DICAMES logo

Veuillez utiliser cette adresse pour citer ce document : https://hdl.handle.net/20.500.12177/5223
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.advisorMouaha, Christophe-
dc.contributor.authorFouotsa Tako, Boris-
dc.date.accessioned2021-10-01T08:50:02Z-
dc.date.available2021-10-01T08:50:02Z-
dc.date.issued2016-
dc.identifier.urihttps://hdl.handle.net/20.500.12177/5223-
dc.description.abstractThis work is devoted to the study of cyclic codes on a Galois field and the characterisation of the class of those having code words with a common divisor greater than one. We use the McEliece theorem to proove that a non degenerated binary code C is a divisible code if and only if 1 is a non zero of C. We also proove that if a binary non degenerated cyclic code is divisible, then its orthogonal is also divisible if and only if it is degenerated. For the general case were p is a prime, we give a necessary condition for a non degenarated cyclic code over Fp to be divisible.fr_FR
dc.format.extent58fr_FR
dc.publisherUniversité de Yaoundé Ifr_FR
dc.subjectHamming weightfr_FR
dc.subjectGriesmer codefr_FR
dc.subjectCyclic codefr_FR
dc.subjectDivisible codefr_FR
dc.titleCodes Cycliques divisibles sur un Corps de Galoisfr_FR
dc.typeThesis-
Collection(s) :Mémoires soutenus

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
ENS_2016_mem_0127.pdf1.4 MBAdobe PDFMiniature
Voir/Ouvrir


Tous les documents du DICAMES sont protégés par copyright, avec tous droits réservés.