ) ≤

(Ir )∗(ai0)�(Js)∗(bi0) ≤ r�s. So,
(
(Ir )∗⊗(Js)∗

)
(x) ≤ r�s.

Since there are a1, . . . , an ∈ I \ {0} and b1, . . . , bn ∈ J \ {0}
such that x = ∑n

i=1 aibi , we have r � s = ∧

1≤i≤n
(Ir )∗(ai )�

(Js)∗(bi ) ≤ (
(Ir )∗ ⊗ (Js)∗

)
(x) and,

(
(Ir )∗ ⊗ (Js)∗

)
(x) =

r � s.
Now, let x /∈ I � J . For any a1, b1, . . . , an, bn ∈ A such
that x = ∑n

i=1 aibi , there is 1 ≤ i0 ≤ n such that ai0 /∈ I
or bi0 /∈ J ; i .e., (Ir )∗(ai0) = 0 or (Js)∗(bi0) = 0; thus,∧

1≤i≤n
(Ir )∗(ai ) � (Js)∗(bi ) ≤ (Ir )∗(ai0) � (Js)∗(bi0) = 0

and,
∧

1≤i≤n
(Ir )∗(ai )�(Js)∗(bi ) = 0. So,

(
(Ir )∗⊗(Js)∗

)
(x) =

∨{0} = 0.
Hence, (Ir )∗ ⊗ (Js)∗ = (

(I � J )r�s
)
∗.

(2) We first show that I r = I1 + (Ar )∗. For any x ∈ I , we
have

(
I1+(Ar )∗

)
(x) ≥ I1(x) = 1 and,

(
I1+(Ar )∗

)
(x) = 1.

Now, let x /∈ I . Let a, b ∈ A such that x = a + b. If
b = 0, then a /∈ I and, I1(a) ∧ (Ar )∗(b) = 0 ∧ 1 = 0.
If b �= 0, then I1(a) ∧ (Ar )∗(b) ≤ (Ar )∗(b) = r . Thus,
r = (Ar )∗(x) ≤ (

I1+(Ar )∗
)
(x) ≤ r and,

(
I1+(Ar )∗

)
(x) =

r . So, I r = I1 + (Ar )∗. A similar reasoning shows that
J s = J1 + (As)∗. Finally, we have

I r ⊗ J s = (
I1 + (Ar )∗

) ⊗ (
J1 + (As)∗

)

= (I � J )1�1 + (
(I � A)1�s

)
∗ + (

(A � J )r�1
)
∗

+(
(A � A)r�s

)
∗

= (I � J )1 + (Is)∗ + (Jr )∗ + (Ar�s)∗

= (I � J )r�s + (Is)∗ + (Jr )∗.

(3) •Let x /∈ I+ J . For any a, b ∈ A such that x = a+b, we
have a /∈ I or b /∈ J ; i .e., (Ir )∗(a) = 0 or (Js)∗(b) = 0; thus,
(Ir )∗(a)∧(Js)∗(b) = 0. So,

(
(Ir )∗+(Js)∗

)
(x) = ∨{0} = 0.

•Let x ∈ I + J \ I ∪ J . For any a, b ∈ A such that x = a+b,
we have

(Ir )∗(a) ∧ (Js)∗(b) =
{
r ∧ s if a ∈ I and b ∈ J ,

0 if a /∈ I or b /∈ J .
.

Thus, r ∧ s = (Ir )∗(u) ∧ (Js)∗(v) ≤ (
(Ir )∗ + (Js)∗

)
(x) ≤

r∧s for some u ∈ I \{0} and v ∈ J \{0} such that x = u+v;
so,

(
(Ir )∗ + (Js)∗

)
(x) = r ∧ s.

• Let x ∈ I \ J . For any a, b ∈ A such that x = a + b, we
have

(Ir )∗(a) ∧ (Js)∗(b) =
{
r ∧ (Js)∗(b) if a ∈ I and b ∈ J ,

0 if a /∈ I or b /∈ J .
.

Thus, r = (Ir )∗(x) ∧ (Js)∗(0) ≤ (
(Ir )∗ + (Js)∗

)
(x) ≤ r

and,
(
(Ir )∗ + (Js)∗

)
(x) = r . A similar reasoning shows that(

(Ir )∗ + (Js)∗
)
(x) = s for all x ∈ J \ I .

