Veuillez utiliser cette adresse pour citer ce document :
https://hdl.handle.net/20.500.12177/2256
Titre: | Littlewood-Paley decompositions related to symmetric cones |
Auteur(s): | Garrigós, Gustavo Bonami, Aline Békollé, David |
Mots-clés: | Bergman projector Littlewood-Paley Symmetric cone Whitney decomposition |
Date de publication: | 20-fév-2012 |
Résumé: | We obtain a Whitney decomposition of a symmetric cone Ω, analogtothatofthepositivereallineintodyadicintervals[2j,2j+1). This gives a natural tool for developing a Littlewood-Paley theory for spaces of functions with spectrum in Ω. Such functions extend into holomorphic functions on the tube TΩ. We consider here the mixed norm Bergman spaces Ap,2(T ), for which we find νΩ a Littlewood-Paley characterization. As a consequence, we obtain optimal results for the boundedness of the Bergman projector Pν in Lp,2(T ). When the projector is unbounded, a precise descrip- νΩ tion of P (Lp,2) is also given, as a space of equivalence classes of νν holomorphic functions in relation with the dual of Ap′,2(T ). |
Pagination / Nombre de pages: | 1-30 |
URI/URL: | https://dicames.online/jspui/handle/20.500.12177/2256 |
Autre(s) identifiant(s): | http://imhotep-journal.org/index.php/imhotep/article/view/15 |
Collection(s) : | Articles publiés dans des revues à comité scientifique |
Fichier(s) constituant ce document :
Fichier | Description | Taille | Format | |
---|---|---|---|---|
15-45-1-PB.pdf | 277.37 kB | Adobe PDF | Voir/Ouvrir |
Tous les documents du DICAMES sont protégés par copyright, avec tous droits réservés.