
Veuillez utiliser cette adresse pour citer ce document :
https://hdl.handle.net/20.500.12177/5223Affichage complet
| Élément Dublin Core | Valeur | Langue |
|---|---|---|
| dc.contributor.advisor | Mouaha, Christophe | - |
| dc.contributor.author | Fouotsa Tako, Boris | - |
| dc.date.accessioned | 2021-10-01T08:50:02Z | - |
| dc.date.available | 2021-10-01T08:50:02Z | - |
| dc.date.issued | 2016 | - |
| dc.identifier.uri | https://hdl.handle.net/20.500.12177/5223 | - |
| dc.description.abstract | This work is devoted to the study of cyclic codes on a Galois field and the characterisation of the class of those having code words with a common divisor greater than one. We use the McEliece theorem to proove that a non degenerated binary code C is a divisible code if and only if 1 is a non zero of C. We also proove that if a binary non degenerated cyclic code is divisible, then its orthogonal is also divisible if and only if it is degenerated. For the general case were p is a prime, we give a necessary condition for a non degenarated cyclic code over Fp to be divisible. | fr_FR |
| dc.format.extent | 58 | fr_FR |
| dc.publisher | Université de Yaoundé I | fr_FR |
| dc.subject | Hamming weight | fr_FR |
| dc.subject | Griesmer code | fr_FR |
| dc.subject | Cyclic code | fr_FR |
| dc.subject | Divisible code | fr_FR |
| dc.title | Codes Cycliques divisibles sur un Corps de Galois | fr_FR |
| dc.type | Thesis | - |
| Collection(s) : | Mémoires soutenus | |
Fichier(s) constituant ce document :
| Fichier | Description | Taille | Format | |
|---|---|---|---|---|
| ENS_2016_mem_0127.pdf | 1.4 MB | Adobe PDF | ![]() Voir/Ouvrir |
Tous les documents du DICAMES sont protégés par copyright, avec tous droits réservés.
