DICAMES logo

Veuillez utiliser cette adresse pour citer ce document : https://hdl.handle.net/20.500.12177/10267
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.advisorAyissi, Raoul-
dc.contributor.authorEssono, Rene-
dc.date.accessioned2023-04-07T13:22:43Z-
dc.date.available2023-04-07T13:22:43Z-
dc.date.issued2021-
dc.identifier.urihttps://hdl.handle.net/20.500.12177/10267-
dc.description.abstractIn this work, using an important result of Chen Guiqiang and Su Bo [7], we set a theorem about a global in finite time and local in space existence and uniqueness of a minimax viscosity solution in L¥ of the relativistic Vlasov equation in Yang-Mills charged time oriented four dimensional curved space-time with non-zero mass, therefore derive from it an optimal control problem. To our knowledge, the method used here to derive an existence theorem is original and totally different from the ones used to solve similar problems.fr_FR
dc.format.extent133 p.fr_FR
dc.publisherUniversité de Yaoundé Ifr_FR
dc.subjectRelativistic Vlasov equationfr_FR
dc.subjectViscosity solutionfr_FR
dc.subjectMinimax solutionfr_FR
dc.subjectL∞ solutionfr_FR
dc.subjectOptimal control problemfr_FR
dc.titleOptimal control problem and inhomogeneous minimax viscosity solution in L∞ for relativistic Vlasov equationfr_FR
dc.typeThesis-
Collection(s) :Thèses soutenues

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
FS_These_BC_22_0034.pdf2.13 MBAdobe PDFMiniature
Voir/Ouvrir


Tous les documents du DICAMES sont protégés par copyright, avec tous droits réservés.