• Let x ∈ (I ∩ J )\{0}. For any a, b ∈ A such that x = a+b,
we have a �= 0 or b �= 0; thus, (Ir )∗(a) ∧ (Js)∗(b) ≤ r ∨ s.
So, r ∨ s = (

(Ir )∗ ∨ (Js)∗
)
(x) ≤ (

(Ir )∗ + (Js)∗
)
(x) ≤ r ∨ s

and,
(
(Ir )∗ + (Js)∗

)
(x) = r ∨ s.

Hence, (Ir )∗ + (Js)∗ = [
(I + J \ I ∪ J )r∧s ∨ (I \ J )r ∨

(J \ I )s ∨ (I ∩ J \ {0})r∨s
]
∗. ��

For any I , J ∈ I d(A) and r ∈ L , one can easily verify that
(Ir )∗ + (Jr )∗ = (

(I + J )r
)
∗ and I1 + (Jr )∗ = (

I1 ∨ (I +
J )r

)
∗. For any L-fuzzy ideal μ of A, μ− := μ ↪→ χ0 and

μ∼ := μ � χ0 denote the left and right annihilator of μ in
F id(A, L), respectively.

Proposition 4.2 (1) Let r , s ∈ L and I , J ∈ I d(A). Then

(
(I → J )r�s

)
∗ ≤ (Ir )∗ ↪→ (Js)∗ and

(
(I � J )r�s

)
∗ ≤ (Ir )∗ � (Js)∗.

(2) Let I be a proper ideal of A and r , s ∈ L such that
r ≤ s. Then

(
(I sr )∗

)− = (
(I−)rs

)
∗ and

(
(I sr )∗

)∼ = (
(I∼)̃rs̃

)
∗;

where, I− := I → {0} and I∼ := I � {0} denote the left
and right annihilator of I in Id(A), respectively.
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Proof (1) Since
(
(I → J )r�s

)
∗ ⊗ (Ir )∗ = [(

(I → J ) �
I
)
(r�s)�r

]
∗ ≤ (Js)∗, we have

(
(I → J )r�s

)
∗ ≤ (Ir )∗ ↪→

(Js)∗. Similarly,
(
(I � J )r�s

)
∗ ≤ (Ir )∗ � (Js)∗.

(2) We first show that
(
(I sr )∗

)− = (
(I−)rs

)
∗.• Let x ∈ I− \ {0}. For any t ∈ L such that xt ◦ (I sr )∗ ≤ χ0,

we have

t � r = xt (x) � (I sr )∗(1) ≤ (
xt ◦ (I sr )∗

)
(x) ≤ χ0(x) = 0;

thus, t ≤ r . So,
(
(I sr )∗

)−
(x) ≤ r . Now, let a �= 0 in A. For

any v ∈ A such that a = xv, we have v /∈ I ; thus,

r � (I sr )∗(v) = r � r = 0.

So,

(
xr ◦ (I sr )∗

)
(a) =

∨
{0} = 0.

It follows that

xr ◦ (I sr )∗ ≤ χ0 and, r ≤ (
(I sr )∗

)−
(x).

Consequently,
(
(I sr )∗

)−
(x) = r .

• Let x /∈ I−. For any t ∈ L such that xt ◦ (I sr )∗ ≤ χ0, we
have

t � s = xt (x) � (I sr )∗(v) ≤ (
xt ◦ (I sr )∗

)
(xv) ≤ χ0(xv) = 0

for some v ∈ I such that xv �= 0; thus, t ≤ s. So,(
(I sr )∗

)−
(x) ≤ s. Now, let a �= 0 in A. For any v ∈ A

such that a = xv, we have

s � (I sr )∗(v) =
{
s � s if v ∈ I
s � r if v /∈ I

≤ s � s = 0;

thus, s � (I sr )∗(v) = 0. So,

(
xs ◦ (I sr )∗

)
(a) =

∨
{0} = 0.

It follows that

xs ◦ (I sr )∗ ≤ χ0 and, s ≤ (
(I sr )∗

)−
(x).

