DICAMES logo

Veuillez utiliser cette adresse pour citer ce document : https://hdl.handle.net/20.500.12177/7876
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.advisorNana Engo, Serge Guy-
dc.contributor.authorDjorwé, Philippe-
dc.date.accessioned2022-03-21T10:48:43Z-
dc.date.available2022-03-21T10:48:43Z-
dc.date.issued2014-
dc.identifier.urihttps://hdl.handle.net/20.500.12177/7876-
dc.description.abstractConsidering the technological advances, phonon number less than unity have been achieved (neff < 1) during these five last years. However, reaching the Standard Quantum Limit (neff = 0) remains an experimental challenge which seems to be explained in nonlinear terms. To give a satisfactory explanation to this problem, we focused our thesis works on the nonlinear phononics study at the single-phonon level in optomechanical systems. We have shown that: • Softening geometrical nonlinearity allows a classical control of the nanoresonator. The nonlinear term, through a semiclassical study, gives results which agree well with the quantum ones; • Geometrical nonlinearity as the quantum decoherence, adds some of amount of phonons on the lowest result, and then limits the quantum ground state achievement. This allows us to show that high finesse structures (Ωm 1) could be used to reduce the nonlinear effects and therefore suppress the quantum decoherence; • At the mechanical and optical resonances where the geometrical and optical nonlinearities reach their maximum value, the squeezing is limited; • At the blue detuning sideband, geometrical nonlinearity enhances the generation of robust CV entanglement against thermal decoherence. The relevant fact of these results is that nonlinear effects not only contribute to the advance of the fundamental science but also appear as pillar elements for an improvement of quantum applications.en_US
dc.format.extent115fr_FR
dc.publisherUniversité de Yaoundé Ifr_FR
dc.subjectOptomechanical oscillatorfr_FR
dc.subjectGeometrical nonlinearityfr_FR
dc.subjectOptical nonlinearityfr_FR
dc.subjectGround statefr_FR
dc.subjectCoolingfr_FR
dc.subjectSqueezingfr_FR
dc.subjectEntanglementfr_FR
dc.titleQuantum Study of Optical and Geometrical Nonlinearities in Fabry-Pérot Optomechanical Cavity.fr_FR
dc.typeThesis-
Collection(s) :Thèses soutenues

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
ENSET_EBO_BC_21_0298.pdf3.08 MBAdobe PDFMiniature
Voir/Ouvrir


Tous les documents du DICAMES sont protégés par copyright, avec tous droits réservés.