Veuillez utiliser cette adresse pour citer ce document :
https://hdl.handle.net/20.500.12177/10267
Affichage complet
Élément Dublin Core | Valeur | Langue |
---|---|---|
dc.contributor.advisor | Ayissi, Raoul | - |
dc.contributor.author | Essono, Rene | - |
dc.date.accessioned | 2023-04-07T13:22:43Z | - |
dc.date.available | 2023-04-07T13:22:43Z | - |
dc.date.issued | 2021 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.12177/10267 | - |
dc.description.abstract | In this work, using an important result of Chen Guiqiang and Su Bo [7], we set a theorem about a global in finite time and local in space existence and uniqueness of a minimax viscosity solution in L¥ of the relativistic Vlasov equation in Yang-Mills charged time oriented four dimensional curved space-time with non-zero mass, therefore derive from it an optimal control problem. To our knowledge, the method used here to derive an existence theorem is original and totally different from the ones used to solve similar problems. | fr_FR |
dc.format.extent | 133 p. | fr_FR |
dc.publisher | Université de Yaoundé I | fr_FR |
dc.subject | Relativistic Vlasov equation | fr_FR |
dc.subject | Viscosity solution | fr_FR |
dc.subject | Minimax solution | fr_FR |
dc.subject | L∞ solution | fr_FR |
dc.subject | Optimal control problem | fr_FR |
dc.title | Optimal control problem and inhomogeneous minimax viscosity solution in L∞ for relativistic Vlasov equation | fr_FR |
dc.type | Thesis | - |
Collection(s) : | Thèses soutenues |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
FS_These_BC_22_0034.pdf | 2.13 MB | Adobe PDF | Voir/Ouvrir |
Tous les documents du DICAMES sont protégés par copyright, avec tous droits réservés.