Consequently,
(
(I sr )∗

)−
(x) = s.

Hence,
(
(I sr )∗

)− = (
(I−)rs

)
∗ and,

(
(I sr )∗

)∼ = (
(I∼)̃rs̃

)
∗ by

similar arguments. ��

Theorem 4.3 The function φ : I d(A) → Fid(A, L), given
by φ(I ) = I1 for all I ∈ I d(A), is a complete residuated
lattice embedding.

Proof Since φ is clearly a complete lattice embedding, and
the fact that

φ(I � J ) = (I � J )1 = (I � J )1�1

= I1 ⊗ J1 = φ(I ) ⊗ φ(J ) for all I , J ∈ I d(A),

we only have to prove that φ preserves the residues. So, let
I , J ∈ I d(A). Let x /∈ I → J . There is a ∈ I such that
xa /∈ J . For any r ∈ L such that xr ◦ I1 ≤ J1, we have

r = r � 1 = xr (x) � I1(a) ≤ (xr ◦ I1)(xa) ≤ J1(xa) = 0

and, r = 0.

Thus, (I1 ↪→ J1)(x) = ∨{0} = 0. So, I1 ↪→ J1 ≤ (I →
J )1 and, (I → J )1 = I1 ↪→ J1. Hence, φ(I → J ) =
(I → J )1 = I1 ↪→ J1 = φ(I ) ↪→ φ(J ). A similar rea-
soning shows that φ(I � J ) = φ(I ) � φ(J ). Therefore,
φ is a complete residuated lattice embedding of Id(A) into
F id(A, L). ��
Theorem 4.4 The function ψ : L → Fid(A, L), given by
ψ(r) = (r)∗ for all r ∈ L, is a complete residuated lattice
embedding.

Proof Since ψ is clearly a complete lattice embedding, and
the fact that for any r , s ∈ L , we have

ψ(r � s) = (
Ar�s

)
∗ = (

(A � A)r�s
)
∗

= (Ar )∗ ⊗ (As)∗ = (r)∗ ⊗ (s)∗ = ψ(r) ⊗ ψ(s),

we only have to prove that ψ preserves the residues. So,
let r , s ∈ L . Let x �= 0 in A. For any t ∈ L such that
xt ◦ (r)∗ ≤ (s)∗, we have

t � r = xt (x) � (r)∗(1) ≤ (
xt ◦ (r)∗

)
(x) ≤ (s)∗(x) = s

and, t ≤ r � s.

Thus,
(
(r)∗ ↪→ (s)∗

)
(x) ≤ r � s = (r � s)∗(x). So,

(r)∗ ↪→ (s)∗ ≤ (r � s)∗ and, (r � s)∗ = (r)∗ ↪→ (s)∗.
Hence,

ψ(r � s) = (r � s)∗ = (r)∗ ↪→ (s)∗ = ψ(r) ↪→ ψ(s).

A similar reasoning shows that ψ(r � s) = ψ(r) � ψ(s).
Therefore, ψ is a complete residuated lattice embedding of
L into F id(A, L). ��

5 Conclusion

In this paper, given a complete Brouwerian residuated lattice
L and a ring with unity A, we have built a residuated lattice
structureF id(A, L), on the set Fid(A, L) of L-fuzzy ideals
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ofA, which extends bothL and the residuated lattice Id(A),
on the set I d(A) of ideals ofA. This construction is also valid
for non-normalized fuzzy ideals; i .e., fuzzy ideals μ which
do not necessarily satisfy condition μ(0) = 1. But in this
case F id(A, L) is only an extension of L, since it is rather
bounded by 0 and 1.

By a �-prime element of a residuated lattice L, we mean
an element p �= 1 in L such that: for any x, y ∈ L , x� y ≤ p
implies x ≤ p or y ≤ p. This definition is slightly differ-
ent from that known in lattices, which rather coincides with
the definition of ∧-prime element. It would be interesting
to establish if there is a better (or nice) link between the
prime elements in F id(A, L) and those in Fid(A, L). This
will can also be extended to primary elements and primary
decompositions.

Another interesting aspect to study following this paper
is the relationship between L and Id(A), and F id(A, L),
depending on the structure of L and Id(A).
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